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Abstract

This paper develops stochastic search variable selection (SSVS) for zero-inflated

count models which are commonly used in health economics. This allows for

either model averaging or model selection in situations with many potential

regressors. The proposed techniques are applied to a data set from Germany

considering the demand for health care. A package for the free statistical soft-

ware environment R is provided.
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1 Introduction

Empirical health economics often involves the analysis of count data variables that

have distributions which exhibit a high frequency of zeros. Examples include the

number of visits to the doctor or the number of work days missed by individuals

with special health care needs. Zero-inflated count models (Mullahy, 1986; Lambert,

1992) account for this data characteristic and are frequently used in the literature.

Among others, Grootendorst (1995) analyses prescription drug utilisation, Street

et al. (1999) examine data on pharmaceutical utilisation and expenditure in Russia

and Böhning et al. (1999) consider caries prevention in dental epidemiology.

The zero-inflated count model increases the probability of observing a zero out-

come relative to the underlying count data distribution (this can be a Poisson, neg-

ative binomial or Poisson lognormal distribution). It does so by adding a proportion

of zeros and reducing the probabilities of the other frequencies by corresponding

amounts. The additional probability of observing a zero may be modelled as either

a constant or a function of explanatory variables.

The zero-inflated count model can be interpreted as a finite mixture model where

one distribution is degenerate with a unit point mass at zero. The model divides

the population into two groups: one group for which the outcome is always zero

(depending on the context, we could label this group as the non-users or the low-

risk group) and one group for which the outcome is drawn from the underlying

count data distribution (the potential users or the normal-risk group). Thus, each

explanatory variable can have an effect on either or both (i) the probability that an

individual is a non-user and (ii) the magnitude of the count outcome, given that the

individual is a potential user.

In many situations, potential explanatory variables are numerous, including de-

mographic, socio-economic, lifestyle, disease history and medical variables. Assuming

k potential regressors and allowing each to be either included in or excluded from

each of the two equations (the regime selection equation governing the probability of

being a non-user and the count equation determining the count outcomes), it follows

that there are 4k possible models. However, most studies employing the zero-inflated

count model ignore this model uncertainty and include all or a specific subset of

the potential explanatory variables in both equations (sometimes the proportion of

added zeros is modelled as a constant). Then they proceed as if the selected model
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had generated the data, this leads to over-confident inferences and decisions that are

more risky than they appear (see, for example, Madigan and Raftery, 1994).

One way around this problem is to apply stochastic search variable selection

(SSVS), a technique first proposed by George and McCulloch (1993). SSVS is a

Bayesian procedure that introduces a prior distribution on all the unknowns, which

in this case are the parameters in each of the models and the models themselves. It

combines the prior distribution with the data and induces a posterior distribution

that accounts for model uncertainty. This posterior distribution identifies “promis-

ing” subsets of explanatory variables and can be used for model selection and infer-

ence. A big advantage of SSVS is that it avoids the effort of calculating the posterior

probabilities of all 4k models. Instead, it uses Markov chain Monte Carlo (MCMC)

methods to analyse the posterior distribution.1

The major econometric contribution of this paper is to extend the SSVS approach,

so far developed for normal linear models, to the nonlinear zero-inflated count model.

In particular, we propose a novel MCMC sampling algorithm that explores the pos-

terior distribution in an efficient manner. The major empirical contribution of this

paper lies in the application of the proposed methods to a data set from Germany

analysing the determinants of the demand for health care.

In order to facilitate the use of the proposed techniques and the reproduction

of the results of this paper, a software package was written for the free statistical

software environment R (R Development Core Team, 2009). The package is called

zic and can be downloaded from the Comprehensive R Archive Network (CRAN)

on http://www.R-project.org.

The rest of the paper is organised as follows. Section 2 shows how SSVS can be

applied to a zero-inflated count data model. Section 3 briefly discusses the MCMC

methods needed for the analysis with further details provided in the Appendix. Sec-

tion 4 gives an application to the demand for health care employing a German data

set. Section 5 finally concludes.

1For a general introduction to Bayesian inference, see Koop (2003). Examples of Bayesian methods
applied to count data applications in health economics include Jochmann and León-González (2004)
and Deb et al. (2006).
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2 SSVS for a Zero-Inflated Poisson Lognormal

Model

As discussed in the introduction, a zero-inflated count model mixes a degenerate

distribution with a unit point mass at zero with a non-degenerate count distribution.

We choose the latter to be a Poisson lognormal distribution which, unlike the Poisson

distribution, allows for overdispersion (see, for example, Greene, 2005). Another

common alternative to the Poisson lognormal distribution is the negative binomial

distribution. However, as we will see below, the Poisson lognormal distribution can

be combined with the SSVS framework in a more convenient way and leads to a

simpler sampling algorithm.

We consider a latent count variable y∗i and specify its conditional distribution to

be Poisson:

y∗i ∼ Poisson[exp(η∗i )]. (1)

The logarithm of the conditional mean is given as follows:

η∗i = x′iβ + εi, εi ∼ N(0, σ2), (2)

where xi is a k×1 vector of regressors, β the corresponding k×1 parameter vector, εi

an error term that captures unobserved heterogeneity and σ2 the variance of the error

term. We can prove that y∗i follows a Poisson lognormal distribution by integrating

out the unobserved heterogeneity. Next we consider another latent variable d∗i that

comes from

d∗i = x′iδ + νi, νi ∼ N(0, 1), (3)

where δ is a k × 1 parameter vector and νi another error term. We do not observe

the latent variables but only yi = 1(d∗i > 0)y∗i and xi.
2 That is, if d∗i is bigger than

zero, we observe the Poisson lognormal outcome. Otherwise the observed yi is equal

to zero regardless of the value of the latent y∗i .

Equations (1) - (3) specify a zero-inflated Poisson lognormal model whose like-

lihood function is given in the Appendix. Next we choose independent prior dis-

tributions for the unknown parameters β, δ and σ2. As outlined above, the prior

distributions for β and δ shall reflect model uncertainty, i.e. they shall account for

21(a) denotes the indicator function that takes the value 1 if a is true and 0 otherwise.
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the fact that we do not know which explanatory variables belong into equations (2)

and (3). We tackle this issue using the stochastic search variable selection (SSVS)

technique of George and McCulloch (1993). The underlying principle can be ex-

plained as follows. A common Bayesian prior for some parameter α is α ∼ N(0, Vα).

Larger values of Vα correspond to a relatively non-informative prior, smaller values of

Vα shrink α towards zero. The SSVS prior now combines these two extremes by spec-

ifying a scale mixture of two Normal distributions: α ∼ (1−θ)N(0, Vα0)+θN(0,Vα1),

where Vα0 denotes a very “small” variance so that α is virtually zero and Vα1 corre-

sponds to a rather “large” variance and thus leads to an uninformative prior. θ is a

dummy variable which equals 0 if α is drawn from the first Normal distribution and

equals 1 if α is drawn from the second. This prior is called a hierarchical prior since

θ is treated as an unknown parameter and estimated in a data-based fashion.

Along these lines we specify the following prior distributions for the components

of β and δ:

βj ∼ (1− γj)N
(
0, τ 2

0j

)
+ γjN

(
0, τ 2

1j

)
, j = 1, . . . , k, (4)

δj ∼ (1− κj)N
(
0, ω2

0j

)
+ κjN

(
0, ω2

1j

)
, j = 1, . . . , k, (5)

where the vectors γ ≡ (γ1, . . . , γk)
′ and κ ≡ (κ1, . . . , κk)

′ consist of dummy variables

which take the value 1 if the respective variable is included in the model and 0

otherwise. Thus, the prior parameters τ 2
0 ≡ (τ 2

01, . . . , τ
2
0k)
′ and ω2

0 ≡ (ω2
01, . . . , ω

2
0k)
′

consist of “small” variances whereas the prior parameters τ 2
1 ≡ (τ 2

11, . . . , τ
2
1k)
′ and

ω2
1 ≡ (ω2

11, . . . , ω
2
1k)
′ consist of “large” variances. The inclusion probabilities are

given by

Pr (γj = 1) = 1− Pr (γj = 0) = pj, j = 1, . . . , k, (6)

Pr (κj = 1) = 1− Pr (κj = 0) = qj, j = 1, . . . , k, (7)

where p ≡ (p1, . . . , pk)
′ and q ≡ (q1, . . . , qk)

′ are prior parameter vectors. Finally,

the prior for the variance σ2 is an inverse gamma distribution:

σ2 ∼ Inv-Gamma
(
e, f
)
. (8)

Several approaches to selecting the prior parameters τ 2
0, τ

2
1, ω

2
0 and ω2

1 can

be chosen, depending on the actual application. Basically, the “small” variance
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prior parameters τ 2
0j (ω2

0j) should lead to βj (δj) that are essentially zero and the

“large”variance prior parameters τ 2
1j (ω2

1j) should be selected so that βj (δj) are

empirically substantive. We use a semi-automatic approach and set τ 2
0j = c0v̂ar(βj),

τ 2
1j = c1v̂ar(βj), ω

2
0j = d0v̂ar(δj) and ω2

1j = d1v̂ar(δj), where v̂ar(βj) and v̂ar(δj) are

estimates of the parameter variances from a preliminary analysis based on a non-

informative prior and c0 � c1 and d0 � d1. This choice follows the considerations

of George and McCulloch (1993) and George and McCulloch (1997) and we refer to

these papers for further justification.

It finally should be noted that applying SSVS can be seen as a computationally

feasible way to implement Bayesian model averaging (BMA).3 Instead of calculating

the posterior probabilities of all possible 4k models, SSVS greatly reduces the amount

of computation by stochastically exploring the model space and letting the MCMC

sampler average over the models. Furthermore, SSVS can also be used to select a sin-

gle best model in which the count equation includes only those explanatory variables

for which Pr(γj = 1|Data) > c and the regime selection equation only those for which

Pr(κj = 1|Data) > c, where c is some threshold (e.g. c = 0.5). We will illustrate

both uses in the application below.

3 Bayesian Computation

Model inference is based on the posterior distribution which is, according to Bayes

theorem, proportional to the product of the likelihood function [equations (1) - (3)]

and the prior distribution [equations (4) - (8)]. Since the posterior distribution is too

complex to be analysed analytically we resort to MCMC sampling techniques (see Liu

(2001) or Robert and Casella (2004) for comprehensive surveys on these methods).

In particular we use the Gibbs sampler for summarising features of the posterior

model space. The Gibbs sampler draws a large posterior sample by successively

sampling from the conditional distributions of the model parameters. In order to

keep computations simple, we apply the data augmentation technique put forward

by Tanner and Wong (1987). This means that we include the latent variables y∗ ≡
(y∗1, . . . , y

∗
n)′, η∗ ≡ (η∗1, . . . , ηn)′ and d∗ ≡ (d∗1, . . . , d

∗
n)′ in the parameter space. In this

way we end up with conditional distributions that take convenient functional forms.

3See Hoeting et al. (1999) for an introduction to BMA.
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Details about the proposed algorithm can be found in the Appendix.

To facilitate the application of SSVS to zero-inflated count data applications,

this paper comes with software that implements the proposed algorithm for the

free statistical software environment R. The corresponding package is called zic

and can be downloaded from the Comprehensive R Archive Network (CRAN) on

http://www.R-project.org. It also includes the data set used in this paper, allow-

ing for the reproduction of our results.4

4 Application

We illustrate the proposed methods by applying them to a sub-sample of a data set

originally used by Riphahn et al. (2003) to analyse the demand for health care.5 The

data set stems from the German Socio-Economic Panel Study (SOEP, see Wagner

et al., 2007) and is an unbalanced panel of 7,293 individual families observed from

one to seven times. Like in the original study, we restrict our sample to West German

men aged 25 through 65 who are German nationals. In addition, we only use the last

wave from 1994 and focus on male individuals. This leaves us with 1812 observations.

Variable descriptions along with summary statistics are given in Table 1.6

Whereas Riphahn et al. (2003) estimate a bivariate model and consider both the

number of doctor visits and the number of hospital visits as dependent variables, we

focus on analysing only the number of doctor visits in the last three months. Figure

1 shows a histogram of the dependent variable. We clearly see a large number of

zeros which cannot be modelled adequately with a Poisson model; thus, the use of a

zero-inflated count model seems warranted.

The parameters for the SSVS prior are chosen using the semi-automatic approach

outlined above. Thus, we base the prior distributions for β and δ on a preliminary

MCMC run using a non-informative prior and set c0 = d0 = 0.01 and c1 = d1 = 10.

We set each element of both p and q to 0.5 which correspondents to a prior belief

4To speed up computations, large parts of the R package (especially the MCMC samplers) are coded
in C++.

5The original data are available for download on the Journal of Applied Econometrics Data Archive
website (http://econ.queensu.ca/jae/). The version of the data set that is used in this appli-
cation is also included in the R package that accompanies this article.

6Like Greene (2005), who uses the same data set, we changed all observations on health that were
recorded between 6 and 7 to 7.
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Variable Description Mean Sd

docvis number of doctor visits in last 3 months 2.958 5.224
age age 41.653 11.583
agesq age squared / 1000 1.869 1.013
health health satisfaction, 0 (low) - 10 (high) 6.838 2.189
handicap 1 if handicapped, 0 otherwise 0.119 0.324
hdegree degree of handicap in percentage points 6.165 18.491
married 1 if married, 0 otherwise 0.694 0.461
schooling years of schooling 11.830 2.494
hhincome household monthly net income, 4.517 2.126

in German marks / 1000
children 1 if children under 16 in the household, 0.388 0.487

0 otherwise
self 1 if self employed, 0 otherwise 0.084 0.278
civil 1 if civil servant, 0 otherwise 0.109 0.312
bluec 1 if blue collar employee, 0 otherwise 0.312 0.464
employed 1 if employed, 0 otherwise 0.831 0.375
public 1 if public health insurance, 0 otherwise 0.847 0.360
addon 1 if add-on insurance, 0 otherwise 0.018 0.134

Table 1: Variable descriptions and summary statistics
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Figure 1: Histogram of number of doctor visits in the last three months (docvis)
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that in both equations each explanatory variable is equally likely to be included as

excluded. Finally, we set e = 2 and f = 3. It follows that both the prior mean and

the prior variance for σ2 are equal to 1.

Table 2 gives posterior means, posterior standard deviations and posterior inclu-

sion probabilities for each coefficient in the model.7 Looking at the count equation

we see that only 5 out of the potential 16 coefficients have an inclusion probability

which is greater than 0.5. In the regime selection equation this pattern is even more

pronounced, here only the constant, the health satisfaction index (health) and the

coefficient dummy variable for children in the household (children) are included in

the model. Thus, SSVS chooses a very parsimonious model specification. Riphahn

et al. (2003) were particularly interested in the role of the choice of private insurance

on health care demand. We see that neither the dummy variable indicating public

health insurance (public) nor the dummy variable for add-on insurance (addon) are

included in the two equations.

Next, we look at a typical individual, which we define as follows: he is 40 years

old, has a health satisfaction index of 7 and no handicap, is married, went to school

for 12 years and has a monthly household income of 5,000 German marks. He

has no children in the household, is not self-employed, neither a civil servant nor

a blue collar worker, is employed and publicly insured and did not purchase add-

on insurance. Figure 2 shows posterior predictive distributions for the number of

doctor visits (docvis) based on three different variants of the model. The circles give

the predictive probabilities based on the zero-inflated count model (labelled ZIC

in the figures) presented in section 2 but without the SSVS prior. In this model,

all coefficients are included in both equations. The triangles show the predictive

probabilities for the SSVS model (labelled SSVS) which averages over the set of

possible models. Finally, crosses give the predictive density derived from the “best”

model (labelled BEST). Based on a previous SSVS analysis we included only the

coefficients with posterior inclusion probabilities greater than 0.5 to obtain the “best”

model. We see that the results of the SSVS model always lie between those of the

other two models. The biggest differences are observed for the frequencies 0 and

1. Whereas the zero-inflated model predicts that our typical individual did not go

to the doctor at all with a probability of 41.9 percent, the SSVS model finds a

7The results are based on every 10-th of 100,000 samples from the MCMC output after a burn-in
period of 10,000 iterations.
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Count Equation (β) Regime Selection Equation (δ)
Mean S.d. P(Inc.) Mean S.d. P(Inc.)

const 2.049 0.440 1.000 1.800 0.561 1.000
age −0.004 0.020 0.164 −0.006 0.028 0.093
agesq 0.125 0.235 0.225 0.120 0.332 0.105
health −0.181 0.015 1.000 −0.171 0.022 1.000
handicap 0.214 0.176 0.702 0.029 0.092 0.090
hdegree 0.000 0.002 0.172 0.001 0.002 0.108
married −0.002 0.026 0.080 0.052 0.104 0.258
schooling −0.001 0.006 0.100 −0.001 0.006 0.077
hhincome 0.001 0.005 0.096 0.002 0.009 0.105
children −0.002 0.028 0.092 −0.263 0.133 0.888
self −0.244 0.195 0.690 −0.008 0.067 0.081
civil −0.188 0.180 0.588 −0.010 0.061 0.087
bluec 0.009 0.037 0.112 0.004 0.030 0.076
employed −0.024 0.064 0.175 −0.009 0.050 0.092
public 0.078 0.128 0.341 0.008 0.044 0.071
addon 0.022 0.097 0.112 0.011 0.183 0.059
σ2 0.623 0.051

Table 2: Posterior moments
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Figure 2: Predictive distributions for the number of doctor visits for a typical indi-
vidual

predictive probability of 40.0 percent and the “best” model gives 37.5 percent. The

predictive probabilities for docvis = 1 are 17.2 percent, 15.9 percent and 13.8 percent,

respectively.

Finally, Figure 3 analyses what happens in case the typical individual buys add-

on insurance (addon).8 Posterior distributions for the effect of this on the mean of

the number of doctor visits are plotted under the three models. We see that all three

posterior distributions are centred around zero indicating that purchasing add-on

insurance has no effect on the mean of the number of doctor visits. However, the

distributions for the SSVS and the “best” model are much tighter. This result is not

surprising since the inclusion probabilities for the add-on variable are only 11.2 for

the count equation and 5.9 percent for the regime selection equation in the SSVS

model; the “best” model does not include it at all.

8Note that purchasing add-on insurance might be an endogenous decision. However, accounting for
this fact is outside the scope of this paper.
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Figure 3: Posterior distributions for the effect of buying add-on insurance on the
mean of the number of doctor visits for a typical individual
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5 Conclusion

Stochastic search variable selection (SSVS) methods are a convenient tool for model

averaging and model selection. For each parameter either a tight or a loose prior dis-

tribution is chosen in a data-based fashion. In this paper we extended this approach

to zero-inflated count data models, which are commonly used in health economics.

We developed an MCMC algorithm for carrying out the empirical work and pro-

vided an R package, which helps to reproduce our results and to apply the proposed

techniques in further work.

Our empirical application considered the demand for health care in Germany. The

proposed SSVS techniques worked well and were computationally feasible. Despite

the fact that we started with a rather large model, SSVS chose a very parsimonious

specification. Only one fourth of the regressors were included in the model with

a probability exceeding 50 percent. We also used SSVS for model selection and

obtained estimates for a “best” model. Comparing the results from the three analysed

models, we found considerable differences.
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Appendix: Inference via MCMC Sampling

As mentioned above, we use the data augmentation technique and treat the latent

variables y∗ ≡ (y∗1, . . . , y
∗
n)′, η∗ ≡ (η∗1, . . . , ηn)′ and d∗ ≡ (d∗1, . . . , d

∗
n)′ as parameters

of the model. Though the augmented model contains more parameters, inference

becomes easier since MCMC techniques can be applied in a more straightforward

manner.

Likelihood function

The likelihood function can be written as

L(β, δ, σ2,y∗,d∗,η∗|y) =
n∏
i=1

exp[− exp(η∗i )] exp(η∗i y
∗
i )

y∗i !

× N(η∗i |x′iβ, σ2) N(d∗i |x′iδ, 1) 1(y∗i , d
∗
i , yi),

(A-1)

where N(·|a, b) denotes the density of the normal distribution with mean a and

variance b and

1(y∗i , d
∗
i , yi) = 1(d∗i ≤ 0)1(yi = 0) + 1(d∗i > 0)1(y∗i = yi). (A-2)

Prior distributions

The prior distribution for β and γ can be expressed as ϕ(β|γ)ϕ(γ) with

ϕ(β|γ) = N(0,B), (A-3)

where B = diag(b1, . . . , bk),

bj =

τ 2
0j if γj = 0

τ 2
1j if γj = 1

(A-4)

and

ϕ(γ) =
k∏
j=1

γj
pj (1− γj)1−pj . (A-5)
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Similarly, the prior distribution for δ and κ is ϕ(δ|κ)ϕ(κ) with

ϕ(δ|κ) = N(0,D), (A-6)

where D = diag(d1, . . . , dk),

dj =

ω2
0j if κj = 0

ω2
1j if κj = 1

(A-7)

and

ϕ(κ) =
k∏
j=1

κj
qj (1− κj)1−qj . (A-8)

The prior distribution for σ2 is specified as

ϕ(σ2) = Inv-Gamma
(
e, f
)
. (A-9)

Posterior distribution

The joint posterior distribution is thus given by

ϕ(β, δ, σ2,y∗,d∗,η∗,γ,κ|y)

∝ ϕ(β|γ)ϕ(γ)ϕ(δ|κ)ϕ(κ)ϕ(σ2)L(β, δ, σ2,y∗,d∗,η∗|y)
(A-10)

Gibbs sampling algorithm

The proposed Gibbs sampling algorithm consists of the following steps:

1. Sample β from ϕ(β|η∗, σ2,γ) = N(β|µβ,Σβ) with variance

Σβ =

(
B−1 +

1

σ2

n∑
i=1

xix
′
i

)−1

(A-11)

and mean

µβ = Σβ

(
1

σ2

n∑
i=1

xiη
∗
i

)
. (A-12)

2. Draw σ2 from ϕ(σ2|η∗,β) = Inv-Gamma
(
e+ n

2
, f +

Pn
i=1(η∗i−x′iβ)2

2

)
.
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3. Sample δ from ϕ(δ|d∗,κ) = N(δ|µδ,Σδ) with variance

Σδ =

(
D−1 +

n∑
i=1

xix
′
i

)−1

(A-13)

and mean

µδ = Σδ

(
n∑
i=1

xid
∗
i

)
. (A-14)

4. For i = 1, . . . , n sample η∗i from

ϕ(η∗i |y∗i ,β, σ−2) ∝ exp

[
− exp(η∗i ) + η∗i y

∗
i −

(η∗i − x′iβ)2

2σ2

]
. (A-15)

These density functions are log-concave and we use adaptive rejection sampling

[ARS, see Gilks and Wild (1992)] to generate the η∗i .

5. Jointly sample (y∗,d∗): For i = 1, . . . , n sample (y∗i , d
∗
i ) from ϕ(y∗i , d

∗
i |η∗, δ):

If yi > 0, set y∗i = yi and sample d∗i from TN+(x′iδ, 1, 0), where TN+(µ, σ2, a)

denotes a Normal distribution with mean µ and variance σ2 that is truncated

at the left at a. If yi = 0, draw an auxiliary variable z from a standard uniform

distribution U(0, 1). If

z <
1− Φ(x′iδ)

1− Φ(x′iδ) + Φ(x′iδ) exp[− exp(η∗i )]
, (A-16)

where Φ(·) denotes the standard-normal c.d.f., sample y∗i from Poisson[exp(η∗i )]

and d∗i from TN−(x′iδ, 1, 0), where TN−(µ, σ2, a) denotes a Normal distribution

with mean µ and variance σ2 that is truncated at the right at a. Otherwise set

y∗i = yi = 0 and sample d∗i from TN+(x′iδ, 1, 0).

6. For j = 1, . . . , k sample γj from ϕ(γj|βj) = Bernoulli
(

u1j

u1j+u0j

)
with

u1j = (τ 2
1j)
− 1

2 exp

(−β2
j

2τ 2
1j

)
pj (A-17)

and

u0j = (τ 2
0j)
− 1

2 exp

(−β2
j

2τ 2
0j

)
(1− pj). (A-18)
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7. For j = 1, . . . , k sample κj from ϕ(κj|δj) = Bernoulli
(

u1j

u1j+u0j

)
with

u1j = (ω2
1j)
− 1

2 exp

(−δ2
j

2ω2
1j

)
qj (A-19)

and

u0j = (ω2
0j)
− 1

2 exp

(−δ2
j

2ω2
0j

)
(1− qj). (A-20)
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