EMPRESS Workshop

Enhanced process efficiency through improved temperature measurement

22 March 2017 Advanced Forming Research Centre, UK www.npl.co.uk/events

Invited speakers from Rolls-Royce (keynote), BAE Systems, Cambridge University, CCPI Europe, DLR, Elkem, Loughborough University, Metrosol, MUT Advanced Heating, Oxford University, Strathclyde University

National Physical Laboratory

Technologies

- Thermocouples
- Phosphor thermometry
- Surface temperature probes
- Combustion & flame
 thermometer

Application areas

- Furnace control
- Heat treatment
- Casting
- Forming
- Welding
- Forging
- Gas turbines

Co-sponsored by

Institute of Measurement and Control

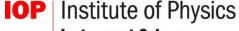
IOP Institute of Physics

 Internal combustion engines EMPRESS is a European project with the goal of enhancing process efficiency through improved temperature measurement. The consortium comprises 18 partners across government, industry and academia.

This workshop is an excellent opportunity to bring together scientists and engineers from academia, research institutes and industrial establishments to present and discuss both

- The latest developments in the field of traceable temperature measurement for process control
- End-users' requirements and challenges

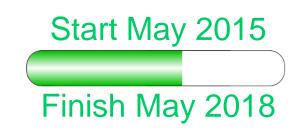
61 delegates 41 organisations 9 NMIs 12 Manufacturing 20 Instrumentation



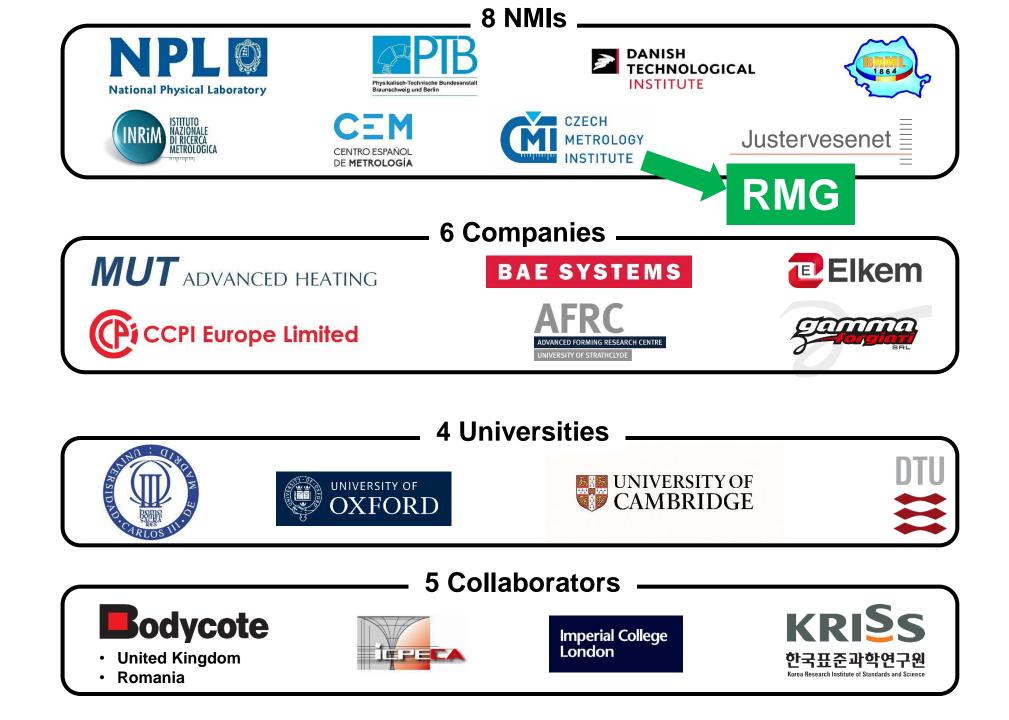
EMPRESS: A European project to enhance process efficiency through improved temperature measurement

Jonathan Pearce Frank Edler Claire Elliott Lucia Rosso **Gavin Sutton Aurik Andreu Graham Machin**

Instrument Science and Technology Group

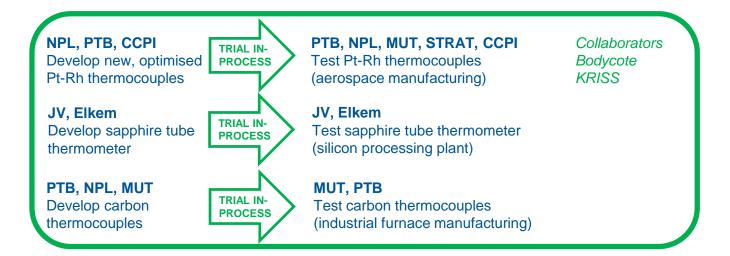

1. Solve specific process control problems in advanced manufacturing

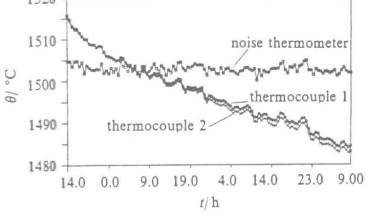
2. Establish traceability to ITS-90 in-situ


 Driftless thermocouples and other contact thermometers (WP1,2)

- Surface thermometry (WP3)
- Combustion thermometry (WP4)

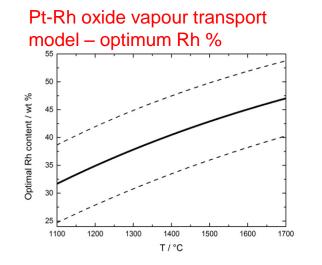
- Heat treatment of aerospace alloys
- Casting of aerospace alloys
- Forming and forging of automotive components
- Industrial furnace manufacture
- Silicon processing
- Ceramic manufacturing
- Forming of AI alloys and composite materials
- Welding pre- and post- heat treatment of marine structures
- Coating of marine structures
- Internal combustion engine, gas turbine, and fuel development

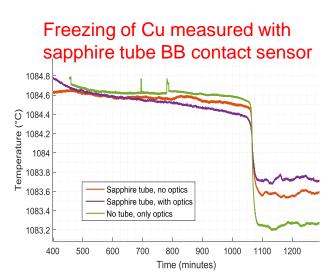


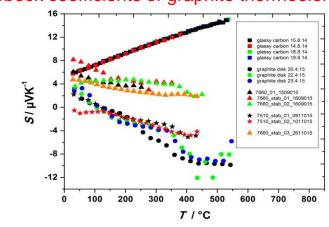


WP1 Low-drift contact temperature sensors to > 2000 °C (PTB)

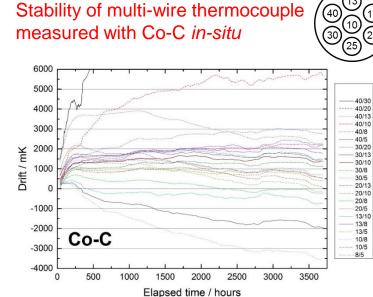
- Silicon processing, aerospace heat treatment, process furnace manufacture
- Pt-Rh thermocouples OK to about 1500 °C
- W-Re thermocouples to 2300 °C, not very stable
- Determine optimum Pt-Rh composition
- Sapphire tube blackbody device
- Carbon thermocouples to >2000 °C
- End-user trials: AFRC, A&D, HTRC, possibly RR



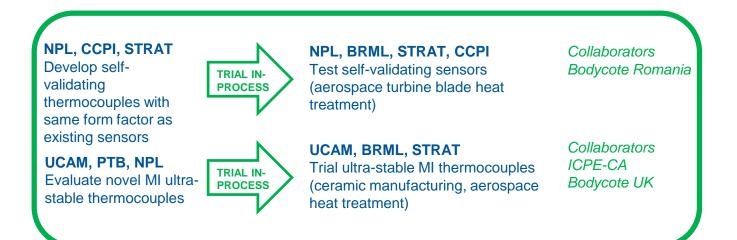

Retortenöfen/ HochVakuum-Retortenofen Retort Furnace/ Higt-Vacuum Retort Furnace

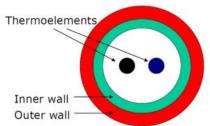

WP1 Low-drift contact temperature sensors to > 2000 °C (PTB)

- Multi-wire Pt-Rh thermocouple stability evaluated to about 1500 °C
- NPL: Sophisticated modelling of Pt-Rh thermocouple drift mechanisms
- JV/Elkem: Sapphire tube blackbody device constructed & operational
- PTB/MUT: Carbon thermocouples to >2000 °C constructed and tested to 1300 °C with promising results
- End-user trials: AFRC, A&D, HTRC, possibly RR, JM



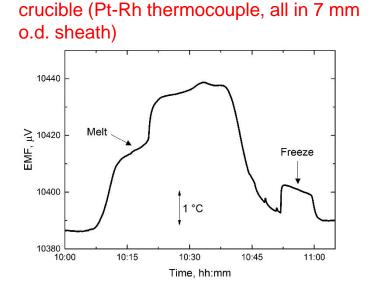
Seebeck coefficients of graphite thermoelements

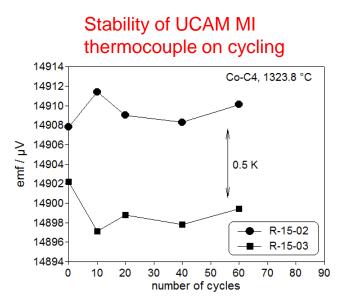


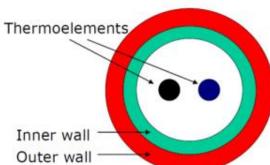


WP2 Zero-drift contact temperature sensors to 1350 °C (NPL)

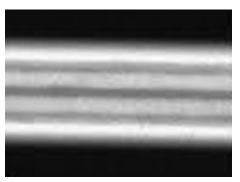
- Aerospace heat treatment, ceramic manufacture, forming and forging
- For some applications e.g. long-term heat treatment, direct in-situ traceability is needed
- Self-validating thermocouples
- Reduce size of FP to enable same form factor
- A cheaper alternative is the novel double-sheathed MI cable developed by UCAM






WP2 Zero-drift contact temperature sensors to 1350 °C (NPL)

- For some applications e.g. long-term heat treatment, direct in-situ traceability is needed
- NPL: Self-validating thermocouples constructed and working
- UCAM/PTB: MI cable developed by UCAM, metrologically characterised by PTB
- End-user trials: AFRC, A&D, ICPE-CA, Bodycote



Melting and freezing of miniature FP

X-ray of double-walled MI thermocouple

WP1 & WP2 in-situ trials

Bodycote

- Heat treatment
- Forming and forging
- Ceramic manufacture

WP3 Surface temperature (INRIM)

- Forming, forging, welding heat treatment, coating
- Contact thermometers for surface temperature measurement are subject to large errors
- Fluorescence thermometer
 Surface temperature calibrator
 Directly applied to surface
- Heat flow compensating sensor

INRIM, DTI, NPL

Develop fluorescence sensor for surface temperature measurement

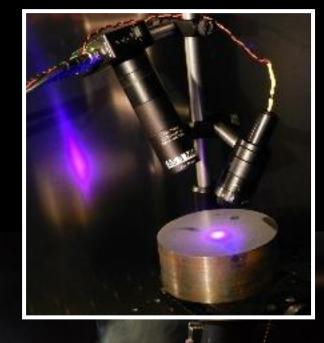
CMI

Develop heat flow compensated sensor for surface temperature measurement

TRIAL IN-PROCESS

NPL, BAE

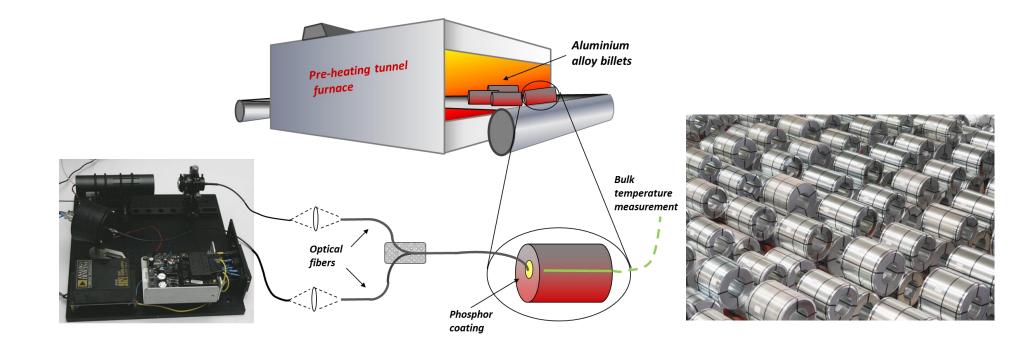
Test fluorescence thermometer in welding and coating treatment (marine structure fabrication)


INRIM, Gamma

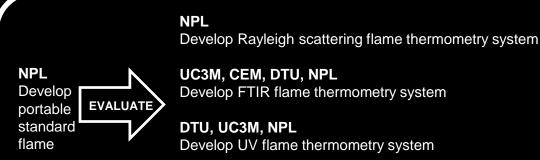
Test fluorescence thermometer in metal forging and forming (automotive manufacturing)

CMI, Collaborators

Test heat flow compensated thermometer in forming application (automotive)

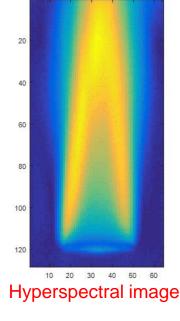

WP3 Surface temperature (INRiM)

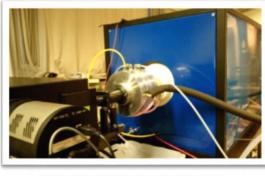
- End-user trials
- BAE Systems
- Gamma Forgiati



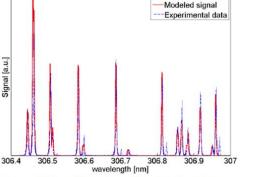
WP4 Combustion temperature (NPL)

- ICE, gas turbines, fuel development
- There is currently no traceability of flame and combustion temperature measurements
- Develop portable standard flame
- Validate it & assign traceable temperature
- Make it available to end-users


UC3M, CEM, DTU, NPL


DTU, UC3M, NPL Develop UV flame thermometry system

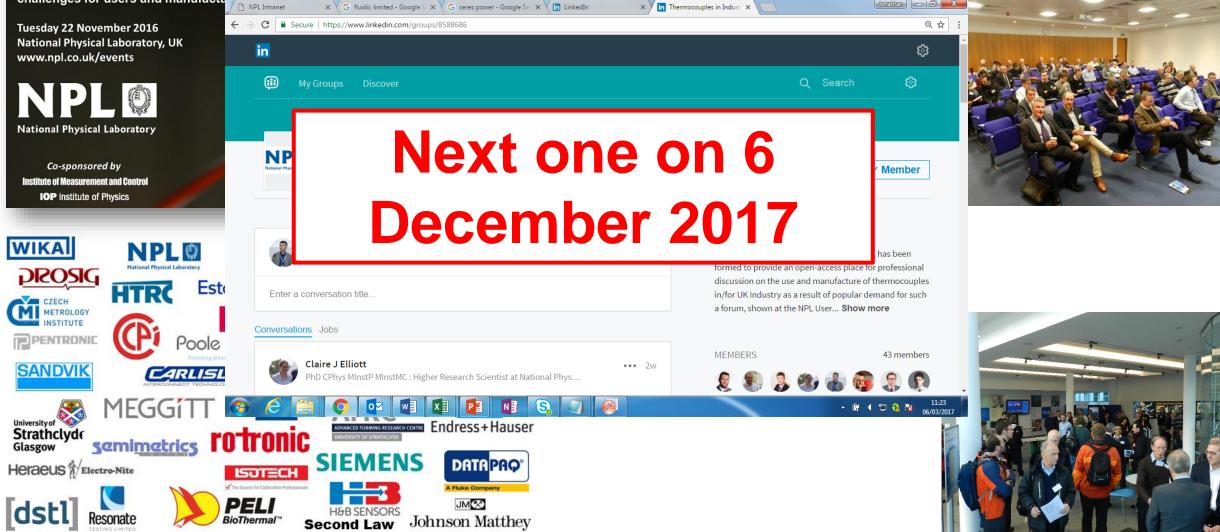
UOXF, NPL Develop DFWM and LIGS flame thermometry system


WP4 Combustion temperature (NPL)

- NPL: portable standard flame commissioned
- CEM/UC3M: adaption of hyperspectral imager to measure flames complete
- DTU: UV spectrometer measurements on hot gas underway, compilation of UV CO2 and H2O absorption spectral database
- UOXF: DFWM and LIGS models under development; DFWM measurements of OH in McKenna burner methane/air flame - excellent results; LIGS results for heated water vapour successful
- End-user linkage via universities (mainly automotive)

UV spectrometer observing the hot gas cell.

hal [a.u.]



Thermocouple users group

"Thermocouple Users and Manufacturers Conference"

One-day conference on recent developments and contemporary challenges for users and manufacturers of thermocouples

NPLE

NPLO

National Physical Laboratory

Agenda

	Wednesday 22 March 2017		
9.00	Arrival and registration		Ξ
9.30	Welcome to the AFRC	David Jones, AFRC	Introduction & keynote
9.35	Welcome and introduction	Graham Machin, NPL	
9.40	Overview of the EMPRESS project	Jonathan Pearce, NPL	
10.00	Keynote: Temperature measurement for better processes to create better products and services	Pete Loftus, Rolls-Royce	
10.40	Overview of WP1: Low-drift contact temperature sensors to above 2000 °C	Frank Edler, PTB	
10.50	Overview of WP2: Zero-drift contact temperature sensors to 1350 °C	Claire Elliott, NPL	
11.00	Coffee brea	k	
11.30	Introduction to a new low drift base metal thermocouple mineral insulated cable technology	Michele Scervini, Cambridge University & Trevor Ford, CCPI Europe Ltd	Contact thermometry
11.50	Optical based contact thermometer using SiC, quartz tubes and sapphire fibre	Sigurd Simonsen, Elkem	
12.10	High-temperature measurement in industrial practice	Jurgen Blüm, MUT	
12.30	Lunch		
13.30	Overview of WP3: Traceable surface temperature measurement with contact sensors	Lucia Rosso, INRiM	Phosphor thermometry
13.40	Thermocouples in industrial environments	Mark Thomas, BAE Systems	
14.00	Surface thermometry in low TRL testing of combustor cooling concepts	Clare Bonham, Loughborough University	
14.20	Industrial uses of thermographic phosphors	Andy Heyes, Strathclyde University	
14.40	Tea break and networking		
15.10	Overview of WP4: Traceable combustion temperature measurement	Gavin Sutton, NPL	Combustion thermometry
15.20	Laser techniques for flame and combustion thermometry	Paul Ewart, Oxford University	
15.40	Temperature measurements in turbulent flames using Raman spectroscopy	Wolfgang Meier, DLR	
16.00	A practical Johnson noise thermometer	David Cruickshank, Metrosol	
16.20	Tour of AFRC		

jonathan.pearce@npl.co.uk

Department for Business Innovation & Skills

FUNDED BY BIS

The National Physical Laboratory is operated by NPL Management Ltd, a whollyowned company of the Department for Business, Energy and Industrial Strategy (BEIS).