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Abstract

Consider an environment in which individuals are organised into groups, they

contribute to the collective action of their group, and are influenced by the collective

actions of other groups; there are externalities between groups that are transmitted

through the aggregation of groups’ actions. The theory of ‘aggregative games’ has

been successfully applied to study games in which players’ payoffs depend only on

their own strategy and a single aggregation of all players’ strategies, but the setting

just described features multiple aggregations of actions—one for each group—in

which the nature of the intra-group strategic interaction may be very different to

the inter-group strategic interaction. The aim of this contribution is to establish

a framework within which to consider such ‘multiple aggregate games’; present a

method to analyse the existence and properties of Nash equilibria; and to discuss

some applications of the theory to demonstrate how useful the technique is for

analysing strategic interactions involving individuals in groups.

Key words: aggregative game; group interaction; contests; public goods; bilateral oligopoly.
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†Richard and I had many interesting discussions about aggregative games and games in which there

are multiple aggregates, and it was firmly on both of our agendas to pursue joint research on multiple
aggregate games. As is often the case, momentum in pursuing ideas takes time to establish, and it was
very unfortunate that we were not afforded the opportunity to work closely on developing these ideas
before Richard sadly passed away in 2015. It is a great honour to have the opportunity to communicate
the current state of my thoughts on multiple aggregate games in this volume dedicated to Richard: the
aim has been to provide an accessible exposition of the ideas and establish a framework for analysis,
rather than to derive the most general results under the weakest assumptions, that I believe Richard would
appreciate. The work has undoubtedly benefitted from the discussions I had with Richard, as well as with
Roger Hartley, and it is also without doubt that what is presented here is inferior to what might have been
achieved had Richard co-authored the contribution: he had amazing intuition and an ability to explain
complex ideas in a simple way, that only comes from having a truly deep understanding. I hope to have
done the ideas justice.
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1 Introduction

In a strategic decision making environment there is strategic interdependence between

individuals playing a non-cooperative game; each is influenced by, and influences, the

other players in the game. Sometimes individuals care about exactly which of their ad-

versaries does what, but in many interesting economic applications players care only

about the aggregation of other players’ actions, since it is this that influences their pay-

off. Such games are called aggregative games. Often, individuals within an environment

are organised into groups and they contribute to the collective action of their group

which in part determines their payoff, but they are also affected by the collective actions

of other groups: there are externalities between groups that are transmitted through the

aggregation of groups’ actions. Whilst the theory of aggregative games has been success-

fully applied to study games with a single aggregate, the setting just described features

multiple aggregations of actions, one for each group, and the nature of the intra-group

strategic interaction—where players contribute to the collective action of their group—

may be very different to the inter-group strategic interaction. The aim of this paper is

to establish a framework in which to consider such ‘multiple aggregate games’; present

a method to analyse the existence and properties of equilibria; and to discuss some ap-

plications of the theory—to contests; public goods games; and bilateral oligopoly—to

demonstrate how useful the technique is for analysing strategic interactions between

groups of individuals.

Consider a simultaneous-move game of complete information involving i = 1, . . . , N

individuals where each has to decide on a single action xi ∈ R+. Each player’s payoff

depends on their own action and the vector of all other players’ actions. The game is

an ‘aggregative game’ if each player cares only about the aggregation of other players’

actions, X−i = X− xi, where X is the sum of all players’ actions. The standard approach

to finding a Nash equilibrium involves identifying each player’s best response function,

bi(X−i); this is player i’s action consistent with a Nash equilibrium in which the aggre-

gate actions of other players is X−i. The problem is that for each player this is defined

on a different domain, and therefore the joint best response function, of which a fixed

point must be found, has as many dimensions as there are players. An aggregative ap-

proach does something different: rather than finding a best response, instead consider

the action of player i consistent with a Nash equilibrium in which the aggregate of all
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players, including player i, takes the value X. This gives the ‘replacement function’1

ri(X), so called because finding it involves replacing X−i with X − xi in the equation

that defines the best response and then solving for xi. A Nash equilibrium is identified

at the level of the aggregation of actions, and requires aggregate consistency between in-

dividual actions and the aggregate; that is, for X to be such that the sum of replacement

functions evaluated at X exactly equals X. This is a much simpler problem than finding

mutually consistent best responses! Existence, uniqueness and comparative static prop-

erties can be investigated by understanding the properties of replacement functions and

their aggregation, which is tractable even in a game with heterogeneous players; and

whether these players are active in equilibrium or not can be deduced by evaluating

their replacement function at the equilibrium aggregate.

The methods of aggregative games have been used to good effect in the study of

Cournot oligopoly (Novshek, 1985); public goods games (Cornes and Hartley, 2007);

and Tullock contests (Cornes et al., 2005); among others. In contests, a contestant’s share

of the aggregate action naturally features in their payoff function, and in the analysis

of the game it is often convenient to use share functions rather than replacement func-

tions; since si(X) = ri(X)/X can be monotonically decreasing in X when ri(X) is not.

Aggregate consistency with share functions requires their sum to take the value 1. The

share function approach was first introduced by Cornes and Hartley (2000) in studying

joint production games. In addition to exploring the use of aggregative games in partic-

ular applications, there have been some general treatments including those by Corchon

(1994); Jensen (2010), who considers that the aggregation of players’ actions can be more

general than the simple unweighted sum; Cornes and Hartley (2012); and Acemoglu

and Jensen (2013).

In a ‘multiple aggregate game’ each player is a member of a single group and their

action contributes to the collective action of their group. Individuals within a group

care about their own action, the collective action of their group, and also the collective

actions of other groups: there is intra-group strategic interaction which takes the form

of an aggregative game; and inter-group spill-overs that transmit through the aggregate

actions of groups. The applicability of this framework that extends the scope of ag-

gregative games is clear. Inspiration for the study of multiple aggregate games comes

1Elsewhere this is called the ‘cumulative best reply’ (Selten, 1970), the ‘inclusive reaction function’ (Wolf-
stetter, 1999) and the ‘backward reaction correspondence’ (Novshek, 1985).
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from the analysis of bilateral oligopoly (see, for example, Dickson and Hartley (2008)) in

which there is a set of buyers and a set of sellers and, in essence, each group of traders

plays a simple Tullock contest in which they receive a proportional share of a prize, the

size of which is determined by the aggregate actions of the other group of traders.

The method used to analyse multiple aggregate games first resolves the intra-group

strategic interaction, and then essentially treats groups as players that choose an ag-

gregate action to resolve the inter-group interaction. First, a group is selected and the

aggregate actions of other groups are fixed at arbitrary levels. This defines a ‘par-

tial game’ that involves only the members of the selected group, and since each group

member cares only about their own action and the aggregation of other group members’

actions, this is an aggregative game. Within the partial game, aggregative methods can

be applied to identify a Nash equilibrium: individual replacement or share functions

are derived that represent the consistent behaviour of group members; then aggregate

consistency within the group is imposed to identify the Nash equilibrium in the partial

game, which reveals the ‘group best response’. This is repeated for each group, and the

resulting group best responses represent the collective action of each group consistent

with a Nash equilibrium in which the aggregate actions of other groups take a particular

value, having accounted for the strategic tension within groups. A Nash equilibrium in

the full game can then be identified at the level of group aggregates, that requires the

aggregate action of each group to be a group best response to the aggregate actions of

the other groups.

Whilst identifying Nash equilibrium is a fixed point problem, it involves the joint

group best response and therefore only has as many dimensions as there are groups

even though there are heterogeneous players within each group. This may be as few as

two, as in bilateral oligopoly. As such, exploiting the aggregative nature of the game

considerably simplifies the analysis and, since group best responses are found using the

aggregation of replacement or share functions whose properties are easily deduced, the

features of Nash equilibrium can be easily understood.

In some games there is more structure to the group interaction: a ‘nested aggrega-

tive game’ has the feature that individuals not only care just about the aggregation of

others’ actions within their group, they also care only about the aggregation of other

groups’ actions. Such games are aggregative both at the level of individuals within

groups, and at the level of groups. The analysis slightly differs to exploit this additional
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aggregative structure: within ‘partial games’ individual and group consistency with a

Nash equilibrium in which the aggregate of all groups’ actions takes a particular value

is sought to define ‘group replacement functions’, following which overall consistency is

required for a Nash equilibrium, which needs the sum of group replacement functions

to be equal to the aggregate action, a simpler problem than finding mutually consis-

tent group best responses. Thus, consistency in aggregation is required twice: once at

the level of individuals within groups in partial games; and once at the level of groups

within the full game. The analysis of a game between individuals using aggregative

techniques renders the study of equilibrium tractable and permits uniqueness of equi-

librium to be considered even in the presence of heterogeneous players, and the same

is true of a nested aggregative game with heterogeneous groups and heterogeneity of

players within groups, which is explored here in a general setting.

There is some existing literature on strategic interactions between individuals within

groups that is related to the ideas presented here. Cornes et al. (2005) consider a model

in which individuals in groups contribute to a public good enjoyed by their group, and

there are also spill-overs in the public good provided by each group. Restrictions are

imposed on the nature of the spill-overs that ensure the game has the form of what

has been called here a nested aggregative game, and the idea of both group and overall

consistency to identify Nash equilibria is introduced. Nitzan and Ueda (2014) study

a ‘collective contest’ in which individuals in groups contribute effort to the group in

contesting a rent. The cost of effort is heterogeneous among group members, as is their

valuation of the rent, and the approach taken to analyse a Nash equilibrium recognises

that it is a nested aggregative game and appeals to group and overall consistency to

analyse the effect of heterogeneity within groups.

In strategic interactions where group structure is important, some contributions have

used ideas that are similar to the partial game approach taken here. In particular, Baik

(2008) studies a collective contest and uses the idea of a ‘group-specific equilibrium’ to

analyse the game, albeit in a simple setting since there is essentially a single active player

in each group. Kolmar and Rommeswinkel (2013) study a contest between groups in

which there are complementarities in effort within groups, and use the idea of a group

best response function to identify Nash equilibria.

In the setting explored here each individual belongs to a single group and con-
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tributes only to the aggregate of that group; there are multiple aggregates because there

are multiple groups. In other settings there might be multiple aggregations of actions

where all players contribute to all aggregates. Models of production and appropriation

fall into this category and, whilst aggregative methods can be used to analyse such mod-

els (Cornes et al., 2010), the lack of group structure means they fall outside the remit of

the current exposition.

The remainder of the paper is structured as follows. Section 2 presents the economic

environment, defines the game that is played, and introduces the idea of partial games

and group best responses. In section 3 partial games are analysed by exploiting their ag-

gregative properties to derive group best responses, and in section 4 Nash equilibrium

in the full game is studied by considering mutual consistency of group best responses.

Section 5 considers the special case of nested aggregative games. In section 6 some

applications of the method—to contests; bilateral oligopoly; and public goods—are con-

sidered, and conclusions follow. All proofs are contained in an appendix.

2 The economic framework

Consider a strategic interaction between individuals that are exogenously organised

in groups where each individual belongs to a single group and their payoffs depend

on the actions of their fellow group members and on the actions of members of other

groups, perhaps in a fundamentally different way than within the group. It is natural

to think of the influence of members of other groups working through the aggregation

(i.e., the sum) of those groups’ actions, and attention is restricted to this case. The

(finite) set of groups is J = {1, . . . , j, . . . , N} and the (finite) set of individuals in group

j is I j = {1, . . . , i, . . . , N j}. Subscripts are used to identify individuals, superscripts to

identify the group they belong to. Each individual must simultaneously choose a single

action xj
i ∈ R+; capitals are used to represent aggregations of actions, and vectors of

actions are in boldface, as the following statement makes clear.

Notation. x = {xj
i}i∈I j,j∈J is the vector of all players’ actions. xj = {xj

i}i∈I j is the vector of all

actions of members of group j, and xj
−i = xj \ xj

i . X j = ∑i∈I j xj
i is the aggregation of actions of

the members of group j, and X j
−i = X j − xj

i . X = {X j}j∈J is the vector of all group aggregates,

and X−j = X \ X j. Where appropriate, X = ∑j∈J X j is the aggregation of all groups’ aggregate
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actions, and X−j = X− X j.

In a strategic environment individuals’ actions have external consequences for oth-

ers, so typically an individual’s payoff will depend both on their own action and on

the actions chosen by all other individuals. Here, an individual’s actions have exter-

nal consequences both within and outside their group, and the effect on members of

other groups comes only through the aggregation of the group’s actions. As such, each

individual cares about the actions of members of other groups only through their ag-

gregation, so the payoff to a typical individual in group j can be written

uj
i(xj

i , xj
−i; X−j).

This allows externalities between players within a group as well as externalities between

groups that work the level of aggregate group actions to be considered, where the nature

of the strategic interaction within groups may be very different to that between groups:

for example, an individual’s actions may have negative consequences for the members

of their own group, and positive consequences for the members of other groups, or vice

versa.

The game G is the simultaneous-move game of complete information with player set

∪j∈J I j; actions xj
i ∈ R+; and payoffs uj

i(xj
i , xj
−i; X−j): the equilibrium concept is Nash

equilibrium in pure strategies. If no further attention was paid to the group structure of

the game, the analysis would proceed by attempting to find a vector of actions, one for

each player, that constitute mutually consistent best responses. This involves finding a

fixed point of the joint best response function, that has as many dimensions as there are

players in the game; whilst there are well-known approaches for studying the existence

of such fixed points, understanding the properties of equilibrium is a more difficult task.

This is particularly true when the game does not exhibit strategic complementarities so

the tools of supermodular games cannot be exploited, which is likely to be the case

in many interesting applications given the potentially different nature of the intra- and

inter-group interaction.

By recognising the group structure of the game, a somewhat different approach to

identifying Nash equilibria can be taken. The method follows a two-step procedure.

First, select a group and fix the actions of the members of all other N − 1 groups, so the

aggregate action of each of these groups (which is what the members of the group in
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question care about) takes a particular value. Consider the strategic interaction among

the members of the group in question, seeking to find actions that are consistent with

a Nash equilibrium in the game in which the other groups’ aggregate actions take the

specified values. Repeat this for each group (fixing the aggregate actions of the other

N − 1 groups in turn), which identifies consistent behaviour within groups taking as

fixed the aggregate actions of all other groups. The second step then looks at between-

group consistency. The aggregation of the consistent individual actions found in the

first step gives a ‘group best response’ to the aggregate actions of other groups; a Nash

equilibrium of the game requires mutual consistency of these group best responses at the

level of group aggregates. Once an equilibrium has been identified, individual actions

can be deduced from the characterisation of equilibrium behaviour within groups from

step 1, evaluated at the equilibrium values of the aggregate actions of other groups.

More precisely, select a group j and fix the aggregate actions of other groups at some

levels collected in X−j. Define a ‘partial game’ G j(X−j) amongst the members of group

j, in which the aggregate actions of all other groups are fixed. The analysis of the intra-

group strategic interaction involves finding a Nash equilibrium of this partial game.

Restrictions will be imposed ensuring uniqueness of equilibrium within each partial

game for any X−j; the action of individual i in this Nash equilibrium is written x̃j
i(X
−j)

and the aggregation of group j’s equilibrium actions is X̃ j(X−j) = ∑i∈I j x̃j
i(X
−j). Having

resolved the strategic interaction within the group, this function gives the ‘group-j best

response’ to the aggregate actions of the other groups contained in X−j. This is then

repeated for all other N − 1 groups to deduce a group best response function for each

group. The remaining task is to ensure between-group consistency, which requires mu-

tual consistency of group best responses: to identify a Nash equilibrium in the game G

a vector of group aggregates X∗ is sought such that X j∗ = X̃ j(X−j∗) for all j ∈ J; the

equilibrium action of each player will consequently be xj∗
i = x̃j

i(X
−j∗). Essentially, hav-

ing ensured intra-group consistency groups are treated as players in an N-player game

where they choose aggregate actions and have best response functions given by X̃ j(X−j).

The following proposition establishes that the two-step procedure just outlined is

valid in identifying Nash equilibria in the game G, since mutually consistent group best

responses are in one-to-one correspondence with Nash equilibria in the game.

Proposition 1. Consider the N partial games {G j(X−j)}j∈J of the game G in which the player

set is the members of group j, their actions are xj
i ∈ R+, and their payoffs are uj

i(xj
i , xj
−i; X−j)
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where X−j is considered fixed. Suppose a Nash equilibrium in G j(X−j) exists and is unique for

any X−j ∈ RN−1
+ , and write x̃j

i(X
−j) for the equilibrium strategy of player i and X̃ j(X−j) =

∑i∈I j x̃j
i(X
−j) for the aggregation of group j’s actions in the Nash equilibrium. Then x∗ is a Nash

equilibrium in G if and only if X j∗ = X̃ j(X−j∗) for all j ∈ J, where xj∗
i = x̃j

i(X
−j∗).

This proposition supposes there is a unique Nash equilibrium in each partial game.

To understand the conditions under which this will be true attention is restricted to

strategic interactions where, within each group, individuals only care about the aggre-

gation of other group members’ actions. In this case, a player’s payoff can (with a slight

abuse of notation) be written

uj
i(xj

i , X j
−i; X−j).

With this structure, which is a common feature of many games with continuous

strategies, a typical individual’s payoff depends on their own action, the aggregation of

their group’s actions, and the vector of all other groups’ aggregate actions, since it can

be written

ũj
i(xj

i , X j; X−j) ≡ uj
i(xj

i , X j − xj
i ; X−j). (1)

As such, once the vector of other groups’ aggregate actions is fixed, each partial game

G j(X−j) is an aggregative game, and this aggregative structure will be exploited to es-

tablish uniqueness of equilibrium within partial games. The game G, being constituted

of N aggregative games, is thus a ‘multiple-aggregate game’.

In the special case of a ‘nested aggregative game’ individuals in group j not only

care just about the aggregation of other group members’ actions, they also care only

about the aggregation of other groups’ actions. Then payoffs (again with a slight abuse

of notation) can be written

ũj
i(xj

i , X j; X−j).

Since X−j = X − X j, in such games an individual’s payoff will depend on their own

action, the aggregation of their group’s action, and the aggregation of all groups’ actions,

since

ûj
i(xj

i , X j; X) ≡ ũj
i(xj

i , X j; X− X j).

This special case is the focus of attention in section 5.
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3 Study of group partial games

In the partial game G j(X−j) with X−j fixed, a Nash equilibrium among the N j members

of group j is sought. The payoff functions of these players, as noted in (1), can be written

ũj
i(xj

i , X j; X−j); consequently, the group-j partial game is an aggregative game since with

X−j fixed each player’s payoff depends only on their own action and the aggregation

of all players’ actions (within that player’s group) which will be exploited to study the

Nash equilibria of the partial game and understand the features of group best response

functions X̃ j(X−j).

Basically, the aim is to define for each player a ‘share function’ that represents their

behaviour consistent with a Nash equilibrium in a partial game in which the group

aggregate takes a particular value, and show that there is a Nash equilibrium in the

partial game if and only if the sum of shares equals one. If share functions are strictly

decreasing in the group aggregate then the sum of shares will inherit this property, so if

the sum of shares exceeds one when the group aggregate is small, and is less than one

when it is large, there will be a unique Nash equilibrium in the partial game. Under

what conditions is this true?

If a player’s payoff function uj
i is strictly concave in own strategy, which will be

assumed, their best response will be unique and the best response function, denoted

bj
i(X j
−i; X−j), is identified by the necessary and sufficient first-order condition. Thus,

bj
i(X j
−i; X−j) = max{0, xj

i} where xj
i satisfies

∂uj
i(xj

i , X j
−i; X−j)

∂xj
i

= 0. (2)

A player’s best response gives their action consistent with a Nash equilibrium in G j(X−j)

in which the actions of all other players in group j sum to X j
−i.

Rather than working with best responses, an aggregative approach considers the

strategy of a player that is consistent with a Nash equilibrium in which the aggregate

action of all members of the group, including the player in question, takes a particular

value X j. This will be given by the player’s ‘replacement function’ rj
i(X j; X−j) which is

defined by

rj
i(X j; X−j) ≡ bj

i(X j − rj
i(X j; X−j); X−j).

Note that the replacement function is given by rj
i(X j; X−j) = max{0, xj

i} where xj
i is
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defined by
∂uj

i(xj
i , X j − xj

i ; X−j)

∂xj
i

= 0 (3)

so long as rj
i(X j; X−j) ≤ X j, otherwise the function is deemed undefined.

A player’s replacement function gives their individual action consistent with a Nash

equilibrium in the game G j(X−j) in which the aggregate action of all members of group j

is X j. Consistency of individual group members’ actions with the aggregate of the group

requires the sum of their actions consistent with a particular group aggregate to be

exactly equal to that group aggregate. This simple equilibrium identification condition

in the partial game, which involves finding a fixed point of ∑i∈I j rj
i(X j; X−j) : R+ → R+

at the level of the aggregate action of the group, makes clear the appeal of an aggregative

game approach.

Proposition 2. xj∗ is a Nash equilibrium in the game G j(X−j) if and only if

∑
i∈I j

rj
i(X j∗; X−j) = X j∗. (4)

An aggregate action by the members of group j that satisfies the consistency con-

dition (4) constitutes a ‘group best response’ in G j(X−j), which is denoted X̃ j(X−j).

Whether Nash equilibria in partial games are unique, so X̃ j(X−j) can be considered a

function, will rely on the monotonicity properties of the representation of consistent

individual behaviour with respect to the group aggregate. Rather than working with

levels of a player’s action, represented by the replacement function, it is often more con-

venient to work with their share of the group aggregate, σ
j
i = xj

i/X j, as this can be

monotonically decreasing in X j when replacement functions are not. For X j > 0, an

individual’s ‘share function’ is2 sj
i(X j; X−j) = rj

i(X j; X−j)/X j which is implicitly defined

by sj
i(X j; X−j) = max{0, σ

j
i } where σ

j
i satisfies

l j
i (σ

j
i , X j; X−j) ≡

∂uj
i(σ

j
i X j, X j[1− σ

j
i ]; X−j)

∂xj
i

= 0 (5)

so long as σ
j
i ≤ 1, otherwise the share function is undefined.

The analogue of individual actions summing to the aggregate action that achieves

2A downside of the share function approach is that attention must be restricted to non-null equilibria in
which X j > 0, and whether a null equilibrium also exists considered separately. Where a null equilibrium
is considered it is referred to explicitly, reserving ‘Nash equilibrium’ for an equilibrium in which some
individuals are active.
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aggregate consistency within group j is that the shares of the members of group j sum

to one. As such, the group-j best response must satisfy

∑
i∈I j

sj
i(X j; X−j) = 1. (6)

Clearly, the properties of share functions are important in determining the proper-

ties of the group best response, elucidating the details of which is turned to next. In

applications, it is often straightforward to understand what conditions on the primitives

imply share functions are monotonically decreasing in X j. The following assumption

details the conditions on preferences required in the general model.

Assumption 1. For each individual i ∈ I j, suppose that uj
i is continuously differentiable as

many times as required, and that:

a) ∂2uj
i

∂(xj
i )

2
< 0;

b) if ∂2uj
i

∂xj
i ∂X j

−i

< 0 then
∣∣∣∣

∂2uj
i

∂(xj
i )

2

∣∣∣∣ >
∣∣∣∣

∂2uj
i

∂xj
i ∂X j

−i

∣∣∣∣; and

c) ∂2uj
i

∂xj
i ∂X j

−i

+ σ
j
i

[
∂2uj

i

∂(xj
i )

2
− ∂2uj

i

∂xj
i ∂X j

−i

]
< 0 for all σ

j
i ∈ (0, 1].

In addition, limxj
i→∞

∂uj
i(xj

i ,·;·)
∂xj

i

< 0.

Thus, payoffs are strictly concave, as previously noted; the substitutability or com-

plementarity of actions within groups must not be too strong; and players will always

use a finite action. The following proposition details the properties of share functions;

Figure 1 illustrates.

Proposition 3. Suppose the preferences of player i ∈ I j satisfy Assumption 1. Each player’s

share function sj
i(X j; X−j) is defined for all X j ≥ X j

i(X
−j) which is X j such that l j

i (1, X j; X−j) =

0 if this is strictly positive, otherwise the share function is defined for all X j > 0. Define player

i’s drop-out value as X̄ j
i (X
−j) which is X j such that l j

i (0, X j; X−j) = 0 if this exists, or +∞ if it

does not. Then the share function has the following properties:

a) sj
i(X j; X−j) = 0 for all X j ≥ X̄ j

i (X
−j);

b) it is continuous and, where it is defined, strictly decreasing in X j < X̄ j
i (X
−j); and

c) if X j
i(X
−j) > 0 then sj

i(X j
i(X
−j); X−j) = 1, otherwise limX j→0 sj

i(X j; X−j) = s̄j
i(X
−j).
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Xj

σj
i

1

sj1(X
j ;X−j)

Xj
1(X

−j) X̄j
1(X

−j)

sj2(X
j ;X−j)

s̄j2(X
−j)

X̄j
2(X

−j)

sj3(X
j ;X−j)

∑
i∈Ij s

j
i (X

j ;X−j)

X̃j(X−j)

Figure 1: Illustrating share functions. For individual 1, X j
i(X
−j) > 0; for individual 2

X j
i(X
−j) = 0 and X̄ j

i (X
−j) > 0. For individual 3 X j

i(X
−j) = X̄ j

i (X
−j) = 0 and therefore

their share function is zero for all X j > 0. The diagram also illustrates the aggregation
of share functions for these three players and, assuming they constitute group j, the
equilibrium aggregate action in the partial game is identified.
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The consistency condition (6) that identifies an equilibrium in the partial game

G j(X−j) requires X j to be such that the sum of individual share functions equals one, for

then the sum of the individual actions consistent with a Nash equilibrium in which the

aggregate action is X j will sum precisely to X j. Note that if X j
i(X
−j) > 0 for any member

of group j then the aggregate share function is defined only where all members’ share

functions are defined, i.e. for X j ≥ maxi∈I j{X j
i(X
−j)}. If individual share functions

are strictly decreasing in X j, the aggregation of these will also be strictly decreasing, so

under the conditions of Proposition 3 there will be at most one Nash equilibrium. For

large enough values of X j it can be shown that the aggregate share function will take

values less than one, so whether a Nash equilibrium exists depends on whether, when

X j is small, the aggregate share function exceeds one. The following proposition makes

the conditions for the existence of a unique Nash equilibrium clear.

Proposition 4. Suppose the preferences of all members of group j satisfy Assumption 1. Then

there is a unique Nash equilibrium in the partial game G j(X−j) in which the aggregate action of

the members of group j is X j > 0 if either X j
i(X
−j) > 0 for any i ∈ I j, or ∑i∈I j s̄j

i(X
−j) > 1.

Under the conditions stated in the proposition the group best response function

X̃ j(X−j) satisfies

∑
i∈I j

sj
i(X̃ j(X−j); X−j) = 1. (7)

The equilibrium action of individual i ∈ I j is given by X̃ j(X−j)∑i∈I j sj
i(X̃ j(X−j); X−j),

which is positive if X̃ j(X−j) < X̄ j
i (X
−j); for some players this inequality may not hold in

which case their equilibrium action is zero. If the conditions stated in the proposition

are not satisfied then the only Nash equilibrium involves all group members choosing

xj
i = 0 and so X̃ j(X−j) ≡ 0 in these circumstances.3

4 Nash equilibrium in the full game

Having established the existence and uniqueness of Nash equilibrium in group partial

games, which has allowed group best response functions X̃ j(X−j) to be defined, atten-

tion now turns to consider mutual consistency of these group best response functions

3The justification for this definition comes from thinking about replacement functions. If X j
i(X
−j) = 0

for all i ∈ I j then the replacement function is defined for all X j ≥ 0, and will take the value zero at X j = 0
(since by definition the replacement value must not exceed X j). Taking the sum of these replacement
functions (of which a fixed point is sought), if the slope at X j ≈ 0 does not exceed 1 (which is intimately
related to the condition stated in Proposition 4) then (given share functions are decreasing) it will never
exceed 1, and so the only fixed point will be at X j = 0.
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and Nash equilibrium in the full game G. Inter-group consistency of actions occurs with

a vector of group aggregates X∗ such that X j∗ = X̃ j(X−j∗) for all j ∈ J. Finding group

aggregate actions that are mutually consistent in the sense of group best responses is

analogous to finding mutually consistent individual actions within an N-player game; as

with the standard problem, understanding the characteristics of best response functions

is important in understanding the features of the equilibrium.

The group structure of the game makes it natural to assume that the members within

each group are influenced by the actions of other groups in the same way, captured in

the following definition.

Definition. The members of group j are ‘qualitatively symmetric’ if, for any h, i ∈ I j, sgn{ ∂2uj
h

∂xj
h∂Xk
} =

sgn{ ∂2uj
i

∂xj
i ∂Xk
} and sgn{ ∂uj

h
∂Xk } = sgn{ ∂uj

i
∂Xk } for all k 6= j ∈ J.

Formally, only the first of the conditions, that says the marginal payoff of each group

member is influenced by the actions of another group in the same direction, is required

but it is very natural to also assume the externality from other groups takes the same

sign for members of the same group. Note that assuming the members of group j are

qualitatively symmetric does not impose that individuals within groups are homoge-

neous, nor does it restrict the effect of any two different groups on the members of

group j to be the same.

The following proposition clarifies the behaviour of group best response functions.

Proposition 5. Suppose the preferences of all members of all groups satisfy Assumption 1 and

that the members of each group are qualitatively symmetric. Then for each j ∈ J and all k 6= j ∈ J,

X̃ j(X−j) is a continuous function of Xk, and, defining X̄ j ⊂ RN−1
+ as the set of values of X−j

where X̃ j(X−j) = 0,

sgn
{

∂X̃ j(X−j)

∂Xk

}
= sgn

{
∂2uj

i

∂xj
i∂Xk

}

for all X−j ∈ RN−1
+ \ X̄ j. Moreover, if the strategic effects within group j are stronger than the

strategic effects between group j and group k, which requires that
∣∣∣∣

∂2uj
i

∂xj
i ∂Xk

∣∣∣∣ <
∣∣∣∣σ

j
i

∂2uj
i

∂(xj
i )

2
+ [1− σ

j
i ]

∂2uj
i

∂xj
i ∂X j

−i

∣∣∣∣
for all σ

j
i ∈ [0, 1], for all i ∈ I j, then

∣∣∣ ∂X̃ j(X−j)
∂Xk

∣∣∣ < 1.

Mutual consistency of group best responses requires the identification of a fixed

point of the N-dimensional joint group best response function. Since strong assumptions

about the differentiability of individuals’ payoffs are made, group best responses are

continuous functions and therefore the existence of a Nash equilibrium is ensured by
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Brouwer’s fixed point theorem (so long as an assumption of bounded aggregate strategy

spaces can also be made). In applications, careful consideration might also be given to

whether this fixed point lies in the interior of the aggregate action space, or whether

some groups are inactive in equilibrium (i.e. if X−j ∈ X̄ j for any j ∈ J).

It may be possible to say something not only of existence, but also of uniqueness; and

to study the comparative static properties of equilibrium: using the approach of group

best responses, a comparative static exercise will reveal the effect on group aggregates

directly, which are often of primary interest, without having to first deduce the effect

on individual equilibrium behaviour that is then aggregated. In applications group best

response functions may have clear properties that allow definitive statements about the

nature of equilibrium to be made. Whilst it is difficult to draw conclusions in such a

general setting as this, the following two statements can be made:

1. If X̃ j(X−j) is increasing in Xk for all k 6= j ∈ J, then the strategic interaction at the

level of groups exhibits complementarities, and the insights from the study of su-

permodular games (see, for example, Vives (1990)) can be used to understand the

comparative static properties of the equilibrium group aggregates at the extremal

equilibria.4

2. If N = 2 and the absolute value of the slope of group best response functions for

each group (that can be drawn in the space of aggregate group actions) is less than

1, the conditions for which are presented in Proposition 5, the joint group best

response will be a contraction and so there will be a unique Nash equilibrium.5

Whilst there might be many heterogeneous players within groups, using a multiple

aggregate game approach renders the study of the comparative static properties

of the equilibrium relatively simple, for the effect of a change in the economic

environment on group aggregates in the two-group case will follow from a simple

diagrammatic exercise.

4Note, however, that ‘group payoff functions’ are not defined, so the ideas of supermodular games need
only be applied to group best responses. An interesting line of inquiry lies in considering whether, for each
group, a payoff function can be defined that, when optimised over the choice of group aggregate (taking
the aggregates of other groups as fixed) identifies the same group aggregate as that at the Nash equilibrium
within the group. This requires the partial game to be a ‘potential game’ (Monderer and Shapley, 1996),
study of which would be an interesting alternative approach to that taken here.

5With more than two groups and a desire for uniqueness of equilibrium when the game does not have
the features of a nested aggregative game (see below), the approach of Rosen (1965) might be appealed to.
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5 Nested aggregative games

If a strategic interaction has the features of a ‘nested aggregative game’ more structure

can be added to the analysis to draw conclusions about uniqueness of Nash equilib-

rium in the full game, denoted Ĝ, even when there are several groups. In such games

the members of each group care about their own action, their group’s aggregate ac-

tion, and the aggregation of all other groups’ aggregate actions, so payoffs can be written

ûj
i(xj

i , X j; X). To analyse this game, the share function approach will be applied twice:

once at the level of individuals in groups to replace the fixed point problem of find-

ing consistent actions within groups, as with the analysis so far; and then at the level

of groups to replace the fixed point problem of finding consistent aggregate actions

between groups.

First fix a value for the aggregate actions of all groups, X, select a group j, and

define a ‘partial game’ Ĝ j(X) in which only the members of group j are considered.

The analysis of the partial games is slightly different since whilst the aggregate X is

treated as fixed, the influence of players within the group on this aggregate must be

accounted for. The aim is to find a group aggregate action that is consistent with a Nash

equilibrium in Ĝ in which the aggregate of all individuals is X, which means that the

group aggregate action must be consistent with the behaviour of members of the group.

Thus, in Ĝ j(X) consider the actions of each member of the group consistent with a

Nash equilibrium in which the aggregate of all players is X, and the aggregate of the

members of group j is X j. Share functions that represent consistent individual behaviour

in this partial game are denoted ŝj
i(X j; X), and take the form ŝj

i(X j; X) = max{0, σ
j
i }

where σ
j
i is the solution to

l̂ j
i (σ

j
i , X j; X) ≡

dûj
i(σ

j
i X j, X j; X)

dxj
i

=
∂ûj

i

∂xj
i

+
∂ûj

i
∂X j +

∂ûj
i

∂X
= 0 (8)

so long as this does not exceed 1, otherwise the share function is undefined. Consistency

of the aggregate action of the members of group j requires individual actions to sum

to this aggregate action, or for ∑i∈I j ŝj
i(X j; X) = 1. On varying X, this gives the ‘group

replacement function’ X̂ j(X), and to find a Nash equilibrium in the game Ĝ an aggregate

action X must be found that is consistent with the collective behaviour of groups.
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Proposition 6. In a nested aggregative game Ĝ, x∗ is a Nash equilibrium if and only if

∑
j∈J

X̂ j(X∗) = X∗.

As with individuals within groups, it is often more convenient to work with a

group’s share of the overall aggregate action, rather than the group aggregate itself.

For X > 0, the ‘group share function’ is Ŝj(X) = X̂ j(X)/X; letting Λj = X j/X the group

share function (if it is positive) is that value of Λj that satisfies

L̂j(Λj, X) ≡ ∑
i∈I j

ŝj
i(Λ

jX; X)− 1 = 0 (9)

so long as the resulting Λj does not exceed 1, in which case the group share function is

undefined. Accordingly, taking the aggregation of group share functions to be defined

only for values of X where the group share function of all groups is defined, there is a

Nash equilibrium in the game Ĝ with aggregate action X > 0 if and only if

∑
j∈J

Ŝj(X) = 1.

The next proposition collects the features of group share functions that allow conclu-

sions about uniqueness of Nash equilibrium to be drawn (in the proof the properties of

individual share functions that are relied on to construct the aggregate share functions

are also elucidated).

Proposition 7. Suppose that for each i ∈ I j, j ∈ J utility ûj
i is continuously differentiable in

each argument as many times as required, and that dûj
i(σ

j
i X j,X j;X)

dxj
i

is strictly decreasing in each of

its arguments. Then within each partial game Ĝ j(X) the group share function Ŝj(X) is defined

for all X ≥ X̂ j which is X such that L̂j(1, X) = 0 if this is strictly positive, otherwise it is defined

for all X > 0 with limX→0 Ŝj(X) = ˆ̄Sj; and it is positive for all X < ˆ̄X j which is X such that

L̂j(0, X) = 0. Where it is defined and positive, the group share function is strictly decreasing in

X. Consequently, there is at most one Nash equilibrium with X > 0 in Ĝ, and if either X̂ j
> 0

for any j ∈ J, or ∑j∈J
ˆ̄Sj > 0 if X̂ j

= 0 for all j ∈ J, there is exactly one such Nash equilibrium.

Thus, in a nested aggregative game the aggregative properties of the game are ex-

ploited twice: once at the level of individuals within groups; and once at the level of

groups. Deductions concerning the uniqueness of equilibrium can then be made even

when there are many groups of heterogeneous players and indeed, once an equilibrium
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has been identified, whether all groups are active, and whether all individuals within

active groups are active, can be understood: in particular, if there is a Nash equilibrium

with aggregate X∗ and ˆ̄X j ≥ X∗ then group j will be inactive in equilibrium. If a com-

parative static exercise were to be undertaken for a nested aggregative game, the effect

of a change in the economic environment on individual and therefore group share func-

tions must first be understood, and then the effect on the equilibrium aggregate action

can be determined, which may in fact be of primary interest; if desired, the effect on

the equilibrium aggregate actions of each group can then be considered, along with the

effect on individual group members’ actions.

6 Applications

6.1 Group contests

In a standard (Tullock-style) contest each of several individuals chooses the level of

‘effort’ to exert in contesting a rent, and their success in doing so is determined by the

contest success function. In a ‘winner-take-all’ contest the rent is indivisible and the

contest success function determines the probability of a contestant being awarded the

rent; hence the contest (imperfectly) discriminates between contestants, giving a higher

probability of winning to contestants that exert more effort. In a ‘rent-sharing’ contest

the rent is perfectly divisible and the contest success function determines the share of

the rent awarded to each contestant. This discussion considers contests of the latter

variety.

If the set of contestants is {1, . . . , i, . . . , N}, the effort chosen by contestant i is ei ≥ 0,

the aggregate effort of all contestants is E, and E−i = E− ei, then in a simple Tullock

contest the contest success function is given by ei
ei+E−i

(if E > 0, otherwise it is 1/N),

and so if R is the contested rent and there is a linear cost of effort each contestant’s

payoff takes the form ei
ei+E−i

R− ei. Extensions to this simple model include non-linear

costs of effort ci(ei); endogenous determination of the rent whereby R = f (E) (Chung,

1996); and of course more general contest success functions in which the impact of

effort in the contest is given by pi(ei) and the contest success function takes the form
pi(ei)

∑N
h=1 ph(eh)

(see, for example, Cornes et al. (2005)). With these extensions, contests capture

a multitude of interesting economic environments, so understanding their properties

is of upmost importance. There is, of course, a substantial literature on contests, and
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several contributions have used the techniques of aggregative games to undertake the

analysis; it is clear from the contest success function that a contestant’s share of the

aggregate is important, and it was indeed in the study of a ‘joint production game’—

in which the collective output of individuals is determined by their aggregate input,

which is then shared in proportion to those inputs; a simple Tullock contest with an

endogenous rent—that the Cornes-Hartley duo first utilised the share function approach

(Cornes and Hartley, 2000).

While standard contests are appropriate for modelling many economic environ-

ments, in some settings individuals are naturally organised into groups and the group

plays at least some role in the outcome of the contest. There are, inter alia, three inter-

esting scenarios to consider in the context of group contests:

1. In a collective contest each individual belongs to a group and decides on a level of

effort to contribute to the group. The collective effort of a group then determines

the share of the rent received by that group (or the probability of winning the

rent in a winner-take-all contest) which then becomes a public good for the group

enjoyed equally by all group members irrespective of their initial choice of effort.

2. In an intra- and inter-group contest each individual belongs to a group and decides

on a level of effort that contributes to the collective effort of the group which

determines the share of the rent awarded to that group (as in a collective contest);

and a group member’s contribution to this collective effort also influences their

allocation of the rent within the group.6

3. Individuals within groups may be engaged in a contest in which there are spill-

overs between groups, captured by the size of the rent that each group enjoys itself

being influenced by the actions of other groups. Individuals within groups might

be engaged in otherwise independent contests, so the actions of members of other

groups only influence the rent being contested within each group. Alternatively,

groups might be engaged in a contest with each other where the valuation of the

rent by each group is influenced by the actions of other groups, which then either

becomes a public good for the group members (as in a collective contest), or is

6Note that an individual’s effort choice determines both their contribution to the collective effort in the
inter-group contest, and their action in the intra-group contest. This is different to sequential inter- and
intra-group conflict, where first individuals in groups secure a rent via their collective action in a contest
between groups; and then individuals within each group (or just in the winning group in a winner-take-all
contest) seek to appropriate the group’s rent with a separate strategic choice (see, for example, Katz and
Tokatlidu (1996)).

20



contested within the group (as in an intra- and inter-group contest).

Collective contests

In a collective contest individual i in group j chooses a level of effort xj
i to contribute

to the group. X j is then the collective effort of the group. The relative effort of group

j, X j/X, determines the share of an exogenously given rent R awarded to group j that

becomes a public good for its members. Let vj
i be individual i’s valuation of the rent

and cj
i(·) their cost of effort, which are possibly different for different individuals within

each group. Then the payoff to a typical contestant is given by

ûj
i(xj

i , X j; X) =
X j

X
vj

i − cj
i(xj

i).

As such, it is clear that collective contests exhibit the features of a nested aggrega-

tive game, since payoffs depend only on individual actions, the aggregate action of the

group, and the aggregation of all groups’ actions.

Such contests capture the essence of collective action; as Konrad (2009, p. 129) notes,

“[given the aggregate effort of other groups] the individual effort contributions to the

aggregate group effort are contributions to a public good”: the quantity of the public

good is X j/X and individual i’s valuation of it is (X j/X)vj
i . It is of course very inter-

esting to understand the effect of collective action on the outcome of the contest, and

there is no lack of literature on this subject. Katz et al. (1990) show that when the cost of

effort is linear and the valuation of the rent of each member of a group is the same the

aggregate effort of each group is uniquely determined and independent of group size,

but there is indeterminacy over the split of aggregate effort within the group. In this

case the fact that individuals are in groups plays very little role in the outcome, since

groups act as though they are one individual, despite the presence of a free-rider prob-

lem within groups. Baik (2008) allows for heterogeneous valuations and shows that only

the highest-valuation individuals choose positive effort in equilibrium, the remaining in-

dividuals free-riding, so consequently there is under-investment in effort by the group.

The analysis of this game is very much in the spirit of the idea of partial games since it

proceeds by focussing on a group, fixing the actions of the agents in other groups, and

considering what is termed the “group [j]-specific equilibrium”, which has a straight-

forward solution given that a single player in each group contributes to collective effort,
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or if more than one player contributes then those players are necessarily identical.

That all members of a group except those that value the good highest free-ride on

the highest valuation members is sensitive to the assumption of linear costs of effort. If

costs are convex (but the same for all group members) then all members of a group will

contribute to collective effort, as explained by Esteban and Ray (2001) and neatly sum-

marised in Corchón (2007, section 4.2). In these collective contests with convex costs the

idea of the “group size paradox”—that free riding is more acute in large groups, mean-

ing smaller groups are more effective—can be explored: however, it is found that whilst

individual effort is lower in larger groups the aggregate effort of the group is higher, in

contrast to the paradox. This is true where the group see the contested rent as a pub-

lic good, and even when there is some congestion of it, so long as it is not too strong.

Nitzan and Ueda (2014) have extended this literature to allow for members of groups to

have both different valuations and different costs, which they do by utilising what has

been called here a nested aggregative game approach to derive group share functions

and establish consistency of aggregate actions to identify the Nash equilibrium. Being

very tractable, this method of analysis allows free riders within groups that make no

contribution to group effort to be identified, and the effect of heterogeneity on a group’s

performance and the contest outcome to be carefully considered.

Intra- and inter-group contests

In an intra- and inter-group contest it is again the relative collective effort of groups

that determine their share of the rent (which is taken to have a common value for all

group members), but the allocation of that rent share within the group is influenced

by the relative effort of group members. In Nitzan (1991) the intra-group allocation is

partially determined by the relative effort of group members, with the remaining rent

being distributed in an egalitarian way. If αj is the proportion of the rent that is equally

distributed within group j, the payoff to contestant i in group j is given by

ûj
i(xj

i , X j; X) =

[
αj 1

N j + (1− αj)
xj

i
X j

]
X j

X
R− cj

i(xj
i),

which is again a nested aggregative game.

If αj = 0 for all groups then the X j in the intra-group contest success function cancels

with that in the inter-group contest success function, and the group structure becomes

irrelevant as the contest can be seen as a standard Tullock contest with ∑j∈J N j contes-
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tants; hence the characteristics of groups plays no role in the outcome of the contest. If

αj = 1 then the case collapses to a contest that is similar to a collective contest in which

the value of the contested rent to group j is given by R/N j. Nitzan (1991) undertook

an in-depth analysis of this contest by appealing to the symmetry of contestants within

groups by assuming a linear cost of effort and symmetry of sharing rules for groups,

showing that as a larger proportion of the rent within groups is allocated based on rel-

ative effort, so the collective effort of groups, and consequently the aggregate effort and

dissipation of the rent, increases.

By using a nested aggregative game approach, unrealistic symmetry assumptions

can be avoided, allowing contestants to have convex costs of effort that can be different.

The analysis would proceed by first fixing the aggregate effort of all groups at X and

considering consistency of actions among the members of group j. This will define

individual share functions, and the value of X j such that the sum of these share functions

is equal to one will give the group-j reaction function, revealing the aggregate effort of

group j consistent with a Nash equilibrium in which the aggregate effort of all groups

is X. The Nash equilibrium can be found by identifying the level of aggregate effort of

all groups that generates consistent group efforts that exactly sum to it, which is where

the sum of group share functions is equal to one.

As Konrad (2009) notes, when groups have different sharing rules it is not necessarily

the case that all groups will be active in equilibrium, and indeed it will be the case

that when contestants within a group have different costs not all contestants will be

active. The multiple aggregate game approach, being very tractable in terms of the

representation of behaviour consistent with equilibrium, allows for a full understanding

of the composition of equilibrium effort to be understood: once group share functions

have been aggregated and the equilibrium aggregate effort of all groups found, each

group’s share function merely needs evaluating at the equilibrium aggregate effort to

check whether or not it is zero; and for those groups where it is strictly positive the

share functions of individuals within groups can be evaluated to understand which

group members are active. The approach holds much hope for understanding the fine

details of the equilibrium in group contests, even in quite general settings.

Contests with group spill-overs

An area where multiple aggregate games is likely to make a strong contribution
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to the analysis of contests in the future is where there are spill-overs between groups’

collective effort in terms of the value of the rent being contested by the group, and there

is heterogeneity both within and between groups. This can be captured specifying that

the value of the rent contested by group j is given by f j(X j, X−j). This specification

allows the rent to be influenced by the group’s own aggregate effort, but not necessarily

so. If ∂ f j/∂Xk > (<)0 then there are positive (negative) externalities between group

k and group j. With this rent structure, there might be no other inter-group conflict

as contestants within groups contest their group’s rent in N otherwise independent

group contests; or there may be additional inter-group conflict since the rent, which

is valued differently by different groups, is contested between groups as in a collective

contest, which could also be coupled with an inter-group contest. The payoff to a typical

contestant in the former case would be of the form uj
i(xj

i , X j; X−j) = (xj
i/X j) f j(X j, X−j)−

cj
i(xj

i), and for the latter case it would be

uj
i(xj

i , X j; X−j) =

[
αj 1

N j + (1− αj)
xj

i
X j

]
X j

X
f j(X j, X−j)− cj

i(xj
i),

both of which are multiple aggregate games, but not nested aggregative games.

Contests with group spill-overs hold a wealth of interest in terms of applications. In

industrial organisation, the framework could be used to capture Cournot competition

(which is a simple Tullock contest where effort is output and the rent is endogenously

determined as total revenue in the market) between two (or more) groups of sellers who

each produce a homogeneous good that acts as a substitute or complement to the other,

so the aggregate actions of one group of sellers influence the total revenue that the other

group is contesting. In political settings, individuals within political allegiances might

contest a rent and the value of this rent is influenced by the actions of competing groups

during the campaign. In international trade, groups of traders located in different coun-

tries interact both with each other in the home market and, because of trade, the value

of this activity will be influenced by the aggregate actions of firms in different locations.

Using the framework of multiple aggregate games, by first resolving the within-

group strategic interaction having fixed the behaviour of other groups, and then seek-

ing mutual consistency of behaviour at the level of groups, gives hope for developing

an understanding of the features of equilibrium in these as well as other settings to gen-

erate new insight concerning these relatively under-explored yet interesting economic

environments.
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6.2 Bilateral Oligopoly

Bilateral oligopoly is a model of trade in which there is market power on both sides of

the market. Given this, a group-based analysis is likely to be fitting as the actions of

traders on each side of the market will affect each other, and they will also affect, and

be affected by, the actions of traders on the opposite side of the market in the aggregate.

One approach to modelling bilateral oligopoly is using a two-commodity version of a

Shapley-Shubik strategic market game (Shapley and Shubik, 1977) in which one of the

goods takes the role of money, and each trader is endowed either with the good or

money. This model was originally introduced by Gabszewicz and Michel (1997) and has

seen careful study in the literature by Dickson and Hartley (2008), which inspires this

discussion, and Amir and Bloch (2009).

Consider an economic environment in which there is a single good g, and money

m, that is populated by traders who have preferences that can be represented by utility

functions vi(g, m). Suppose that the set of traders is partitioned into two groups: group

1 contains individuals that are endowed with e1
i > 0 units of the good but no money,

and are called sellers; group 2 contains individuals endowed with e2
i > 0 units of money

but none of the good, and are called buyers. Each seller decides on an offer of the good

to make to the market x1
i ≥ 0 to be exchanged for money; and each buyer decides on

an amount of money to send to the market x2
i ≥ 0 to be exchanged for the good.7 The

market aggregates these offers and bids, and then sellers are awarded a share of the

aggregate amount of money sent to the market in proportion to their offer, so receive
x1

i
X1 X2 units of money; and similarly buyers are awarded their proportional share of the

aggregate amount of the good in the market, so receive x2
i

X2 X1 units of the good.8

Bilateral oligopoly is therefore a game between two groups where, within each

group, individuals engage in a simple Tullock contest in which they choose actions to

contest a perfectly divisible prize, the value of which is determined by the aggregation

of actions of members of the other group. Payoffs in this game take the form

uj
i(xj

i , X j
−i; X−j) =





vi

(
e1

i − x1
i , x1

i
x1

i +X1
−i

X2
)

if j = 1, or

vi

(
x2

i
x2

i +X2
−i

X1, e2
i − x2

i

)
if j = 2,

and so the game is a multiple (two) aggregate game, but is not a nested aggregative
7For simplicity, it is assumed that endowments are large enough that they will never be constraining

and so are ignored in the definition of strategy sets, and in the analysis.
8If either X1 = 0 or X2 = 0, no trader receives anything from the market.
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X1

X2

X̃2(X1)

X̃1(X2)

Figure 2: Consistent aggregate bid and offer functions in bilateral oligopoly

game.

An analysis using the approach outlined here involves first fixing the actions of

the buyers and considering the partial game played by the sellers to deduce a function

X̃1(X2) that represents the aggregate offers from the sellers consistent with a Nash equi-

librium in which the aggregate bid made by the buyers is X2; and second considering the

partial game played by the buyers when the actions of the sellers are considered fixed

to deduce the consistent aggregate bid function of the buyers X̃2(X1). When traders’

preferences are ‘binormal’, which requires the (absolute value of) the marginal rate of

substitution of the good for money ( ∂vi/∂g
∂vi/∂m ) to be decreasing as consumption of the good

increases and increasing as consumption of money increases, the share function of every

trader is strictly decreasing in the aggregate on their side of the market (Dickson and

Hartley, 2008; Dickson, 2013). Moreover, as Dickson (2013) showed, if for each seller

the ratio of the marginal rate of substitution to m is decreasing in m then the consistent

aggregate offer function will be increasing in the aggregate bid; and if for each buyer the

product of the marginal rate of substitution and g is increasing in g then the consistent

aggregate bid function will be increasing in the aggregate offer, as illustrated in Figure

2.

Under these conditions on preferences there are ‘group complementarities’, and
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therefore the ideas of supermodular games applied to group best response functions

could be used to discern some comparative static properties of the extremal equilibria.

In the illustration there is a single Nash equilibrium, but in this case, since the game

has features that mean the group best responses begin from the origin, uniqueness of

(non-null) Nash equilibrium cannot be ascertained by appealing to the contraction prin-

ciple for, if the slope of each group best response is everywhere below 1 they will never

cross in the interior of aggregate action space. Another possibility is to consider that

the slope at the origin exceeds 1 and the group best response functions are concave:

in practice many standard utility functions give rise to this property, but deriving an

intuitive general statement on preferences is difficult.

To circumvent these issues, Dickson and Hartley (2008) characterised the individual

and aggregate behaviour of the two groups consistent with a Nash equilibrium in which

the ratio of the aggregate money bid to the aggregate amount of commodity offered—

which is the price of the good—takes a particular value. For the sellers this is a strategic

supply function, and when the consistent aggregate bid of the buyers is divided by the

price it is a strategic demand function. Nash equilibria in bilateral oligopoly are identi-

fied by the intersections of these strategic versions of Marshallian supply and demand

functions, which are monotonic in the expected direction under the stated conditions on

preferences and so intersect only once.

This analysis, and in particular study of the uniqueness of Nash equilibrium which

is tackled in an environment of heterogeneous traders, is made possible only by tak-

ing a multiple aggregate game approach and fixing one side of the market to consider

consistent behaviour in the partial game played on the other side of the market. Once

the within-group strategic interaction has been resolved and the consistent aggregate

behaviour derived, the intersection of strategic supply and demand functions ensures

consistency between the sides of the market.

After determining the equilibrium price, equilibrium values of the aggregate offer

and bid can be deduced, following which individual traders’ strategies can be found,

revealing whether there are any inactive traders on either side of the market. Compar-

ative statics are relatively straightforward to undertake to develop an understanding of,

for example, the effect of increasing the number of traders on one side of the market, or

of increasing the endowment of goods for some sellers, where the effect on the number

of sellers that are active in equilibrium might be of relevance.
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6.3 Group public goods

In an unpublished manuscript, Cornes et al. (2005) consider the provision of public

goods within groups when there are spill-overs between groups, capturing the principal

of the free-rider problem but where there is also group inter-dependence. If xj
i is the

contribution of player i to the public good of group j then the quantity of the public

good provided by group j is X j and, because of the spill-overs between groups the level

of the public good consumed by individuals in group j is given by X j + ∑k 6=j∈J θ j,kXk,

where θ j,k is the spill-over parameter capturing how the public good provided by group

k influences the members of group j. If there is concordance of interests between group

k and j then θ j,k > 0, whilst if their interests are conflicting θ j,k < 0. The consumption of

the private good is mj
i − cj

i x
j
i where mj

i is income and cj
i the cost of public good provision.

The payoff to a typical player is thus

uj
i(xj

i , X j; X−j) = vj
i(m

j
i − xj

i , X j + ∑
k 6=j∈J

θ j,kXk),

where vj
i(·, ·) is the player’s utility defined over private good consumption and public

good consumption. More general formulations of the ‘public good production function’

for each group could be considered that might account for complementarities between

public goods, for example. So long as it is only the aggregate provision of public goods

by other groups that matters to an individual, this is a multiple aggregate game.

If the spill-over parameter is common for all groups, i.e. θ j,k = θ for all k 6= j ∈ J,

for all j ∈ J, then the quantity of the public good consumed by group j can be written

θX + (1− θ)X j. In this case, payoffs are

ûj
i(xj

i , X j, X) = vj
i(m

j
i − xj

i , θX + (1− θ)X j),

and therefore the game is a nested aggregative game.

Cornes et al. (2005) investigate the latter formulation using a replacement function

approach. Individual replacement functions r̂j
i(X j; X) give the contribution of player

i in group j consistent with a Nash equilibrium in which the aggregate contribution

of group j is X j, and the aggregate contribution of all groups is X. They seek group

consistency by requiring, for a given X, that ∑i∈I j rj
i(X j; X) = X j for each j ∈ J which

gives the group-j consistent contribution X̂ j(X), which is a group replacement function.
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Overall consistency then requires ∑j∈J X̂ j(X) = X.

They are able to show that with appropriate restrictions on preferences individual

replacement functions are decreasing in X j and therefore the group-j consistent con-

tribution is unique, so group replacement functions are indeed functions. Moreover,

if groups’ interests are concordant then individual replacement functions are also de-

creasing in X which implies that group replacement functions are decreasing in X, so

there is a unique value of X where ∑j∈J X̂ j(X) = X and so a unique Nash equilibrium.

If group interests are conflicting then group replacement functions are increasing in X,

but so long as the conflict is not too strong the function ∑j∈J X̂ j(X) will be a contrac-

tion (its slope will be less than one) with a unique fixed point and therefore a unique

Nash equilibrium. Given uniqueness of equilibrium, found under quite general con-

ditions, understanding the comparative static properties of equilibrium is a relatively

straightforward task.

Cornes et al. (2005) suggest an extension to the case where the good generated by

contributions of individuals does not become a pure nonexcludable good, but is dis-

tributed among group members according to some sharing rule. This could be captured

by considering that the good becomes a private good and is shared among group mem-

bers according to the rule [α 1
N j +

xj
i

X j ], as in Nitzan (1991). This preserves the nested ag-

gregate nature of the game, and is consistent with the idea of contests between groups

where the size of the contested rent is influenced by the actions of other groups, in-

troduced previously, and so could be analysed using the tools of multiple aggregate

games.

7 Concluding remarks

This contribution considers the theory of multiple aggregate games, in which individ-

uals are organised into groups and there are both within-group and between-group

strategic tensions that can be very different in nature. This general framework captures

environments in which there is a collective element to individual actions within groups,

and externalities between groups’ aggregate actions. The within-group strategic inter-

action is assumed to have the features of an aggregative game, and this is exploited in

the method proposed to analyse these games, which follows a two step procedure: first,

the intra-group strategic interaction is resolved through study of group ‘partial games’

to derive group best responses; then the inter-group game is analysed by considering
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mutual consistency of these group best responses at the level of group aggregates. If

‘aggregativeness’ also pervades the between-group interaction, as in a nested aggrega-

tive game, then rather than using group best responses, group replacement functions

can be derived that have a much simpler consistency requirement to identify equilibria.

Exploiting the aggregative properties of games makes for a very tractable analysis

since the structure of the game is used to reduce the dimensionality of the problem. Re-

placement (or share) functions often have very clear properties in terms of their mono-

tonicity and where they drop to zero, that are preserved when they are aggregated.

Establishing existence and uniqueness of Nash equilibrium; understanding which play-

ers are active in equilibrium; and undertaking a comparative static analysis (that may

involve adding players) are all relatively straightforward tasks.

By using this method within groups and, if appropriate, also between groups, the

analysis of multiple aggregate games becomes much less daunting even with hetero-

geneity of players in groups, and heterogeneity between groups. In applications, this

permits a rather general analysis to be undertaken that has the scope to answer many

interesting questions that might be posed, particularly related to the effect of hetero-

geneity within and between groups. Some applications that have been considered in the

literature—collective contests; group provision of public goods; bilateral oligopoly—

have been discussed, and others speculated upon. Some of these, as well as many oth-

ers, fit within a model of group contests with group spill-overs, careful study of which

seems to be a fruitful direction for future research. I hope that the exposition of multiple

aggregate games presented here is useful in pursuing this and other lines of research,

and I also hope that I have done justice to the ideas that Richard and I discussed.

Appendix—Proofs

Proof of Proposition 1. The proof is by simple definition chasing. If x∗ is a Nash equilib-

rium in G, then by definition xj∗
i = x̃j

i(X
−j∗) for all i ∈ I j, j ∈ J. But then for each j ∈ J,

X j∗ = ∑i∈I j x̃j
i(X
−j∗) = X̃ j(X−j∗). Conversely, if X j∗ = X̃ j(X−j∗) for all j ∈ J, then by

definition xj∗ where xj∗
i = x̃j

i(X
−j∗) for each i ∈ I j is a Nash equilibrium in G j(X−j∗) for

all j ∈ J; it then follows that x∗ is a Nash equilibrium.

Proof of Proposition 2. The proof is again by definition chasing. First, if xj∗ is a Nash

equilibrium then xj∗
i = bj

i(X j∗
−i; X−j) for all i ∈ I j. This implies xj∗

i = bj
i(X j∗ − xj∗

i ; X−j),
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and so by definition xj∗
i = rj

i(X j∗; X−j) for all i ∈ I j; and therefore ∑i∈I j rj
i(X j∗; X−j) =

X j∗. To prove necessity, suppose ∑i∈I j rj
i(X j∗; X−j) = X j∗ and consider the strategy

xj∗
i = rj

i(X j∗; X−j). By definition of the replacement function, xj∗
i = bj

i(X j∗ − xj∗
i ; X−j),

and since X j∗ = ∑i∈I j rj
i(X j∗; X−j) it follows that X j∗ − xj∗

i = ∑h 6=i∈I j rj
h(X j∗; X−j) = X j∗

−i.

As such, xj∗
i = bj

i(X j∗
−i; X−j) for all i ∈ I j, so xj∗ is a Nash equilibrium in G j(X−j).

Proof of Proposition 3. A player’s share function is the value of σ
j
i that makes l j

i , defined

in (5), equal to 0—however, if this is below zero the share function is defined as zero;

and if it is above 1 the share function is undefined. First, note that under Assumption 1

∂l j
i

∂σ
j
i

= X j

[
∂2uj

i

∂(xj
i)

2
+

∂2uj
i

∂xj
i∂X j

−i

]
< 0 and

∂l j
i

∂X j = σ
j
i

∂2uj
i

∂(xj
i)

2
+ [1− σ

j
i ]

∂2uj
i

∂xj
i∂X j

−i

< 0.

The first inequality implies there is at most one σ
j
i ∈ [0, 1] where l j

i = 0 so the share func-

tion is indeed a function. Continuity of this function, where it is defined, follows from

l j
i varying continuously in all its arguments by virtue of the assumed differentiability of

utility functions.

If X j
i(X
−j) > 0, by definition, l j

i (1, X j
i(X
−j); X−j) = 0, so sj

i(X j
i(X
−j), X−j) = 1 and

the monotonicity properties just stated imply that for all X j < X j
i(X
−j), l j

i > 0 for all

σ
j
i ≤ 1, and therefore the share function is undefined. In addition, again by definition, if

X̄ j
i (X
−j) < ∞ then l j

i (0, X̄ j
i (X
−j); X−j) = 0 so sj

i(X̄ j
i (X
−j); X−j) = 0 and the monotonicity

properties of l j
i imply that for all X j > X̄ j

i (X
−j), l j

i = 0 only when σ
j
i < 0, and therefore

by definition sj
i(X j; X−j) = 0.

Where it is positive and defined, implicit differentiation of the first-order condition

that defines the share function, (5), gives

∂sj
i

∂X j = −
∂l j

i
∂X j

∂l j
i

∂σ
j
i

< 0,

where the inequality follows from the deductions above.

If X j
i(X
−j) = 0 the share function is defined for all X j > 0 where it takes values in

the compact set [0, 1], so (taking subsequences if necessary) the limit as X j → 0 will

exist, which is denoted s̄j
i(X
−j).
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Proof of Proposition 4. If X̄ j
i (X
−j) < ∞ the share function of individual i ∈ I j is equal to

zero for all X j ≥ X̄ j
i (X
−j). If not, then since it is assumed that limxj

i→∞
∂uj

i(xj
i ,·;·)

∂xj
i

< 0

the first-order condition (5) can hold as X j → ∞ only if limX j→∞ σ
j
i X j < ∞ which

requires σ
j
i → 0, implying the share function vanishes in the large X j limit. This implies

there is an X̄ j(X−j) such that ∑i∈I j sj
i(X j; X−j) < 1 for all X j > X̄ j(X−j). The function

∑i∈I j sj
i(X j; X−j) is continuous and strictly decreasing in X j for all maxi∈I j{X j

i(X
−j)} <

X j < X̄ j(X−j), and is therefore equal to 1 for at most one value of X j. If X j
i(X
−j) > 0

for any i ∈ I j then ∑i∈I j sj
i(maxi∈I j{X j

i(X
−j)}, X−j) ≥ 1 and so there is a unique value

of X j where ∑i∈I j sj
i(X j, X−j) = 1. If X j

i(X
−j) = 0 for all i ∈ I j then the aggregate share

function is defined for all X j > 0, with limX j→0 ∑i∈I j sj
i(X j, X−j) = ∑i∈I j s̄j

i(X
−j). As such,

the existence of a (unique) Nash equilibrium requires ∑i∈I j s̄j
i(X
−j) > 1.

Proof of Proposition 5. For X−j ∈ RN−1
+ \ X̄ j, the group best response is implicitly defined

by (7). Continuity of the group best response follows from continuity of individual share

functions in each of its arguments, which follows from the assumed differentiability of

utility functions. With apology9 implicit differentiation of (7) gives

∂X̃ j(X−j)

∂Xk = −
∑i∈I j

∂sj
i

∂Xk

∑i∈I j
∂sj

i
∂X j

. (10)

Where an individual’s share function is positive, recall that it is defined by the first-

order condition l j
i (σ

j
i , X j; X−j) = 0 as in (5). As deduced previously,

∂sj
i

∂X j = −
∂l j

i
∂X j

∂l j
i

∂σ
j
i

=
σ

j
i

∂2uj
i

∂(xj
i )

2
+ [1− σ

j
i ]

∂2uj
i

∂xj
i ∂X j

−i

X j
[

∂2uj
i

∂(xj
i )

2
− ∂2uj

i

∂xj
i ∂X j

−i

] < 0

under Assumption 1. In addition,

∂sj
i

∂Xk = −
∂l j

i
∂Xk

∂l j
i

∂σ
j
i

= −

∂2uj
i

∂xj
i ∂Xk

X j
[

∂2uj
i

∂(xj
i )

2
− ∂2uj

i

∂xj
i ∂X j

−i

] .

9Whilst individual share functions very smoothly in their arguments, the aggregation of these within a
group, whilst continuous, does not necessarily vary in a smooth way, in particular in a neighborhood of
a group member’s ‘dropout value’ X̄ j

i (X
−j). As such, implicit differentiation should not be used at these

points on the domain but, with apology, it is given its intuitive merit. In a neighborhood of any X̄ j
i (X
−j)

the derived derivatives do not hold and indeed should not be defined; the monotonicity properties can
nevertheless be proved for these regions of the domain by a contradictory argument (details omitted).
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Since the denominator is negative under Assumption 1, sgn{ ∂sj
i

∂Xk } = sgn{ ∂2uj
i

∂xj
i ∂Xk
}. As

such, since group members are qualitatively symmetric, it follows that sgn{ ∂X̃ j(X−j)
∂Xk } =

sgn{ ∂2uj
i

∂xj
i ∂Xk
}, as stated.

∣∣∣ ∂X̃ j(X−j)
∂Xk

∣∣∣ < 1 if the numerator in (10) is less than the denominator, a sufficient (but

by no means necessary) condition for which is
∣∣∣∣

∂sj
i

∂Xk

∣∣∣∣ <
∣∣∣∣

∂sj
i

∂X j

∣∣∣∣ for all i ∈ I j, which is

implied by the inequality in the proposition.

Proof of Proposition 6. If x∗ is a Nash equilibrium, then by definition of share functions

xj∗
i = X j∗ ŝj

i(X j∗; X∗) for all i ∈ I j, j ∈ J. As such, ∑i∈I j ŝj
i(X j∗; X∗) = 1 and therefore

X j∗ = X̂ j(X∗) for all j ∈ J, implying X∗ = ∑j∈J X̂ j(X∗). For necessity of the con-

dition, define a player’s best response in a nested aggregative game as bj
i(X j
−i; X−j).

Consider the strategy xj∗
i = X̂ j(X∗)ŝj

i(X j∗; X∗). By definition of share functions and

the consistency of X̂ j(X∗) within group j (which implies X̂ j(X∗) − xj∗
i = X j∗

−i), xj∗
i =

bj
i(X j∗
−i; X∗ − X̂ j(X∗)). When X∗ = ∑j∈J X̂ j(X∗), it follows that X∗ − X̂ j(X∗) = X−j∗, and

therefore xj∗
i = bj

i(X j∗
−i; X−j∗) for all i ∈ I j, j ∈ J, giving the conclusion that x∗ is a Nash

equilibrium.

Proof of Proposition 7. The properties of individual share functions in Ĝ j(X) are first de-

duced. The conditions stated on preferences are equivalent to assuming

∂l̂ j
i

∂σ
j
i

= X j

[
∂2ûj

i

∂(xj
i)

2
+

∂2ûj
i

∂xj
i∂X j

+
∂2ûj

i

∂xj
i∂X

]
< 0,

∂l̂ j
i

∂X j = σ
j
i

∂2ûj
i

∂(xj
i)

2
+

∂2ûj
i

∂xj
i∂X j

+ σ
j
i

∂2ûj
i

∂xj
i∂X j

+
∂2ûj

i
∂(X j)2 + σ

j
i

∂2ûj
i

∂xj
i∂X

+
∂2ûj

i
∂X j∂X

< 0, and

∂l̂ j
i

∂X
=

∂2ûj
i

∂xj
i∂X

+
∂2ûj

i
∂X j∂X

+
∂2ûj

i
∂(X)2 < 0.

Under the first two conditions conditions (as previously) two thresholds X̂ j
i(X) (which

is X j > 0 such that l̂ j
i (1, X j; X) = 1) and ˆ̄X j

i (X) (which is X j such that l̂ j
i (0, X j; X) = 1

if such an X j exists, otherwise it is defined as +∞) can be defined, between which the

share function is defined and takes positive values, and where

∂ŝj
i

∂X j = −
∂l̂ j

i
∂X j

∂l̂ j
i

∂σ
j
i

< 0.

If X̂ j
i(X) as defined above does not exist then the share function is defined for all X j > 0
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with limX j→0 ŝj
i(X j; X) = ˆ̄sj

i(X).

As before, the aggregation of individual share functions is taken to be defined only

for values of X j where all group members’ share functions are defined. Noting that

share functions are either equal to zero for large enough X j, or are vanishing in the

large X j limit, if either X̂ j
i(X) > 0 for any i ∈ I j, or ∑i∈I j ˆ̄sj

i(X) > 1 then there is a single

consistent aggregate action X̂ j(X) in Ĝ j which is such that ∑i∈I j ŝj
i(X̂ j(X); X) = 1. If this

is not the case then X̂ j(X) = 0.

Consider now varying X to change the partial game played by group j. Group j’s

share of the total aggregate is Ŝj(X) = X̂ j(X)/X, defined by (9) if the resulting share is

between 0 and 1. Note that

∂L̂j

∂Λj = X ∑
i∈I j

∂ŝj
i

∂X j and

∂L̂j

∂X
= ∑

i∈I j

Λj ∂ŝj
i

∂X j +
∂ŝj

i
∂X

.

Now,

∂ŝj
i

∂X
= −

∂l̂ j
i

∂X
∂l̂ j

i

∂σ
j
i

< 0,

which, combined with the monotonicity of share functions with respect to group ag-

gregate, implies both of the expressions above are negative. Given this, the thresholds

and the monotonicity of group share functions stated in the proposition can be derived

analogously to the case within groups, so the details are omitted. Aggregate share func-

tions are either equal to zero for X > ˆ̄X j or, if this is not finite, vanish in the large X

limit—this follows by recalling that individual share functions vanish in the large X j

limit, so as X → ∞ (9) can hold only if limX→∞ ΛjX < ∞ which requires Λj → 0. Given

this, if either X̂ j
> 0 for any j ∈ J, or ∑j∈J

ˆ̄Sj > 0 if X̂ j
= 0 for all j ∈ J, the aggregate

share function will exceed one for small enough X and since it is strictly decreasing in

X will be equal to one at exactly one value of X, so consequently there is a unique Nash

equilibrium.
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