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Abstract 

Expenditure side and income side GDP are both measured at the quarterly frequency in 
the US and contain measurement error. They are noisy proxies of 'true' GDP. Several 
econometric methods exist for producing estimates of true GDP which reconcile these 
noisy estimates. Recently, the authors of this paper developed a mixed frequency recon­
ciliation model which produces monthly estimates of true GDP. In the present paper, we 
investigate whether this model continues to work well in the face of the extreme observa­
tions that occurred during the pandemic year of 2020 and consider several extensions of it. 
These extensions include stochastic volatility and error distributions that are fat tailed or 
explicitly allow for outliers. We also investigate the performance of conditional forecast­
ing, where we estimate our models using data through 2019 and then use these to nowcast 
throughout 2020. Nowcasts are updated each month of 2020 conditionally on the new 
data releases which occur each month, but the parameters are not re-estimated. In total 
we compare the real-time performance of 12 nowcasting approaches over the pandemic 
months. We find that our original model with Normal homoskedastic errors produces 
point nowcasts as good or better than any of the other approaches. A property of Normal 
homoskedastic models that is often considered bad (i.e. that they are not robust to out­
liers), actually benefits the KMMP model as it reacts confidently to the rapidly evolving 
economic data. In terms of nowcast densities, we find many of the extensions lead to 
larger predictive variances reflecting the great uncertainty of the pandemic months. 
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