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1 Introduction

Vector autoregressions (VARs) have been extremely popular in empirical macroeconomics
and other fields for several decades (e.g. beginning with early work such as Sims, 1980,
Doan, Litterman and Sims, 1984 and Litterman, 1986 with recent examples being Ko-
robilis, 2013 and Koop, 2014). Until recently, most of these VARs have involved only a
few (e.g. two to seven) dependent variables. However, VARs involving tens or even hun-
dreds of variables are increasingly popular (see, e.g., Banbura, Giannone and Reichlin,
2010, Carriero, Clark and Marcellino, 2011, Carriero, Kapetanios and Marcellino, 2009,
Giannone, Lenza, Momferatou and Onorante, 2010 and Koop, 2013, and Gefang, 2014).
Vector autoregressive moving average models (VARMAs) have enjoyed less popularity
with empirical researchers despite the fact that theoretical macroeconomic models such
as dynamic stochastic general equilibrium models (DSGEs) lead to VMA representations
which may not be well approximated by VARs, especially parsimonious VARs with short
lag lengths. Papers such as Cooley and Dwyer (1998) point out the limitations of the
structural VAR (SVAR) framework and suggest VARMA models as often being more
appropriate. For instance, Cooley and Dwyer (1998) conclude “While VARMA models
involve additional estimation and identification issues, these complications do not justify
systematically ignoring these moving average components, as in the SVAR approach.”
There is, thus, a strong justification for the empirical macreconomist’s toolkit to include
VARMAs.

VARs are commonly used for forecasting. But, for the forecaster, too, there are
strong reasons to be interested in VARMAs. The univariate literature contains numerous
examples in finance and macroeconomics where adding MA components to AR models
improves forecasting (e.g. Chan, 2013). But even with multivariate macroeconomic
forecasting some papers (e.g. Athanasopoulos and Vahid, 2008) have found that VARMAs
forecast better than VARs. Theoretical econometric papers such as Lutkepohl and Poskitt
(1996) also point out further advantages of VARMAs over VARs.

Despite these advantages of VARMA models, they are rarely used in practice. There
are three main reasons for this. First, there are difficult identification problems to be
overcome. Second, VARMAs are parameter rich models which can be over-parameterized
(an especially important concern in light of the growing interest in large dimensional
models as is evinced in the growing large VAR literature). And, largely due to the
first two problems, they can be difficult to estimate. This paper develops methods for
estimating VARMAs which address all these concerns.

The paper is organized in the following sections. Section 2 briefly describes the econo-
metric theory of VARMAs paying particular attention to different parameterizations of
the VARMA including the expanded form (which is used in the main part of our MCMC
algorithm) and the canonical echelon form (which is used in our treatment of identifica-
tion). Section 3 describes our approach which uses Bayesian methods and a hierarchical
prior to jointly select identification restrictions and ensure shrinkage in the resulting
model. An MCMC algorithm which implements our approach is developed. Section 4
investigates how well our approach works in practice through an artificial data exercise
and a substantive macroeconomic application using VARMAs containing up to 12 vari-
ables. We find that our methods are computationally feasible and lead to inference on
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parameters and impulse responses that are more reasonable and estimated more accu-
rately than alternative approaches, especially in the larger VARMAs of interest in modern
macroeconomics.

2 The Econometrics of VARMAs

2.1 The Semi-structural VARMA

Consider the n dimensional multivariate time series yt, t = −∞, . . . ,∞ and begin with
the semi-structural form of the VARMA(p, q):

B0yt =

p∑

j=1

Bjyt−j +

q∑

j=1

Θjǫt−j +Θ0ǫt, ǫt ∼ N (0,Σ) (1)

or, in terms of matrix polynomial lag operators,

B(L)yt = Θ(L)ǫt,

and assume stationarity and invertibility. For future reference, denote the elements of
the VAR and VMA parts of the model as B(L) = [βki (L)] and Θ(L) = [θki (L)] for
i, k = 1, .., n.

The theoretical motivation for the VARMA arises from the Wold decomposition:

yt = K(L)ǫt, (2)

where K(L) is generally an infinite degree polynomial operator. Specifically, it can be
shown that any such rational transfer function K(L) corresponds to the existence of two
finite degree operators B(L) and Θ(L) such that

B(L)K(L) = Θ(L).

Thus, the VARMA(p, q) is an exact finite-order representation of any multivariate system
that can be characterized by a rational transfer function. When K(L) is not rational, the
VARMA(p, q) can provide an arbitrarily close approximation. Moreover, an important
advantage of the VARMA class is that, unlike VARs or pure VMAs, it is closed under a
variety of transformations on yt, including linear operations and subsets.

The practical problem in having both AR terms with MA terms, however, is that an
alternative VARMA with coefficients B†(L) = C(L)B(L) and Θ†(L) = C(L)Θ(L) will
lead to the same Wold representation. The VARMA(p, q) representation, therefore, is in
general not unique. However, there are two reasons why a unique representation is desir-
able in practice: parsimony and identification. The first reason concerns both frequentist
and Bayesian approaches. If B(L) and Θ(L) contain redundancies, then the resulting
model may lead to poor forecast performance and imprecise impulse response functions.
For researchers working with larger VARMAs such over-parameterization concerns can
become severe. For instance, in our empirical work, we use as an estimating model the
12-variate VARMA with four lags (and an intercept in each equation). Even imposing
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B0 = Θ0 = I leaves 1,242 parameters (including error covariances) to estimate. With
macroeconomic data sets containing a few hundred observations, it will be very hard to
obtain precise inference for all these parameters in the absence of an econometric method
which ensures parsimony or shrinkage.

The second reason (lack of identification) may be less important for the Bayesian
who is only interested in forecasting or in identified functions of the parameters such as
impulse responses. That is, given a proper prior a well-defined posterior will exist even in
a non-identified VARMA. However, the role of the prior becomes important in such cases
and carelessly constructed priors can lead to deficient inference for the Bayesian. For
frequentists, however, a lack of identification is a more substantive problem, precluding
estimation.

How does one obtain a unique VARMA representation? There are generally two major
steps:

The first step is to eliminate common roots in B(L),Θ(L) such that only C(L) with
a constant determinant is possible. In this case, the operators B(L),Θ(L) are said to
be left coprime and C(L) unimodular. For the univariate case, it is sufficient to achieve
uniqueness and corresponds in practical terms to specifying minimal orders p, q. For a
multivariate process, however, this is not enough and a second step is required. That
is, even if we impose B0 = Θ0 = I, there may still exist C(L) 6= I that preserves this
restriction for an alternative set of left coprime operators B†(L),Θ†(L). A common
example is

C(L) =

(
1 c(L)
0 1

)
.

Clearly, detC(L) = 1 and for any B(L),Θ(L), the transformations B†(L) = C(L)B(L)
and Θ†(L) = C(L)Θ(L) lead to B

†
0 = Θ

†
0 = I.

This implies that the elements of B(L),Θ(L) are not identified for estimation pur-
poses. One approach to achieving identification relies on the assumption that the matrix
[Bp : Θq] has full row rank, and indeed, when this holds then B0 = Θ0 = I induces a
unique representation (e.g., Hannan, 1976). In practice, one could try to explicitly en-
force [Bp : Θq] to have full row rank, but that may not be desirable in many applications.
The full row rank condition will likely not be satisfied by most data generating processes
(DGPs) in practice (Lütkepohl and Poskitt, 1996). Therefore, forcing it in an estimation
routine would likely result in mis-specification and an alternative second step would be
required to achieve uniqueness when [Bp : Θq] is rank deficient.

The more general approach that we follow involves imposing exclusion restrictions on
elements of B(L),Θ(L) such that only C(L) = I is possible. It turns out that when such
zero restrictions are applied according to a specific set of rules, it is possible to achieve a
unique VARMA representation corresponding to a particular rational K(L). This leads
to the echelon form which we will use as a basis for our approach to identification.

2.2 The Echelon Form for the VARMA

The echelon form involves a particular set of restrictions on the semi-structural VARMA.
The derivation of the echelon form is based on Kronecker index theory which shows that
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every K(L) in (2) is associated with a unique set of indices κ = (κ1, . . . , κn), which can
be directly related to the VARMA operators B(L),Θ(L). Identification is achieved by
imposing restrictions on the VARMA coefficients in (1) according to so-called Kronecker
indices κ1, . . . , κn, with 0 ≤ κi ≤ p∗, where p∗ = max{p, q}.

To explain further the identifying restrictions in the echelon form note that, with-
out loss of generality, we can denote the VARMA(p, q) as VARMA(p∗, p∗). Then any
VARMA(p∗, p∗) can be represented in echelon form by setting B0 = Θ0 to be lower tri-
angular with ones on the diagonal and applying the exclusion restrictions defined by κ

to B0, . . . ,Bp∗ ,Θ1, . . . ,Θp∗ . The latter restrictions impose on [B(L) : Θ(L)] a maximal
degree of each row i equivalent to κi. A VARMA in echelon form is denoted VARMAE(κ)
and details regarding the foregoing restrictions are discussed in many places. The key
theoretical advantage of the echelon form is that, given κ, it provides a way of con-
structing a parsimonious VARMA representation for yt. A by-product of this is that the
unrestricted parameters are identified. At the same time, every conceivable VARMA can
be represented in echelon form. The formal definition of the echelon form is given, e.g.,
in Lutkepohl, 2005, page 453 as:

Definition:
The VARMA representation in (1) is in echelon form if the VAR and VMA operators

are left coprime and satisfy the following conditions.
The VAR operator is restricted as (for k, i = 1, . . . , n):

βkk (L) = 1−
∑pk

j=1 βkk,jL
jfor k = 1, . . . , n

βki (L) = −
∑pk

j=pk−pki+1 βik,jL
j for k 6= i

,

where

pki =

{
min(pk + 1, pi) for k ≥ i
min(pk, pi) for k < i

.

The VMA operator is restricted as (for k, i = 1, . . . , n):

θki (L) =

pk∑

j=0

θki,jL
j and Θ0 = B0.

The row degrees of each polynomial are p1, . . . , pn. In the echelon form the row degrees
are the Kronecker indices which we label κ1, . . . , κn.

We specify a distinction between row degrees (p1, . . . , pn) and Kronecker indices
(κ1, . . . , κn) since this plays a role in our MCMC algorithm. In this, at one stage we work
with a VARMA that simply has row degrees p1, . . . , pn, but is otherwise unrestricted.
That is, it does not impose the additional restrictions (defined through pki) required to
put the VARMA in echelon form.

As an example of the echelon form, consider a bivariate VARMA(1, 1), denoted as

(
y1,t
y2,t

)
=

(
β11 β12

β21 β22

)(
y1,t−1

y2,t−1

)
+

(
θ11 θ12
θ21 θ22

)(
ǫ1,t−1

ǫ2,t−1

)
+

(
ǫ1,t
ǫ2,t

)
. (3)

If it is known that β21 = β22 = θ21 = θ22 = 0, then y2,t = ǫ2,t and β12 is not separately
identified from θ12. To achieve identification in this case, it is sufficient to restrict either
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β12 = 0 or θ12 = 0. However, knowing that y2,t = ǫ2,t implies that the Kronecker indices
of the system are κ1 = 1, κ2 = 0. Converting (3) to a VARMAE(1, 0) yields

(
1 0
β0 1

)(
y1,t
y2,t

)
=

(
β11 0
0 0

)(
y1,t−1

y2,t−1

)
+

(
θ11 θ12
0 0

)(
ǫ1,t−1

ǫ2,t−1

)
+

(
1 0
β0 1

)(
ǫ1,t
ǫ2,t

)
.

Therefore, the rules associated with the echelon form automatically impose the identifying
restriction β12 = 0.

The key challenge of applying the echelon form methodology in practice is specify-
ing κ. After all, any unrestricted VARMA is also a VARMAE for a particular set of
Kronecker indices. The problem is that whenever a particular κi is over-specified, the
resulting VARMAE is unidentified; whenever it is under-specified, the VARMAE is mis-
specified. Therefore, to exploit the theoretical advantages that the VARMAE provides,
the practitioner must choose the Kronecker indices correctly.

The standard frequentist approach to specifying and estimating VARMA models, in
consequence, can be described as consisting of three steps:

1. estimate the Kronecker indices, κ̂;

2. estimate model parameters of the VARMAE(κ̂);

3. reduce the model (e.g. using hypothesis testing procedures to eliminate insignificant
parameters).

It is important to emphasize that the order of the above steps is crucial. Specifically,
step 2 cannot be reasonably performed without completing step 1 first. To appreciate the
difficulties with implementing step 1, however, consider performing a full search procedure
over all possible Kronecker indices for an n-dimensional system. This would require
setting a maximum order κmax, estimating (κmax + 1)n echelon form models implied by
each combination of Kronecker indices and then applying some model selection criterion
to select the optimal κ. Given the difficulties associated with maximizing a VARMAE

likelihood, even conditional on a perfectly specified κ, one cannot hope to complete such
a search in a reasonable amount of time (i.e. even a small system with n = 3 and κmax = 5
would require 1024 Full Information Maximum Likelihood (FIML) routines). Moreover,
many of the combinations of κ1, . . . , κn that a full search algorithm would need to traverse
inevitably result in unidentified specifications, thus plaguing the procedure with exactly
the problem that it is designed to resolve.

To handle this difficulty, abbreviated search algorithms relying on approximations are
typically employed. Poskitt (1992) provides one particularly popular approach. First, it
takes advantage of some special features that arise if the Kronecker indices are re-ordered
from smallest to largest such that the number of model evaluations is greatly reduced.
Second, it involves a much simpler estimation routine for each evaluation step—i.e., a
closed form procedure for consistently (though less efficiently than FIML) estimating the
free parameters of a VARMAE(κ). These two features also alleviate (although do not
eliminate) the problem of needing to estimate unidentified specifications over the course
of the search. As a result, consistent estimates of the Kronecker indices are obtained.
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However, the implementation also relies on a number of approximations. First, like
all existing Kronecker search algorithms, Poskitt (1992) begins by estimating residuals
from a long VAR. These are then treated as observations in subsequent least squares esti-
mation routines, which are used to compute information criteria for models of alternative
Kronecker structures. Based on the model comparison, the search algorithm terminates
when a local optimum is reached. In small samples, therefore, the efficiency of this ap-
proach will depend on a number of manual settings and may often lead to convergence
difficulties in the likelihood maximization routines implemented at the second stage (for
further discussion, see Lutkepohl and Poskitt, 1996).

Consequently, the procedure does not really overcome the basic hurdle: if the κ̂

obtained in small samples incorrectly describes the underlying structure of the Kronecker
indices (as reliable as it may be asymptotically), the VARMAE(κ̂) specified in step 2 may
ultimately be of little use in resolving the specification and identification issues associated
with the unrestricted VARMA.

Recently, Dias and Kapetanios (2013) have developed a computationally-simpler iter-
ated ordinary least squares (OLS) estimation procedure for estimating VARMAs. They
prove its consistency and, although it is less efficient than the maximum likelihood es-
timator (MLE), it has the advantage that it works in places where the MLE does not.
In fact, the authors conclude (page 22) that “the constrained MLE algorithm is not a
feasible alternative for medium and large datasets due to its computational demand.” For
instance, they report that their Monte Carlo study which involved 200 artificial gener-
ated data sets of 200 observations each from an 8 dimensional VARMA took almost one
month of computer time. Their iterated OLS procedure is an approximate method, but
the authors show its potential to work with larger VARMAs such as those considered in
the present paper. However, their method does run into the problem that it can often
fail to converge when either the sample size is small or the dimension of the VARMA
is large. For instance, their various Monte Carlo exercises report failure to convergence
rates from 79% to 97% for VARMAs with 10 dependent variables and T=150. These
results are generated with VARMA(1,1) models and would, no doubt, worsen with longer
lag lengths such as those considered in the present paper. These high failure to converge
rates are likely due to the fact that, with many parameters to estimate and relatively
little data to inform such estimates, likelihood functions (or approximations to them) can
be quite flat and their optima difficult to find. This motivates one theme of our paper:
use of carefully selected shrinkage through a Bayesian prior is useful in producing sensible
(and computationally feasible) results in large VARMA models.

It is not difficult to see why applied macroeconomists have rarely used these frequentist
procedures for estimating VARMAs. To extend them to models with stochastic volatility
or a similar feature commonly incorporated in modern VARs seems extremely difficult.
Shortly, we will develop a Bayesian method which jointly goes through the three steps
listed above in the context of a single MCMC algorithm and allows for many extensions
(e.g. adding stochastic volatility) in a straightforward fashion. Before we do this, we
describe an alternative way of parameterizing the VARMA which is used in our MCMC
algorithm.
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2.3 The Expanded Form for the VARMA

Papers such as Metaxoglou and Smith (2007) and Chan and Eisenstat (2014) adopt an
alternative way of parameterizing the VARMA called the expanded VARMA form which
proves useful for computational purposes. The expanded VARMA form, which provides
an equivalent representation, can be written as:

B0yt =

p∑

j=1

Bjyt−j +

p∑

j=0

Φjft−j + ηt, (4)

where ft ∼ N (0,Ω) and ηt ∼ N (0,Λ) are independent, Φ0 is a lower triangular matrix
with ones on the diagonal, Φ1, . . . ,Φp are coefficient matrices, and Ω,Λ are diagonal.
Since the parameters in the echelon form VARMA or the semi-structural VARMA can be
recovered from the expanded VARMA parameters, it is clear that estimating the latter
is sufficient to estimate the former. Our MCMC algorithm draws from the expanded
VARMA form and then transforms draws to the echelon form.

Chan and Eisenstat (2014) provide an extensive discussion of the expanded VARMA
form and its use in building MCMC algorithms. To summarize briefly, the expanded
form introduces n additional parameters, which are not fully identified even with the
echelon form restrictions imposed. However, this expansion of the parameter space does
not require restrictive priors, nor does it impair sampling efficiency. In fact, because
it leads to a straightforward linear state-space model, one can readily take advantage
of a number of existing computational methods to construct fast sampling algorithms.
Moreover, working directly with the expanded form and transforming the draws ex post

to recover the original VARMA parameters circumvents the need to impose invertibility
restrictions in the course of the MCMC. Instead, this is easily implemented in the ex
post processing of draws, i.e. in transforming Φ0, . . . ,Φq,Ω,Λ to Θ1, . . . ,Θq,Σ. A
straightforward algorithm for implementing the latter is detailed in Section 2 of Chan
and Eisenstat (2014).

3 Bayesian Inference in VARMA Models

3.1 The Existing Bayesian Literature

Previously, we have drawn a distinction between the related concepts of parsimony and
identification. Identification can be achieved by selecting the correct Kronecker indices
(which imply certain restrictions on a semi-structural VARMA model). Parsimony is a
more general concept, involving either setting coefficients to zero (or any constant) or
shrinking them towards zero. So identification can be achieved through parsimony (i.e.
selecting the precise restrictions implied by the Kronecker indices in the context of an
unidentified VARMA model), but parsimony can involve imposing other restrictions on
a non-identified model or imposing restrictions beyond that required for identifying the
model.

In this sense, the Bayesian literature breaks into two groups. The first consists of
papers which estimate VARMA models, possibly taking into account parsimony consid-
erations. Good examples of this literature are Ravishanker and Ray (1997) and Chan and
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Eisenstat (2014). The second consists of papers which explicitly address identification
issues. The key references in this strand of the literature is Li and Tsay (1998). Since a
key focus of our paper lies in identification, we will focus on this paper.

Li and Tsay (1998) specify a model similar to (1), i.e., with Θ0 lower triangular
but not equal to B0 and a diagonal Σ and work with the echelon form, attempting to
jointly estimate the VARMA parameters with the Kronecker indices (as we do in the
present paper). This is done through the use of a hierarchical prior for the coefficients
which is often called a stochastic search variable selection (SSVS) prior (although other
terminologies exist). Before describing Li and Tsay’s algorithm, we briefly introduce the
idea underlying SSVS in a generic context. Let α be a parameter. SSVS specifies a
hierarchical prior (i.e. a prior expressed in terms of parameters which in turn have a
prior of their own) which is a mixture of two Normal distributions:

α | γ ∼ (1− γ)N (0, τ 20 ) + γN (0, τ 21 ), (5)

where γ is a dummy variable. Thus, if γ = 1 then the prior for α is given by the second
Normal and if γ = 0 it is given by the first Normal. The prior is hierarchical since γ
is treated as an unknown parameter and estimated in a data-based fashion. The aspect
which allows for prior shrinkage and variable selection arises by choosing the first prior
variance, τ 20 , to be “small”(so that the coefficient is shrunk so as to be close to zero) and
the second prior variance, τ 21 , to be “large”(implying a relatively noninformative prior
for the corresponding coefficient). An SSVS prior of this sort, which we shall call “soft
SSVS”, has been used by many researchers. For instance, George, Sun and Ni (2008)
and Koop (2013) use it with VARs and Li and Tsay (1998) adopt something similar. An
extreme case of the SSVS prior arises if the first Normal in (5) is replaced by a point mass
at zero. This we will call “hard SSVS”. It was introduced in Kuo and Mallick (1997) and
used with VARs by Korobilis (2013) and others.

Li and Tsay (1998) specify soft SSVS priors on the VAR and VMA coefficients of
a VARMA. The ingenuity of this approach is that it combines in practical terms the
two related concepts of identification and parsimony. The authors enforce the echelon
form through this framework by imposing certain deterministic relationships between the
SSVS indicators (see section 4 of Li and Tsay, 1998, for more details). Based on this,
they devise an MCMC algorithm that cycles through n individual (univariate) ARMAX
equations. The ith ARMAX equation is obtained by treating the observations {yj,t} for
j = 1, . . . , i − 1, t = 1, . . . , T and the computed errors {ǫj,t} for j 6= i, t = 1, . . . , T
as exogenous regressors. SVSS indicators are then updated conditional on draws of the
coefficients and subject to the deterministic relationships implied by the echelon form. In
consequence, draws of the Kronecker indices (which can be recovered from draws of the
SSVS indicators) are simultaneously generated along with the model parameters.

Their algorithm, however, entails a significant degree of complexity both in terms of
programming and computation. A pass through each equation requires reconstructing
VARMA errors (i.e. based on previous draws of parameters pertaining to other equations)
and sampling three parameter blocks: (i) the autoregressive and “exogenous” variable
coefficients, (ii) the error variance, and (iii) the moving average parameters. The latter
entails a non-trivial Metropolis-Hastings step, and all must be repeated n times for every
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sweep of the MCMC routine. Evidently, the complexity of this algorithm grows rather
quickly with the size of the system, and in their applications, only systems with n = 3
and κmax ≤ 3 are considered. The run times reported for even these small systems are
measured in hours.

Relative to Li and Tsay (1998) our algorithm shares the advantage of jointly estimating
Kronecker indices and model parameters, thus ensuring parsimony and identification.
However, we argue that ours is a more natural specification, which also provides great
computational benefits and allows us to work with the large Bayesian VARMAs of interest
to empirical macroeconomists. First, by using the expanded form discussed in subsection
1.4, we are able to work with a familiar, linear state-space model. Conditional on the
Kronecker indices, computation is fast and efficient even for large n. Moreover, this
representation enables us to analytically integrate out the coefficients {Bj} and {Φj}
when sampling the Kronecker indices. The efficiency gains from this are particularly
important as n increases because the size of each Bj and Φj grows quadratically with n.
In fact, this added efficiency together with the reduced computational burden is precisely
what allows us to estimate an exact echelon form VARMA for large systems. The details
are provided in the following subsection.

Chan and Eisenstat (2014) develop an MCMC algorithm on the expanded form of the
VARMA. However, it does not deal with identification using the echelon form as is done in
the present paper. Nor does it deal with the challenges involved with large VARMAs (e.g.
it does not develop shrinkage priors such as those we introduce shortly). Nevertheless,
the MCMC algorithm developed in Chan and Eisenstat (2014) is the building block that
we extend in the present paper when we derive an MCMC algorithm for the canonical
echelon form.

3.2 Our Approach to Bayesian Inference in VARMAs

Our approach to Bayesian inference is based on the ideas that identification is achieved
in the echelon form (i.e. through estimating κ in the VARMAE(κ)), but computation
is more easily done in the VARMA(p, q) model in the expanded form (see also Chan
and Eisenstat, 2014). Thus, our MCMC algorithm works in the latter, but draws are
transformed to the echelon form. We also treat κ as a vector of unknown parameters and
draw it in our algorithm. Parsimony and identification are achieved using SSVS priors.

In particular, we parameterize the echelon form by row degrees p1, . . . , pn and impose
two sets of restrictions: those implied by the row degrees and those resulting from the
additional shrinking of model parameters. As will be made clear in this subsection,
the echelon form is enforced by imposing a certain relationship between the two types of
restrictions. All these elements are introduced in the model through a unified hierarchical
SSVS prior.

Since row degree restrictions are especially important for identification, we always
use hard SSVS for these (i.e. the restrictions implied by a choice for p1, . . . , pn and,
thus, κ are imposed exactly). Restrictions on the remaining parameters are partly used
for identification and partly to achieve additional parsimony (i.e., by further restricting
parameters which remain in the VARMAE(κ)). For these, the researcher may wish to
use either soft or hard SSVS and, in this paper, we allow for both. With some abuse of
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terminology, we will call the prior which uses hard SSVS to achieve identification and soft
SSVS to achieve parsimony the “soft SSVS prior” and the prior which imposes hard SSVS
throughout the “hard SSVS prior”. In what follows, we describe the main features of our
approach, paying particular attention to the SSVS priors on the VARMA coefficients.
Complete details on the priors for the remaining parameters are given in Appendix A.
Complete details of our MCMC algorithm are given in Appendix B.

Consider the expanded form VARMA given in (4) for which the VARMA coefficients
are parameterized in terms of Bi and Φi. Let the individual coefficients in these matrices
be denoted Bi,jk and Φi,jk, respectively. Here we describe the soft SSVS implementation
with τ 20,ijk ≪ τ 21,ijk (the hard SSVS implementation will be the same except there is no
τ 20,ijk, but instead a point mass at zero is used) which is given by

(
Bi,jk | γ

B,R
ijk , γB,S

ijk

)
∼
(
1− γB,R

ijk

)
1l(Bi,jk = 0)

+γB,R
ijk

((
1− γB,S

ijk

)
N (0, τ 20,ijk) + γB,S

ijk N (0, τ 21,ijk)
)
,

(
Φi,jk | γ

Φ,R
ijk , γΦ,S

ijk

)
∼
(
1− γΦ,R

ijk

)
1l(Φi,jk = 0)

+γΦ,R
ijk

((
1− γΦ,S

ijk

)
N (0, τ 20,ijk) + γΦ,S

ijk N (0, τ 21,ijk)
)
, (6)

where 1l(·) is the indicator function. In this setup, γB,R
ijk , γΦ,R

ijk ∈ {0, 1} are indicators

determined completely by the row degrees: γB,R
ijk = γΦ,R

ijk = 1 iff 0 < j ≤ ρi or j = 0, i < k.

Furthermore, γB,S
ijk , γΦ,S

ijk ∈ {0, 1} are the indicators related to the SSVS mechanism for
the remaining coefficients not restricted by the row degrees.

Using the definition of the echelon form in subsection 1.3, define a mapping E(κ)
from the Kronecker indices to a set of indicators on the coefficients. We can use this
mapping in the construction of a set of restriction indicators for the echelon form: γE =
{γB,E

ijk , γΦ,E
ijk } = E(p1, . . . , pn). The echelon form can be imposed by specifying the prior

on γB,S
ijk conditional on p1, . . . , pn as

Pr
(
γB,S
ijk = 1 | p1, . . . , pn

)
=

{
0 if γB,E

ijk = 0, γB,R
ijk 6= 0

0.5 otherwise
. (7)

For the indicators on the elements of Φj we set Pr
(
γΦ,S
ijk = 1

)
= 0.5.1 We further set

uniform priors on p1, . . . , pn, which induce a prior on γR, and by implication, a uniform
prior on the Kronecker indices. Our MCMC algorithms provide draws of p1, . . . , pn,
and under the prior specification (7), these are equivalent to draws of the Kronecker
indices κ1, . . . , κn. Parameters of interest in terms of (1) can be recovered from draws
of B0,B1, . . . ,Bp, Φ0,Φ1, . . . ,Φp, Ω, and Λ using the procedure provided in Chan and
Eisenstat (2014).

A particular identification scheme can be imposed through a dogmatic prior which
sets probability one to a particular value for κ (e.g. allocating prior probability one to

1These priors are noninformative in the sense that the value 0.5 implies a restriction is, a priori,
equally likely to apply as not. Other priors can easily be accommodated.
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κ1 = · · · = κn = p will be equivalent to estimating an unrestricted VARMA(p, p)). In
this case, we can work directly with γE (i.e. instead of γR) to enforce the echelon form
restrictions, and the SSVS indicators γS = {γB,S

ijk , γΦ,S
ijk } would then be used exclusively

to control additional shrinkage: they can either be fixed a priori with P(γ·,S
ijk = 1) = 1

such that no additional shrinkage/variable selection is employed, or specified as P(γ·,S
ijk =

1) = 0.5 and sampled in the course of the MCMC run along with the other parameters.
Applying the latter and naively setting κ1 = · · · = κn = p leads to a simple SSVS model
where the parameters are potentially unidentified, but parsimony is achieved through
shrinkage and computation is very fast.

Working with stochastic κ through stochastic row degrees p1, . . . , pn and indicators
γB,S
ijk , γΦ,S

ijk as outlined above, on the other hand, results in an algorithm that always
operates on a parameter space restricted according the echelon form, but also allows for
additional shrinkage on the unrestricted coefficients. One interesting consequence of this is
that, unlike the classic VARMAE(κ) model in which the number of AR coefficients must
equal the number of MA coefficients, the additional SSVS priors allows the stochastic
search algorithm to uncover a VARMA(p, q) where p 6= q (i.e. if the SSVS mechanism
additionally forces certain coefficients to zero).

In sum, we argue that this SSVS prior can successfully address two of the three
reasons (identification and parsimony) for a dearth of empirical work which uses VARMAs
outlined in the introduction. The third reason was computation. Our MCMC algorithm,
described in Appendix B, is fairly efficient and we have had success using it in quite large
VARMAs. For instance, we present empirical work below for VARMAs with n = 12 which
is much larger than anything we have found in the existing literature with the exception
of Dias and Kapetanios (2013). However, dealing with much higher dimensional models
(e.g. n = 25 or more) as has been sometimes done with VARs would represent a serious,
possibly insurmountable computational burden, with our algorithm. Furthermore, real
time forecasting exercises, requiring repeated MCMC estimation on an expanding window
of data, would pose challenges to our algorithm even with n = 12.

For these reasons, in Appendix B, we also describe an approximate MCMC algo-
rithm which is much faster. This latter algorithm is achieved by replacing (7), which
involves prior dependencies between restrictions, with the simpler independent choice

Pr
(
γB,S
ijk = 1

)
= 0.5. In our artificial data experiments (see below), this approximate

algorithm (which we call the “row degree algorithm”) seems to work quite well and is
much more efficient than our exact algorithm (which we call the “echelon algorithm”).
Complete details are given in Appendix B, but to understand the intuition underlying
the approximate algorithm observe that (7) creates cross-equation relationships among
indicators, and therefore, strong dependence between the row degrees p1, . . . , pn. For
MCMC, this forces us to sample each pi conditional on all other row degrees and keep
track of all these relationships.

However, simplifying the prior on γB,S
ijk as provided above allows the approximate row

degree algorithm to just draw from the row degrees ignoring the other restrictions implied
by the echelon form. In this case, the row degrees are conditionally independent of one
another and the MCMC algorithm can become much more efficient. This algorithm has
the drawback of ignoring some restrictions of the echelon form. But this drawback, in
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practice, may be slight since the SSVS prior on the VARMA coefficients (i.e. involving
γS) should be able to pick up any restrictions missed by using an approximate algorithm.
Thus, the row degree algorithm may be useful for the researcher who finds our echelon
form algorithm too computationally demanding.

The MCMC algorithms described above can be used for selecting identifying restric-
tions or deciding whether individual coefficients are zero or not. Of course, alternative
methods of model comparison, involving marginal likelihoods or information criteria can
be done using MCMC output. In our empirical section, we use the Deviance Information
Criterion (DIC) for model comparison. Appendix C includes more details, including a
definition and explanation of how we calculate it.

3.3 Extensions

In our empirical work, we use the models described in the preceding sub-section. However,
we note that many extensions are possible. In this sub-section, we describe two directions
which may be of use for the empirical macroeconomist. The first is to allow for a time-
varying Ωt or Σt. This can be done in a standard way by adding appropriate blocks to
the MCMC algorithm. For instance, multivariate stochastic volatility of the form used
in Primiceri (2005) can be included by adding the extra blocks to the MCMC algorithm
as described in Appendix A of his paper.

A second extension we consider is related to an alternative approach to analyzing
medium and large datasets. Specifically, let yt be an n× 1 vector of dependent variables
that is categorized as follows:

• y1,t: the n1 variables of primary interest;

• y2,t: the n2 variables that together with yt constitute a full n1+n2 variate VARMA
process;

• y3,t: the n3 additional variables that are used to identify factors ft.

Then, consider the following expanded form representation of the VARMA model:

yt =

p∑

j=1

Bjyt−j +

q∑

j=0

Φjft−j + ηt, ft ∼ N (0,Ωt) and ηt ∼ N (0,Λ), (8)

where Φ1, . . . ,Φq are n × n1 coefficient matrices and ft is n1 × 1. Consequently, the
covariance matrix Λ is of dimension n × n, whereas the time-varying covariance matrix
Ωt is diagonal with diagonal elements exp(h1,t), . . . , exp(hn1,t), where the log-volatilities
follow a random walk process.

When n ≫ n1, (8) becomes a dynamic factor model, or under certain restrictions, a
factor-augmented vector autoregression (FAVAR). In this case, identification is achieved
without the need for echelon form restrictions. However, the SSVS prior for the VARMA
coefficients can be maintained to ensure parsimony.
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4 Empirical Results

4.1 Artificial Data

In this section, we carry out a brief exercise with artificial data to investigate the perfor-
mance of our algorithm. We focus on the identification issue and present results relating
to κ for various versions of our algorithm. All the results in this section involve drawing
10 artificial data sets, each of T = 100 observations. Each data set is normalized to
have mean zero and unit standard deviation. For each data set, 11,000 MCMC draws are
taken and the first 1,000 of these discarded. All results are based on the benchmark prior
described in Appendix A. We present results for the algorithm which imposes the echelon
form exactly (labelled “echelon” in the tables below) versus the approximate algorithm
which works with the row degrees (labelled “row degree” in the tables below). We also
investigate the difference between the two different implementations of SSVS methods
(labelled “hard SSVS” and “soft SSVS” in the tables) discussed in Section 2.

The first set of artificial data exercises uses bivariate VARMAs based on (3). Our first
data generating process (DGP) is a standard identified VARMA(1,1) with κ1 = κ2 = 1.
The second DGP is also a VARMA(1,1) but with κ1 = 1, κ2 = 0. In both cases, our
estimating model is an VARMA(4, 4). The starting value for κ in the MCMC algorithm
is, throughout this section, always set so as to choose the VARMA(4,4). We are interested
in investigating whether our algorithm can, in the context of a greatly over-parameterized
model, uncover the parsimonious identified model in each case. Precise values of the
parameters used in the DGPs are:

DGP1: β11 = 0.7, β21 = 0.4, β12 = 0.2, β22 = 0.5, θ11 = 0.1, θ12 = 0, θ21 = 0.5, θ22 =

0.1,Σ =

[
0.9 0
0 0.1

]
.

DGP2: β11 = 0.7, β21 = 0, β12 = 0.2, β22 = 0, θ11 = 0.1, θ12 = 0, θ21 = 0, θ22 = 0.0,Σ =[
0.9 0
0 0.1

]
.

Table 1 presents summary statistics of the various estimates of κ for the two DGPs.
It can be seen that, despite working with the over-parameterized VARMA(4,4), our algo-
rithm is accurately choosing the identified VARMAE (1, 1) and VARMAE (1, 0) for DGP1

and DGP2, respectively. The cross-data-set averages of κ do tend to be slightly above
the true values used in the DGP. In the case of κ2 in DGP2, this is of necessity (since
the true value of κ2 = 0 and κ2 cannot be negative). For other cases, this is likely due to
excessively large lag length used in the estimating model. With regards to the different
variants of our algorithms, there seems little difference. In particular, the approximate
row degree algorithm is yielding results which are very similar to the exact algorithm
which imposes the echelon form at every draw. Overall, though, the results indicate
that our algorithms are working well in identifying small VARMAs. The estimates of
the parameters (not reported here) are similar to the true values used in the DGPs and
the inefficiency factors for the MCMC algorithm (also not reported here) indicate the
algorithms are mixing well.

But will our algorithms be as capable of uncovering identification restrictions in larger
VARMAs? And will they be computationally efficient? These are the questions we address
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Table 1: Averages across Data Sets of Posterior Mean of κ. Standard Deviation, Mini-
mum and Maximum in Parentheses.

DGP1 DGP2

Algorithm details κ1 κ2 κ3 κ4

True value 1 1 1 0
echelon, 1.35 1.11 1.29 0.48
hard SSVS (0.19) (0.11) (0.06) (0.21)

(1.14, 1.68) (1.02, 1.40) (1.21, 1.36) (0.31, 0.99)
row degree, 1.28 1.24 1.59 0.49
hard SSVS (0.13) (0.15) (0.38) (0.21)

(1.18, 1.63) (1.14, 1.63) (1.31, 2.54) (0.32, 0.91)
echelon, 1.28 1.09 1.30 0.49
soft SSVS (0.25) (0.05) (0.21) (0.25)

(1.13, 1.93) (1.02, 1.17) (1.11, 1.85) (0.23, 1.05)
row degree, 1.23 1.20 1.32 0.42
soft SSVS (0.13) (0.14) (0.21) (0.30)

(1.12, 1.47) (1.12, 1.59) (1.14, 1.86) (0.25, 1.15)

in Tables 2 through 5. Tables 2 and 4 contain results relating to κ comparable to those
in Table 1 for larger 7-variate and 12-variate VARMAs. Tables 3 and 5 contain results
relating to the efficiency of the MCMC algorithm. For the sake of brevity, inefficiency
factors are presented for the impulse responses of the first and second variables to a shock
in the third variable four periods in the future. These are labelled “IR1” and “IR2” in
Tables 3 and 5.

The data generating process for the 7-variate VAR is a VARMA(1,1) with the following
parameter values:

DGP3: B0 = Θ0 = I and βii = 0.1 × i, θii = 0.1 × (7 − i), β12 = β23 = −0.4,
θ56 = θ67 = −0.4 where βij and θij are the (i, j) elements of B1 and Θ1, respectively.
Letting σij be the elements of Σ, we set σii = 0.1× i, σ57 = σ67 = −0.3. All elements of
B1, Θ1 and Σ not specified are set to zero.

Note that DGP3 has κi = 1 for i = 1, . . . , 7 and should be well-identified in the sense
that each row of the VARMA has either an AR or an MA coefficient which is substantively
different from zero.

The data generating process from the 12-variate VAR is also a VARMA(1,1) with
parameter values:

DGP4: B0 = Θ0 = I and βii = 0.1 × i for i = 1, . . . , 8, θii = 0.1 × (12 − i) for
i = 1, . . . , 10, β12 = β23 = −0.4, θ56 = θ67 = −0.4 where βij and θij are the (i, j) elements
of B1 and Θ1, respectively. Letting σij be the elements of Σ, we set σii = 0.1 × i,
σ57 = σ67 = −0.3. All elements of B1, Θ1 and Σ not specified are set to zero.

Note that DGP4 has κi = 1 for i = 1, . . . , 10, with κ11 = κ12 = 0. However, for
equations 9 and 10 in the VARMA the identification is quite weak in the sense that both
of these equations have no AR lags and the coefficient on the MA lag is quite small (i.e.
θ99 = 0.3 and θ10,10 = 0.2). Hence, even through the true value κ9 = κ10 = 1, the DGP
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is quite close to the κ9 = κ10 = 0 case.
Results for the medium-sized 7-variate VARMA are similar to those for the bivariate

VARMA. Table 2 indicates the variants of our algorithm are all successfully producing
an estimate of κ near its true value. For none of the data sets do any of our algorithms
go far wrong. Table 3 indicates that the efficiency of our algorithm is fairly good, pro-
ducing inefficiency factors that are around 10 or 20. However, the inefficiency factors
for the echelon form algorithm with hard SSVS are somewhat higher than this. One of
the artificial data sets leads to an inefficiency factor of over 300 for one of the impulse
responses. Hence, the researcher using our algorithm in VARMAs of this size should take
care with MCMC convergence issues and would probably be required to take hundreds
of thousands of draws,2 but MCMC convergence is unlikely to be a major worry. Indeed
even the 10,000 draws (plus 1000 burn-in draws) used to produce the results in Table 2
appear to be enough to produce an accurate estimate of the true DGP in our artificial
data exercise, despite the fact that the initial conditions used in our MCMC algorithm
(based on the VARMA(4,4)) are far from the true VARMA(1,1).

Table 2: Averages across Data Sets of Posterior Pean of κ for DGP3. Standard Deviations
in Parentheses.

Algorithm details κ1 κ2 κ3 κ4 κ5 κ6 κ7

True value 1 1 1 1 1 1 1
echelon, 1.05 1.01 1.01 1.04 1.07 1.00 0.90
hard SSVS (0.10) (0.01) (0.01) (0.09) (0.13) (0.01) (0.32)
row degree, 1.07 1.04 1.02 1.05 1.03 1.03 0.80
hard SSVS (0.10) (0.05) (0.03) (0.13) (0.03) (0.04) (0.34)
echelon, 1.01 1.02 1.01 0.99 1.03 1.01 0.80
soft SSVS (0.02) (0.05) (0.01) (0.08) (0.06) (0.01) (0.42)
row degree, 1.04 1.04 1.00 0.99 1.04 1.02 0.73
soft SSVS (0.05) (0.06) (0.03) (0.08) (0.05) (0.02) (0.43)

Table 3: Inefficiency Factors for Impulse Responses for DGP3.

Algorithm details IR1 IR1 IR1 IR2 IR2 IR2

ave st dev max ave st dev max
echelon, hard SSVS 56.38 100.12 339.57 20.71 13.74 53.76
row degree, hard SSVS 23.34 6.82 38.31 20.29 7.50 30.07
echelon, soft SSVS 13.95 6.15 25.35 15.68 9.27 33.57
row degree, soft SSVS 13.31 5.74 25.09 12.55 4.11 22.41

Results for the 12-variate VARMA are also quite encouraging. In Table 4, the es-
timates for κ1, . . . , κn are almost always very close to the true values in the DGP. The
only exception is for κ9 and κ10. But for the reasons noted previously, these are not

2This statement and others which follow are based on the premise that 10,000 independent draws
from a posterior would produce estimates with sufficient accuracy for the researcher’s purposes.
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surprising. The four variants of the algorithm are producing similar results, although it
is worth noting that the approximate row degree algorithms are producing estimates for
κ7 which are somewhat below those for the exact echelon algorithms.

Table 5 presents evidence on MCMC efficiency. As expected, MCMC efficiency de-
teriorates somewhat in this larger VARMA, but the row degree algorithm mixes much
better than the echelon form algorithm. Of course, an exact algorithm is always to be
preferred to an approximate one and, hence, where computationally possible we would
recommend using the echelon form algorithm. However, Table 5 indicates that in larger
VARMAs, the echelon form algorithm might be excessively computationally daunting or
even infeasible in a reasonable amount of time. For instance, when using the echelon form
algorithm with hard SSVS, one of our artificial data sets produces an inefficiency factor
of over 1000 for estimation of one of the impulse responses suggesting that millions of
draws may be required in some applications with larger VARMAs. In such applications,
our approximate row degree algorithm, which is quite efficient even in the 12-variate
VARMA, may be a good alternative.

It is also worth noting that MCMC algorithms using soft SSVS are much more efficient
than hard SSVS. Even in the 12-variate VARMA, the echelon form algorithm with soft
SSVS is producing inefficiency factors that are consistent with the researcher using tens
(or at most a few hundred) of thousands of draws.

Table 4: Averages across Data Sets of Posterior Mean of κ for DGP4. Standard Deviations
in Parentheses.

Algorithm details κ1 κ2 κ3 κ4 κ5 κ6

True value 1 1 1 1 1 1
echelon, 1.05 1.09 0.91 0.99 1.24 1.24
hard SSVS (0.11) (0.18) (0.23) (0.01) (0.31) (0.41)
row degree, 1.02 1.00 0.71 0.98 0.94 1.00
hard SSVS (0.06) (0.01) (0.42) (0.04) (0.23) (0.00)
echelon, 0.99 1.00 0.79 0.95 1.18 1.02
soft SSVS (0.01) (0.00) (0.36) (0.14) (0.39) (0.03)
row degree, 0.99 1.00 0.67 0.96 0.92 1.00
soft SSVS (0.01) (0.00) (0.44) (0.11) (0.23) (0.00)

κ7 κ8 κ9 κ10 κ11 κ12

True value 1 1 1 1 0 0
echelon, 1.00 0.96 0.04 0.02 0.00 0.00
hard SSVS (0.00) (0.12) (0.01) (0.03) (0.00) (0.00)
row degree, 0.33 0.98 0.03 0.02 0.00 0.00
hard SSVS (0.39) (0.05) (0.06) (0.02) (0.00) (0.00)
echelon, 0.81 0.93 0.01 0.01 0.01 0.00
soft SSVS (0.41) (0.16) (0.01) (0.01) (0.00) (0.00)
row degree, 0.21 0.94 0.01 0.01 0.00 0.00
soft SSVS (0.39) (0.16) (0.02) (0.02) (0.00) (0.00)
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Table 5: Inefficiency Factors for Impulse Responses for DGP4.

Algorithm details IR1 IR1 IR1 IR2 IR2 IR2

ave st dev max ave st dev max
echelon, hard SSVS 152.98 274.74 766.9 234.73 411.56 1169.9
row degree, hard SSVS 17.44 9.49 28.57 24.31 25.77 88.91
echelon, soft SSVS 36.02 58.27 179.48 31.26 54.74 178.57
row degree, soft SSVS 10.12 3.13 16.80 10.54 4.51 20.42

In summary, our artificial data exercise shows that our approach performs well in
picking out the correct restrictions required to choose a correctly-identified parsimonious
VARMA in the context of estimating an unidentified over-parameterized VARMA(4,4)
even when n is quite large. The findings also lead us to recommend the use of soft SSVS
over hard SSVS for MCMC efficiency reasons and our empirical results using macroeco-
nomic data will use soft SSVS. We also recommend the use of our exact echelon form
algorithm as opposed to the approximate row degree algorithm where possible. But we in-
clude the row degree algorithm in this paper since in larger VARMAs it may be required.
Our empirical results using macroeconomic data use the echelon form algorithm.

4.2 Macroeconomic Application

In this section, we investigate the performance of our echelon algorithm (using soft SSVS
and the prior specified in Appendix A) in a substantive empirical application involving
quarterly US macroeconomic data in VARMAs of varying dimensions: n = 3, n = 7 and
n = 12. We will draw all inference from a VARMA(4, 4), of the form

yt =
4∑

j=1

Ajyt−j +
4∑

j=1

Θjǫt−j + ǫt, ǫt ∼ N (0,Σ). (9)

For quarterly data, we conjecture that this is potentially over-parameterized. Therefore,
for estimation purposes we will employ the echelon form and rely on the data to uncover
the correct Kronecker structure. Our MCMC algorithms obtain draws directly from the
expanded form. Upon the termination of the MCMC routine, however, we transform
all draws ex post to recover A1, . . . ,A4, Θ1, . . . ,Θ4, Σ in (9) above. We then analyze
estimates of these parameters and compute impulse responses. In sub-section 4.2.2 we
also consider a simpler approach that involves sampling from (9) without employing
the echelon form, but only specifying SSVS shrinkage priors on the over-parameterized
VARMA(4, 4). We compare the results obtained with both approaches, as well as those
generated by a VAR(4) with SSVS priors on the VAR coefficients.

Our data covers the quarters 1959:Q1 to 2013:Q4. As is commonly done (e.g., Stock
andWatson, 2008) and recommended in Carriero, Clark and Marcellino (2011), each series
is transformed to stationarity. We use a recursive identification scheme for our impulse
responses following standard practice when working with large macroeconomic data sets
(e.g. Bernanke, Boivin, and Eliasz, 2005, and Banbura, Giannone and Reichlin, 2010). In
particular, we treat the Federal Funds rate as the monetary policy instrument (which is
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orthogonal to all other shocks) and classify every other variable as either “slow-moving” or
“fast-moving” relative to this. Variables are ordered as slow-moving, then the monetary
policy instrument, then the fast-moving variables. We stress that our variables have been
transformed (e.g. GDP is log differenced) and that impulse responses reported below are
to these transformed variables. Exact definitions of the variables, their transformations
and classifications are given in Appendix D.

4.2.1 Results for our Preferred Model

In this sub-section, we focus on our preferred approach, as described in the preceding
sub-section. We run the algorithm for 50,000 iterations (5,000 burn-in) for the n = 3
model, 200,000 iterations (20,000 burn-in) for the n = 7 model, and 1,000,000 iterations
(100,000 burn-in) for the n = 12 model. For each model, we then thin the chains to
obtain exactly 10,000 draws (e.g., for n = 3 we take every 5th draw, for n = 7 every 20th
draw and for n = 12 every 100th draw). In each case, we set κmax = 4.

Figure 1 presents the estimated impulses responses of GDP, inflation and the interest
rate to a shock in the interest rate, for 20 quarters following the shock. Table 6 presents
inefficiency factors relating to these impulse responses. Specifically, it contains summary
statistics for the inefficiency factors of the 60 different impulse responses computed and
indicates that the number of draws taken is longer than necessary if one is only interested
in obtaining impulse responses.

Table 6: Comparison of inefficiency factors for impulse responses across the three models:
n = 3, n = 7, and n = 12; note that the reported inefficiency factors are computed on
thinned draws.

n IF avg IF st dev IF max
3 5.90 3.17 16.10
7 1.86 2.38 15.22
12 1.17 0.43 2.90

Since we are interested in accurately estimating the Kronecker indices, we also present
results on MCMC performance relating to them. However, since κ1, . . . , κn are discrete
random variables, inefficiency factors are not an appropriate way to gauge sampling ef-
ficiency. In addition, any particular κi may naturally exhibit little movement over the
course of the sampler. For instance, if there is one correct choice for κi then a good
MCMC sampler would often (or even always) make such a choice and a lack of switching
in the chain could be consistent with good MCMC performance. Accordingly, we shed
light on the efficiency of the algorithm by the number of times the sampler switches
models, as defined by the entire vector κ. Specifically, we compute the metric

̟n =
G∑

g=1

1l

(
n∑

i=1

∣∣∣κ(g)
i − κ

(g−1)
i

∣∣∣ > 0

)
/G,

where G is the number of MCMC draws, and consider that 10% represents sufficient
mobility for estimation purposes. This metric is reported in Table 7 along with the
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Figure 1: Impulse responses to a shock in the interest rate. The first row contains
responses of GDP to a shock in the interest rate; the second row contains responses of
inflation to a shock in the interest rate; the third row contains responses the interest rate
to its own shock. The dotted lines depict the (10%, 90%) HPD intervals.
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estimated κ for the VARMAs of different dimensions. Two general points are worth
noting: the MCMC sampler is mixing well and the identification restrictions selected are
much more parsimonious than the VARMA(4,4) estimating model. These facts suggest
our modelling approach and associated MCMC algorithm are working well, even in large
VARMAs.

A specific point worth noting is that, for output and inflation, the estimated Kronecker
indices are consistent across VARMAs of different dimensions. In contrast, the Kronecker
index for the interest rate decreases as the size of the system increases. This result is
related to the ordering of the variables and is, in fact, consistent with the Kronecker
index theory. Loosely speaking, a Kronecker index κi represents a threshold beyond which
autocovariances of further lags are linearly dependent on the lower-degree autocovariances
of variables 1, . . . , i. Since output and inflation are always ordered first, we expect that
the associated Kronecker indices do not change as additional variables are introduced.
However, moving from three variables to seven, and especially from seven to twelve,
introduces new variables that precede the interest rate. The fact that the Kronecker
index on the interest rate shrinks from an estimated κ̂3 = 1.68 for the n = 3 system
to κ̂9 = 0.01 for the n = 12 system indicates that the additional variables contain
all necessary information to explain the autocorrelations present in the interest rate.
In other words, we infer from the n = 12 system that the interest rate only responds
contemporaneously to slow moving variables; removing these variables from the model
leads us to estimate the interest rate as an autocorrelated process.

Table 7: Comparison of estimated Kronecker indices across the three models: n = 3,
n = 7, and n = 12

n = 3 n = 7 n = 12
1 Real Gross Domestic Product 2.05 1.99 2.00
2 Consumer Price Index: All Items 2.12 2.01 2.00
3 Real Personal Consumption Exp. 1.00
4 Housing Starts: Total 1.00
5 Average Hourly Earnings: Manuf. 3.00 3.00
6 Real Gross Private Domestic Invest. 1.00
7 All Employees: Total nonfarm 1.00
8 ISM Manuf.: PMI Composite Index 1.00
9 Effective Federal Funds Rate 1.68 0.99 0.01
10 S&P 500 Stock Price Index 1.00 0.84
11 M2 Money Stock 1.28 0.97
12 Spot Oil Price: West Texas Interm 0.88 0.40
̟n 23.8% 13.7% 13.4%

The preceding table suggests our methodology is successfully picking out parsimonious
identified models. To investigate this issue more deeply, Tables 8-9 present estimates of
the autoregressive and moving average coefficients in the n = 12 model. For comparison,
we also present the estimates of autoregressive coefficients obtained from a 12-variate
VAR(4) in Table 10. The VAR is obtained by starting with the echelon form VARMA,
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discarding the echelon restrictions, and setting q = 0. We then use the algorithm de-
scribed in Section 2.

In Tables 8-9 it can be seen that the matrices of AR and MA coefficients are mostly
zeros, particularly at longer lag lengths. This strengthens the evidence in support of our
specification and algorithm successfully achieving parsimony. Note also that there are
several non-zero coefficients in Θ1 (and some in Θ2) indicating that adding MA terms
to the VAR is important. A careful examination of the MA coefficients shows that it is
usually errors in the housing starts and the purchasing manager’s index equations that
are found to be important. It is interesting to note that these two variables are typically
regarded as leading indicators. Results for the housing starts variable are particularly
interesting. When estimating the VARMA, we are finding in most equations that housing
starts’ effect is best modelled through the MA part of the model. That is, other variables
typically react to innovations in the housing starts equation, not lags of the housing starts
variable itself (i.e. the fourth columns of A1, . . . ,A4 are mostly zeros). Of course, the
VAR itself could not produce such a finding. It is interesting to note in Table 10 that
lagged housing starts now appear much more prominently in the VAR part of the model,
included in some equations at the second or third lag. This is as theory would predict. A
parsimonious VARMA, such as that obtained in Tables 8-9, may be approximated by a
VAR. However, the resulting VAR will be less parsimonious and with a longer lag length.
In other words, it looks like the VAR(4) is trying to fit an inverted VARMA process.

4.2.2 Comparison with Alternative Approaches

In order to investigate the advantages of working with a VARMA over a VAR and the
importance of imposing identification, in this sub-section we compare our preferred ap-
proach to a different VARMA (which does have prior shrinkage but does not explicitly
impose identification) and a VAR (which does have shrinkage but no MA components).
In particular, for each model of dimension n, we compare the following specifications:

• VARMAE(κ): our preferred echelon form VARMA with soft SSVS priors on AR
and MA coefficients and κmax = 4;

• VARMA(4, 4): a VARMA with soft SSVS priors but no echelon form restrictions;

• VAR(4): a VAR with soft SSVS priors.

Note that we are only comparing modelling approaches which involve prior shrinkage.
As we shall see below, empirical results such as impulse responses are clearly inferior and
imprecise when we do not do have such shrinkage.

We begin by calculating DICs (see Appendix C) for each model and report the results
in Table 11. It can be seen that, for models of larger dimension, our VARMAE(κ) is
the preferred model by a substantial margin. Although when n = 3 the VARMA(4, 4) is
preferred.

Each column in Table 11 contains results for a different value of n and, thus, a different
yt. Hence, results are not comparable across columns and the table cannot be used to
provide evidence for or against working with a large dimensional model. Table 12 repeats
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Table 8: Posterior estimates of the moving average coefficients matrices Θ1, . . . ,Θ4 in a
VARMAE(κ). Note: * denotes that either Pr(θl,ij ≤ 0 |y) ≤ 0.1 or Pr(θl,ij > 0 |y) ≤ 0.1; § denotes

that either Pr(θl,ij ≤ 0 |y) ≤ 0.05 or Pr(θl,ij > 0 |y) ≤ 0.05; † denotes that either Pr(θl,ij ≤ 0 |y) ≤ 0.01

or Pr(θl,ij > 0 |y) ≤ 0.01.

1 2 3 4 5 6 7 8 9 10 11 12

1 -0.19* -0.01 0.06 0.47§ -0.01 -0.04 0.20* 0.12 -0.02 0.06 0.00 -0.03
2 -0.06 -0.08 0.07 0.03 0.01 -0.12 0.05 0.23§ 0.03 0.01 0.01 0.04
3 -0.09 -0.15 0.02 0.53§ 0.00 0.04 -0.07 -0.12 -0.08 0.04 -0.03 -0.07
4 -0.02 -0.01 0.01 0.08§ 0.00 0.00 0.01 -0.01 -0.01 0.01 0.00 -0.01
5 0.00 0.04 -0.05 0.17 0.01 -0.03 -0.03 0.05 -0.01 0.01 0.00 -0.01

Θ1 6 -0.20* 0.06 0.01 0.66† -0.03 -0.08 0.38† 0.20* 0.02 0.03 0.03 0.00
7 -0.08 -0.01 0.02 0.25§ -0.02 -0.04 0.03 0.13§ -0.01 0.02 0.00 -0.01
8 -0.07 -0.02 0.00 0.30† -0.01 -0.03 0.06 0.11* -0.02 0.02 0.01 -0.01
9 -0.05 -0.02 0.01 0.15§ -0.01 -0.04 0.05 0.11§ 0.00 0.01 0.01 0.00
10 -0.03 -0.03 0.01 0.26* 0.00 0.00 -0.07 -0.01 -0.04 0.06 0.01 -0.02
11 0.07 -0.02 0.00 -0.15 0.04 0.05 -0.12 -0.26§ -0.03 0.01 -0.09 -0.01
12 -0.01 0.01 0.03 -0.11 0.00 -0.04 0.01 0.13* 0.01 0.01 0.02 0.03
1 -0.03 -0.03 -0.01 0.11 -0.01 -0.02 0.12 0.02 -0.04 -0.01 0.00 -0.01
2 0.04 -0.14 -0.02 -0.04 0.04 -0.01 -0.05 -0.11 -0.02 -0.02 -0.03 -0.09
3 -0.02 -0.02 0.00 0.07 -0.01 -0.01 0.08 0.01 -0.03 -0.01 0.00 -0.01
4 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00
5 0.12 -0.05 -0.13* -0.01 -0.04 -0.11 0.24§ 0.04 0.00 -0.01 0.00 0.00

Θ2 6 -0.01 -0.02 -0.01 0.07 -0.01 -0.02 0.10 0.02 -0.03 -0.01 0.00 -0.01
7 0.00 -0.02 -0.01 0.03 0.00 -0.02 0.05 0.00 -0.01 -0.01 0.00 -0.01
8 0.01 -0.02 -0.02 0.02 -0.01 -0.02 0.06* 0.00 -0.01 0.00 0.00 -0.01
9 0.01 -0.03 -0.01 0.01 0.00 -0.01 0.01 -0.02 -0.01 -0.01 -0.01 -0.02
10 -0.02 0.00 0.01 0.03 0.00 0.00 0.01 0.00 -0.01 0.00 0.00 0.00
11 -0.02 0.07 0.01 0.01 -0.01 0.01 0.00 0.04 0.01 0.01 0.02 0.04
12 0.02 -0.03 0.00 -0.02 0.01 0.00 -0.03 -0.04 0.00 -0.01 -0.01 -0.02
1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
5 -0.02 0.00 0.02 -0.05 -0.01 0.00 -0.02 0.08 0.00 0.01 0.01 0.01

Θ3 6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00
7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00
8 0.00 0.00 0.00 -0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00
9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.01 0.00 0.00 0.00 0.00
11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Θ4 6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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Table 9: Posterior estimates of the autoregressive coefficients matrices A1, . . . ,A4 in a
VARMAE(κ). Note: * denotes that either Pr(θl,ij ≤ 0 |y) ≤ 0.1 or Pr(θl,ij > 0 |y) ≤ 0.1; § denotes

that either Pr(θl,ij ≤ 0 |y) ≤ 0.05 or Pr(θl,ij > 0 |y) ≤ 0.05; † denotes that either Pr(θl,ij ≤ 0 |y) ≤ 0.01

or Pr(θl,ij > 0 |y) ≤ 0.01.

1 2 3 4 5 6 7 8 9 10 11 12
1 0.01 -0.01 0.12* 0.08 0.06 0.01 0.07 0.09 -0.01 0.11* -0.02 -0.05
2 0.03 -0.54† 0.04 0.01 0.01 0.00 0.01 0.12* 0.15§ -0.02 0.02 0.08
3 0.05 -0.05 0.03 0.12* 0.00 0.10 0.09 0.05 -0.15§ 0.12* -0.07 0.00
4 -0.04 0.03 0.04* 0.97† -0.01 0.06§ 0.01 -0.05§ -0.07† 0.04* 0.01 0.00
5 -0.01 0.03 -0.06 0.05 -0.80† -0.03 0.03 0.03 -0.02 0.03 0.01 0.02

A1 6 -0.08 -0.02 0.29† -0.03 0.06 0.07 -0.07 0.12* 0.08 0.16§ -0.01 -0.03
7 -0.02 -0.08§ 0.11§ 0.03 -0.02 0.02 0.67† 0.11§ -0.02 0.12† -0.03 0.03
8 0.11* -0.02 0.07 0.05 -0.05* -0.03 -0.15§ 0.83† -0.10§ 0.10§ -0.07* -0.01
9 0.04 -0.10§ 0.06* 0.05 0.00 -0.01 0.02 0.33† -0.01 0.05§ -0.02 0.01
10 0.06 0.05 0.00 -0.01 0.10* 0.04 0.04 -0.28§ -0.05 0.19§ -0.03 -0.02
11 -0.09 -0.06 0.03 -0.02 -0.09 -0.10 0.04 0.03 -0.07 0.04 -0.15* 0.01
12 0.01 -0.05 -0.03 0.05 0.00 0.00 -0.02 0.09 0.02 0.00 -0.01 0.05

1 0.04 0.02 0.12* 0.00 -0.01 0.07 -0.06 0.01 -0.17† 0.05 0.03 -0.04
2 0.02 -0.22§ 0.09 0.00 -0.01 -0.14§ -0.02 0.05 0.02 -0.03 0.05 -0.10
3 0.03 0.02 0.08* 0.00 -0.01 0.05 -0.04 0.00 -0.12† 0.04 0.02 -0.02
4 0.00 0.00 0.01* 0.00 0.00 0.01 -0.01 0.00 -0.02§ 0.00 0.00 -0.01
5 0.04 0.04 -0.04 0.02 -0.70† -0.02 0.07 0.01 -0.04 -0.03 -0.02 0.01

A2 6 0.03 0.03 0.08* 0.00 -0.06 0.05 -0.04 0.00 -0.12† 0.04 0.02 -0.02
7 0.02 0.00 0.04* 0.00 -0.06§ 0.01 -0.02 0.01 -0.06§ 0.01 0.01 -0.02
8 0.02 0.00 0.03 0.00 -0.09† 0.01 -0.01 0.01 -0.05§ 0.01 0.01 -0.01
9 0.01 -0.03* 0.03* 0.00 -0.03 -0.02 -0.01 0.01 -0.02 0.00 0.01 -0.02
10 0.01 0.00 0.03* 0.00 0.05 0.02 -0.02 0.00 -0.04* 0.01 0.01 -0.01
11 -0.01 0.08§ -0.05 0.00 0.01 0.05* 0.01 -0.02 0.01 0.01 -0.03 0.04
12 0.00 -0.08§ 0.01 0.00 0.01 -0.05* 0.00 0.02 0.03 -0.02 0.01 -0.04
1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
5 0.00 -0.03 -0.08 0.01 -0.53† 0.07 -0.01 -0.01 -0.07 0.05 0.09* 0.09*

A3 6 0.00 0.00 -0.01 0.00 -0.04§ 0.01 0.00 0.00 -0.01 0.00 0.01* 0.01*
7 0.00 0.00 -0.01 0.00 -0.04† 0.01 0.00 0.00 -0.01 0.00 0.01* 0.01*
8 0.00 0.00 -0.01 0.00 -0.07† 0.01 0.00 0.00 -0.01 0.01 0.01* 0.01*
9 0.00 0.00 0.00 0.00 -0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00
10 0.00 0.00 0.01 0.00 0.04 -0.01 0.00 0.00 0.01 0.00 -0.01 -0.01
11 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00
12 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

A4 6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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Table 10: Posterior estimates of the autoregressive coefficients matrices A1, . . . ,A4 in a
VAR(4). Note: * denotes that either Pr(θl,ij ≤ 0 |y) ≤ 0.1 or Pr(θl,ij > 0 |y) ≤ 0.1; § denotes that

either Pr(θl,ij ≤ 0 |y) ≤ 0.05 or Pr(θl,ij > 0 |y) ≤ 0.05; † denotes that either Pr(θl,ij ≤ 0 |y) ≤ 0.01 or

Pr(θl,ij > 0 |y) ≤ 0.01.

1 2 3 4 5 6 7 8 9 10 11 12

1 -0.10 -0.03 0.12* 0.63† 0.05 -0.12 0.31§ 0.15* 0.00 0.16† -0.02 -0.06
2 0.00 -0.64† 0.09 0.04 0.01 -0.10 0.01 0.31§ 0.19† 0.02 0.02 0.17†

3 -0.03 -0.20† 0.00 0.57† -0.03 0.05 0.15 -0.02 -0.22† 0.17† -0.06 -0.05
4 -0.05 0.00 0.03 1.10† -0.01 0.06* 0.02 -0.06* -0.09† 0.05§ 0.00 0.00
5 -0.04 0.07 -0.09* 0.12 -0.79† -0.05 0.05 0.10 -0.06 0.04 0.03 0.01

A1 6 -0.14* 0.03 0.20† 0.86† 0.05 -0.18§ 0.28§ 0.22§ 0.12§ 0.14† 0.01 -0.01
7 -0.06 -0.09§ 0.11§ 0.37† -0.06* -0.05 0.63† 0.30† -0.03 0.11† -0.02 0.04
8 0.03 -0.06 0.04 0.33† -0.06 -0.12§ 0.02 0.91† -0.10§ 0.14† -0.03 0.00
9 0.02 -0.19† 0.01 0.33§ -0.03 -0.06 0.05 0.58† 0.08 0.06 0.06 0.11§

10 0.05 -0.03 0.01 0.30* 0.08 0.02 0.00 -0.35§ -0.04 0.29† 0.01 0.00
11 -0.07 -0.02 0.07 -0.14 0.01 -0.05 -0.06 -0.30† -0.16§ 0.06 -0.33† -0.07
12 -0.01 0.02 0.02 -0.04 -0.02 -0.01 -0.01 0.22* 0.01 0.07 -0.03 0.15§

1 -0.01 -0.02 0.07 -0.27 -0.02 -0.05 0.07 0.03 -0.16§ 0.00 0.04 -0.05
2 -0.02 -0.42† 0.05 -0.03 0.04 -0.20§ -0.04 -0.12 0.10* -0.08* 0.05 -0.18†

3 0.00 -0.09 0.10 -0.22 -0.06 -0.02 0.08 0.14 -0.15§ 0.03 0.02 0.01
4 -0.05 -0.04 0.05* 0.00 -0.02 0.03 -0.03 0.08* -0.01 -0.02 -0.02 -0.01
5 0.06 0.00 -0.11§ -0.02 -0.76† -0.04 0.25§ 0.03 -0.04 -0.03 -0.01 0.00

A2 6 -0.02 0.01 0.01 -0.38* -0.06 -0.02 -0.06 -0.04 -0.04 0.02 0.04 -0.02
7 0.05 -0.02 -0.02 -0.17 -0.08* -0.08 0.03 -0.17§ 0.02 0.05* 0.05 -0.02
8 0.05 -0.03 -0.07* -0.18 -0.11§ -0.11§ 0.07 -0.01 0.00 -0.02 0.01 -0.04
9 0.04 -0.06 -0.23† -0.16 0.00 -0.09 0.25* -0.21 -0.17§ -0.01 0.06 -0.04
10 -0.05 -0.08 0.02 -0.19 0.06 0.00 0.04 0.01 0.11* 0.00 0.04 -0.02
11 -0.03 0.07 0.09 0.30 0.05 0.14* -0.09 0.27§ 0.02 0.07 -0.30† 0.12§

12 -0.10 -0.12 -0.06 0.12 0.03 -0.05 -0.01 -0.10 0.17§ -0.05 0.06 -0.13*

1 -0.01 -0.01 0.00 -0.07 0.01 0.00 -0.31§ 0.01 0.06 0.02 0.00 -0.02
2 0.01 -0.05 -0.02 0.01 0.08 0.01 -0.07 0.13 -0.01 0.12§ -0.03 -0.10*
3 0.00 -0.08 0.09 -0.11 0.05 0.03 -0.13 0.03 -0.02 -0.04 0.02 -0.10*
4 -0.07* -0.05* 0.03 -0.13* 0.01 0.03 0.02 -0.07* 0.00 0.00 -0.02 0.02
5 -0.04 -0.05 -0.05 -0.02 -0.60† 0.07 -0.08 0.03 -0.10§ 0.04 0.11§ 0.09§

A3 6 -0.02 0.01 -0.04 -0.37* -0.07 -0.01 -0.27§ 0.07 0.06 0.02 0.04 0.05
7 0.06 -0.01 -0.02 -0.09 -0.07* -0.01 -0.05 0.08 -0.01 0.05 0.01 -0.04
8 0.09 -0.07* -0.01 0.00 -0.06 -0.06 -0.19§ 0.04 -0.03 0.00 0.00 -0.03
9 -0.04 -0.01 -0.02 -0.05 -0.01 -0.10 0.01 0.23* 0.05 0.06 0.08 -0.08
10 0.03 -0.11* 0.11* -0.05 -0.07 -0.05 -0.07 0.01 0.12* -0.04 -0.05 -0.09*
11 0.03 0.00 0.02 -0.13 0.02 0.05 0.00 -0.08 0.00 0.01 -0.09 0.04
12 -0.01 0.04 -0.03 0.02 0.07 -0.06 -0.08 0.09 0.02 0.03 -0.05 -0.02
1 0.07 -0.04 0.03 -0.19 0.01 -0.04 0.03 0.02 -0.05 0.01 -0.01 -0.02
2 0.02 -0.12§ -0.03 0.03 -0.02 0.06 0.03 0.04 -0.04 -0.02 0.03 -0.09*
3 -0.01 -0.03 -0.01 -0.10 -0.01 0.03 -0.01 0.01 -0.09 0.04 -0.05 0.03
4 0.01 0.00 0.03 -0.01 0.03* -0.01 0.00 0.04 0.00 -0.02 0.00 -0.02
5 -0.02 0.01 0.00 0.00 -0.01 -0.16§ 0.03 -0.04 0.05 -0.02 0.03 0.02

A4 6 0.07 0.00 0.14§ -0.13 -0.03 -0.02 -0.05 -0.12 0.06 0.01 0.03 -0.07*
7 0.00 -0.02 0.05 -0.09 -0.05 -0.04 0.05 0.01 -0.04 0.01 -0.05* -0.02
8 -0.04 -0.02 0.12§ -0.10 -0.02 -0.04 0.00 -0.04 -0.02 0.00 -0.04 0.00
9 -0.06 -0.02 -0.04 -0.02 -0.03 -0.03 0.00 -0.13 0.04 -0.06 0.00 -0.01
10 0.02 -0.05 -0.02 -0.08 -0.05 -0.04 -0.01 0.08 -0.07 0.04 -0.02 -0.07
11 -0.09 -0.03 -0.02 -0.08 0.07 -0.01 0.05 0.08 0.11* -0.04 -0.16† 0.05
12 0.01 -0.05 0.02 0.02 -0.02 -0.01 -0.06 0.10 0.05 0.04 0.04 -0.10*
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Table 11: Estimated DIC values and associated numerical standard errors (in parenthe-
ses).

n = 3 n = 7 n = 12
VARMAE(κ) 1654.8 3738.1 4674.3

(0.46) (0.56) (0.64)
VARMA(4,4) 1645.5 3748.1 4685.5

(0.38) (0.16) (0.27)
VAR(4) 1654.5 3763.8 4738.9

(0.12) (0.08) (0.10)

Table 12: Estimated DIC values and associated numerical standard errors (in parenthe-
ses). The DICs are computed using the marginal distribution of the three variables in
the n = 3 case as the likelihood.

n = 3 n = 7 n = 12
VARMAE(κ) 1654.8 1682.2 1653.1

(0.46) (2.67) (0.21)
VARMA(4,4) 1645.5 1707.9 1687.2

(0.38) (0.28) (0.17)
VAR(4) 1654.5 1657.4 1593.5

(0.12) (0.13) (0.13)

the calculation of DICs, but using in the likelihood function only the three variables
common to all models. This table can be used to discuss the relative merits of models of
different dimension, at least in terms of their ability to explain inflation, output growth
and the interest rate. This table offers support for working with the larger n = 12 model.
For the VARMAE(κ) and VAR(4), the n = 12 model yields the best value for the DIC.
Interestingly, Table 12 finds the VAR(4) with n = 12 to be the overall best model. This
contrasts with Table 11 where the VARMAE(κ) with n = 12 was found to be superior
to the VAR(4) with n = 12. The explanation for this contrast is that the VARMAE(κ)
is the superior model when interest centers on jointly explaining the 12 variables in yt.
If interest centers on explaining only the 3 variables, then the MA terms are not helpful
and the VAR is best (although the remaining 9 variables do provide useful explanatory
power since the VAR with n = 12 is chosen over VARs with n = 3 or 7).

Next we compare impulse responses for the different models and choices for n. Figures
2, 3 and 4 plot conventional impulse responses of our three main variables to a monetary
policy shock. Our findings of the preceding sub-section indicate that the housing starts
variable is found to be of particular importance and, in this section, we have evidence
in favor of n = 12. Accordingly, in Figure 5, we plot impulse responses relating to this
variable for different models for n = 12. The overall message of these figures, and Figure
5 in particular, is that MA components and identification can have an appreciable impact
on impulse responses.
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Figure 2: Comparison of impulse responses of GDP to a shock in the interest rate.
The first, second and third rows contain results for the VARMAE(κ), VARMA(4, 4) and
VAR(4), respectively. The dotted lines depict the (10%, 90%) HPD intervals.

If we compare VARMAE(κ), VARMA(4, 4) and VAR(4) impulse responses in Figures
2, 3 and 4, we see some differences in the point estimates. The impulse responses produced
by the VARMAE(κ) are slightly smoother, having less of the irregular up and down
movements of the impulse responses produced by the other approaches, particularly for
n = 12. Furthermore, the HPD intervals are tighter when using the VARMAE(κ).

In Figure 5, which plots impulse responses relating to the housing variable for the
VARMAE(κ) and VAR(4) , we can see the role of the including MA components. The
VARMAE(κ) is producing smooth and sensible point estimates of impulse responses with
fairly tight HPD intervals about them. The VAR is producing slightly more irregular im-
pulse responses and the HPD intervals a wider. These differences could lead to different
policy conclusions. Looking at the results generated by the VARMAE(κ) model, it ap-
pears that the interest rate will continue to increase3 in response to a housing starts shock,
even after 20 quarters. This finding is significant in the sense that the HPD interval is
entirely above zero. The housing start variable itself is very slow in adjusting downward
following a positive shock, suggesting that increasing interest rates exerts little effect in
discouraging further real-estate expansion. This is partly confirmed by the impulse re-

3Recall that the interest rate series is first-differenced.
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Figure 3: Comparison of impulse responses of inflation to a shock in the interest rate.
The first, second and third rows contain results for the VARMAE(κ), VARMA(4, 4) and
VAR(4), respectively. The dotted lines depict the (10%, 90%) HPD intervals.

28



n = 3 n = 7 n = 12

0 5 10 15 20
−0.5

0

0.5

1

0 5 10 15 20
−0.5

0

0.5

1

0 5 10 15 20
−0.5

0

0.5

1

0 5 10 15 20
−0.5

0

0.5

1

0 5 10 15 20
−0.5

0

0.5

1

0 5 10 15 20
−0.5

0

0.5

1

0 5 10 15 20
−0.5

0

0.5

1

0 5 10 15 20
−0.5

0

0.5

1

0 5 10 15 20
−0.5

0

0.5

1

Figure 4: Comparison of impulse responses of the interest rate to own shock. The first,
second and third rows contain results for the VARMAE(κ), VARMA(4, 4) and VAR(4),
respectively. The dotted lines depict the (10%, 90%) HPD intervals.
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Figure 5: Comparison of impulse responses of the housing start and interest rate to
shocks. The first row contains responses of the interest rate to a shock in the housing
start; the second row contains responses of the housing start to its own shock; the third
row contains responses of the housing start to a shock in the interest rate. The dotted
lines depict the (10%, 90%) HPD intervals.
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sponse of housing starts to an increase in the interest rate. That is, after 20 quarters the
model predicts a negative impact with a high degree of certainty (e.g. the HPD interval
is all below zero), but one that is very small in magnitude—i.e., approximately -0.025 on
average after 20 quarters.

We do not get quite the same picture by looking at the responses generated with
the VAR(4). This is mainly due to the larger degree of imprecision induced by the
VAR specification. For instance, the impulse response of the interest rate to a shock in
housing starts is approximately zero after 20 quarters, with the HPD interval covering
both positive and negative regions. Also, the impulse response of housing starts to its
own shock is initially large under the VAR, but then falls faster than what the VARMA
predicts. At the same time, the VAR generates responses of housing starts to an increase
in the interest rate such that the median response vanishes by the end of the 20 quarter
horizon. This indicates that an increase in the interest rate has no long term effect on the
housing starts, although the HDP intervals are substantially wider than those produced
by the VARMA.

All of the approaches discussed so far in this sub-section have included shrinkage using
SSVS priors. If we do not include such shrinkage, impulse responses become even more
irregular and HPD intervals become even wider. For the sake of brevity, we will not
produce conventional impulse responses similar to Figures 2 through 4 for VARMAs and
VARs without shrinkage. Suffice it to note here that there is an appreciable deterioration
in impulse responses relative to Figures 2 through 4. Instead Figure 6 presents impulse
responses relating to the housing variable for n = 12. Relative to VARMAE(κ) both the
VARMA(4, 4) and VAR(4) are producing impulse responses which are much more erratic
and with much wider HPD intervals.

In sum, the specification, identification and shrinkage issues investigated in this paper
can have an important impact on policy-relevant issues.

5 Conclusions

We began this paper by arguing that there might be some benefits to working with
VARMAs instead of VARs. However, VARMAs are little-used due to problems of iden-
tification, over-parameterization and computation. In this paper, we have developed a
modelling approach, using SSVS priors on both parameters and identification restrictions,
which surmounts these problems. Using artificial data and a substantive macroeconomic
application, we show that this modelling approach does work well even in VARMAs of
high dimension. It is computationally feasible and yields sensible results which have the
potential to lead to different policy conclusions than simpler VAR or alternative VARMA
approaches.
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Figure 6: Comparison of impulse responses of the housing start and interest rate to
shocks, without using SSVS shrinkage. The first row contains responses of the interest
rate to a shock in the housing start; the second row contains responses of the housing
start to its own shock; the third row contains responses of the housing start to a shock
in the interest rate. The dotted lines depict the (10%, 90%) HPD intervals.
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Appendix A: Priors
The empirical work in this paper uses relatively noninformative priors. The hierarchi-

cal SSVS priors for the VARMA coefficients are described in sub-section 2.2. Recall that
in terms of these, we specify uniform priors on the Kronecker indices κ. Moreover, for
both the hard and soft SSVS priors, we set τ 21,ijk = 1; for soft SSVS we set τ 20,ijk = 0.01.

The remaining parameters are assigned the following priors:

Λi,i ∼ IG(νλ,0, Sλ,0),

Ωi,i ∼ IG(νω,0, Sω,0),

hi,0 ∼ N (h0,0, Vh,0),

σ2
h,i ∼ IG(νh,0, Sh,0).

We set νλ,0 = 0, Sλ,0 = 0.1, which implies an improper prior on Λi,i, and νω,0 = 5,
Sλ,0 = 0.4, νh,0 = 5, Sλ,0 = 0.4, h0,0 = 0, Vh,0 = 10.
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Appendix B: MCMC Algorithm
We write the model as

yt = BXt +ΦFt + ηt, (10)

where B = (In − B0,B1, . . . ,Bp), Φ = (Φ0, . . . ,Φq), Xt = (y′
t, . . . ,y

′
t−p)

′ and Ft =
(f ′t, . . . , f

′
t−q)

′. Note that this nests both the expanded and echelon form VARMAs. For
notational convenience, define the vector of row degrees p = (p1, . . . , pn)

′. The model
parameters are sampled using a Gibbs sampler consisting of the following steps:

1. Sample
(
p |γS, f ,Λ

)
marginal of B,Φ and compute γR as γB,R

ijk = γΦ,R
ijk = 1 iff

0 < j ≤ ρi or j = 0, i < k. This is done with a multi-move sampler that draws(
pi |p−i,γ

S, f ,Λ
)
for each i = 1, . . . , n. For the exact echelon algorithm set κi = pi.

To sample pi, we compute the weights P(pi = l | · ) using the conditional likelihood
p(yi |γ

R,l,γS, f ,Λi,i) where γR,l are the restrictions implied by p1, . . . , l, . . . , pn.

To evaluate each conditional likelihood, observe that conditional on f , the model
maybe written as n independent regressions. LetX = (X1, . . . ,XT )

′, F = (F1, . . . ,FT )
′

and set W = (X,F). Then,

yi = Wδi + ηi, ηi ∼ N (0,Λi,iIT ), (11)

where yi = (yi,1, . . . , yi,T )
′ and δi is the i-th column of (B,Φ)′.

Now, a given set of restrictions γR,l will force certain elements in δi to be zero.
Define δ⋆

i to be the vector containing only the free elements of δi and W⋆
i the

matrix W with column Wk removed for any δi,k = 0. Clearly, Wδ = W⋆
i δ

⋆
i and

(
δ⋆
i |γ

S
)
∼ N (0,V⋆

δi,0
),

if “soft” SSVS priors are specified on Bijk,Φijk. In this case, V⋆
δi,0

is a diagonal
matrix with element V ⋆

δi,0,l,l
= τ 20,ijk (i.e. the “small” variance) if δ⋆i,l corresponds to

either Bijk with γB,S
ijk = 0 or to Φijk with γΦ,S

ijk = 0. Otherwise, V ⋆
δi,0,l,l

= τ 21,ijk (i.e.
the “large” variance).

It is straightforward to show in this case that

(yi |γ
R,l,γS, f ,Λi,i) ∼ N (0, V̂yi),

V̂yi =
(
Λ−1

i,i IT − Λ−2
i,i W

⋆
i ∆̂

−1

i W⋆
i
′
)−1

,

∆̂i = V⋆−1
δi,0

+ Λ−1
i,i W

⋆
i
′
W⋆

i . (12)

The quadratic term y′
iV̂

−1
yi
yi is easy to evaluate (i.e. without the need to separately

compute the inverse of V̂yi), as well as the determinant |V̂yi | = ΛT
i,i|V

⋆
δi,0

||∆̂i|.
Therefore, computing the likelihood ratio in (12) entails little computation difficulty.

To evaluate the likelihood ratio under the “hard” SSVS prior, define W◦
i as the

matrix W⋆
i with the l-th column removed for every δ⋆i,l that corresponds to either
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Bijk with γB,S
ijk = 0 or to Φijk with γΦ,S

ijk = 0. Also, let V◦
δi,0

be the prior covariance
for the unrestricted elements in δi. The conditional likelihood is now

(yi |γ
R,l,γS, f ,Λi,i) ∼ N (0, V̂yi),

V̂yi =
(
Λ−1

i,i IT − Λ−2
i,i W

◦
i ∆̂

−1

i W◦
i
′
)−1

,

∆̂i = V◦−1
δi,0

+ Λ−1
i,i W

◦
i
′
W◦

i , (13)

and computation is similarly straightforward.

Now, to enforce the echelon form in an exact manner, we need to take into ac-
count the prior in (7). Practically, this means computing the indicators γE,l =
E(p1, . . . , l, . . . , pn) and setting the weights:

P(pi = l | · ) ∝

{
0 if γB,E,l

ijk = 0, γB,R,l
ijk 6= 0, γB,S

ijk 6= 0 for any j, k

p(yi |γ
R,l,γS, f ,Λi,i) otherwise

. (14)

For the approximate row degree algorithm, however, the above step is skipped and
we simply set:

P(pi = l | · ) ∝ p(yi |γ
R,l,γS, f ,Λi,i). (15)

Observe that in this case, not only do we circumvent the need to compute echelon
form indicators and check them against the row degree and SSVS indicators, but
also pi is conditionally independent of the other row degrees p−i. The approximate
algorithm, therefore, is both computationally simpler and more efficient (albeit at
the cost of loosing the exact canonical form).

2. Sample
(
γS
i ,Bi,Φi |γ

R, f ,Λi,i,yi

)
for each i = 1, . . . , n, where Bi denotes the i-th

row of B, Φi the i-th row of Φ, and γS
i is the set of all SSVS indicators pertaining to

Bi,Φi. Under the “hard” SSVS prior, this is done by first sampling
(
γS
i , |γ

R, f ,Λi,i

)

marginal of Bi,Φi using (11). In particular, we sample each γ·,S
ijk for every j, k

conditional on {γ·,S
i,lm}l 6=j,m 6=k, using the approach outlined in Step 1 to compute the

likelihood ratio

̺·,Sijk =
p(yi |γ

R, γ·,S
ijk = 1, {γ·,S

ilm}l 6=j,m 6=k, f ,Λi,i)

p(yi |γR, γ·,S
ijk = 0, {γ·,S

ilm}l 6=j,m 6=k, f ,Λi,i)
. (16)

Given our priors, this implies

P

(
γΦ,S
ijk = 1 |γR, {γΦ,S

ilm }l 6=j,m 6=k, f ,Λi,i,yi

)
= ̺Φ,S

ijk /
(
1 + ̺Φ,S

ijk

)
, (17)

for both the exact echelon form algorithm and the approximate row degrees algo-
rithm. For the indicators on Bi, however, imposing the echelon form once again
requires that the relationship between γ

B,S
i and γB,R established in (7) be respected.

In consequence, the correct conditional distribution is given by

P

(
γB,S
ijk = 1 |γR, {γB,S

ilm }l 6=j,m 6=k, f ,Λi,i,yi

)

=

{
0 if γB,E

ijk = 0, γB,R
ijk 6= 0

̺B,S
ijk /

(
1 + ̺B,S

ijk

)
otherwise

,
(18)
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where γB,E
ijk is computed from E(p1, . . . , pn) using previous draws of p1, . . . , pn. For

the approximate row degrees algorithm, however, we simply draw from

P

(
γB,S
ijk = 1 |γR, {γB,S

ilm }l 6=j,m 6=k, f ,Λi,i,yi

)
= ̺B,S

ijk /
(
1 + ̺B,S

ijk

)
. (19)

For sake of efficient computation, we note that whenever γ·,R
ijk = 0, we always obtain

̺·,Sijk = 1, and therefore, the conditional likelihoods need not be computed.

When using the “soft” SSVS prior, the indicators are sampled conditional on Bi,Φi.

For γB,S
ijk , if the echelon form is imposed, then P

(
γB,S
ijk = 1 |Bijk

)
= 0 when γ

B,E
ijk = 0

and γ
B,R
ijk 6= 0; otherwise

P

(
γB,S
ijk = 1 |Bijk

)
=

1
τ1,ijk

exp
(
−

B2

ijk

2τ2
1,ijk

)

1
τ1,ijk

exp
(
−

B2

ijk

2τ2
1,ijk

)
+ 1

τ0,ijk
exp

(
−

B2

ijk

2τ2
0,ijk

) . (20)

If the row degree algorithm is used, we sample γB,S
ijk using only (20).

For γΦ,S
ijk , the success probabilities are

P

(
γΦ,S
ijk = 1 |Φijk,γ

Φ,R
ijk 6= 0

)
=

1
τ1,ijk

exp
(
−

Φ2

ijk

2τ2
1,ijk

)

1
τ1,ijk

exp
(
−

Φ2

ijk

2τ2
1,ijk

)
+ 1

τ0,ijk
exp

(
−

Φ2

ijk

2τ2
0,ijk

) .

Once again, γ·,S
ijk is drawn from P(γ·,S

ijk = 1 | γ·,R
ijk = 0) = 0.5 whenever the corre-

sponding coefficient is excluded by the row degrees.

Given a draw of γS
i , the coefficients Bi,Φi are sampled jointly in standard way for

both of the SSVS specifications. In particular, letting once again W⋆
i =

(
X⋆ F⋆

)

be the reduced regressors and factors matrix corresponding to the unrestricted
coefficients δ⋆

i in δi, textbook regression analysis dictates
(
δ⋆
i |γ

S
i ,γ

R
i , f ,Λi,i,yi

)
∼ N (δ̂i, ∆̂i),

δ̂i = ∆̂i

(
Λ−1

i,i W
⋆
i
′(yi − fi)

)
,

∆̂i =
(
V⋆

δi,0
+ Λ−1

i,i W
⋆
i

′
W⋆

i

)−1

, (21)

where fi = (fi,1, . . . , fi,T )
′. The remaining elements in δi (and therefore Bi,Φi) are

set to zero.

3. Sample

(
Λi,i |Bi,Φi,γ

R
i ,γ

S
i , f ,yi

)
∼

IG

(
νλ,0 +

T

2
, Sλ,0 +

1

2

T∑

t=1

(yi,t −BiXt −ΦiFt)
2

)

for each i = 1, . . . , n.
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4. Sample (Ωi,i | fi) or
(
hi,0, . . . , hi,T , σ

2
h,i | fi

)
—depending on whether stochastic volatil-

ity is specified—for each i = 1, . . . , n. In either case, standard methods are used.

5. Sample
(
f |B,Φ, Ω̃,Λ,γR,γS,y

)
, where Ω̃ = IT ⊗Ω for the constant variance case

and
Ω̃ = diag(exph1,1, . . . , exphn,1, . . . , exph1,T , . . . , exphn,T )

for stochastic volatility. An efficient sampler for this purpose is constructed by first
rewriting the working model (10) in stacked form as

y∗ = Ψf + η, (22)

where y∗ = ((y1 −BX1)
′, . . . , (yT −BXT )

′)′ and Ψ is a Tn× Tn lower triangular
matrix with Φ0 on the main diagonal block, Φ1 on first lower diagonal block, Φ2

on second lower diagonal block, and so forth. For example, for q = 2, we have

Ψ =




Φ0 0 0 0 · · · 0

Φ1 Φ0 0 0 · · · 0

Φ2 Φ1 Φ0 0 · · · 0

0 Φ2 Φ1 Φ0 · · · 0
...

. . . . . . . . .
...

0 0 · · · Φ2 Φ1 Φ0




.

It is important to note that in general Ψ is a sparse Tn× Tn matrix that contains
at most

n2

(
(q + 1)T −

q(q + 1)

2

)
< n2(q + 1)T

non-zero elements, which grows linearly in T and is substantially less than the total
(Tn)2 elements for typical applications where T ≫ q.

Now, the vector of factors is sampled jointly as

(
f |B,Φ,Ω(t),Λ,γR,γS,y

)
∼ N (f̂ , V̂f ),

f̂ = V̂f

(
Ψ′
(
IT ⊗Λ−1

)
y∗
)
,

V̂f =
(
Ω̃

−1
+Ψ′

(
IT ⊗Λ−1

)
Ψ
)−1

, (23)

which is once again efficiently implemented using sparse matrix routines.
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Appendix C: Deviance Information Criterion
The Deviance Information Criterion (DIC) was introduced in Spiegelhalter, Best, Car-

lin, and van der Linde (2002). For latent variable models there are numerous definitions
(Celeux, Forbes, Robert, and Titterington, 2006) depending on the exact notion of the
likelihood. Given a likelihood function f(y |θ), the DIC is defined as:

DIC = D(θ) + pD,

where
D(θ) = −2Eθ[log f(y |θ) |y]

is the posterior mean deviance and pD is the effective number of parameters. That is, the
DIC is the sum of the posterior mean deviance, which can be used as a Bayesian measure
of model fit or adequacy, and the effective number of parameters that measures model
complexity. The effective number of parameters is in turn defined as

pD = D(θ)−D(θ̃),

where D(θ) = −2 log f(y |θ) and θ̃ is an estimate of θ, which is typically taken as the
posterior mean.

Our VARMA model has a few equivalent latent variable representations. Hence,
in principle we can use any of the representations and compute the DIC based on the
conditional likelihood (i.e., the likelihood given the latent variables). However, as pointed
out in Chan and Grant (2014), conditional DICs tend to be numerically unstable. Instead,
we use the likelihood implied by the system

yt =

p∑

j=1

Ajyt−j +

q∑

j=1

Θjǫt−j + ǫt, ǫt ∼ N (0,Σ), (24)

where all the parameters are identified and can be recovered from the main sampling
algorithm.

To derive this density, we stack (24) over t and obtain:

y = a+Θǫ,

where ǫ = (ǫ′1, . . . , ǫ
′
T )

′ ∼ N (0, IT ⊗Σ), a = ((
∑p

j=1 Ajy1−j)
′, . . . , (

∑p

j=1AjyT−j)
′)′ and

Θ is a Tn×Tn lower triangular matrix with the identity matrix In on the main diagonal
block, Θ1 on first lower diagonal block, Θ2 on second lower diagonal block, and so forth.
Hence, we have

(y |A1, . . . ,Ap,Θ1, . . . ,Θq,Σ) ∼ N (a,Θ(IT ⊗Σ)Θ′).

Since the covariance matrix Θ(IT ⊗Σ)Θ′ is a band matrix, this Normal density can be
evaluated quickly using the band matrix algorithms discussed in Chan and Grant (2014).
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Appendix D: Data Appendix
All variables were downloaded from St. Louis’ FRED database and cover the quarters

1959:Q1 to 2013:Q4. The following table lists the variables, describes how they were
transformed and whether they are slow- or fast-moving variables. The transformation
codes are: 1 - no transformation (levels); 2 - first difference, 3 - second difference; 4 -
logarithm; 5 - first difference of logarithm; 6 - second difference of logarithm.

Trans. Slow / included in model
Variable Code Fast n = 3 n = 7 n = 12
Real Gross Domestic Product 5 S X X X
Consumer Price Index: All Items 6 S X X X
Real Personal Consumption Exp. 5 S X
Housing Starts: Total 4 S X
Average Hourly Earnings: Manuf. 6 S X X
Real Gross Private Domestic Invest. 5 S X
All Employees: Total nonfarm 5 S X
ISM Manuf.: PMI Composite Index 1 S X
Effective Federal Funds Rate 2 X X X
S&P 500 Stock Price Index 5 F X
M2 Money Stock 6 F X X
Spot Oil Price: West Texas Interm. 5 F X X
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