

DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING

CL507 and Ground Improvement and Reinforcement

Module Registrar: Dr Stewart Beattie	Taught To (Course): ME	Taught To (Course): MEng/MSc Civil Engineering				
Other Lecturers Involved: Owen Jones, Jim Shields (Both External)	Credit Weighting: 10	Semester: 2				
Assumed Prerequisites: None	Compulsory/ optional/ elective class	Academic Level: 5	Suitable for Exchange: Y			

Module Format and Delivery (HOURS i.e. 1 credit = 10hrs of study):

Lecture	Tutorial	Laboratory	Groupwork	External	Online	Project	Assignments	Private Study	Total
18	6						20	56	100

Educational Aim

This module aims to provide comprehensive understanding of the principles, techniques and methods of analysis for ground improvement and soil reinforcement, piles and pile groups, and the application of these techniques for design in various ground conditions.

Learning Outcomes

On completion of the module the student is expected to be able to

- LO1 Design single piles and pile groups in different ground conditions.
- LO2 Identify the most appropriate treatment/improvement solution for various ground conditions and situations.
- LO3 Design appropriate soil/rock reinforcement solutions.
- LO4 Design reinforced earth walls

Syllabus

The module will teach the following:

Pile Foundations

Types of deep foundations, ultimate load capacity of pile foundations, Design of pile foundations and pile groups.

Specialist geotechnical techniques

Micro piling, ground anchoring, soil nailing

Ground Improvement

Techniques for ground improvement (mass replacement, preloading, vertical drains, deep mixing, dynamic compaction, deep vibro techniques, jet grouting, compaction grouting). Design methods for ground improvement.

Soil Reinforcement

Principles of soil reinforcement, Types of reinforcement, properties and behaviour, Design of reinforced slopes and soil nailing, Design of reinforced earth retaining walls using the tie-back wedge method.

Grouting

Different grouting techniques, uses of the techniques, susceptibilities, constrains, applications.

Assessment of Learning Outcomes

Criteria

For each of the Module Learning Outcomes the following criteria will be used to make judgements on student learning:

LO1

C1 Able to assess the suitability of piles and different pile types for a particular building design situation.

C2 Appreciate the construction problems which could arise from piling in different soil profiles.

C3 Able to design pile foundations and optimise the pile dimensions and spacing.

C4 Understand and apply the principles of Eurocode 7 to pile design.

LO2

C1 Understand the properties and behaviour of the various types of soil in relation to ground improvement.

C2 Able to design ground improvement by calculation.

C3 Able to optimise the design of sand drain and stone column systems using analytical methods.

LO3

C1 Understand the various options available to an engineer when reinforcing soil.

C2 Understand the behaviour of ground anchors and the fundamental design principles.

LO4

C1 Understand the properties and behaviour of the various types of soil reinforcement.

C2 Able to design reinforced earth retaining walls.

C3 Appreciate the influence of reinforcement type on the behaviour of reinforced earth retaining walls.

The standards set for each criterion per Module Learning Outcome to achieve a pass grade are indicated on the assessment sheet for all assessment.

Principles of Assessment and Feedback

(within Assessment and Feedback Policy at: https://www.strath.ac.uk/staff/policies/academic/)

Please state briefly how these are incorporated in this module.

Feedback will be provided to students individually and as a group through the tutorial sessions, which will include worked examples.

The coursework and exam will require out of class learning and library study

The coursework will have a clear set of marking criteria and standards of performance.

Coursework feedback will be provided in relation to the specific marking criteria set out in the coursework.

Assessment Method(s) Including Percentage Breakdown and Duration of Exams

	Examinations				Course	eworks	Projects	
	Number	Month(s)	Duration	Weighting	Number	Weighting	Number	Weighting
	1	May	2hrs	80%	1	20	None	
L/Outcomes	LO1, LO2, LO3, L04				LO3			

Indicate which learning outcomes (LO1, LO2 etc) are to be assessed by exam/coursework/project as required.

Coursework / Submissions deadlines (academic weeks):

Coursework: Ground Anchor Design, submission during week 5.

Resit Assessment Procedures:

2 hr examination in August diet

Students must gain a summative mark of 50% to pass the module. Students who fail the module at the first attempt will be re-examined during the August diet. This re-examination will consist entirely of exam. No marks from any previous attempts will be transferred to a new resit attempt.

Recommended Reading	
***Purchase recommended	**Highly recommended reading *For reference
**Tomlinson, M J. and Woodwa	ard, Pile Design and Construction Practice, (6 th ed), CRC Press, 2015.
	Craig's Soil Mechanics, 8th edition. Spon Press 2012. d Application, 2nd edition by William Powrie. Spon Press 2004. eering, Braja Das, 2017
*NA+A1:2014 TO BS EN 1997- 1: General rules *BS 8006: Code of Practice for \$ *Moseley, M.P. & Kirsch, K. Gro	B Eurocode 7: Geotechnical Design – Part 1: General Rules. 1:2004+A1: 2013 UK National Annex to Eurocode 7: Geotechnical design – Part Strengthened/Reinforced Soils. bund Improvement, 2nd Edition, Spon Press, 2004. bechures made available on MyPlace.

Additional Student Feedback

(Please specify details of when additional feedback will be provided)

Γ	Date	Time	Room No

Session: 2021/22

Approved:

Course Director Signature:

Date of Last Modifications:

ASSESSMENT TIMETABLE

 Module Code
 CL507
 Module Title
 Ground Improvement and Reinforcement

Indicate in the tables below the Hand-Out (H), Submission (S) and Feedback (F) week number for each assignment (lab report/coursework/project etc) and the timing of each Exam (E), Class Test (CT) or Quiz (Q)

Coursework: Ground Anchor Design (20%) – design of a ground anchor system report.

Exam: Calculation by hand calculation and written essay style questions (80%).

Semester	2
----------	---

••••••															
Assessment type & title	LOs	Weight (%)	Individual or Group	WK1	WK2	WK3	WK4	WK5	WK6	WK7	WK8	WK9	WK10	WK11	Exam Period
Coursework: Ground anchor Design	LO3	20	Individual			(H)		(S)			(F)				
Exam															H/S

Appendix

Mapping Module Learning Outcomes to AHEP

Module Learning Outcome	Engineering Council AHEP competencies: Knowledge, Understanding and Ability
LO1 Design single piles and pile groups in different	Science and mathematics
ground conditions.	A comprehensive knowledge and
	understanding of scientific principles and
	methodology necessary to underpin their
	education in their engineering discipline,
	and an understanding and know-how of
	the scientific principles of related
	disciplines, to enable appreciation of the
	scientific and engineering context, and to
	support their understanding of relevant
	historical, current and future
	developments and technologies
	 Knowledge and understanding of
	mathematical and statistical methods
	necessary to underpin their education in
	their engineering discipline and to enable them to apply a range of mathematical
	and statistical methods, tools and
	notations proficiently and critically in the
	analysis and solution of engineering
	problems
	 Understand and evaluate business,
	customer and user needs, including
	considerations such as the wider
	engineering context, public perception
	and aesthetics
	 Investigate and define the problem,
	identifying any constraints including
	environmental and sustainability
	limitations; ethical, health, safety, security
	and risk issues; intellectual property;
	codes of practice and standards
	 Knowledge and understanding of the
	commercial, economic and social context
	of engineering processes
LO2 Identify the most appropriate treatment/improvement solution for various ground	Economic, legal, social, ethical and
conditions and situations.	environmental context
	Understanding of engineering principles
	and the ability to apply them to undertake critical analysis of key engineering
	processes
	Awareness of developing technologies
	related to own specialisation

	 Ability to use fundamental knowledge to investigate new and emerging technologies Apply advanced problem-solving skills, technical knowledge and understanding to establish rigorous and creative solutions that are fit for purpose for all aspects of the problem including production, operation, maintenance and disposal
LO3 Design appropriate soil/rock reinforcement solutions.	 Design Understand and evaluate business, customer and user needs, including considerations such as the wider engineering context, public perception and aesthetics Investigate and define the problem, identifying any constraints including environmental and sustainability limitations; ethical, health, safety, security and risk issues; intellectual property; codes of practice and standards Work with information that may be incomplete or uncertain, quantify the effect of this on the design and, where appropriate, use theory or experimental research to mitigate deficiencies Apply advanced problem-solving skills, technical knowledge and understanding to establish rigorous and creative solutions that are fit for purpose for all aspects of the problem including production, operation, maintenance and disposal Plan and manage the design process, including cost drivers, and evaluate outcomes Demonstrate wide knowledge and comprehensive understanding of design processes and methodologies and the ability to apply and adapt them in unfamiliar situations Demonstrate the ability to generate an innovative design for products, systems, components or processes to fulfil new needs. Additional general skills Apply their skills in problem solving,
	communication, working with others,

	 information retrieval and the effective use of general IT facilities A thorough understanding of current practice and its limitations, and some appreciation of likely new developments
LO4 Design reinforced earth walls	 Engineering practice Understanding of the use of technical literature and other information sources Understanding of appropriate codes of practice and industry standards

Programme Threads

Thread	Primary	Secondary	Contributory
Design	Design calculation make up a large part of the coursework and assessment. Up-to-date codes and standards are used where applicable.		
Health, Safety & Risk Assessment			Covered extensively in lectures by industrialists – will be assessed some years depending on exam questions.
Sustainability		The students are asked to consider costs, material use and environmental impacts of the engineering methods covered in the course. These can be covered in the written parts of the exam questions.	
Professionalism, Ethics, Diversity			
and Inclusion Application of Maths to solve engineering problems	Vital to completing the course as a large part of the exam is hand calculation of complex geotechnical structures. Calculations are also required for the coursework.		
Industrial Engagement & Site Visits	Several lectures given by industry. Coursework and exam design in collaboration with industrial lecturers.		
Digital Technologies	Standard digital technologies used in course delivery.		