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Abstract

This article investigates contests when heterogeneous players compete to obtain a share
of a prize. We prove the existence and uniqueness of the Nash equilibrium when players
have general preference structures. Our results show that many of the standard conclu-
sions obtained in the analysis of contests—such as aggregate effort increasing in the size of
the prize and the dissipation ratio invariant to the size of the prize—may no longer hold
under a general preference setting. We derive the key conditions on preferences, which
involve the rate of change of the marginal rate of substitution between a player’s share of
the prize and their effort within the contest, under which these counter-intuitive results may
hold. Our approach is able to nest conventional contest analysis—the study of (quasi-)linear
preferences—as well as allowing for a much broader class of utility functions, which include
both separable and non-separable utility structures.

Keywords: contest; general preferences; aggregative game.

JEL Classification: C72, D72

1 Introduction

Contests can be characterized by players expending sunk effort in order to obtain a prize.
As this is a rather general economic phenomenon, contest theory has become a dominant
framework to explain the incentive structures within a variety of applications, including—
but not limited to—rent seeking, patent races, litigation, and conflict (Konrad, 2009). There
are two key types of contest studied in the literature: those in which an indivisible prize is
contested; and those in which a perfectly divisible prize is shared among contestants. With
non-linear payoffs the two are not equivalent, and while the former has been well-studied, the
latter has seen much less attention. Although there is large applicability of contests in which
a perfectly divisible prize is shared among contestants, there remains a convention within the
analysis of such contests to assume players have (quasi-)linear preferences. With such a variety
of potential applications at hand, it is, however, perfectly plausible to envisage players with
alternative preference structures. Thus the question arises as to whether a tractable analysis of
contests with more general preference structures can be undertaken.

In this article we provide a framework where players with general preference (utility)
structures contest a share of a prize. We show both the existence and uniqueness of a Nash
equilibrium and characterize players’ equilibrium effort levels. We assume conventional—but
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general—restrictions on players’ utility functions (such as utility increasing in prize share and
decreasing in effort) and can therefore analyze a broad class of potential contest applications.
Within such a setting, we show a fundamental component is the rate of change of the marginal
rate of substitution between players’ prize share and their contest effort as the size of their share
of the prize changes. In particular, we find that this, which is always monotonically decreasing
in the standard contest model, has dramatic effects on how aggregate contest efforts (and the
ratio of prize dissipation) change with respect to the size of the prize.

Within the classical literature on contests (e.g., Congleton et al., 2008), a standard result
exists in which aggregate efforts are increasing in the size of the prize. Furthermore, it is also
usually observed that the dissipation ratio of the prize is independent of the prize but increas-
ing in the number of players. Thus as the number of players increases, the dissipation ratio
tends to one (e.g, Hillman and Samet, 1987). Yet both these predictions—of increasing aggre-
gate effort and invariance of the dissipation ratio with respect to the prize—are not universally
observed. Thus we attempt to provide an encompassing model that explains the conditions
on contestants’ preferences under which they do occur, and indeed, when this conventional
wisdom is reversed. We begin with a simple Tullock share contest with a general preference
structure, but then advance our framework to include a general contest success function as
well as providing an analysis where the prize is endogenously determined by aggregate ef-
forts. Throughout all advancements, we observe the rate of change of the marginal rate of
substitution as pivotal to the outcome of the contest.

Our focus here is on Tullock contests in which a prize is shared, where the contest success
function determines the share of the perfectly divisible prize a contestant receives, rather than
the other ‘winner-take-all’ interpretation where the contest success function determines the
probability that a player receives the prize. If each contestant is risk neutral and the cost of
effort is linear the two interpretations are strategically equivalent, since then every contestants’
expected payoff in a winner-take-all contest is equivalent to their payoff in a prize-sharing
contest. The equivalence, however, breaks down in all but this simplest of settings and the two
types of contest command separate study.

In winner-take-all contests, non-linear evaluation of the contest outcome has been consid-
ered by supposing that contestants evaluate the outcome of the contest using a (concave) utility
function. This allows contestants’ risk preferences to be captured, study of which has com-
manded substantial attention in the literature (Hillman and Katz, 1984; Long and Vousden,
1987; Skaperdas and Gan, 1995; Konrad and Schlesinger, 1997; Treich, 2010; Cornes and Hart-
ley, 2012).1 This formulation does not, however, carry over to the prize-sharing interpretation of
contests where the evaluation of the outcome of the contest should be the share of the prize re-
ceived with certainty (after accounting for the cost of effort), not a probability-weighted average
of utilities in the two states that may emerge in a winner-take-all contest.

Our contribution is to model and analyze more general preferences in Tullock sharing con-
tests that extend the domain of applicability of these important models to situations where
contestants might have more than simple linear evaluation of the context outcome. This ex-
tension is not without consequence for, whilst we show that as in standard contests reasonable
conditions admit a unique equilibrium, a conventional wisdom of the contest literature—that
effort is increasing in the size of the prize—does not hold when preferences satisfy some very
standard conditions. Understanding this is of key importance when modeling contests in which
contestants might have more general preferences.

The remainder of the article is structured as follows. Section 1.1 provides an illustrative
example to highlight the importance of non-linear preferences in contests. In Section 2 we
outline share contests in which players have general preferences. In Section 3, we characterize

1Note that Long and Vousden (1987) analyzes risk aversion but within the context of a rent being shared. That
is, the player can increase (or decrease) their share of a rent from an exogenously given level. For their analysis a
specific form of separable preference structure must be assumed.
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the Nash equilibria. Section 4 shows the influence of the size of the rent and Section 5 analyzes
the dissipation ratio. Section 6 provides further extensions to general contest success functions
and prizes endogenously determined by aggregate effort. Section 7 provides our concluding
remarks.

1.1 An illustrative example

To provide an illustrative example, consider a simple Tullock contest for a perfectly divisible
exogenously-given prize R in which all contestants are identical and have the utility function

ui(z, x) = (z− k)α − cx,

where z = xi

X R is the contestant’s share of the prize, xi and X are player i’s effort and aggregate
effort, respectively, α ∈ (0, 1], and k ≥ 0. Since setting α = 1 yields the familiar contest setting
with linear cost of effort, this illustrative example is well suited for exploring the implications
of diminishing returns in the allocation of the prize. We can deduce that the equilibrium effort
of any contestant, written as a function of R, is given by

x∗(R) =
α(n− 1)R

n2c

(
R
n
− k
)α−1

,

where we assume R/n > k. The study of contests usually identifies a positive relationship
between the size of the contested prize and equilibrium effort. Yet this may no longer hold
when players’ preferences are transformed from the conventional α = 1. To see this note that:

x∗
′
(R) R 0⇔ R R

kn
α

.

We deduce that with linear preferences (α = 1) it is always the case that individual—and by
extension (in the case of homogeneous contestants) aggregate—effort is increasing in the prize
R: the conventional contest outcome holds. Interestingly, however, when α < 1 there is a
non-empty range of prizes kn < R < kn/α where individual—and thus aggregate—effort is
decreasing in the prize. To illustrate the effect of allowing for diminishing marginal returns in
the prize share zi, Figure 1 plots the players’ aggregate equilibrium effort against the size of the
prize R for different concavity parameters: we observe that the degree of concavity determines
whether aggregate effort is monotonically increasing in the size of the prize, or not.

Using this example it is clear that if the structure of players’ preferences differ from the
conventional structure, many of the main conclusions of contest theory may fail to hold. In this
article we are interested in how contests are affected when players have alternative preference
structures. As already mentioned, we show that the key to understanding contests with gen-
eral preferences is the relationship between the rate of change of marginal rate of substitution
between the prize share and effort.

2 Contests with general preferences

Consider a set of individual players N = {1, . . . , n} that participate in a contest to obtain a rent,
or prize, R. Their success in the contest is determined by their effort relative to the effort of
other contestants and is given by the contest success function φ(xi, x−i), where xi denotes the
costly effort of player i ∈ N and x−i denotes the vector of all other contestants’ effort levels. In
this article we focus on contests in which the prize is perfectly divisible and is shared between
contestants in accordance with the contest success function. Define zi as being contestant i’s
allocation of the prize from the contest:

zi ≡ φ(xi, x−i)R. (1)
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Figure 1: Aggregate equilibrium effort in contests

We begin by studying a ‘simple’ Tullock contest for an exogenously-given prize of size R in
which

φ(xi, x−i) =

{
xi

xi+X−i if X > 0 or
1
n otherwise,

where X ≡ ∑j∈N xj is the aggregate effort and X−i ≡ X − xi. Later in the article we consider
more general contest success functions, as well as situations in which the size of the prize is
influenced by the effort of contestants, i.e., where the prize is endogenously determined by
contestants’ efforts.

For each contestant i we define a utility function ui(z, x) over their prize allocation from the
contest, z, and their effort in contesting the prize, x. We denote MRSi(z, x) as contestant i’s
marginal rate of substitution between z and x such that:2

MRSi(z, x) ≡ −ui
x

ui
z

.

Consider the (xi, zi)-space. Since utility is increasing in z but decreasing in effort, the indiffer-
ence curves derived from the utility function defined above will have an upward slope (mea-
sured by the marginal rate of substitution just defined) and utility is increasing in a north-west
direction.

We focus on cases where (heterogenous) contestants’ utility is increasing in their allocation
of the prize, at a decreasing rate; decreasing in effort, at an increasing rate; and if there are
complementarities between the allocation of the prize from the contest and effort then these
are sufficiently small.

Assumption 1. For each i ∈ N, the utility function is differentiable as many times as required, ui
z > 0,

ui
zz ≤ 0, ui

x < 0, ui
xx ≤ 0, and

ui
zx < min

{
MRSi

∣∣∣ui
zz

∣∣∣ ,
1

MRSi

∣∣∣ui
xx

∣∣∣} .

2Throughout we use superscripts to identify contestants, and subscripts to denote partial derivatives.

4



Concavity of the utility function is, of course, standard. The last condition in the assumption—
which ensures complementarities between z and x are sufficiently small—implies that MRSi

z >

0 and MRSi
x > 0; to observe this note that

MRSi
z = −

ui
zui

zx − ui
xui

zz
(ui

z)
2 and MRSi

x = −ui
zui

xx − ui
xui

zx
(ui

z)
2

and therefore MRSi
z > 0 ⇔ ui

zx < −MRSiui
zz and (noting that ui

x < 0) MRSi
x > 0 ⇔ ui

zx <

− 1
MRSi ui

xx.
Assumption 1 allows for a very broad class of preference structures. For instance, this

framework nests the standard linear preference structure ui(z, x) = z− x, which is the dom-
inant structure used within the contest literature. We can also capture convex costs of effort
if we specified ui(z, x) = z − ci(x) with ci

x > 0, ci
xx > 0. The level of generality within our

framework even allows for non-separable preferences between x and z allowing us to capture
situations, where, for example, the marginal value of the prize is influenced by the effort exerted
in contesting the prize. Thus by considering a general preference structure, our framework can
not only provide an analysis that nests previous studies of share contests but also provides a
tractable methodology by which to consider alternative and novel preference structures, which
can be used to advance and expand the understanding and applicability of contests.

The dominant framework for exploring sharing contests in the literature has been to assume
preferences are (quasi-)linear, with utility being linear in the share of the prize received. This
means that existing studies have neglected to consider both diminishing marginal utility for
contestants from their allocation of the prize, and complementarities between the effort in the
contest and their enjoyment of the prize. To advance the analysis of contests toward a larger
class of preference structures it is imperative to consider these issues.

3 Characterizing equilibria in Tullock contests with general prefer-
ences

We now turn to characterize equilibria in a simple Tullock contest over an exogenously-given
perfectly divisible prize R. We seek a Nash equilibrium in the simultaneous-move game of
complete information in which the player set is the contestants N = {1, . . . , n}; their strategies
are their choice of effort xi ∈ R+; and their payoffs are given by their utility of the contest
outcome ui(z, x) where x = xi and z = xi

xi+X−i R, which we assume satisfies Assumption 1. Note
that we allow all players to be heterogeneous, and we assume n ≥ 2.

First, we note that at a Nash equilibrium of the contest each player may be seen as solving
the problem

max
xi∈R+

ui
(

xi

xi + X−i R, xi
)

.

The necessary first-order condition for xi to maximize utility given X−i = ∑j 6=i∈N xj, i.e. identify
a best response, is

X−i

(xi + X−i)2 Rui
z + ui

x ≤ 0, (2)

with equality if xi > 0.

Lemma 1. Suppose Assumption 1 is satisfied for a contestant, Then the first-order condition is both
necessary and sufficient for identifying their best response.

Proof. The second-order sufficient condition is

ui
zx2

X−i

(xi + X−i)2 R + ui
zz

(
X−i

(xi + X−i)2 R
)2

+ ui
xx − ui

z2
X−i

(xi + X−i)3 R < 0.
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For any xi > 0, the first-order condition implies X−i

(xi+X−i)2 R = − ui
x

ui
z
= MRSi. As such, the

second-order condition can be re-written

2MRSiui
zx + MRSi

(
MRSiui

zz +
1

MRSi ui
xx

)
− 2

xi + X−i MRSiui
z

<2MRSiui
zx −MRSi

(
MRSi|ui

zz|+
1

MRSi |u
i
xx|
)

<2MRSiui
zx − 2MRSi min

{
MRSi

∣∣∣ui
zz

∣∣∣ ,
1

MRSi

∣∣∣ui
xx

∣∣∣}
=2MRSi

(
ui

zx −min
{

MRSi
∣∣∣ui

zz

∣∣∣ ,
1

MRSi

∣∣∣ui
xx

∣∣∣})
<0,

since ui
zx < min

{
MRSi

∣∣ui
zz
∣∣ , 1

MRSi

∣∣ui
xx
∣∣} under Assumption 1.

Contestant i’s best response is thus given by bi(X−i; R) = max{0, xi} where xi is the unique
solution to

MRSi
(

xi

xi + X−i R, xi
)
=

X−i

(xi + X−i)2 R,

and we seek a Nash equilibrium in which players use mutually consistent best responses.
Rather than working directly with best responses, we turn to analyze the contest using an

extension of the ‘share function’ approach, as first developed by Cornes and Hartley (2005), to
allow for general preferences. For each contestant we define a share function that gives their
share of the prize that is consistent with a Nash equilibrium in which the aggregate effort of all
contestants is X > 0. By replacing X−i with X − xi in the first-order condition (2) and letting
σi ≡ xi/X we deduce that contestant i’s share function is given by si(X; R) = max{0, σi} where
σi is the solution to

li(σi, X; R) ≡ MRSi(σiR, σiX)− (1− σi)
R
X

= 0. (3)

Share functions shed light on individual behavior consistent with a Nash equilibrium: Xsi(X; R)
is the effort of contestant i consistent with a Nash equilibrium in which the aggregate effort of
all contestants is X > 0. To identify a Nash equilibrium, we require consistency at the aggre-
gate level; that is, the sum of individual efforts being equal to the aggregate effort, or for the
sum of individual share functions to be equal to unity. Letting

S(X; R) ≡ ∑
j∈N

sj(X; R),

we have the following equivalence statement.

Lemma 2. In a contest with prize R, there is a Nash equilibrium with aggregate effort X∗ > 0 if and
only if

S(X∗; R) = 1.

Proof. We seek to show that X∗ is a Nash equilibrium if and only if S(X∗; R) = 1. First, the
“if” part. If X∗ is a Nash equilibrium then xi∗ = bi(X−i∗; R) for all i ∈ N. This implies
xi∗ = bi(X∗ − xi∗; R) which in turn implies xi∗ = X∗si(X∗; R) for all i ∈ N, and therefore that
X∗ = X∗ ∑j∈N sj(X∗; R), and consequently S(X∗; R) = 1. For the “only if” part, note that for
each i ∈ N, X∗si(X∗; R) = bi(X∗ − X∗si(X∗; R)). If S(X∗; R) = 1 then X∗ = X∗S(X∗; R) and so
for each i ∈ N, X∗si(X∗; R) = bi(X∗S(X∗; R)− X∗si(X∗; R)) = bi(X−i∗; R), thus allowing us to
conclude that xi∗ = X∗si(X∗; R) for all i ∈ N constitutes a Nash equilibrium.
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Questions of the existence and uniqueness of Nash equilibrium now rest on consideration
of the behavior of the aggregate share function S(X; R), whose properties are derived from
individual share functions, and its intersection with the unit line. The following proposition
sets out the properties of individual share functions.

Proposition 1. For each i ∈ N,

1. si(X; R) is a continuous function defined for all X > 0 and R.

2. si(X; R) → 1 as X → 0 and either si(X; R) = 0 for all X ≥ X̄i(R) ≡ R/MRSi(0, 0) if
MRSi(0, 0) > 0 or, if MRSi(0, 0) = 0, si(X; R)→ 0 as X → ∞.

3. si(X, R) is strictly decreasing in X for 0 < X < X̄i(R).

Proof. 1. Recall from (3) that a contestant’s share function is implicitly defined as the value of
σi where

li(σi, X; R) ≡ MRSi(σiR, σiX)− (1− σi)
R
X

= 0,

if σi is positive, otherwise the share function takes the value zero. Continuity of the share func-
tion is established by the assumed smooth nature of the functions in the first-order condition.
Next, note that

li
σ = R MRSi

z + X MRSi
x +

R
X

> 0, (4)

allowing us to conclude that there is at most one value of σi > 0 where li(σi, X; R) = 0, so
si(X; R) is a function.

2. When σi = 0, li(0, X; R) = MRSi(0, 0)− R/X. The fact just deduced that li
σ > 0 implies

that if li(0, X; R) ≥ 0 then li(σi, X; R) > 0 for all σi > 0, and therefore si(X; R) = 0. If
MRSi(0, 0) > 0, X̄i(R) ≡ R/MRSi(0, 0) is well-defined and we can conclude that si(X, R) = 0
for all X ≥ X̄i(R). If MRSi(0, 0) = 0 then li(0, X; R) = −R/X. As X → ∞, li(0, X; R) → 0 and
then the fact that li

σ > 0 implies si(X; R)→ 0.
As X → 0, Xli(σi, X; R) = XMRSi(σiR, σiX) − (1− σi)R → −(1− σi)R, so σi = 1 is the

only possibility to achieve li(σi, X; R) = 0, implying si(X; R)→ 1.
3. Finally, to understand how share functions vary with X we apply implicit differentiation

to (3) to deduce that

si
X = − li

X
li
σ

= − σi MRSi
x + (1− σi) R

X2

R MRSi
z + X MRSi

x +
R
X

< 0, (5)

confirming the strict monotonicity.

The properties of individual share functions imply that in a contest with prize R the ag-
gregate share function S(X; R), being constructed from a sum of at least two individual share
functions, exceeds 1 when X is small enough, is less than one when X is large enough, and
is continuous and strictly decreasing in X implying there is exactly one value of X where
S(X; R) = 1.

Proposition 2. In a contest with prize R there is a unique Nash equilibrium with aggregate effort X∗

such that
S(X∗; R) = 1

in which the equilibrium effort of contestant i is xi = X∗si(X∗; R).

Proof. From Lemma 2 we know that Nash equilibria are identified by intersections of S(X; R)
with the unit line. From Proposition 1 we also know that individual share functions are single-
valued, continuous and strictly decreasing in X > 0, and have the property si(X; R) → 1 as
X → 0 and either si(X; R) = 0 for all X ≥ R/MRSi(0, 0) or, if MRSi(0, 0) = 0, that si(X; R)→ 0
as X → ∞. As such, S(X; R) → n as X → 0 and (at worst) S(X; R) → 0 when X → ∞.
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Combined with the fact that S(X; R) is continuous and strictly decreasing in X > 0, this implies
there is a single value of X where S(X; R) = 1, and so the Nash equilibrium is unique.

As such, we confirm that in prize-sharing contests where players can have more general
preferences over their allocation of the prize and the effort exerted in contesting the prize, the
uniqueness of Nash equilibrium—as found in simple Tullock contests—is preserved under our
stated assumptions.

4 The effect of the size of the contested prize

We now turn to investigate how contestants’ equilibrium behavior depends on the size of the
prize they are contesting. We write X (R) for the equilibrium aggregate effort in a contest
where the size of the prize is R, which is implicitly defined by

S(X (R); R) = 1. (6)

To determine the sign of X ′(R), we make use of expression (6) to deduce:3

X ′(R) = −∑j∈N sj
R

∑j∈N sj
X

(7)

Having already found that si
X < 0 for all i ∈ N (Proposition 1), how equilibrium aggregate

effort responds to a change in the size of the prize will rely on the features of sj
R, that we turn

to investigate next.

Lemma 3.
si

R R 0⇔ zi MRSi
z −MRSi Q 0.

Proof. Recall from (3) that a contestant’s share function is implicitly defined as the value of σi

where
li(σi, X; R) ≡ MRSi(σiR, σiX)− (1− σi)

R
X

= 0.

As such,

si
R = − li

R
li
σ

= − σi MRSi
z − (1− σi) 1

X

R MRSi
z + X MRSi

x +
R
X

.

The denominator (as deduced in (4)) is positive. Noting that σiR = zi and that (1− σi) R
X =

MRSi from the first-order condition, gives

si
R = −wi(zi MRSi

z −MRSi),

where wi = (R(R MRSi
z + X MRSi

x +
R
X ))

−1 > 0, from whence the statement in the lemma
follows.

3Strictly speaking, we should not implicitly differentiate (6) since whilst it is continuous, where X = X̄i(R)
for a contestant that contestant drops out of the sum so there will be a kink in the function. Nevertheless, the
approach will be used since it is simple and has intuitive merit, and is of course valid so long as we consider only
neighborhoods in which there is no such X̄i(R). Where this is not the case, the proof of exactly the same result can
be made by contradiction.
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Putting the expression for X ′(R) together with the expression for si
R, it follows that

sgn{X ′(R)} = − sgn{∑
j∈N

wj(zj MRSj
z −MRSj)}.

This allows us to draw the following conclusion regarding how the equilibrium aggregate effort
in a contest changes with the size of the prize, which differs significantly from the standard
conclusion for prize-sharing contests (that equilibrium aggregate effort always increases in R).

Proposition 3. Suppose the preferences of all contestants satisfy Assumption 1. If ∑j∈N wj(zj MRSj
z −

MRSj) R 0 then X ′(R) Q 0. A sufficient condition for this is for MRSi

zi to be increasing (constant,
decreasing) in zi for all contestants.

This proposition reveals that how aggregate effort changes with the size of the prize is
crucially dependent on how the ratio MRSi/zi changes with the allocation of the prize (since
the sign of the derivative of this object is equal to the sign of zi MRSi

z −MRSi). If MRSi/zi is
decreasing in zi for all contestants—as assumed in the contest literature so far as the marginal
rate of substitution is constant in zi—then the equilibrium aggregate effort of contestants is al-
ways increasing in the size of the contested prize. However, with our more general preferences
MRSi is increasing (weakly) in z, and if it increases sufficiently so that MRSi/zi also increases
then aggregate effort may, in fact, decrease with a larger prize. This was the case in the moti-
vating example at the start of the article and means that if we account for contestants having
more general preferences in prize-sharing contests we must expel the conventional wisdom
that larger prizes always command greater effort.

4.1 Interpreting the result

In a contest player i can be seen as solving the following constrained optimization problem:

max
xi∈R+

ui(zi, xi) s.t. zi =
xi

∑j∈N xj R

Put differently, player i maximizes a utility function that is increasing in her share of the con-
tested prize, zi, and decreasing in contest effort xi, subject to the constraint that implies her
share of the contested prize is increasing in contest effort. This constraint can be interpreted as
a budget constraint since it maps the combinations (zi, xi) that are achievable for a given R.

We have shown above that optimizing yields:

MRSi =
X− xi

X2 R,

where the (positive) marginal rate of substitution equals the amount by which the budget
constraint is being relaxed when contest effort increases. Bearing in mind that the marginal
rate of substitution captures the relative increase of utility of marginally increasing the share of
the contested prize enjoyed to marginally reducing the contest effort, we thus require that this
relative increase in utility be equal to the relative relaxation of the budget constraint. This line
of reasoning allows us to visualize the condition in (xi, zi)-space where we represent player
i’s (upward-sloping) indifference curves and budget constraint. Accordingly, at optimality, for
player i to be attaining the highest indifference curve for a given budget constraint, the slopes of
these two loci are equal, as illustrated in Figure 2, where point a depicts the tangency between
the budget constraint and an indifference curve.

Increasing the value of the prize (to R′) relaxes the budget constraint since it enables any
player i to increase zi, while keeping xi constant. Since the slope of the BC equals X−xi

X2 R, an
increase is R will translate to an increase of this slope, which is equivalent to a relaxation of
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Figure 2: Equilibrium effort

the BC. To determine whether player i’s effort will increase or decrease with a change in R, it
is thus sufficient to look at the change of the slope of the indifference curve, when increasing
R while maintaining xi constant. Should this slope increase by more than the slope of budget
constraint, this will imply that with a higher value of the prize R, player i will be able to
increase his consumption of zi while expending less contest effort. Should the opposite hold, at
the new equilibrium more contest effort will be exerted by player i. Mathematically, the relative
change in slopes is such that we witness a decrease of contest effort at equilibrium if:

∂MRSi(σiR, xi)

∂R
>

∂ X−xi

X2 R
∂R

⇔ σi MRSi
z >

X− xi

X2 .

Utilizing (2), we deduce that X−xi

X2 = MRSi/R and therefore we can re-write the above
expression (noting that σiR = zi) as

MRSi − zi MRSi
z < 0, (8)

which is exactly the same condition driving the result of Proposition 3.
Referring back to Figure 2, if an increase in the value of the prize R is accompanied by

inequality (8) being satisfied, this will lead to a reduction of individual contest effort as reflected
by point b. If on the other hand, the inequality is violated, then individual effort will increase,
as reflected by point c.

Thus, we find that an increase in the value of the prize in a Tullock share-contest with
general preferences may result in increases or decreases of individual contestants’ efforts, de-
pending on their preferences. To better understand why the literature unambiguously identifies
a positive relationship, we further explore inequality (8) by computing the components of the
object on the left:

MRSi − zi MRSi
z =

ui
xui

z − zi (ui
xui

zz − ui
zui

zx
)

(ui
z)

2 (9)

The bulk of the literature considers contestants with (quasi-)linear preferences similar to
our motivating example when α = 1. In other words, contestants derive a linear utility from
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their share if the prize, while the cost of effort is assumed to be (weakly) convex: ui(z, x) =

z− ci(x). Imposing such assumptions implies that ui
zz = ui

zx = 0 and ui
xx ≤ 0, so that the sign

of expression (9) is unambiguously positive. Accordingly this implies a positive relationship
between the value of the prize and individual contest effort.

From Condition (9), we realize that additive separability (ui
zx = 0) is not the defining fac-

tor behind the monotonic relationship between prize-value and contest effort found in the
literature. Indeed, diminishing marginal returns in zi (ui

zz < 0) proves sufficient to yield a non-
standard relationship between the value of the prize and effort even with additively separable
utility functions.

On the other hand, neither are diminishing marginal returns on zi a necessary condition
for obtaining a non-monotonic relationship between prize-value and contest effort. Consider
Condition (9) once more, and set ui

zz = 0. In the presence of sufficiently strong substitutability
between zi and xi, increases in R may generate decreases in contest effort. Strong substitutabil-
ity implies that higher contest effort strongly reduces the marginal utility of the prize-share.

5 The dissipation ratio

We now consider how the dissipation ratio alters under a Tullock contest with general prefer-
ences. Recall that the share function satisfies the first-order condition

MRSi(σiR, σiX) = (1− σi)
R
X

,

and let D = X
R be the dissipation ratio. Noting that X = D · R, we can write the share function

as si(DR, R) which will satisfy

li(σi, DR; R) ≡ MRSi(σiR, σiDR)− (1− σi)
1
D

= 0.

Then the equilibrium dissipation ratio, written D(R), must satisfy

∑
j∈N

sj(D(R)R, R) = 1.

How the dissipation ratio changes in the size of the prize can be derived as follows:

D′(R) = −∑j∈N
dsi

dR

∑j∈N
dsi

dD

(notice that the change from partial derivatives as, in particular, R enters both arguments of the
share function). Now,

dsi

dR
= −

dli

dR
li
σ

and
dsi

dD
= −

dli

dD
li
σ

.

We deduce that

li
σ =

1
σi

(
zi MRSi

z + xi MRSi
x +

σi

D

)
,

dli

dD
= σiR ·MRSi

x +
1− σi

D2 and

dli

dR
=

1
R
(zi MRSi

z + xi MRSi
x).

Under Assumption 1, each of these expressions is non-negative, and therefore we deduce that
D′(R) ≤ 0, and is exactly zero only when zi MRSi

z + xi MRSi
x = 0 for all contestants, as in the

case of linear preferences. This confirms that, whilst aggregate effort might be increasing in the
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size of the prize in our general case, it does not increase at a rate such that D(R) = X (R)/R
also increases. In Tullock contests with linear preferences the dissipation ratio is constant; our
result confirms that under more general preferences the same result as in contests with convex
costs—that the dissipation ratio decreases in the size of the prize—also holds. Our findings thus
complement the literature that attempts to explain the existence of under dissipation, such as
justified by loss aversion (Cornes and Hartley, 2003) and behavioral considerations (Baharad
and Nitzan, 2008).

6 Extensions

In this section we pursue two generalizations of our model of contests with general preferences:
the first allows for a more general contest success function; and the second allows for the prize
to be endogenously determined by contestants’ efforts.

6.1 General contest success function

So far, we have considered a simple Tullock contest in which the contest success function has
taken the form φ(xi, x−i) = xi

xi+X−i . Of course, Tullock contests can be more general than this,

typically considering an additional parameter r, and specifying φ(xi, x−i) = (xi)r

(xi)r+∑j 6=i∈N(xj)r . To

capture this, we will follow Cornes and Hartley (2005) and specify that

φ(xi, x−i) =
Pi(xi)

∑i∈N Pi(xi)
, (10)

where we need to assume that Pi ′ > 0 and Pi ′′ ≤ 0.4

We now need to re-consider our analysis with this more general contest success function.
According to (1), zi = Pi(xi)

∑i Pi(xi)
R. So that the share function approach can be utilized, let us

change the variable of consideration and rather than focus on effort, xi, let us think of contes-
tants choosing what Cornes and Hartley (2005) call the contestant’s “input” yi = Pi(xi), from
which effort can be derived since xi = Pi−1(yi) and the contest ‘technology’ is assumed to be
monotonic so the inverse of Pi(·) is a singleton. With this change of variables, contestants can
be seen as choosing their input to maximize their payoff ui(zi, Pi−1(yi)), where their share of

the prize is zi = yi

Y R (Y being the aggregate input ∑j∈N yj).
The first-order condition of this optimization problem that characterizes a contestant’s input

best response is
Y−i

(yi + Y−i)2 Rui
z + Pi−1ui

x ≤ 0

with equality if yi > 0. Replacing Y−i with Y − yi and letting σ̂i = yi/Y, this can be used to
define the contestant’s share function as ŝi(Y; R) = max{0, σ̂i} where, making the arguments
of functions explicit, σ̂i is the solution to

l̂i(σ̂i, Y; R) ≡ MRSi(σ̂iR, Pi−1(σ̂iY))Pi−1(σ̂iY)− (1− σ̂i)
R
Y

= 0. (11)

As with our previous analysis, we can use share functions to shed light on the properties of
Nash equilibrium in the contest, since there is a Nash equilibrium with aggregate input Y∗ if
and only if ∑j∈N ŝj(Y∗; R) = 1, in which contestant i’s input is yi∗ = Y∗ ŝi(Y∗; R) and therefore
their contest effort is xi∗ = Pi−1(Y∗ ŝi(Y∗; R)).

4This implies that our CSF tracks the general function axiomatized by Skaperdas (1996) up to the difference that
we impose decreasing marginal returns.
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As with our simple contest, we can deduce that individual share functions ŝi(Y; R) are
indeed functions that are continuous and strictly decreasing on Y > 0. To deduce this, note
that

l̂i
σ̂ = (R ·MRSi

z + YPi−1′MRSi
x)Pi−1 + MRSiYPi−1′ +

R
Y

> 0

and
l̂i
Y = Pi−1σ̂iPi−1′MRSi

x + MRSiσ̂iPi−1′ + (1− σ̂i)
R
Y2 > 0,

so the analog of Proposition 1 follows for this case.
Then let us define the aggregate equilibrium input as a function of the contested prize as

Y(R) which will satisfy
∑
j∈N

ŝj(Y(R); R) = 1.

Then we turn to consider how the aggregate input varies with the size of the contested prize,
noting (with our usual apology for using implicit differentiation at parts of the domain where
we should not) that

Y ′(R) = −∑j∈N ŝj
R

∑j∈N sj
Y

,

and therefore

sgn{Y ′(R)} = sgn

{
∑
j∈N

ŝj
R

}
.

For each contestant i, ŝi
R = −l̂i

R/l̂i
σ̂ and therefore sgn{ŝi

R} = − sgn{l̂i
R}. Now,

l̂i
R = σ̂i MRSi

zPi−1 − (1− σ̂i)
1
Y

=
1
R

(
σ̂iR ·MRSi

zPi−1 − (1− σ̂i)
R
Y

)
=

Pi−1

R
(zi MRSi

z −MRSi),

where the last line exploits the first-order condition. As such,

sgn{ŝi
R} = sgn{MRSi − zi MRSi

z},

and therefore we can conclude that

Y ′(R) Q 0⇐ MRSi − zi MRSi
z Q 0 , ∀i ∈ N

which is implied by the ratio MRSi/zi being increasing (constant, decreasing) in zi.
As such, we conclude that the aggregate input into the contest can vary with the size of the

prize in much the same way as the aggregate effort in a simple Tullock contest. However, we
wish to make conclusions about the aggregate effort in this more general case, which cannot
be directly deduced from the aggregate input. Since X = ∑j∈N xj where xi = Pi−1(yi), to be
sure of the change in aggregate effort, we need to make sure each individual contestant’s effort
changes in the same direction, which requires each contestant’s input to change in the same
direction. Of course, if we assume homogeneous contestants this is obvious, but we do not do
so.

As we will show, however, if we assume the condition on the ratio of the marginal rate of
substitution to prize share holds for all contestants we can make conclusions about the change
in aggregate effort. So, suppose that MRSi− zi MRSi

z < 0 for all i ∈ N, then we have Y ′(R) < 0,
our counter-intuitive case.
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Now consider how individual inputs change. Writing ŷi(Y(R); R) = Y(R)ŝi(Y(R); R), we
find that

dŷi(Y(R); R)
dR

= ŝiY ′ + Y(ŝi
YY ′ + ŝi

R)

= Y ′(ŝi + Y ŝi
Y) + Y ŝi

R.

Since MRSi − zi MRSi
z < 0 and Y ′ < 0, we will have dŷi(Y(R);R)

dR Q 0 if ŝi +Y ŝi
Y > 0. Since ŝi

Y < 0
this is not obvious, but if we decompose this expression, we can indeed conclude that it is true.
For,

σ̂i + Yŝi
Y = σ̂i −

Yσ̂iPi−1′(pi−1MRSi
x + MRSi)(1− σ̂i)R

Y

Pi−1(R ·MRSi
z + YPi−1′MRSi

x) + MRSiYPi−1′ + R
Y

=
σ̂iRMRSi

zPi−1 + σ̂i R
Y − (1− σ̂i)R

Y

Pi−1(R ·MRSi
z + YPi−1′MRSi

x) + MRSiYPi−1′ + R
Y

by putting terms over a common denominator and cancelling. Now, the first-order condition
can be exploited to reduce the numerator of this expression to

Pi−1′(zi MRSi
z −MRSi) + σ̂i R

Y

which is positive when MRSi − zi MRSi
z < 0. Combined with a positive denominator, this

allows us to conclude that when MRSi − zi MRSi
z < 0 for all i ∈ N, not only is Y ′(R) < 0 but

dŷi(Y(R);R)
dR < 0 for all i ∈ N which implies that each individual contestant’s effort will be lower,

and therefore aggregate effort will reduce.

6.2 Endogenous rent

We now turn to consider the case where the contested rent is not fixed, but is influenced by
the effort of contestants. So that we can consider different rent-generating technologies and
understand the effect on equilibrium effort from contestants, we define the rent as R = f (X, α)

where α is interpreted as a productivity parameter and is such that fα > 0. Whilst we allow
for the rent to be increasing or decreasing in aggregate effort5, we do impose the following
assumption.

Assumption 2. f (X, α) is a continuous function that is differentiable as many times as required and
fXX ≤ 0. We also impose the technical assumptions limX→∞ fX ≯ 0; | fXX| is finite ∀X; and, if fX < 0

then for each contestant for whom MRSi
z > 0, fX > fXX−MRSi

x
MRSi

z
.

According to (1), zi = xi

xi+X−i f (xi + X−i; α) and the first-order condition that will be used to
identify a contestant’s best response is:

ui
z

[
x−i

(xi + X−i)2 f (xi + X−i; α) +
xi

xi + X−i fX(xi + X−i; α)

]
+ ui

x ≤ 0 (12)

with equality if xi > 0.
In the next lemma we demonstrate the concavity of the optimization problem contestants

may be seen as facing.

Lemma 4. Suppose Assumptions 1 and 2 are satisfied. Then the first-order condition is both necessary
and sufficient for identifying a contestant’s best response.

5Not restricting fX to be positive enables us to capture with our model the case of Cournot competition where
f = XP(X), which is increasing where demand is inelastic and decreasing where it is elastic.
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Proof. Omitting the arguments of functions and using the simplifying notation X = X−i + xi

and σi = xi/X, the second derivative of the objective function is

ui
zz

[
(1− σi) f

X
+ σi fX

]2

+ ui
xx + 2ui

zx

[
(1− σi)

f
X

+ σi fX

]
+ ui

z

[
−2(1− σi)

X

(
f
X
− fX

)
+ σi fXX

]
Since function f (X; α) is concave, f /X > fX, ∀X > 0, thus implying that the forth term of the
above expression is necessarily negative. It is thus sufficient to show that:

ui
zz

[
(1− σi)

f
X

+ σi fX

]2

+ ui
xx + 2ui

zx

[
(1− σi)

f
X

+ σi fX

]
< 0

Since the first-order condition implies MRSi = (1− σi) f
X + σi fX, the above expression can be

written as:
ui

zz

[
MRSi

]2
+ ui

xx + 2ui
zx MRSi < 0

Following the steps of the proof of Lemma 1, we deduce that this inequality is satisfied given
Assumption 1.

Adopting the same approach as in the rest of the paper, contestant i’s share function in this
contest, that we write s̃i(X; α), is given by s̃i(X; α) = max{0, σi}, where σi is the solution to:

l̃i(σi, X; α) ≡ MRSi(σi f (X; α), σiX)− (1− σi)
f (X; α)

X
− σi fX(X; α) = 0. (13)

We seek a Nash equilibrium of the contest that we identify by the aggregate effort X∗ such that
∑j∈N s̃j(X∗; α) = 1.

Following the reasoning of our previous analysis, we can establish the analog of Proposition
1 that elucidated the properties of share functions for the standard case.

Proposition 4. Suppose Assumptions 1 and 2 are satisfied. Then for each contestant i ∈ N,

1. s̃i(X; α) is a function defined for all X > 0 and α;

2. s̃i(X; α) → 1 as X → 0, and either s̃i(X; α) = 0 for all X ≥ X̄i(α) where X̄i(α) is such that
MRSi(0, 0) = f (X̄i(α); α)/X̄i(α) if MRSi(0, 0) > 0, or if MRSi(0, 0) = 0, s̃i(X; α) → 0 as
X → ∞.

3. s̃i(X; α) is strictly decreasing in X for 0 < X < X̄i(α).

Proof. 1. Note that:

l̃i
σ = f (X; α)MRSi

z + XMRSi
x +

f (X; α)

X
− fX(X; α) > 0

where the sign follows from the concavity of f (X; α) which implies f (X; α)/X > fX(X; α).
This in turn implies that there is at most one value of σi where l̃i(σi, X; α) = 0, so s̃i(X; α) is a
function.

2. When σi = 0, l̃i = MRSi(0, 0)− f (X;α)
X . Since l̃i

σ > 0, if l̃i(0, X; α) ≥ 0, then l̃i(σi, X; α) > 0
for all σi > 0, and therefore s̃i(X; α) = 0. As such, if MRSi(0, 0) > 0, defining X̄i(α) as in
the proposition allows us to define s̃i(X; α) = 0 for all X ≥ X̄i(α). If MRS(0, 0) = 0, then
l̃i(0, X; α) = − f (X;α)

X . As X → ∞, and since limX→∞ fX ≯ 0, f (x; α)/X → 0 and the fact that
l̃i
σ > 0 implies s̃i(X; α)→ 0.

As X → 0, we show that Xl̃i(σi, X; α)→ 0 when σi = 1. Consider the following expression:

Xl̃i(σi, X; α) = X
[

MRSi(σi f (X; α), σiX)− σi f (X; α)

X

]
+ X

[
f (X; α)

X
− σi fX(X; α)

]
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This is composed of two terms. Focusing on the first term, as X → 0, since f (X; α) → 0,
the entire term tends to zero. Looking next at the second term. One candidate for satisfying
Xl̃i(σi, X; α) = 0 is that limX→0{ f /X − σi fX} = 0. Showing this is equivalent to showing the
following:

lim
X→0

f (X;α)
X

σi fX
= lim

X→0

f (X; α)

σiX fX
= 1 (14)

Since the limit of this expression is indeterminate, we apply l’Hospital’s rule to obtain:

lim
X→0

f (X; α)

σiX fX
= lim

X→0

fX

σi [ fX + X fXX]

Since fXX ≤ 0 and is finite, we conclude that:

lim
X→0

f (X; α)

σiX fX
=

1
σi

Thus implying that for equation (14) to be satisfied we require σ = 1. Since l̃i
σ > 0, there exists

at most one value of σi satisfying the equality, thus implying that s̃i → 1.
3. Applying implicit differentiation to (13) we deduce that:

s̃i
x = − l̃i

x

l̃i
σ

= −
σi fX MRSi

z + σMRSi
x − (1− σi)

(
X fX− f

X2

)
− σ fXX

f MRSi
z + XMRSi

x +
f
X − fX

(15)

Since the denominator is positive, to establish the sign of (15) we thus need to determine the
sign of the numerator, showing it is positive. Note first that−(1−σi)

(
X fX− f

X2

)
= 1−σi

X

(
f
X − fX

)
>

0 by concavity of f . Now, since fX is allowed to take negative values, for (15) to be positive it
is sufficient to establish the numerator is positive for the case where σi = 1, i.e. the case where
the highest weight is being allocated to fX. We thus need to ensure that:

fX MRSi
z + MRSi

x − fXX > 0⇒ fX >
fXX −MRSi

x
MRSi

z
,

which is assumed of the rent-generation technology.

We now explore the effect of productivity on individual and aggregate contest effort. In
a contest with endogenous prize determination, the aggregate effort consistent with a Nash
equilibrium is given by X̃ (α) which is defined such that

∑
j∈N

s̃j(X; α) = 1.

Applying implicit differentiation (again with apology) we deduce that the effect of a change
in the way rent is generated on equilibrium aggregate effort is given by

X̃ ′(α) = −∑j∈N s̃j
α

∑j∈N s̃j
X

.

Having already shown that the denominator is negative in the previous proposition, we
deduce that the sign of this expression is equal to the sign of the numerator. The next lemma
establishes the condition determining how individual shares vary with the productivity pa-
rameter:

Lemma 5. Suppose Assumptions 1 and 2 are satisfied. Then

s̃i
α R 0⇔ 1

f

(
fα(zi MRSi

z −MRSi) + σi( fα fX − f fXα)
)
Q 0.
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Proof. Applying implicit differentiation to (13), we obtain:

s̃i
α = − l̃i

α

l̃i
σ

Having already established that l̃i
σ < 0, sgn{s̃i

α} = sgn{l̃i
α}. Now,

l̃i
α = σi fα MRSi

z − (1− σi)
fα

X
− σi fXα

=
zi fα MRSi

z
f

−

[
(1− σi) f

X + σi fX

]
fα

f
+ σi fX fα

f
− σi

fXα f
f

=
1
f

(
fα(zi MRSi

z −MRSi) + σi( fα fX − f fXα)
)

.

This condition is slightly more elaborate than the one identified in the previous settings,
and given that we allow for fX < 0, we obtain that for individual contest effort to decrease
with productivity it is not anymore sufficient for zi MRSi

z > MRSi.
Interestingly, for an entire category of production functions, we obtain that a necessary and

sufficient condition for determining how individual effort varies with productivity is the same
as in our benchmark model. More specifically, for any function admitting an effort-augmenting
productivity such that f (X; α) = αg(X), with g′(X) R 0 and g′′(X) < 0, we obtain

fα fX − f fXα = αgg′ − αgg′ = 0.

More generally, how effort varies with the productivity parameter requires conditions that
combine properties of the rent generation function with conditions on preferences, where our
condition on the direction of change of the ratio of the marginal rate of substitution to the prize
share is of fundamental importance.

7 Conclusions

The purpose of this article is to investigate contests allowing for contestants to have more gen-
eral preferences than have been assumed in existing treatments. We focus on heterogeneous
players competing in share contests and prove the existence and uniqueness of a Nash equi-
librium. Our main aim is to discover the links between the features of contestants’ preferences
and the features of the contest equilibrium.

In the conventional literature—where players have (quasi-)linear preferences—aggregate
contest efforts are increasing in the prize. We find that when preferences are allowed to be
more general than this, and in particular when contestants have diminishing marginal utility
over their prize share, this familiar result may no longer hold. We show a key determinant
within the contest equilibrium is the rate of change of the marginal rate of substitution between
players’ share of the prize and their sunk effort. We not only investigate this relationship in
a simple Tullock contest, but also in the case of more general contest success functions, and
where the prize is endogenously determined.

This encompassing framework now allows the study of contests with much more general
preferences and thus increases the applicability of the contest model.
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