Laser techniques for flame and combustion thermometry

Paul Ewart

EMPRESS Workshop

AFRC Glasgow 22 March 2017

Oxford University Department of Physics

- Tuneable Diode Laser absorption spectroscopy, TDLAS
 - Doppler width of spectral line intensity
- Laser induced fluorescence spectroscopy, LIF
 - Relative intensity of spectral lines
- Laser Rayleigh scattering
 - Density dependence of scattered intensity
- Coherent Anti-Stokes Raman Scattering, CARS
 - Spectral intensity of scattered light
- Degenerate Four-Wave Mixing spectroscopy, DFWM
 - Spectral intensity of scattered light
- Laser induced grating spectroscopy, LIGS

- Validation of theory and/or models
 - e.g. Reaction rates exponentially sensitive to temperature
- Distinguishing "uncertainty" from "variability" e.g. Cyclic variability in IC engine combustion
- Relative measurements are easier than absolute e.g. Comparison of charge cooling for bio-fuels

The secret of precision

"Never measure anything except a frequency"

Arthur Schawlow 1921 – 1999 Nobel Prize for Physics, 1981

Laser Induced Thermal Gratings

Laser induced thermal gratings

Grating Evolution

1.5

Time

1

2.5

x 10⁻⁷

2

0.5

0

0

0.5

Cell-based measurement: LITGS in NO₂ / N₂

Temperature precision <u>+</u> 0.1%

LIGS Thermometry in Direct Injection Spark Ignition DISI engine

Temperature measurement over a cycle 🗧

Charge cooling with gasoline/alcohol blends

Ben Williams, Megan Edwards, Richard Stone, John Williams and Paul Ewart Combustion & Flame, 161 270–279, (2014)

Temperature vs HAB at 2.5 bar

High speed LIGS

Multi-point 1-D LIGS

Temperature gradient in gas flows

Temperature measurement in boundary layers

Rapid Compression Machine, RCM

Conclusions: LIGS thermometry

- LIGS temperature precision: 0.1 1.0%
- "Real World" Applications e.g. IC & Diesel engine diagnostics Portable LIGS thermometer Multiple point measurements
- Calibrated standard for flame temperatures: 1000 3000 K
- Future work
 - High speed measurements, Hostile environments, Hypersonics, Shock tube studies etc.

Acknowledgments

Dr Ben Williams Professor Richard Stone Dr Rob Stevens Dr Megan Edwards Dr Anna-Lena Sahlberg Dr Felix Förster Mr Andrew Luers

Questions?