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Abstract

Two fundamental problems in economic analysis concern the deter-
mination of aggregate output, and the determination of market prices
and quantities. The way economic adjustments are made at the micro
level suggests that the history of shocks to the economic environment
matters. This paper presents tractable approach for introducing hys-
teresis into models of how aggregate output and market prices and
quantities are determined.

Keywords Hysteresis, Aggregate Output, Market Supply and Demand

1

wkb10106
Text Box
JEL classifications: C60, C65 and E10




1 Introduction

”The roots of mainstream models in economics can be found in the neoclas-
sical revolution of the 1870s. Neoclassical economists,such as Jevons, Walras
and Fisher,used methods drawn from mathematical physics to analyse eco-
nomic systems (Mirowski, 1989). The reformulations of economic theory on
an axiomatic basis from the 1930s onwards retained key properties imported
with the analytical methods, such as conservation and reversibility. In this
world temporary shocks do not have permanent effects, and economic systems
can retrace their steps when perturbed away from equilibria (see Colander
et al., 2009) for a more general critique). Marshall was aware of the limita-
tions of this method of analysis, arguing that ”–if the normal production of
a commodity increases and afterwards diminishes to its old amount, the de-
mand price and the supply price are not likely to return, as the pure theory
assumes that they will, to their old positions for that amount” (Marshall,
1890, p.426). At a more aggregate level, Keynes answered his question “is
the economic system self-adjusting?” in the negative (Keynes, 1934). Hys-
teresis,involving temporary causes that can have permanent effects and non-
reversible adjustment paths, has occasionally been postulated to be relevant
to economic systems, but has not been formally incorporated into main-
stream economic models. The present paper outlines methods for analysing
economic systems haunted by hysteresis. Section 2 outlines mathematical
methods for modelling hysteresis in the determination of aggregate output,
Section 3 deals with market supply and demand, introducing hysteresis by
way of the supply side of the market. The contribution of this paper can be
seen as pointing out that there are tractable methods for modelling hysteresis
in economic systems, and that these methods yield models that have some
plausible and interesting properties.”

1.1 Hysteresis

The term hysteresis was first coined in Ewing (1885) referring to “a per-
sistence of previous states” observed when ferric materials are magnetised.
The study of hysteresis produced a number of phenomenological and empir-
ical models and techniques, of which the Preisach nonlinearity, introduced
in Preisach (1935), is of greatest interest here. A mathematical framework
and rigour was applied to models of hysteresis by a group of Russian math-
ematicians headed by M.A. Krasnosel’skii in the 1970s, (Krasnosel’skii and
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Figure 1: The action of a rate independent operator on an input function f(t)
produces the output function g(t). Rate independence means that the action
of the operator on the transformed input f(γ(t)), where γ(t) is monotonically
increasing, produces a similarly scaled output, g(γ(t)).

Pokrovskii, 1989). This general framework establishes hysteresis phenomena
as input-output relationships. The general mathematical definition of hys-
teresis (omitting some technicalities) is that an operator which relates an
input function to an output function is a hysteresis operator if the operator
is both deterministic and rate-independent (see figure 1).

Complex hysteresis operators can be conceived as being constructed from
simpler, elementary hysteresis operators, or hysterons. The exact type of
hysteron used and the nature of the connection between them determine
the properties of the complex operator which they combine to form. Once
such an operator is constructed, its properties can be analysed and deduced
from those of the simpler hysterons. Examples of these hysterons include
the Play and Stop operators, and the operator which underlies the Preisach
nonlinearity1 the non-ideal relay2. For more details on the fundamentals of
hysteresis models including the Preisach nonlinearity and their application,
see Krasnosel’skii and Pokrovskii (1989), Mayergoyz (1991), Visintin (1994),
Brokate and Sprekels (1996), Mayergoyz (2003) and Bertotti and Mayergoyz
(2006). Particular applications to economic systems can be found in Cross
(1993), Göcke (2002) and Cross et al. (2009).

1The terms Preisach operator, Preisach model and Preisach nonlinearity all refer to
the same mathematical object, and can be used interchangeably.

2Also termed the thermostat nonlinearity, lazy switch or hysteretic relay.
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2 Macroeconomic flows

It was already mentioned in the introduction that the current mainstream
models of macroeconomics originate in the “neoclassical revolution” period
of the late nineteenth century. The protagonists in this revolution, such as
Walras, Edgeworth and Jevons, applied paradigms and analogies drawn from
Newtonian mechanics to economic systems.3 A commonly used metaphor
compared economic systems with a set of connected reservoirs at different
levels, Edgeworth himself is one of those who used this analogy. Later
economists such as Fisher (1925), and Phillips (1950), constructed actual
hydro-mechanical machines for the determination of market prices and of
macroeconomic flow variables such as output (respectively). Indeed, a num-
ber of “Phillips machines”, or MONIACs, were constructed to order, both
for study and policy making, see figure 2.

The neoclassical economic model was reformulated and axiomatised from
the 1930s onwards, however many of the original analogies and paradigms
were retained. In the modern version, decisions of production and consump-
tion are undertaken by “representative” agents, who respond “smoothly” to
variations in economic variables, often with linear responses. This is entirely
in keeping with the “reservoir” model — the behaviour of a representative
agent deciding between two states (say, an investor deciding whether to hold
assets in US dollars or in Euro) can be modelled with two connected reser-
voirs. The volume of water in each determines the proportion of holdings in
dollars and euro respectively, and the relative height difference between them
represents the economic variables (in this case possibly the relative interest
rates for each currency). This is illustrated in figure 3.

A flaw in the mainstream model, as illustrated by the reservoir analogy,
is the assumption that economic agents behave homogenously, and that their
collective behaviour can be captured by looking at a “representative” agent.
The reality is somewhat different — for example, financial capital flows may
be intended for start-up of production, or it may be intended as a deposit for
a fixed term. Furthermore, different agents use different methods to predict

3William Stanley Jevons studied chemistry, mathematics and logic at University College
London, while Francis Ysidro Edgeworth (a close friend and neighbour of Jevons) taught
himself mathematics and statistics, an interest perhaps influenced by William Rowan
Hamilton, who was a friend of his father’s. Leon Walras’ father was also an economist,
and encouraged his son to pursue the study of mathematical economics (see the biographies
in Fonseca, web page).
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Figure 2: Phillips’ Economic Computer, the MONIAC (Monetary National
Income Automatic Computer), as described in Phillips (1950). About 13 of
these were built for various organisations worldwide, carefully calibrated to
the economy of the destination country.
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Figure 3: A representative investor modelled by two reservoirs. The investors
funds will flow smoothly towards the currency where interest rates are higher.
A reversal of a change in interest rates will reverse the corresponding change
in holdings.

the future behaviour of the markets, and so two agents today could have
quite different expectations of future returns. There is a further problem
with this assumption from a mathematical point of view — the behaviour of
the aggregate of a large number of individual agents may not be similar to
the behaviour of the “average” agent. A good example of this is seen in the
Preisach nonlinearity, where a “representative” agent would be a non-ideal
relay (which is discontinuous), whereas the aggregate behaviour is given by
the relatively smooth overall output of the Preisach nonlinearity.

A second difficulty lies in the implicit assumption that the “flows” can
be reversed without cost. This assumption does not stand up to scrutiny.
An increase of production will involve some costs which cannot be recovered
if the increase is reversed; a change in equity or bond investments requires
transaction costs; many deposits are fixed term and incur penalty charges if
the investor does not complete the term; the act of making new decisions,
of re-forming expectations, itself incurs a cognitive cost. These “sunk” costs
give rise to infrequent, relatively large adjustments to economic behaviour,
rather than almost continuous small corrections. The presence of substantial
uncertainty in some situations further increases the tendency to “wait it
out”, and make large changes once the situation is more clear. This is clearly
divergent from the analogy of fluid flowing between reservoirs.
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Figure 4: A simple example of a porous flow model in an economic context.
The proportion of stocks and funds held as AC relative to $ is modelled as
the water content of a sponge, with the exterior water level (or the water
potential) describing the relative interest rate differential.

2.1 “Porous” flows

A better analogy may be the dynamics of the water content of a porous
medium, for example a body of soil or a large sponge. On a small scale,
the “sponge” is composed of pores, each of which can wither be empty or
contain water. Due to surface tension there is a “cost” incurred in changing
from one of these states to the other, in the “currency” of physics — energy.
This cost leads to abrupt changes of the water content of a pore — the pore
cannot be partially full as it is energetically unfavourable. To develop this
analogy for our test case, we let the stock of financial assets held in euro
(as opposed to dollars) be described by the water content of a sponge. The
sponge is “attached” to the wall of a container, and the level of water in the
container is used to describe the relative interest rate differential between
euro and dollar deposits.

The question then is whether this new analogy is useful in some sense
— does it give a more illuminating description of the behaviour of macroe-
conomic flows. This question can be addressed by modelling this type of
system. New models to describe fluids in porous media have recently been
proposed, using new types of equation. This paper will outline the economic
rationale of a simple economic model which draws on the “sponge” analogy
and discuss qualitative features of the model in the context of macroeconomic
modelling.
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2.2 Heterostasis and irreversibility

Mainstream macroeconomic models, derived from neoclassical theories, as-
sume that equilibrim time paths are unaffected by actual economic outcomes.
An example is in aggregate output flow — periods in which the actual out-
put contracts (recessions) and periods of vigourous expansion (booms) in
output are taken to have no lasting impact on the equilibrium growth rate.
This feature of standard models, such as the “plucking” model of Friedman
(1993), contrasts with alternatives such as in Hamilton (1989), in which (for
example) recessions cause a permanent lowering of the output growth path.

The return to equilibrium in the “plucking” models arises from dimin-
ishing returns to capital in production. Thus if a negative (positive) shock
reduces (increases) capital per effective worker below (above) its equilib-
rium level, the higher (lower) marginal return to capital would stimulate an
increase (reduction) in investment in capital which would be strong but di-
minishing as capital, and hence the output produced with it, returns to the
equilibrium value. In the alternative accounts, either production relation-
ships involve constant returns per effective worker, or sunk costs introduce
irreversibilities to production and capital stock adjustments. The term het-
erostasis is used to describe such phenomena — where the equilibrium value
is permanently changed by a temporary stimulus.

Some recent empirical studies document recession curses. Cerra and Sax-
ena (2005) used World Bank data for 192 countries from 1960 – 2001 to
investigate whether recovery from recession following financial crises, wars
and so on is associated with a return to the pre-recession trend value. The
Calvo et al. (2006) study of the “Phoenix miracle” of recovery from reces-
sion deals with financial crises in emerging market economies 1980 – 2004,
and with the recovery from the US Great Depression of 1929 – 1932. The
key finding is that although recoveries are steep, output regaining its pre-
crisis level within three years of the recession trough, the recoveries left the
economies in question below the pre-crisis trend or equilibrium level of out-
put. The implication is that countries experiencing frequent crisis-induced
recessions, as in sub-Saharan Africa, tend to have low trend or equilibrium
output growth rates. Of particular interest, in view of the financial crisis
affecting much of the world since 2007, are the Cerra and Saxena (2008) es-
timates of the permanent effectts on output of the recessions following such
crises. In high income countries, for example, the impulse response functions
estimated indicate a 15% lower value for GDP ten years after the crisis.
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The recent literature on boom blessings has largely concentrated on the
extent to which the US asset market boom of the 1990s left lasting effects
on productivity and equilibrium output growth in its wake. Caballero et al.
(2006) provide an analysis of how the stock market boom could have led to
a feedback from higher output growth to a lower long-term cost of capital.
They paraphrase Keynes on the investment boom preceding the US Great
Depression: “while some part of the investment which was going on was
doubtless ill judged and unfruitful, there can, I think, be no doubt that the
world was enormously enriched by the construction of the quinquennium
from 1925 to 1929 . . . its wealth expanded in those five years by as much as
in any other ten or twenty years in its history . . . a few more quinquennia of
equal activity might, indeed, have brought us near to the economics Eldorado
where all our reasonable economic needs would be satisfied” (Keynes 1931,
cited in Keynes (1934, p.1178). Kindleberger (2000) provides an historical
review).

2.3 A simple example

Consider a simple case where the relative price of capital in terms of output
in normalised to unity, so that one unit of capital is used to produce one
unit of output. Each firm, or more realistically, each operational unit within
actual or potentially viable firms, has a choice between using its resources
to be active, in the sense of using capital to produce output, or of being
inactive and leaving any net resources on deposit in a bank. Each “firm” can
thus be considered as an “elementary carrier of economic interests” (ECEI)
that can switch back and forth between two different modes of behaviour:
active and producing one unit of output, or inactive and producing zero units
of output. The state of the aggregate macroeconomic environment, or the
control variable, is a single number I(t) which is the cost of borrowing faced
by all “firms”, being a markup over the repo rate set by the central bank.
In this framework aggregate output is equal to the number of active “firms”,
x(t). The dynamics of x are modelled by a continuous function that takes
values within the unit interval 0 ≤ x ≤ 1.

The aim is to describe the dynamics of x(t) after some t0 = 0. For
convenience suppose that x(0) = 1. The control, or input, variable depends
on the repo interest rate, i, set by the central bank. So we write the input
variable as I(t) = {Function of i(t)}. The distinction is made between a
value of the function I(τ) at a particular time moment t ≥ 0, and the whole
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prehistory Iτ (·) of the variability of intensity I from the reference moment
0 up to the moment τ . For a given τ > 0 the value I(τ) is a number,
whereas Iτ (·) is a function defined on 0 ≤ t ≤ τ . The next step is to
suggest that, ignoring other factors, the value x(τ) at a certain moment
τ > 0 depends not on I(τ) but on the prehistory of the input variable, Iτ (·).
This implies the relationship ẋ(τ) = {Function of the prehistory Iτ (·)}, i.e.,
the rate of change of the relative number of active firms is a function of
Iτ (·). Without the recession curse and boom blessing phenomena outlined
earlier, the relationships between economic activity and interest rates might
be captured by an ordinary differential equation such as ẋ(t) = F (I(t), x(t)).
The question arises: How can heterostatic phenomena be incorporated into a
mathematical model of the macroeconomic dynamics of x(t)?

2.3.1 Basic Assumptions

The basic assumptions are all based on taking a “wide-angle” view of the dy-
namics. In other words, the short-run volatility and variability is smoothed
over by looking at the longer view. This allows the use of some very pow-
erful mathematical tools — for example, it means the function x(t) can be
considered to be continuous as described above.

Assumption 1. A restriction Iτ (·) of the input I(·) to some interval 0 ≤
t ≤ τ uniquely defines the corresponding restriction xτ (·).

This basically makes the assumption that the dynamics of the system
are deterministic — there is no uncertainty, and no randomness in the rela-
tionship between I(·) and x(·) (although this does not mean that the input
variable I(t) cannot contain a random element). It is emphasised that the
value I(τ) does not necessarily determine the value x(τ), the entire prehis-
tory Iτ (·) up to the time τ may be needed to find the value x(τ) (indeed this
will turn out to be the case).

In mathematical terms assumption 1 implies the existence of an operator,
say W , that relates the input function Iτ (·) to the output function xτ (·), i.e.

xτ (·) = WIτ (·) .

From the discussion earlier it is expected that some memory-type effects
might manifest themselves in the I −x relationship, and these effects will be
determined by the form which the operator W will finally take. Having said
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that, the Volterra property described in Krasnosel’skii and Pokrovskii (1989)
must hold: for any 0 < σ < τ the function xσ(·) = WIσ(·) must coincide
with the restriction of the function xτ (·) to the interval 0 ≤ t ≤ σ. In other
words, the future behaviour of the input function cannot have any effect on
the dynamics of x.

Assumption 2. The number, x(t), of “active” firms changes smoothly, and
its rate of change with respect to time is denoted ẋ(t).

This assumption is reasonable provided the size of the system considered
is large, as is the case for a macroeconomic system with a large number of
firms.

Assumption 3. At any given time moment τ there exists a unique “equilib-
rium rate”, which is denoted y = y(τ).

The equilibrium rate is defined as being that hypothetical value of the
input variable which, if instantaneously achieved by the actual input variable,
would cause the activity rate to remain constant. That is, if I(t) = y(t) for
all t ≥ τ , then the activity level remains constant: x(t) ≡ x(τ), t ≥ (τ). It
is emphasised that the behaviour in areas separated from equilibrium is of
interest — it is not expected that I(t) will remain at the equilibrium level.
Further, the equilibrium rate y(t) will likely also depend on the prehistory of
the problem, an obvious example of this would be that the “equilibrium rate”
at which activity would remain constant would be different if the current
state was reached by a large recession than if the same state was reached by
a boom period.

Assumption 4. The rate of change of the level of activity at a time t is
proportional to the difference between the actual input variable I(t) and the
equilibrium rate y(t).

ẋ(t) = k
(
I(t)− y(t)

)
. (2.1)

This relationship is analogous to Darcy’s law for porous flows, with I
the analogue of the external potential, y of the matric potential and x the
water content of the porous medium (with k a conductivity parameter). It
can also be seen as analogous to Ohm’s law in electric circuits: I − y is a
potential difference, x is a current and k is electrical conductivity. In physical
situations the “potentials” have units of energy — the “cost” of work. The
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natural correspondence is that the rates I and y are in “cost of activity”
units (actually, in our context, “cost of capital”).

The differential relationship (2.1) is not yet “closed” — it cannot be solved
numerically, analytically, or produce results which could verify or falsify the
assumptions made. In order to close the system, some relationship between
the “equilibrium rate” y(t) and the current level of activity x(t) needs to be
established.

2.3.2 Closing the equation

In order to complete the relationship between x(·) and I(·), the differential
equation (2.1) needs to be closed by establishing a relationship between x(·)
and y(·). This relationship only admits certain pairs of functions y(·) and
x(·). The totality of such pairs, (x(·) , y(·)) which are possible in our system
is denoted Π, where both components x(·) and y(·) are defined for the same
interval 0 ≤ t ≤ τ0. For a particular interval τ , the subset of Π consisting
only of pairs defined for 0 ≤ t ≤ τ is denoted Πτ .

Assumption 5. The totality Π is rate-independent: i.e. if a pair (x(·) , y(·)),
0 ≤ t ≤ τ , is in Πτ , then for any positive γ the pair (xγ(·) , yγ(·)) given by
(xγ(t), yγ(t)) = (x(γt), y(γt)) , 0 ≤ t ≤ τ/γ, belongs to Πτ/γ. This is the
technical definition of rate-independence as introduced in section 1.1.

This means that a scaling of the rate of change of the input results in
the same scaling being applied to the output, and is shown in figure 1. Note
that suggesting rate independence of (x(·) , I(·)) or (y(·) , I(·)) pairs would
not be appropriate, as transient processes would be ignored. This directly
corresponds to recent developments in soil hydrology, where the moisture
content and matric potential are related in a rate independent manner. Thus
this is the first appearance of the new “sponge” analogy in our model.

Assumption 6. For any given function y(t), 0 ≤ t ≤ τ , there exists exactly
one function x(t), 0 ≤ t ≤ τ such that (x(·) , y(·)) ∈ Π.

This is equivalent to the hypothesis that for any admissible function y(t),
0 ≤ t ≤ τ, the corresponding value x(τ) is uniquely defined. However it
is emphasized that this value x(τ) cannot be uniquely defined in terms of
the number y(τ) only. Taking into account assumption 5, it is clear that all
relevant information about the prehistory yτ (·) may be condensed into the
form of a sequence SV (yτ (·)) of the shock values, i.e. into the sequence of the
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alternating locally maximal and locally minimal values of the function yτ (·).
An example of the special role of the shock values is the awareness of technical
traders of supports and resistances — shock values which a commodity does
not easily break through.

In mathematical terms, this means that there must exist an operator G
which relates each unique function x(·) with its pair in Π, i.e. x(·) = Gy(·),
such that for any t ∈ [0, τ ], the value y(t) is the equilibrium rate for the
function x(·) at the moment t. From assumption 5, it is clear that this
operator G must also be rate-independent. The general relationship (2.1)
can now be written

ẋ(t) = k
(
I(t)− y(t)

)
,

x(·) = Gy(·)

All that remains in order to close the system is a useful and justifiable
form for the rate independent operator G. The theory of rate independent
memory operators has been developing rapidly in recent years. As described
in section 1.1, such operators are called hysteresis operators. The reader
is referred again to the fundamental texts (Krasnosel’skii and Pokrovskii
(1989), Mayergoyz (1991), Brokate and Sprekels (1996), Visintin (1994)) and
the recent three-volume set (Bertotti and Mayergoyz, 2006) surveying the
current state of research in hysteresis.

2.3.3 The operator G

In order to justify a particular form for the operator G, the “slow-time”
limit of the process is examined. Given a function y(t), 0 ≤ t ≤ τ , and
x(·) = Gy(·), consider a hypothetical “slow” function

yγ(t) = y(γt), 0 ≤ t ≤ τ/γ

for small γ ¿ 1. This function varies very “slowly” with respect to time, so
|ẏγ| ¿ 1. By assumption 6 there exists a well-defined counterpart xγ(·) =
Gyγ(·), and moreover by assumption 5 this function xγ(t) = x(γt). There
thus exists an input function Iγ(t) such that

13



ẋγ(t) = k
(
Iγ(t)− yγ(t)

)
, (2.2)

xγ(·) = Gyγ(·) . (2.3)

Since everything is “slow”, ẋγ is very small, and thus for sufficiently small γ:

Iγ(t) ≈ yγ(t). (2.4)

Following from assumption 1, the function xγ(·) can be understood as

xγ(·) = WIγ(·) ≈ GIγ(·) since Iγ(t) ≈ yγ(t). (2.5)

For the remainder of the derivation the focus will be on describing this op-
erator.

Assumption 7. We treat the totality of agents in the economy as an infinite
ensemble Ω, and we assume that members of Ω behave independently.

The point in swapping a large finite set with an infinite set is purely
technical: it is easier to integrate a continuous function, rather than to sum
a finite series.

Assumption 8. To each element ω ∈ Ω there correspond two numbers, α(ω)
and β(ω), satisfying the inequalities 0 ≤ α(ω) < β(ω) ≤ 1. It is assumed
that for the values I(t) ≥ β(ω) the only equilibrium mode of behavior of the
agent ω is to be active in the economy, and for values I(t) ≤ α(ω) the only
equilibrium behavior is to be inactive. For α(ω) < I(t) < β(ω) the agent
ω has two possible modes of equilibrium behaviors: activity or inactivity,
depending on its prehistory. Finally, the agent ω is “lazy”: it does not change
behaviour as long as the input I(t) varies within the boundaries α(ω), β(ω).

This assumption captures two features of economic systems which are
of interest here. First, it does not assume homogeneity of economic agents
— rather than using a representative agent an entire ensemble of different
agents is considered. Second, changes in behaviour of any one agent are made
discontinuously and are not easily reversed. Both of these behaviours were
discussed earlier in this section, and assumptions 7 and 8 incorporate them
into the model system.

14



To formalise this behaviour the nonlinear operator Rα,β is introduced for
given numbers 0 < α < β < 1. This operator is termed the non-ideal relay,
and here describes the behaviour of an individual agent, ω. The variable
output z(t) = Rα,β [t0, η0] y(t), t ≥ t0, depends on both the variable input
y(t), t ≥ t0, which is an arbitrary continuous function, and the initial state η0,
which is either 0 or 1. The resulting function z(t) has at most a finite number
of discontinuities on any finite interval. The non-ideal relay (also known as
a “homeostatic nonlinearity”) is a common and important building block in
many subject areas, and is fundamental to the study of hysteresis — see, for
example, Krasnosel’skii and Pokrovskii (1989). Below for t0 = 0, η0 = 0 the
notation Rα,βy(t) is used to mean Rα,β [t0, η0] y(t).

Assumption 9. The pairs, (α(ω), β(ω)) , ω ∈ Ω, of thresholds are dis-
tributed with some integrable density µ(α, β).

It is now possible to write

(WIγ)(t) =

∫ 1

0

∫ 1

α

z(α, β)µ(α, β)dαdβ

z(α, β) =
(
Rα,βIγ

)
(t), t ≥ 0

This is an expression of the Preisach nonlinearity, which was introduced
in the context of ferromagnetism by Preisach (1935), but has found a more
general applicability. In hydrology the independent domain model is equiv-
alent to the Preisach nonlinearity, and was developed in parallel to it by
Néel (1942,1943), Everett and Whitton (1952) and others. For a succinct
explanation of the development of the Preisach model, and its relation to the
independent domain model, see Mayergoyz (2003).

Returning to statements (2.3),(2.5), the relations become

(Gyγ)(t) =

∫ 1

0

∫ 1

α

z(α, β)µ(α, β)dαdβ

z(α, β) =
(
Rα,βyγ

)
(t).

(2.6)

Thus the principle system of equations can be written

ẋ(t) = k
(
I(t)− y(t)

)

x(t) =

∫ 1

0

∫ 1

α

z(α, β)µ(α, β)dαdβ

z(α, β) =
(
Rα,βyγ

)
(t).

(2.7)
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Once a density function µ(α, β) (sometimes called a Preisach function) is
given this is a closed differential-operator system of equations. What form of
density is suitable for use in this economic context is an open question. In this
section a so-called “wedge density”, as described in Flynn et al. (2006) and
McNamara (2008), is used for demonstration purposes. The use of this class
of density follows from the analogy with fluid in a porous medium (wedge
densities were first used in describing soil-water hysteresis), but not from any
compelling empirical justification. A shorter notation for (2.7) writes P [η0]y
for the Preisach nonlinearity with a given density and an initial state η0.
Then the system of equations can be expressed as

ẋ(t) = k
(
I(t)− y(t)

)

x(t) =
(P [η0]y

)
(t)

(2.8)

This is a new type of equation, which has only recently been studied.
The key feature of the equation, which is more clearly seen in the compact
notation, is that the action of the Preisach nonlinearity is under the highest
derivative in the equations. This contrasts with the relatively well studied
case of the Preisach nonlinearity on the right-hand side of such differential
operator equations (i.e. ẋ = f(x, t) + (P x)(t)). Some of the main questions
in a mathematical sense, such as existence and uniqueness of solutions, have
been addressed, see Flynn and Rasskazov (2005) and the references therein.
What remains in this application is to examine the behaviour of this system
in a qualitative sense, and assess whether it could be useful in an economic
context. The next section attempts to address this question.

2.4 Dynamics of the system

In this section some of the main qualitative features of the simple model
derived above are explored, with particular interest in the relevance to mod-
elling macroeconomic flows. The algorithm used for producing numerical
trajectories of the system in (2.8) is taken from Flynn and Rasskazov (2005),
and implemented in C++ (see appendix in McNamara (2008) for further
details).

Looking at (2.8):

ẋ(t) = k
(
I(t)− y(t)

)

x(t) =
(P [η0]y

)
(t)
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there are three different components of the system — I(t) which is the “in-
put” or control rate; y(t) which is the “equilibrium” rate; and x(t), which is
the activity level (the rate of flow). In control terms, and since x(·) and y(·)
are “simply” related by the Preisach nonlinearity, the two functions x(·) and
y(·) are “outputs” of the system, while I(·) is the sole input. In this presen-
tation, the main qualitative features of the model are being investigated, so
the exact form of the density function in (2.7) is not important.

An example trajectory of the system is illustrated in figure 5. There are
a number of key features to be noted.

• The two “outputs” of the system – x(t) and y(t) – change direction at
the same moments in time. In other words if y(t0) is an extremum of
y(t) then x(t0) is an extremum of x(t).

• The graph of y(t) changes direction whenever it crosses the graph of
I(t). This is expected from the form of the equation, where the right
hand side involves I(t) − y(t). This also means that turning points of
y (and thus x) are somewhat delayed with respect to turning points of
I.

• Turning points of y(t) are “non-smooth”, giving a “shark-toothed” ap-
pearance. I immediately following a turning point, y(t) behaves in a
near-linear fashion, and closely follows the graph of I(t).

• Some evidence of heterostasis in the behaviour of x(t) can be seen. I
n particular, there is a clear “upward” trend in x from the left of the
diagram to the right.

The asymmetry of y(t) is of particular interest, as similar behaviour is
seen in the dynamics of many economic indicators and financial stocks on in-
termediate to long timescales. Immediately following a turning point in y(t)
the rate of change of y is large in magnitude. Similar qualitative behaviour
can be observed in real systems. An example is the asymmetry around turn-
ing points in the Dow Jones industrial share price Index. This is illustrated
in figure 6.

2.4.1 Periodic inputs

An interesting question to examine is the behaviour of the system in response
to periodic inputs of different frequencies. This can give some very useful
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Input I(t)

Equilibrium rate y(t)

Output x(t)

Figure 5: An example trajectory of the model equations, (2.8). The output
x(t) is on a different scale to the input, I(t) and equilibrium rate, y(t).
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Figure 6: Historical data for the Dow Jones Industrial Average (DJIA). The
turning points in July ‘06 and around February ‘07 illustrate an asymmetric
behaviour similar to that of y(t) in figure 5.
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qualitative information, and is particularly interesting in the context of eco-
nomics, where cycles of periods from less than a year to over 50 years have
been identified, for example in Schumpeter (1939). Outputs corresponding
to specific periodic inputs do not accumulate to give outputs of other inputs
since the system is strongly nonlinear. However, the behavior of such simple
outputs can still shed some light on the contributions to the output of the
components of a general type of input.

Given a periodic input function, I(t + T ) = I(t), the corresponding out-
puts, x(t) and y(t), also become periodic, with the same period — after some
transients. By plotting pairs of the three components of the system, a loop
structure can be seen. Each such pair illustrates qualitative features of the
system.

When two periodic functions are related by a Preisach nonlinearity and
plotted against each other, the area enclosed by the loops is identified with
dissipation caused by the action of the hysteresis. In physical systems these
losses are easily identified, for example as energy lost to heat. In an economic
context these losses are more difficult to pin down, but are likely to be caused
by losses of potential output.

• Behaviour of loops: y against I
Plotting the equilibrium rate, y(t) against the input, I(t), there are
two behaviours which are of interest — the transient behaviour, which
depends on initial conditions, and the convergent loops.

The transient behaviour is shown in figure 7. The transient behaviour
quickly dies down, and the trajectory converges to a closed loop. This
loop is not dependent on the initial state of the system at t = 0, and
so is entirely defined by the input function I(t).

The behaviour of the I − y loops for different frequencies is shown in
figure 8, where the transient is discarded to leave the converged loops
for the different frequencies. These loops are vaguely elliptical in shape,
with “corners” at the highest and lowest points. For each frequency,
these corners lie on the same straight line, which implies a linear rela-
tionship between the frequency of I(t) and the amplitude of y(t). The
equilibrium rate clearly responds more strongly to a slowly changing
I(t), approaching a linear relationship for very low frequencies. Very
high frequency inputs, in contrast, result in an equilibrium rate which
changes less and less, becoming almost constant. Note also that the
loops have a common “centre” around which they are symmetrical.

19



Input I(t)

E
q

u
il

ib
ri

u
m

 r
at

e 
y(
t)

Figure 7: The transient behaviour of y(t) for a simple periodic input function
I(t) with two different initial states. The two trajectories are in blue and
green, it is clear that both converge to the same closed loop, shown in red.
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Figure 8: The long-time behaviour of y(t) plotted against I(t) for periodic
inputs with different frequencies. The highest frequency in this image is
shown in black, the lowest in red. The dashed black line passes through the
corners on each loop.
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Figure 9: The transient behaviour of x(t) for a given periodic I(t), with
two different initial states. The two trajectories are in blue and green, each
converges to a different loop (both in red).

• Behaviour of loops: x against I
Again, when plotting the output, x(t) , against the input, I(t), both
the transient and long-time behaviour are of interest. The transient
behaviour is shown in figure 9. In this case the transient behaviour for
different initial states leads to different outcomes. The shape of the
loop to which each converges is the same, however they are displaced
from each other by a constant.

The I − x loops for different frequencies are shown in figure 10. Very
similar behaviour to that in figure 8 is seen, although the “corners” are
not present here. Also different is the lack of a common “centre” around
which the loops for all frequencies lie. Loops for lower frequencies have
a higher average output, as well as a larger amplitude.

• Behaviour of loops: x against y The transient behaviour of x− y loops
is not as interesting as for the other cases. The final behaviour is very
interesting however, and is shown in figure 11. Note that x and y are
related by the Preisach nonlinearity, as stated in (2.8), i.e.:

x(t) =
(P [η0]y

)
(t).

In other applications there is a direct correspondence between the area
of these loops and the energy dissipated due to hysteresis. As men-
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Figure 10: The long-time behaviour of x(t) for periodic inputs of different
frequency. The initial state is the same in each case. The highest frequency
is in black, the lowest in red.

tioned before, this can be interpreted as lost potential output in an
economic context.

The areas of these loops were estimated for a large number of different
periods. The results of this calculation as shown in figure 12. The
“losses”, per unit time, for higher frequency inputs are substantially
lower than those for slower inputs.

2.4.2 The effect of temporary shocks

Of key importance to the model under consideration is the response to tem-
porary stimuli — or shocks. As discussed in section 2.2, economic behaviour
does not “forget” the effects of boom periods or recessions. This heterostasis,
therefore, is an important feature for any macroeconomic model to display.

It has already been established that the long-term behaviour of the output
function x(t) depends specifically on the initial conditions of the system,
while the equilibrium rate, y(t), does not. This suggests that heterostasis is
present in the I − x relationship, but not in that of I − y.

To test this, a simple periodic input function I(t) with a small shock
was used as the input of the system. This function is plotted with the
corresponding y(t) and x(t) in figure 13. As expected, y(t) is disturbed by
the shock, but quickly retains its former levels. In contrast x(t), the output
itself, is permanently altered by the influence of the shock, and does not
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Figure 11: Graphs of the output, x(t) against the equilibrium rate, y(t) for
different frequencies. The same colouring scheme is used as before.
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Figure 12: Estimates of the areas of x − y loops per unit time,
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Input I(t)

Output x(t)

Equilibrium rate y(t)

Figure 13: The effect of a temporary shock on the system. I(t) is periodic
except for a small region where a continuous perturbation is added. The
resulting y(t) quickly returns to pre-shock levels, x(t) displays heterostatic
behaviour.

return to previous levels.
This system is a particularly simple model, and can only serve as a pro-

totype model in order to demonstrate the potential for models incororating
hysteresis. As such its clear derivation from first principles allows for qual-
itative behaviour to be matched closely to the associated assumptions, and
the richness of the behaviour to be demonstrated. In order to be useful in a
quantitative sense, however, work needs to be done in several directions, in-
cluding the identification of a suitable Preisach density functions, and fitting
to actual data. We return to this question after the next section.
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Figure 14: Supply and demand curves.

3 Hysteresis and price plasticity in analysis

of supply and demand

In this section we apply the ideas developped in the previous section to an-
other key aspect of fundamental macroeconomic thought. The analysis of
supply and demand curves is one of the central ideas behind neoclassical
qualitative economic analysis (Mankiw, 2006). They express the relation-
ships between the prices of products or services and the aggregate quantities
demanded by the consumers or potentially supplied by producers at the prices
in question.

The standard illustration of the supply and demand curves is shown in
figure 14. Often they are represented as segments of straight lines (approx-
imating more complex nonlinear functions on finite intervals). Economics
textbooks use the horizontal axis for quantity of the product and the vertical
axis for the price. Generally, it is assumed that the supply curve S = fS(P ),
where S is the quantity that producers choose to supply to the market at a
particular price P , is a monotonously increasing function of price P , and the
demand curve D = fD(P ), where D is the quantity demanded by consumers
at a particular price P, is a monotonously decreasing function of price P .

The intersection of the two curves defines an equilibrium price and an
equilibrium quantity of the product in question. The equilibrium price Peq
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is the solution of the equation:

fS(·) = fD(·),

and the equilibrium quantity Qeq is defined by

Qeq = S = D.

The classical assumptions are that (a) all the of processes in the economy
occur at a slow pace without “frictions” (adiabatic process assumption); (b)
the supply and demand curves are the same for rising and falling prices (sym-
metry assumption); (d) tastes and production technologies do not change
when prices are away from their equilibrium values; and (d) these curves do
not change on the characteristic time scale of interest. Under these assump-
tions the quantity of product on the market and the price of the product
both reach their respective equilibrium values.

3.1 Supply with memory

In real markets not all of the assumptions of the classical supply–demand
model are satisfied. In particular, the characteristic times of the various pro-
cesses that take place in the economy do matter, and the final equilibrium
production and price for a product or service may depend on these charac-
teristic times. Marshall (1890) used the example of the burning of cotton
fields during the US Civil War of the 1860s to point out that learning by
consuming, or by producing, produced shifts in demand and supply that
would remain after the cotton field were replanted after the war. In the of-
ten substantial time interval between investing into productive capacity and
bringing a product to the market, the market price could well change. This
does not mean, though, that the production originally planned given a par-
ticular expected product price will cease if the actual price turns out to be
lower than expected. Once production has taken place on the basis of an
expected product price P1 = β it will only be economically sensible to cease
production if the actual market price falls to some P2 = α < β. This is due to
the investment which has been sunk in the production process, which includes
the costs of product-specific investment, the cost of expanding the workforce,
etc., and is illustrated in figure 15. The values of β (start price) and α (stop
price) are likely to be different for various companies, depending on the local
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Figure 15: Individual firm’s production decision. If price rises above β,
production starts if it was not already in progress. If the price is below α,
no production takes place. In the region between the two thresholds, either
situation is possible. This type of system is known as a non-ideal relay, and
underlies the Preisach nonlinearity

investment profile, the product-specificity of the investment, marketing ex-
posure and other company-specific conditions. This means that the supply
curve, in general, should behave differently for increases and decreases in
price. This behaviour is related to the traditional notion of price elasticity
in the same manner as plasticity is related to elasticity in mechanics, hence
the term “price plasticity”.

In the model that follows we retain a simple specification of the demand
side of the market. Over the time frame used the shape of the demand curve
is assumed to be fixed. A “par” price will be defined as one lying on this
demand curve. In the illustrative example discussed below we use a straight
line with a negative slope to describe demand curve behavior. In general,
however, the demand curve could be a monotonically decreasing nonlinear
function.

The main innovation comes in the specification of the supply side of the
market (see Piscitelli et al., 1999). As the market price increases, new pro-
ducers may choose to join the already active ones in production, or active
producers may choose to expand their production. The increase from some
initial price to a new higher price stimulates additional production and an
increase in market supply. Thus the supply curve depends on the distribution
of the thresholds at which firms switch from inactivity to activity (β) or in
the other direction (α). This distribution of thresholds is a measure on the
half plane β > α, and in the continuum limit can be modelled by a density
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Figure 16: The Preisach nonlinearity, illustrating the major hysteresis loop
(blue) and a smaller secondary loop (green).

function (the Preisach function mentioned in the previous section) µ(α, β).
The Preisach nonlinearity (2.6) as described in the previous section describes
the behaviour of such an aggregation of non-ideal relays. A good interactive
demostration of the Preisach nonlinearity can be found at the interactive
website by Flynn et al. (web page). A major effect of Preisach hysteretic
behaviour is that the supply relationship now also depends upon the prehis-
tory of the price, and not just the current value of the price. The “loop”
behaviour of hysteretic systems, in particular the Preisach nonlinearity, is
shown in figure 16. For a given value of the input (price in our applica-
tion), an interval of possible outputs (supply here) exists. The particular
branch taken is determined by the prehistory of the input — in particular
the non-dominated extremum values of the input.

There is a finite adjustment time for both prices and production. If the
system finds itself shocked away from a particular equilibrium it will try to
restore some other equilibrium through price adjustments and/or changes in
the level of production. However, these changes are not instantaneous. The
characteristic times of price and output adjustments (or, more exactly, their
inverses) are parameters in the model.
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3.2 Model definition

The dynamics of the system described above can be presented in terms of the
variables Q (total quantity of production) and P (market price) by the fol-
lowing system of operator-differential equations incorporating Preisach hys-
teresis.

dQ

dt
= k1 (S −Q) ,

dP

dt
= k2 (Ppar − P ) ,

S = P [η0] P, (hysteresis link)

Ppar = FD(Q).

The parameters k1 and k2 are, as mentioned, the inverse characteristic ad-
justment times for production and price respectively. The interaction links
are S = P [η0] P , which is a Preisach nonlinearity, the main innovation in this
model; and Ppar = FD(Q), which is the “par” price based upon the demand
curve. In other words, FD(Q) is the price that would be requred to clear the
market given a production quantity of Q. The demand curve is assumed to
be fixed over the time-scale of the model.

The system is determined fully by the choice of suitable initial conditions.
These include the initial price and production levels, P0 and Q0 respectively,
and an initial state, η0, for the Preisach nonlinearity in the hysteresis link.
The system will evolve to an equilibrium state, as in the classical model.
In this model, however, a range of possible equilibrium price–output pairs
arises. This is illustrated in figure 17, where the envelope curves of the hys-
teresis link are plotted with the demand curve. The particular demand curve
and Preisach nonlinearity shown in the figures were chosen for illustrative
purposes.4

This system is closed by the choice of initial conditions — both the initial
price-output pair, (P0, Q0), and an initial state for the Preisach nonlinearity,
which encodes prior variations in the price. The eventual range of equilibrium
values of P and Q are determined by these choices. An extreme example is

4The Preisach nonlinearity in these illustration uses a “uniform” density, where all
threshold pairs (α, β) are equally likely. This is purely for simplicity because the type
of density functions to use in economic models is an open question. In an econometric
application to explaining unemployment time series (Darby et al., 2006) the estimates
were not sensitive to the density functions used.
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Figure 17: Hysteresis envelope (blue) and demand curve (green), showing the
range of allowable equilibrium points (red). Any point within the envelope
is an allowable input-output pair for the Preisach nonlinearity. This leads to
an interval of allowable equilibrium prices. The particular price “chosen” by
the system depends on the prehistory of price variations.

given in figure 18, where the same initial price and output conditions give
rise to very different equilibria due to differences in the initial state of the
Preisach nonlinearity. This extreme example brings out the qualitative prop-
erty that the equilibrium price and output levels depend on past variations
in the market price. Introducing hysteretic effects into a model of supply and
demand dynamics provides for a much richer behaviour, where past shocks
have permanent effect on market outcomes.

4 Conclusions

The purpose of this paper has been to investigate the implications of relax-
ing some fundamental assumptions in mainstream macroeconomic theory.
When applied to some very simple example models, this change leads to het-
erostasis and the persistence of the effects of temporary shocks. Hysteresis
effects are very plausible characteristics of economic behaviour, and the sim-
ple models outlined show how hysteresis can be introduced into the bedrock
of economic assumptions. Further, the use of the Preisach nonlinearity is a
link between micro-level behaviour, in the form of the non-ideal relay, and
aggregate macroeconomic outcomes.
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Figure 18: Evolution of the system to equilibrium price/production levels.
The same initial values P0 and Q0 give rise to different equilibria due to the
influence of historical price variations.

A major open question in efforts to use the Preisach nonlinearity in
macroeconomic modelling is the identification problem — finding a suitable
Preisach density function for the distribution decision thresholds. Empirical
implementation requires being able to identify such density functions. Some
of the suitable data is not publicly available due to commercial sensitivity
(an example considered in Twomey (2008) is the Irish mobile phone market).
A further possibility is the use of experimental methods to identify switching
points and their distributions.

Acknowledgements

Leonid Kalachev was partially supported by the University of Montana fac-
ulty exchange grant. Some of this research was carried out while Hugh
McNamara was supported by IRCSET Embark grant RS/2004/92. Alexei
Pokrovskii was partially supported by Federal Programme ‘Scientists of In-
novative Russia’ (grant 2009-1.5-507-007).

References

Bertotti, G. and I. D. Mayergoyz, eds. (2006): The Science of Hys-
teresis, Amsterdam: Elsevier Academic Press.

31



Brokate, M. and J. Sprekels (1996): Hysteresis and phase transitions,
vol. 121 of Applied Mathematical Sciences, New York: Springer-Verlag.

Caballero, R., E. Farhi, and M. L. Hammour (2006): “Speculative
Growth: Hints from the US economy,” American Economic Review, 96,
1159–1192.

Calvo, G. A., A. Izquierdo, and E. Talvi (2006): “Phoenix miracles
in emerging markets: recovering without credit from systemic financial
crises,” NBER Working Paper 12101, National Bureau of Economic Re-
search, Cambridge, MA.

Cerra, V. and S. C. Saxena (2005): “Growth dynamics: the myth of
economic recovery,” IMF Working Paper WP/05/147, International Mon-
etary Fund.

——— (2008): “Growth Dynamics: The Myth of Economic Recovery,”
American Economic Review, 98, 439–57.

Colander, D., H. Follmer, A. Haas, M. D. Goldberg, K. Juselius,
A. Kirman, T. Lux, and B. Sloth (2009): “The Financial Crisis and
the Systemic Failure of Academic Economics,” University of Copenhagen
Dept. of Economics Discussion Paper (SSRN eLibrary).

Cross, R. (1993): “On the foundations of hysteresis in economic systems,”
Economics and Philosophy, 9, 53–74.

Cross, R., M. Grinfeld, and H. Lamba (2009): “Hysteresis and eco-
nomics,” Control Systems Magazine, IEEE, 29, 30–43.

Darby, J., R. Cross, and L. Piscitelli (2006): “Hysteresis and unem-
ployment: a preliminary investigation,” in Bertotti and Mayergoyz (2006),
667–699.

Everett, D. H. and W. I. Whitton (1952): “A general approach to
hysteresis,” Transactions of the Faraday Society, 48, 749–757.

Ewing, J. A. (1885): “Experimental research in magnetism,” Philosophical
Transactions of the Royal Society of London, 176, 523–640.

Fisher, I. (1925): Mathematical investigation in the theory of value and
prices, Yale University Press, New Haven.

32



Flynn, D., H. McNamara, P. O’Kane, and A. V. Pokrovskii (2006):
“Application of the Preisach model to soil-moisture hysteresis,” in Bertotti
and Mayergoyz (2006), 689–744.

Flynn, D. and O. Rasskazov (2005): “On the integration of an ODE
involving the derivative of a Preisach nonlinearity,” Journal of Physics:
Conference Series, 22, 43–55.

Flynn, D., O. Rasskazov, A. Zhezherun, and M. Donnegan (web
page): “Systems with Hysteresis,” http://euclid.ucc.ie/hysteresis/,
dept. Applied Maths, University College Cork.

Fonseca, G. L. (web page): “The History of Economic Thought Website,”
http://homepage.newschool.edu/het, dept. of Economics, New School
for Social Research, New York.

Friedman, M. (1993): “The “Plucking Model” of business fluctuations
revisited,” Economic Enquiry, 31, 171–177.
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