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Abstract

Stochastic Volatility in Mean Vector Autoregressions (SVMVARs) are popularly used

to jointly estimate macroeconomic and financial uncertainty and their economic effects.

However, SVMVARs are computationally demanding. To ease the computational bur-

den, existing approaches limit the number of variables included, adopt a specification

which is not invariant to the way the variables are ordered and require the researcher

to classify each variable as macroeconomic or financial before estimation. To overcome

these limitations, we develop an efficient Markov Chain Monte Carlo (MCMC) algo-

rithm for SVMVARs which are large, order-invariant and have unclassified variables.

For each unclassified variable, the algorithm determines the appropriate classification

at each point in time. We demonstrate the importance of these extensions using a

large SVMVAR with over 40 U.S. variables, 16 of which are treated as unclassified.

We show that smaller SVMVARs overestimate the economic effects of macroeconomic

uncertainty, failing to reveal that financial uncertainty plays a larger role. When using

large SVMVARs, however, different orderings yield conflicting results and it becomes

critical to use an order-invariant specification. We also find that most unclassified vari-

ables change classification over time with changes often occurring during crisis periods.
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1 Introduction

Economists and policymakers have begun to investigate the different roles played by macroe-

conomic and financial uncertainty. But can we easily measure macroeconomic and financial

uncertainty? Many studies attempt to do so. Financial uncertainty is regularly proxied using

financial market volatility (Bloom, 2009) while disagreement among forecasters (Bachmann,

Elstner and Sims, 2013), the magnitude of surprises when economic data is released (Scotti,

2016) and the number of terms relating to uncertainty in newspapers (Baker, Bloom and

Davis, 2016) can be used to capture different dimensions of macroeconomic uncertainty.

Producing comparable measures of macroeconomic and financial uncertainty is even more

challenging. Jurado, Ludvigson and Ng (2015) and Ludvigson, Ma and Ng (2021) extract

the common variation in the unforecastable component of a large number of macroeconomic

and financial time series. However, a growing literature instead equates uncertainty with

Stochastic Volatility (SV), the time-varying second moments of time series variables (see

Carriero, Clark and Marcellino, 2018, 2020; Carriero, Clark, Marcellino and Mertens, 2021;

Berger, Grabert and Kempa, 2016; Mumtaz and Theodoridis, 2017; and Mumtaz and Musso,

2021 among many others). Within this literature, the Stochastic Volatility in Mean Vector

Autoregression (SVMVAR) is a popular model. In the SVMVAR, macroeconomic (financial)

uncertainty is modeled as the common component driving the volatilities of all macroeco-

nomic (financial) variables. The SVMVAR is attractive since it jointly estimates uncertainty

(through the SV in the errors) and produces an estimate of its impact on the economy (by

allowing the SVs to enter the conditional mean of the VAR).

Despite its popularity, the SVMVAR faces three major challenges. First, efficient MCMC

algorithms typically used to estimate VARs with SV cannot be applied once SV is added

to the mean. Computationally demanding alternatives involving a Metropolis step (see

Jacquier, Polson and Rossi, 2002) or particle Gibbs step (see Andrieu, Doucet and Holenstein,

2010 and Lindsten, Jordan and Schon, 2014) must instead be used. This limits the number

of variables which can be included in the model. This is an unattractive property given the
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literature’s recent focus on using large VARs (see, among many others, Banbura, Giannone

and Reichlin, 2010; Koop and Korobilis, 2013; Korobilis and Pettenuzzo, 2019; Carriero,

Clark and Marcellino, 2019; Gefang, Koop and Poon, 2022; and Chan, 2022a).

Second, existing SVMVAR specifications rely on the use of a lower triangular parame-

terization for modeling the reduced-form error covariance matrix. This does not relate to

structural identification. Rather, it facilitates model estimation and improves computational

efficiency (Chan, 2022b). However, recent studies have highlighted that this lower triangular

structure results in an order-dependence issue where the results can change depending on the

way variables are ordered. This effects both structural analysis and forecasting, becoming an

acute problem when large models are considered (Chan, Koop and Yu, 2021, Hartwig, 2019,

Arias, Rubio-Ramirez and Shin, 2021, Chan, Doucet, Len-Gonzlez and Strachan, 2018).

Third, it remains unclear how dozens of series should be classified prior to estimation.

Should variables relating to money supply, credit, exchange rates, interest rates and stock

prices be classified as macroeconomic or financial? If 10 such variables are included in a

model, this means there are 102 possible classification schemes which the researcher must

choose between. This has led to different studies (for example, Carriero, Clark and Mar-

cellino, 2018, Ludvigson, Ma and Ng, 2021 and Redl, 2020) classifying key variables such as

the federal funds rate and stock price in different ways.

To circumvent these challenges, this paper develops a novel model and MCMC algorithm

for SVMVARs which are large, order-invariant and have unclassified variables. Our compu-

tationally efficient algorithm builds on Cross, Hou, Koop and Poon (2022), exploiting band

and sparse matrix algorithms. This scalable approach allows us to consider the estimation

of very large SVMVARs. Following Bertsche and Braun (2022) and Chan, Koop and Yu

(2021), we also use a specification which does not rely on a lower triangular structure for

the reduced-form error covariance matrix and is, thus, order invariant. Our order-invariant

approach instead identifies the model using multivariate SV. Using our model, we can also

distinguish between macroeconomic, financial and unclassified variables. Specifically, we al-
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low the algorithm to determine whether each unclassified variable should be included in the

macroeconomic or financial block. As the structure of the economy evolves or experiences

major crises, a variable’s classification may change over time. Consequently, we allow for

Markov switching time-varying classification.

Other studies which deploy SVMVAR methods include Cross, Hou and Poon (2018)

who examine the effects of domestic and foreign uncertainty in three small open economies

and Carriero, Clark and Marcellino (2020) who examine comovements in macroeconomic

uncertainty across advanced economies. The study most closely related to ours is Carriero,

Clark and Marcellino (2018), hereafter CCM. CCM develop Bayesian methods to estimate

a 30 variable SVMVAR and measure the effects of macroeconomic and financial uncertainty

on the US economy. The forthcoming corrigendum corrects a mistake in the algorithm but

this does not significantly affect the overarching results. However, the authors note that

issues with the mixing and convergence of the MCMC chain are heightened and a shorter

sample period is needed to improve model stability.

In our empirical work, we use U.S. data to contrast results obtained from six different

SVMVARs including a 43 variable order-invariant SVMVAR (OI-SVMVAR) with 16 unclas-

sified variables. This allows us to assess the importance of model size, order invariance and

time-varying classification when estimating macroeconomic and financial uncertainty and

their impact on the economy. When a larger 43 variable model is used, model misspeci-

fication issues resulting from omitted variables bias are likely to be alleviated. We show

that smaller 30 variable SVMVARs tend to overestimate the effects of macroeconomic un-

certainty but the effects of financial uncertainty are less sensitive to the size of our dataset.

Using our larger models it therefore becomes clear that with macroeconomic uncertainty

playing a smaller role, financial uncertainty has a more pronounced effect on economic ac-

tivity. This aligns with Ludvigson, Ma and Ng (2021) who also find that financial rather

than macroeconomic uncertainty plays a larger role in lowering economic activity.

We also find that to produce robust estimation results it is critical to use an order
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invariant specification. Many studies using the lower triangular parameterization order the

macroeconomic variables before the financial variables. This implicitly assumes that the

variation in financial variables is partly explained by the volatility of macroeconomic variables

with the remaining variation explained by the volatility of financial variables. We show

that this leads to underestimation of the common SV of financial variables, our measure of

financial uncertainty. This means that order-dependent version of our model (i.e. one which

uses the lower triangular parameterization) fails to detect the substantive effect financial

uncertainty has on the economy. Conversely, when the ordering of variables is reversed (i.e.

an upper triangular parameterization is used) then the magnitude of the financial uncertainty

estimate increases substantially. The order-invariant specification adopted in this paper does

not suffer from these order dependence issues and produces robust results in larger models.

Last, we show that most of our unclassified variables change classification at some point

during the sample with important shifts often occurring during crises. Allowing for unclas-

sified variables therefore ensures that variables are assigned to the appropriate block when

our uncertainty measures and their impacts are estimated.

The remainder of this paper is organized as follows. Section 2 introduces our OI-SVMVAR

model with time-varying classification. Section 3 outlines the data used and different model

specifications. Section 4 discusses our empirical results. Section 5 concludes. Our Appendix

contains a Data Appendix, Technical Appendix and supplementary figures.

2 A Model to Distinguish between Macroeconomic and

Financial Uncertainty

In this section, we describe a new SVMVAR which is order-invariant and allows for uncer-

tainty in the way variables are classified. We then provide an informal description of the

MCMC algorithm which allows for efficient Bayesian inference in our large OI-SVMVAR

with time-varying classification. Full details of the the priors and algorithm are provided in
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the Technical Appendix.

2.1 The Order-Invariant Stochastic Volatility in Mean VAR

Let ymt = (ym1,t, . . . , y
m
nm,t) be an nm×1 vector of macroeconomic variables, yft = (yf1,t, . . . , y

f
nf ,t

)

be an nf × 1 vector of financial variables, and yut = (yu1,t, . . . , y
u
nu,t) be an nu× 1 vector of un-

classified variables that could belong to either the macro or financial block. One contribution

of this paper lies in the treatment of these unclassified variables.

We consider the following SVMVAR model, denoting yt = (ym
′

t , yu
′
t , y

f ′

t )′ and n = nm +

nf + nu:

yt =

p∑
i=1

Biyt−i +

q∑
j=0

Ajht−j + B−1
0 εyt , εyt ∼ N (0,Ut), (1)

where B0 is a non-singular unrestricted n× n matrix, B1, . . . ,Bp are n× n VAR coefficient

matrices and ht = (hm,t, hf,t)
′ is a 2× 1 vector of common log-volatilities which capture the

co-movement in the time-varying variances of the macro and financial variables. We use

e
1
2
hm,t and e

1
2
hf,t as our measures of macro and financial uncertainty - these will be described

in more detail shortly. The coefficient matrices associated with the common log-volatilities

A0, . . . ,Aq are of dimension n×2 and capture the effects of the contemporaneous and lagged

common log-volatilities on the VAR variables.

It is worth emphasizing that we do not assume that the contemporaneous coefficient

matrix B0 has a lower triangular structure. The latter assumption is widely applied in

macroeconomic analyses using multivariate SV models. However, recent studies have un-

covered that order dependence issues resulting from this modeling strategy tend to become

serious in large models. To this end, we adopt the order invariant approaches of Bertsche

and Braun (2022) and Chan, Koop and Yu (2021) by specifying an unrestricted B0 in our

proposed SVMVAR model. It has been shown in these papers that the contemporaneous co-

efficient matrix B0 is identified up to permutations and sign changes given that the volatility
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is changing over time.

Turning back to our uncertainty measures, the matrix Ut is assumed to be diagonal:

Ut =


Ωm,t 0 0

0 Ωu,t 0

0 0 Ωf,t

 , (2)

where the volatilities of the macro, financial and unclassified variables are respectively defined

as Ωm,t = diag(eω
m
1,t , . . . , eω

m
nm,t), Ωf,t = diag(eω

f
1,t , . . . , e

ωf
nf ,t) and Ωu,t = diag(eω

u
1,t , . . . , eω

u
nu,t).

For variables in the macro and financial blocks, their log-volatilities are specified as:

ωmi,t = ηmi,t + hm,t, i = 1, . . . , nm, (3)

ωfi,t = ηfi,t + hf,t, i = 1, . . . , nf , (4)

where ηmi,t and ηfi,t are the idiosyncratic volatility components associated with the ith macro

and financial variables respectively. Equations (3) and (4) indicate that the volatility of each

variable in the macro (financial) block is defined as the sum of its idiosyncratic volatility

and the common log-volatility of the macro (financial) variables.

The log-volatilities for the unclassified variables are specified as:

ωui,t = ηui,t + hsi,t,t, i = 1, . . . , nu, (5)

where si,t ∈ {m, f} is the indicator variable for the ith unclassified variable, which is assumed

to follow a Markov switching process with transition probability p(si,t = k|si,t−1 = l) = pil,k,

k, l ∈ {m, f}. Note that the volatility of the ith unclassified variable is again defined as the

sum of two components. The first component is the idiosyncratic component denoted as ηui,t,

and the second component is determined by the indicator variable si,t as either the common

log-volatility of the macro block or of the financial block. For example, if si,t = m, then
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hsi,t,t = hm,t, which indicates that the ith unclassified variable belongs to the macro block at

time t. This specification not only allows each unclassified variable to be assigned to either

the macro or financial block, but does so in a time-varying fashion. So it is possible that

a variable switches from the financial block to the macro block (or vice versa). This allows

us to investigate a range of interesting possibilities. For instance, the volatility of a variable

may appear like financial volatility in normal times but like macro volatility in times of crisis.

We follow CCM in assuming that our measures of uncertainty depend not only on past

uncertainty but also past values of the variables themselves. That is, we assume the common

log-volatilities evolve as the following VAR process:

ht =

ph∑
i=1

Φiht−i +

py∑
j=1

Ψjyt−j + εht , εht ∼ N (0,Σh) , (6)

where the initial state is specified as h1 ∼ N (0,Vh). The idiosyncratic log-volatilities are

assumed to follow stationary AR(1) processes:

ηki,t = ρk,iη
k
i,t−1 + εki,t, εki,t ∼ N (0, σ2

k,i), (7)

for i = 1, . . . , nk, k ∈ {m, f, u} and |ρk,i| < 1. The initial state is specified as ηki,1 ∼

N
(

0,
σ2
k,i

1−ρ2
k,i

)
. We also note that in (1) and (6) we follow CCM in setting the lag orders of

our models to p = 6, q = 2 and ph = 2 and py = 1 respectively.

It is worth mentioning that Bertschke and Braun (2022) and Chan, Koop and Yu (2021)

show that B0 is identified up to permutation of its columns. With regards to the common

stochastic volatilities that we interpret as macroeconomic and financial uncertainties, in

general, SVMVARs with unrestricted B0 matrix would result in a potential label switching

problem. However, it can be shown that this label switching problem would not influence

our empirical results (see Technical Appendix for details).
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2.2 Posterior Inference in the OI-SVMVAR

Bayesian inference in VARs with SV is typically undertaken using MCMC methods involving

the auxiliary mixture sampler of Kim, Shephard and Chib (1998). However, once SV is

added to the mean the auxiliary mixture sampler can no longer be used. Instead, papers

such as CCM use particle filtering and, in particular, the particle Gibbs step proposed by

Andrieu, Doucet and Holdenstein (2010). However, particle filtering can be computationally

burdensome in large models and can suffer from particle degeneracy problems. These points

are demonstrated in Cross, Hou, Koop and Poon (2022) who develop an MCMC algorithm

which uses a Metropolis-Hastings step.1 This involves a Gaussian candidate generating

density with variance depending on the Hessian of the conditional posterior of the log-

volatilities. Crucially, this Hessian is block-banded. Band and sparse matrix algorithms can

therefore be exploited to allow for efficient computation even in large SVMVARs. This opens

the door to Bayesian estimation of very large SVMVARs such as those considered in this

paper.

In the present paper, we extend the methods of Cross, Hou, Koop and Poon (2022)

to allow for variables whose classification is uncertain. Conditional on knowing the way

the variables are classified (i.e. conditional on (si,1, . . . , si,T ) for i = 1, . . . , nu), we can

transform our model by first reordering the equations of the unclassified variables so as to

group them appropriately with those predetermined macro and financial variables. After this

transformation, the transformed model reduces to a standard SVMVAR and the methods of

Cross, Hou, Koop and Poon (2022) can then be applied directly to sample the log-volatilities

(h1, . . . ,hT ). Next, it can be shown that, given the log-volatilities (h1, . . . ,hT ), draws of

the indicator variable (si,1, . . . , si,T ), i = 1, . . . , nu and the Markov transition probabilities

(pim,m, p
i
m,f , p

i
f,m, p

i
f,f ) can be directly obtained by using the algorithm of Chib (1996). More

details about prior and the MCMC sampler are given in the Technical Appendix B.

1While Jacquier, Polson and Rossi, 2002 also use a Metropolis step to draw the log-volatilities this must
be done date-by-date. In contrast, Cross, Hou, Koop and Poon (2022) sample the log-volatilities across all
dates in a single step, significantly reducing computation time.
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3 Large Dataset, Unclassified Variables and Models

In this section, we discuss our large dataset and unclassified variables. We also provide an

overview of the six different SVMVARs estimated to analyze the importance of model size,

order invariance and time-varying classification. The complete list of variables and their

abbreviations and transformations are given in the Data Appendix. Like CCM and Jurado,

Lugvigson and Ng (2015), all our models are estimated with standardized data.

CCM include 30 monthly U.S. variables in their analysis, classifying 18 variables as

macroeconomic and 12 as financial. Originally, they used a sample from July 1960 to De-

cember 2014 but in their forthcoming corregendum, which corrects the algorithm used, the

sample instead starts in January 1985 to minimize instabilities. The macroeconomic series

and some financial series are obtained from the FRED-MD dataset described in McCracken

and Ng (2016) with the remaining variables available from Kenneth French. Determining

the classification of the federal funds rate, the S&P 500 and credit spread is particularly

challenging since this “reflects some choice as to what constitutes a macroeconomic variable

rather than a financial variable” (CCM, page 804). CCM suggest that the federal funds rate

should be treated as a macro variable since it is the instrument of monetary policy. That

said, studies as recent as Redl (2020) instead treat the policy rate as a financial variable. For

the S&P 500 and credit spread “the distinction between macro and finance is admittedly less

clear” (CCM, page 805) but ultimately CCM place them in the group of financial variables.

In our analysis, we use an updated and extended version of the dataset considered in

CCM to estimate the six SVMVARs outlined in Table 1. The sample spans January 1960 to

October 2021, allowing us to capture the coronavirus pandemic. Model 1 is our benchmark

model - it is order dependent, includes the same 30 variables as CCM and classifies them in

the same way with 18 variables treated as macroeconomic and the remaining 12 as financial.

Model 2 is almost identical but utilizes our order invariant specification.

Models 3 and 4 are very large including 43 variables and introducing time-varying clas-

sification. In these models we treat the federal funds rate, credit spread and S&P 500 as
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unclassified variables. We also include data on an additional 13 unclassified variables span-

ning: money supply, credit, house prices, interest rates and exchange rates. These variables

were obtained from the FRED-MD and FRED datasets with historical house price data

available from Robert Shiller. The only difference between models 3 and 4 is that model 4

is order invariant. Models 5 and 6 mirror models 3 and 4 but the ordering of the variables

is reversed to examine whether the results obtained are robust to this change.

As previously emphasized, when B0 is not left unrestricted, the ordering of the variables

matters. For models 1 and 3 which involve a lower triangular parameterization, we order the

macro variables before the financial variables as is common practice in the literature. This

implies that the variation in financial variables is explained by the volatility of macroeco-

nomic variables with the remaining variation explained by the volatility of financial variables.

When assessing robustness to reversing the ordering of variables, an upper triangular param-

eterization is used and financial variables are then ordered before macro variables. Models

4 and 6 should produce the same resuilts, we include both just to confirm empirically that

this is so.2

Table 1: Summary of SVMVAR Models

Main Empirical Analysis

Models 30 variables 43 variables Time-Varying Classification (TVC) Order-Invariant (OI) Specification of B0

1. CCM-30 • lower triangular

2. OI-30 • • unrestricted

3. CCM-TVC-43 • • lower triangular

4. OI-TVC-43 • • • unrestricted

Assessing Robustness to Reversing Variable Ordering

5. TVC-RO-43 • • upper triangular

6. OI-TVC-RO-43 • • • unrestricted

2It is worth stressing that these models, which adopt different assumptions about B0 and the ordering
of variables, are reduced form models. Our empirical results include impulse responses which involve a
structural identification assumption detailed below. This assumption is the same for all models.
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4 Empirical Results

In this section, we contrast and present results from our six different SVMVARs. We con-

sider the importance of model size, order invariance and time-varying classification when

measuring uncertainty and its economic effects. We find that when using a larger SVMVAR,

the economic effects of macroeconomic uncertainty are smaller with financial uncertainty

now dominating. We will also demonstrate that in larger models the results obtained are

sensitive to the ordering of the variables underscoring the importance of adopting an order-

invariant specification. We also show that the majority of our unclassified variables exhibit

time-varying classification.

4.1 The Importance of Model Size

We begin by contrasting the uncertainty estimates and impulse response functions obtained

from our two smaller models, CCM-30 and OI-30, and our large order invariant model, OI-

TVC-43. Throughout, we report the cumulated impulse response functions. Specifically,

we transform the impulse responses of each variable by multiplying them with the standard

deviations used to standardize the data prior to estimation. We then cumulate them to

obtain the impulse responses in levels or log levels.

As demonstrated in CCM, in the SVMVAR uncertainty shocks are orthogonal to the

VAR shocks by construction, providing structural identification. To separately identify the

effects of macro and financial uncertainty, for all of our models we follow standard practice

(see CCM and Banbura, Giannone and Reichlin, 2010 among many others), assuming that

macroeconomic uncertainty affects financial uncertainty contemporaneously while financial

uncertainty affects macroeconomic uncertainty with a lag.3

Our uncertainty estimates are presented in Figure 1. We can see that the estimates

3Specifically, we assume that the reduced-form errors in equation (6), which describes the evolution of
our common log-volatilities, can be decomposed as εht = Leh

t . In models 1 to 4 L is a lower triangular matrix
such that LL′ = Σh and eh

t is a vector of uncorrelated structural shocks. When the ordering of our variables
is reversed in models 5 and 6, L is instead an upper triangular matrix with LL′ = Σh.
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produced by our smaller models are nearly identical and that the broad trends observed are

similar across all three models. There are, however, some important differences in the mag-

nitude of our uncertainty measures particularly during economic crises when uncertainty is

high. We find that our small and large models produce similar estimates of macroeconomic

uncertainty throughout the sample with the exception of the Great Recession and coron-

avirus pandemic where small models underestimate macro uncertainty. Without a larger

information set and data-driven classification, however, financial uncertainty is underesti-

mated throughout the 1980s, 1990s and early 2000s. More recently, financial uncertainty is

overestimated when using smaller models. This is particularly notable during the pandemic

where we would expect the increase in financial uncertainty to be more modest as captured

by our large model, OI-TVC-43.
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Figure 1: Uncertainty estimates: posterior medians of the macro (e
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hm,t) and financial
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Figure 2: Impulse responses for one standard deviation uncertainty shocks: posterior me-
dians and 70% credible intervals of selected variables for OI-30 and OI-TVC-43

Focusing on the role of model size, we now contrast impulse responses generated by our

two order-invariant models OI-TVC-43 and OI-30 in Figure 2. Before comparing results

from our two models, it is worth noting that our OI-30 results are qualitatively similar to

CCM. In response to a macroeconomic uncertainty shock, there is a decline in real economic

15



activity, little movement in prices and a subsequent monetary policy easing. The responses

of financial indicators are also muted with the exception of the credit spread. A financial

uncertainty shock has similar effects but fails to dampen the housing sector and affects

financial indicators including the S&P 500, credit spread and excess returns more strongly.

When a larger model is considered, however, we can shed further light on the relative

importance of macroeconomic and financial uncertainty shocks. This is because issues around

model misspecification arising from omitted variables bias are likely to be alleviated. In our

case, we can clearly see that using our larger OI-TVC-43, the effects of macro uncertainty are

far less pronounced with many credible intervals spanning zero. Where responses are non-

zero, they are relatively modest. For example, we see a small increase in the unemployment

rate and credit spread and a slight fall in the federal funds rate and the S&P 500.

In contrast, the effects of the financial uncertainty shock are similar for the OI-TVP-43

and OI-30 with a greater overlap of the impulse responses. Overall, our findings suggest that

financial uncertainty has a stronger adverse impact on the economy than macroeconomic un-

certainty. This aligns with Ludvigson, Ma and Ng (2021) who, using a small-scale trilateral

VAR and a novel structural identification scheme, also uncover that financial uncertainty

plays a larger role in lowering economic activity. They also find that macroeconomic un-

certainty has a positive effect on output in the short-run. However, it is possible that this

pattern is induced by omitted variables bias and that inclusion of other key variables in the

model such as the federal funds rate eliminates this puzzle.

4.2 The Importance of Order Invariance

Having revealed the dominant role played by financial uncertainty in lowering economic

activity, we now assess the severity of order dependence issues. If we contrast the results

obtained from CCM-30 and its order invariant counterpart OI-30, we saw in Figure 1 that

they produce similar measures of uncertainty. We can also see from Figure 3 that the impulse

response functions look very similar. For brevity, we do not include a comparison of CCM-
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30 and its counterpart with the ordering reversed but we again find very similar results.4

Overall, this demonstrates that the ordering issue is not as severe when we use smaller

models.

We next compare two order dependent models, CCM-TVC-43 and its smaller counter-

part CCM-30. We can clearly see from Figure 4 (left panel) that when using a larger model

with an order dependent specification, our financial uncertainty measure is much smaller in

magnitude. This result arises directly from B0 having a lower triangular parameterization.

Since our macro variables are ordered before our financial variables, the variation in financial

variables will be explained not only by financial uncertainty (proxied by the common SV

of financial variables) but also macroeconomic uncertainty (proxied by the common SV of

macroeconomic variables). Unsurprisingly, this leads to financial uncertainty being under-

estimated when more variables are included in the model. If we consider Figure 5, this has

important repercussions with the larger model incorrectly detecting that financial uncer-

tainty as well as macroeconomic uncertainty do not have adverse effects on the economy.

If we then reverse the ordering of the variables in our large order dependent model

CCM-TVC-43 and consider CCM-TVC-RO-43, our uncertainty measures are again shown

in Figure 4 (right hand panel). The magnitude of our financial uncertainty measure has

now increased since the variation in financial variables is now explained by the volatility of

financial variables but not macro variables. The adverse response to a financial uncertainty

shock consequently become much larger but is less precisely estimated as shown in Figure 6.

These findings illustrate that when we use a lower triangular parameterization in large

SVMVARs the impulse response functions are highly sensitive to the ordering. In fact, the

two sets of impulse responses shown in Figure 6 have contradictory findings regarding whether

financial uncertainty affects the economy. Consequently, an order-invariant approach is

required to obtain robust results in larger models. Using our order-invariant specification, we

obtain very similar results even when we reverse the ordering of the variables (see Figure 8

4These are available upon request.
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in the Supplementary Figures Appendix). The very slight differences are due to MCMC

approximation error.
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Figure 3: Impulse responses for one standard deviation uncertainty shocks: posterior me-
dians and 70% credible intervals for OI-30 and CCM-30
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Figure 5: Impulse responses for one standard deviation uncertainty shocks: posterior me-
dians and 70% credible intervals of selected variables for CCM-TVC-43 and CCM-30
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Figure 6: Impulse responses for one standard deviation uncertainty shocks: posterior medi-
ans and 70% credible intervals of selected variables for CCM-TVC-43 and CCM-TVC-RO-43

4.3 The Importance of Time-Varying Classification

In addition to developing an efficient algorithm to estimate large order-invariant SVMVARs,

another contribution of our paper lies in the treatment of unclassified variables. In the OI-
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TVC-43 we allow 16 variables to be treated as unclassified. As shown in Figure 7, using

the OI-TVC-43, we find that the federal funds rate and the credit spread are, on average,

classified as financial variables. The classification of the S&P 500 varies considerably over

time. These findings differ from the classification schemes selected by CCM and others in

the literature including Jurado, Ludvigson and Ng (2015).

We also find evidence which suggests that key changes often occurring during crisis

periods. To illustrate, we discuss the results from the three unclassified variables considered

in CCM. Focusing first on the federal funds rate, we uncover that the probability that the

federal funds rate should be included as a macroeconomic variable rises around recessions

when there are significant periods of monetary policy loosening. For example, the probability

that the federal funds rate should be classified as a macroeconomic variable rises significantly

during the early 1980s and dot com bust. Similarly, during the global financial crisis and

coronavirus pandemic, as monetary policy hit the zero lower bound following a period of

normalization we again see stark changes.

If we now consider the S&P 500, as expected, the probability that it is classified as a

financial variable is high during times of financial turmoil such as the 1973-1974 crash, the

2001 dot com bust and the global financial crisis. Last, if we turn to the credit spread,

its importance as a macroeconomic variable surges during the global financial crisis and

coronavirus pandemic. These episodes reflect businesses increased borrowing cost which, in

turn, reduces investment and economic growth (Arrelano, Bai and Kehoe, 2019; Christiano,

Motto and Rostagno, 2014; Gilchrist, Sim and Zakrajek, 2014).
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Figure 7: The estimated posterior probability p(si,t = m|y) that each of unclassified vari-
able should be treated as a macro variable for OI-TVC-43. Grey shading indicates NBER
recession periods.

23



5 Conclusion

The SVMVAR has emerged as an attractive model, allowing for joint estimation of macroe-

conomic and financial uncertainty and their impact on the economy. However, SVMVARs

are difficult to estimate and computationally demanding. To overcome these challenges, ex-

isting approaches make a number of assumptions. First, a limit is placed on the number of

variables which can be included in the model. Second, a lower triangular parameterization is

used for the reduced-form error covariance matrix — this improves computational efficiency

but introduces an order dependence issue. Third, the researcher must use expert judgment

to classify each variable as macroeconomic or financial prior to estimation. Each of these

assumptions may have an impact on empirical results. The models and posterior simulation

methods developed in this paper avoid making such assumptions. We introduce a new SVM-

VAR model in which the classification of some variables is uncertain. The algorithm can then

decide whether to classify them as financial or macroeconomic variables in a time-varying

fashion. Our model also relaxes the lower triangularity assumption, thus allowing for order

invariant inference. A novel MCMC algorithm, which extends that of Cross, Hou, Koop

and Poon (2022), is computationally efficient and exhibits good convergence properties, thus

allowing us to include a large number of variables in the model.

We compare our very large OI-SVMVAR with unclassified variables with a range of

alternative SVMVARs. This allows us to investigate the importance of model size, order-

invariance and time-varying classification. We show that smaller SVMVARs overestimate

the effects of macroeconomic uncertainty on the economy. However, using our larger model

it becomes clear that financial not macroeconomic uncertainty has a larger negative effect

on the economy. This finding aligns with Ludvigson, Ma and Ng (2021). We also show that

using a lower triangular parameterization for the error covariance matrix yields results which

are strongly influenced by the ordering of variables. It is therefore critical to use an order

invariant specification such as the one proposed in this paper. Last, we show that most of our

unclassified variables change classification at some point during the sample with important
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shifts often occurring during crises. Time-varying classification ensures that variables are

assigned to the appropriate block when our uncertainty measures and their impacts are

estimated.
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A Data Appendix

Table 2: Description of the Data

Abbreviation Macroeconomic variable Transformation

PAYEMS All employees: total nonfarm ∆ log

INDPRO Industrial production index ∆ log

CUMFNS Capacity utilization: manufacturing ∆

HWIURATIO Help wanted-to-unemployed ratio ∆

UNRATE Unemployment rate ∆

RPI Real personal income ∆ log

CES0600000007 Weekly hours: goods producing no transformation

HOUST Housing starts log

PERMIT Housing permits log

DPCERA3M086SBEA Real consumer spending ∆ log

CMRMTSPLx Real manufacturing trade sales ∆ log

NAPMNOI ISM: new orders index no transformation

AMDMNOx Orders for durable goods ∆ log

CES0600000008 Avg. hourly earnings, goods producing ∆2 log

WPSFD49207 PPI, finished goods ∆2 log

PPICMM PPI, commodities ∆2 log

PCEPI PPI, price index ∆2 log

Financial variable

excessreturn Excess return no transformation

SMB SMB FF factor no transformation

HML HML FF factor no transformation

momentum Momentum factor no transformation

R15 R11 small stock value spread no transformation

aggind1 Industry 1 return no transformation

aggind2 Industry 2 return no transformation

aggind3 Industry 3 return no transformation

aggind4 Industry 4 return no transformation

aggind5 Industry 5 return no transformation

Unclassified variable

S&P 500 S&P 500 ∆ log

BAAT10Y Spread, Baa-10y Treasury no transformation

FEDFUNDS Federal funds rate ∆

BOGMBASE Monetary Base ∆2 log

M1 Real Real M1 Money Stock ∆2 log

M2 Real Real M2 Money Stock ∆2 log

CONSUMER Consumer Loans ∆2 log

BUSLOANS Commercial & Industrial Loans ∆2 log

NONREVSL Total Nonrevolving Credit ∆2 log

RHPI Real House Price Index ∆ log

GS10TB3Mx 10 Yr Treasury Constant Maturity - 3 Mnth TBill no transformation

TB3SMFFM 3 Mnth Treasury Constant Maturity - Federal Funds Rate no transformation

AAAFFM Moody’s Seasoned Aaa Corporate Bond - Federal Funds Rate no transformation

EXSZUSx Switzerland/US Foreign Exchange Rate ∆ log

EXUSUKx UK/US Foreign Exchange Rate ∆ log

EXCAUSx Canada/US Foreign Exchange Rate ∆ log

For our 30 variable models (models 1 and 2), we follow CCM classifying the federal funds rate as a macroeconomic variable, and credit spread and
S&P 500 as financial varibles.
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B Technical Appendix

This Appendix first provides the details about the prior distributions for the model param-

eters and elaborates some key sampling steps for estimating the SVMVAR model specified

by equations (1)-(7). We also make some comments on the potential label switching issue

for the order invariant SVMVAR and discuss a simple approach to overcome this issue.

B.1 Prior

We first introduce some notations for later reference. Let x as a vector and X as a matrix,

we define diag(x) to be a diagonal matrix with its diagonal elements being x, and vec(X)

vectorizes the matrix X by stacking the columns of the matrix X on top of one another. We

specify the following prior for the model parameters:

vec(B0) ∼ N
(
vec(B0

0), diag[vec(Vb0)]
)
,

vec(B1, . . . ,Bp) ∼ N
(
vec(B0

1, . . . ,B
0
p), diag[vec(Vb,1, . . . ,Vb,p)]

)
,

vec(A0, . . . ,Aq) ∼ N
(
vec(A0

1, . . . ,A
0
p), diag[vec(Va,1, . . . ,Va,q)]

)
,

vec(Φ1, . . . ,Φph) ∼ N
(
vec(Φ0

1, . . . ,Φ
0
ph

), diag[vec(Vφ,1, . . . ,Vφ,ph)]
)
,

vec(Ψ1, . . . ,Ψpy) ∼ N
(

vec(Ψ0
1, . . . ,Ψ

0
py), diag[vec(Vψ,1, . . . ,Vψ,py)]

)
,

Σh ∼ IW(νh,Sh),

ρk,i ∼ N (ρ0
k,i, wk,i)1(|ρk,i| < 1), σ2

k,i ∼ IG(νk,i, Sk,i), i = 1, . . . , nk, k ∈ {m, f, u},

(pim,m, p
i
m,f ) ∼ D(αim,m, α

i
m,f ), (pif,m, p

i
f,f ) ∼ D(αif,m, α

i
f,f ), i = 1, . . . , nu.

We consider the Minnesota-type adaptive hierarchical Horseshoe priors proposed by Chan

(2021) for (B1, . . . ,Bp) and (A0, . . . ,Aq). To be specific, the prior means are set to B0
j = 0,

j = 1 . . . , p and Aj = 0, j = 1, . . . , q. For the variances of parameters in the coefficient
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matrices, we first denote Vi,j
b,l and Vi,j

a,l as the (i, j)th element of Vb,l and Vb,l, and set

Vi,j
b,l =


κb1v

b
i,j

l2
, for i = j

κb2v
b
i,j

l2
d2
i

d2
j
, for i 6= j,

√
vbi,j ∼ C+(0, 1),

√
κb1,
√
κb2 ∼ C+(0, 1), for l = 1, . . . , p

Vi,j
a,l =


κa1v

a
i,j

l+12 , for i = j

κa2v
a
i,j

(l+1)2

d2
i

o2
j
, for i 6= j,

√
vai,j ∼ C+(0, 1),

√
κa1,
√
κa2 ∼ C+(0, 1), for l = 0, . . . , q

where C+(0, 1) is the standard half-Cauchy distribution. Following the standard Minnesota

prior practice, we set the prior hyperparameters d2
j as the residual variances of AR(p) model

for variable j and oj =
∑nm

i=1 d
2
i if j = 1, and oj =

∑n
i=nm+nu+1 d

2
i if j = 2.

Similarly, we impose a Horseshoe prior on matrix B0. In particular, we set its mean

B0 = 0 and let Vi,j
b0

be the (i, j)th element of B0:

Vi,j
b0

= κb0vb0i,j, κb0 ∼ C+(0, 1), vb0i,j ∼ C+(0, 1).

For VAR coefficients in the state equation (6), we set their prior means to Φ0
1 = 0.8I2,

Φ0
i = 0, i = 2, . . . , ph, and Ψ0

j = 0, j = 1, . . . , py. For the covariance matrices, we set

Vφ,i = 0.2212×2, i = 1, . . . , ph and Vψ,i = 0.4212×n, i = 1, . . . , py. For the the AR coefficients

of the idiosyncratic log-volatilities specified in equations (7), we let ρ0
k,i = 0.95 and wk,i = 0.42

for k ∈ {m, f}, i = 1, . . . , nk. For the inverse-gamma prior for the variance of innovation,

we let degree of freedom and the scale parameter to νk,i = 10 and Sk,i = 0.03(νk,i − 1) for

k ∈ {m, f}, i = 1, . . . , nk, which implies that the each innovation has a prior mean 0.03.

For the inverse-Wishart prior for the covariance matrix of the innovation, we set its degree

of freedom to νh = 10. The scale matrix is set so as to center the prior distribution to have

a prior mean 0.01I2.

For the Markov transition probabilities governing the indicator variables si,t, we use

concentration parameters of the Dirichlet priors to (αim,m, α
i
m,f ) = (10, 1) and (αif,m, α

i
f,f ) =
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(1, 10), i = 1, . . . , nu.

B.2 MCMC Sampler

Given the prior distributions described in the previous Technical Appendix B, we pro-

vide the detailed steps for drawing (h1, . . . ,hT ), (si,t, . . . , si,T ), (pim,m, p
i
m,f ) and (pif,m, p

i
f,f ),

i = 1, . . . , nu in this section. The sampling procedures for other parameters of order de-

pendent models can be found in Cross, Hou, Koop and Poon (2022) and Carriero, Clark

and Marcellino (2018). For the order invariant models, we refer readers to Chan, Koop and

Yu (2021) for more details for drawing the contemporaneous coefficient matrix B0. Lastly,

the sampling steps for those hyperparamters in the Minnesota-type adaptive hierarchical

Horseshoe prior can be found in Chan (2021).

B.2.1 Drawing (h1, . . . ,hT )

We modify the methods proposed by Cross, Hou, Koop and Poon (2021) (CHKP) to sample

the log-volatility. To set the stage, we define ηmt = (ηm1,t, . . . , η
m
nm,t)

′, ηft = (ηf1,t, . . . , η
f
nf ,t

)′,

ηut = (ηu1,t, . . . , η
u
nu,t)

′ and let ηt = (ηm
′

t , ηu
′
t , η

f ′

t )′. We first multiply B0 on both sides of

equation (1) and then rescaled each equation by its idiosyncratic volatility, which gives

z̃t =

q∑
i=0

C̃i,tht−i + ε̃yt , ε̃yt ∼ N (0, D̃t), (8)
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where z̃t = diag[exp(−1
2
ηt)] (B0yt −

∑p
i B0Biyt−i), C̃i,t = diag[exp(−1

2
ηt)]B0Ai

5 and

D̃t =



hm,tInm 0 · · · · · · 0

0 hs1,t,t
. . . . . .

...

...
. . . . . . . . .

...

...
. . . . . . hsnu,t,t 0

0 · · · · · · 0 hf,tInf


.

Next, we construct a n × n selection matrix Qt to reorder equation (8) so as to group all

macro variables into the first block and financial variable into the second block. To be

specific, let Mt = {i ∈ {1, . . . , nu} : si,t = m} and Ft = {i ∈ {1, . . . , nu} : si,t = f} be the

sets collecting the indices of the unclassified variables that are belong to the macro block

and financial block respectively, and we denote the number of elements in Mt by |Mt| and

the number of elements in Ft by |Ft|. We first define a nu × nu selection matrix Q̃t with its

first |Mt| rows being the rows of a nu × nu identify matrix indexed by Mt, and its last |Ft|

rows being the rows of a nu × nu identify matrix indexed by Ft. Then we define

Qt =


Inm 0 0

0 Q̃t 0

0 0 Inf

 .

Premultiplying both sides of equation (8) by Qt, we can obtain the following expression:

zt =

q∑
i=0

Ctht−i + εzt , εzt ∼ N (0,Dt), (9)

where zt = Qtz̃t, Ct = QtC̃t and Dt = QtD̃tQ
′
t. In equation (9), it can be easily checked

that the macro variables are ordered as the first nm + |Mt| variables in zt, and the financial

5For notational simplicity, we introduce a notation exp(x) = (ex1 , . . . , exm)′ for a m × 1 vector x =
(x1, . . . , xm)′.
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variables are ordered as the last nf + |Ft| variables in zt. Thus equation (9) is now in a

standard form of SVMVAR model, then the method proposed in CHKP can be used to

efficiently draw h. We refer readers to Cross, Hou, Koop and Poon (2022) for more details.

B.2.2 Drawing (si,1, . . . , si,T ), i = 1, . . . , nu

We first realize that the indicator variables across equations of the unclassified variables are

conditionally independent, and the indicate variables enter the likelihood only via the con-

ditional variance of the VAR system. To sample (si,1, . . . , si,T ), we first obtain the residuals

et = B0

(
yt −

p∑
i=1

Biyt−i −
q∑
j=0

Ajht−j

)
,

then the residual for the ith unclassified variable, i.e., the (nm + i)th element in et, can be

written as

eui,t ∼ N (0, eω
u
i,t), i = 1, . . . , nu,

ωui,t = ηui,t + hsi,t,t,

then the conditional likelihood of eui,t is given by

p(eui,t|si,t) ∝ e−
1
2
hsi,t exp

(
−1

2
e−(ηui,t+hsi,t,t) × (eui,t)

2

)
. (10)

Here we have suppressed all the other conditional arguments except si,t for notational con-

venience. Given the conditional likelihood in equation (10) and the Markov transition prob-

ability pil,k, k, l ∈ {m, f}, the forward-backward algorithm of Chib (1996) can be applied

for drawing the indicator variables (si,1, . . . , si,T ), i = 1, . . . , nu. To be specific, denote

eui,1:t = (eui,1, . . . , e
u
i,t)
′ and suppose we have p(si,t−1|eui,1:t−1), the forward filtering process
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is conducted for t = 1, . . . , T as follows until we obtain p(si,T |eu1:T ):

p(si,t|eui,1:t) =
p(eui,t|si,t)p(si,t|eui,1:t−1)∑
si,t
p(eui,t|si,t)p(si,t|eui,1:t−1)

=

∑
si,t−1

p(eui,t|si,t)p(si,t, si,t−1|eui,1:t−1)∑
si,t

∑
si,t−1

p(eui,t|si,t)p(si,t, si,t−1|eui,1:t−1)

=

∑
si,t−1

p(eui,t|si,t)p(si,t|si,t−1)p(si,t−1|eui,1:t−1)∑
si,t

∑
si,t−1

p(eui,t|si,t)p(si,t|si,t−1)p(si,t−1|eui,1:t−1)
,

where we assume initial state si,1 to follow the stationary distribution of the Markov process

given by pil,k, k, l ∈ {m, f}. The backward sampling step is implemented by first draw si,T

from p(si,T |eu1:T ), and then sequentially drawing si,t given si,t+1 from

p(si,t|si,t+1, e
u
i,1:T ) =

p(si,t|eui,1:t)p(si,t+1|si,t)∑
st
p(si,t|eui,1:t)p(si,t+1|si,t)

.

B.2.3 Drawing (pim,m, p
i
m,f ) and (pif,m, p

i
f,f ), i = 1, . . . , nu

Given the indicator variables (si,t, . . . , si,T ), i = 1, . . . , nu, and the Dirichlet distributed prior

for (pim,m, p
i
m,f ) and (pif,m, p

i
f,f ), it follows that

(pim,m, p
i
m,f |si,t, . . . , si,T ) ∼ D(αim,1 +Nm.m, α

i
m,2 +Nm,f ),

(pif,m, p
i
f,f |si,t, . . . , si,T ) ∼ D(αif,2 +Nf,m, α

i
f,1 +Nf,f ),

where Nk,l =
∑T−1

j=1 1(sj = k, sj+1 = l), k, l ∈ {m, f} and 1(A) is a indicator function that

is equal to one if A is true and zeros otherwise.

B.3 Label Switching Problem

This section discusses the label switching problem related to the estimation of the common

stochastic volatilities ehm,t and ehf,t . For notational simplicity, let B̃0 = B−1
0 . As each diago-

nal element of Ut specified in equation (2) is assumed to be changing over time, following the
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results in Bertsche and Braun (2020) and Chan, Koop and Yu (2021), it can be shown that

B̃0 is unique up to permutation of its columns and multiplication of its columns by −1. It is

important to note that the signs of the columns of B̃0 would not affect the identification of

ehm,t and ehf,t . However, the label switching problem resulting from permutation of columns

of B̃0 remains as an important issue. We will show that this label switching problem can be

solved by setting different numbers of variables in the macro and financial blocks, i,e, setting

nm 6= nf . In contrast, one should pay more attention on the case of nf = nm, as the label

switching problem under this case may lead to invalid empirical inference on ehm,t and ehf,t .

For expository purpose, we consider a model with two common SVs, ehm,t and ehf,t , that

does not include unclassified variables and idiosyncratic SVs, then the reduce-form variance-

covariance matrix at time t is given by

Σt = B̃0ŨtB̃
′
0, (11)

where Ũt = diag(ehm,tInm , e
hf,tInf

). It is easer for us to verify the potential label switching

problem by rewriting equation (11) as

Σt = ehm,t

(
b̃1b̃

′
1 + . . .+ b̃nmb̃′nm

)
+ ehf,t

(
b̃nm+1b̃

′
nm+1 + . . .+ b̃nm+nf

b̃′nm+nf

)
, (12)

where b̃i is the ith column of B̃0. Now we will show that there exists a label switching

problem for the case of nf = nm. To see this, we first realize that Σt represented in

equation (12) is a sum of two terms, and each of these terms is a sum of nm = nf terms.

Suppose we define B̄0 = (b̃nm+1, . . . , b̃nm+nf
, b̃1, . . . , b̃nm) then we can rewrite Σt as

Σt = B̄0ŪtB̄
′
0,

with Ūt = diag(ehf,tInf
, ehm,tImn). It is worth highlighting that the label switching problem

arises because nm = nf . As ehm,t and ehf,t are respectively associated with same number of
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columns of B̃0, thus (B̄0, Ūt) and (B̃0, Ũt) are observationally equivalent.

Next, let’s consider the case when nm 6= nf . We can represent the reduce-form variance-

covariance matrix in the same way as in equation (12). However, in this case, the summations

in the two parenthesis associated with ehm,t and ehf,t involve different numbers of terms. Since

our model specification separates the variables into only two blocks, it is not possible to switch

the ordering of the columns of B̃0 for obtaining an observationally equivalent representation.

To be specific, suppose that we follow the similar procedure as discussed above to switch

the ordering of columns of B̃0, then we will still have Σt = B̄0ŪtB̄
′
0 = B̃0ŨtB̃

′
0, but the

parameterizations of B̄0ŪtB̄
′
0 and B̃0ŨtB̃

′
0 are different. This is because now Ũt groups its

first nm diagonal elements, while Ūt groups its first nf (6= nm) diagonal elements. Hence,

when nm 6= nf , we do not have the label switching problem for ehm,t and ehf,t and we have

nm = 17 and nf = 10 in our empirical study.

While the estimates for ehm,t and ehf,t are free from the label switching problem when

nm 6= nf , the idiosyncratic SVs for those unclassified variables, i.e., (ηui,1, . . . , η
u
i,T ), i =

1, . . . , nu, still suffer from this problem. Our strategy to tackle this problem is by choosing

appropriate MCMC initial values for (ηui,1, . . . , η
u
i,T ), i = 1, . . . , nu. More specifically, we set

the initial values of (ηui,1, . . . , η
u
i,T ) to be the maximum values of the conditional posterior of

a univariate SV model for the ith variable with the other parameters in the state equation

fixed at their prior means. This can be done by implementing a similar Newton-Raphson

method, with slight modifications, proposed in Cross, Hou, Koop and Poon (2022).6 We

have examined this simple strategy by running our MCMC sampler using different seeds of

random number generators and we find that our empirical results are robust.

6In our empirical study, we also implement the Newton-Raphson method to initialize (hm,1, . . . , hm,T ),

(hm,1, . . . , hm,T ), (ηmi,1, . . . , η
m
i,T ), i = 1, . . . , nm and (ηfi,1, . . . , η

f
i,T ), i = 1, . . . , nf .
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Figure 8: Impulse responses for one standard deviation uncertainty shocks: posterior me-
dians and 70% credible intervals of selected variables for OI-TVC-43 and OI-TVC-RO-43
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