MODULE DESCRIPTION FORM

16132 (16142 sem1) ENGINEERING MECHANICS 1

Module Registrar: Professor J T Boyle jim.boyle@strath.ac.uk

Taught To (Course): Cohorts for whom class is compulsory

Other Lecturers Involved: Dr R Hamilton

Credit Weighting: 20 (ECTS 10)

Assumed Prerequisites: SQA Highers in Mathematics and Physics (or equivalent)

Compulsory class

Academic Level: 1

Module Format and Delivery (HOURS i.e. 1 credit = 10hrs of study):

<table>
<thead>
<tr>
<th>Lecture</th>
<th>Tutorial</th>
<th>Laboratory</th>
<th>Groupwork</th>
<th>External</th>
<th>Online</th>
<th>Project</th>
<th>Assignments</th>
<th>Private Study</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>64</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>0</td>
<td>32</td>
<td>72</td>
<td>20</td>
<td></td>
<td>200</td>
</tr>
</tbody>
</table>

Educational Aim

A study of mechanics gives you the basic tools to understand how the world, both natural and man-made, works - if you take the time to do this carefully, then you will be well prepared for more advanced studies in mechanical engineering. A knowledge of mechanics is a fundamental tool for a mechanical engineer. Our purpose is to understand what has become known as classical mechanics. The concepts of classical mechanics you will deal with include a study of forces, motion, energy, work, momentum and heat, how these are connected, and how these ideas can be applied to engineering problems. The ideas behind classical mechanics changed the human race absolutely and forever. Most historians agree that no discovery in human thought has been more influential.

Students come to engineering mechanics with an elementary understanding of the basic principles of mechanics acquired from introductory school physics together with their application to problem solving. This class places more emphasis on the basic skills (see Specific Outcomes below) required to start to apply these concepts and principles to real engineering problem solving. The class focuses on the practice of these skills, rather than factual content. In this class doing required background reading, coming to class and doing homework are like practising for a football team (or musical group, using a simple analogy). The tutor/lecturer is less a source of information and more of a coach (or conductor) who structures practice and sets standards. Students’ progress not by absorbing (and regurgitating) information but rather by practising their skills individually and learning to work effectively with others. The exams are like league games (or concerts) where students test their skills in a situation where performance counts.

Learning Outcomes

On completion of the module the student is expected to be able to

LO1 have understood and overcome any misconceptions about basic concepts in physics (force, energy, work etc).

LO2 restate existing problem solving skills in a form more suitable for engineering application and

LO3 interpret basic engineering applications of mechanics in more detail.

LO4 acquire four basic thinking skills:

- Perceive, or resolve, contradictions involving their preconceptions about mechanics
- Organise the basic ideas of mechanics in a form suitable for problem solving
- Apply basic principles in mechanics to realistic engineering situations
- Solve realistic engineering problems

Syllabus

The module will teach the following:

Statics; frameworks; friction; velocity and acceleration; inertia and change of motion; motion in a circle; balancing; periodic motion; dynamics of rotation; work, energy and power; impulse and momentum; aircraft mechanics.

More detail can be found in the Class Text (see below).
Assessment of Learning Outcomes

Criteria
For each of the Module Learning Outcomes the following criteria will be used to make judgements on student learning:

LO1
C1 Participation during in-class discussion using polling systems
C2 Able to correctly answer concept questions in class tests

LO2
C1 Use of structured problem-solving frameworks – written submissions & class tests
C2 Able to recognise type of problem and apply appropriate structured problem solving strategy, including diagrammatic representation, conceptual representation (including free body diagrams, assumptions) and (symbolic) mathematical solution.

LO3
C1 Participation during in-class discussion using polling systems. Written questions in class tests
C2 Should be able to read an engineering problem and recognise the various assumptions which have to be made to apply a particular mathematical model for solution.

LO4
C1 Assessed through two class tests & written homework
C2 Correct use of a structured problem solving method appropriate to the problem at hand.

The standards set for each criterion per Module Learning Outcome to achieve a pass grade are indicated on the assessment sheet for all assessment.

12 Principles of Assessment and Feedback
(on Learning & Teaching web pages: www.strath.ac.uk/learnteach/informationforstaff/staff/assessfeedback/12principles/)

Assessment is given in multiple forms: in-class polling systems, self-assessment using polling systems, written homework using structured problem solving & two class tests.

Immediate self-directed feedback through in-class polling systems
Written feedback from written homework
Written feedback from two class tests

Assessment Method(s) Including Percentage Breakdown and Duration of Exams

<table>
<thead>
<tr>
<th>L/Outcomes</th>
<th>Examinations</th>
<th>Courseworks</th>
<th>Projects</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number</td>
<td>Month(s)</td>
<td>Duration</td>
</tr>
<tr>
<td>LO3 & LO4</td>
<td>2</td>
<td>Jan & May/June</td>
<td>2hrs each</td>
</tr>
</tbody>
</table>

Indicate which learning outcomes (L01, L02 etc) are to be assessed by exam/coursework/project as required.

Coursework / Submissions deadlines:
Advised on a regular basis through Myplace and in class.

Resit Assessment Procedures:
3hr resit examination in August diet (coursework is not included).

PLEASE NOTE:
Students need to gain a summative mark of 40% to pass the module. Students who fail the module at the first attempt will be re-examined during the August diet. This re-examination will consist entirely of exam.
Recommended Reading

****Purchase essential; ***Purchase recommended; **Highly recommended reading; *Simply for reference (do NOT purchase)

**** OpenStax College Physics: Available free online from openstaxcollege.org and in class site in myplace

Additional Student Feedback
(Please specify details of when additional feedback will be provided)

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Room No</th>
</tr>
</thead>
</table>

Session: 2014/15

Approved:

[Signature]

Course Director Signature:

Date of Last Modifications: 26 August 2014
MODULE TIMETABLE

Module Code: 16132
Module Title: ENGINEERING MECHANICS 1

Brief Description of Assessment:

Written homework at the end of each major topic - duration in weeks is variable, so Timing given below is may vary by one week either way. In table below only Start date is given – submission date is (usually) two weeks after. Feedback 2/3 weeks after.

Code: W=Written WO=Written optional

Assessment Timing:

Indicate on the table below the start/submission dates for each assignment/project and the timing of each exam/assessment(s).

<table>
<thead>
<tr>
<th>Semester One</th>
<th>WK1</th>
<th>WK2</th>
<th>WK3</th>
<th>WK4</th>
<th>WK5</th>
<th>WK6</th>
<th>WK7</th>
<th>WK8</th>
<th>WK9</th>
<th>WK10</th>
<th>WK11</th>
<th>WK12</th>
<th>Exam Period</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>W</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>January 2hr exam</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester Two</th>
<th>WK1</th>
<th>WK2</th>
<th>WK3</th>
<th>WK4</th>
<th>WK5</th>
<th>WK6</th>
<th>WK7</th>
<th>WK8</th>
<th>WK9</th>
<th>WK10</th>
<th>WK11</th>
<th>WK12</th>
<th>Exam Period</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>W</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>W</td>
<td></td>
<td></td>
<td>May/June 2hr exam</td>
</tr>
</tbody>
</table>