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Abstract

We use factor augmented vector autoregressive models with time-varying
coeffi cients to construct a financial conditions index. The time-variation in the
parameters allows for the weights attached to each financial variable in the index to
evolve over time. Furthermore, we develop methods for dynamic model averaging
or selection which allow the financial variables entering into the FCI to change over
time. We discuss why such extensions of the existing literature are important and
show them to be so in an empirical application involving a wide range of financial
variables.
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1 Introduction

The recent financial crisis has sparked an interested in the accurate measurement
of financial shocks to the real economy. An important lesson of recent events is
that financial developments, not necessarily driven by monetary policy actions or
fundamentals, may have a strong impact on the economy. The need for policymakers
to closely monitor financial conditions is clear. In response to this need, a recent
literature has developed several methods for constructing financial conditions indexes
(FCIs). These indexes contain information from many financial variables, and the aim
is for policymakers to use them to provide early warning of future financial crises. These
FCIs range from simple weighted averages of financial variables through sophisticated
econometric estimates. Many financial institutions (e.g. Goldman Sachs, Deutsche
Bank and Bloomberg) and policymakers (e.g. the Federal Reserve Bank of Kansas City)
produce closely-watched FCIs. An important recent contribution is Hatzius, Hooper,
Mishkin, Schoenholtz and Watson (2010) which surveys and compares a variety of
different approaches. The new FCI it proposes uses principal components methods to
extract an FCI from a large number of quarterly financial variables. Other recent notable
studies in this literature include English, Tsatsaronis and Zoli (2005), Balakrishnan,
Danninger, Elekdag and Tytell (2008), Beaton, Lalonde and Luu (2009), Brave and
Butters (2011), Gomez, Murcia and Zamudio (2011) and Matheson (2011).
The construction and use of an FCI involves three issues: i) selection of financial

variables to enter into the FCI, ii) the weights used to average these financial variables
into an index and iii) the relationship between the FCI and the macroeconomy. There
is good reason for thinking all of these may be changing over time. Indeed, Hatzius et al
(2010) discuss at length why such change might be occurring and document statistical
instability in their results. For instance, the role of the sub-prime housing market in the
financial crisis provides a clear reason for the increasing importance of variables reflecting
the housing market in an FCI. A myriad of other changes may also impact on the way an
FCI is constructed, including the change in structure of the financial industry (e.g. the
growth of the shadow banking system), changes in the response of financial variables to
changes in monetary policy (e.g. monetary policy works differently with interest rates
near the zero bound), the changing impact of financial variables on real activity (e.g.
the role of financial variables in the recent recession is commonly considered to have
been larger than in other recessions) and many other things.
Despite such concerns about time-variation, the existing literature does little to

statistically model it. Constant coeffi cient models are used with, at most, rolling methods
to account for time-variation. Furthermore, many FCI’s are estimated ex post, using
the entire data set. So, for instance, at the time of the financial crisis, some FCIs will
be based on financial variables which are selected after observing the financial crisis and
the econometric model will be estimated using financial crisis data. The purpose of the
present paper is to develop an econometric approach which estimates the FCI online
(i.e. in real time) and allows for a time-varying treatment of the three issues described
in the preceding paragraph.
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Following a common practice in constructing indexes, we use factor methods. To be
precise, we use Factor-augmented VARs (FAVARs) which jointly model a large number
of financial variables (used to construct the FCI) with key macroeconomic variables.
However, we do not work with a single FAVAR, but rather work with a large set of
FAVARs which differ in which financial variables are included. Faced with a large model
space and the desire to allow for model change, we use dynamic model averaging (DMA)
and selection (DMS) methods developed in Raftery et al (2010). DMS chooses different
financial variables to make up the FCI at different points in time. DMA constructs
an FCI by averaging over many individual FCIs constructed using different financial
variables. The weights in this average vary over time. Such approaches can help address
the three issues highlighted above in a dynamic fashion. Further flexibility can be
attained through the use of time-varying parameter (TVP) FAVARs. Accordingly, we
investigate constructing FCIs using DMA and DMS methods with various TVP-FAVARs
as well as constant coeffi cient FAVARs.
Econometric methods for estimating FAVARs and TVP-FAVARs are well-established

(see, e.g., Bernanke, Boivin and Eliasz, 2005, and Korobilis, 2013). However,
these estimation methods (e.g. Bayesian methods using Markov chain Monte Carlo
algorithms) are computationally demanding. With our large model space, it is
computationally infeasible to use such methods. Accordingly, we use methods which
require only the use of the Kalman filter or other filtering algorithms. In the FAVAR,
an approach which meets these requirements is outlined in Doz, Giannone and Reichlin
(2011) and we adopt their methods (with slight modifications). For the TVP-FAVAR
we develop a new, computationally effi cient algorithm, which is an extension of Doz,
Giannone and Reichlin (2011).
We use our many FAVARs and TVP-FAVARs for three main purposes: i) to estimate

an FCI (and compare our estimate to alternatives), ii) to investigate how well the FCI can
be used to forecast macroeconomic variables, and iii) to calculate impulse responses in a
time-varying fashion. The preceding discussion motivates why i) and ii) are important.
With regards to iii), it is worth noting that the paper of Hatzius et al (2010) is followed by
discussants’comments by several important policymakers. William Dudley (President of
the Federal Reserve Bank of New York) highlights the importance of understanding the
implications of the FCI for the conduct of monetary policy. Impulse response analysis
using our FCI should represent a useful addition to the literature which offers insight in
this regard.
Our empirical results indicate DMA and DMS methods do lead to FCIs which

better track the macroeconomy and differ from conventional FCIs in some aspects. The
version of our approach which performs best involves using DMA or DMS methods
on a restricted version of a TVP-FAVAR which we call a factor augmented TVP-VAR
(FA-TVP-VAR). This involves extracting the FCI using a constant coeffi cient approach
(i.e. the factor loadings are constant over time), but modelling the FCI jointly with the
macroeconomic variables in a TVP-VAR. The financial variables which make up our FCI
change substantially over time. We discuss this variation and present impulse responses
to shocks to the FCI.
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2 Dynamic Model Averaging with FAVARs and
TVP-FAVARs

2.1 Estimation and Forecasting FAVARs and TVP-FAVARs

In general, dynamic factor methods are popular in empirical macroeconomics and finance
(e.g., a recent application is Bagliano and Morana, 2012) and extensions such as FAVARs
are increasingly popular (e.g. a pioneering paper is Bernanke, Boivin and Eliasz, 2005).
In the FCI literature in particular, factor methods are also common. For instance,
Hatzius et al (2010) use factor methods to estimate their financial conditions index. In
a similar spirit, we work with factor models. Furthermore, many authors, working with
a range of data sets (e.g. Del Negro and Otrok, 2008, Meligotsidou and Vrontos, 2008,
Eickmeier, Lemke and Marcellino, 2011, Felices and Wieladek, 2012 and Korobilis, 2013)
have found it important to extend factor models to allow for time-variation in coeffi cients.
We follow in this tradition.
Let xt (for t = 1, ..., T ) be an n × 1 vector of financial variables to be used in

constructing the FCI. It is important for the FCI to reflect information solely associated
with the financial sector, rather than reflecting feedback from general macroeconomic
conditions. Accordingly, we wish to purge macroeconomic effects from our FCI by
including macroeconomic variables in the equations used to calculate the factors. Let
yt be an s × 1 vector of macroeconomic variables of interest. In our empirical work,
yt = (πt, ut, rt)

′ where πt is the inflation rate, ut is the unemployment rate, and rt is
the interest rate. These macroeconomic variables also serve a second purpose in that we
are interested in forecasting them using the FCI and this plays an important role in our
DMA algorithm (to be described shortly).
The TVP-FAVAR takes the form:

xt = λyt yt + λft ft + ut[
yt
ft

]
= ct +Bt

[
yt−1
ft−1

]
+ εt

, (1)

with
λt = λt−1 + vt
βt = βt−1 + ηt

, (2)

where λt =

(
(λyt )

′ ,
(
λft

)′)′
, βt =

(
c′t, vec (Bt)

′)′ and ft is the latent factor which we
interpret as the FCI. In our empirical work, ft is a scalar and we are estimating a
single FCI. Note that this model allows factor loadings, regression coeffi cients and VAR
coeffi cients to evolve over time according to a random walk.1 All errors in the equations
above are uncorrelated over time and with each other, thus having the following structure

1Note that we have written second of equation (1) as a VAR(1) model But this does not restrict us
since every VAR(p) admits a VAR(1) representation; see Lutkepohl (2005).
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ut
εt
vt
ηt

 ∼ N

0,


Vt 0 0 0
0 Qt 0 0
0 0 Wt 0
0 0 0 Rt


 .

Note that the TVP-VAR allows for all of error covariance matrices to be time-
varying. We use exponentially weighted moving average (EWMA) methods. EWMA
estimates are popularly used to model volatilities in many financial applications and
their properties are familiar and well-established (see, among many others, RiskMetrics,
1996 and Brockwell and Davis, 2009, Section 1.4). Koop and Korobilis (2013) uses
a similar approach and additional motivation for use of EWMA estimates is provided
there. The Technical Appendix provides precise details on how they are estimated.
Identification in the FAVAR is achieved in a standard fashion by restricting Vt to be

a diagonal matrix and the first element of λft to be one. The former restriction ensures
that the factors, ft, capture movements that are common to the financial variables, xt,
after removing the effect of current macroeconomic conditions through inclusion of the
λyt yt term.
Bayesian estimation of TVP-VARs and TVP-FAVARs is typically done using Markov

Chain Monte Carlo (MCMC) methods (see, e.g., Primiceri, 2005 or Del Negro and
Otrock, 2008). Such Bayesian simulation methods are computationally expensive even
when the researcher is estimating a single TVP-FAVAR. When faced with multiple TVP-
FAVARs and when doing recursive forecasting (which requires repeatedly doing MCMC
on an expanding window of data), the use of MCMC methods is prohibitive.2

In this paper, we use fast, approximate, estimation methods which vastly reduce
the computational burden. Similar to the approximate methods for TVP-VARs used in
Koop and Korobilis (2013), we estimate all TVP-FAVAR coeffi cients using fast updating
schemes based on one-sided exponentially weighted moving average (EWMA) filters
combined with Kalman filter recursions. Complete details are provided in the Technical
Appendix. Suffi ce it to note here that, for the constant coeffi cient dynamic factor
model, an approximate two-step estimation approach is developed in Doz, Giannone and
Reichlin (2011). It is straightforward to adapt this algorithm to estimate the constant
coeffi cient FAVAR and our results using FAVARs are calculated using such an approach.
The extension of the algorithm of Doz, Giannone and Reichlin (2011) to the TVP-
FAVAR requires an additional step where the time-varying coeffi cients are drawn using
the Kalman filter. For forecasting, the Kalman filter provides us with a one-step ahead
predictive density. When we present results for forecast horizons greater than one we
use iterative methods. With these approximations, it takes only a few seconds to carry
out a full recursive forecasting exercise for a single TVP-FAVAR model given in (1).

2To provide the reader with an idea of approximate computer time, consider the three variable TVP-
VAR of Primiceri (2005). Taking 10,000 MCMC draws (which may not be enough to ensure convergence
of the algorithm) takes approximately 1 hour on a good personal computer. Thus, forecasting at 100
points in time takes roughly 100 hours. These numbers hold for a single small TVP-VAR, and would
be much larger for the 65,536 larger TVP-FAVARs we use in this paper.
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Our impulse responses are presented based on the TVP-VAR for (y′t, ft)
′ (i.e. the

second equation in (1)). We use a standard Cholesky factorization of Vt to identify
the structural shocks (see., e.g., Primiceri, 2005, Castelnuovo, 2012 and Korobilis,
2013). Such a triangular identification scheme implies macroeconomic variables respond
with a lag to changes in financial conditions, while financial conditions can respond
contemporaneously to shocks in macroeconomic conditions. See the Technical Appendix
for complete details about estimation, forecasting and impulse response analysis.
In addition to the unrestricted TVP-FAVAR given in (1) and (2), we consider several

restricted versions. If we restrict λt = λ, then the factor equation will have constant
factor loadings, but the VAR part of the model will still have time-varying parameters.
Note that λt contains many parameters (i.e. n × (s+ 1) = 80 in our application) and,
hence, restricting it to be constant may be important in reducing over-parameterization
concerns. We refer to such a model as a factor-augmented TVP-VAR or FA-TVP-VAR
to distinguish it from the unrestricted TVP-FAVAR. We consider such a model in our
empirical work. All specification choices except relating to λ are identical in the TVP-
FAVAR and FA-TVP-VAR.
The FCI constructed by Hatzius et al (2011) uses a FAVAR with homoskedastic

errors (although the financial and macroeconomic variables they use differ somewhat
from ours). To obtain something similar, we also use present results using a FAVAR
which is obtained as a special case of our TVP-FAVAR with Vt = V , λt = λ and βt = β
for all t. Similar to the FA-TVP-VAR, all modelling choices except those relating to V, λ
and β are identical to those for the TVP-FAVAR.
Some authors (e.g. Eickmeier, Lemke and Marcellino, 2011) use existing FCIs (i.e.

estimated by others) in the context of a VAR or FAVAR model. In this spirit, we also
present results for VARs (i.e. the second equation in (1) with Vt = V and βt = β for all

t) where the factors are replaced with an estimate. To be precise, our VARs use
(
y′t, f̂t

)′
as dependent variables for different choices of f̂t. Table 1 lists these choices. Again,
these models are a restricted special case of our TVP-FAVAR and estimation proceeds
accordingly. The error covariance matrix is modelled in the same manner as the FAVAR.
We use an acronym for these VARs such that, e.g., VAR(FCI 5), is the VAR involving
the macroeconomic variables and the Bank of America Merrill Lynch Global Financial
Stress Index.3

3Note that the sample period of the indexes in Table 1 differ and are shorter than the sample period
for the macroeconomic variables. We treat this issue by forecasting using a VAR for the macroeconomic
variables up to time τ . Subsequently a VAR including macroeconomic variables plus the FCI is used.
We set τ to be the time that the sample for the FCI begins plus 10 months.

6



Table 1. Financial Conditions and Stress Indexes
Name Acronym Source Sample

St. Louis Financial Stress Index FCI 1 St Louis Fed 1993Q4 - 2012Q1
Kansas City Fed Financial Stress Index FCI 2 Kansas Fed 1990Q1 - 2012Q1
Cleveland Fed Financial Stress Index FCI 3 Cleveland Fed 1991Q3 - 2012Q1
Westpac US Financial Stress Index FCI 4 Bloomberg 1998Q1 - 2012Q1
BofA Merrill Lynch Global FSI FCI 5 Bloomberg 2000Q1 - 2012Q1
Bloomberg US FCI FCI 6 Bloomberg 1994Q1 - 2012Q1
Bloomberg US FCI Plus FCI 7 Bloomberg 1994Q1 - 2012Q1
Chicago Fed National FCI FCI 8 Chicago Fed 1973Q1 - 2012Q1

In summary, our empirical work involves:

1. TVP-FAVARs where all of the model coeffi cients change over time.

2. FA-TVP-VARs where only the VAR coeffi cients change over time.

3. FAVARs where coeffi cients are constant.

4. VAR (FCI) models which are VARs augmented with an FCI.

Complete details of the specification of all models and how they are estimated is
provided in the Technical Appendix.

3 Dynamic Model Averaging and Selection

The preceding section discussed the econometrics of a single TVP-FAVAR which imposes
the restriction that exactly the same financial variables are used to construct the factors
in every time period. Simply using a single TVP-FAVAR can suffer from two sorts of
problem. First, it can be over-parameterized. Working with all the possibly relevant
financial variables can lead to very parameter rich models.4 Second, the best variables
to include in an FCI may be changing over time. In this paper, we are interested in the
ability of the FCI to forecast the real economy. For the reasons given in the introduction,
the financial variables relevant for this may change over time.5 Accordingly, we want
an approach which allows for such change and develop one in this section. It involves
multiple models which are defined by which financial variables are included. To be
precise, the TVP-FAVAR defined in (1) contains a n−vector of financial variables, xt.
There are up to 2n−1 restricted versions of this TVP-FAVAR which contain one or more
of the n financial variables. These are the types of models we consider in this paper.

4There are also statistical reasons for thinking that a strategy of always constructing the factors
using all of the elements of xt is not necessarily optimal, see Boivin and Ng (2006).

5A clever approach for deciding which variables should be used to construct a factor is given in
Kaufmann and Schumacher (2012). However, this approach does not allow for this decision to be made
in a time-varying manner (i.e. it does not allow for different variables to be selected at different points
in time).
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When faced with multiple models, it is common to use model selection or model
averaging techniques. However, in the present context we wish such techniques to be
dynamic. That is, in a model selection exercise, we want to allow for the selected model
to change over time, thus doing dynamic model selection (DMS). In a model averaging
exercise, we want to allow for the weights used in the averaging process to change over
time, thus leading to dynamic model averaging (DMA). In this paper, we do DMA and
DMS using an approach developed in Raftery et al (2010) in an application involving
many TVP regression models. The reader is referred to Raftery et al (2010) for a
complete derivation and motivation of DMA. Here we provide a general description of
what it does.
Suppose the researcher is working with j = 1, .., J models and the goal is to calculate

πt|t−1,j which is the probability that model j applies at time t, given information through
time t− 1. Once πt|t−1,j for j = 1, .., J are obtained they can either be used to do model
averaging or model selection. DMS arises if, at each point in time, the model with the
highest value for πt|t−1,j is used. Note that πt|t−1,j will vary over time and, hence, the
selected model can switch over time. DMA arises if model averaging is done in period
t using πt|t−1,j for j = 1, .., J as weights. The contribution of Raftery et al (2010) is to
develop a fast recursive algorithm for calculating πt|t−1,j.
To explain this algorithm, let wt = (x′t, y

′
t)
′ denote time t data and w1:s = (w′1, .., w

′
s)
′

denote all the data up to and including time s. In an online exercise, we wish to use
w1:t−1 to calculate the time t value of the FCI or to forecast. Given an initial condition,
π0|0,j for j = 1., , .J ,6 Raftery et al (2010) derive a model prediction equation using a
so-called forgetting factor α:

πt|t−1,j =
παt−1|t−1,j∑J
l=1 π

α
t−1|t−1,l

, (3)

and a model updating equation of:

πt|t,j =
πt|t−1,jfj (wt|w1:t−1)∑J
l=1 πt|t−1,lfl (wt|w1:t−1)

, (4)

where fj (wt|w1:t−1) is a measure of fit for model j. Many possible measures of fit can
be used. Since our focus is on the ability of the FCI to forecast yt, we set as a measure
of fit the predictive likelihood for the macroeconomic variables, pj (yt|w1:t−1).
We refer the reader to Raftery et al (2010) for additional details, but note here that

the calculation of πt|t,j and πt|t−1,j is simple and fast, involving only recursive evaluation
of formulae beginning with π0|0,j and not involving the use of simulation methods. To
help understand the implication of the choice of α, note that πt|t−1,j can be written as:

πt|t−1,j ∝
t−1∏
i=1

[pj (yt−i|w1:t−i−1)]α
i

.

6In our empirical work, we make the standard noninformative choice of π0|0,j =
1
J .
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Thus, model j will receive more weight at time t if it has forecast well in the recent past
(where forecast performance is measured by the predictive density, pj (yt−i|w1:t−i−1)).
The interpretation of “recent past”is controlled by the forgetting factor, α. For instance,
with quarterly data, if α = 0.99, forecast performance five years ago receives 80% as
much weight as forecast performance last period whereas if α = 0.95, it only receives 35%
as much weight. α = 1 leads to conventional Bayesian model averaging implemented
one time period at a time on an expanding window of data. Lower values of α allow for
more rapid switching between models.
In the present paper, our set of models is potentially huge. We have n = 20 financial

variables (listed in Table A1 in the Data Appendix) and, thus, up to 220−1models. Even
with our use of computationally effi cient approximations, doing DMA or DMS with large
n is very computationally demanding. Accordingly, we take a core set of four variables
which are always included in the construction of the FCI: the S&P 500 stock return, the
exchange rate, the Household Credit Market Debt Outstanding and the 30 year mortgage
rate spread. This means that the factor, ft, comprises these four financial variables plus
any combination of the remaining 16 variables leading to 65,536 TVP-FAVARs (and
the same number of FA-TVP-VARs and FAVARs). Using our methods, we are able to
estimate all these factor models in about the same computing time required to estimate
a single factor model using MCMC methods. Note that the identification restriction on
the factor loading vector plus the fact that we are ordering the S&P 500 stock return
first, means that our estimated FCI is such that positive (negative) values indicate an
improvement (deterioration) in financial conditions.

4 Empirical Results

4.1 Data and Models

We use 20 financial variables which cover a wide variety of financial considerations
(e.g. asset prices, volatilities, credit, liquidity, etc.). These are gathered from several
sources. Our macroeconomic variables are inflation, GDP growth and the interest rate.
All of the variables (i.e. both macroeconomic and financial variables) are transformed
to stationarity following Hatzius et al (2010) and many others. The Data Appendix
provides precise definitions, acronyms, data sources, sample spans and details about the
transformations. Our data sample runs from 1959q1 to 2012q1. All of our models use
four lags and, hence, our estimation period begins in 1960Q1. However, data for many
of our financial variables begins later than 1959. Treatment of missing values for these
variables is discussed in the Technical Appendix.
We remind the reader that a list of the models used (and their acronyms) is given at

the end of Section 2 and that complete specification details of all models are presented
in the Technical Appendix. Our models are TVP-FAVARs, FA-TVP-VARs, FAVARs
and VARs and our methods include DMS, DMA and simply using a single model which
includes all 20 of the financial variables. For DMS and DMA, we use differing values
for the forgetting factor, α. We distinguish between methods through parenthetical
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comments so that, e.g., TVP-FAVAR(DMS, α = 0.95) does DMS over the 65,536 TVP-
FAVARs defined in Section 3 using a forgetting factor of α = 0.95.

4.2 Estimating the Financial Conditions Index

Figure 1 plots three different estimates of the FCI (standardized so as to have zero mean
and standard deviation of one) using factor methods based on: i) a single FAVAR using
all of the financial variables so that the factor has a similar interpretation to that used
by other researchers such as Hatzius et al (2010); ii) a single TVP-FAVAR version of i);
and iii) dynamic model averaging of the FA-TVP-VARs using α = 0.95. Note that, as
we shall see in the next sub-section, iii) is the approach which forecasts best.
In general, the three FCI’s in Figure 1 exhibit similar patterns. However, the TVP-

FAVAR is producing a noticeably more volatile FCI for most of the sample. Using DMA
on the FA-TVP-VAR yields the smoothest FCI for most of the sample. However, at
the time of the financial crisis, the three FCIs show an equally sharp deterioration in
financial conditions. This suggests that using DMA with the FA-TVP-VARs is capable
of producing large swings in the FCI, but that it does not choose to do so throughout
most of the sample period. The FAVAR is producing results which are similar to, but
slightly more volatile than, the FA-TVP-VAR with DMA. However, there are some
periods (e.g. 1974) when these two FCI estimates diverge more.

1959Q1 1966Q3 1974Q1 1981Q3 1989Q1 1996Q3 2004Q1 2011Q3
8

6

4

2

0

2

4
TVPFAVAR (all 20 variables)
FAVAR (all 20 variables)
FATVPVAR with DMA ( α = 0.95)

Figure 1: FCI Estimates

Figure 2 compares our FCI, estimated using DMA on the FA-TVP-VARs, to a few
existing FCIs selected from the list in Table 1. They are all standardized to have mean
zero and standard deviation one. It can be seen that the, although the various FCIs
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are exhibiting broadly similar patterns, there are periods where they differ substantially.
Our FCI is most similar to the St. Louis FSI, although they differ substantially in
2004-2005 in the run-up to the financial crisis. The Bloomberg US FCI is similar to the
St. Louis FCI in most periods, but is substantially more volatile in the late 1990s. The
Chicago Fed NFCI differs the most from the others. Unlike the others, it does not signal
a deterioration in financial conditions in the early 2000s. Furthermore, in the late 1970s
and early 1980s it is much more volatile than our FCI.
Figures 1 and 2, of course, do not establish that one FCI is better than another.

That issue is addressed in the following sub-section where we compare FCIs in terms
of how well they perform in forecasting three major macroeconomic variables. The key
point of this sub-section is that we have established that FCIs estimated using different
methods can be substantially different from one another. This suggests that care should
be taken with the econometric methods used to estimate the FCI.

1959Q1 1966Q3 1974Q1 1981Q3 1989Q1 1996Q3 2004Q1 2011Q3
8

6

4

2

0

2

4
FATVPVAR with DMA (alpha = 0.95)
St Louis FSI
Chicago Fed NFCI
Bloomberg US FCI

Figure 2: Comparing our FCI Estimate to Other Available FCIs

Before we turn to forecasting, it is interesting to see if DMA (with the FA-TVP-
VARs) is allocating different weight to different financial variables at different points
in time and, if so, which financial variables receive more weight at each point in time.
Figure 3 sheds light on this issue. It plots posterior inclusion probabilities for the 16
financial variables which are given the DMA treatment (see the end of Section 3 and
Table A1 in the Data Appendix for exact definitions and acronyms). These inclusion
probabilities are calculated using the model probabilities, πt|t−1,j for j = 1, , .J models,
defined in Section 3. In particular, the inclusion probability associated with a particular
financial variable is the total probability attached to models which include that financial
variable. Note that some of the financial variables are not available for our entire sample
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span and, for these variables, inclusion probabilities are zero for times where data is not
available.
The main point worth noting is that the inclusion probabilities do vary over time,

indicating that DMA is attaching different weights to different financial variables over
time. And DMS will be choosing different variables to construct its FCI.
Remember that our model space is defined so that four financial variables are always

included. These four variables are chosen to reflect different aspects of the financial
situation: the stock market (S&P500), exchange rates (TWEXMMTH), household debt
(CMDEBT) and interest rates (30y Mortgage spread). Thus, interpretations of the
inclusion probabilities for the remaining 16 financial variables relate to whether they
contain information useful for forecasting macroeconomic variables beyond that provided
by these four variables.
Several variables have inclusion probabilities which abruptly rise around 1990 and

remain high for most of the remainder of the sample. This partly arises due to the
fact that data only becomes available for several of our variables in the late 1980s or
early 1990s. But, even for variables with longer data spans (i.e. the LOANHPI index,
VXO+VIX, WILL5000PR and Mich), inclusion probabilities often rise substantially
around this time. In relation to the housing market, it is interesting to note the
growing importance of the LOANHPI index around this time. Another variable relating
to the housing market, ABS Issuers (Mortgage), has increasing inclusion probability
throughout the 1990s, peaking at the time of the financial crisis. STDSCOM, which
relates to bank credit standards for real estate loans, has an inclusion probability with
jumps to one as soon as data is available for this variable. Thus, our FCI will have an
increasing role for variables relating to housing finance throughout the run-up to the
financial crisis. However, after the initial impact of the financial crisis, DMA greatly
down-weights several variables, including two relating to the housing market (i.e. the
LOANHPI index and ABS Issuers (Mortgage)). That is, their inclusion probabilities
drop dramatically in early 2009. Presumably the actions taken by the Treasury and
the Fed around this time (e.g. TARP and QE1), which involved the purchase of
hundreds of billions of dollars in mortgage backed securities, diminished the usefulness
of these financial variables relating to bank provision of mortgage finance for forecasting
macroeconomic variables.
Measures of financial volatility (e.g. the MOVE index and VXO+VIX) remain

important from the early 1990s until the end of the sample and their inclusion
probabilities do not drop after 2009. The Michigan survey of the expected change in the
financial situation, which could also be an indicator of financial volatility, also exhibits
this pattern.
With regards to the various interest rate spread variables we are including, no clear

patterns emerge. The commercial paper spread is unimportant for most of the sample,
but as of 2009 its inclusion probability suddenly increases to one. The 2y/3m spread
variable, which has an inclusion probability of roughly 0.5 for most of the sample,
suddenly sees its important increase in 2008Q4 before falling to zero in early 2009.
In contrast, the longer term spread (10/2yr spread) exhibits the opposite pattern, with
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its importance collapsing in late 2008 before rising in 2009. And the TED spread, which
is often considered to be an important indicator of financial conditions, is allocated
relatively low probability for most of the sample (and this probability reaches zero at
the peak of the recent financial crisis).
A very broad measure of stock market performance, WILL5000PR, does have a very

high inclusion probability from 1990 through 2008, but this collapses to zero in 2009.
Our commodity price index, CRY index, is never important and DMA never attaches
appreciable weight to it when constructing the FCI.
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Figure 3: Probability of Inclusion for Each Financial Variable

4.3 Forecasting

In this section, we investigate the performance of a wide range of models and methods
for forecasting the macroeconomic variables (inflation, GDP and the interest rate). Our
main measure of forecast performance is the square root of mean squared forecast errors
(RMSFE) which is evaluated over the period 1974Q1 to 2012Q1-h for h=1,..,8 forecast
horizons. Table 2 presents RMSFEs relative to a VAR for yt (i.e. one which does not
include any FCI).
As commonly happens with macroeconomic forecasting, it is diffi cult to beat a simple

benchmark VAR by a large amount. Nevertheless, Table 2 shows some appreciable
improvements in forecast performance and some interesting patterns.
First, with some exceptions, we are finding that DMS or DMA do lead to improved

forecast performance over approaches involving a single model. The single model cases
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(TVP-FAVAR, FA-TVP-VAR and FAVAR) which include all of the financial variables
typically forecast worse than the benchmark VAR. In contrast, when DMA or DMS is
used with these approaches, they forecast better than the benchmark VAR. In sum,
we are finding evidence that DMA and DMS techniques are useful in our application.
Model switching is occurring and methods which ignore this tend to forecast poorly even
if they allow for time-variation in parameters.
Second (and, again, with some exceptions), FA-TVP-VARs forecast better than

either the more parameter-rich TVP-FAVARs or the more restrictive FAVARs which
do not allow for time-variation in parameters. Presumably the fact that the TVP-
FAVAR has time-variation in the high-dimensional factor loading vector leads to an over-
parameterized model which sometimes forecasts poorly. The best forecast performance
is produced by the FA-TVP-VAR with α = 0.95. Both DMA and DMS forecast well for
this case. For every forecast horizon and macroeconomic variable, the RMSFE is lower
than the benchmark VAR. Typically, the improvements in RMSFE are of the order of 5
or 10%, but occasionally they are even better than this (see the short-horizon results for
forecasting interest rates). Doing DMA or DMS with the FAVARs with α = 0.95 also
leads to substantial forecast improvements relative to the benchmark VAR, but these
gains are not as great as when doing DMA or DMS with the FA-TVP-VARs.
Third, working with a VAR augmented to include one of the FCIs listed in Table 1

does not lead to good forecast performance. With only a few exceptions, such a strategy
actually leads to a decrease in forecast performance relative to the benchmark VAR.
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4.4 Impulse Response Analysis

Figure 4 presents impulse responses of the macroeconomic variables to a negative shock
to the FCI (i.e. a deterioration in financial conditions), where the FCI is constructed
using DMA methods on the FA-TVP-VARs. Care must be taken in interpreting such a
financial shock since the variables used to construct the FCI (and thus the nature of the
financial shock) are changing over time. Nevertheless, with this qualification in mind, a
study of impulse responses is informative. They are calculated at every time period and
for horizons of up to 21 quarters. We can also present the response of any of the financial
variables to this shock. For the sake of brevity, we only choose one of these variables:
the S&P500. Remember that we use a standard identification scheme to identify this
shock (see Section 2.1) and details about estimation of impulse responses are given in
the Technical Appendix.
In general, Figure 4 indicates that impulse responses are changing over time,

indicating that our use of DMA methods and TVP models is important and constant
coeffi cient FAVARs are mis-specified. Our impulse responses tend to vary a bit more than
others in the literature (e.g. Primiceri, 2005). This is due to the fact that our estimates
(like our forecasts) are done online and not smoothed. That is, the impulse response at
time t is estimated using data available at time t, not T as is done in many papers. We
also do not impose a stationarity condition on the time-varying VAR coeffi cients.
Figure 4 reveals that the financial shock during the recent financial crisis is large and

persistent, although at the very end of our sample this effect disappears. But especially
in late 2008 and early 2009, impulse responses of all variables fall and do not bounce
back to zero. This effect is particularly notable for GDP growth.
However, it is in the late 1970s and early 1980s that we are finding the effects of

negative financial shocks to be greatest. This is sensible if we remember that, at each
time period, the impulse responses measure the impact of a one standard deviation
shock. Our estimated FCI, plotted in Figure 1, suggests that the financial shock which
hit in the recent financial crisis was much more than a one standard deviation shock. Our
impulse responses are indicating that the 1970s and early 1980s was a time of smaller
financial shocks which had large effects. In contrast, the recent financial crisis was a
time of a larger financial shocks having a proportionally smaller effect. Nevertheless, if
we compare the recent financial crisis to the period preceding it, we see that impulse
response functions increased in magnitude.
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Figure 4: Impulse Responses to a Negative Financial Shock

5 Conclusions

In this paper, we have argued for the desirability of constructing a dynamic financial
conditions index which takes into account changes in the financial sector, its interaction
with the macroeconomy and data availability. In particular, we want a methodology
which can choose different financial variables at different points in time and weight
them differently. We develop DMS and DMA methods, adapted from Raftery et al
(2010), to achieve this aim.
Working with a large model space involving many TVP-FAVARs (and restricted

variants) which make different choices of financial variables, we find DMA and DMS
methods lead to improve forecasts of macroeconomic variables, relative to methods which
use a single model. This holds true regardless of whether the single model is parsimonious
(e.g. a VAR for the macroeconomic variables) or parameter-rich (e.g. an unrestricted
TVP-FAVAR which includes the same large set of financial variables at every point in
time). The dynamic FCIs we construct are mostly similar to those constructed using
conventional methods. However, particularly at times of great financial stress (e.g. the
late 1970s and early 1980s and the recent financial crisis), our FCI can be quite different
from conventional benchmarks. The DMA and DMS algorithm also indicates substantial
inter-temporal variation in terms of which financial variables are used to construct it.
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B: Technical Appendix

In this appendix, we describe the econometric methods we use to estimate and forecast
with a TVP-FAVAR (and restricted versions of it) along with various specification
details.
The Algorithm
We write the TVP-FAVAR compactly as:

xt = ztλt + ut, ut ∼ N (0, Vt)

zt = zt−1βt + εt, εt ∼ N (0, Qt)

βt = βt−1 + ηt, ηt ∼ N (0, Rt)

λt = λt−1 + vt, vt ∼ N (0,Wt)

where λt =
(
λyt , λ

f
t

)′
. Note that, as specified in the body of the paper, we identify λft by

setting its first element to 1 and this restriction is maintained at all time periods. We
also use notation where f̃t is the standard principal components estimate of ft based on

xt (using data up to time t), zt =

[
yt
ft

]
, z̃t =

[
yt
f̃t

]
and, if at is a vector then ai,t is the

ith element of that vector and if At is a matrix Aii,t is its (i, i)th element. The algorithm
below require priors for the initial states. We make the relatively diffuse choices: f0 ∼
N (0, 100). f0 ∼ N (0, 10), λ0 ∼ N (0, I), β0 ∼ N (0, I). For the EWMA estimates
of the error covariance matrices, we initialize them with V̂0 = 0.1 × I, Q̂0 = 0.1 × I,
R̂0 = 10−5 × I and Ŵ0 = 10−5 × I. Note that setting R̂0 and Ŵ0 to small values is
motivated by the fact that Rt and Qt control the degree of evolution in the coeffi cients.
Even apparently small variances such as 10−5 will allow for a large degree of coeffi cient
variation in a relatively short time period.
The algorithm extends the one derived in Doz, Giannone and Reichlin (2011) to the

TVP-FAVAR and involves two main steps which are repeated for t = 1, .., T .
Step 1: Conditional on f̃t, estimate the parameters in the TVP-FAVAR.
Step 2: Conditional on the estimated TVP-FAVAR parameters from Step 1, use the

Kalman filter to produce an estimate of ft which is used as our FCI.
Step 2 requires no additional explanation, being just a standard application of

Kalman filtering in a state space model. We provide exact details of Step 1 here.
Step 1 involves using the priors/initial conditions above for t = 0 values and then,

for t = 1, .., T , proceeding as follows:

1. Calculate the residuals for the state equations, η̂t−1 and v̂t−1, using the formulas

v̂t−1 = λ̂t−1 − λ̂t−2,
η̂t−1 = β̂t−1 − β̂t−2.
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2. Estimate the state covariances Rt and Wt using:

R̂t = κ3R̂t−1 + (1− κ3) η̂t−1η̂′t−1,
Ŵt = κ4Ŵt−1 + (1− κ4) v̂t−1v̂′t−1.

3. Calculate the quantities in the Kalman filter prediction equations for λt and βt
given information at t− 1:

λt ∼ N
(
λt|t−1,Σ

λ
t|t−1

)
,

βt ∼ N
(
βt|t−1,Σ

β
t|t−1

)
,

where λt|t−1 = λt−1|t−1 and Σλ
t|t−1 = Σλ

t−1|t−1+Ŵt and βt|t−1 = βt−1|t−1 and Σβ
t|t−1 =

Σβ
t−1|t−1 + R̂t.

4. Compute the measurement equation prediction errors as

ût = xt − x̂t|t−1,
ε̂t = zt − ẑt|t−1,

where x̂t|t−1 = z̃tλt|t−1 and ẑt|t−1 = zt−1βt|t−1.

5. Estimate the measurement equation error covariance matrices, Qt and Vt using
EWMA specifications:

V̂t = κ1V̂t−1 + (1− κ1) ûtû′t
Q̂t = κ2Q̂t−1 + (1− κ2) ε̂tε̂′t

6. Update λi,t for each i = 1, ..., n from

λit ∼ N
(
λi,t|t,Σ

λ
ii,t|t
)
,

where λi,t|t = λi,t|t−1 + Σλ
ii,t|t−1z̃

′
t

(
V̂t + z̃tΣ

λ
ii,t|t−1f̃

′
t

)−1
ε̂it and Σλ

ii,t|t = Σλ
ii,t|t−1 −

Σλ
ii,t|t−1z̃

′
t

(
V̂t + z̃tΣ

λ
ii,t|t−1z̃

′
t

)−1
z̃tΣ

λ
ii,t|t−1.

7. Update the estimate of βt given information at time t using:

βt ∼ N
(
βt|t,Σ

λ
t|t
)
,

where βt|t = βt|t−1 + Σβ
t|t−1z̃

′
t−1

(
Q̂t + z̃t−1Σ

β
t|t−1z̃

′
t−1

)−1 (
z̃t − z̃t−1β̂t−1

)
and Σβ

t|t =

Σβ
t|t−1 − Σβ

t|t−1z̃
′
t−1

(
Q̂t + z̃t−1Σ

β
t|t−1z̃

′
t−1

)−1
z̃t−1Σ

β
t|t−1.

8. The time t parameter estimates produced are V̂t, Q̂t, R̂t, Ŵt, β̂t = βt|t and λ̂t = λt|t.

22



Choice of Decay Factors
For the time-varying error covariances, Vt, Qt,Wt and Rt, we use EWMA methods

which involve decay factors, κ1, κ2, κ3 and κ4 which are used to discount observations
in the more distant past and put more weight on the most recent observations. We set
κ1 = κ2 = 0.94 and κ3 = κ4 = 0.98. These values were chosen based on our previous
experience (Koop and Korobilis, 2012, 2013). The choices κ1 = κ2 = 0.94 are fairly
low, allowing for a fair degree of heteroskedasticity in the equations for xt and (y′t, ft)

′.
For fast-moving financial variables and macroeconomic VARs, there is potentially a
fairly large amount of volatility and we allow for this. The choices κ3 = κ4 = 0.98
relate to the error covariance in the state equations for λt and βt and are inspired
by the consideration that we them to be small and varying little over time. In many
applications, errors in state equations are assumed to be homoskedastic and we are near
to this case. Furthermore, we want to avoid explosive behavior in the VAR coeffi cients.
Treatment of missing values
In our application our sample is unbalanced, since it contains many financial variables

which have been collected only after the 1970s or the 1980s or later. Similar issues are
faced by organizations which monitor FCIs, for instance, the Chicago Fed National FCI
comprises 100 series where most of them have different starting dates. Although specific
computational methods for dealing with such issues exist (e.g. the EM algorithm, or
Gibbs sampler with data augmentation), our focus is on averaging over many models
which means such methods are computationally infeasible. Accordingly, similar to our
purpose of developing a simulation-free and fast algorithm for parameter estimation, we
want to avoid simulation methods for estimating the missing data in xt. Additionally,
methods such as interpolation work poorly when missing values are at the beginning of
the sample.
Since the missing data in xt are in the beginning, we make the assumption that the

factor (FCI) is estimated using only the observed series. The estimation algorithm above
allows for such an approach in a straightforward manner by just replacing missing values
with zeros. The loadings λ (whether time-varying, or constant) will become equal to 0,
thus removing from the estimate of ft the effect of the variables in xt which have missing
values at time t. This feature holds both for the initial principal components estimate
f̃t, as well as the final Kalman filter estimate.
Forecasting and Impulse Responses
One step ahead forecasting is easily done since the Kalman filter referred to in Step

2 provides us with the one-step ahead predictive density. The mean of this density can
be used as a point forecast. For h > 1 step ahead forecasts, the predictive density can
be produced by using simulation methods. However, this is computationally costly and
we do not follow this strategy in this paper. Instead, when forecasting yτ+h at time τ ,
we use the estimated VAR coeffi cients at time τ (i.e. β̂τ ) and calculate iterated h-step
ahead point forecasts using the standard formula for VAR forecasts (see, e.g., Lutkepohl,
2005, page 37).
The identification scheme for calculating impulse responses is described in the paper.

Note that this involves an ordering of the variables in the TVP-VAR part of the model
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and this ordering is (πt, ut, rt, ft)
′. We use the estimated VAR coeffi cients and error

covariance matrix at time τ to calculate the impulse responses at time τ and assume
they are unchanged over the horizon of 21 quarters for which we calculate impulse
responses.
Restricted models:
The FA-TVP-VAR is obtained by settingWt = 0 in the TVP-FAVAR, thus producing

OLS estimates (on an expanding window of data) for λ in this model. The FAVAR is
treated in a similar fashion, except that OLS methods are used on both λ and β. The
FAVAR is homoskedastic and the error covariance matrices are estimated using OLS
methods on an expanding window of data.
The VAR models are also homoskedastic and their error covariance matrices are

estimated as for the FAVARs. We use a N (0, I) prior for the VAR coeffi cients. Note
that this is the same prior as we use to initialize the time-varying VAR coeffi cients in
the TVP-VAR.
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