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Abstract

This paper is motivated by the recent interest in the use of Bayesian VARs for
forecasting, even in cases where the number of dependent variables is large. In
such cases, factor methods have been traditionally used but recent work using a
particular prior suggests that Bayesian VAR methods can forecast better. In this
paper, we consider a range of alternative priors which have been used with small
VARs, discuss the issues which arise when they are used with medium and large
VARs and examine their forecast performance using a US macroeconomic data
set containing 168 variables. We find that Bayesian VARs do tend to forecast
better than factor methods and provide an extensive comparison of the strengths
and weaknesses of various approaches. Our empirical results show the importance
of using forecast metrics which use the entire predictive density, instead of using
only point forecasts.
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1 Introduction

Vector autoregressive (VAR) models have a long and successful tradition in the fore-
casting literature (e.g. Doan, Litterman and Sims, 1984 and Litterman, 1986). VARs
are parameter-rich models and shrinkage of various sorts has been found to greatly
improve forecast performance. Bayesian methods have proved popular since the use of
prior information offers a formal way of shrinking forecasts. Almost all of the existing
literature focusses on VARs where the number of dependent variables is small (typically
two or three and rarely more than ten). However, in a recent paper, Banbura, Gian-
none and Reichlin (2010), hereafter BGR, consider larger Bayesian VARs. They work
with what they call a “medium” VAR involving 20 dependent variables and a “large”
VAR with 130 dependent variables. Traditionally, researchers working with so many
macroeconomic variables have used factor methods (e.g. Stock and Watson, 2002,
2006, Forni, Hallin, Lippi and Reichlin, 2003, Koop and Potter, 2004 and Korobilis,
2009). However, BGR finds that medium and large Bayesian VARs can forecast better
than factor methods (at least in their empirical application). Given that VARs have
other advantages (e.g. in that impulse responses are easier to interpret), this suggests
Bayesian VARs could be a useful addition to the macroeconomic forecaster’s toolbox
even in cases where the research is working with dozens or hundreds of variables.

BGR uses a natural conjugate variant of the Minnesota prior popularized by Doan,
Litterman and Sims, 1984 and Litterman, 1986. The BGR prior shrinks all VAR co-
efficients towards zero except for coefficients on own lags of each dependent variable.
The latter are either set to one (for variables which exhibit substantial persistence) or
zero (for variables which do not). Thus, forecasts are shrunk towards a random walk
for some variables and towards white noise for others. The degree of shrinkage is con-
trolled by a single scalar hyperparameter. This is potentially an attractive and simple
way of doing Bayesian shrinkage in large VARs. However, there are alternative ways
of implementing the Minnesota prior which allow for different degrees of shrinkage on
coefficients (e.g. coefficients on own lags of a dependent variable can be shrunk to a
lesser extent than coefficients on lags of other dependent variables). Such methods are
more restrictive in their treatment of the error covariance matrix than BGR’s imple-
mentation of the Minnesota prior. Nevertheless it is possible that allowing for different
degrees of shrinkage provides benefits which outweigh the costs of such restrictiveness.
A first purpose of this paper is to investigate this issue.

Furthermore, there are alternative ways of doing shrinkage in Bayesian VARs. One
attractive approach is the stochastic search variable selection (SSVS) prior of George,
Sun and Ni (2008). A common property of VARs is that they have a great number of
parameters, but many of these are unimportant and, thus, shrinkage towards zero (or a
constant) is desirable. The SSVS prior allows this to be done in an automatic fashion,
with minimal subjective prior information required by the researcher. One purpose of
this paper is to investigate how SSVS methods (previously used only with small VARS)
work with larger VARs. However, as we shall see, conventional SSVS methods for VARs
(which use a non-conjugate VARs) run past current computational limits when working
with large VARs. Thus, we only use conventional SSVS methods for medium VARs
with up to 20 dependent variables. In order to work with SSVS in larger VARs, we
also consider natural conjugate methods for SSVS is VARs. We show how these are
computationally feasible with larger VARs and present empirical results using up to 40



dependent variables.

A third purpose of this paper is to develop methods for combining the Minnesota
prior with the SSVS prior. After all, each of them has attractive properties and so it is
possible that a combination of the two will improve forecast performance.

Finally, the Bayesian methods used in this paper produce an entire predictive dis-
tribution and not merely a point forecast. The previous literature (e.g. BGR and Mar-
cellino, Stock and Watson, 2006) typically focusses on point forecasts, using measures
of forecast performance such as mean squared forecast error (MSFE). In this paper,
the list of forecast metrics is expanded to include a measure based on the predictive
likelihood which involve the entire predictive distribution.

The data set used in this paper is an updated version of that used in Stock and
Watson (2008) and is described in the Data Appendix.! The complete data set include
168 variables and runs from 1959Q1 through 2008Q4. Our forecasting exercise finds
that Bayesian VAR methods do out-perform factor methods. However, we find no single
approach to Bayesian VAR forecasting consistently forecasts best. Roughly speaking,
we find that SSVS-based methods work best in cases where relatively low dimensional
VARs are adequate, but approaches based on the Minnesota prior work best when
medium or large VARs are needed. But there are some important exceptions to this
pattern. Furthermore, traditional, simpler implementations of Minnesota priors often
out-perform BGR’s version of the Minnesota prior. Our results highlight the different
ways in which different priors achieve the shrinkage and/or parsimony that is important
in achieving good forecast performance with large macroeconomic data sets.

2 The Econometrics of Bayesian VARs

We write the VAR in matrix form as:

Y =XA+e, (1)

where Y is a T' x n matrix with t'* row given by 1, where y; is a vector of n dependent

variables, X is a T' x K matrix. In our empirical work K = (1 + pn) since each row
of contains p lags of each dependent variable and an intercept. That is, the t'* row of
X is given by the vector (1,y£_1, e ,yg_p). A is the matrix of coefficients and ¢ is a
T x n matrix with t** row given by &}. &; are independent N (0, %) errors for t = 1,.., 7.
Define a = vec (A) which is a vector of nK elements. The dimensionality of « plays a
key role in the following discussion. Note that a large VAR with quarterly data might
have n = 100 and p = 4 in which case « contains over 40,000 elements. With monthly
data it would have over 100,000 elements. For a medium VAR, a might have about
1,500 elements with quarterly data. X, too, will be parameter rich, containing w
elements. A typical macroeconomic quarterly data set might have approximately two
hundred observations and, hence, the number of coefficients will far exceed the num-
ber of observations. Bayesian methods combine likelihood function with prior. It is
well-known (e.g. Poirier, 1998) that, even if some parameters are not identified in the
likelihood function, under weak conditions the use of a proper prior will lead to a valid

posterior density and, thus, Bayesian inference is possible. However, prior information

T would like to thank Mark Watson for providing this data.



becomes increasingly important as the number of parameters increases relative to sam-
ple size. A theme of this paper is to investigate the role of prior information as it relates
to how shrinkage is done.

2.1 Natural conjugate priors for VARs

For reasons to be made clear in this sub-section, BGR work with a natural conjugate
prior,? despite the fact that there is a well-known drawback with the use of such priors
with VARs (see, e.g., Kadiyala and Karlsson, 1997). The natural conjugate prior has
the form:

S~ N(a,2eV) (2)

and

S W (5, w) (3)

where o,V v and S are prior hyperparameters and W (ﬁ -1 y) denotes the Wishart
distribution with scale S™' and degrees of freedom v. For future reference, let A be a
K x n matrix defined through the relationship a = vec (A).

Note that the traditional Minnesota prior is not the same as this natural conjugate
prior since the former does not treat 2 as a matrix of unknown parameters, but simply
replaces Y with an estimate, . In particular, the traditional Minnesota prior assumes
¥ to be a diagonal matrix with diagonal elements s? where s? is the standard OLS
estimate of the error variance in an AR(p) model for the i’ variable. Sensibly wishing
to allow for correlations between the errors, BGR treats ¥ as an unknown positive
definite matrix with S chosen in a manner inspired by the Minnesota prior.

Natural conjugate priors can be interpreted as arising from a fictitious prior data
set. To be precise, if Y and X are (K 4+ n) x n and (K + n) x K, respectively, then we
can write the prior hyperparameters as v,

A=(X'X)' XY,

S=(Y - XA) (Y - XA)

and

V=Xx)"
If we stack the prior and actual data as Y = (Y”,Y’)" and X = (X', X’)’, it can be
shown that the posterior is:
a|S,Y ~N(@,2@V) (4)

and

zﬂwww(sﬂﬂ (5)

where

2Natural conjugate priors are those where the prior, likelihood and posterior come from the same
family of distributions.



i (7’7)‘17’?,
5= (V- XA) (¥ - XA)

v="T+v.

The general form for the prior “sample” is

ViA Vo
Y= = |, x=( " , 7
_ < EE ) - ( OanK ) ( )

!/
where notation such as S 2 implies a matrix such that <§ %) S 3 = S and 0,4 is an

a X b matrix of zeros.

BGR show how a prior which coincides with the traditional Minnesota prior (except
that X is treated as unknown and a single scalar A is used for shrinkage instead of the
two scalars used for shrinkage in the traditional implementation) arises if the fictitious
sample is set as:

diag(§15>1\7-.,§n8n) Jp ® w Onp><1
X = 0(np—n+1)><n ) X = lenp v ’ (8)
diag (s1, .., Sn) Onxnp Onx1

where J, = diag (1,2, ..,p) , diag (.) denotes a diagonal matrix. §, = 1 if the 7' variable
is believed to exhibit substantial persistence (i.e. it ensures shrinkage towards a random
walk) and §, = 0 if the i variable is believed to exhibit little persistence (i.e. it ensures
shrinkage towards white noise). The middle row of X determines the prior for the
intercept. By choosing v to be very small, a relatively noninformative prior for the
intercept is obtained. The form of Y implies the prior mean for the intercept is zero.

Posterior inference about the VAR coefficients can be carried out using the fact
that the marginal posterior (i.e. after integrating out X) for « is a multivariate t-
distribution. The mean of this t-distribution is @, its degrees of freedom parameter is
v and its covariance matrix is:

1 .
Y)=——5S®V.
var (a]Y) g ®
The predictive distribution for yy,; in this model has an analytical form and, in

particular, is multivariate-t with 7 degrees of freedom. Point forecasts can be based on
the predictive mean:

E(yralY) = (zrpA) .

The predictive covariance matrix is



1 — _
var (yr41Y) = — [1+2rnaVal,, ] S.

When forecasting more than one period ahead, an analytical formula for the predic-
tive density does not exist. This means that either the direct forecasting method must
be used (which turns the problem into one which only involves one step ahead forecast-
ing) or predictive simulation is required. In this paper, we use the direct method.

The use of the natural conjugate prior leads to one large benefit: analytical results are
available for Bayesian inference and forecasting, so no posterior simulation is required.
For large Bayesian VARs a second benefit exists: the ¥ ® V' form for the conditional
posterior covariance matrix of « in (4) enormously simplifies computation. Note that
with this prior, calculating V involves inverting a K x K matrix (see 6) which, even for
a large VAR (when K is a few hundreds or, at most, a few thousand) is feasible. To
preview one of the crucial econometric issues in the present paper, when working with
non-conjugate priors such as the conventional implementation of SSVS, calculating the
posterior covariance matrix involves inverting an nK x nK matrix (e.g. with quarterly
data it would involve inverting something like a 40,000 x 40, 000 matrix). For medium
VARSs (e.g. up to n = 20), Bayesian computation with non-conjugate priors is feasible
(but very slow), with large VARSs it is computationally infeasible. It is this consideration
which leads us to investigate the conditionally conjugate implementation of SSVS for
VARs discussed below.

However, the natural conjugate prior has a restrictive property which means it has
been rarely used in practice. This arises from the fact that the prior covariance of the
coefficients in equation i is 0,V where o; is the (i)™ element of 3 (see 2). This implies
that the prior variance of the coefficients in any two equations must be proportional
to one another, a possibly restrictive feature. The traditional Minnesota prior (which
treats X as fixed) has the property that coefficients on own lags (i.e. in equation 7 these
are lags of the i'" dependent variable) have a larger prior variance (i.e. are shrunk less)
than coefficients on other lags (i.e. lags of the dependent variables in other equations).
This feature is not possible using the natural conjugate prior and, accordingly, BGR
applies the same degree of shrinkage to coefficients on own and other lags. In an ideal
world, one may wish to relax such an assumption and this is something we investigate
below. But given computational limitations and the inevitable compromises and trade-
offs of empirical work in high-dimensional models, it may be a sensible one to make.

However, it is worth investigating whether having two prior hyperparameters con-
trolling shrinkage (A; and A) as in the original Minnesota prior yields forecasting
benefits. The cost of this is that we cannot have ¥ being a general positive definite
matrix. We do not present details of posterior inference and forecasting with the tra-
ditional Minnesota prior since they are available in many places (see, e.g., Kadiyala
and Karlsson, 1997). However, our empirical section of this paper includes results for
the original Minnesota prior (which assumes 3 to be diagonal and replaces the diago-
nal elements by OLS estimates based on n individual AR(p) regressions as described
above). We also present results for a modification of this, where the upper-left hand
block of 3 (corresponding to a reduced set of important variables which are the ones
being forecast) is not assumed to be diagonal. Instead it is replaced by the posterior
mean based on a VAR using this reduced set of important variables. The remainder of
3] is diagonal as in the original Minnesota prior. Our reduced set of important variables



are the ones labelled “Three Main Variables used in all VARs” in the Data Appendix.
This approach allows for correlation between the errors in the most important equa-
tions in the VAR. This may represent a good compromise between the two extremes
of allowing no correlation between any errors (as in the original Minnesota prior) and
the other extreme of allowing for correlation between all of the errors (as in BGR) and
running the risks associated with over-parameterization.

2.2 The Non-conjugate SSVS Prior

The variant of the Minnesota prior used in BGR has many advantages (e.g. the fact
that analytical results exist for posterior and predictive density). However, it does
embody some quite extreme prior assumptions. For instance, the huge [n x (1 4 pn)] x
[n x (14 pn)] prior covariance matrix for v has a prior which is parameterized extremely
tightly in terms of a single scalar A with most elements simply being set to zero. It is
also a data-based prior with s? being chosen based on preliminary estimation of AR(p)
models for each variable. Furthermore, the prior will take the same form at each point
in time in a recursive forecasting exercise and so coefficients will be shrunk in the same
way at all points in time. This may be inappropriate if the set of relevant predictors for
a dependent variable changes over time, or if the persistence in a dependent variable
changes over time. The SSVS prior is an alternative method of achieving shrinkage in
VARs, but it does so in a different manner and without so many restrictive assumptions.
And the SSVS prior can adapt by including/excluding different explanatory variables
as time goes by in a recursive or rolling forecasting exercise.

To explain the main aspect of SSVS, let a; denote the j* element of o. Instead
of simply using a prior such as the Minnesota prior, SSVS specifies a hierarchical prior
(i.e. a prior expressed in terms of parameters which in turn have a prior of their own)
which is a mixture of two Normal distributions:

a7y ~ (1 =) N (e, k) + 15N (ay51;) 9)
where v, is a dummy variable. If v, equals one then «; is drawn from the second
Normal and if it equals zero then «; is drawn from the first Normal. The prior is
hierarchical since v; is treated as an unknown parameter which is estimated in a data-
based fashion. The SSVS aspect of this prior arises by choosing the first prior variance,
/1(2)]-, to be “small” (so that the coefficient is constrained to be virtually equal to o; and
the corresponding explanatory variable is effectively excluded from the model if a; = 0)
and the second prior variance, /@%j, to be “large” (implying a relatively noninformative
prior for the corresponding coefficient and the corresponding explanatory variable is
included). Traditional implementations of SSVS set a; = 0 for j = 1,..,n x (1 + pn)
but it is also possible to set appropriate a; = 1 if the researcher wishes to shrink towards
a random walk. In Section 3 we describe alternative procedures for choosing mgj and
n%j one of which leads to a prior which is a combination of a conventional SSVS prior
with the Minnesota prior.

The SSVS approach can be thought of as automatically selecting a restricted VAR
since it can, in a data-based fashion, set v; = 0 and (to all intents and purposes) delete
the corresponding lagged dependent variable form the model. Alternatively, SSVS can

be thought of as a way of doing shrinkage since VAR coefficients can be shrunk to zero.



But, unlike the Minnesota prior, it chooses which coefficients to shrink to zero in a
data-based fashion.

SSVS can be used to select a single restricted model (e.g. the researcher can select a
restricted VAR which contains only those lagged dependent variables whose coefficients
have Pr (v; = 1ly) > a for some choice of a such as a = 0.5). Alternatively, if the
Markov Chain Monte Carlo (MCMC) algorithm described in the Technical Appendix is
simply run and posterior results for the VAR coefficients calculated using the resulting
MCMC output, the result will be Bayesian model averaging (BMA). The latter strategy
is adopted in our empirical section.

Complete details of the non-conjugate implementation of SSVS are provided in
Section 3 and the Technical Appendix. However, to bring out some basic ideas note
that the non-conjugate SSVS prior for o can be written as

aly ~ N(a, D), (10)

where v = (74, ..,7x,) and D is a diagonal matrix with (j, j)th element given by d;
where

2 .
D Y if v, =0
d; { ki if oy, =17 (11)

For 7, the SSVS prior posits that each element has a Bernoulli form (independent of
the other elements of ) and, hence, for j =1, .., K, we have

Pr(y;=1) =g,
Pr(y;=0)=1-gq, "

We set g, = 0.5 for all j. This is a natural default choice, implying each coefficient is a

(12)

priori equally likely to be included as excluded.

Even if we were to assume a Wishart prior for ¥~! (which is not done by George, Sun
and Ni, 2009), this SSVS prior is not natural conjugate (conditional on 7). Analytical
results (conditional on ) do not exist for this model. Thus, MCMC methods must be
used.

As a digression, note that George, Sun and Ni (2008) also do SSVS on the off-
diagonal elements of ¥. Given ¥ is an n X n matrix, allowing for SSVS shrinkage in
>} with VARs is potentially of great use. In our empirical results, when we use a non-
conjugate SSVS prior, we do include SSVS shrinkage for . However, our conjugate
SSVS prior (see below) requires X! to have a Wishart distribution and, thus, does not
allow for SSVS shrinkage for X.

Papers such as George, Sun and Ni (2008), Korobilis (2009) and Jochmann, Koop
and Strachan (2009) have found SSVS to be an excellent way of ensuring shrinkage
and improving forecasting performance in small VARs. However, the conventional
implementation of SSVS faces two computational problems that makes in infeasible in
large VARs and very computationally demanding in medium VARs. First, it involves
an MCMC algorithm which, in the context of a recursive forecasting exercise, must be
repeated many times. Second, the MCMC algorithm requires the calculation of the
conditional posterior covariance matrix for «. This is:

var (alY, 3,7) = [£7' @ (X'X) + D]~

8



and, thus, the inversion of a Kn x Kn matrix must be done for each MCMC draw. For
medium VARs this is slow but feasible, for large VARs it is infeasible. We must look
to some simplifications to obtain an SSVS-based method which is suitable for larger
VARs and it is to this we now turn.

2.3 The Conjugate SSVS Prior

Previously, we have discussed the advantages (i.e. analytical results and easy computa-
tion) and disadvantages (i.e. prior variances for coefficients on a particular explanatory
variables in all equations are proportional to one another) of the natural conjugate
prior. If we use a conjugate SSVS prior we have similar advantages and disadvantages.
In this case, the disadvantage manifests itself in the fact that SSVS will include or ex-
clude each explanatory variable from all equations. Unlike with non-conjugate SSV'S,
it is not possible for an explanatory variable to be excluded from some equations but
not others. Furthermore, the nature of the conjugate prior means that we cannot do
SSVS on X.

Conjugate prior SSVS methods for the multivariate Normal regression model are
developed in Brown, Vannucci and Fearn (1998) and can be adapted for the VAR. Let
~ be a vector of dummy variables defined in a similar manner as v, except 7 is a K x 1
vector (unlike v which is a Kn x 1 vector). The natural conjugate prior given in (2)
now becomes conditionally conjugate (i.e. it is conjugate conditional on 7):

Oz’E,WNN(Q,E@DV) (13)

where D, is a diagonal matrix with (j, )" element given by d; where

2 e ox

dj—{ "0i Ti =0 (14)
ky; by, = 1

The prior for ¥! remains as given in (3). In our empirical work, we use the same

values for a, v and S as in our implementation of the BGR’s Minnesota prior (see 8).

Thus, our prior can be expressed through a fictitious prior sample of:

1 1
X = D’Y A ) X = D’y 5 (15)
diag (s1, .-, Sn) 0px i

where A is a matrix of zeros except for the upper left hand block which is diag (04, .., 9,,)-

Bayesian inference using the conditionally conjugate SSVS prior is not as simple
as approaches using Minnesota priors due to the addition of 7. Conditional on 7, the
formulae for the posterior for the natural conjugate prior given in Section 2.1 still hold.
The conjugacy means that p (7]Y) can easily be evaluated (see the Technical Appendix
for the precise formula). However, there are 2X possible configurations that 7 can take.
Unless K is small (which it will not be in our case), exhaustive evaluation of all these
possibilities is computationally infeasible. Accordingly, we adopt a posterior simulation
strategy based on one suggested in Brown, Vannucci and Fearn (1998). Complete details

are provided in the Technical Appendix.



3 Forecasting

3.1 Data Issues

The list of 168 variables used in this study, running from 1959Q1 through 2008Q4, is
given in the Data Appendix. Following Stock and Watson (2008) and many others, the
variables are all transformed to stationarity (usually by differencing or log differencing)
as described in the Data Appendix. All data are then standardized by subtracting off
the mean and dividing by the standard deviation. Note that this means that our prior
means for all coefficients in all approaches are set to zero (instead of setting some prior
means to one so as to shrink towards a random walk as would be appropriate if we were
working with untransformed variables).

The variables are divided into four groups. The variables in BGR’s data set are not
identical to those in ours, so we do not match their setup exactly, but the following
choices are similar to and motivated by their grouping of variables. The first group
contains the three main variables we are interested in forecasting. These are a measure
of economic activity (GDP, real GDP), prices (CPI, the consumer price index) and
an interest rate (FFR, the Fed funds rate).> The second group contains an additional
17 variables which, added to the three main variables leads to the n = 20 variables
used by BGR in their medium VAR. The choice of these variables is partly motivated
the monetary model of Christiano, Eichenbaum and Evans (1999) and partly includes
variables found to be useful for forecasting in other studies. The third group contains
an additional 20 variables (combined with the other groups, this leads to a larger VAR
with n = 40 variables). These 20 variables have sometimes been found to be useful in
forecasting exercises. This group contains most of the remaining aggregate variables in
the data set. The remainder of the 168 variables are in a final group. These are mostly
the components making up the aggregate variables already included in the other groups.

We thus have small VARs (with n = 3), medium VARs (n = 20), medium-large
VARs (n = 40) and large VARs (n = 168). Note that BGR found most of the gains in
forecast performance through the use of more variables to have been achieved by using
medium VARs, with large VARs forecasting approximately as well as medium VARs.
All approaches use four lags of the dependent variables (p = 4).

3.2 Forecast Metrics

Our rolling and recursive forecast exercises provide us with the predictive density for
Yr+p using data available through time 7 for h = 1 and 4. For the rolling forecasts,
we use a window of ten years. The predictive density is evaluated for 7 = 7, .., T — h
where 7 is 1969Q4. We use notation where y,.,, is a random variable we are wishing
to forecast (e.g. GDP, CPI or FFR), 2., is the observed value of the random variable
Yr+n and p (y-4n|Data,) is the predictive density based on information available at time
T.
The most common measure of forecast performance is MSFE where:

3The transformations used on the data means we are forecasting the difference of log GDP, the
second differerence of log CPI and the difference of FFR.

10



ZZ:_ThO (24 — E (Yr4n|Data,)] ’

T—h-—1 o+ 1 '
However, this only uses the point forecasts and ignores the rest of the predictive dis-
tribution. For this reason, we also use the predictive likelihood to evaluate forecast
performance. Note that a great advantage of predictive likelihoods is that they evalu-
ate the forecasting performance of the entire predictive density. Predictive likelihoods
are motivated and described in many places such as Geweke and Amisano (2009). The
predictive likelihood is the predictive density for y,., evaluated at the actual outcome
Y7, ;- We use the sum of log predictive likelihoods for forecast evaluation:

MSFE =

T—h
Z 10g [p (Yrin = y2op|Data,)] .

T=T0

3.3 Forecasting Approaches

To the three general categories of forecasting methods for Bayesian VARs described
above (i.e. Minnesota prior, Non-conjugate SSVS and Conjugate SSVS) we add the
category of traditional factor models as a benchmark for comparison. Within each
category we have various ways implementations as described in this sub-section.

3.3.1 DMinnesota Priors

We consider three variants of the Minnesota prior: the first is as in BGR (labelled
“Minn. Prior as in BGR” in the tables below). The second is the traditional Minnesota
prior (labelled “Minn. Prior ¥ diagonal”). The third is the traditional Minnesota prior
except that the upper left 3 x 3 block of 3 is not assumed to be diagonal (labelled
“Minn. Prior ¥ not diagonal”). Details of how these are implemented were given in
Section 2.1

The Minnesota prior of BGR requires the selection of a single shrinkage parameter,
A. We choose this in the same manner as BGR. To be precise, an initial set of data is
set aside as a training sample (we use all data through 1969Q4 for this purpose). Using
this entire training sample we estimate the VARs and then use them for forecasting
within this training sample. In medium, medium-large and large VARs, \ is chosen so
as to yield a fit in this training sample as close as possible to the small VAR for the
three main variables being forecast. For the small VAR no shrinkage is done (A — o0).

Fit is defined as:

1§3]WSFE(L&n)

Fity, = - ,
" =3 2 NSFE(i,0,3)

1=1

where M SFFE (i, A\,n) is the MSFE of variable 7 using shrinkage parameter A in a VAR
with n variables. Note that M SFF (i,0,3) is simply the MSFE produced by the prior
in the small VAR which is used to normalize the measure. For the VAR with n variables
we choose A to minimize:

| Fity, — Fitos] .

11



Grid search methods are used to solve this minimization problem.

For the other two variants of the Minnesota prior we adopt a similar strategy of
matching fit with a small VAR in a training sampler. However, here we have two
shrinkage parameters (A; which controls shrinkage of coefficients on own lags and A,
which controls shrinkage of coefficients on other lags) and do a two-dimensional grid
search to minimize the difference in fit between the VAR with n variables and the small
VAR with no shrinkage.

3.3.2 The SSVS Priors

We implement the non-conjugate SSVS prior approach in two ways. First, we use
the “default semi-automatic approach” to prior elicitation suggested by George, Sun
and Ni (2008). This involves setting ko; = cov/var(a;) and ky1; = ¢14/var(a;) where
var(a; ) is an estimate of the variance of the coefficient in an unrestricted VAR. In
our case, var(a;) is the posterior variance of «; obtained from the corresponding VAR
using BGR’s prior. The pre-selected constants ¢y and ¢; must have ¢y < ¢; and we set
co = 0.1 and ¢; = 10. Note that this means the semi-automatic prior is a data-based
prior. This is labelled “SSVS Non-conj. semi-automatic” in the tables below.

An alternative would be to use the approach just described but choose var(«;) in
a manner which did not involve the data. A natural choice suggests itself: set var(a;)
to be the prior variance from BGR’s Minnesota prior. We do this, setting ¢y = 0.1 and
c1 = 1. The results is a prior which has the attractive property that it combines the
Minnesota prior with the SSVS prior. That is, if v; = 1 for j = 1, .., K, we obtain a
prior which is identical to the one used by BGR. But if 7; = 0 for some j, then this
prior allows for additional shrinkage beyond that used in the Minnesota prior. And it
decides in a data-based fashion whether this extra shrinkage is warranted or not. This
is labelled “SSVS Non-conj. plus Minn. Prior” in the tables below.

For the conjugate SSVS prior we use the same two approaches: one a semi-default
automatic approach and one which combines the SSVS prior with the Minnesota prior.
All details are as above with one exception. Remember that the conjugate SSVS
prior either includes or excludes each variable in every equation (rather than includ-
ing/excluding individual coefficients like the non-conjugate SSVS prior). Hence, we
set the var(a;) term to be the maximum value for this variance which occurs in any
equation. Results for these priors are labelled “SSVS Conjugate semi-automatic” and
“SSVS Conjugate plus Minn. Prior” in the tables below.

For the reasons discussed in Section 2.2, it is computationally infeasible to use the
non-conjugate SSVS priors with large or even medium-large VARs and, accordingly, we
only present results for VARs with n = 3 and 20. With the conjugate SSVS priors, we
present results for VARs with n = 3, 20 and 40, but find n = 168 to be computationally
infeasible and do not present results for the latter case.

3.3.3 Factor Methods

As a benchmark to compare our Bayesian VAR approaches, we use factor methods
implemented in a standard way. To the small tri-variate VAR we add lags of factors,
where the latter are constructed using principal components based on the remaining
165 variables. We include three factors and implement variants where we include one
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and four lags of these factors, respectively. These are labelled “Factor Model p = 17
and “Factor Model p = 4”7, respectively, in the tables below.

3.4 Results

Tables 1 through 12 present the results for all our forecasting exercises. The 12 tables
arise from our forecasting three variables at two forecasting horizons using recursive
and rolling methods. Table 13 provides a summary, listing the single approach which
performs best for each of these 12 cases. The upper half of Table 13 uses MSFEs to
decide what is “best” while the lower half uses sums of log predictive likelihoods.

There is no one single strong story arising from our empirical results saying, e.g.,
that one single forecasting method predominates. Our different approaches balance the
tension between including more information and ensuring more/different shrinkage in
different ways. We cannot say theoretically that one way is better than another, what
works will is an empirical matter. In practice we find some approaches doing well in
some cases, but not necessarily in others. Nevertheless, a few interesting stories emerge.

Note first that factor methods never lead to the best forecast performance. In all
cases, most of our ways of implementing VARs lead to better (and often much better)
forecast performance. This confirms the findings made by BGR using a different data
set. At a minimum, we have established that working with high-dimensional Bayesian
VARs is an alternative worth considering when working with large panels of data.

The results indicate, though, that there is no single approach to VAR forecasting
that is predominant. If we take our 12 cases and note that forecast performance can
either be evaluated using MSFEs or sums of log predictive likelihoods, we have 24
forecasting “races”. In these races, SSVS approaches have 13 “wins” and Minnesota
prior approaches win 11 times, a very even split. In terms of VAR dimensionality, large,
medium-large and medium VARs each win five times and small VARs win nine times,
also a fairly even split. In short, virtually every one of our VAR approaches does well
for some variable, forecast horizon or forecasting metric.

Despite the fact that small VARs often forecast well, often we do find that moving
away from small VARs does lead to improved forecast performance. That is, reading
across any row in Tables 1 through 12 we typically find that the MSFEs or sums of
log predictive likelihoods decrease. However, it is worth noting that in most cases,
these decreases are small or non-existent when we move beyond n = 20. This also
is consistent with BGRs finding that most of the gains found in VAR forecasting are
obtained by using 20 variables and that adding more variables beyond this often yields
only slight improvements (or even deterioration) in forecast performance.

However, there are many exceptions to the pattern noted in the preceding paragraph.
These exceptions almost invariably occur with the SSVS priors and A = 4. With the
Minnesota priors it is virtually always the case that moving from n = 3 to n = 20
improves forecast performance (and often these improvements are considerable). But
with h = 4, it is often the case that small VARs with SSVS priors yield the best
forecasting performance. This finding, no doubt, reflects the difficulty of forecasting at
longer horizons using the direct method where parsimony is of most particular value.
But it also reflects a general pattern in our findings where SSVS methods forecast better
than Minnesota priors in small VARs, but that this pattern is not always continued
with medium and medium-large VARs.
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When we compare the various implementations of Minnesota priors, we find that
BGR’s specification often works well. However, in terms of MSFEs, it is often the case
that one of the alternative implementations forecasts slightly better. These alternatives
are characterized by different degrees of shrinkage for the coefficients on own lags than
on other lags, and it does seem that this often improves forecast performance. Our
version of the original Minnesota prior which allows for the upper left 3 x 3 block of 3
to be unrestricted often forecasts quite well. In terms of MSFEs, it appears that the
advantages of having a completely unrestricted 3 (as in BGR) are relatively small. In
terms of sums of log predictive likelihoods, it appears that allowing for an unrestricted
>} can occasionally lead to very poor forecast performance. As an example, consider
recursively forecasting CPI for h = 1. In terms of MSFEs, the best forecasting method
uses a variant of the original Minnesota prior with a 20-variate VAR. The MSFE is
0.2664. If we consider large VARs with n = 168, the MSFEs are only slightly higher
(0.2834 for the original Minnesota prior and 0.3309 for BGR’s prior). However, with
these large VARs the sum of log predictive likelihoods is vastly different between the
original Minnesota prior (—184.78) and BGR’s prior (—322.27). To shed more light
on this case, Figures 1 and 2 plots the cumulative sum of log predictive likelihoods
and cumulative sum of squared forecast errors, respectively, for these two priors. The
cumulative sum of squared forecast errors for these two approaches track each other
fairly closely, with the exception of the early 1980s. However, the cumulative sum of log
predictive likelihoods are much more different, with the two lines diverging substantially
in the period 1975-1985 and again at the end of the sample. This shows that the point
forecasts of these two approaches are similar to one another. However, other features
of the predictive density are quite different. In this case, what is happening is that
BGR’s approach tends to yield an unnecessarily disperse predictive distribution due to
its need to estimate so many more parameters (i.e. in the BGR approach ¥ contains
n(”TH) parameters to be estimated, whereas the original Minnesota prior only has n
parameters in ¥ and these are replaced by simple estimates). Even if the mean of
the predictive density provides a good point forecast, an unnecessarily large predictive
standard deviation mean that the predictive likelihood evaluated at the outcome will
be lower than a predictive without such a large standard deviation. When looking at
large VARs (particularly using BGR’s prior), we often find this pattern of good MSFEs
but poor sums of log predictive likelihoods. A related finding is that small VARs tend
to forecast particularly well when we use sums of log predictive likelihoods to evaluate
forecast performance, but there is less evidence of this when using MSFEs. By focussing
solely on MSFEs, the researcher would miss important empirical findings such as these.

When we compare various implementations of the SSVS priors, few strong patterns
emerge. The non-conjugate SSVS prior often forecasts slightly better than the conju-
gate variant. Using the Minnesota prior to calibrate the prior for the SSVS approach
often improves forecast performance. But there are many exceptions to both of these
statements.

If we compare recursive to rolling forecasts, we do not find any substantial and
consistent differences in forecast performance if we looks at MSFEs. In terms of sums
of log predictive likelihoods, more differences appear. However these differences are not
consistent in the sense that we cannot say recursive methods are always better than
rolling, or vice versa.
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Table 1: GDP Forecasting for h = 1
MSFEs as Proportion of Random walk MSFEs
Sums of log predictive likelihoods in parentheses

n=3 n = 20 n = 40 n = 168
Minn. Prior 0.6504 0.5552 0.5084 0.5225
as in BGR (—206.37) (—192.29) (—186.60) (—223.78)
Minn. Prior 0.7065 0.5774 0.6381 0.5631
S diagonal (—211.85) | (—204.84) | (—205.52) | (—202.39)
Minn. Prior 0.7065 0.5489 0.5402 0.5305
¥ not diagonal (—205.97) (—195.40) (—193.49) (—192.81)
SSVS Conjugate 0.6338 0.6776 0.6983
semi-automatic (—200.66) (—199.90) (—197.66) e
SSVS Conjugate 0.6062 0.5577 0.5368
plus Minn. Prior (—198.77) (—192.53) (—192.44) e
SSVS Non-conj. 0.6061 0.6407
semi-automatic (—198.40) | (—205.12) |™® e
SSVS Non-conj. 0.6975 0.6466
plus Minn. Prior | (—204.71) | (—203.92) | ™% e
Factor Model 0.6441
b1 n.a. n.a. n.a (—195.10)
Factor Model 0.7657
b4 n.a. n.a. n.a (—207.67)
Table 2: CPI Forecasting for h = 1
MSFEs as Proportion of Random walk MSFEs
Sums of log predictive likelihoods in parentheses

n=3 n =20 n =40 n = 168
Minn. Prior 0.3471 0.3029 0.3172 0.3309
as in BGR (—201.23) (—195.90) (—210.09) (—322.27)
Minn. Prior 0.3317 0.2756 0.3252 0.2834
Y. diagonal (—190.85) (—182.18) (—200.55) (—184.78)
Minn. Prior 0.3317 0.2664 0.2718 0.3019
¥ not diagonal (—203.95) (—184.06) (—188.27) (—197.45)
SSVS Conjugate 0.3138 0.2724 0.3061
semi-automatic (—187.82) | (—191.15) | (—197.66) |
SSVS Conjugate 0.3086 0.3088 0.3601
plus Minn. Prior | (—186.70) | (—197.64) | (—222.30) | ™%
SSVS Non-conj. 0.3197 0.3161
semi-automatic (—193.92) (—196.47) - e
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