Railway Control with a Raspberry Pi

University of Strathclyde - Glasgow 22nd April 2017

SIEMENS

Who are Siemens?

- Siemens is the largest manufacturing and electronics company in Europe
 - Siemens' UK operations were founded 174 years ago by Sir William Siemens, and we currently employ 14,000 people in the UK.

Ingenuity for life

Who are Siemens?

- Our goal is to improve quality of life through electrification, automation, and digitalisation.
 - e.g. State-of-the-art megnetic imaging technology;
 £160 million investment in wind turbine assembly;
 Removing 1m cars worth of CO2 through efficient drive technologies

Who are Siemens?

Siemens Mobility develop the rolling stock and signalling control systems that allow safe and sustainable growth of our public transport network.

What do we do?

SIEMENS

What do we do?

What do we do?

Motor car and train stopping distances compared

Total emergency stopping distances from **80 miles/hour** assuming dry conditions

Thinking Braking distance distance Motor car = **120 m**

Eight car passenger train = 1,600 m

@ 80 miles/hour,
 braking distance for train
 = 16.7 x braking distance for car

What do we do?

SIEMENS

What do we do?

Background

In 2016, Siemens graduates developed a model railway control system using the Raspberry Pi: STEMRail

Background

Automatic Train Operation and IP Signalling Network

What is the STEMRail Model Railway Layout?

- A tool to demonstrate programming, computing, electronics and engineering concepts to young people using technology that is readily available to schools and students.
- Realistic enough to demonstrate railway signalling principles to all ages, yet simple enough to engage young children.
 - **Programming** Uses Python language as taught in schools
 - **Computing** The Pi are networked using a simple text protocol
 - Electronics Simple Hall effect sensors and LEDs represent the trackside signalling equipment
 - Engineering Problem solving, system design and physics such as train braking

STEMRail Hardware

System Architecture

STEMRail Software

Control Systems and Object Oriented Programming

Computer programs are made up of a data and algorithms that manipulate that data.

STEMRail Object Oriented Control – Data

STEMRail Object Oriented Control – Algorithms

STEMRail Object Oriented Control – Algorithms

STEMRail Object Oriented Control – Algorithms

Human	Outputs
and the second se	lanidi 🗰

Broadcast Train Speeds:

Train 1 set to 60 mph Train 3 set to 80 mph

Train Controller Outputs

Object Oriented Programming

Type = Siemens 350 Track = A1B Direction = 1 Target speed = 80 Halt = False E-stop = False

Object Oriented Programming

Halt = False E-stop = False

Object Oriented Programming

E-stop = False

Object Oriented Programming

Halt = False E-stop = False

Object Oriented Programming

Halt = False E-stop = False

Object Oriented Programming

SPAD!

Real World Challenges – Electromagnetic Interference

Real World Challenges – Human Factors

Raspberry Pi – Taking it Further

Questions

Model Railway Control with a Raspberry Pi

Thank you

Model Railway Control with a Raspberry Pi