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We develop a Bayesian non-parametric quantile panel regression model. Within

each quantile, the response function is a convex combination of a linear model and

a non-linear function, which we approximate using Bayesian Additive Regression

Trees (BART). Cross-sectional information at the pth quantile is captured through

a conditionally heteroscedastic latent factor. The non-parametric feature of our

model enhances flexibility, while the panel feature, by exploiting cross-country

information, increases the number of observations in the tails. We develop Bayesian

Markov chain Monte Carlo (MCMC) methods for estimation and forecasting with

our quantile factor BART model (QF-BART), and apply them to study growth at

risk dynamics in a panel of 11 advanced economies.
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1 Introduction

Empirical macroeconomics has seen an upsurge of interest in modeling the tails of predictive

distributions. A recent influential paper is Adrian, Boyarchenko, and Giannone (ABG, 2019),

hereafter ABG, which investigated the impact of financial conditions on the conditional dis-

tribution of GDP growth and found it to be important in the lower quantiles. Both prior and

subsequent to ABG, a large literature has emerged using quantile regression methods to forecast

tail risks to economic growth (see, among many others, Adrian, et al. (2018); Cook and Doh

(2019); De Nicolò and Lucchetta (2017); Ferrara, Mogliani, and Sahuc (2019); Giglio, Kelly,

and Pruitt (2016); González-Rivera, Maldonado, and Ruiz (2019); Delle Monache, De Polis, and

Petrella (2020); Plagborg-Møller, et al. (2020); Reichlin, Ricco, and Hasenzagl (2020); Figueres

and Jarociński (2020); and Mitchell, Poon, and Mazzi (forthcoming)). Other studies consider

tail risks to other macroeconomic variables such as unemployment or inflation (e.g. Galbraith

and van Norden (2019), Kiley (2018), Ghysels, Iania, and Striaukas (2018), Manzan (2015),

Gaglianone and Lima (2012), Korobilis (2017), Manzan and Zerom (2013, 2015), Korobilis,

et al. (2021) and Pfarrhofer (2021)).

The existing literature, with few exceptions, uses quantile models for a single variable

of interest. These models are specified conditional on a specific quantile and assume a linear

relationship between the predictors and the quantile function of some outcome variable.1 For

macroeconomic data this assumption might be warranted in normal times but in turbulent times

it could be that regression relationships change or turn non-linear. Moreover, often several

variables rather than a single one are of interest, and in these cases a joint model would be

preferable. These observations motivate the model we develop in the present paper.

In contrast to much of the existing literature we propose a non-parametric model which

involves multiple equations and allows for assessing whether the quantile response function is

linear or unknown and possibly highly non-linear. In particular, the model we propose is a

multi-country, non-parametric quantile regression, which we then use to investigate growth at

risk in a panel of 11 advanced economies.

The justification for adopting non-parametric methods is provided by Huber, et al. (2020)

and Clark, et al. (2021), which found Bayesian non-parametric vector autoregressions (VARs)

to be able to successfully model the tails of predictive densities of macroeconomic variables in

a flexible and accurate manner. These papers found that Bayesian Additive Regression Trees

1Examples of exceptions include Korobilis, et al. (2021) and Pfarrhofer (2021), which assume time variation
in the quantile regression coefficients. However, even these papers are single-equation and assume particular
parametric forms for the time-variation. A multiple-equation exception is Adrian, et al. (2018), which exploits
information in the term structure for an empirical application involving linear panel quantile regression.
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(BART) are an effective non-parametric method that is particularly useful in crisis times (e.g.,

the Financial Crisis or the Covid-19 pandemic) when growth at risk issues are of particular im-

portance. However, in normal periods, the predictive gains from using BART are more muted

(and sometimes negative). In the present paper we extend the BART regression methods used

in these papers to the quantile BART case. Since the predictive gains of BART vary over the

business cycle, we assume that within each quantile, the response function is a convex combi-

nation of a linear model and some unknown non-linear function, which we approximate using

BART. Studies such as Taddy and Kottas (2010) have developed other Bayesian approaches to

nonparametric model-based quantile regression.

The justification for use of a multi-country model is that a panel dimension can often im-

prove forecasts with respect to single country models; see, among many others, Bai, et al. (2020)

and Feldkircher, et al. (2021). Moreover, and specifically for the quantile case, macroeconomic

data sets are short, leading to a small number of observations in the tails of the distribution.

We develop a model for the pth quantile that includes a factor that summarizes the available

cross-country information at that quantile. In addition, as indicated below, our Bayesian model

specification has features that allow information from other countries to inform estimates for

a given country. Exploiting this cross-country information through a pooling prior improves

predictive accuracy by parsimoniously including international information to inform coefficients

associated with domestic quantities.

We then develop Bayesian Markov Chain Monte Carlo (MCMC) methods for estimation

and forecasting with our quantile factor BART model (QF-BART). These methods are scalable

to large panels with a potentially large number of exogenous regressors.

In terms of empirical results, our proposed models commonly improve on the benchmark

single country linear quantile model in recursive growth forecast comparisons, more so in the

tails than near the center of the distribution. Importantly, estimating the weight assigned to

the BART component of the model as compared to the linear component is helpful to forecast

accuracy. The estimated combination weight is smaller (i.e., the model is more linear) for the

25 and 75 quantiles than in the tails, i.e., for the 5 and 95 quantiles. Moreover, some form of

international information definitely pays off (either via the new pooling prior, or by outright

including non-domestic series). The effects of the common (volatility) factor are also relevant, as

it seems to explain a large fraction of the forecast error variance in most countries, in particular in

the tails. A shock to this factor, which can be interpreted as an uncertainty shock, has different

(stronger negative) effects in the left tail than the right tail of the growth distribution. In the

left tail, the BART piece with an estimated weight tends to slightly mitigate the effects of the
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shock. Finally, a financial shock in the US spills over to other countries. There is asymmetry in

the responses in the sense that a positive shock affects the growth quantiles, whereas a negative

shock’s effects are not as sharp. Moreover, the effects and asymmetry are more pronounced in

the 2010-19 period than earlier.

The remainder of the paper is structured as follows. The next section defines and motivates

our QF-BART model including its prior and discusses MCMC estimation. The third section

contains our empirical work while the fourth section concludes the paper.

2 A multi-country non-parametric regression model

We model the joint distribution of (for simplicity, demeaned) output growth for a panel of N

countries. These are stored in an N−dimensional vector yt = (y′1t, . . . , y
′
Nt)
′ with yit denoting

time t output growth in country i. Domestic real activity might depend on the lags of yt as well

as other, exogenous factors. These pre-determined quantities are included in a K-dimensional

vector xit. We adopt a notational convention where xit is structured such that J domestic

quantities for country i are always ordered first, followed by all K − J non-domestic variables.

We assume that yit follows a quantile regression model which, for the pth quantile, is given by:

yit = ωipgip(xit) + (1− ωip)β′ipxit + λipfpt + εip,t, εip,t ∼ ALDp(σip), i = 1, . . . , N, (1)

with gip : RK → R denoting unknown country-specific functions and βip is a K × 1-dimensional

vector of regression coefficients. ωip is a quantile and country-specific parameter that controls

how much weight is placed on the non-linear part of the model. The case ωip = 1 would

correspond to a fully non-linear model whereas ωip = 0 would be a (conditionally) linear quantile

regression specification. Contemporaneous relations across the elements in yt are introduced

through a static factor model with λip denoting the country-specific factor loading and fpt the

corresponding international factor. Finally, εip,t follows an asymmetric Laplace distribution

(ALD) scaled by a parameter σip with its pth quantile being equal to zero.2

We assume that the latent factor is uncorrelated over time and arises from a Gaussian

distribution:

fpt ∼ N (0, ehpt),

2The density of the ALDp(σp) is given by p(1 − p)/σp exp(−ρp(εt)/σp), where ρp(x) = x(p − I(x < 0)) is the
check/loss function and I(•) the usual indicator function. For details on the correspondence between the Bayesian
and classical approach to inference in quantile regression, see Yu and Moyeed (2001).
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with hpt being a (logarithmic) variance that evolves according to an AR(1) process:

hpt = µp + ρp(hpt−1 − µp) + ςput, ut ∼ N (0, 1).

Here we let µp denote the unconditional mean, ρp the autoregressive parameter, and ς2
p the error

variance of the log-volatility process.

This model possesses several features which should improve not only its predictive ca-

pabilities but also allow for additional inferential opportunities. First, the presence of the

quantile-specific weights allows for data-based selection of the degree of non-linearities across

quantiles. Recent literature indicates that, in the lower tails of the distribution of output growth,

macroeconomic relations change and might be subject to substantial non-linearities. While such

non-linearities may be important in the extremes of a distribution, linear models might describe

the behavior well in tranquil periods of the business cycle (e.g., in the center of the distribution).

Our model allows for this by setting the corresponding weights ωip appropriately. Second, our

model allows for lagged relations across countries. The key point to notice is that these dynamic

interdependencies can differ across quantiles. For instance, it could be that in the presence of a

global adverse economic shock, cross-country dependencies are more important than in tranquil

times. Third, the presence of a common static factor that exhibits conditional heteroscedasticity

can capture contemporaneous relations across the elements in yt for a specific quantile. More-

over, since the factor is conditionally heteroscedastic, it can also control for sudden shifts in

the conditional variance of the dependent variables. Inclusion of this stochastic volatility factor

allows us to control for unobserved heterogeneity, a feature which might be extremely important

during periods such as the recent Covid-19 pandemic (see, e.g., the discussion in Carriero, et al.

(2021)).

The model in Eq. (1) is quite general and nests several commonly used alternatives in

the literature. For instance, setting ωip = 0, λip = 0 for all p, and setting xit such that it

includes only the first lag of GDP plus a (lagged) measure of financial conditions yields a model

very closely related to the one proposed in Adrian, Boyarchenko, and Giannone (2019). Notice

that this model essentially rules out cross-country relations. Setting ωip = 1 for all p yields a

non-parametric quantile regression model which, depending on λip and the choice of xit, allows

for cross-country relations in a flexible manner. Setting ωip = 0 returns the linear quantile

regression model but with a common volatility factor.
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2.1 Approximating the unknown functions using BART

We treat the function gip as unknown and approximate it using BART (Chipman, George, and

McCulloch, 2010). Though other alternatives are possible, BART has been successfully employed

in economics for forecasting financial time series in Huber and Rossini (2020), nowcasting GDP

in selected European economies in Huber, et al. (2020), and tail forecasting of output, inflation,

and unemployment in Clark, et al. (2021). BART is a sum-of-trees model that approximates gip

by summing over many individual trees that all take a simple form and act as “weak learners.”

The BART approximation for gip is given by:

gip ≈ ĝip =

S∑
s=1

v(xit|T sip,µsip),

with v denoting a tree function that is determined by a tree structure T sip and a vector of terminal

node parameters µsip. This terminal node parameter vector has dimension bsip.

The tree structure consists of multiple decision rules that ask whether a covariate exceeds

a threshold and, according to these simple binary rules, produces (disjoint) partitions of the

input space. These take the form xij,t > c or xij,t ≤ c, with xij,t denoting the jth element of

xit and c being a splitting/threshold value. Sequences of these decision rules lead to a terminal

node coupled with a corresponding terminal node parameter in µsip.

When S is large, the BART approximation is prone to overfitting if no further regulariza-

tion is introduced. Chipman, George, and McCulloch (2010) use regularization priors to force

the trees v to be simple. We achieve this through shrinkage priors on the tree structure and the

terminal node parameters. Following Chipman, George, and McCulloch (1998), the prior on T sip
is obtained by constructing a tree-generating stochastic process. The prior p(T sip) comprises of

three aspects. First, tree complexity ultimately depends on the depth of intermediate nodes d.

If d is large, the tree is complex and thus might overfit the data. To force the individual trees to

be simple, we assume that a given node at depth d is non-terminal with probability proportional

to:

α (1 + d)−ζ ,

where α is between 0 and 1 and ζ > 0. Notice that this probability decreases in d: growing more

complicated trees becomes unlikely if d is already large. The amount of shrinkage is controlled

by α and ζ. These hyperparameters are often set to α = 0.95 and ζ = 2, implying that trees

with two or three terminal nodes receive over 80% of total prior probability. Chipman, George,
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and McCulloch (2010) found that, for over 40 data sets, this choice performs well, and extensive

cross-validation for α and ζ only improves predictive accuracy by small margins. The second

and third aspect are concerned with how decision rules are constructed. To this end, we use

discrete uniformly distributed priors to select the variables showing up in the decision rule as

well as a uniform prior over the splitting/threshold values.

The second source of shrinkage is a Gaussian shrinkage prior on µsij,p, the jth element of

µsip. Chipman, George, and McCulloch (2010) recommend scaling the prior using the range

of the data. More specifically, let yi,min and yi,max denote the minimum and maximum of the

observed data in country i. The corresponding Gaussian prior is then given by:

µsij,p ∼ N
(
0, v2

ip

)
, vip =

yi,max − yi,min

2γ
√
S

,

with γ > 0 being a prior scaling parameter, typically set equal to 2. The prior implies that if the

number of trees S is large, the prior variance decreases and the amount explained by a single

tree is decreased. This is consistent with the notion that each tree acts as a “weak learner,”

explaining only a small share of variation in the response variable, but the ensemble model

provides sufficient flexibility to capture even complicated conditional mean relations. Another

feature, noted by Huber, et al. (2020), is that the prior variance increases in the range of the

data. Hence, if outliers arise, the prior becomes increasingly loose and allows for more flexibility

in terms of capturing observations far outside the range of past data.

The priors on the tree structures and the terminal node parameters constitute the main

ingredients of BART. Since our model also features a linear part and additional coefficients, we

also need to specify priors on βip and ωip. We discuss them in the next sub-section.

2.2 Priors on the remaining coefficients of the model

On the coefficients βip we use a horseshoe-type prior on each element βij,p:

βij,p ∼ N
(
β
jp
, ϕ2ψ2

ij,p

)
, ϕ ∼ C+(0, 1), ψij,p ∼ C+(0, 1),

where C+ denotes a half-Cauchy distribution, ψij,p is a coefficient and quantile-specific scaling

parameter, and ϕ is a global shrinkage parameter that is common to all coefficients. Notice that

the presence of ϕ introduces dependencies across coefficients (including across countries) and

across quantiles. The key advantage is that the presence of the local shrinkage parameters ψij,p

allows the detection of signals (i.e., non-zero or heterogeneous βij,p over the cross section) even
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if ϕ is close to zero.

The prior mean β
jp

pools information over the cross section. In our hierarchical speci-

fication, it is estimated from the data using a Gaussian prior for the domestic variables, and

deterministically set to zero for non-domestic quantities:

β
jp
∼ N (0, ϕ̃j) for j = 1, . . . , J, β

jp
= 0 for j = J + 1, . . . ,K.

The parameter ϕ̃j is the prior variance of the common mean, which we set to a weakly informative

value of 10 for the empirical application. We refer to this prior as the pooled horseshoe (HSP),

while setting the common mean to a zero vector of size K yields the conventional horseshoe

(HS) that we consider as an alternative.

For the factor loadings λip, we use a set of independent Gaussian priors for all i, p:

λip ∼ N (0, 1).

Note that λip is a scalar and, hence, we use this relatively non-informative prior rather than

a prior such as the HS which is used to avoid over-parameterization as might occur with high

dimensional parameters.

On the weights ωip we consider a Uniform prior:

ωip ∼ U(0, 1). (2)

This prior introduces no particular prior information on the amount of non-linearities. If we

wish to be informative on ωip we can also use a Beta prior and specify the hyperparameters

appropriately.

The remaining coefficients of the model relate to the error term. Kozumi and Kobayashi

(2011) write the ALD using a scale-location mixture of Gaussians:

εip,t = θpνip,t + τp
√
σipνip,teip,t,

with θp = 1−2p
p(1−p) , τ2

p = 2
p(1−p) , νip,t = σipzip,t, eip,t ∼ N (0, 1), and zip,t ∼ Exp(1). On the

scale parameter σip we use an inverse Gamma prior:

σip ∼ G−1

(
aσ
2
,
bσ
2

)
,

with the relatively non-informative choices of aσ = 1 and bσ = 1.
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This completes the prior setup. In the next sub-section we briefly discuss the Markov

chain Monte Carlo (MCMC) algorithm used to carry out estimation and inference.

2.3 Full conditional posterior simulation

We use Markov Chain Monte Carlo (MCMC) techniques to obtain a draw from the joint posterior

of the latent quantities and coefficients of the model. Specifically, the following steps of the

algorithm are carried out for each equation (i.e., country) i and quantile p:

• Sampling from p(T sip|•) and p(µsip|•). The full conditional posterior of the tree structures

takes no well-known form. Chipman, George, and McCulloch (2010) propose a Bayesian

backfitting strategy to set up a Metropolis Hastings (MH) algorithm to sample the trees

individually, conditionally on the other S − 1 trees. This step is carried out marginally

of µsip. The terminal node parameters can then, under our conjugate prior, be simulated

from a set of independent Gaussian distributions that take a well-known form.

• Sampling p(βip|•). The regression coefficients are, conditional on the remaining parame-

ters and latent states, simulated from a multivariate Gaussian posterior distribution with

known moments:

βip|• ∼ N (βip,V ip), V ip =
(
X̃ ′ipX̃ip + V −1

ip

)−1
, βip = V ip

(
V −1
ip βp + X̃ ′ipỹip

)
.

ỹip is a T−dimensional response vector with tth element given by ỹip,t = (yit−ωipĝip(xit)−

λipfpt − θpνip,t)/(τp
√
σipνip,t), X̃ip is a T × K matrix with typical row x̃ip,t = ((1 −

ωip)xit)/(τp
√
σipνip,t), and V ip is a prior variance matrix with main diagonal element

vij,p = ϕ2ψ2
ij,p. The prior mean β

p
= (β

1p
, . . . , β

Jp
,0′K−J)′ collects the estimated common

means β
jp

in the corresponding position of the J domestic variables with the remaining

elements being zero for the HSP prior, while β
p

= 0K for the conventional HS prior.

• Sampling from p(β
jp
|•). The posterior distribution for the non-zero elements for j =

1, . . . , J of the prior mean for HSP is β
jp
∼ N

(
bjp, vjp

)
, with moments

vjp =

((
N∑
i=1

1

vij,p

)
+

1

ϕj

)−1

, bjp = vj,p

(
N∑
i=1

βij,p
vij,p

)
.

• Sampling from p(ωip|•): The full conditional posterior of ωip takes no well-known form.

Since the support of ωip is bounded and the target density univariate, we adopt a slice

sampler (see, e.g., Neal (2003)) that is straightforward to implement and mixes well.
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• Sampling from p(λip|•). The factor loadings are obtained by simulating from univariate

Gaussian conditional posterior distributions:

λip|• ∼ N (λip, lip), lip = (f̂ ′pf̂p + 1)−1, λip = lipf̂
′
pŷip.

ŷip denotes the T × 1 response vector with typical tth element given by ŷip,t = (yit −

ωipĝip(xit)−(1−ωip)β′ipxit)/(τp
√
σipνip,t), and f̂p has typical element f̂pt = fpt/(τp

√
σipνip,t).

• Sampling from p(σip|•). Kozumi and Kobayashi (2011) show that the conditional pos-

terior of the scaling parameter σip follows an inverse Gamma distribution:

σip|• ∼ G−1

(
ãip
2
,
b̃ip
2

)
,

with ãip = aσ + 3T , b̃ip = bσ + 2
∑T

t=1 νip,t +
∑T

t=1(wit − θpνip,t)
2/(τ2

p νip,t), and wit =

yit − ωipĝip(xit)− (1− ωip)β′ipxit − λipfpt.

• Sampling from p(νip,t|•). For each t, we simulate νip,t from a generalized inverse Gaussian

(GIG) posterior distribution:

νip,t|• ∼ GIG

(
1

2
, c̃ip, d̃ip

)
,

where c̃ip = wit/(τ
2
pσip) and d̃ip = 2/σip + θ2

p/(τ
2
pσip).

3

• Sampling from p(ψ2
ij,p|•). The local, coefficient-specific scaling parameters are simu-

lated using the scheme outlined in Makalic and Schmidt (2015). Conditional on auxiliary

shrinkage parameters ξ and ηij,p, the posterior of ψ2
ij,p is inverse Gamma distributed:

ψ2
ij,p ∼ G−1

1,
1

ηij,p
+

(
βij,p − βjp

)2

2ϕ2

 , ηij,p|• ∼ G−1

(
1, 1 +

1

ξ

)
.

These steps relate to the quantities we have to simulate for each country (or equation)

and quantile. Next we turn to the quantities that we simulate per quantile and thus pool over

countries.

• Sampling from p(fpt|•). For each t, we simulate fpt from a sequence of independent

3The generalized inverse Gaussian (GIG) distribution is parameterized such that a random variable X ∼
GIG(λ, ξ, ψ) has probability density function f(x;λ, ξ, ψ) = xλ−1 exp (−(ξ/x+ ψx)/2).
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Gaussian posterior distributions as follows:

fpt|• ∼ N (Aptỹpt, e
hpt −AptΞptA

′
pt), Ξpt = ehpt(λpλ

′
p) + Ψpt, Apt = ehptλ′Ξpt,

whereby ȳpt is a N × 1 vector with ȳip,t = yit − ωipĝip(xit) + (1 − ωip)β
′
ipxit − θpνip,t,

λp = (λ1p, . . . , λNp)
′, and Ψpt = diag(τ2

pσ1pν1p,t, . . . , τ
2
pσNpνNp,t).

• Sampling from p(hp|•) and p(µp, ρp, ςp|•). We sample the full history of log-volatilities

hp = (hp1, . . . , hpT )′ and the parameters of the state evolution equation using the efficient

sampler proposed in Kastner and Frühwirth-Schnatter (2014). This algorithm samples the

log-volatilities, conditional on everything else, all without a loop.

The final step refers to the global shrinkage parameter of the horseshoe prior. This step

pools information across all equations and quantiles. Since we rely on auxiliary random variables

to obtain a well-known full conditional posterior distribution, we first simulate from p(ξ|•) and

then from p(ϕ|•).

• Sampling from p(ϕ2|•) and p(ξ|•). The conditional posteriors of the global shrink-

age parameter ϕ and the auxiliary global parameter ξ are, respectively, inverse Gamma

distributed:

ϕ2|• ∼ G−1

NK + 1

2
,
1

ξ
+

1

2

∑
p

N∑
i=1

K∑
j=1

(
βij,p − βjp

)2

ψ2
ij,p

 , ξ|• ∼ G−1

(
1, 1 +

1

ϕ2

)
.

This completes our MCMC algorithm. In all our empirical work we repeat the different steps

30, 000 times and discard the first 15, 000 draws as burn-in. One key advantage of the present

algorithm is that it is scalable to larger data sets (i.e., including more countries, additional

endogenous variables, or more covariates) because, conditional on the factors and ϕ, the different

posterior quantities are independent across equations and quantiles.

3 Empirical results

In this section we first investigate whether our modeling approach improves upon a set of simpler,

nested alternatives by means of a forecasting horse race. We then focus on international growth

at risk dynamics in two ways. First, we analyze how GDP growth reacts to changes in the

common factor. Afterwards, we focus on how a shock to US financial conditions spills over to

the other economies in our sample.
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3.1 Data overview, competing models and forecasting design

Our sample runs from 1975Q1 to 2020Q4. We use annualized quarterly growth rates of GDP

data from the Main Economic Indicators (MEI) database, maintained by the OECD, and the

composite indicator of systemic stress (CISS) by the European Central Bank (ECB). For data

availability reasons we include Austria (AT), Denmark (DK), Finland (FI), France (FR), Ger-

many (DE), Italy (IT), Netherlands (NL), Spain (ES), Sweden (SE), United Kingdom (UK),

and the United States (US).

We estimate the models for p ∈ {0.05, 0.10, 0.25, 0.50, 0.75, 0.90, 095}. For each model we

consider two different choices for the covariates. The first, which we label CISS, includes the

CISS and a single lag of yit in xit, implying that K = 2. The second includes cross-country

information in xit by including the first lag of GDP growth and the CISS of all countries; hence,

K = 2N . The latter is referred to as CISS-CC to indicate that the information set includes

cross-country data.

Since our model is quite flexible and nests several competing models, we also include a

range of restricted variants of the general model outlined in Section 2. First, we obtain the ABG

model by using the CISS covariates and setting Λ = 0 and ωip = 0. We use frequentist methods

to carry out estimation so as to be the same as ABG, while we estimate all other models

using Bayesian methods with either the HS or HSP prior (so, for example, we will consider

both CISS-CC-HS and CISS-CC-HSP specifications). ABG will serve as our benchmark model

to which we compare all other specifications. We then add features to this benchmark. We

begin by remaining linear (ωip = 0) but adding the international factor to the ABG model

by letting Λ 6= 0 in order to investigate whether it plays an empirically important role. All

subsequent models also let Λ 6= 0. We next investigate non-linearities by setting ωip = 1 and

thus obtain a multi-country quantile BART model with a common international factor. Finally

our most flexible model allows for ωip to be estimated from the data. An overview of all model

specifications is provided in Table 1.

We compute pseudo out-of-sample forecasts based on a holdout from 1990Q1 to 2020Q4

(so the initial training sample comprises 60 quarters). We compute Quantile Scores (QS, for

quantiles 0.1, 0.25, 0.5, 0.75, 0.9) and quantile-weighted cumulative ranked probability scores (qw-

CRPS, see Gneiting and Ranjan (2011)) with five weighting schemes (“none” refers to no weight-

ing, i.e., conventional CRPS; both tails “tails;” left tail, “left;” right tail, “right;” and “center”).

We compute direct forecasts for h ∈ {1, 4}.
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Table 1: Model overview.

Data Prior Weights Factor

CISS (domestic) HS (shrinkage to zero) ω = 0 (parametric) Λ = 0 (independence)
CISS-CC (cross-country) HSP (pooling cross-section) ω = 1 (nonparametric) Λ 6= 0 (dependence)

ω ∈ (0, 1) (estimated)

Notes: “Data” refers to the information set for individual country models. “Prior” indicates the prior on the paramet-
ric part of the model; we consider the conventional horseshoe prior (HS) shrinking towards zero and the pooled horseshoe
(HSP) prior pushing the model towards cross-sectional homogeneity. “Weights” refers to the specification of the condi-
tional quantile function: parametric, nonparametric, or whether we estimate weights on the parametric and nonparametric
part. “Factor” indicates whether an international factor modeling the cross-sectional covariance structure within quantiles
is present. We consider all possible combinations of these specification choices.
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Table 2: Relative quantile weighted cumulative ranked probability scores (CRPS) for h = 1
and models with Λ 6= 0. The results are benchmarked to CISS with Λ = 0 and ω = 0. Lower
ratios (shaded in green) indicate better performance (and vice versa, shaded in red).

3.2 Tail forecasting results

Table 2 reports the forecast comparison of the various models based on the relative qw-CRPS.

Each cell in the heatmap shows the qw-CRPS relative to the ABG benchmark model. Numbers

smaller than one indicate outperformance (green colored) vis-á-vis the ABG model whereas

numbers exceeding one suggest a weaker performance (red colored) than the benchmark.

Four main comments can be made. First, and focusing on aggregate results across coun-

tries, our proposed models commonly improve on the benchmark ABG model. The gains are

about 20 percent when looking at the standard CRPS, decrease to about 10 to 15 percent in the

left tail, and increase to about 30 percent in the right tail (based on additional results reported

in the Appendix). Overall, these results suggest that at each quantile, and particularly in the

right tail, it pays off to allow for non-linearities and for cross-country relations.

Second, while there are small differences between setting ωip = 0 (linear quantile) or

ωip = 1 (BART quantile), there is often some benefit to estimating the weight ωip, in turn

allowing for both linear and BART pieces in the model. The key advantage of estimating ωip

is that it combines the best of both worlds and thus translates into a model that is strongly
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non-linear and non-parametric in the tails and close to a linear quantile regression model in the

center of the distribution. Such a behavior is beneficial if loss functions which evaluate the full

predictive distribution are used.

Third, the HSP prior, that includes pooling, is typically better than HS, but the differences

shrink or are eliminated once cross-country information is included in the model. It is noteworthy

that once we use a pooling prior the predictive benefit of adding cross-country information

directly diminishes sharply. This points towards the fact that, through pooling, our approach

successfully picks up cross-sectional information in a very parsimonious manner.

Finally, there is some heterogeneity across the countries under analysis. In particular, for

Spain, France, Italy, and the UK the results are broadly in line with those mentioned above. In

contrast, for Austria and Sweden estimating the weight ω yields little gains (setting ωip = 1 is

often best), and for the other countries it is overall difficult to beat the benchmark.

3.3 Estimated weights over time

In the previous sub-section we have shown that our proposed framework yields forecast distribu-

tions which are often more precise than the ones obtained from the ABG benchmark and simpler

nested alternatives. One key advantage of the model is that it allows for different weights ωip

across countries and quantiles and this improves forecasts when the full predictive density is

evaluated. In this sub-section, we investigate whether our intuition that non-linearities are rel-

evant in the tails while linear models are adequate in the center of the distribution is supported

by our model.

Figure 1 reports the estimated weight ωip over our hold-out period. Darkblue cells indicate

a weight close to one while gray shaded cells imply a weight close to zero. We focus on two

models, the CISS and CISS-CC models coupled with the pooled Horseshoe prior (HSP).4

It turns out that for most countries, our conjecture is confirmed. That is, we observe

weights which approach unity if we move out in the tails (i.e., the model becomes more non-

linear). When we focus on the center of the distribution, the combination weights approach

zero (i.e., the model is linear). Comparing the right and left tails reveals that the estimated

weight is often larger for the 5 percent quantiles than the 95 percent quantiles. This indicates

that non-linearites are important when our focus is on modeling sharp upswings in GDP growth

but become even more important when interest centers on capturing downturns in GDP growth

that are extreme (i.e., below the 5 percent quantile).

When we compare the model which does not utilize cross-country information (CISS) to

4The results for the remaining specifications look similar and may be found in the Appendix.
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Figure 1: Non-parametric weights ωip for Λ 6= 0 with the HSP prior plotted over time with
respect to the training/holdout samples (h = 1).

the one which explicitly includes cross-sectional data (CISS-CC), we find only modest differences

in combination weights. These differences are mainly related to somewhat smaller weights on

the BART specification in the upper tail of the distribution (for some selected countries such as

AT, DK, the UK, and the US), but the main finding that, in the center of the distribution, our

model assigns no weight to the non-linear model still holds.

Zooming into the different results reveals that most countries share the general dynamics

described in the previous paragraphs (i.e., ωip close to one in the tails and ωip ≈ 0 in the center

of the distribution). One exception to this broad-based finding is France, which displays larger

combination weights across all quantiles. In addition, there exists temporal heterogeneity. For

instance, in several countries we observe that, after the global financial crisis (and sometimes

slightly earlier), combination weights decrease markedly in the upper tails of the distribution.
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Table 3: Time averages of variance decompositions, ω sampled, CC model and HSP prior.

Quantile (p) ALL AT DE DK ES FI FR IT NL SE UK US

0.05 0.83 0.85 0.84 0.79 0.83 0.77 0.86 0.84 0.84 0.86 0.87 0.82
0.1 0.73 0.77 0.72 0.63 0.77 0.61 0.80 0.76 0.73 0.76 0.77 0.75
0.25 0.55 0.63 0.59 0.42 0.61 0.38 0.56 0.61 0.56 0.53 0.61 0.58
0.5 0.67 0.83 0.68 0.30 0.95 0.21 0.98 0.90 0.56 0.40 0.89 0.71
0.75 0.70 0.79 0.76 0.50 0.77 0.48 0.80 0.81 0.69 0.59 0.78 0.69
0.9 0.79 0.83 0.85 0.68 0.81 0.65 0.85 0.84 0.79 0.75 0.82 0.77
0.95 0.89 0.91 0.91 0.82 0.90 0.82 0.92 0.91 0.89 0.87 0.92 0.87

3.4 The role of the common volatility factor

In this sub-section, we investigate the common volatility factor across quantiles. In a first step,

we assess the relevance of the common factor volatility specification by considering time averages

of variance decompositions. These are computed, by taking the Gaussian representation of the

ALD (the distribution of εip,t in Equation (1)), as follows:

VDip,t =
λ2
ipe

hpt

λ2
ipe

hpt + Var(εip,t)
,

with Var(εip,t) denoting the variance of εip,t. This decomposition provides information on the

share of variation in the shocks (conditional on the quantile) that is explained through the

common factor (similar to Stock and Watson (2005)).

Table 3 reports time averages of variance decompositions resulting from the CC-HSP

model. Interestingly, for most countries the commonality is larger and more substantial in the

tails than at the center of the distribution, and a bit larger in the right than in the left tail.

These larger contributions in extreme periods can be traced back to the fact that several of the

recessions in our hold-out period can be viewed as shocks with a pronounced global dimension

(such as the global financial crisis or the Covid-19 pandemic) and the factor is picking this up.

Across countries, we find a considerable degree of homogeneity within country groups.

For instance, Finland, Denmark, and Sweden feature commonalities that are very pronounced

in the tails but decline once we approach the center of the distribution both from left and right.

The US and the UK share a rather similar pattern in terms of commonalities (high shares in

the tails and for the median, smaller shares for the quantiles in between).

The heterogeneity across quantiles in the role of the volatility factor is further supported

by Figure 2, which reports estimates of the factors (upper panels) and associated log-volatility

per quantile (lower panels). In the upper panel, we observe that especially in the tails the factor

moves sharply during global events such as the global financial crisis and the Covid-19 pandemic.
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Figure 2: Estimates of the factors and associated log-volatility per quantile, HSP prior.

To a somewhat smaller extent the results also suggest declines in the beginning of the 1990s and

the early 2000s. When we focus attention on the 50 percent quantile we find strikingly different

results. In the center of the distribution, the factor is small and very close to zero throughout

the sample. During the pandemic we find a strong pronounced decrease in 2020:Q2, which was

triggered by an unprecedented downturn in real activity globally but also a strong increase in

2020:Q3 (which was accompanied with sharply increasing GDP growth rates throughout all our

countries).

Turning to the evolution of the log-volatilities in the lower panel generally yields consistent

insights with the findings discussed for the level of the factor. The log-volatility spikes during

recessions (i.e., in the early 1990s, 2008-2009, and 2020), and for p = 0.5 the level of the log-

volatility is much smaller than for the other quantiles but then exceeds the increases in volatility

observed for the other quantiles of the distribution. This finding also sheds light on why the

amount of variation explained through the factor for most countries is lowest but still sizable in

the 50 percent quantile. In most periods, the volatility factor is small (around −5 to −10 on the

log-scale) but then during the pandemic it rapidly increases and reaches values of around 5 on

the log-scale. This suggests that in tranquil periods, the factor only explains little variation in

the shocks but in recessions (or turbulent times) this share increases appreciably and approaches

1.
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3.5 Generalized impulse responses to a global business cycle shock

The discussion on the qualitative and quantitative properties of the estimated factor provides

evidence that it can be interpreted as a global business cycle shock since, depending on the

quantile adopted, it closely tracks events such as global recessions. Following Stock and Watson

(2005), we now consider how changes to the factor, labeled factor shocks, impact GDP growth

across countries and quantiles.

The posterior quantiles of the generalized impulse response functions (GIRFs) for a com-

mon factor shock as estimated with the CISS-CC-HSP model are reported in Figure 3. This

figure includes the GIRFs for our model with ωip estimated (gray shaded areas) and for ωip = 0

(solid blue lines).

A first interesting finding is that, for all countries, a factor shock has different effects in the

left tail than the right tail. In both tails, growth is negatively affected, confirming that higher

volatility/uncertainty is detrimental for growth, but the size of the effect (and persistence of the

negative effect) is much larger in the left tail. Moreover, notice that for the right tail we also

observe an overshoot in real activity in response to an adverse business cycle shock.

Second, when we consider the left tail, the BART piece with an estimated weight tends

to mitigate the effects of the shock. This is most likely driven by the fact that, if we rule out

non-linearities, there is more to be explained through the factor model and this might translate

into factor dynamics which not only pick up business cycle shocks but also soak up information

left in the error term potentially arising from ignoring non-linear dynamics between GDP growth

and the CISS.

A third striking pattern is the pronounced degree of cross-country heterogeneity in the 5

percent quantile (and, to a somewhat lesser extent, in the 10 percent quantile). When our focus

is on the left tail, we observe that France, Italy, the UK, and Spain exhibit sharp declines in

GDP growth. Once we consider higher quantiles the GIRFs become much more similar across

countries. For instance, we find only modest differences if we focus on p = 0.5.

To sum up, we find that the countries in our sample display pronounced reactions to an

international business cycle shock. These reactions differ not only across quantiles but also

across countries.
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Figure 3: Generalized impulse response functions to a unit shock in fpt across countries and
quantiles (average over time). CISS-CC with estimated ω in grey (16th, 84th percentiles), para-
metric CISS-CC with ω = 0 in blue (16th and 84th percentiles), HSP prior. The black and dark
blue lines refer to the posterior median, respectively.
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3.6 Generalized impulse responses to a US financial conditions shock

The previous sub-section emphasized that our latent factor can be interpreted as a global busi-

ness cycle shock. In this sub-section we will instead focus attention on the international effects

of a shock to US financial conditions and whether the real effects of such a shock differ from the

ones arising from changes in fpt.

ALL AT DE DK ES FI FR IT NL SE UK US

P
re 2007

2007−
2009

2010−
2019

P
ost 2019

−3 +3 −3 +3 −3 +3 −3 +3 −3 +3 −3 +3 −3 +3 −3 +3 −3 +3 −3 +3 −3 +3 −3 +3

0.05

0.25

0.75

0.95

0.05

0.25

0.75

0.95

0.05

0.25

0.75

0.95

0.05

0.25

0.75

0.95

Shock (SD)

Q
ua

nt
ile

 (
p)

0 5
Cumulative (one−year)
response

Figure 4: Cumulative (one-year ahead) generalized impulse response functions of GDP by
quantile (p) to a {−3,−2,−1, 1, 2, 3} in-sample standard deviation US financial conditions shock.
Model: CISS-CC, Λ 6= 0 and estimated ω, HSP prior. Difference between conditional and
unconditional forecast across countries (grouped average over time by indicated period).

Figures 4 and 5 report the posterior median of the cumulative (one-year ahead) generalized

impulse response functions of GDP by quantile (p) to a−3, −2, −1, 1, 2 and 3 in-sample standard

deviation US financial conditions shock, based on the CISS-CC-HSP model with estimated

weight ω and either with (Figure 4) or without (Figure 5) the common factor in the model’s

innovation component. Recall that the CISS is defined so that higher values represent tighter

financial conditions; a positive shock may be expected to reduce GDP growth.

As the model is non-linear, the sign and size of the shocks can matter to determine the

effects (i.e., contrary to the linear case, the effects are not proportional to the size of the shock,

or symmetric). Hence, we have recomputed the model for various sub-samples to analyze how

different global business cycle conditions impact the estimates of the GIRFs.

Comparing the two figures shows that the factor volatility has little effect on the results,

which is not surprising as it should not affect much the point estimates of the GIRFs (rather
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Figure 5: Cumulative (one-year ahead) generalized impulse response functions of GDP by
quantile (p) to a {−3,−2,−1, 1, 2, 3} in-sample standard deviation US financial conditions shock.
Model: CISS-CC, Λ = 0 and estimated ω, HSP prior. Difference between conditional and
unconditional forecast across countries (grouped average over time by indicated period).

their precision). In both cases, a financial shock in the US spills over to other countries. There

is asymmetry in the sense that a positive shock affects the growth quantiles, whereas a negative

shock’s effects are not as sharp. Moreover, the effects and asymmetry are sharper in the 2010-

2019 period than earlier.

Analyzing cross-country differences provides additional interesting insights. For some

countries (DE, FR, DK, and ES), we find substantial time variation in the GIRFs. Prior to 2010,

the corresponding heatmaps feature a great deal of gray colored cells, implying no reactions at

all. After the global financial crisis, US-CISS shocks have pronounced effects for these countries

that are mostly located in the left tail of the distribution of GDP growth. For other countries

(IT, UK, US, and NL), we find less evidence in favor of time-variation in the GIRFs. In these

countries, positive (negative) shocks to the US-CISS have negative (positive) effects on GDP

growth for p ∈ {0.05, 0.1}. Notice, however, that when we consider p ∈ {0.9, 0.95}, the effect of

a CISS shock seems to reverse sign; a positive shock to the CISS has positive effects on GDP

growth if it is already historically high and a negative shock triggers a decline in GDP growth.

Figures 6 and 7 are similar to Figures 4 and 5 but now the weight ω is set to zero, so

that the quantile part is linear. Here, too, the common (volatility) factor component does not

seem to have an obvious effect on the results. Instead, the effects of financial conditions are now
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Figure 6: Cumulative (one-year ahead) generalized impulse response functions of GDP by
quantile (p) to a {−3,−2,−1, 1, 2, 3} in-sample standard deviation US financial conditions shock.
Model: CISS-CC, Λ = 0 and ω = 0, HSP prior. Difference between conditional and uncondi-
tional forecast across countries (grouped average over time by indicated period).
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Figure 7: Cumulative (one-year ahead) generalized impulse response functions of GDP by
quantile (p) to a {−3,−2,−1, 1, 2, 3} in-sample standard deviation US financial conditions shock.
Model: CISS-CC, Λ 6= 0 and ω = 0, HSP prior. Difference between conditional and uncondi-
tional forecast across countries (grouped average over time by indicated period).
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more linear; positive and negative shocks to financial conditions in the US have similar effects,

of opposite sign. In addition, the pattern is clearer in the data since 2007 than before. The

effects also look smaller and more stable over time than in the non-linear quantile specification,

and in general they are more marked at the lower quantiles. These marked differences in the

empirical findings highlight the importance of allowing for non-linearities also in the context of

quantile regressions.

4 Conclusions

In this paper we propose a non-parametric quantile panel regression model which assumes that

the conditional mean is a convex combination of a linear and an unknown non-linear function.

We learn the unknown functions using BART, a successful tool closely related to random forests.

To decide on how much weight the BART piece should receive in the pth quantile, we estimate

it alongside the remaining model parameters. This non-parametric feature enhances model

flexibility, especially in the tails. Using cross-sectional information, in addition, enables us to

improve predictive accuracy. This is achieved by proposing a novel pooling prior as well as

introducing cross-country information directly. To carry out estimation and inference we design

a scalable MCMC algorithm and apply the model to investigate ”growth at risk” using an

international panel of 11 countries.

In terms of empirical results, our proposed models commonly improve on the benchmark

single country linear quantile model in recursive growth forecast comparisons, more so in the

tails than near the center of the distribution and in particular when estimating the weight ω, in

turn allowing for both linear and BART pieces in the model. The estimated combination weight

is smaller (i.e., the model is more linear) for the 25 and 75 percent quantiles than in the tails, i.e.,

for the 5 and 95 percent quantiles. Moreover, some form of international information definitely

pays off (either via the new pooling prior, or by outright including non-domestic series). The

effects of the common (volatility) factor are also relevant, as it seems to explain a large fraction

of the forecast error variance in most countries, in particular in the tails. A shock to this factor,

which can be interpreted as an uncertainty shock, has different (stronger negative) effects in

the left tail than the right tail of the growth distribution. In the left tail, the BART piece

with an estimated weight tends to mitigate a bit the effects of the shock. Finally, a financial

shock in the US spills over to other countries. There is asymmetry in the responses in the sense

that a positive shock affects the growth quantiles, whereas a negative shock’s effects are not as

sharp. Moreover, the effects and asymmetry are sharper in the 2010-20 period than earlier. The
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responses are instead much more proportional and symmetric in the linear model, highlighting

the importance of allowing for non-linearities in the specification of quantile regressions.
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Appendix

Further forecast results
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Figure 8: Relative quantile weighted cumulative ranked probability scores (CRPS) for h = 4
and models with Λ 6= 0. The results are benchmarked to ABG with Λ = 0 and ω = 0. Lower
ratios (shaded an green) indicate better performance (and vice versa, shaded in red).
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Figure 9: Relative quantile scores (QSs) for h = 1 and models with Λ 6= 0. The results are
benchmarked to ABG with Λ = 0 and ω = 0. Lower ratios (shaded an green) indicate better
performance (and vice versa, shaded in red).
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Figure 10: Relative quantile scores (QSs) for h = 4 and models with Λ 6= 0. The results are
benchmarked to ABG with Λ = 0 and ω = 0. Lower ratios (shaded an green) indicate better
performance (and vice versa, shaded in red).

27


	23-7
	23-7
	1 Introduction
	2 A multi-country non-parametric regression model
	2.1 Approximating the unknown functions using BART
	2.2 Priors on the remaining coefficients of the model
	2.3 Full conditional posterior simulation

	3 Empirical results
	3.1 Data overview, competing models and forecasting design
	3.2 Tail forecasting results
	3.3 Estimated weights over time
	3.4 The role of the common volatility factor
	3.5 Generalized impulse responses to a global business cycle shock
	3.6 Generalized impulse responses to a US financial conditions shock

	4 Conclusions
	References


