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Abstract 

 

We develop a flexible modeling framework to produce density nowcasts for U.S. inflation at a 

trading-day frequency. Our framework: (1) combines individual density nowcasts from three 

classes of parsimonious mixed-frequency models; (2) adopts a novel flexible treatment in the use 

of the aggregation function; and (3) permits dynamic model averaging via the use of weights that 

are updated based on learning from past performance. Together these features provide density 

nowcasts that can accommodate non-Gaussian properties. We document the competitive 

properties of the nowcasts generated from our framework using high-frequency real-time data over 

the period 2000-2015. 
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1.  Introduction 

Inflation developments are of interest to policymakers, forecasters, financial market participants, 

and the general public.  This interest includes not only the point forecast but also the range of 

potential inflation outcomes and their probability of occurring—i.e., the density forecast.  

Building on the literature that finds that the accuracy of multistep point forecasts can be 

improved by conditioning on high-quality point nowcasts, Krüger, Clark, and Ravazzolo (2017) 

and Tallman and Zaman (2020) document that conditioning quarterly macroeconomic models 

with both nowcast means and nowcast densities leads to improvements in the accuracy of 

multistep point and density forecasts, especially for inflation.3  Realizing these gains in practice 

requires relatively accurate nowcast means and nowcast densities for inflation.  Previous 

research by Modugno (2013), Monteforte and Moretti (2013), Breitung and Roling (2015), 

Knotek and Zaman (2017), and Clement (2017) has developed mixed-frequency approaches to 

nowcast U.S. inflation, with an exclusive focus on point nowcast accuracy.  In this paper, we 

develop a flexible framework that uses model-combination strategies with three classes of 

mixed-frequency models to generate highly accurate point and density nowcasts for U.S. 

inflation. 

The past two decades have seen considerable growth in the density forecasting and 

density nowcasting literature.4  Density forecasts help to illuminate the balance of risks around 

point forecasts (e.g., Rossi, 2014; Mazzi, Mitchell, and Montana, 2014) and strengthen the 

“credibility” of forecasts (Wright, 2019).  However, recent work on density nowcasting has 

focused on real GDP growth and other indicators of real economic activity.  The paper that 

comes closest to the notion of inflation density nowcasting is Garratt, Mitchell, and Vahey 

(2014), but there the nowcasts are one-step-ahead forecasts from models estimated with quarterly 

data; intra-quarterly daily, weekly, and monthly data are not used, and hence the density nowcast 

estimates are largely unchanged during the quarter.   

We contribute to the density nowcasting literature by proposing a flexible framework to 

produce both point and density nowcast estimates for U.S. headline and core inflation measures: 

                                                           
3 E.g., Faust and Wright (2013) and Knotek and Zaman (2019) find that conditioning quarterly macro models with 

more accurate jumping-off points from external nowcasts improves multistep forecast accuracy. 
4 See Tay and Wallis (2000) for a survey on density forecasting, including its application in macroeconomics and 

finance, and Aastveit et al. (2018) for a more recent survey on density forecasting and density combinations.  
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CPI inflation, core CPI inflation, PCE inflation, and core PCE inflation.  Our flexible framework 

is based on model combinations across three classes of mixed-frequency models that previous 

research has shown produce high-quality point nowcasts for inflation; for one of the model 

classes, we develop a procedure to generate the density nowcasts.  By using mixed-frequency 

models, we can produce inflation density nowcasts at a trading-day frequency that take 

advantage of high-frequency data and update as information accumulates over the course of a 

month or a quarter.   

We use model combinations because the characterization of uncertainty from a single 

(possibly misspecified) model could be too restrictive.  In addition, combining density estimates 

across a range of models provides a flexible density that can potentially accommodate non-

Gaussian features such as skewness and kurtosis, which may more closely approximate the true 

density.5  Inspired by previous research on density forecast combinations (e.g., Bache et al., 

2011; Aastveit et al., 2014; Garratt, Mitchell, and Vahey, 2014), we combine the density 

nowcasts in a two-stage procedure.6  In stage 1, density nowcasts coming from different model 

specifications within each of the three model classes are combined.  In stage 2, we combine 

across the three stage 1 combinations to form a “grand” combination.   

Combining densities requires a functional form for the aggregation and weights to apply 

to the different densities.  Previous research has used either the linear opinion pool or the 

logarithmic opinion pool as the functional form for aggregation, with some researchers using 

both methods and presenting results for the approach that is more accurate over some evaluation 

period.  Instead of enforcing a particular functional form for aggregation at the outset, we devise 

and implement a novel flexible aggregation strategy that lets the data dynamically determine 

which of the two functional forms it prefers.  A potential advantage of this flexibility is that it 

allows for the possibility of switching between the two functional forms, at different points 

within a month or a quarter based on the nowcast origin or at different points in time during the 

                                                           
5 Alternatively, one could flexibly characterize uncertainty using a single mixed-frequency model featuring 

stochastic volatility and estimate the model with Bayesian methods, as in Carriero, Clark, and Marcellino (2015) for 

real GDP growth or Koop, McIntyre, and Mitchell (2020) for U.K. regional indicators.  
6 Our general strategy for combining densities from many models is similar in spirit to the approach in Aastveit, et 

al. (2014) for density nowcasting GDP, but with many differences in implementation.  Chernis and Sekkel (2018) 

employ a similar two-stage procedure to produce point nowcast combinations for real economic indicators. 
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sample as more observations become available.  This novel flexible aggregation strategy can be 

used broadly in multistep forecasting applications when combining point or density forecasts.   

The literature has considered a variety of weighting schemes to use when combining 

density forecasts, in part because no single scheme has been shown to work “best” under all 

circumstances.  The bulk of the density combination literature has considered a limited number 

of weighting schemes—although Krüger (2015) and Ganics (2017) are exceptions—with the 

scheme based on recursive updating of past performance using the log score metric being the 

most popular.  In contrast, we consider a relatively large number of weighting schemes, ranging 

from equal weights to schemes based on past predictive performance to “optimal” schemes that 

optimize some loss function over a historical sample.  In most cases, these weights dynamically 

update over time to learn from past performance. 

Using high-frequency real-time data over the evaluation period 2000-2015, we conduct a 

comprehensive set of out-of-sample inflation density nowcasting exercises to assess our flexible 

framework using a variety of inflation measures, inflation rates, weighting strategies, and mixed-

frequency model classes.  This examination reveals that combining individual densities generally 

helps improve density nowcast accuracy, and as information accumulates over the course of a 

month or a quarter, the accuracy of the combined density nowcasts and the associated point 

nowcasts steadily improves.  We also document evidence of dynamic model switching, which 

highlights the importance of combining estimates from a range of models to circumvent the 

instability issues from a single model.   But it matters how the densities are combined: not all 

combination methods improve accuracy compared with the best-performing individual densities. 

The grand combinations based on our flexible aggregation strategy and the log score weighting 

scheme, which relies on past predictive performance, or the “optimal” weighting scheme of 

Conflitti, De Mol, and Giannone (2015) are among the best performing in terms of relative 

accuracy for headline inflation and are well calibrated.  The Ganics (2017) weighting scheme, 

which optimizes the calibration fit, produces the best calibrated densities for headline inflation, 

but its relative accuracy is inferior to the log score or Conflitti, De Mol, and Giannone (2015) 

weighting schemes.  In the case of core inflation, all weighting schemes generate comparable 

accuracy of point and density nowcasts.  Overall, the accuracy of the implied point nowcasts 
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from the grand combination matches the accuracy of the best performing mixed-frequency model 

of Knotek and Zaman (2017) and is more accurate in the case of core PCE inflation.   

Our empirical results indicate evidence of both time-varying skewness and kurtosis in the 

predictive densities of inflation measures, suggesting that asymmetries and fat tails are an 

empirical feature of inflation data.  Combination methods that produce density estimates derived 

from a richer set of models tend to display a higher degree of skewness and kurtosis in the 

predictive densities.  We also find evidence of time-varying variances (i.e., uncertainty in the 

nowcast estimates) that echo the broader patterns reported elsewhere in the inflation uncertainty 

literature using stochastic volatility models (e.g., Carriero, Clark, and Marcellino, 2019; Knotek, 

Zaman, and Clark, 2015).  

Finally, we conduct a horse race with the Survey of Professional Forecasters (SPF) for 

point and density nowcast accuracy.  Our grand combination’s density nowcasts provide superior 

point and density nowcasts for CPI inflation and PCE inflation.  For core CPI inflation and core 

PCE inflation, our grand combination’s nowcasting performance is competitive with the SPF.  

The ability of our proposed framework to generate highly accurate point and density nowcasts of 

inflation is a useful outcome for practitioners. 

The paper proceeds as follows.  Section 2 describes the mixed-frequency models.  

Section 3 discusses the combination methods to combine individual densities.  Section 4 

describes the real-time data.  Section 5 discusses the nowcast evaluation strategy.  Section 6 

presents empirical results.  Section 7 compares the accuracy of the combined density nowcasts to 

SPF.  Section 8 concludes. 

 

2.  Mixed-Frequency Models  

 Building on the literature that has shown that relatively parsimonious approaches 

dominate more sophisticated approaches for nowcasting and near-term forecasting of inflation 

(e.g., Koop and Korobilis, 2012; Knotek and Zaman, 2017), we consider three classes of mixed-

frequency models that relate aggregate inflation to its components and to a limited number of 



6 

 

other indicators.7  We briefly discuss the models and procedures for constructing their density 

nowcasts here; the supplementary appendix provides further details.  

 

2.1  Deterministic Model Switching (DMS) 

Knotek and Zaman (2017) construct a mixed-frequency model for inflation point 

nowcasting that relies on a small number of variables and combines univariate and multivariate 

regressions.  The model uses disaggregate and aggregate variables to construct nowcasts for the 

aggregate, but the disaggregate information is used only if it is available and deemed useful.8  

The latter aspect gives rise to time-varying coefficients that change in a deterministic fashion 

based on the available information set, which we label as deterministic model switching (DMS).  

Monthly inflation rates 
t  are modeled via a general representation:  

𝐴𝑠(𝑡) 𝒁𝒕 =  𝐵𝑠(𝑡) +  𝐶𝑠(𝑡)𝑿𝒕 + ∑ 𝐷𝑗,𝑠(𝑡)𝒁𝒕−𝒋
𝐽
𝑗=1 +  𝜀𝑠(𝑡).    (1) 

The coefficient matrices A, B, C, and Dj can potentially vary over time with the information set 

s(t).  For headline inflation, Zt is a vector of aggregates—CPI inflation, CPI

t , and PCE inflation, 

PCE

t —and Xt is a vector of disaggregate components comprising gasoline inflation ( Gasoline

t ), 

food inflation ( Food

t ), and core inflation rates ( Core CPI

t  and Core PCE

t ).  To illustrate the type of 

deterministic model switching that occurs, for example, the nowcast for PCE

t  in month t is a 

function of actual CPI

t  in month t via As(t), if 
CPI

t  is available from statistical agencies; if not, 

the nowcast for PCE

t in month t is a function of disaggregates’ nowcasts included in Xt via Cs(t).  

If the vector of disaggregates is incomplete for month t, then Cs(t)=0.  High-frequency data on 

gasoline and oil prices are used to construct a gasoline inflation nowcast via an auxiliary model, 

while food inflation nowcasts are derived using a univariate AR specification.  Core inflation 

rates can also be modeled using equation (1), where no disaggregates are used and nowcasts are 

formed either via univariate AR models or bridge regressions if Core CPI

t  is available for month t 

                                                           
7 These model classes have also been applied in other contexts, such as nowcasting GDP growth.  We restrict 

attention to models that are well understood by econometricians and economic forecasters, but one could extend the 

model pool to include a larger and broader set of model classes, including machine learning models. 
8 Hendry and Hubrich (2011) and Ravazzolo and Vahey (2014) focus on multistep inflation forecasting using 

disaggregates. 
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while Core PCE

t  is not.  This mixed-frequency model switches between univariate and multivariate 

regressions depending on the available information within a month or a quarter.  

We innovate on the DMS approach for constructing inflation point nowcasts in two ways.  

First and foremost, we devise and implement parametric block wild bootstrap algorithms to 

produce density nowcasts for the DMS framework.  When the DMS selects the multivariate 

regression model that uses disaggregates, the density nowcasts are constructed by (1) 

constructing density estimates for each of the three disaggregates (core inflation, food inflation, 

and gasoline inflation); and (2) combining the density estimates using the weights in Cs(t) to 

construct the density nowcast for aggregate inflation, similar to the combination approaches in 

Ravazzolo and Vahey (2014) and Tallman and Zaman (2017) but in this case with an application 

to nowcasting.  While Knotek and Zaman (2017) estimate the model using short rolling 

windows, which leads to very flexible parameters and incorporates changing volatility in a 

parsimonious way, we consider density combinations that allow for a variety of rolling or 

expanding estimation windows, as discussed below. 

 

2.2  Mixed Data Sampling (MIDAS) 

Monteforte and Moretti (2013) generate inflation point nowcasts using a MIDAS model 

with leads, which is a reduced-form regression relating a low-frequency variable to high-

frequency variable(s).9  In our application, oil and gasoline prices act as the high-frequency 

leads, while monthly inflation is at a lower frequency.  To prevent parameter proliferation, 

MIDAS works with distributed lag polynomial operators that reduce the estimation to a smaller 

number of parameters.  The model is estimated using nonlinear least squares.  

The MIDAS model with leads for inflation at time t+h, 
t h +

,  takes the form 

𝜋𝑡+ℎ =  𝛼(ℎ) +  ∑ 𝜒𝑗+1,(ℎ)
𝑃(𝑀)−1
𝐽=0  𝜋𝑡−𝑗 +  ∑ 𝛾𝑗+1,(ℎ)

𝑃(𝑀)−1
𝐽=0  𝑍𝑡−𝑗 +

 𝛽ℎ  ∑ 𝜔𝑃(𝐻𝐹)−𝑗
𝑃(𝐻𝐹)−1
𝐽=0 (𝜃(ℎ)

𝐻𝐹) 𝑋𝑃(𝐻𝐹)−𝑗,𝑡+1
𝐻𝐹 +  𝑒𝑡+ℎ                               (2) 

                                                           
9 Ghysels, Santa-Clara, and Valkanov (2005, 2006) popularized these models; Clements and Galvão (2008) is an 

influential paper on the application of MIDAS to macroeconomic forecasting.  These models are increasingly used 

for nowcasting macroeconomic indicators across the globe (e.g., see Allan et al., 2014, for the economy of 

Scotland).  
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where Z includes other monthly variables; P(M) is the number of lags of the monthly regressors 

(we use 1); and P(HF) is the number of high-frequency observations, 𝑋1,𝑡+1
𝐻𝐹 ,….., 𝑋𝑃(𝐻𝐹),𝑡+1

𝐻𝐹  in 

month t+1 (i.e., the target nowcast month).  The coefficients are independently estimated for 

each forecast horizon (h).10  The assumption ∑ 𝜔𝑃(𝐻𝐹)−𝑗
𝑃(𝐻𝐹)−1
𝐽=0 (𝜃(ℎ)

𝐻𝐹) = 1 helps identify 𝛽ℎ. 

We extend Monteforte and Moretti’s (2013) work on inflation point nowcasts by 

generating inflation density nowcasts from MIDAS models.  These density nowcasts are 

constructed by drawing errors from a normal distribution with a standard deviation coming from 

past residuals after rescaling to correct the variance.  Aastveit, Foroni, and Ravazzolo (2017) 

show that this approach is slightly inferior to the block wild bootstrap in their application when 

nowcasting GDP, but it provides a substantial computational advantage in our exercises.    

 

2.3  Dynamic Factor Model (DFM) 

Building on Giannone, Reichlin, and Small (2008), mixed-frequency dynamic factor 

models (DFMs) are widely used for nowcasting.  Modugno (2013) uses a DFM to generate 

inflation point nowcasts from a data set comprising monthly, weekly, and daily data by 

extracting a common factor at a daily frequency via the estimation method of Bańbura and 

Modugno (2014).  The DFM takes the form 

 𝑦𝑡 = 𝐶𝑓𝑡 +  𝜀𝑡 , 𝜀𝑡 ~ 𝑁(0, Σ)                            (3) 

where 𝑦𝑡 is a vector of observations, C is a matrix of loadings, 𝜀𝑡 is a vector of idiosyncratic 

components, and 𝑓𝑡 is a vector of unobserved common components that follows 

                            𝐵 𝑓𝑡 = 𝐴(𝐿)𝑓𝑡−1 +  𝜇𝑡, 𝜇𝑡 ~ 𝑁(0, Q)                 (4) 

where B and A(L) are coefficient matrices that capture factor dynamics.  The estimated latent 

daily factor(s) aggregate to weekly and monthly factors, which are used to construct nowcast 

estimates for monthly variables, including inflation. 

We extend the previous work using DFMs for inflation point nowcasts in order to 

generate density nowcasts for U.S. inflation.  Our density nowcasts are constructed using a 

standard parametric bootstrapping procedure for factor models, similar to Aastveit et al. (2014). 

This bootstrapping procedure accounts for factor, parameter, and shock uncertainty. 

                                                           
10 In our exercises, h ranges from 1 to 2 for nowcasting monthly inflation and from 1 to 4 for nowcasting quarterly 

inflation. 
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2.4  Mixed-Frequency Model Space 

Each of the three mixed-frequency model classes requires assumptions about certain 

elements, such as the size of the rolling windows in the DMS model, the polynomial 

specification in the MIDAS model, or the number of lags of the factors in the DFM.  To account 

for this uncertainty within each model class, we consider many different specifications, listed in 

Table 1.  We employ 132 model variants distributed unequally across our three model classes, 

with 108 in the DMS class, 12 in the MIDAS class, and 12 in the DFM class.11  We combine 

density nowcasts within each model class in “stage 1” combinations, and we then combine the 

stage 1 combinations into a “grand” combination in stage 2.    

 

3.  Combination Methods 

Simple combinations of point forecasts have a long history (see Bates and Granger, 1969) 

and often perform well, even when compared with weighting schemes that minimize some loss 

function (e.g., Clark and McCracken, 2010).  In contrast, the density forecast combination 

literature has generally documented performance gains from optimal weighting schemes and 

schemes based on past predictive performance over the use of equal weights.12  Combining 

candidate density estimates requires both a functional form to use in combining the densities and 

a mechanism for deriving the weights to place on each density.  We present a novel functional 

form to aggregate our candidate density nowcasts and consider a variety of weighting schemes in 

this context.  To be clear about our approach, in stage 1 we use a particular functional form and 

weighting scheme to combine the individual densities within a model class, for each of the three 

model classes; and then in stage 2, we use the same functional form and weighting scheme to 

combine the densities from the three model classes into the grand combination.   

 

                                                           
11 In preliminary results, we considered 36 specifications for the MIDAS model class (12 each for Beta, BetaNN, 

and Almon polynomials).  This combination performed similarly to the combination in the paper, but the latter 

approach greatly reduced computing time.  For the DFM class we initially used combinations with one or two 

factors, giving us 24 specifications.  This combination slightly underperformed the combination reported in the 

paper using only one factor, consistent with DFM inflation point nowcasting accuracy findings in Modugno (2013). 
12 For some examples, see Hall and Mitchell (2007), Jore, Mitchell, and Vahey (2010), Bache et al. (2011), 

Bjornland et al. (2011), and Aastveit et al. (2014).  Kascha and Ravazzolo (2010) and Garratt, Mitchell, and Vahey 

(2011) provide counterexamples. 



10 

 

3.1  Functional Forms for Aggregation 

We consider three functional forms or aggregation methods: the linear opinion pool, the 

logarithmic opinion pool, and a novel flexible method that combines the previous two functional 

forms in a data-dependent way.  

The linear opinion pool is the weighted linear combination of individual component 

densities and is widely used (e.g., Bache et al., 2011; Aastveit et al., 2014; Mazzi, Mitchell, and 

Montana, 2014; Ravazzolo and Vahey, 2014).  If there are M models, then  

 
, , , , , , , , , ,1

( ) ( | )
MLIN

t h t t i h t i h t t ii
p y w f y I   =

=        (5) 

where , , ( )LIN

t h tp y  is the combined linear pool predictive density for variable 𝑦 at the point in time 

τ within month t for forecast horizon h.13  The density forecast from model i, , , , , ,( | )t i h t t if y I  , is 

conditional on information set , ,t iI  which can differ across models.  The potentially time-

varying, nonnegative weights , , ,t i hw  are recursively updated at each forecast origin based on 

some criteria that we discuss below and sum to 1. 

This linear form of aggregation implies that if all the individual component densities are 

distributed normally with different mean and variance, then the combined density will be 

nonnormal (or a mixture-normal).  The larger the number of individual densities, the more 

flexible the resulting density obtained from the combination.  The nonnormal characteristic for 

the combined density via the linear pool is desirable if the unknown true density is nonnormal.  

An advantage of a mixture-normal distribution is that it permits skewness and kurtosis. 

 The logarithmic opinion pool is the geometric weighted average of the individual 

component densities: 

 
, , ,

, , ,

, , , , ,1
, ,

, , , , ,1

( | )
( )

( | )

t i h

t i h

M w

t i h t t iLOG i
t h t M w

t i h t t i ti

f y I
p y

f y I dy





 



 

=

=

=



     (6) 

where , , ( )LOG

t h tp y  is the combined log pool predictive density for variable 𝑦 at the point in time τ 

within month t for forecast horizon h.  (To economize on notation, we omit h subscripts going 

forward.)  Importantly, the combination based on this geometric functional form assigns a zero 

                                                           
13 As is common in nowcasting applications, we produce and evaluate nowcasts at different points in time within a 

given month; we use the notation τ to capture the former and t to capture the latter. 
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probability to a region if any single individual density assigns a zero probability to that region.  

This may be an undesirable feature because a single incorrectly specified density can 

significantly influence the specification of the combined density (see Bjornland et al., 2011).14   

In this paper, we propose a novel flexible aggregation method that is in the spirit of 

“letting the data speak” about which of the two functional forms—the linear pool or the 

logarithmic pool—is preferred.15  Specifically, instead of taking a stand on a particular functional 

form at the outset, we allow flexibility in letting the data determine which of the two functional 

forms is preferred at every point in time.  A potential advantage of this flexibility is that it allows 

for the possibility of dynamically switching between the two functional forms, at different points 

in time in the sample (t in our notation above) and at different points in time within a month or a 

quarter (τ in our notation above) to take advantage of the differing information sets and the high-

frequency data flow for nowcasting applications.  For example, at the beginning of a month, 

when uncertainty around the point nowcast for that month would be expected to be higher, since 

much of the underlying source information is not yet available, the data may prefer the linear 

opinion pool, while later in the month the data may prefer the log opinion pool.  This flexible 

aggregation method could be applied in more general multistep forecasting applications where 

the functional form is allowed to vary based on the forecasting horizon.  

We implement this flexible aggregation method by determining, for each point in time τ 

within each target month to be nowcasted t, which of the two functional forms has historically 

produced more accurate densities.  We denote the start and end of the sample by T0 and T, 

respectively, and we let Dτ denote the normal data release lags (in number of months) at the point 

in time τ, which captures the delay in calculating the historical density accuracies.16  We 

initialize the flexible functional form by using the linear pool, i.e., if 𝑡 ≤  𝑇0 + 𝐷𝜏 − 1, 

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑓𝑜𝑟𝑚𝜏,𝑡 = 𝐿𝑖𝑛𝑒𝑎𝑟 𝑃𝑜𝑜𝑙                                       (7) 

Subsequently,  

                                                           
14 Figure A1 and Figure A2 in the appendix visually contrast the properties of the linear and log opinion pools. 
15 Knüppel and Krüger (2019) and Garratt, Henckel, and Vahey (2019) propose approaches to modify the linear 

opinion pool but do not consider the hybrid approach that we pursue.   
16 In our empirical application, the delay parameter D is dependent on τ, the position within the month when the 

nowcast is being made.  Because we use the third monthly inflation release as the “true” inflation reading for a 

particular month, the delay D=4 early in the month when nowcasting monthly inflation, because the most recent 

“true” inflation reading comes from four months prior to the current month being nowcasted.  The delay D=3 late in 

the month, however, as the statistical agencies have released prior months’ inflation numbers by that point. 
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𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑓𝑜𝑟𝑚𝜏,𝑡 = {
𝐿𝑖𝑛𝑒𝑎𝑟 𝑃𝑜𝑜𝑙            𝑖𝑓 𝐿𝐼𝑁𝜏,𝑡  ≥  𝐿𝑂𝐺𝜏,𝑡

𝐿𝑜𝑔𝑎𝑟𝑖𝑡ℎ𝑚 𝑃𝑜𝑜𝑙   𝑖𝑓 𝐿𝐼𝑁𝜏,𝑡  <  𝐿𝑂𝐺𝜏,𝑡
    (8) 

for 𝑡 = 𝑇0 + 𝐷𝜏, … , 𝑇, with  
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where the values for ( )LINp   and ( )LOGp   are computed from equation (5) and equation (6), 

respectively, and o

ty  is the observed value in month t, which is independent of the point in time 

when the nowcast was made (τ) and the nowcast or forecast horizon (h). 

 

3.2  Weighting Schemes 

We consider five weighting schemes, ranging from equal weights to schemes based on 

average past predictive performance to schemes based on optimization of a specific loss 

function.  

1.  Equal weights.  Simply, each density i gets a weight 

  , , 1/t iw M =           (11) 

in the construction of the combination density nowcast.  Aastveit et al. (2018) characterize such a 

combination as a “restrictive finite mixture.” 

2.  Log-score weights.  The logarithmic score (log-score) is the logarithm of the density 

forecast evaluated at the observation and is widely used to assess the accuracy of density 

forecasts.  Accordingly, it makes sense to derive weights based on the past nowcast performance 

of the candidate densities using the log-score metric, with more accurate candidate densities 

receiving larger weights.17  The weights wτ,t,i are computed by averaging the past predictive 

                                                           
17 This approach amounts to “learning from past mistakes” and is widely used in the density combination literature 

due to its simplicity (e.g., Gerard and Nimark, 2008; Jore, Mitchell, and Vahey, 2010; Kascha and Ravazzolo, 2010; 

Bjornland et al., 2011; Garratt et al., 2011; Aastveit et al., 2014; Beckmann et al., 2020).  While we use the entire 

expanding history, we also explored the strategy of computing the weights over rolling 12-month periods, to “learn 

from recent mistakes” in computing the average score.  The density nowcasting accuracy results were similar.  We 

thank Gary Koop for suggesting this exercise.  
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performance using an expanding window for nowcast evaluation.  We initialize the weights by 

setting them to equal weights (equation 11) if 𝑡 ≤  𝑇0 + 𝐷𝜏 − 1.  For 𝑡 = 𝑇0 + 𝐷𝜏, … , 𝑇: 
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 3. Continuous ranked probability score (CRPS).  The CRPS is a widely used alternative 

metric for assessing density forecasts that is also based on past predictive performance.  It is 

popular because it is more robust to outliers compared with the log-score metric and it rewards 

densities that have probability mass closer to the actual observation.  The CRPS score for density 

nowcast i at the point in time τ within month t, CRPSτ,t,i, is the squared difference between the 

CDF of the density forecast and the CDF of the actual realizations: 

  2

, , , ,( ( ) 1{ })o

t i t i t t tCRPS F y y y dy 

+

−
= −       (13) 

where Fτ,t,i(yt) is the CDF of density nowcast i, fτ,t,i(yt), and 1{ }o

t ty y  is the indicator function 

equal to 1 if o

t ty y  and 0 otherwise.18  The smaller the difference between the two cumulative 

distributions, the more accurate is the density nowcast, and the more weight that density nowcast 

i should receive, such that weights depend on the inverse CRPS.  We initialize the weights by 

setting them to equal weights , , 1/t iw M =  if 
0 1t T D + − .  For t=T0+Dτ,…,T, the weights are 

computed based on an expanding window of historical predictive performance:19 
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 4.  Conflitti, De Mol, and Giannone (2015) iterative algorithm.  Following Hall and 

Mitchell (2007), the optimal vector of weights 
* * *

, , ,1 , ,( ,..., )t t t MW w w  =  minimizes the Kullback-

Leibler information criterion (KLIC) divergence, ,
1

(1/ ) [log ( )
t o

t s s ss
KLIC t g y y

=
= =

, ,log ( , )]o

s s s sf y y W − = , where , ,( , )t tf W   is the combined density nowcast across the M 

                                                           
18 The CDF of the observation is a Heaviside step function, which takes a value of 0 for all values of the density that 

are less than the actual realization and 1 for all values of the density that are greater than or equal to the realization. 
19 We also explored the strategy of computing weights using a 12-month rolling window. The results for density 

nowcasting accuracy were similar. 
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individual densities at time t which is a function of weights 
,tW  and ( )tg   is the true but 

unknown density corresponding to the actual realizations o

ty .  The solution to the optimization 

problem, subject to constraints 
, , 0  t iw i    and 

, ,1
1

M

t ii
w=

=  in each period, is  

  
0

,

*

, , ,

0

1
arg max [log ( , )]

1s

t o

t s s s ss T
W

W f y y W
t T

  =
= =

− +
 .   (15) 

 Hall and Mitchell (2007) and Amisano and Geweke (2011) note that this optimization 

can be solved using numerical search algorithms.20  Conflitti, De Mol, and Giannone (2015) 

propose an iterative solution to the above optimization problem that is computationally feasible 

for combining density estimates for large M.  Specifically, they break the objective function 

(equation 15) into a set of auxiliary functions that can be easily maximized in an iterative fashion 

to solve for the optimal weights each period subject to the constraints.  The maximization of 

auxiliary functions is convenient because it is simply a sum of M terms, and when each term is a 

function of a single weight, there are a total of M weights.  The algorithm is initialized with equal 

weights, 
(0)

, , (1/ )t iw M = .  If 
0 1t T D + − , then 

* (0)

, , , ,t i t iw w = .  For t=T0+Dτ,…,T, then 
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    (16) 

If 
( 1) ( )

, , , ,( )k k

t i t iw w  + −  , then 
* ( 1)

, , , ,

k

t i t iw w 

+= .  The constraints on the weights are satisfied at every 

iteration so long as the weights are initially equal.  We denote this combination as CMG.   

 5.  Ganics (2017) optimization based on calibration fit.  Ganics (2017) proposes an 

approach to derive optimal weights based on the calibration fit of the model using the probability 

integral transform (PIT).  If the preference is for well-calibrated densities irrespective of the 

user’s loss function, then intuitively it makes sense to devise a weighting strategy that directly 

accounts for the calibration fit of each individual (model) density forecast.  Ganics (2017) 

illustrates via Monte Carlo applications and an empirical application that a combination approach 

relying on the calibration fit to derive the weights not only yields well-calibrated densities but 

also leads to superior density forecasts in terms of log-score.  The paper examines the efficacy of 

                                                           
20 Pauwels and Vasnev (2016) perform an in-depth analysis of this optimization procedure and document a number 

of practical recommendations. 
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three popular metrics to evaluate the calibration fit—the Kolmogorov-Smirnov, Cramer-von 

Mises, and Anderson-Darling (AD) statistics—and finds that the three metrics perform 

comparably with a slight advantage for the scheme based on the AD statistic in terms of 

improved calibration of the combination.  Accordingly, we consider the weighting strategy that 

optimizes the calibration fit based on the AD metric.  

The Ganics optimization-based weights are calculated as follows.21  For a combined 

density nowcast 
, ,( , )t t tf y W   that is a function of a vector of weights 

,tW ,  compute the spread 

between the CDF of the perfect uniform distribution and the empirical CDF of the PIT ,tz   

corresponding to the combined density nowcast, , , ,( , ) 1[ ]t t tr W z r r   =  − , where [0,1]r  

denotes the quantile of the combined density nowcast.  Next, compute an average of the spread 

over the forecast evaluation sample, 
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1

, , , ,

0

1
( , ) ( , )

t

t t s ss T
r W r W

t T
   

−

=
 = 

−
       (17) 

The AD statistic, which is used as the objective function for the combined density, is defined as 

  , ,

, ,

( , )
( )

(1 )

t t

t t

r W
AD W dr

r r

 

 



=

−       (18) 

for 𝜌 ∈ [0,1].  Since a lower value for the AD statistic is preferred to a higher value, we again 

initialize the Ganics weights as equal weights 
*

, , 1/t iw M =  if 
0 1t T D + − ; otherwise, for 

t=T0+Dτ,…,T, the Ganics weights solve the minimization problem 

  
,

*

, , ,arg min ( )
t

t t t
W

W AD W


  =         (19) 

 

4.  Real-Time Data 

Under the assumption that density nowcasts are most informative when they are made in 

real time, our analysis relies on the real-time data that would have been available to forecasters 

in the past.  Our mixed-frequency model-combination framework can generate nowcasts on a 

daily basis.  To keep the results manageable, we assess nowcasting performance for each 

                                                           
21 We are grateful to Greg Ganics for sharing computer code. 
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month’s inflation reading at six representative dates.  Table 2 provides details about the 

information flow corresponding to these representative dates.22 

To facilitate direct comparisons with the point nowcast accuracy results in Knotek and 

Zaman (2017), we use the same data set and data transformations.  The monthly inflation rate is 

defined as 
1100( / 1)t t tP P −= − , where Pt is the price index in month t.  The 12-month trailing 

(year-over-year) inflation rate is 
, 12 12100( / 1)t t t tP P − −= − .  Quarterly annualized inflation rates 

are 4

1100[( / ) 1]Q Q Q

T T TP P −= − , with , 1 , 2 , 3(1/ 3)( )Q

T T t T t T tP P P P= = == + +  the price index for quarter T 

and 
,T t kP =

 is the price level in the k-th month of quarter T.  The mixed-frequency models forecast 

monthly inflation rates, which are used to back out the corresponding price indices to calculate 

the 12-month trailing inflation rate and quarterly annualized inflation rate.   

We nowcast U.S. headline and core inflation rates in both the consumer price index (CPI) 

and the personal consumption expenditures price index (PCE), which are monthly series.  All 

three model classes use higher-frequency data on gasoline and oil prices.  The DMS and DFM 

models also use data on monthly food and gasoline inflation.  The real-time vintages for the 

monthly PCE price index and core PCE price index begin in June 2000 and come from the 

Federal Reserve Bank of Saint Louis’ Archival Federal Reserve Economic Data (ALFRED).  

The real-time vintages for CPI inflation, core CPI inflation, and food CPI inflation going back to 

November 1996 are also from ALFRED.  The real-time data for gasoline CPI inflation beginning 

in January 1999 come from Haver Analytics and ALFRED.  Weekly retail gasoline prices (for all 

grades) going back to the start of 1993 are obtained from the Energy Information Administration 

(EIA).23  Daily Brent crude oil spot prices going back to 1987 are obtained from the Financial 

Times via Haver Analytics.  The seasonally adjusted CPI gasoline series is used to compute 

seasonal factors that are then applied to retail gasoline prices to adjust them for seasonality.   

Additional data are included in the estimation of the DFM.  The additional weekly data 

include the prices of diesel fuel, regular-grade retail gasoline, mid-grade retail gasoline, and 

premium-grade retail gasoline (from the EIA).  The additional daily variables include the 

foodstuffs price index from the Commodity Research Bureau (CRB), the grains price index from 

                                                           
22 We also produce results for quarterly inflation rates, shown in the appendix.  Table A1 shows the seven 

representative dates that we use for the quarterly nowcasting exercise and the available information. 
23 The EIA publishes weekly gasoline prices every Monday. 
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Standard & Poor’s (S&P), the fats and oils price index from CRB, the raw sugar price from the 

International Sugar Organization, the raw industrials price index from CRB, the agricultural 

commodities price index from S&P, the textiles and fibers price index from CRB, the industrial 

metals price index from S&P, steel scrap prices from the Foundation for International Business 

&  Economic Research, the 10-year Treasury note constant maturity yield and the 3-month 

Treasury bill rate from the Federal Reserve Board, the S&P 500 stock price index as reported in 

the Wall Street Journal, and the nominal trade-weighted exchange value of the dollar against 

major currencies from the Federal Reserve Board.  These data are all downloaded from Haver 

Analytics. 

To facilitate a horse race between nowcasts produced from our modeling framework and 

those reported in the Survey of Professional Forecasters (SPF), we also download the historical 

SPF nowcast estimates from the Federal Reserve Bank of Philadelphia’s real-time database. 

Following Tulip (2009) and Knotek and Zaman (2017), we treat the third inflation 

reading for each month or quarter as our measure of “truth.”  The third estimate has the 

advantage that it incorporates more complete source data than earlier estimates, but it usually 

abstracts from methodological revisions, which would have been difficult to predict in real time. 

 

5.  Nowcast Evaluation 

We use a range of metrics to evaluate our inflation density nowcasts by examining both 

the absolute accuracy and the relative accuracy of the density nowcasts along with the accuracy 

of the implied point nowcasts.  Absolute accuracy tests for the calibration fit of the density 

estimate.  Density forecasts are considered well calibrated or correctly specified when the density 

forecasts match the distribution of the observations over a large sample.  The preference is for 

densities that are well calibrated.  We assess the calibration properties of the density nowcasts 

using probability integral transforms (PITs), originally proposed by Diebold, Gunther, and Tay 

(1998), and interval forecasts (i.e., 70% prediction intervals).  

The PIT ,tz  is the CDF of the predictive density nowcast 𝑝𝜏,𝑡(𝑦𝑡) from the point in time 

τ when the nowcast is made within month t evaluated at the actual data realization 𝑦𝑡
𝑜:  

𝑧𝜏,𝑡 =  ∫ 𝑝𝜏,𝑡(𝑢) 𝑑𝑢,
𝑦𝑡

𝑜

−∞
𝑡 = 𝑇0, … , 𝑇             (23) 
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Intuitively, the PIT indicates in which region (i.e., percentile) of the density nowcast the actual 

realizations fall (see Gerard and Nimark, 2008).  A realization that falls at the middle of the 

density nowcast would be assigned a PIT value of 0.5, while a realization at the 10th percentile 

would be assigned a value of 0.1.  Density nowcasts that are well calibrated have PITs that are 

uniformly distributed across observations t; in a large sample, the actual realizations would be 

expected to span the entire region of the density nowcast with a probability matching the 

probability implied by the density nowcast.  Therefore, a visual assessment for calibration can be 

performed by plotting PITs in the form of a histogram along with the uniform U(0,1) 

distribution.  Correctly specified density estimates resemble rectangles (i.e., flat histograms), 

while severe departures from uniformity suggest calibration failure.  In addition to this visual 

assessment, we conduct a battery of formal statistical assessments using Pearson’s Chi-squared 

test (of uniformity and independence), the Berkowitz (2001) test (of normality of the inverse 

normal of the PITs), the Kolmogorov-Smirnov test (of uniformity), the Anderson-Darling test (of 

uniformity that specifically puts more weight on deviations between the empirical CDF of the 

PITs and the CDF of the uniform distribution in the tails), and the Knüppel (2015) test.24  The 

Knüppel test allows for simultaneous testing for both uniformity and independence of the PITs.  

 Interval forecasts are another popular metric to gauge the calibration of the density 

forecasts (e.g., Clark, 2011; Carriero, Clark, and Marcellino, 2015; Tallman and Zaman, 2020).  

Accordingly, we compute the empirical 70% prediction intervals (i.e., the coverage rates) of the 

density nowcasts, which are defined as the difference between the 85th and 15th percentiles of the 

density nowcasts. We compare the empirical 70% coverage rates with a nominal value of 70% to 

assess the extent to which the density nowcast estimates are correctly calibrated.  

 The PITs from two or more competing density nowcasts can all be uniformly distributed 

and hence appear correctly specified, but we would not be able to distinguish whether one 

density is of higher quality (i.e., more accurate) than the others based on PITs alone.  Relative 

accuracy involves comparing competing density estimates for their quality based on numerical 

scores.  The density forecast that assigns a higher density (i.e., a higher probability mass) at the 

actual realization gets a higher numerical score and is considered more accurate.  Conditional on 

                                                           
24 See Hall and Mitchell (2007) and Rossi and Sekhposyan (2014) for details about the exact implementation of 

these tests.  In implementing the calibration metrics, we benefitted from Matlab code made available on the websites 

of Barbara Rossi, Tatevik Sekhposyan, and Malte Knüppel.   
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obtaining well-calibrated density nowcasts, the density nowcast with the highest numerical score 

is preferred.  Scoring metrics such as log score and CRPS are two widely used scoring rules that 

allow for the ranking of rival density nowcasts.  As discussed earlier, the log score is the 

logarithm of the probability density function (corresponding to the density nowcast) evaluated at 

the actual realization.  The higher the log score, the more accurate the density nowcast.  The 

CRPS is the difference between the predicted and the realized cumulative distributions.  Smaller 

CRPS values imply more accurate density nowcasts.  

We also examine point nowcasts based on the mean of the (combined) density nowcasts. 

We assess point nowcast accuracy via the standard metric of root mean squared error (RMSE):  

𝑅𝑀𝑆𝐸𝜏,𝑡 =  √
∑ (𝑦𝑡

𝑜−𝐸(𝑝𝜏,𝑡(𝑦𝑡)))2𝑇
𝑡= 𝑇0

𝑇− 𝑇0+1
                  (24) 

where 𝐸(𝑝𝜏,𝑡(𝑦𝑡)) refers to the mean of the density nowcast, 𝑝𝜏,𝑡(𝑦𝑡), and 𝑇 −  𝑇0 + 1 is the size 

of the forecast evaluation sample.  

 

6.  Empirical Results Using Real-Time Data 

We perform a comprehensive investigation of nowcast combination methods with 

multiple mixed-frequency inflation nowcasting approaches to produce density and point 

nowcasts of U.S. inflation.  Overall, we examine three combination methods; five weighting 

schemes; four inflation measures (headline and core inflation, CPI and PCE inflation); three 

inflation rates (12-month trailing inflation, month-over-month inflation, and quarterly inflation); 

and multiple intraperiod points at which we generate our nowcasts (six distinct points for each 

monthly inflation reading, and seven distinct points for each quarterly inflation reading).  In 

short, we end up with a massive number of results.  

To keep the discussion of the results and the length of the paper manageable, we focus on 

a subset of results.  Specifically, our discussion focuses entirely on results corresponding to 

combinations derived from our novel flexible aggregation strategy.25  The main text also 

considers inflation nowcast accuracy for 12-month trailing inflation rates.26  We first briefly 

                                                           
25 The results based on this flexible strategy are equivalent to the ones based on the linear opinion pool, because in 

our empirical exercises the linear opinion pool always performs better than the log opinion pool and hence the 

flexible strategy always selects the linear opinion pool over the log opinion pool as the aggregation function.  
26 See the appendix for results for month-over-month inflation rates and quarterly annualized inflation rates. 
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examine the accuracy of the individual density nowcasts from one model in each of the three 

mixed-frequency model classes and then the accuracy of the stage 1 combinations.  We then 

compare results for grand combinations across all five weighting schemes, followed by a 

comparison of the accuracy of the grand combination constructed using the log-score weighting 

scheme with its three component densities (DMS, MIDAS, and DFM).  Finally, we examine the 

time-varying properties of the grand combination.   

 

6.1  Density Nowcasts from Mixed-Frequency Model Classes 

We first establish that density nowcasts obtained from a single specification within each 

of the three model classes are incorrectly calibrated with relatively few exceptions.  The exact 

specifications we consider for the single DMS model, the single MIDAS model, and the single 

DFM model follow the baseline models in each class in Knotek and Zaman (2017).   

Figure 1 plots the density nowcast PITs from these three mixed-frequency models for the 

four inflation measures, based on nowcasts made at two distinct points in time: using the 

available data through the end of the month preceding the target nowcast month (case 1), and 

using the available data as of day 22 of the target nowcast month (case 4).  We find these points 

to be broadly representative of our results without showing every case.  In general, the arrival of 

additional data during the target month very marginally improves the calibration of the density 

nowcasts, as is evident by comparing the proximity to uniformity in the top and bottom panels.  

Each of these three individual mixed-frequency models fails one or more of the necessary 

statistical tests of calibration fit for at least one of the inflation measures of interest.  For 

example, the DFM generates well-calibrated densities for CPI inflation (in cases 1 and 4) and 

PCE inflation (in case 4) but fails to do so for both core CPI and core PCE, as evidenced by 

notable departures from uniformity.  The DMS model has difficulties producing well-calibrated 

densities overall, although as more information accumulates for the target month, the calibration 

of the CPI density nowcasts produced from the DMS model improves significantly (e.g., case 4).  

The calibration of the MIDAS model’s CPI density nowcasts also improves considerably with 

the arrival of additional information; by contrast, the core PCE inflation density nowcasts are 

fairly well calibrated both early and late in the targeted month.  
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The requirement of correctly specified density nowcasts is a necessary condition.  So 

with these individual specifications generally failing this important requirement, we omit a 

discussion of relative accuracy performance.  In summary, the density nowcasts produced from a 

single model specification have difficulties capturing the true degree of uncertainty around the 

point nowcasts.  

We next consider the stage 1 combinations that produce density nowcasts within each 

class of mixed-frequency models.  Figure 2 plots the PITs from the combined density nowcasts 

from each model class.  The plots indicate some improvements in the calibration fit of the 

combinations compared with the respective individual specifications, especially for the DFM 

model class.  However, in some instances there is evidence of a slight deterioration in the 

calibration fit.  For example, the calibration fit of the combined density nowcasts from the 

MIDAS class for core PCE inflation in case 4 worsens compared with the single specification as 

shown in Figure 1.  This latter result highlights an important aspect of density combination, 

which is that if the candidate densities are all individually well calibrated, then their combination 

via the linear opinion pool may suffer calibration failure due to an increased variance (i.e., the 

combination overestimates uncertainty).  Fortunately, in our application, the density nowcasts for 

core PCE inflation from the 12 different MIDAS specifications are similar.  Therefore, the 

variance of the resulting combination does not increase enough to cause issues with the 

calibration fit; i.e., the disagreement component, disagreement about the mean, is small.  

In addition to some improvements in calibration fit, the relative accuracy of the stage 1 

combinations in terms of log scores is at least as accurate as, and often more accurate than,  the 

respective individual specifications (see Figure A3 in the appendix).  Taken together, these 

results suggest that there are gains from combining models within a model class, but there 

remain deficiencies in the calibration fit of these within-model-class combinations.   

 

6.2  Comparison across Grand Combinations 

We next explore whether the calibration fit of the density nowcasts can be improved 

further by combining the stage 1 combination density nowcasts from each of the three mixed-
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frequency model classes into a stage 2 “grand” combination.27  Figure 3 plots the PITs across 

various grand combinations based on the five weighting schemes listed above.  Immediately, the 

figure demonstrates that there are gains from combining densities across mixed-frequency model 

classes as evidenced by PITs that are now closer to the uniform distribution.  More precisely, 

combining densities via our two-stage procedure fixes the defective stage 1 combination density 

nowcasts.  A close inspection of the PIT histograms across all four inflation measures, and in 

both cases 1 and 4, reveals that all five grand combination density estimates are better calibrated 

compared with the density estimates from either the individual specifications or those formed by 

combining specifications only within a model class.  

Table 3 reports the formal statistical assessment of the calibration fit.  Among the five 

combinations we consider, we find that the combination based on the weighting scheme 

proposed by Ganics generates the best-calibrated densities, with the smallest number of 

rejections of the null hypothesis of correct calibration.28  The density estimates based on the log 

score and CMG weighting schemes are the next best combinations, with somewhat higher 

numbers of rejections of the null.  The ability of the Ganics weighting scheme to produce the 

best-calibrated densities makes intuitive sense, as his approach is based on direct optimization of 

the calibration fit of the candidate densities.   

Beyond calibration fit, we are also interested in relative accuracy.  Figure 4 assesses 

relative accuracy via the log score (panel a) and CRPS (panel b) metrics.  In general, the relative 

accuracy of the grand combinations improves as additional information arrives over the course of 

the target nowcast month, as is evident by steadily increasing average log scores and declining 

CRPS values.  The figure shows that the grand combination based on the Ganics weighting 

scheme generates inferior density nowcasts for CPI inflation and PCE inflation compared with 

both the log score and CMG weighting schemes.  In the case of core CPI inflation, all weighting 

scheme combinations perform comparably in terms of relative accuracies.  For core PCE 

inflation, the log score and Ganics weighting schemes are a touch worse than the other schemes 

when using log score as the relative accuracy metric, but the log score weights are just as 

                                                           
27 As a reminder, the same weighting scheme is used to form both the stage 1 and stage 2 combinations.  Figure A4 

in the appendix plots the nowcasts coming from the grand combination using real-time data at two representative 

dates (case 1 and case 4) for each month along with the actual outcomes. 
28 We omit the results for the equal weights scheme and the CRPS weighting scheme to economize on space in the 

table; in general, these weighting schemes were inferior to those shown, which is visible in Figure 3. 
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accurate as other weighting schemes when using CRPS to judge relative accuracy.  Given that 

the density nowcast estimates based on log score and CMG weighting schemes generate superior 

relative density nowcast accuracy and satisfactory calibration fit across inflation measures, we 

generally favor these schemes over the other weighting schemes.    

The patterns observed for the relative accuracy scores of the density nowcasts echo the 

point nowcast accuracy results reported in Knotek and Zaman (2017).  Knotek and Zaman 

(2017) document that a single version of the DMS model was substantially more accurate then 

competing MIDAS or DFM models in nowcasting CPI inflation and PCE inflation, while all 

three models were competitive in nowcasting core CPI inflation and core PCE inflation.  In terms 

of the relative accuracy of the density nowcasts, combination schemes such as log score that put 

more weight on the DMS model class generate more accurate density nowcasts for CPI inflation 

and PCE inflation, even though the calibration fit of the density nowcasts from the DMS model 

class is inferior to both the DFM and MIDAS model classes for these inflation measures.  

However, the mean of the density nowcasts—i.e., the point nowcasts—from the DMS model 

class is substantially more accurate than the means coming from either the DFM or the MIDAS 

model classes.  When evaluated using the log score metric, which is considered a broader 

measure of density accuracy (e.g., Clark, 2011), the DMS model class’s more accurate density 

nowcast mean more than offsets its slightly poorer calibration fit, resulting in a higher log score.  

In contrast, the Ganics weighting scheme, which focuses on calibration fit, assigns large 

weights to the DFM and MIDAS model classes for nowcasting CPI inflation and PCE inflation 

(see Figure A5 in the appendix for an example), because these two model classes produce better-

calibrated densities than the DMS model class.  The equal weights scheme and the CRPS-based 

weighting scheme also tend to put more weight on the DFM and MIDAS model classes.  

Because these two model classes produce substantially inferior point nowcasts compared with 

the DMS model class, the additional weight assigned to them results in lower log scores and 

higher CRPS values.   

 In addition to absolute and relative accuracy in a density sense, Figure 5 plots the RMSE 

of the implied point nowcasts corresponding to the grand combinations.  The results for point 

nowcast accuracy echo the results for density nowcast accuracy shown in Figure 4.  As 

information accumulates over the course of the month and we move from case 1 to case 6, the 
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accuracy of the point nowcasts steadily improves and the RMSEs steadily decline.  In the case of 

CPI inflation and PCE inflation, the combinations using log score weights produce lower RMSEs 

than the other weighting schemes.  For core CPI inflation and core PCE inflation, the differences 

in RMSEs across weighting schemes are very small and all combinations generally perform 

comparably.  

 

6.3  Comparing the Grand Combination with Its Underlying Component Densities   

We noted above that the grand combination helps improve the calibration of the density 

nowcasts, which is an important objective.  We also compare the accuracy of the grand 

combination to its three component densities—DMS, MIDAS, and DFM—when both the stage 1 

and stage 2 combinations are made using the log score weighting scheme to assess the extent to 

which relative accuracy and point accuracy gains are coming from combining densities across 

mixed-frequency model classes.  

Figure 6 plots the density nowcast relative accuracy comparison using the log score and 

CRPS metrics.  These figures indicate that the grand combination’s nowcasts are generally 

among the best performing, especially when assessed using the CRPS metric.  However, when 

evaluated using the log score metric, there are some instances for CPI inflation and PCE inflation 

where the DMS combination is significantly more accurate than the grand combination.  Indeed, 

the DMS combination alone is often quite competitive with the grand combination.  Only in the 

case of core PCE inflation with the log score metric does the MIDAS combination outperform 

the DMS combination.  

Figure 7 compares the point nowcast accuracy of the grand combination with the DMS 

combination and the single DMS specification from Knotek and Zaman (2017).29  The point 

nowcast accuracy of the grand combination is similar to the single DMS specification for CPI 

inflation, PCE inflation, and core CPI inflation.  In the case of core PCE inflation, the grand 

combination is more accurate than the single DMS specification, with notably lower RMSEs for 

cases 1 through 4; for cases 3 and 4, the accuracy gains are statistically significant at the 10% 

                                                           
29 We omit the MIDAS and DFM combinations because the DMS combination is substantially more accurate for 

CPI inflation and PCE inflation, and all combinations are competitive for core PCE inflation and core CPI inflation.  

The grand combination and DMS combination use the log score weighting scheme. 
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significance level.30  We view these results as desirable because it satisfies an important 

objective of our model-combination approach, which is that we want the point nowcasting 

accuracy of the combined density to be at least as good as the single DMS specification from 

Knotek and Zaman (2017).  

Given that the point accuracy of the DMS combination is similar to the accuracy of the 

grand combination for all four inflation measures, one could focus only on combinations from 

the DMS model class.  However, we view combining density nowcasts across the three mixed-

frequency model classes as more desirable for at least two reasons.  First, given the preference 

for well-calibrated densities, the grand combination comes closer to being correctly specified 

than the DMS combinations.  Second, while the DMS model class performed well over our 

evaluation sample, there is no guarantee that it will continue to do so going forward.  The grand 

combination based on a richer set of models provides better insurance in the face of future 

uncertainties about model specifications and will be more robust to structural instabilities.31 

 

6.4 Time-Varying Properties of the Grand Combination: Weights, Uncertainty, Skewness, 

and Kurtosis  

The blend of adaptive, possibly time-varying weights and the use of a flexible 

aggregation strategy could yield time-varying estimates of the variance (uncertainty), skewness 

(asymmetry), and kurtosis in the inflation density nowcasts.  Figure 8 plots the properties of the 

density nowcasts for the four inflation measures for cases 1 and 4 during the target nowcast 

month: the evolution of the weights applied to the stage 1 combinations in making the stage 2 

grand combination (top row); the evolution of the uncertainty (i.e., the volatility) around the 

point nowcasts, measured as the width of the 70% prediction intervals of the density nowcasts 

(second row); estimates of skewness (third row); and estimates of kurtosis (fourth row).32  

We note the following items from the figure.  First, in the case of CPI inflation and PCE 

inflation, the DMS model class quickly dominates the DFM and MIDAS model classes, 

                                                           
30 Statistical significance is based on the Diebold-Mariano and West test (with the truncation lag parameter h-1 for 

the HAC variance estimator), and two-sided standard normal critical values.    
31 Figures A6, A7, A8, and A9 in the appendix report similar results for month-over-month inflation and quarterly 

annualized inflation rates. 
32 Skewness=0 and kurtosis=3 for a variable that is normally distributed, so departures from these values suggest 

evidence for asymmetric distributions if skewness is different from zero or fat tails if kurtosis is greater than 3. 
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receiving much or nearly all of the weight for most of our evaluation sample.  However, it is 

worth pointing out that even if a single model class receives a nearly 100% weight in the stage 2 

combination, that model class is nevertheless a stage 1 combination of many individual model 

specifications.  These stage 1 combinations almost always include more than one model 

specification (see Figures A10, A11, and A12 in the appendix).  In the case of core CPI inflation 

and core PCE inflation, there is considerably more variation regarding which model class 

receives the most weight, although the MIDAS model class tended to be the best performing late 

in the sample and so received the most weight.  

Second, we highlight the fast model-switching behavior of the weighting scheme based 

on the log-score.  When the differences in the density accuracy among the candidate densities are 

in the moderate to large range, then the log score metric discriminates among densities rather 

sharply by heavily penalizing the poor performers.  This sharp distinction implies that the density 

nowcast assessed as the most accurate gets a very high score, which translates into a substantially 

higher average score and, in turn, significantly higher weight in the combination, possibly 

resulting in a fast-switching pattern.33  Recent research generally views this feature of fast 

model-switching as desirable, and so a framework that allows for it is viewed favorably (see 

Beckmann et al., 2020).     

Third, as information accumulates over the course of the target nowcast month, the 

precision of the density nowcasts improves, and there is a shift lower in the uncertainty estimates 

in case 4 compared with case 1.34 

Fourth, there are visible movements in the uncertainty estimates, more so in the case of 

headline inflation than core inflation.  It is also evident that the profiles of the uncertainty 

estimates differ across inflation measures and across monthly cases, reflecting different nowcast 

origins within a month for a given inflation measure.  Interestingly, the patterns seen in the case 

of quarterly inflation provide stronger evidence of shifts in uncertainty over time (see Figure A13 

in the appendix).  Moreover, the broader movements in the uncertainty estimates implied by our 

density nowcasts for quarterly inflation are similar to uncertainty estimates reported elsewhere in 

the literature using stochastic volatility models (e.g., Knotek, Zaman, and Clark, 2015). 

                                                           
33 Aastveit et al. (2014) document a similar characteristic for the log score weighting scheme in their real GDP 

nowcasting application. 
34 See the narrowing of the prediction intervals in case 4 compared with case 1 in Figure A4 in the appendix. 
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Fifth, there is evidence of both time-varying skewness and kurtosis in the density 

nowcasts.  There have been extended stretches in which skewness differed from zero and 

kurtosis differed from three, consistent with departures from Gaussianity, along with occasional 

spikes in both measures.35  Overall, the density nowcast estimates generated from our two-stage 

combination process featuring a flexible aggregation strategy with the log score weighting 

scheme can adapt in a time-varying manner to accommodate non-Gaussian features such as 

asymmetry and/or heavy tails and are doing an adequate job of capturing uncertainty around 

future inflation outcomes.36  

 

7.  Comparison with the Survey of Professional Forecasters  

Given the ability of their respondents to use a variety of high-frequency data sources in a 

flexible fashion, nowcasts coming from surveys of professional forecasters are a difficult 

benchmark to beat.  We test the nowcasting performance of our grand combination against the 

inflation nowcasts provided by the Survey of Professional Forecasters (SPF), in terms of both 

point nowcasting performance and density nowcasting performance.  In doing so, we match our 

model’s real-time information set to the survey dates from the SPF each quarter. 

For point nowcasting, we compare the median SPF response to the mean of the combined 

density nowcast coming from the grand combination using the log score weighting scheme and 

the flexible aggregation strategy.  For density nowcasting, we compare our grand combination 

with estimated survey density nowcasts formed using a normal distribution, whose mean is set 

equal to the median SPF point nowcast and whose variance is set to match the variance of the 

past historical errors of the SPF point nowcasts over a short rolling window.   

Estimates of survey density nowcasts based on historical errors have been shown to be a 

good benchmark, especially for inflation.37  The Federal Open Market Committee uses historical 

                                                           
35 Figure A14 in the appendix illustrates the stage 2 grand combination as of case 1 for nowcasting the target month 

of January 2001; the resulting CPI inflation and PCE inflation grand combination densities are noticeably fat tailed 

and asymmetric compared with the densities for core CPI inflation and core PCE inflation. 
36 Figures A15, A16, and A17 in the appendix plot the weights and higher-order moments when using the CMG, 

Ganics, and CRPS weighting schemes, respectively. 
37 Krüger, Clark, and Ravazzolo (2017) and Tallman and Zaman (2019) document competitive nowcasting 

performance, including the good calibration fit of the density nowcasts of inflation constructed through this simple 

procedure.  The procedure’s use of a short rolling window in computing the variance of the past historical errors is a 

simple and convenient way to incorporate the changing variance of the density estimates instead of explicitly 
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forecast errors to provide an estimate of the uncertainty surrounding the outlook in the Summary 

of Economic Projections (see Reifschneider and Tulip, 2019).  While the SPF does provide some 

density forecasts by combining individual respondents’ density forecasts, we favor the historical 

errors approach because Clements (2018) shows that the survey projection’s second moments are 

inferior to simple statistical models.  In addition, the SPF only reports fixed-event density 

forecasts for core PCE inflation and core CPI inflation, which limits their comparability to our 

results to the fourth quarter of each year. 

Table 4 reports the results from the out-of-sample nowcasting horse race between our 

grand combination using real-time data and the SPF for point and density nowcasts.  The 

evaluation period runs from 2000Q4 through 2015Q2 for CPI inflation, and 2007Q1 through 

2015Q2 for core CPI inflation, PCE inflation, and core PCE inflation.  

The point nowcasts implied by the grand combination are substantially more accurate 

(i.e., have lower RMSEs) than the SPF for both CPI inflation and PCE inflation, and the gains 

are statistically significant.  For these two inflation measures, the density nowcasts from the 

grand combination are substantially more accurate than the simple SPF-based benchmark density 

nowcasts, as indicated by significantly higher log scores.  

For core CPI inflation and core PCE inflation, both the point accuracy and the density 

accuracy of the grand combination are competitive with the SPF.  As noted above, there is only 

limited evidence of skewness and kurtosis in the predictive distributions for core inflation, 

suggesting that flexible density estimates are not far from the normality assumption embedded in 

the estimated SPF density.  In the case of core inflation, we see our framework’s ability to adapt 

in a dynamic fashion to produce an approximately normal distribution as a testament to the 

benefits of our flexible approach.   

  

8.  Conclusion 

We develop a flexible framework based on model combinations to produce density 

nowcasts for U.S. inflation.  By combining individual density nowcasts from three classes of 

parsimonious mixed-frequency models, this framework generates nowcasts at a trading-day 

                                                           
modeling stochastic volatility, a point also emphasized by Ganics, Rossi, and Sekhposyan (2018), who find support 

for this simple benchmark. 
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frequency and updates as information accumulates over the course of a month or a quarter.  We 

propose a novel flexible aggregation strategy to combine the density nowcasts both within and 

across model classes.  We complement this flexible aggregation strategy with an examination of 

a variety of dynamic model averaging approaches, where the weights used to combine the 

nowcasts can be updated based on learning from past performance.  An important feature of this 

proposed framework is its ability to accommodate non-Gaussian and time-varying properties of 

variance, skewness, and kurtosis in the density nowcast estimates.  These dynamic features are 

essential in improving the accuracy of density nowcasts for headline inflation.  

Our flexible framework allows us to incorporate a range of recent density combination 

methods proposed in the literature in a comprehensive empirical examination.  Overall, using 

high-frequency, real-time data over the period 2000-2015, we show that the grand combination 

from our approach can generate highly accurate density nowcasts, but the combination method 

matters for the accuracy of the combined density nowcasts.  Density combinations based on our 

novel flexible aggregation strategy using the log score weighting scheme, which relies on past 

predictive performance, or the “optimal” weighting scheme proposed by Conflitti, De Mol, and 

Giannone (2015) are among the best performing in terms of relative accuracy and are well 

calibrated.  The Ganics (2017) weighting scheme produces the best calibrated densities for 

headline inflation, but its relative accuracy is inferior to the log score and the Conflitti, De Mol, 

and Giannone (2015) weighting schemes.  In the case of core inflation, all combination methods 

perform comparably. 

In a horse race with the Survey of Professional Forecasters, the grand combination’s 

density nowcasts provide superior point and density nowcasts for CPI inflation and PCE 

inflation.  For core CPI inflation and core PCE inflation, our grand combination’s nowcasting 

performance is competitive with the SPF.  The ability of our proposed framework to generate 

highly accurate point and density nowcasts of inflation is a useful outcome for practitioners. 

Our empirical findings should serve as a guide to practitioners about the combination 

methods that may or may not work for nowcasting U.S. inflation.  Our study provides further 

evidence that, when it comes to density combinations, there is no single best procedure; rather, it 

is important to examine combination methods on a case-by-case basis. 
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Table 1: Model Space: Mixed-Frequency Model Classes and Specifications 
   Model Class Modeling Options Number of Models 

DMS Autoregressive (AR) Lags = [1, 2] 108 

 Estimation window core inflation = [24, 36] months  

 Estimation window headline inflation = [24, 36, 84] months  

 Estimation window oil-gasoline error correction = [60, 72, 84] months  

 Number of years to use for computing seasonal factors = [3, 5, 7] years  

MIDAS Estimation window = [5-year, 7-year, 10-year rolling, expanding] 12 

 Polynomial option = [Beta]  

 High-frequency data = [Daily only, weekly only, both daily and weekly]  

DFM Number of factors = 1 12 

 Number of lags = [1, 2, 3, 4, 5, 6]  

 Estimation window = [Expanding, 5-year rolling]  

Total  132 

Notes: DMS is deterministic model switching; MIDAS is mixed data sampling; and DFM is dynamic factor model.  

See the text and the appendix for details.  
 

 
Table 2: Representative Dates for Monthly Nowcasting Performance 

    

Case 

 

Date 

Information Set 

(Example: Nowcasting target month is January) 

Target Month 

Horizon 

1 Last day of the 

previous month 

December 31: Have CPI and PCE through November; high-frequency 

information through December 31 

CPI: h=2 

PCE: h=2 

2 Day 8 of the 

target month 

January 8: Have CPI and PCE through November; high-frequency 

information through the end of the first week of January, which includes 

weekly retail gasoline reading for the first week of January 

CPI: h=2 

PCE: h=2 

3 Day 15 of the 

target month 

January 15: Receive CPI for December and have PCE through 

November; high-frequency information through end of second week of 

January, which includes two weekly retail gasoline readings for January 

CPI: h=1 

PCE: h=2 

4 Day 22 of the 

target month 

January 22: Have CPI for December and PCE through November; high-

frequency information through end of third week of January, which 

includes three weekly retail gasoline readings for January 

CPI: h=1 

PCE: h=2 

5 Last day of the 

target month 

January 31: Have CPI for December and receive PCE for December; 

high-frequency information for all of January, which includes all four 

weekly retail gasoline readings for January 

CPI: h=1 

PCE: h=1 

6 Day 15 of the 

following month 

February 15: Receive CPI for January and have PCE through December; 

high-frequency information for all of January 

CPI: h=n/a 

PCE: h=1 
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Table 3: Calibration Diagnostics 
Nowcasting 

Case 

 

Berk. 

Chi- 

Sq. 

 

AD 

 

KS 

 

KL 

70% Cov. 

Rate 

CPI: Grand Combination Based on Log Score 

Case 1 0.80 0.05 0.02 0.35 0.26 60.67 

Case 2 0.23 0.98 0.42 0.91 0.74 72.47 

Case 3 0.50 0.38 0.74 0.81 0.79 69.66 

Case 4 0.00 0.33 0.36 0.50 0.38 77.53 

Case 5 0.01 0.05 0.44 0.18 0.09 76.97 

CPI: Grand Combination Based on CMG 

Case 1 0.14 0.92 0.63 0.95 0.99 70.22 

Case 2 0.00 0.28 0.36 0.20 0.50 74.16 

Case 3 0.05 0.28 0.37 0.52 0.56 76.40 

Case 4 0.01 0.14 0.37 0.17 0.37 77.53 

Case 5 0.00 0.03 0.07 0.13 0.07 80.90 

CPI: Grand Combination Based on Ganics 

Case 1 0.10 0.55 0.37 0.76 0.22 71.35 

Case 2 0.01 0.75 0.39 0.56 0.44 71.35 

Case 3 0.07 0.02 0.35 0.38 0.29 77.53 

Case 4  0.11 0.56 0.36 0.48 0.43 76.40 

Case 5 0.04 0.23 0.39 0.17 0.21 75.84 

Core CPI: Grand Combination Based on Log Score 

Case 1 0.32 0.02 0.42 0.30 0.20 65.73 

Case 2 0.17 0.22 0.43 0.22 0.30 61.80 

Case 3 0.52 0.41 0.36 0.46 0.43 64.61 

Case 4 0.39 0.38 0.35 0.43 0.46 65.17 

Case 5 0.33 0.28 0.37 0.37 0.47 65.73 

Core CPI: Grand Combination Based on CMG 

Case 1 0.02 0.70 0.42 0.24 0.53 67.42 

Case 2 0.01 0.46 0.09 0.16 0.42 67.98 

Case 3 0.41 0.72 0.36 0.44 0.52 65.17 

Case 4 0.38 0.43 0.35 0.60 0.53 66.29 

Case 5 0.35 0.60 0.35 0.58 0.53 66.85 

Core CPI: Grand Combination Based on Ganics 

Case 1 0.08 0.16 0.06 0.10 0.35 65.73 

Case 2 0.17 0.61 0.08 0.19 0.36 65.73 

Case 3 0.44 0.05 0.36 0.26 0.47 63.48 

Case 4  0.25 0.23 0.42 0.14 0.39 63.48 

Case 5 0.37 0.14 0.39 0.30 0.28 65.17 
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Table 3: Calibration Diagnostics (continued) 
Nowcasting 

Case 

 

Berk. 

Chi- 

Sq. 

 

AD 

 

KS 

 

KL 

70% Cov. 

Rate 

PCE: Grand Combination Based on Log Score 

Case 1 0.53 0.02 0.01 0.06 0.14 59.66 

Case 2 0.05 0.30 0.01 0.01 0.34 65.91 

Case 3 0.20 0.46 0.37 0.24 0.37 68.75 

Case 4 0.09 0.11 0.39 0.45 0.43 72.73 

Case 5 0.05 0.18 0.03 0.11 0.51 69.89 

Case 6 0.49 0.19 0.01 0.14 0.13 63.07 

PCE: Grand Combination Based on CMG 

Case 1 0.23 0.51 0.40 0.31 0.73 67.61 

Case 2 0.02 0.48 0.07 0.03 0.57 69.89 

Case 3 0.07 0.01 0.36 0.26 0.37 71.02 

Case 4 0.03 0.07 0.37 0.37 0.28 71.02 

Case 5 0.00 0.11 0.07 0.09 0.51 70.45 

Case 6 0.04 0.82 0.39 0.27 0.72 65.34 

PCE: Grand Combination Based on Ganics 

Case 1 0.39 0.56 0.45 0.54 0.94 68.18 

Case 2 0.05 0.74 0.42 0.21 0.68 69.89 

Case 3 0.93 0.33 0.50 0.67 0.54 67.05 

Case 4  0.91 0.76 0.57 0.47 0.50 67.05 

Case 5 0.13 0.47 0.41 0.52 0.29 73.86 

Case 6 0.07 0.63 0.36 0.68 0.71 65.34 

Core PCE: Grand Combination Based on Log Score 

Case 1 0.26 0.01 0.36 0.28 0.44 63.07 

Case 2 0.43 0.78 0.36 0.38 0.61 64.20 

Case 3 0.17 0.06 0.01 0.12 0.12 59.09 

Case 4 0.06 0.01 0.00 0.25 0.16 60.80 

Case 5 0.42 0.49 0.38 0.67 0.55 66.48 

Case 6 0.77 0.05 0.04 0.28 0.26 63.07 

Core PCE: Grand Combination Based on CMG 

Case 1 0.00 0.70 0.63 0.90 0.76 67.61 

Case 2 0.00 0.94 0.55 0.87 0.67 67.61 

Case 3 0.04 0.40 0.67 0.90 0.89 69.32 

Case 4 0.06 0.25 0.64 0.82 0.90 68.18 

Case 5 0.17 0.70 0.36 0.21 0.67 66.48 

Case 6 0.21 0.94 0.40 0.83 0.75 67.05 

Core PCE: Grand Combination Based on Ganics 

Case 1 0.00 0.64 0.44 0.83 0.57 67.05 

Case 2 0.00 0.68 0.51 0.79 0.79 67.05 

Case 3 0.52 0.70 0.35 0.71 0.63 65.34 

Case 4  0.46 0.88 0.36 0.71 0.49 64.77 

Case 5 0.97 0.88 0.37 0.80 0.73 69.32 

Case 6 0.54 0.51 0.36 0.83 0.70 64.20 

Notes: Entries except for those in the final column are p-values.  “Berk” is the  Berkowitz test.  “Chi-Sq” is the 

Pearson Chi-Squared test.  “AD” is the Anderson-Darling test.  “KS” is the Kolmogorov-Smirnov test.  “KL” is the 

Knüppel test.  Entries in bold indicate rejection of the null hypothesis of correctly calibrated density nowcasts at a 

5% significance level.  “70% Cov. Rate” shows the 70% empirical coverage rates. 
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Table 4: Nowcasting Comparison with the Survey of Professional Forecasters  
 

 

CPI Core CPI PCE Core PCE 

Point Nowcast Comparison     

Grand combination RMSE 1.040 0.569 0.793 0.525 

SPF (median) RMSE 1.429 0.577 1.089 0.504 

Ratio, avg. SPF MSE/Grand MSE 1.888 1.025 1.883 0.922 

GW p-values 0.010 0.881 0.002 0.617 

Density Nowcast Comparison 

Grand combination log score (Grand LS) -1.370 -0.811 -1.064 -0.735 

SPF log score (SPF LS) -1.913 -1.519 -1.572 -0.780 

Relative, SPF LS – Grand LS -0.543 -0.709 -0.508 -0.045 

DM type test p-values 0.000 0.185 0.000 0.525 

Notes: The grand combination uses real-time data available through the SPF survey date for each quarter.  The SPF 

density nowcasts are based on historical forecast errors; see the text for details.  The CPI exercise uses real-time data 

from 2000Q4 through 2015Q2.  The core CPI, PCE, and core PCE exercises use real-time data from 2007Q1 (the 

first available SPF estimate) through 2015Q2.  The DM type test reports the results of a test for equal predictive 

accuracy based on testing whether the constant term in the regression of the differences in the log score on the 

constant is statistically different from zero. 
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Figure 1: Comparison of PITs across Single Specifications of Mixed-Frequency Model Classes  
(a) Case 1 

 
(b) Case 4 

 
Notes: The figure plots histograms of the empirical distribution of the PITs for single specifications of the DMS, 

MIDAS, and DFM model classes (blue bars) and the uniform U(0,1) distribution (black lines), generated at either 

the last day of the month preceding the target nowcast month (case 1) or day 22 of the target nowcast month (case 

4).  The x-axis shows the decile bins and the y-axis shows the percentage of observations falling within each decile 

bin. The nowcast evaluation sample spans September 2000 through June 2015; we omit September 2001 and 

October 2001 for PCE inflation and core PCE inflation calculations.  
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Figure 2: Comparison of PITs across Stage 1 Combinations within Model Classes 
(a) Case 1 

 
(b) Case 4 

 
Notes: The figure plots histograms of the empirical distribution of the PITs for stage 1 combinations within the 

DMS, MIDAS, and DFM model classes (blue bars) and the uniform (0,1) distribution (black lines), generated at 

either the last day of the month preceding the target nowcast month (case 1) or day 22 of the target nowcast month 

(case 4).  The x-axis shows the decile bins and the y-axis shows the percentage of observations falling within each 

decile bin. The nowcast evaluation sample spans September 2000 through June 2015; we omit September 2001 and 

October 2001 for PCE inflation and core PCE inflation calculations.  
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Figure 3: Comparison of PITs across Grand Combinations 
(a) Case 1 

 
(b) Case 4 

 
Notes: The figure plots histograms of the empirical distribution of the PITs for stage 2 combinations across the 

DMS, MIDAS, and DFM model classes (blue bars) and the uniform (0,1) distribution (black lines), generated at 

either the last day of the month preceding the target nowcast month (case 1) or day 22 of the target nowcast month 

(case 4).  The x-axis shows the decile bins and the y-axis shows the percentage of observations falling within each 

decile bin. The nowcast evaluation sample spans September 2000 through June 2015; we omit September 2001 and 

October 2001 for PCE inflation and core PCE inflation calculations. 
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Figure 4: Density Performance Comparisons across Grand Combinations 
(a) Relative accuracy based on log score 

 
(b) Relative accuracy based on CRPS 

 
Notes: The top panel plots the average log score and the bottom panel plots the average CRPS for grand 

combinations based on log score, CRPS, equal, CMG, and Ganics weighting schemes.  The evaluation sample runs 

from September 2000 through June 2015; we omit September 2001 and October 2001 for PCE inflation and core 

PCE inflation calculations. 
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Figure 5: Point Nowcasting Performance across Grand Combinations 

 
Notes: The figure plots the RMSEs for grand combinations based on log score, CRPS, equal, CMG, and Ganics 

weighting schemes and using the flexible aggregation strategy.  The cases reflect the point in time when each 

nowcast was made relative to the target nowcast month; see Table 2.  The evaluation sample runs from September 

2000 through June 2015; we omit September 2001 and October 2001 for PCE inflation and core PCE inflation 

calculations. 
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Figure 6: Density Performance of Grand Combination vs. Its Components 
(a) Relative accuracy based on log score 

 
(b) Relative accuracy based on CRPS 

 
Notes: The top panel plots the average log score and the bottom panel plots the average CRPS for the grand 

combination based on the log score weighting scheme and combinations based on the DMS model class, MIDAS 

model class, and DFM model class, where each individual model class uses the log score weighting scheme. The 

evaluation sample runs from September 2000 through June 2015; we omit September 2001 and October 2001 for 

PCE inflation and core PCE inflation calculations. 
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Figure 7: Point Nowcasting Performance, Grand Combination vs. DMS 

 
Notes: The figure plots the RMSE for the grand combination based on log score and using the flexible aggregation 

strategy; the stage 1 combination from the DMS model class; and a single specification from the DMS model class 

based on Knotek and Zaman (2017).  The cases reflect the point in time when each nowcast was made relative to the 

target nowcast month; see Table 2.  The evaluation sample runs from September 2000 through June 2015; we omit 

September 2001 and October 2001 for PCE inflation and core PCE inflation calculations. 
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Figure 8: Weights and Higher-Order Moments  
(a) CPI inflation 

 
(b) Core CPI inflation 
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Figure 8: Weights and Higher-Order Moments (continued) 
(c) PCE inflation 

 
(d) Core PCE inflation 

 
Notes: The first row of each panel plots the evolution of the weights for the three model classes underlying the grand 

combination, based on the flexible aggregation strategy and log-score weighting scheme.  (Each model class is a 

combination of multiple model specifications.)  The second row plots estimates of dynamic uncertainty, defined as 

the width of the 70% prediction intervals. The last two rows plot time-varying estimates of skewness and kurtosis. 

The sample period spans September 2000 through June 2015. Supplementary Appendix to 

Real-Time Density Nowcasts of U.S. Inflation: A Model-Combination Approach* 

                                                           
* The views expressed herein are those of the authors and do not necessarily represent the views of the Federal 

Reserve Bank of Cleveland or the Federal Reserve System. 
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A.1.  Description of Mixed-Frequency Models and Simulation Procedures 

A.1.1.  MIDAS Model 

Following Knotek and Zaman (2017, KZ), a general representation of an ADL-MIDAS 

model with leads takes the following form,  

𝜋𝑡+ℎ =  𝛼(ℎ) +  ∑ 𝜒𝑗+1,(ℎ)
𝑃(𝑀)−1
𝐽=0  𝜋𝑡−𝑗 +  ∑ 𝛾𝑗+1,(ℎ)

𝑃(𝑀)−1
𝐽=0  𝑍𝑡−𝑗 +

 𝛽ℎ  ∑ 𝜔𝑃(𝐻𝐹)−𝑗
𝑃(𝐻𝐹)−1
𝐽=0 (𝜃(ℎ)

𝐻𝐹) 𝑋𝑃(𝐻𝐹)−𝑗,𝑡+1
𝐻𝐹 +  𝑒𝑡+ℎ                                (1) 

where Z refers to other monthly variables; P(M) refers to the number of lags of the monthly 

regressors (we set to 1); and P(HF) refers to the number of high-frequency observations, 

𝑋1,𝑡+1
𝐻𝐹 ,….., 𝑋𝑃(𝐻𝐹),𝑡+1

𝐻𝐹  in month t+1 (i.e., the target nowcast month).  The notation (h) indicates 

that the coefficients are independently estimated for each forecast horizon (h).  In nowcasting 

monthly inflation, h will range from 1 to 2, whereas in nowcasting quarterly inflation, h will 

range from 1 to 4.  An assumption of  ∑ 𝜔𝑃(𝐻𝐹)−𝑗
𝑃(𝐻𝐹)−1
𝐽=0 (𝜃(ℎ)

𝐻𝐹) = 1 helps identify 𝛽ℎ. 

 

Density construction: Drawing errors from the normal distribution 

Let T be the total number of observations (i.e., the length of the estimation window). 

1. For h=1,..,4 

2. Estimate the model specified in equation (1) using nonlinear least squares to obtain the 

parameter estimates �̂�(ℎ), �̂�(ℎ), 𝛾(ℎ), �̂�(ℎ)(𝜃(ℎ)) 

3. Based on the estimates in the previous step, compute the sequence of residuals �̂�𝑡+ℎ 

4. For 𝑑=1,….,𝐷 
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a. Sample 𝑒𝑡+ℎ
∗  from the empirical distribution of 𝑒𝑡+ℎ  ∼ 𝑁(0, 𝑣𝑎𝑟(𝑒𝑡+ℎ̈ )), where 𝑒𝑡+ℎ̈ =

 (
𝑇

𝑇−𝑘
)

0.5

�̂�𝑡+ℎ  and 𝑘 is the number of regressors in eq. (1). 

b. Generate a simulated series 𝜋𝑡+ℎ
∗   using 

𝜋𝑡+ℎ
∗ (𝑑)

=  �̂�(ℎ) + ∑ �̂�𝑗+1,(ℎ)
𝑃(𝑀)−1
𝐽=0  𝜋𝑡−𝑗 +  ∑ 𝛾𝑗+1,(ℎ)

𝑃(𝑀)−1
𝐽=0  𝑍𝑡−𝑗 +

 �̂�(ℎ) ∑ 𝜔𝑃(𝐻𝐹)−𝑗
𝑃(𝐻𝐹)−1
𝐽=0 (𝜃(ℎ)

𝐻𝐹) 𝑋𝑃(𝐻𝐹)−𝑗,𝑡+1
𝐻𝐹 +  𝑒𝑡+ℎ

∗     

c. REPEAT 

5. The empirical distribution {𝜋𝑡+ℎ
∗ }𝑑=1

𝐷  constitutes the estimate of the density nowcast 

corresponding to the forecast horizon, ℎ  

 

Note that, in step 4a above, the draws are obtained from a distribution of modified 

residuals because the variance of the modified residuals is a better estimate of the true variance 

of the least squares estimate of the error term 𝑒𝑡+ℎ in equation (1).  To further explain why this is 

the case, recall that the variance of the residuals �̂�𝑡+ℎ is the sum of the squared residuals divided 

by T, whereas the variance of the least squares estimate should be divided by T−k, where k is the 

number of regressors in the regression.  Therefore, the original series of residuals are rescaled to 

correct the variance (see Davidson and MacKinnon, 2006). 

This simple procedure accounts for shock uncertainty only; i.e., it does not account for 

the parameter uncertainty. However, in preliminary exercises, the difference in the density 

accuracy between this procedure and a bootstrapping procedure that also takes into account 

parameter uncertainty was very small. 

 

A.1.2.  DFM Model 

Our implementation of the mixed-frequency DFM follows Modugno (2013) and KZ.  

The dynamic factor model takes the general form: 

, ~ (0, )t t t ty Cf N = +          (2) 

where t refers to the trading-day frequency, yt is a vector of observations, C is a block diagonal 

matrix of factor loadings, εt is a vector of idiosyncratic components, and ft is a vector of latent 

common factors following VAR dynamics: 

1( ) , ~ (0, )t t t tBf A L f u u N Q−= + ,      (3) 
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where B and A(L) are matrices governing factor dynamics, some of which may be time-varying, 

and ut is a vector of residuals.   

With monthly, weekly, and daily data, [ , , ]'M W D

t t t ty y y y= , we have three corresponding 

factors, [ , , ]'M W D

t t t tf f f f= , each of dimension r×1.  The monthly factor(s) M

tf  and the weekly 

factor(s) W

tf  are a function of the daily factor(s) D

tf .  Thus equations (2) and (3) can be written 

as: 

0 0

0 0

0 0

M M M

t M t t

W W W

t W t t

D D D

t D t t

y C f

y C f

y C f







      
      

= +      
            

       (4) 

and 

1

1

1

1 0 1 0 0 0

0 1 1 0 0 0

0 0 1 0 0

M M M

t t t

W W W

t t t

D D D

t D t t

f f

f f

f A f u

−

−

−

     −    
        

− =  +        
                

     (5) 

The matrices 
MC , 

WC , and 
DC  are the loadings for the monthly, weekly, and daily variables.  

M

t  and W

t are time-varying coefficients: M

t is equal to zero the day after the release of the 

monthly data and is equal to one elsewhere; similarly, W

t is equal to zero the day after the 

release of the weekly data and is equal to one elsewhere.  

Assuming that the monthly variables and weekly variables in our system at any time t 

represent a stock (i.e., a snapshot), accordingly the monthly first difference (or growth rate) and 

weekly first difference (or growth rate) of those variables can be formed by summing up their 

respective daily first differences (or growth rates).   

To produce forecasts far into the future, the daily factors are forecast via the transition 

equation (5) and are translated to daily nowcasts and aggregated to weekly and monthly 

nowcasts via equation (4).  Following Modugno (2013), we estimate the model with the 

expectation-maximization (EM) algorithm as detailed in Bańbura and Modugno (2014).   

 

Density construction: Standard bootstrapping procedure 

Our procedure closely follows the factor model bootstrapping procedure detailed in Aastveit et 

al. (2014). 
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Let T be the number of observations (i.e., the length of the estimation window). 

1. Estimate the model specified in equations (2) and (3) to obtain parameter estimates �̂�(0), 

�̂�(0), �̂�(0), �̂�(0) , Σ̂(0), f̂ (0).  Let �̂� = �̂�(0), �̂� = �̂�(0), �̂� = �̂�(0), �̂� = �̂�(0), and Σ̂ = Σ̂(0). 

2. For 𝑑=1,….,𝐷, do the following 

a. Simulate draws 𝑢𝑡
∗ from the empirical distribution of 𝑢𝑡  ∼ 𝑁(0, �̂�) 

b. Generate bootstrap series 𝑓𝑡
∗ using �̂� 𝑓𝑡

∗ = �̂�(𝐿) 𝑓𝑡−1
∗ +  𝑢𝑡

∗   where 𝑢𝑡
∗ is obtained in the 

previous step 

c. Simulate draws 𝜀𝑡
∗ from the empirical distribution of 𝜀𝑡  ∼ 𝑁(0, Σ̂) 

d. Generate bootstrap series 𝑦𝑡
∗ using 𝑦𝑡

∗ = �̂� 𝑓𝑡
∗ +  𝜀𝑡

∗    where 𝜀𝑡
∗ and 𝑓𝑡

∗ are obtained in the 

previous two steps. 

e. Using 𝑦𝑡
∗ re-estimate the model in equations (2) and (3) to obtain an updated set of 

parameter and factor estimates, �̂�(𝑑), �̂�(𝑑), �̂�(𝑑) , Σ̂(𝑑), f̂ (𝑑). Set �̂� = �̂�(𝑑), �̂� = �̂�(𝑑), �̂� =

�̂�(𝑑), �̂� = �̂�(𝑑), and Σ̂ = Σ̂(𝑑) 

f. Based on the parameter and factor estimates obtained in the previous step construct 

forecasts of factors via equation (3), which are then aggregated up to produce nowcasts 

(and forecasts) for monthly inflation, 𝜋𝑡+ℎ
∗ (𝑑)

 via equation (2). 

g. REPEAT 

3. The empirical distribution {𝜋𝑡+ℎ
∗ }𝑑=1

𝐷  constitutes the estimate of the density nowcast 

corresponding to the forecast horizon, ℎ  

 

A.1.3.  DMS Model 

As discussed in the body of the paper, the DMS model is essentially a collection of 

univariate and multivariate regressions applied to disaggregate components and aggregate 

inflation.  To appropriately account for uncertainty, we devise two separate bootstrapping 

algorithms for univariate and multivariate formulations.  The difference between these two 

algorithms is only slight but it helps improve the density accuracy of monthly inflation.   

We first describe the general-purpose bootstrap algorithm for the multivariate regression 

followed by the description for the univariate regression. 

A general representation for a multivariate regression can be written as follows, 

𝑦𝑡 =   𝛽0 +  𝛼𝑋𝑡 + 𝜀𝑡       𝜀𝑡  ∼ 𝑁(0, 𝜎2)                 (6) 
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Assume that �̂�0, �̂�, �̂�2 are the OLS estimates obtained through the estimation of equation (6) over 

the sample 1,…,T.  𝜀�̂� are the least squares residuals with mean 0 and variance �̂�2. 

 

Density construction, algorithm 1: Wild block bootstrap for density forecasts 

For 𝑑=1,….,𝐷 do the following. 

1. Construct a transformed series of residuals {𝜀�̈�}𝑡=1
𝑇  from the OLS residuals {𝜀�̂�}𝑡=1

𝑇 , where 

𝜀�̈� = ℎ(𝜀�̂�)𝑢𝑡 and 𝑢𝑡 ∼ 𝑁(0,1).  ℎ is a transformation function that modifies the original least 

squares residuals to correct them for possible heteroscedasticity.  Various choices for ℎ have 

been suggested in the literature.  Following Chernick and LaBudde (2011, Ch. 6, Section 

6.6), we set  

  ℎ(𝜀�̂�) =  
�̂�𝑡

1−𝐻
    where 𝐻 = 𝑋(𝑋′𝑋)−1𝑋′ 

We also tried ℎ(𝜀�̂�) =  
�̂�𝑡

(1−𝐻)1/2, another widely used transformation.  

2. Sampling from 𝜀̈: 

a. To correct for possible serial correlation (following Aastveit et al., 2014), we draw blocks 

of consecutive errors from 𝜀̈.  We define the block size, 𝑏𝑠𝑖𝑧𝑒 = 4; it is common to set it 

greater than or equal to the forecast horizon; T is the number of  

observations; and 𝑏𝑛𝑢𝑚𝑏𝑒𝑟 = 𝑐𝑒𝑖𝑙(
𝑇

𝑏𝑠𝑖𝑧𝑒
), is an integer that denotes the number of non-

overlapping blocks of consecutive errors. 

b. For 𝑙=1,…,𝑏𝑠𝑖𝑧𝑒 and j=1,…,𝑏𝑛𝑢𝑚𝑏𝑒𝑟 construct the bootstrap sample for 𝑦∗ 

𝑦(𝑗−1)𝑏𝑠𝑖𝑧𝑒+𝑙
∗ =   �̂�0 +  �̂�𝑋(𝑗−1)𝑏𝑠𝑖𝑧𝑒+𝑙 +  𝜀(𝑗−1)𝑏𝑠𝑖𝑧𝑒+𝑙

∗  

where 𝜀(𝑗−1)𝑏𝑠𝑖𝑧𝑒+𝑙
∗ =  𝜀(̈𝑗−1)𝑏𝑠𝑖𝑧𝑒+𝑙  ⋅  𝛿𝑗, and 𝛿𝑗 is set as a Rademacher variable, following 

Davidson and Flachaire (2008) and Aastveit et al (2014): 

𝛿𝑗 = {
+1, 𝑤𝑖𝑡ℎ  𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦  0.5
−1, 𝑤𝑖𝑡ℎ  𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦  0.5

 

We also experimented with 𝛿𝑗  ~ 𝑁(0,1), but doing so slightly worsened the accuracy of 

the density forecasts. 

3. Based on the bootstrap sample 𝑦∗ (constructed in the previous step), re-estimate the model in 

equation (6) to obtain updated estimates �̂�0
(𝑑)

, �̂�(𝑑), �̂�2(𝑑)
. 
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4. Use �̂�0
(𝑑)

 and �̂�(𝑑) in equation (6) to generate iterative forecasts, �̂�𝑡+ℎ
(𝑑)

 up to h periods ahead. 

(We also experimented with a modified step 4: when generating iterative forecasts �̂�𝑡+ℎ
(𝑑)

 we 

drew from 𝜀∗~ 𝑁(0, 𝑣𝑎𝑟(𝜀∗)) for each h.  This alternative made no difference to the overall 

results.) 

5. REPEAT 

6. The empirical distribution of {�̂�𝑡+ℎ}𝑑=1
𝐷  constitutes our estimate of the h-step-ahead density. 

 

Next, we describe the algorithm that we apply to the univariate AR regressions.  A 

general representation for a univariate AR regression is: 

 𝑦𝑡 =   𝛽0 +  ∑ 𝛼𝑗
𝑃
𝑗=1 𝑦𝑡−𝑗 +  𝜀𝑡       𝜀𝑡  ∼ 𝑁(0, 𝜎2)                (7) 

Assume that �̂�0, [�̂�𝑗]
𝑗=1

𝑃
, �̂�2 are the OLS estimates obtained through the estimation of equation 

(7) over the sample consisting of 1,…,T observations.  𝜀�̂� are the least squares residuals with 

mean 0 and variance �̂�2. 

 

Density construction, algorithm 2: Parametric bootstrap for density forecasts 

For 𝑑=1,….,𝐷 do the following. 

1. Construct a transformed series of residuals {𝜀�̈�}𝑡=1
𝑇  from the residuals {𝜀�̂�}𝑡=1

𝑇 , where 𝜀�̈� =

 (
𝑇

𝑇−𝑘
)

0.5

𝜀�̂� and 𝑘 is the number of regressors, in this case 𝑘 = 𝑃 + 1; P is the number of lags 

of the dependent variable.  We also experimented with 𝜀�̈� = ℎ(𝜀�̂�)𝑢𝑡 and 𝑢𝑡  ∼ 𝑁(0,1) but 

this produced inferior nowcasts. 

2. Sample a sequence of {𝜀∗}𝑡=1
𝑇   from 𝜀̈ ~ 𝑁(0, 𝑣𝑎𝑟(𝜀̈)) and then construct a bootstrap sample 

of {𝑦∗}𝑡=1
𝑇  using 

𝑦𝑡
∗ =   �̂�0 +  ∑ �̂�𝑗

𝑃

𝑗=1

𝑦𝑡−𝑗
∗ + 𝜀𝑡

∗ 

3. Based on the bootstrap sample 𝑦∗ re-estimate the model in equation (7) to obtain updated 

estimates �̂�0
(𝑑)

, [�̂�𝑗
(𝑑)]

𝑗=1

𝑃
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4. Use �̂�0
(𝑑)

, [�̂�𝑗
(𝑑)]

𝑗=1

𝑃
 in equation (7) to iteratively generate forecasts, �̂�𝑡+ℎ

(𝑑)
 up to h periods 

ahead.  (We also experimented with a modified step 4: when generating iterative forecasts 

�̂�𝑡+ℎ
(𝑑)

 we draw from 𝜀̈ ~ 𝑁(0, 𝑣𝑎𝑟(𝜀̈))  for each h.  This alternative made no difference to the 

overall results.) 

5. REPEAT 

6. The empirical distribution of {�̂�𝑡+ℎ}𝑑=1
𝐷  constitutes our estimate of the h-step-ahead density. 

             

Using the same notation as in KZ, the general representation of the DMS model for 

monthly headline (or core) inflation is 

𝐴𝑠(𝑡) 𝒁𝒕 =  𝐵𝑠(𝑡) +  𝐶𝑠(𝑡)𝑿𝒕 + ∑ 𝐷𝑗,𝑠(𝑡)𝒁𝒕−𝒋
𝐽
𝑗=1 +  𝜀𝑠(𝑡)                              (8) 

where Zt is an 1n  vector of aggregates, Xt is an 1m  vector of disaggregates that are 

informative over Zt, and ( ) ~ ( , )s t Nε 0 Σ .  The coefficient matrices A, B, C, and Dj are n n , 

1,n  n m , and n n , respectively, and are allowed to vary over time depending on the 

available information set, denoted s(t); in particular, C and Dj measure the weights put on the 

disaggregates and lagged aggregates, respectively.   

 

Nowcasting core inflation 

 Let 
Core CPI Core PCE[ , ]'t t t =Z   and 

t =X 0  in equation (8).  We specify two possible 

regression specifications for core inflation.  The first one is a univariate AR, and the second is a 

bridge equation (i.e., multivariate regression), which regresses core CPI on core PCE and a 

constant.  Conditional on the available information, equation (8) reduces to either a univariate 

AR or a combination of a univariate AR and bridge equation. 

Univariate AR: 𝜋𝑡
𝐶𝑜𝑟𝑒 =   𝛽0 +  ∑ 𝛼𝑗

𝑃
𝑗=1 𝜋𝑡−𝑗

𝐶𝑜𝑟𝑒 +  𝜀𝑡.   

Bridge equation: 𝜋𝑡
𝐶𝑜𝑟𝑒𝑃𝐶𝐸 =   𝛾0 +  𝜃 𝜋𝑡

𝐶𝑜𝑟𝑒𝐶𝑃𝐼 +  𝑢𝑡 . 

In cases where we have an additional monthly release of core CPI compared with core 

PCE, and only core PCE remains to be nowcasted: (1) The forecasts of core CPI are produced 

using a univariate AR, and algorithm 2 is used to produce density forecasts.  (2) The nowcast of 

core PCE is produced using a bridge regression.  The forecasts up to h steps ahead are produced 

using a univariate regression that treats the nowcast from a bridge regression as an initial value.  
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To produce density estimates (nowcasts and forecasts), algorithm 2 is used.  In all other cases, 

both core CPI and core PCE are nowcasted (and forecasted) using a univariate AR model.  The 

density estimates are computed based on algorithm 2. 

 

Nowcasting food inflation 

Nowcasts for food inflation are produced and used to nowcast headline inflation in all 

cases except: (1) when we are unable to produce a nowcast for gasoline inflation, and (2) when 

we have an additional reading for PCE inflation (𝜋𝑃𝐶𝐸) compared to CPI inflation (𝜋𝐶𝑃𝐼).  

Similar to core PCE, we adopt a parsimonious approach to produce nowcasts of food inflation by 

simply estimating a univariate AR, 

𝜋𝑡
𝑓𝑜𝑜𝑑

=   𝛽0 +  ∑ 𝛼𝑗

𝑃

𝑗=1

𝜋𝑡−𝑗
𝑓𝑜𝑜𝑑

+ 𝜀𝑡 

Density nowcasts (and forecasts) are produced using algorithm 2. 

 

Nowcasting gasoline inflation 

Following KZ, we generate nowcasts (and forecasts) for gasoline inflation based on the 

availability of weekly gasoline prices and daily oil prices.  If weekly gasoline prices are available 

in the current month, these form the basis for that month’s gasoline inflation nowcast.  We use a 

daily random walk in oil prices to extend (i.e., forecast) the oil price series by one additional 

month.  If oil price data or a forecast for oil prices is available for a month but gasoline prices are 

not available from within that month, then we produce nowcasts or forecasts for gasoline 

inflation (�̂�𝑔𝑎𝑠𝑜𝑙𝑖𝑛𝑒) via a two-stage regression procedure (see KZ for details).  In the first stage, 

a longer-run relationship between monthly gasoline prices and monthly oil prices is assumed via 

the following regression: 

Gasoline (NSA) Oil

1 1 1, 1t t tP P e − − −= + +        (9) 

Denote �̃�𝑡−1
𝐺𝑎𝑠𝑜𝑙𝑖𝑛𝑒(𝑁𝑆𝐴)

 as the fitted monthly gasoline prices obtained by estimating equation (9).  

In the second stage, we estimate an error correction model that uses the lagged gap between 

gasoline prices and their predicted (longer-run) values obtained in the first stage via the 

following regression: 
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( )Gasoline (NSA) Oil Gasoline (NSA) Gasoline (NSA)

1 1 2 2 2, 1t t t t tP b P c P P e− − − − − =  + − +          (10) 

Using the estimated coefficients in equations (9) and (10) and iterating forward equations (9) and 

(10) we generate �̂�𝑡−1+ℎ
𝐺𝑎𝑠𝑜𝑙𝑖𝑛𝑒(𝑁𝑆𝐴)

 and Δ�̂�𝑡−1+ℎ
𝐺𝑎𝑠𝑜𝑙𝑖𝑛𝑒(𝑁𝑆𝐴)

 and in turn estimates of �̂�𝑡−1+ℎ
𝐺𝑎𝑠𝑜𝑙𝑖𝑛𝑒(𝑁𝑆𝐴)

.  The 

estimates are seasonally adjusted to produce �̂�𝑡−1+ℎ
𝐺𝑎𝑠𝑜𝑙𝑖𝑛𝑒.  The density forecasts are produced by 

applying algorithm 1 sequentially to equations (9) and (10).  For each simulation d, 

�̂�𝑡−1+ℎ
𝐺𝑎𝑠𝑜𝑙𝑖𝑛𝑒(𝑁𝑆𝐴),𝑑

 is seasonally adjusted to obtain the corresponding �̂�𝑡−1+ℎ
𝐺𝑎𝑠𝑜𝑙𝑖𝑛𝑒,𝑑

. 

 

Nowcasting headline inflation 

 Let 
CPI PCE[ , ]'t t t =Z  and Core CPI Core PCE Food Gasoline, , , 't t t t t    =  X .  In cases where we 

have an additional release of 𝜋𝑡
𝐶𝑃𝐼 , equation (8) reduces to a bridge equation for 𝜋𝑡

𝑃𝐶𝐸  and a 

univariate AR for 𝜋𝑡
𝐶𝑃𝐼. 

Univariate AR: 𝜋𝑡
𝐶𝑃𝐼 =   𝛽0 +  ∑ 𝛼𝑗

𝑃
𝑗=1 𝜋𝑡−𝑗

𝐶𝑃𝐼 + 𝜀𝑡.   

Bridge equation: 𝜋𝑡
𝑃𝐶𝐸 =   𝛾0 +  𝜃 𝜋𝑡

𝐶𝑃𝐼 +  𝑢𝑡. 

 Density estimates are constructed using algorithm 2.  In cases where we have nowcasts of 

�̂�𝑡
𝐺𝑎𝑠𝑜𝑙𝑖𝑛𝑒, equation (8) reduces to a multivariate regression, 

𝜋𝑡
𝐶𝑃𝐼 =  𝑏1 + 𝑐11𝜋𝑡

𝐶𝑜𝑟𝑒𝐶𝑃𝐼 + 𝑐13𝜋𝑡
𝐹𝑜𝑜𝑑 +  𝑐14𝜋𝑡

𝐺𝑎𝑠𝑜𝑙𝑖𝑛𝑒 +    𝑒𝑡
𝐶𝑃𝐼        (11) 

𝜋𝑡
𝑃𝐶𝐸 =  𝑏2 + 𝑐22𝜋𝑡

𝐶𝑜𝑟𝑒𝑃𝐶𝐸 +  𝑐23𝜋𝑡
𝐹𝑜𝑜𝑑 +  𝑐24𝜋𝑡

𝐺𝑎𝑠𝑜𝑙𝑖𝑛𝑒 +  𝑒𝑡
𝑃𝐶𝐸          (12) 

The density nowcasts (and forecasts) for CPI and PCE inflation are produced by separately 

applying algorithm 1 to equations (11) and (12).  In very few cases, where we lack estimates of 

�̂�𝑡
𝐺𝑎𝑠𝑜𝑙𝑖𝑛𝑒 and do not have an additional reading for 𝜋𝑡

𝐶𝑃𝐼 , equation (8) reduces to univariate AR, 

𝜋𝑡
𝐶𝑃𝐼 =   𝛽1 +  ∑ 𝛼𝑗

𝐶𝑃𝐼𝑃
𝑗=1 𝜋𝑡−𝑗

𝐶𝑃𝐼 +  𝜀𝑡
𝐶𝑃𝐼          (13) 

𝜋𝑡
𝑃𝐶𝐸 =   𝛽2 +  ∑ 𝛼𝑗

𝑃𝐶𝐸𝑃
𝑗=1 𝜋𝑡−𝑗

𝑃𝐶𝐸 +  𝜀𝑡
𝑃𝐶𝐸       (14) 

The density nowcasts (and forecasts) are generated by separately applying algorithm 2 on 

equations (13) and (14).  

In all of our simulation procedures, D=500.  Early experimentation suggested that we 

would normally obtain similar results if we instead set D=1000. 

 

A.2.  Mechanics of Density Combination and Graphical illustration 
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Assume at time t, we have 𝑖 = 1, … , 𝑀 (potentially different) empirical distributions 

𝑓𝑖,𝑡(𝑦𝑡) for a variable 𝑦𝑡.  We wish to combine them using a given set of 𝑀 weights, 𝑤𝑖,𝑡 .  

Step 1: Looking across all the 𝑀 empirical distributions, 𝑓𝑖,𝑡(𝑦𝑡), determine the (global) 

minimum value and (global) maximum value of 𝑦𝑡.  Denote 𝑥𝑡
𝑚𝑖𝑛 as the minimum value and 

𝑥𝑡
𝑚𝑎𝑥 as the maximum value. 

Step 2: Define a grid 𝑥𝑡  ∈  {𝑥𝑡
𝑚𝑖𝑛, … , 𝑥𝑡

𝑚𝑎𝑥} of S equally spaced intervals such that 

𝑥𝑘−1 <  𝑥𝑘.  

Step 3: Transform each of the 𝑖 = 1, … , 𝑀 empirical distributions 𝑓𝑖,𝑡(𝑦𝑡) to a probability 

density function (pdf), 𝑝𝑖,𝑡(𝑦𝑡) using the grid 𝑥𝑡 as the domain.  The Gaussian kernel function 

(Matlab: ksdensity function) is applied to construct a smoothed 𝑝𝑖,𝑡(𝑦𝑡).  Using the same grid 𝑥𝑡 

to construct each of the 𝑀 pdfs will guarantee that all the pdfs that are to be combined together at 

time t have the same domain; that is, they are all positioned over the same grid. 

Step 4: With all pdfs positioned over the same domain (grid), the combination can be 

achieved by simply adding up the 𝑀 different densities using the corresponding weights 𝑤𝑖,𝑡 (for 

linear combination) or raised to a power of 𝑤𝑖,𝑡 for a log pool combination.  The combined 

density 𝑔𝑡(𝑦𝑡) will also be positioned over the same grid (domain) 𝑥𝑡 as the 𝑀 individual 

densities.  

We set S=500.  Early experimentation suggested that the results were very similar if we 

set S=1000. 

Note that our procedure dynamically adjusts the grid 𝑥𝑡 at each time t.  Alternatively, we 

could just set it to a predefined interval but then the interval has to be wide enough to encompass 

all the individual empirical distributions for all t=1,…,T (i.e., over the evaluation sample).  Given 

the breadth of our analysis, including the number of variables considered and both monthly and 

quarterly rates, having a grid that adjusts dynamically was more efficient for our application. 

In implementing our algorithm, we have benefitted from and are grateful for the 

PROFOR Matlab toolbox (developed by researchers at the Norges Bank, Bank of England, and 

Warwick Business School).  We have modified some of the functions of the toolbox to fit our 

needs.  
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A.3.  Comparing Properties of Grand Combinations across Weighting Schemes 

Figure 8 in the body of the paper shows the weights and higher-order moments from 

using the log score weighting scheme to generate the stage 1 and stage 2 combinations.  Figures 

A15, A16, and A17 show the weights and higher-order moments from the CMG, Ganics, and 

CRPS weighting schemes, respectively.  We summarize six key results from this comparison.  

First, for CPI inflation and PCE inflation, the DMS combination gets the highest weight 

in all weighting schemes with the exception of Ganics.  Furthermore, the DMS maintains its 

ranking with incoming information over the course of the month.  

Second, the CMG and Ganics grand combinations for CPI inflation and PCE inflation 

provide stronger evidence of both kurtosis and skewness than the combination based on log score 

weights.  This finding is associated with the grand combination being composed of more diverse 

components in these cases; that is, the DMS combination, the DFM combination, and the 

MIDAS combination are all assigned nonzero weights in the grand combination.  Different 

weighting schemes can lead to combinations with very different compositions, as is evident by 

very different profiles of the weights assigned to the three model classes over time.  In general, 

the greater the diversity in the composition of the grand combination, the greater is the evidence 

of skewness and kurtosis.38  But greater flexibility in terms of accommodating skewness and 

kurtosis does not necessarily translate into improved accuracy.  We say this because for CPI 

inflation the grand combination based on the log-score weighting scheme is more accurate than 

grand combinations based on other schemes, yet it displays less evidence of skewness and 

kurtosis on average compared with other grand combinations.  This improved accuracy is mainly 

coming from the significantly more accurate mean of the density nowcast constructed from the 

log-score scheme, which puts high weight on the stage 1 DMS combination, compared with 

grand combinations based on other weighting schemes.   

Third, in the case of core inflation, the patterns observed in the properties of the grand 

combination are generally comparable across the various weighting schemes, even though the 

                                                           
38 We highlight a result in regard to grand combinations for CPI inflation (case 4) produced using the log score 

weighting scheme  (see Figure 8) and the CMG weighting scheme (Figure A15).  Both schemes assign a weight of 

100% to DMS at least in the last few years of the evaluation sample, yet the profiles of the kurtosis property of the 

grand combinations across the two schemes are very different for this period.  This finding arises in part because the 

underlying composition of the two respective stage 1 DMS combinations is quite different; see Figure A18. 
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weights assigned to the densities of the three modeling classes differ.  This result stems from the 

fact that the estimates of density nowcasts for core inflation are generally similar across the 

different modeling classes; so irrespective of the approach used to combine the component 

density nowcasts, the resulting estimates of the combined density nowcasts are similar.  This 

latter pattern also explains the comparable accuracy results for core inflation shown in Figures 4 

and 5 (especially in the case of core CPI).  Relatedly, the weight profiles across different 

weighting schemes (for core inflation) indicate a high incidence of fast switching across the three 

combinations.  The evidence of time-varying switching across density combinations highlights 

the importance of combining density estimates from a range of models to circumvent the 

instability issues of using a single model.  

Fourth, the CRPS weighting scheme assigns positive weights to the three combinations 

across all inflation measures and at all representative dates (shown for cases 1 and 4), reflecting 

the generous assessment of the CRPS metric. In the case of core inflation, the weights are pretty 

evenly distributed across the DMS, DFM, and MIDAS combinations.  

Fifth, in our application, the two optimal combination weighting schemes (CMG and 

Ganics) yield weight profiles that are remarkably different, especially in the case of CPI inflation 

and PCE inflation. However, the different profiles are not unexpected, given the earlier results 

that showed MIDAS and DFM combinations producing well-calibrated densities compared with 

DMS, which tends to do quite well in relative accuracy scoring.  The weights produced from the 

Ganics approach display quite a bit of variability early in the sample.  This variability is also 

present to a degree in the results reported in Ganics (2017) using industrial production data.  
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Figure A1: Illustration of Combining Densities with Linear and Log Opinion Pools  

 
Notes: A simple example (motivated by Kascha and Ravazzolo, 2010) on combining two densities with very 

different mean and variances via two different functional forms. 
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Figure A2: Example Stage 1 DMS Combination 
Month-over-month inflation (%) 

 
Notes: Single specification density nowcasts (thin lines) underlying the stage 1 DMS combination, linear pool 

nowcasts (thick red lines), and log pool nowcasts (thick green lines) for case 1 for the month of September 2000.    
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Figure A3: Comparisons between Single Specifications vs. Stage 1 Combinations 

 
Notes: Average log scores at different nowcast origins for single specifications and stage 1 combinations within 

model classes.  The evaluation sample is September 2000 through June 2015.  We exclude September 2001 and 

October 2001 from the average log score calculations for PCE inflation and core PCE inflation. 
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 Figure A4: Real-Time Density Nowcasts 

(a) CPI inflation 

 
(b) Core CPI inflation 
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Figure A4: Real-Time Density Nowcasts (continued) 
(c) PCE inflation 

 
(d) Core PCE inflation 

 
Notes: The figure shows the out-of-sample nowcasts generated using real-time data from the grand combination 

with the log score weighting scheme and the flexible aggregation strategy at two different points in each month 

(case 1 and case 4) for the 12-month trailing inflation rate.  The shaded areas represent 70% and 90% prediction 

intervals.  The sample period spans September 2000 through June 2015.    
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Figure A5: Weights Underlying Grand Combination based on Ganics Weighting Scheme 

 
Notes: The figure plots the evolution of the weights applied to each of the stage 1 density combinations from the 

DMS, MIDAS, and DFM model classes to form the stage 2 combination, based on nowcasts generated for monthly 

(year-over-year) inflation at case 5 for nowcasting CPI inflation. The sample period spans September 2000 through 

June 2015.    
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Figure A6: Density Performance of Grand Combination vs. Its Components: Month-Over-Month 

Inflation 
(a) Relative accuracy based on log score 

 
(b) Relative accuracy based on CRPS 

 
Notes: The top panel plots the average log score and the bottom panel plots the average CRPS for the grand 

combination based on the log score weighting scheme and combinations based on the DMS model class, MIDAS 

model class, and DFM model class, where each individual model class uses the log score weighting scheme. The 

evaluation sample runs from September 2000 through June 2015; we omit September 2001 and October 2001 for 

PCE inflation and core PCE inflation calculations.  
  



67 

 

Figure A7: Point Nowcasting Performance, Grand Combination vs. DMS: Month-Over-Month 

Inflation 

 
Notes: The figure plots the RMSE for the grand combination based on log score and using the flexible aggregation 

strategy; the stage 1 combination from the DMS model class; and a single specification from the DMS model class 

based on Knotek and Zaman (2017).  The cases reflect the point in time when each nowcast was made relative to the 

target nowcast month; see Table 2.  The evaluation sample runs from September 2000 through June 2015; we omit 

September 2001 and October 2001 for PCE inflation and core PCE inflation calculations.  
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Figure A8: Density Performance of Grand Combination vs. Its Components: Quarterly Inflation  

 
Notes: Average log score for the grand combination based on the log score weighting scheme and combinations 

based on the DMS model class, MIDAS model class, and DFM model class, where each individual model class uses 

the log score weighting scheme. The evaluation sample runs from 2000Q4 through 2015Q2; we omit 2001Q3 and 

2001Q4 for PCE inflation and core PCE inflation calculations. 
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Figure A9: Point Nowcasting Performance, Grand Combination vs. Other Combinations and 

Single DMS Specification: Quarterly Inflation 

 
Notes: The figure plots the RMSE for the grand combination based on log score and using the flexible aggregation 

strategy; the stage 1 combinations from the DMS model class, DFM model class, and MIDAS model class; and a 

single specification from the DMS model class based on Knotek and Zaman (2017).  The cases reflect the point in 

time when each nowcast was made relative to the target nowcast quarter; see Table 2.  The evaluation sample runs 

from 2000Q4 through 2015Q2; we omit 2001Q3 and 2001Q4 for PCE inflation and core PCE inflation calculations. 
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Figure A10: Weights for Stage 1 DMS Combinations, Log Score Weighting Scheme 

 

 
Notes: The figure plots the evolution of the weights for underlying individual candidate densities for the stage 1 

DMS combination at case 4.  Each color shade represents a particular individual candidate density.  There are 108 

candidate densities.  The sample period spans September 2000 through June 2015.    
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Figure A11: Weights for Stage 1 DFM Combinations, Log Score Weighting Scheme 

 

 
Notes: The figure plots the evolution of the weights for of underlying individual candidate densities for the stage 1 

DFM combination at case 4.  Each color shade represents a particular individual candidate density.  There are 12 

candidate densities.  The sample period spans September 2000 through June 2015.    
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Figure A12: Weights for Stage 1 MIDAS Combinations, Log Score Weighting Scheme  

 

 
Notes: The figure plots the evolution of the weights for underlying individual candidate densities for the stage 1 

MIDAS combination at case 4.  Each color shade represents a particular individual candidate density.  There are 12 

candidate densities.  The sample period spans September 2000 through June 2015. 
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Figure A13: Time-Varying Uncertainty Estimates for Density Nowcasts of Quarterly Inflation 

 
Notes: Uncertainty is measured as the width of the 70% prediction intervals.  Estimates are for the grand 

combination based on the flexible aggregation strategy and log score weighting scheme for case 1 (last day of the 

preceding quarter), case 3 (last day of the first month of the quarter), and case 5 (last day of the second month of the 

quarter); see Table A1.  The sample period spans 2000Q4 through 2015Q2.    
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Figure A14: Stage 2 Grand Combination of DMS, DFM, and MIDAS Combinations 

    

 
Notes: The figure illustrates a grand combination for 12-month inflation rates as of case 1 (the last day of the 

previous month) for nowcasting the target month of January 2001 and the three stage 1 combinations from the DMS, 

MIDAS, and DFM model classes that are used to construct the grand combination.  
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Figure A15: Weights and Higher-Order Moments, CMG Weighting Scheme 
(a) CPI inflation 

 
(b) Core CPI inflation 
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Figure A15: Weights and Higher-Order Moments, CMG Weighting Scheme (continued)  
(c) PCE inflation 

 
(d) Core PCE inflation 

 
Notes: The first row of each panel plots the evolution of the weights for the three model classes underlying the grand 

combination, based on the flexible aggregation strategy and CMG weighting scheme.  (Each model class is a 

combination of multiple model specifications.)  The second row plots estimates of dynamic uncertainty, defined as 

the width of the 70% prediction intervals. The last two rows plot time-varying estimates of skewness and kurtosis. 

The sample period spans September 2000 through June 2015.  
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Figure A16: Weights and Higher-Order Moments, Ganics Weighting Scheme 
(a) CPI inflation 

 
(b) Core CPI inflation 
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Figure A16: Weights and Higher-Order Moments, Ganics Weighting Scheme (continued) 
(c) PCE inflation 

 
(d) Core PCE inflation 

 
Notes: The first row of each panel plots the evolution of the weights for the three model classes underlying the grand 

combination, based on the flexible aggregation strategy and the Ganics weighting scheme.  (Each model class is a 

combination of multiple model specifications.)  The second row plots estimates of dynamic uncertainty, defined as 

the width of the 70% prediction intervals. The last two rows plot time-varying estimates of skewness and kurtosis. 

The sample period spans September 2000 through June 2015.     
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Figure A17: Weights and Higher-Order Moments, CRPS Weighting Scheme  
(a) CPI inflation 

 
(b) Core CPI inflation 
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Figure A17: Weights and Higher-Order Moments, CRPS Weighting Scheme (continued) 
(c) PCE inflation 

 
(d) Core PCE inflation 

 
Notes: The first row of each panel plots the evolution of the weights for the three model classes underlying the grand 

combination, based on the flexible aggregation strategy and the CRPS weighting scheme.  (Each model class is a 

combination of multiple model specifications.)  The second row plots estimates of dynamic uncertainty, defined as 

the width of the 70% prediction intervals. The last two rows plot time-varying estimates of skewness and kurtosis. 

The sample period spans September 2000 through June 2015.   
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Figure A18: Comparison of Weights within the DMS Model Class, Log Score Weighting 

Scheme vs. CMG Weighting Scheme 

 
Notes: The figure plots the evolution of weights of the underlying individual candidate densities.  Each color shade 

represents a particular individual candidate density.  There are 108 candidate densities.  The richness in the color 

variation indicates that no single candidate density dominates others.  The left panel displays the weights for the 

stage 1 DMS combination constructed using the log score weighting scheme, and the right panel displays weights 

for the stage 1 DMS combination constructed using the CMG weighting scheme.  The flexible aggregation method 

is used in both cases. The sample period spans September 2000 through June 2015.     
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Table A1 Representative Dates for Quarterly Nowcasting Performance  
 

Case 

 

Date 

Information Set 

(Example: Nowcasting target quarter is Q1) 

 

Months to Forecast 

1 Last day of the 

previous quarter 

December 31: Have CPI and PCE through November; 

high-frequency information through December 31 

CPI: h=4 (Dec., Jan., Feb., Mar.) 

PCE: h=4 (Dec., Jan., Feb., Mar.) 

2 Day 15 of month 

1 of the target 

quarter  

January 15: Receive CPI for December and have PCE 

through November; high-frequency information through 

end of second week of January, which includes two 

weekly retail gasoline readings from January 

CPI: h=3 (Jan., Feb., Mar.) 

PCE: h=4 (Dec., Jan., Feb., Mar.) 

3 Last day of 

month 1 of the 

target quarter 

January 31: Have CPI for December and receive PCE for 

December; high-frequency information for all of January, 

which includes all four weekly retail gasoline readings 

from January 

CPI: h=3 (Jan., Feb., Mar.) 

PCE: h=3 (Jan., Feb., Mar.) 

4 Day 15 of month 

2 of the target 

quarter  

February 15: Receive CPI for January and have PCE 

through December; high-frequency information through 

end of second week of February, which includes two 

weekly retail gasoline readings from February 

CPI: h=2 (Feb., Mar.) 

PCE: h=3 (Jan., Feb., Mar.) 

5 Last day of 

month 2 of the 

target quarter 

February 28: Have CPI for January and receive PCE for 

January; high-frequency information for all of February, 

which includes all four weekly retail gasoline readings 

from February 

CPI: h=2 (Feb., Mar.) 

PCE: h=2 (Feb., Mar.) 

6 Day 15 of month 

3 of the target 

quarter  

March 15: Receive CPI for February and have PCE 

through January; high-frequency information through end 

of second week of March, which includes two weekly 

retail gasoline readings from March 

CPI: h=1 (Mar.) 

PCE: h=2 (Feb., Mar.) 

7 Last day of 

month 3 of the 

target quarter 

March 31: Have CPI for February and receive PCE for 

February; high-frequency information for all of March, 

which includes all four weekly retail gasoline readings 

from March 

CPI: h=1 (Mar.) 

PCE: h=1 (Mar.) 

 




