

Absolute gas thermometry using IR emission spectroscopy

Ared Cezairliyan Best Paper Award of the Int. Journal of Thermophysics

27 November 2020

<u>Alexander Fateev¹</u> (on the behalf of the other Authors: Gavin Sutton, Miguel A. Rodríguez Conejo, Juan Meléndez, Guillermo Guarnizo)

¹⁾ alfa@kt.dtu.dk

What is IR emission spectroscopy?

Radiative Transfer in 1D uniform T case:

 $I_{\eta}(v) = L(v) \ \varepsilon(v) \ or$

- $I_{\eta}(v) = L(v) \ (1 \exp(-k(v)L))$
- \Box *L*(*v*) is Planck's function
- \Box k(v) is an (molecular) absorption coefficient
- □ *L* dimention
- \Box $\varepsilon(v)$ emissivity, if $\varepsilon(v) = 1$ then BB

Detector:

- 1D: (handheld) pyrometer or FTIR Spectrometer
- 2D: Imaging Camera (array) or Hyperspectral Imaging System

L: from few cm to few m "Gas" ↔ "Detector" distance: close or far-away

Two "magic" wavelengths: 4.3 μm (2326 cm $^{-1}) and 3.9 <math display="inline">\mu m$ (2564 cm $^{-1})$

If $1 \ll k(v)L$ then $I_{\eta}(v) \approx L(v)$ and

> CO_2 band at 4.3 µm can be used for T_{gas} measurements

No "if" then (inverse) RHT equation should be solved with use spectra modeling tools (HITEM/HITRAN databases)

3.9 μ m can be used for particles and/or surface temperature measurements (assuming some known $\varepsilon(v)$)

Requires a calibration with a reference (calibrated) BB source

2

Why IR emission spectroscopy:

- ✓ non-intrusive
- ✓ fast

(Very) high price-range

- ✓ can be used for *in situ* process control
- ✓ can be realized in a *mid-price* range

Where:

Globally (broad spectral range):

Gas and particle temperatures

Locally (narrow spectral range):

- □ Band-shapes P/T dependent
- Gas temperature

(Very) low price-range

BUT:

Various optical emission spectroscopy methods need a validation with a known temperature and composition source traceable to ITS-90 International Journal of Thermophysics (2019) 40:99 https://doi.org/10.1007/s10765-019-2557-6

Validation of Emission Spectroscopy Gas Temperature Measurements Using a Standard Flame Traceable to the International Temperature Scale of 1990 (ITS-90)

Gavin Sutton $^1 @\cdot$ Alexander Fateev $^2 \cdot$ Miguel A. Rodríguez-Conejo $^3 \cdot$ Juan Meléndez $^3 \cdot$ Guillermo Guarnizo 3

Received: 30 November 2018 / Accepted: 9 October 2019 $\hfill {\ensuremath{\mathbb C}}$ The Author(s) 2019

The aims:

- ✓ to develop a portable flame temperature standard, calibrated via the Rayleigh scattering thermometry technique, traceable to ITS-90, with an uncertainty of 0.5 % of temperature (k = 1).
- $\checkmark\,$ to use standard flame for validation of
 - hyperspectral imaging FTIR spectrometer (2D species and temperature maps)
 - high-precision single line-of-sight FTIR spectrometer

The NPL portable standard flame

"Region of hot gas of known temperature and species"

The NPL standard flame:

- Hencken Burner diffusion flamelets
- **Propane** / air flame $\{0.8 < \phi < 1.4\}$
- Low uncertainty flowmeters $U_r(flow) < 0.5\%$
- Known post flame composition
- Traceable to ITS-90
- Portable!
- Reproducible temperature $U_r(\phi) = 0.5\%$

$$\phi = \frac{\left(V_{fuel}/V_{air}\right)}{\left(V_{fuel}/V_{air}\right)_{Stoichiometric}}$$

Stoichiometric → fuel/air ratio for a balanced reaction (i.e. no excess oxygen)

Burner performance

Temperature profile example, $\phi = 1.0$ (Rayleigh scattering: point measurements)

EMPRES

FOR PROCESS EFFICIENC

- Flame is flat over +/- 10 mm region
- Knowledge of the profile useful for line of sight techniques

HAB = Height Above Burner

Temperature uncertainty

Source	Type	Distr.	Size / ± %	Multiplier	Sensitivity Coefficient	Size (10) /%
Molar refractivity data	В	Rect	0.20	0.58	1.00	0.12
Flow-meter uncertainty	B	Rect	1.00	0.58	0.40	0.23
Chemical equilibrium assumption	B	Rect	0.30	0.58	1.00	0.17
Air calibration PRT	A	Norm	0.05	1.00	1.00	0.05
Background scattered signal	A	Norm	0.10	1.00	0.50	0.05
Laser stability	A	Norm	0.20	1.00	1.00	0.20
Inlet air temperature (15-25 °C)	В	Rect	3.00	0.58	0.10	0.17
Atmospheric pressure	B	Rect	5.00	0.58	0.05	0.15
Gas purity	В	Rect	2.50	0.58	0.05	0.07
Flame temperature reproducibility	A	Norm	0.20	1.00	1.00	0.20
Total uncertainty (combined in quadrature)						0.5 %

Table A1 Uncertainty budget for the temperature 20 mm above the centre of the NPL STD flame.

• Long term stability = 0.2 % of T

Combined uncertainty (k=1) = 0.5 % of T

European project to enhance process efficiency through improved temperature measurement:

- STD flame calibrated at NPL
- Partner organisations developing novel optical combustion thermometers

- STD flame circulated to partners
- Comparison of techniques publication
- NPL facility available for others

EMPRESS - Enhancing Process Efficiency through Improved Temperature Measurement: http://journals.sagepub.com/doi/pdf/10.1177/0020294016656892

Hyper-spectral IR imaging at UC3M

FTIR Hyperspectral Imaging System

- \checkmark Operates in the MIR (2 μm to 5.5 $\mu m)$
- ✓ Michelson interferometer, coupled to an InSb focal plane array (320 x 256 pixels)
- ✓ Similar to FTIR spectrometer but provides 2D maps of species and temperature
- ✓ Measures the emitted power from the CO₂, CO and H₂O bands (post flame region)
- ✓ Comparison with HITEMP-2010 synthesised spectra → determine the flame temperature

Hyper-spectral IR imaging: data analysis and modelling

Example measurement and spectral fit

- Model accounts for absorption in the ambient air
- Temperature profile assumed to be 'top-hat' (out of the page)
- Good agreement between measured and synthesised spectra

Measurements on the NPL STD flame

- $\phi = 1.0$, propane/air flame
- Temperature, CO₂ and CO are measured

2000

-20,0

-15.0

-10,0

0,0 Rx (mm)

-5,0

10,0

5,0

15,0

20,0

Precision IR emission spectroscopy

Measurement principle

• The flame spectral intensity at wavenumber η measured at L is given by:

$$I(\eta) = \int_0^L \kappa_\eta I_{B\eta}(T) e^{-\int_s^L \kappa_\eta ds'} ds$$

- Where:
 - $I_{B\eta}(T)$ is the Planck function
 - κ_{η} is the spectral absorption coefficient

Determining the temperature profile

- Measure the emission spectra
- Estimate temperature profile $T_{est}(s)$ and calculate κ_{η} from HITEMP2010
- Synthesise the emission spectra
- Minimise the differences between the two
- Determine the true temperature profile $T_{true}(s)$

Assumed to be a smooth

Symmetric or asymmetric function

Validation of HITEMP spectral database

Modelled spectra agree very well with measured

Differences between measured/modelled:

- \square H₂O/CO (1500-2000cm⁻¹) = 0.63%
- \Box CO₂/CO (2160-2400cm⁻¹) = -0.17%
- \Box CO₂ band is most sensitive to T(x) profile
- \square H₂O band is less sensitive

15

Comparison with Hyper-Spectral measurements

> An overall excellent agreement

 \succ No CO₂ self-absorption (ambient air)

Verification of NPL temperature profiles

- > NPL temperature profile is input parameter for modelled HITEMP2010 spectra
- NPL profile has been improved
- > Example 2: $\phi = 0.8$, HAB = 20 mm

Inspired by industry: NOx reduction in SNCR systems

From Bernd von der Heide (2008), Mehldau & Steinfath Umwelttechnik GmbH

NOx <u>Selective Non-Catalytic Reduction (SNCR)</u> on power plants and waste incinerators:

- > Narrow temperature range (nature of the process): $NH_3 + NO \rightarrow N_2 + H_2O$
- Ammonia/urea consumption optimization (costs)
- NOx high-efficiency removal (environment, pollution)
- Accurate in situ T_{gas} measurements is a must
- 2D temperature profiles with a sweeping technique (several line-of-sights measurements combined in 2D plot)
- Fast T-profiles retrievals
- Possibility for a "moderate" system cost
- > Only 1x access point

20

18

FOR PROCESS EFFICIENCY

Ioη

Machine learning approach for retrievals of temperature profiles

Predicted mean temperatures within 10 mm from the center of the burner differ by

▶ φ=1: 0.23%

- **□** *φ*=1.4: 1.88%

from the measured temperatures.

Target: an overall temperature uncertainty below 0.5 %

Waste insinirator: FTIR 8cm⁻¹ fast scanning

In Situ measurements at a waste incinerator

Challenges:

- ✓ Keep optics clean (CO₂ self-absorption)
- ✓ HITEMP2010 "weak" line intensities those become "strong" at long L (10 m)

- ✓ Reference CO₂/H₂O high-T spectra can be in house measured
- ✓ There are (natural) temporal T_{gas} -variations due to turbulence (from ± 20 °C to ± 60 °C)

> 1% from 1000°C is 10°C ($\Delta T = 50$ °C window for SNCR)

Conclusions

Why IR emission spectroscopy:

- ✓ non-intrusive
- ✓ fast
- $\checkmark\,$ can be used for *in situ* process control
- ✓ can be realized in a *mid-price* range

Where:

Globally (broad spectral range):

Gas and particle temperatures

Locally (narrow spectral range):

- □ Band-shapes P/T dependent
- Gas temperature

Acknowledgements:

These projects have received funding from the EMPIR programme cofinanced by the Participating States and from the European Union's Horizon 2020 research and innovation programme.

