

MODULE DESCRIPTION FORM

DEPARTMENT OF MECHANICAL AND AEROSPACE ENGINEERING

ME977 MACHINE LEARNING FOR SATELLITE DATA

Module Registrar: Dr A. Riccardi	Taught To (Course): MSc. Satellite Data for Sustainable						
annalisa.riccardi@strath.ac.uk	Development for whom the class is compulsory						
Other Lecturers Involved:	Credit Weighting: 10 Semester: 2						
Compulsory/ elective class	Academic Level: 5 Suitable for Exchange: N						

Required prerequisites

<u>Note</u>: It is the responsibility of ALL students to ensure that they satisfy the prerequisite knowledge for this module BEFORE adding as part of curriculum selection. If unsure, please contact the Module Registrar or discuss with your Programme/Year Adviser of Studies.

Fundamentals of Satellite Image Processing

Knowledge of Google Earth Engine environment

(prerequisites covered by ME975 - students can enrol in the two classes in the same semester)

Module Format and Delivery (HOURS i.e. 1 credit = 10hrs of study):

Lecture	Tutorial	Laboratory	Groupwork	Groupwork External		Project	Assignments	Private Study	Total
10		10				40	10	30	100

Educational Aim

This class is designed to provide the students with the theoretical and practical foundations on the applications of machine learning methods to satellite data for prediction, classification, clustering and time series analysis.

Learning Outcomes

On completion of the module the student is expected to be able to:

LO1 Assess and determine the difference between machine learning methods and their applicability to practical problems

LO2 Understand and analyse the computational cost and parallelisation options for processing satellite data with machine learning methods

LO3 Objectively select, train and test a machine learning method for a given problem

Syllabus

The module will teach the following:

- Machine Learning fundamentals (supervise, unsupervised learning)
- Machine learning methods for prediction (regression), clustering, classification and time series analysis
- Satellite data preprocessing for machine learning applications
- Cloud GPU computing for training machine learning algorithms on satellite data
- Use of heterogeneous datasets
- Data preprocessing
- Image classification and segmentation
- · Ethical use of satellite and ground data

Assessment of Learning Outcomes

Criteria

LO1

- C1 Communicate clearly the difference between machine learning methods used in assignments
- C2 Be able to select and communicate clearly which machine learning method can be used and for which task

102

- C1 Successfully train machine learning algorithms on GPU cloud computing resources
- C2 Communicate clearly the computational cost involved in training large machine learning models and the choice of computational resources

LO₃

- C1 Produce code to retrieve, process satellite data and train a machine learning method for a given problem
- C2 Communicate clearly the reasoning behind the choice of data and algorithms

The standards set for each criterion per Module Learning Outcome to achieve a pass grade are indicated on the assessment sheet for all assessment.

Principles of Assessment and Feedback

(within Assessment and Feedback Policy at: https://www.strath.ac.uk/professionalservices/staff/policies/academic/)

The students are assessed with 5 practical exercises sketch out during laboratories sessions and completed at home, plus an individual project. For individual projects, students are provided with source of data and problem description. They will need to select the most suitable machine learning model for the problem, train the model, generate the results and write a report.

Feedback for the practical assessment is provided in terms of oral feedback during laboratory sessions. Written feedback on submitted project is provided together with the mark.

Assessment Method(s) Including Percentage Breakdown and Duration of Exams (individual weightings)

	Exan	nination		Cou	rsework	Pra	actical	Project	
Number	Number Month(s) Duration Weighting		Number Weighting		Number Weighting		Number	Weighting	
				5	40%			1	60%
*	*							*LO1-3	

^{*} L/Os: Indicate which Learning Outcomes (L01, L02, etc) are to be assessed by exam/coursework/practical/project as required.

Coursework / Submissions deadlines (academic weeks):

Submission of the 5 practical laboratories at the end of tutorial activities weeks (week 6 - 10).

Submission of project during April/May exam weeks

Resit Assessment Procedures:

Submission of alternate ^project prior to commencement of the August exam diet.

^^Students must contact the module Registrar for project details as soon as they know that they are required to resit this class.

PLEASE NOTE:

Students must gain a summative mark of 50% to pass the module. Students who fail the module at the first attempt will be re-assessed before the August diet. This re-assessment will consist entirely of a project. No marks from any previous attempts will be transferred to a new resit attempt

Recommended Reading

No set texts or recommended for the class. Relevant material provided during tutorials or on the Myplace module page

Additional Student Feedback

(Please specify details of when additional feedback will be provided)

Date	Time	Room No
		Check timetable webpages for details

Session: 2023/24

Approved:

Course Director Signature: Olga Ganilova

Date of Last Modifications: 25/08/23

(Updated August 2023)

MODULE TIMETABLE

Module Code:	ME977	Module Title:	Machine Learning for Satellite Data

Brief Description of Assessment:

5 practical laboratory exercises to be submitted at the end of the tutorial activities weeks (week 6-10) - 40% 1 project to be submitted during April/May exam diet - 60%

Assessment Timing:-

Indicate on the table below the start/submission dates for each assignment/project and the timing of each exam/assessment using the dropdowns provided. Dropdowns can be left blank. Add extra notes below the dropdowns.

Please note: Timings can and will change, this should only be used as a guide.

	W&D						_						
Semester	Wk	WK1	WK2	WK3	WK4	WK5	WK6	WK7	WK8	WK9	WK10	WK11	Exam Period
One	Choose	Choose an											
	an item.	item.											
	Choose												
	an item.												

Semester	C&D Wk	WK1	WK2	WK3	WK4	WK5	WK6	WK7	WK8	WK9	WK10	WK11	Exam Period
Two	Choose	Choose	Choose	Choose	Choose	Choose	Lab	Lab	Lab	Lab	Lab	Course	Project
	an item.	an item.	an item.	an item.	an item.	an item.	Report	Report	Report	Report	Report	work	Submission
	Choose	Choose	Choose	Choose	Choose	Choose	Submiss	Submiss	Submiss	Submiss	Submiss	Set	
	an item.	an item.	an item.	an item.	an item.	an item.	ion	ion	ion	ion	ion		