Temperature measurements in turbulent flames using Raman spectroscopy

Wolfgang Meier

German Aerospace Center (DLR), Stuttgart

EMPRESS Workshop March 22, 2017, Glasgow, UK

Combustion diagnostics at DLR Stuttgart

Work is focused on gas turbine combustion

- Pressures 1 30 bar
- Thermal powers 5 kW 1 MW
- Temperatures 300 2500 K
- Fuels: Methane, natural gas, hydrogen, ethylene, kerosene, oil

lab-scale burner

high-pressure test rig

Combustion diagnostics at DLR Stuttgart

Laser measurement techniques for

- Gas and droplet velocities (PIV, PDA)
- Species concentrations (LIF, Raman, LIBS, absorption spectroscopy)
- Gas temperatures (CARS, Raman, LIF)
- Surface temperatures (thermographic phosphors)
- Soot (LII)

CARS laser system

Lasers for 1D Raman scattering

Fundamentals of laser Raman scattering

- Determination of species densities.
- Temperature is deduced in our applications from total number density
- Raman scattering is an inelastic scattering process of electromagnetic radiation at molecules (via polarizability).

Selection rules: $\Delta v = \pm 1$, $\Delta J = 0$, ± 2 (J is rotational quantum number)

- Excitation can be performed by arbitrary wavelength, because it is no resonant excitation process.
- All molecular species can be excited simultaneously with one laser.
- Wavelength shift of the Raman-scattered light corresponds to energy of a vibrational energy quantum of the molecule.
- Wavelength shift is characteristic of molecular species.

Signal intensity

 $I_{RS} = I_{L} \cdot N_{i} \cdot d\sigma/d\Omega \cdot \Omega \cdot \epsilon \cdot q \cdot L$

I _{RS}	: detected Raman intensity
۱ _L	: laser intensity
Ni	: molecular density of species i
dσ/dΩ	: differential scattering cross section
Ω	: solid angle of detection optics
3	: optical efficiency
q	: quantum efficiency of detector
L	: length of measuring volume

- Molecular density can be determined from the Raman signal.
- The constants are typically determined by calibration measurements.

Raman-shift and scattering cross sections of major species in flames

In principle, all these species can be detected simultaneously in flames

Measured spectrum from a fuel-rich premixed ethylene/air flame.

If all (major) species are detected simultaneously the total number density N_{total} can be determined:

 $N_{total} = \Sigma N_i$

With knowledge of the pressure p the temperature can be determined via the ideal gas law:

 $T = p / (k \cdot N_{total})$ k: Boltzmann constant

Temperature and major species concentrations can be determined simultaneously

 \rightarrow wonderful measuring technique! But, ...

Low signal levels, high laser power needed, only applicable in "clean" flames.

Calibration devices

- Cold and electrically heated gas flows, temperatures known from thermocouples.
- Flat laminar flames, temperatures known from CARS measurements.

Burner with sintered bronze matrix (McKenna type)

Lasers for Raman scattering

Flashlamp-pumped dye laser

• Pulse energy 2.5 J, pulse duration 2 μ s, wavelength λ = 489 nm, repetition rate 5 Hz, only suited for point measurements

Nd:YAG laser cluster

• Pulse energy 1.7 J, pulse duration with pulse stretcher 350 ns, λ = 532 nm, repetition rate 10 Hz, suited for 1D measurements

Experimental setup for 1D Raman scattering

Spatial measurement resolution ≈ 0.5 mm

Measurement uncertainties

Systematic uncertainties

- Calibration procedure (T of calibration flames, flow meters, ...)
- Laser pulse energy
- Drifts of alignment of optical setup
- For T: ±3-4%

Statistical uncertainties of single shot measurement

- Shot noise of detected photons
- For T: ±2.5%

Uncertainties depend on experimental arrangement and flame condition.

Measurements in partially premixed CH₄/air swirl flames Thermal power 25 kW

Correlation between temperature and mixture fraction

500 single-shot Raman measurements at each radial location

Radial profiles at h=8 mm in oscillating flame

- Thermo-acoustic oscillation at frequency of 400 Hz
- Phase-averaged mean values for 8 different phase angles

Raman measurements in high-pressure test rig Industrial gas turbine burner installed in DLR optical test rig

- Premixed natural gas and air
- pressure up to 6 bar, Power = 0.335 1.08 MW, T_{air} = 670 K

Flame structures from OH-PLIF measurements

Instantaneous profiles of temperature and species From single-shot 1D Raman measurement

Profile with large gradients \rightarrow indication of flame front

Conclusions

- Single-shot laser Raman scattering is an established technique for combustion diagnostics.
- Difficulties arise from small scattering cross section: Need of high laser pulse energy; signal interferences in flames with liquid fuels.
- · Calibration measurements needed.
- Improvement of accuracy desirable.
- Advantages: Simultaneous line (1D) measurement of temperature and species concentrations yields huge amount of information about thermo-chemical state of flames.

DLR.de • Chart 22 > EMPRESS Workshop > W. Meier > Glasgow, 03/22/2017

Thank you for your attention

DLR.de • Chart 23 > EMPRESS Workshop > W. Meier > Glasgow, 03/22/2017

Backup

Challenges for laser Raman measurements in high-pressure test rigs

- Limited optical access, laser beams and signals must pass several windows.
- Window degradation by high thermal loads.
- Beam degradation and steering.
- Depolarization in windows by stress-induced birefringence.
- Non-traversable rigs \rightarrow measurement technique must be traversed.
- Costs.

