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Abstract

We develop a flexible semi-structural time series model to estimate jointly several macroeco-
nomic “stars” — i.e., unobserved long-run equilibrium levels of output (and growth rate of
output), unemployment rate, the real rate of interest, productivity growth, price inflation,
and wage inflation. The ingredients of our model are in part motivated by economic theory
and, in part, by the empirical features necessitated due to the changing economic environ-
ment. Following recent literature on inflation and interest rate modeling, we explicitly model
the links between long-run survey expectations and stars to improve the stars’ economet-
ric estimation. Our approach permits time-variation in the relationships between various
components, including time-variation in error variances. To tractably estimate our large
multivariate model, we use a recently developed precision sampler that relies on Bayesian
methods. Our approach’s by-products are the time-varying estimates of the wage and price
Phillips curves, passthrough between prices and wages, which provide new insights into
these empirical relationships’ instability in US data. Generally, the contours of our stars
echo those documented elsewhere in the literature – estimated using smaller models – but
at times the estimates of stars are different, and these differences can matter for policy.
Furthermore, our estimates of the stars are among the most precise. Lastly, we document
the competitive real-time forecasting properties of our model and, separately, the usefulness
of stars’ estimates if they were used as steady-state values in external models.
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1. Introduction

The economic concept of a long-run equilibrium level (often denoted with the “star” symbol)

is central to macroeconomics. This is because it provides a conceptual reference point (bench-

mark) to understand various macroeconomic developments. It is thought of as a reference point

because it reflects the fundamental structural aspect of the economy. Hence, the deviations in

real GDP from its long-run equilibrium path, or in deviations from equilibrium in other macroe-

conomic indicators, reflect cyclical and idiosyncratic fluctuations. The assumption is that these

fluctuations die out in the long-run, and the economy gravitates to its long-run equilibrium.

Dynamics of cyclical changes and the pace of their adjustment towards the long-run equilibrium

are of interest to macroeconomists. However, effective identification of cyclical fluctuations in

any macroeconomic aggregate requires knowledge of its long-run equilibrium.

In this paper, we consider the macroeconomic stars of broader interest to macroeconomists

and policymakers: the equilibrium rate of productivity growth (p-star), the level of poten-

tial output (gdp-star), the growth rate of potential output (g-star), the equilibrium level of

the unemployment rate (u-star), the equilibrium level of the real rate of interest (r-star), the

equilibrium rate of price inflation (pi-star), and the equilibrium rate of nominal wage inflation

(w-star).1

The very assumption that a long-run equilibrium exists implies that in the long-run, the

economy is growing at potential, inflation is stable around its trend rate, the unemployment

rate reflects a combination of structural and frictional factors, i.e., there is no cyclical pressure,

nominal wages grow at a rate equal to the sum of trend productivity growth and trend inflation,

which implies that real wages rise at the same rate as growth in labor productivity, and the real

interest rate reflects the rate consistent with output growing at potential and stable inflation.2

As discussed in Weber et al. (2008), conceptually, determining stars’ estimates appears

straightforward. However, in practice, it is fraught with difficulties. The difficulties stem from

the fact that the values of the stars and their determinants are unobserved. To infer the

estimates of the stars, a range of statistical and econometric methods are applied to observ-

able historical data. These methods range from statistical univariate filters (e.g., Hodrick and

Prescott, 1997; Christiano and Fitzgerald, 2003; Ashley and Verbrugge, 2009) to multivariate

models, including semi-structural time-series models (e.g., Pescatori and Turunen, 2016; Morley

and Wong, 2020), and fully structural DSGE models (e.g., Del Negro et al., 2017).

Economic theory posits that the structural aspects of the economy, which inform the values

of the stars, change slowly. Therefore, methods that deliver estimates of stars that change only

1The subset of these stars, p-star, g-star, u-star, and r-star, reflect the fundamental structural features of the
economy whereas others, pi-star and w-star are thought to be influenced by centrals banks and monetary policy.

2The literature has referred to the concept of long-run equilibrium using different terminologies, such as
“natural”, “neutral”, “trend”, “steady-state”, and “long-run”. There are subtle differences among them, but they
can be interpreted as the same for the purpose of this paper. In some studies, especially using Dynamic Stochastic
General Equilibrium (DSGE) models, the concept of the natural rate refers to medium-horizon equilibrium, and
in these same models, the concept of steady-state is used to refer to the long-run equilibrium.
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gradually have more traction than methods that give less smooth estimates. According to this

criterion, multivariate unobserved components (UC) models, which are statistical models that

use economic theory to frame the empirical specification, have been shown to provide reasonable

estimates of the stars (e.g., Kuttner, 1994; Basistha and Nelson, 2007; Laubach and Williams,

2003; Chan, Koop, and Potter, 2016). Hence, they are the dominant methods for obtaining

time-varying estimates of the stars.

However, with few exceptions, the popular multivariate UC models that provide estimates

of time-varying stars focus on a small number of observables, often just two or three, and have

a minimal structure (e.g., Laubach and Williams, 2003). A priori, one would expect a specifi-

cation based on greater amounts of information and a richer structure to provide more reliable

estimates. Indeed, Taylor and Wieland (2016) make a similar argument in the importance of

appropriately accounting for trends in the determinants of the r-star to estimate r-star correctly.

Specifically, Taylor and Wieland (2016) point out, “What appear to be trends in the equilibrium

interest rate may instead be trends in other policy variables that affect the economy.” They

emphasize that omitted variable(s) and relatedly omitted equation(s) problems can severely

affect the reliability of the estimates of the r-star.

As a result, in the past few years, several papers have provided estimates of the stars using

UC models with a larger number of indicators and an expanded structure. For example, Jo-

hannsen and Mertens (forthcoming) [henceforth JM], Pescatori and Turunen (2016), Del Negro

et al. (2017), among others, have examined the roles of additional determinants in explaining

r-star. Pescatori and Turunen (2016) enrich the underlying structure to estimate r-star. In

particular, to extract a reliable estimate of the output gap, they bring additional information

from the Congressional Budget Office (CBO)’s estimate of the output gap by treating it as a

noisy measure of the “true” output gap. The improved estimate of the output gap affects the

estimates of r-star and provides new insights about r-star estimates’ movements.3

Similarly, Chan, Koop, and Potter (2016) – henceforth CKP – and Chan, Clark, and Koop

(2018) – henceforth CCK – enrich the econometric specification to estimate pi-star. In par-

ticular, CCK introduces an explicit role for long-run survey expectations in influencing pi-star

estimates. CKP illustrates the value of modeling u-star and pi-star as bounded random walk

processes. More recently, Crump et al. (2019) combine a range of labor market indicators across

demographic groups with survey expectations of inflation to pin down the estimates of u-star.

In this paper, we take on the challenge of jointly estimating several macroeconomic stars

simultaneously, including g-star (and gdp-star), u-star, p-star, pi-star, w-star, and r-star, using

a semi-structural time series model (aka multivariate UC model with a particular structure

3Morley and Wong (2020) and Chan (2019) propose alternative modeling framework based on VARs to
estimate the long-run equilibrium values. The advantage of the VAR based framwork is the ability to handle larger
amounts of information conveniently and flexibly compared to UC models. On the other hand, the advantage
of UC modeling, as emphasized by Chan, Koop and Potter (2016), is the availability of the direct estimates of
stars, which in our case proves quite convenient to allow for direct modeling of the relationships between various
stars. In VARs, the long-run estimates are implied estimates, hence imposing long-run restricitions is not as
straightforward.
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informed from economic theory). For each star, we formulate a rich structure whose elements

are guided by past research. In doing so, we contribute to the literature in six important ways.

First, we develop a multivariate time-series model that provides direct estimates for all the

stars that are of most relevance to macroeconomic policymakers. In principle, proceeding with

the joint estimation of a framework that explicitly models the objects of interest and permits

interactions among them (e.g., stars) has the potential to provide more reliable estimates of the

objects compared than approaches that ignore them. The modeling of many variables directly

addresses critiques of omitted variable and omitted equation bias pointed out by Taylor and

Wieland (2016).

Our results indicate that specification choices matter for all stars considered, and there are

payoffs to modeling them jointly. For r-star and u-star, the choice of specification matters

the most, and least for g-star. Generally, the contours of our stars echo those documented

elsewhere in the literature, but at times are different, and these differences can matter for

policy. Interestingly, in the past decade, the estimates of r-star, pi-star, g-star (and output

gap), p-star, and u-star from our baseline model indicate remarkably similar inferences to those

documented elsewhere.

We also find that our models (with or without survey data) produce estimates of the output

gap that are similar to the CBO estimate, which is based on a production function approach

(see Shackleton, 2018). This result provides evidence supporting the common practice of using

the output gap estimates from the CBO as an exogenous variable in empirical macroeconomic

models (e.g., JM;Stock and Watson, 2020). We view this result as a useful contribution to the

applied macro literature.

Second, in our medium-scale model, we allow for time-variation in the important macroeco-

nomic relationships and in the error variances (i.e., stochastic volatility). Fernandez-Villaverde

and Rubio-Ramirez (2010), Koop and Korobilis (2010), Carriero et al. (2019), among many

others, highlight the importance of allowing for stochastic volatility in macroeconomic models.

Permitting time-varying relationships between model components will potentially lead to more

credible estimates and are arguably less susceptible to the Lucas critique. Also, new insights

can be provided on time-varying nature of important empirical macroeconomic relationships

such as the price Phillips curve, wage Phillips curve, passthrough between prices and wages,

and persistence in price and wage inflation dynamics.

To the best of our knowledge, features such as time-varying parameters and stochastic

volatility (SV) have not been implemented in a multivariate UC framework beyond a system

consisting of at most four variables (e.g., Berger et al., 2016). In principle, these empirical

features should help better distinguish between cyclical fluctuations and lower-frequency move-

ments in the macroeconomic aggregates considered in this paper. Our results indicate econom-

ically and statistically significant evidence of time-variation in these important relationships

and strong support for SV’s inclusion in our model equations. It lends support to the popular

narratives: “(price) Phillips curve has weakened over time,” “wage Phillips curve is alive,” and
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“weakening in the procyclicality of labor productivity.”

Third, we extend the CCK approach of using survey expectations to improve pi-star pre-

cision to other macroeconomic stars. Specifically, for each macroeconomic variable of interest,

we explicitly model the link between the unobserved “star” and the expectations about the

companion star contained in the Blue Chip survey of economic forecasters (or reported by the

Congressional Budget Office [CBO] when the survey estimate is not available). The long-run

survey expectations can be thought of as a hybrid forecast because it combines judgment based

on a range of information and forecast derived from a range of modeling approaches. Our use

of such a hybrid forecast implicitly serves as an additional channel through which the issue of

omitted variable bias is mitigated. By bringing in additional information from survey expecta-

tions, we find significant improvements in the precisions of the stars’ estimates. By-products

are the results describing the nature of the relationship between survey expectations and stars.

The results indicate that the relationship between the two is time-varying. In the context of

inflation expectations, CCK finds similar results.

Fourth, we provide a model to obtain real-time estimates of w-star (the long-run equilibrium

level of nominal wage inflation) and its determinants. Our choice of a particular specification for

w-star permits a time-varying model-based decomposition of w-star into its determinants p-star

and pi-star, as implied by economic theory. This specific decomposition is useful to monetary

policymakers, who often refer to developments in nominal wages to support their forecasts and

in related discussions on price inflation and employment.

Olivier Blanchard, recently suggested that the central bank, such as the Federal Reserve,

should target nominal wage inflation instead of price inflation.4 If in the future central banks

define a longer run goal for nominal inflation in a measure of wage inflation, then the framework

presented in this paper would prove valuable.

Our results provide strong evidence of time-varying wage Phillips curve in the post-1960 US

data, and we find that compared to the price Phillips curve, the strength of the wage Phillips

curve remains strong for longer, but has weakened since 1985.

Fifth, our empirical model can generate competitive real-time point and density forecasts

of macroeconomic variables of broader interest. Sixth, the estimates of the stars from our

model can potentially be used to inform the steady-state values for reduced-form VAR models

(and/or DSGE models). Previous research has shown that forecasting models, such as VARs

often benefit greatly from external information about steady-states informed by professional

forecasters’ long-run survey expectations (Wright, 2013; Tallman and Zaman, 2020). Using a

real-time forecasting horse-race, we show that estimates of stars from our model are competitive

relative to corresponding survey expectations (Blue Chip). Therefore, our framework provides a

potential source for obtaining the stars’ estimates in real-time. An advantage of our framework

compared to surveys is that it offers both point and density estimates for the stars.

4See page 61 of the transcript from the Brookings Institution WHAT’S (NOT) UP WITH INFLATION? , Oc-
tober 3rd, 2019. https://www.brookings.edu/wpcontent/uploads/2019/10/es 20191003 inflation transcript.pdf
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Our desire to build an empirical model with an expanded list of features, specifically (1) the

ability to produce estimates for several macroeconomic stars; (2) a richer structure underlying

the determinants of each macroeconomic star; (3) the use of long-run survey expectations; and

(4) allowing for time-varying parameters and stochastic volatility, leads to a very flexible but

heavily parameterized model.

We estimate this high-dimensional model using Bayesian techniques, which is a coherent ap-

proach to account for uncertainty. A heavily parameterized UC model admits a high possibility

that the estimates of the latent components (e.g., stars) will be subject to greater uncertainty

(reflected in wider probability bands) than reported elsewhere in the literature. On the other

hand, we are using more information that will likely help offset the increased parameter uncer-

tainty arising from a large parameterized model. The net effect on uncertainty is difficult to

know precisely a priori but can be determined empirically.

We find that the precision of the stars’ estimates (measured as the width of 90% credible

interval) from our model are on a par with recent studies highlighting the improved precision of

stars derived from their approaches (e.g., r-star by Del Negro et al., 2017; u-star by Crump et al.,

2019; pi-star by CCK). Our results indicate the crucial role of the long-run survey expectations

in improving the precision of the estimates.

The paper is organized as follows. The next section describes in detail the econometric

model and its variants. Section 3 describes the data and estimation. Section 4 presents and

discusses in detail the estimates of stars and other model parameters. Section 5 reports the

real-time forecasting results and a discussion comparing real-time and final estimates of stars.

Section 6 illustrates the ability of the model to handle the COVID-19 pandemic data. Section

7 concludes. This paper has a hefty supplementary appendix, which lists detailed Bayesian

estimation steps and many additional insightful results.

2. Empirical Macro Model and Variants

The ingredients of our macroeconomic econometric model are guided both by economic

theory, and by empirical considerations – namely, features that previous research have demon-

strated to be empirically relevant. These features include stochastic volatility and time-varying

parameters, which in turn imply time-varying predictability. Collectively, these empirical fea-

tures permit modeling changing macroeconomic relationships in a flexible way.

We represent our empirical model using six sets of equations, which we denote blocks. These

six blocks, which allow for contemporaneous interactions between them, characterize the joint

dynamics of the unemployment rate, output growth, labor productivity growth, price inflation,

nominal wage inflation, nominal interest rate, and corresponding stars. To be sure, the model

assumes that all innovations are uncorrelated both serially and across equations. However, we

emphasize that any assumed current period correlations between the cyclical components and

or between stars are directly modeled via the model equations that define the contempora-
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neous relationships between the components (e.g., cyclical output gap at time t with cyclical

unemployment gap at t; r-star and g-star).

Before we describe the model, we provide some necessary background information, including

the econometric definition of the star and the usefulness of long-run survey expectations in the

estimation of stars.

2.1. The econometric notion of a long-run equilibrium

Following CCK, Mertens (2016), Lee and Nelson (2007), Morley (2002), among many, this

paper defines the long-run equilibrium (or star) of a particular macroeconomic series as its

infinite-horizon forecast conditional on the current information set. This definition of a star is

consistent with the notion of Beveridge-Nelson trend decomposition, and extensive literature

has adopted this approach to estimate stars. Equivalently, as commonly defined in the trend

estimation literature, the infinite horizon forecast could be viewed as an estimate of trend

conditional on the current information set (e.g., CCK, Garcia and Poon (2018), Mertens (2016),

Lee and Nelson (2007), Morley (2002)). As discussed in Mertens (2016), among others, different

information sets would likely yield different estimates of the infinite-horizon forecast (or trend).

Mertens showed that including survey projections of long-term inflation (hereafter long-run

survey forecasts) in the information set led to more precise and forward-looking estimates of

trend inflation.

The link between the infinite-horizon forecast and the underlying trend is described well

by the unobserved components (UC) model (see Laubach and Williams, 2003; Lee and Nelson,

2007; Mertens, 2016; CCK). In a UC model, a series (Yt) is typically represented as a sum of a

nonstationary trend component Y ∗t , which is assumed to evolve slowly and a stationary cycle

Y c
t , whose infinite-horizon conditional expectation is assumed to be zero. Accordingly,

Yt = Y ∗t + Y c
t . (1)

The trend component Y ∗t is interpreted as the limiting forecast of the series (conditional on

the information set It) as the forecast horizon tends to infinity,

lim
j→∞

E[Yt+j |It] = Y ∗t . (2)

Differencing the above equation yields,

Y ∗t = Y ∗t−1 + lim
j→∞

E[Yt+j |It]− lim
j→∞

E[Yt+j |It−1] = Y ∗t−1 + et, et ∼ N(0, σ2
e). (3)

which suggests a random walk process for the trend Y ∗t .5 It also suggests a stationary,

5The commonly adopted assumption of modeling Y ∗
t as a random walk is partly due to consensus among

macroeconomists that the factors driving the long-run equilibrium levels are perceived to be quite persistent
(e.g., Lee and Nelson, 2007). In practice, the assumption of a (driftless) random walk has generally worked quite
well, in that it has provided reasonable estimates of the stars (e.g., Clark, 1987; Kuttner, 1994; Laubach and
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ergodic mean-zero process for Y c
t .

Intuitively, the above set of assumptions imply that once the effects of the shocks have fully

played out, the macroeconomic series of interest, Yt gravitates to its underlying trend level, Y ∗t .

As discussed in CCK, various statistical and econometric models could fit within the above-

specified decomposition. This paper formulates a specific unobserved components time series

model and its variants.

2.2. The role of survey expectations

As discussed in the introduction, an important contribution of this paper is to provide a

direct role for long-run survey expectations in refining the stars’ estimates. Specifically, we follow

the approach of CCK (and Pescatori and Turunen, 2016). These papers explicitly estimate an

equation linking the observed measure of a long-run forecast obtained from external sources

(survey in the case of CCK and CBO projection of the output gap in Pescatori and Turunen,

2016) to an unobserved object of interest. We extend their approach to the macroeconomic

variables considered in this paper.

Several papers have documented an essential role of long-run survey (and institutional)

forecasts in helping refine the econometric estimation of model parameters, including the latent

components (e.g., pi-star: Kozicki and Tinsley, 2012; Mertens, 2016; CCK; Mertens and Nason,

2020; gdp-star: Pescatori and Turunen, 2016; r-star: Del Negro et al., 2017). Specifically,

Mertens and Nason (2020), CCK, Mertens (2016), and Kozicki and Tinsley (2012), in using

different methodologies (in combining survey data with model forecasts) to estimate trend in US

inflation, show that long-run survey forecasts of inflation deliver crucial additional information

(beyond the recent inflation history) in refining trend estimates and improving model fit. In

a similar vein, Pescatori and Turunen (2016) document the usefulness of CBO’s projection of

the potential output gap in improving their model’s output gap precision. It is this particular

literature that motivates us to consider long-run survey forecasts in our large-scale econometric

model.

The advantage of survey (and institutional) forecasts stems from the fact that they could be

viewed as hybrid forecasts, i.e., a combination of judgment and forecasts derived from various

modeling approaches. The fact that human judgment enters into survey expectations is an

important reason for their success. As discussed by Kozicki and Tinsley (2012) and others, the

good forecasting properties are partly because survey participants have at their disposal a wide

range of indicators, including central bank communications, and information about changes in

the tax laws, etc. The patterns gleaned from this large information set can help shape opinions,

including any perceived structural change, which can immediately influence expectations about

the long-run.

The usefulness of this hybrid forecast measure is appealing from both theoretical and prac-

tical perspectives. From a theoretical standpoint, the notion of such a type of hybrid forecast

Williams, 2003; Mertens, 2016).
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is well-aligned with the New-Keynesian view that emphasizes the importance of allowing for

interlinkages between the current state of the economic variables and their expectations about

the future in determining the relevant stars (see Weber et al., 2008).

From a practical point of view, such a hybrid measure helps limit the number of variables

(i.e., information) that need to be brought into the model. Put differently, explicitly utilizing

long-run survey expectations through an equation linking these expectations to the correspond-

ing model’s latent objects could be thought of as a short-cut to enrich the necessary information

set used in model estimation. Furthermore, in high-dimensional models, such as the one de-

veloped in this paper, the use of long-run survey projections, which are targeted and direct

measures of stars, could help anchor model-based estimates of stars to reasonable values and

have the potential to improve precision of the estimates.

Accordingly, in this paper, with the exceptions of nominal wage inflation and labor pro-

ductivity, for each of the remaining four variables, we model a direct link between long-run

survey projection (or the long-run CBO projection in the years for which survey projections are

unavailable) and the corresponding star using the following econometric equations6,

Zjt = Cjt + βjj∗t + εzjt , ε
zj
t ∼ N(0, σ2

zj), j = π, u, g, r (4)

Cjt = Cjt−1 + εcjt , ε
cj
t ∼ N(0, σ2

cj), j = π, u, g, r (5)

where π refers to price inflation, u refers to the unemployment rate, g refers to real GDP

growth, r refers to the real interest rate, Zjt refers to the long-run survey forecast corresponding

to the variable j, and j∗t is the unobserved j star.

Cjt is a time-varying intercept assumed to evolve as a RW process to possibly capture the

permanent wedge between survey estimate and the model-based star. This wedge can arise due

to several reasons, including the fact that star is assumed to be the infinite-horizon forecast,

whereas the survey forecast refers to the average forecast for the five-year period starting seven

years into the future in the case of BC and ten-year ahead forecast in the case of SPF (for price

inflation).

The above set of equations define a simplistic and flexible relationship between the long-run

survey expectations and the star. 7

2.3. Unemployment block

The long-run equilibrium level of unemployment (u-star) is the unemployment rate that

prevails when output is growing at potential, and the economy adds jobs so as to maintain the

full-employment level. This nonzero equilibrium level of unemployment is primarily the result

6For the long-run inflation forecast, we use the Survey of Professional Forecasters (SPF)/PTR, and for the
long-run forecasts of the other three variables, we use the Blue Chip (BC) survey.

7We note that we adopt a relatively less flexible relationship between survey forecasts and stars than CCK.
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of labor-market imperfections caused by frictional and structural aspects of the labor markets.

As discussed in Crump et al. (2019), two approaches are commonly used to estimate u-star.

The first approach applies UC modeling to detailed labor market data (such as job vacancies,

firm’s recruiting intensity, demographic changes, flows into and out of unemployment) to extract

respective trends. These trends are used to construct implied estimates of u-star (e.g., Daly,

Hobijn, Sahin, and Valleta, 2012; Davis, Faberman, and Haltiwinger, 2013; Barnichon and

Mesters, 2018; Tasci, 2012). The second approach uses a combination of information from

prices (and or nominal wages, survey expectations) and the estimated Phillips curve relationship

between price inflation and the aggregate unemployment rate to backout the estimate of u-

star.8 Various modeling techniques ranging from parsimonious UC modeling to structural

DSGE models are applied to estimate the Phillips curve relationship (e.g., Staiger, Stock, and

Watson, 1997; Orphanides and Williams, 2002; Lee and Nelson, 2007; CKP; Gali, 2011).

Following CKP, we posit that the observed unemployment rate is decomposed into a (bounded)

RW trend component (u-star) and a stationary cyclical component. The cyclical component

is modeled as an AR(2) process. The use of a parsimonious (time-invariant) AR2 process to

identify the cyclical component of the unemployment rate is a commonly used assumption, in

our case motivated by a recent string of empirical studies, e.g., Lee and Nelson (2007), Gali

(2011), Stock and Watson (2015), CKP, Tallman, and Zaman (2017), and Gali and Gambetti

(2020), who all document reasonable patterns of the cyclical unemployment component (i.e.,

movements in this component correlate quite well with the NBER business cycle).9

More generally, the assumption of an AR2 to model the cyclical component of macroeco-

nomic variables has a long tradition, at least going back to Clark (1987). However, because we

are also modeling the output gap (i.e., level of real GDP minus level of potential real GDP),

we depart from the previous literature by augmenting the AR2 unemployment gap with the

output gap (denoted ogap) as an additional explanatory variable. Sinclair (2009), Grant and

Chan (2017), and Berger, Everaert, and Vierke (2016), among several others, document the

empirical importance of jointly modeling the unemployment rate gap and the output gap.

Similarly, as shown later, we add information from the unemployment gap when modeling

the output gap. We find that the joint modeling of the output gap and the unemployment gap

is empirically and economically useful (confirming previous research findings, e.g., Fleischman

and Roberts, 2011). In addition, joint modeling of both the output gap and the unemployment

gap allows us to estimate the strength in the relationship between the two cyclical components,

popularly known as Okun’s law. In equation (7), the coefficient φu captures the contempo-

8As mentioned in Crump et al. (2019), one of the criticisms of this approach is that it will be impacted by the
breakdown of the Phillips curve relationship post 2007. However, by allowing time-variation in the coefficients
capturing the price and wage Phillips curve relationships, as we do, our approach should face less of a problem.
In addition, as illustrated in Del Negro, Giannoni, and Schorfheide (2015) and Clark (2014) bringing information
from long-run survey expectations of inflation (as we do) should further help capture the inflation behavior in
the post 2007 period.

9CKP explores the empirical importance of allowing for time-variation in the parameters of AR2 process,
and finds that data prefers the time-invariant AR2 process, hence validating the widely used assumption of a
simple AR2 process.
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raneous relationship between the output gap and the cyclical unemployment rate gap. The

estimate,
1−ρu1−ρu2

φu could be interpreted as the Okun’s law coefficient.

We note that when jointly modeling output and the unemployment rate, most researchers

assume a common cyclical component between the two. However, in light of the empirical

evidence that cyclical unemployment displays more persistence than the output gap (e.g., Berger

et al., 2016), we model two separate cycles linked to each other via Okun’s law relationship.

As shown in Berger et al. (2016), a specification that entertains two separate cycles (cyclical

unemployment and the output gap), the data support a time-invariant parameter describing

the Okun’s law relationship. In contrast, a specification with a common cyclical component

favored a time-varying Okun’s law relationship (adding support to Knotek, 2007).

In a nutshell, the inference of Berger et al. (2016) suggests that time-variation in the

parameter capturing Okun’s law reflects the sluggish response of the cyclical unemployment

to movements in the output gap. Once they allowed for a sluggish response of the cyclical

unemployment rate by adding persistence, via one-period lag of the cyclical unemployment rate,

evidence of a time-varying Okun coefficient disappears. We found similar evidence. Hence, we

adopt the modeling of two separate cycles and a time-invariant Okun’s law relationship for

our baseline setup; this has the added advantage of requiring estimation of significantly fewer

parameters.10

With the exception of CKP, most of the literature models u-star as a driftless RW. The

use of an unrestricted RW process has empirically been shown to work well, but CKP shows

that modeling u-star as a bounded RW process is even better. Motivating their use of bounds

is because, by construction, the unemployment rate is a bounded variable, which implies that

the long-run equilibrium in the labor market would restrict the movements in u-star within a

bounded interval.11

Accordingly, we model u-star as a bounded RW, where the bounds’ values are fixed at 3.5%

(lower bound) and 7.5% (upper bound).12 Following Stella and Stock (2015), CKP, and Tallman

and Zaman (2017), the variance of the error in the cyclical component is not allowed to vary

over time.

Ut = U∗t + U ct (6)

Ut − U∗t = ρu1(Ut−1 − U∗t−1) + ρu2(Ut−2 − U∗t−2) + φuogapt + εut , ε
u
t ∼ N(0, σ2

u) (7)

10Bayesian model comparison assessment slightly preferred the approach of two separate cycles with time-
invariant Okun’s law compared to common cycle with time-varying Okun’s law parameter. Also, we note that
Sinclair (2009) and Grant and Chan (2017) model two separate cycles, linked through a time-invariant parameter.

11CKP argue that economic forces that govern the movements in u-star are slow-moving and those forces would
not cause the unemployment rate to fall to levels close to zero or to levels that are higher than the previous peaks
caused by recessions.

12These values are informed by estimating the CKP model over our estimation sample, and are close to values
reported in CKP based on their estimation sample. As a further check, most estimates of the u-star reported in
commonly cited literature fall within the bounds we use in this paper.
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where, ρu1 + ρu2 < 1, ρu2 − ρu1 < 1, and |ρu2 | < 1

U∗t = U∗t−1 + εu∗t , ε
u∗
t ∼ TN(au − U∗t−1, bu − U∗t−1; 0, σ2

u∗) (8)

where the notation TN(a, b;µ, σ2) refers to normal distribution with mean µ and variance

σ2 but truncated in the interval (a, b).

Lastly, the equation relating long-run survey projection of the unemployment rate, Zu to

U∗,

Zut = Cut + βuU∗t + εzut , ε
zu
t ∼ N(0, σ2

zu) (9)

Cut = Cut−1 + εcut , ε
cu
t ∼ N(0, σ2

cu) (10)

2.4. Output block

We are interested in both the potential output (i.e., gdp∗) and the growth rate in potential

output (i.e., g∗). To feasibly estimate both these latent processes, we follow the commonly

adopted approach, which decomposes the level of aggregate output into the level of potential

output and a cyclical component (output gap), where the cyclical component is defined as the

deviation of observed aggregate output level from potential output. This simple decomposition

has a long tradition going back to Harvey (1985) and Clark (1987).

gdpt = gdp∗t + ogapt (11)

where gdp ≡ log(GDP ) and gdp∗ refers to potential output, which is unobserved.

A common approach to model gdp∗ is to assume a random walk with a time-varying drift

term (i.e., the local level trend process), where the time-varying drift term (interpreted as g∗)

is assumed to follow a random walk process (to allow for a stochastic g∗). More recently, Chan

and Grant (2017) show that a model where gdp∗ is assumed to follow a second-order Markov

process fits the data better compared to the model where gdp∗ is assumed as a random walk

with time-varying drift. Hence, we follow Chan and Grant (2017) and model gdp∗ as,

gdp∗t = 2gdp∗t−1 − gdp∗t−2 + εgdp∗t , εgdp∗t ∼ N(0, σ2
gdp∗) (12)

Which can be re-written as,

4gdp∗t = 4gdp∗t−1 + εgdp∗t

If we define, g∗t ≡ 4gdp∗t , where 4 is the first difference operator. Then,

g∗t = g∗t−1 + εgdp∗t (13)
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An advantage of modeling g∗ as a second-order Markov process compared to RW with time-

varying drift is that it requires estimating a single shock parameter (σ2
gdp∗), as opposed to two

for the latter (one for the shock to gdp∗ and the other for the shock to time-varying drift, aka

g∗). This modeling assumption implies that all permanent shocks to output are attributed as

shocks to g∗.13

The cyclical component, ogap, is assumed a stationary AR(2) process augmented with

additional explanatory variables: the real interest rate gap and the unemployment gap,

ogapt = ρg1(ogapt−1) + ρg2(ogapt−2) + ar(rt − r∗t ) + λg(Ut − U∗t ) + εogapt (14)

where, εogapt ∼ N(0, σ2
ogap), ρ

g
1 + ρg2 < 1, ρg2 − ρ

g
1 < 1, and |ρg2| < 1

Equation (14) could be interpreted as defining an IS-curve (as in LW and subsequent papers

modeling r-star) that allows feedback from the real interest rate gap to the output gap (i.e., the

real interest rate gap responds to economic slack). The IS equation is inspired by LW but with

two modifications. First, instead of using the interest-rate gap based on the short-term real

rate of interest, we use the long-term real interest rate (as in Gonzalez-Astudillo and Laforte,

2020). Specifically, the long-term real interest rate is constructed as the difference between the

nominal yield on a 10-year Treasury bond and the 10-year inflation expectations (i.e., the PTR

series for PCE inflation).14

In theoretical models, the long-term interest rate influences household consumption decisions

and business investment decisions. Second, to improve the econometric estimation of the output

gap, we enrich the IS equation by bringing in information from the unemployment gap (from

the unemployment block) as an explanatory variable.15 This latter addition is motivated by the

approach taken in a long list of papers (e.g., Morley and Wong, 2020; Chan and Grant, 2017;

Fleischman and Roberts, 2011; Sinclair, 2009; Clark, 1989) that demonstrate the usefulness

of the unemployment rate in improving the econometric estimation of the output gap. As

mentioned earlier, in the equation for the unemployment gap, we add the output gap to improve

13Note: the second-order Markov process for gdp* could be thought of as a limiting case of the process.
Assuming gdp* as a RW with time-varying drift term, where the variance of shock to the gdp* goes to zero,
and shock to the time-varying drift term (g-star) is the only relevant driver governing the evolution of gdp* and
g-star (see Chan and Grant, 2017).

14We also experimented with an alternative specification, in which the interest rate gap is constructed as the
difference between the short-term federal funds rate and first lag of four-quarter trailing PCE inflation, similar
in spirit to LW. Based on model fit (log marginal likelihood), this specification was inferior compared to the Base
specification. It is worth noting that had the longer history of long-term inflation expectations data available at
the time of the writing, LW would have constructed the interest rate gap using the long-term interest rate (see
page 1064 in LW).

15Model fit, the precision metric for u-star and the output gap, and the plausibility of the estimates of output
gap strongly supports the joint modeling of output gap and unemployment gap. We note that LW estimated an
alternative specification in which they added information from the labor market (hours worked) and found that
doing so improved the precision of the estimated output gap, however, that improved precision did not spillover
to r-star estimate (the focus of their paper) and therefore in their baseline specification they omit the labor
market variable.
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the former’s estimation. The coefficient λg captures the contemporaneous relationship between

the output gap and the unemployment gap. The parameter ar relates the output gap to the

real interest rate gap.

We note that innovations ε2
gdp∗ and ε2

ogap are uncorrelated. In an important contribution,

Morley et al. (2003), who assume a deterministic g-star, show that this assumption matters for

estimating potential output. However, Chan and Grant (2017) show that in their specification,

once a stochastic g-star is allowed for, the correlation between ε2
gdp∗ and ε2

ogap goes to zero.

They also show that the model without correlation performs comparably to the model with

correlated innovations based on Bayesian model comparison. Accordingly, to keep estimation

tractable, we assume uncorrelated innovations.

The equation linking survey projection of potential growth rate, Zg to g∗,16

Zgt = Cgt + βg ∗ 4 ∗ g∗t + εzgt , ε
zg
t ∼ N(0, σ2

zg) (15)

Cgt = Cgt−1 + εcgt , ε
cg
t ∼ N(0, σ2

cg) (16)

2.5. Productivity block

Since the publication of Adam Smith’s influential book, Wealth of Nations, it is widely ac-

knowledged, that long-run productivity growth is the primary determinant of long-run changes

in living standards. Therefore, estimates of the long-run level of (labor) productivity growth

(p-star) have received considerable discussion in the past decades and are of great interest.

Labor productivity is defined here as output per hour worked.

Furthermore, the estimates of p-star are an important input into policymaking, as they are

used to gauge the appropriateness of the monetary policy stance. The importance of p-star

for monetary policy is because standard macroeconomic models tightly connect p-star to the

long-run level of real interest rate (i.e., r-star). In these models, a lower level of p-star implies

a lower level of r-star, and a higher level of p-star implies a higher r-star (see Lunsford, 2017).

However, based on post-1960 data, Lunsford (2017) found no statistical evidence supporting

the link between p-star and r-star.

Several papers have endeavored to estimate the long-run level of productivity growth using

various statistical and econometric models. A subset of those papers has documented support in

favor of a regime-switching framework to model long-run labor productivity growth (e.g., Kahn

and Rich, 2007). Also, to extract more precise and timely estimates of p-star, various authors

16We could potentially bring in additional information from the CBO’s projection of the level of the potential
GDP to improve the econometric estimation of the level of potential real GDP. However, as shown in the results
section, the implied estimates of the output gap from our multivariate framework (with or without survey data)
are remarkably similar to CBO’s estimates suggesting the limited value of bringing additional information from
CBO projections.
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(e.g., Kahn and Rich, 2007; Roberts, 2001) have proposed using additional variables alongside

labor productivity (e.g., real compensation, real consumption, and average hours worked). On

the other hand, Edge et al. (2007) show that estimates of long-run productivity growth obtained

from a simple trend-cycle univariate model solved with Kalman filter does an adequate job of

mirroring the long-run projections of productivity growth reported in the survey of professional

forecasters and institutional forecasts (e.g., CBO).17

On closer inspection, the ability of the Kalman filter to echo the predictions of the profes-

sional forecasters is not surprising. Productivity growth is a notoriously volatile series and is

subject to extreme revisions from one vintage to another. So, distinguishing highly persistent

fluctuations from truly permanent changes is a difficult job for professionals and models alike.

Jacobs and van Nordern (2012) discuss in detail some of these challenges when working with

productivity data.

The findings in Lunsford (2017), Edge et al. (2007), and Jacobs and van Norden (2012)

motivates the formulation of a parsimonious structure for the productivity block relative to

other blocks of the model. In particular, we abstract from explicit modeling of direct links

between p-star and r-star and between p-star and g-star.18 But along other dimensions, our

formulation is richer than used in the cited literature, as we allow for time-varying parameters,

including stochastic volatility. Specifically, the productivity gap, which is defined as (nonfarm)

labor productivity growth19 (quarterly annualized) less p-star, is modeled as a function of a one

quarter lag in the productivity gap and the contemporaneous cyclical unemployment gap.

Pt − P ∗t = ρp(Pt−1 − P ∗t−1) + λpt (Ut − U∗t ) + εpt , ε
p
t ∼ N(0, eh

p
t ) (17)

where, |ρp| < 1

The inclusion of the cyclical unemployment gap helps tease out movements in productivity

associated with the business cycle. The growth in labor productivity (and more generally

aggregate productivity) has been shown to be procyclical to some degree (e.g., Roberts 2001);

it typically increases sharply at the onset of recoveries and falls during recessions. However,

empirical evidence on the strength and the direction of the cyclical relationship is mixed. This

mixed evidence stems from the use of different estimation samples and or cyclical indicators

(employment-based or output-based). For instance, Gali and van Rens (2020), using split sample

estimation, illustrate empirically the significant weakening in the correlation between labor

17It is worth emphasizing, in contrast to the regime-switching model (as used in Kahn and Rich, 2007), which
allows for deterministic values of p-star, a random walk assumption for p-star (as in Edge et al., 2007) allows for
the possibility that p-star may be changing (slowly) in every period.

18We implemented a model specification that allowed for a direct link between p-star and g-star. Doing
so notably reduces the model fit to GDP, the unemployment rate, and the interest rate data. And it lowers
the precision of the stars’ estimates and the other model parameter estimates. The complete set of results
corresponding to the model specification allowing for a link between p-star and g-star are available from the
author.

19As discussed in Kahn and Rich (2007), the focus outside of the farm sector is primarily on avoiding short-term
transitory volatility in the farm sector that is heavily driven by weather and other non-technological factors.
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productivity and employment, especially post-1984. They find that the relationship has become

countercyclical in the past three decades when using employment as the cyclical indicator.20

But, it is slightly procyclical when using output as the cyclical indicator. This latter finding

motivates our alternative specification that replaces cyclical unemployment with the output

gap.

Pt − P ∗t = ρp(Pt−1 − P ∗t−1) + φpt (ogapt) + εpt , ε
p
t ∼ N(0, eh

p
t ) (17b)

Gali and van Rens (2020) find weakening in the correlation between labor productivity and

the cyclical indicator which motivates time-variation in the coefficients λp and φp.21

λpt = λpt−1 + ελpt , ε
λp
t ∼ N(0, σ2

λp) (18)

φpt = φpt−1 + εφpt , ε
φp
t ∼ N(0, σ2

φp) (18b)

The variance of the error term εpt is allowed to change over time.22 Allowing for the time-

variation in the cyclical relationship and the error term allows the model to better discriminate

the cyclical movements and idiosyncratic movements in productivity from those associated with

shifts in p-star.

The SV process is defined as a driftless random walk in the log-variance.

hpt = hpt−1 + εhpt , ε
hp
t ∼ N(0, σ2

hp) (19)

P-star is modeled as a driftless random walk component, and the variance of the shocks to

this component is assumed to be constant. By modeling p-star this way allows it to capture

both unobserved and observed factors that are thought to be persistent but hard to measure.

In particular, one factor is developments in fiscal policy; for example, high levels of government

debt in the longer-term tend to crowd out private investment, thereby reducing longer-term

productivity growth.

P ∗t = P ∗t−1 + εp∗t , ε
p∗
t ∼ N(0, σ2

p∗) (20)

Economic theory posits that the long-run nominal wage inflation equals the sum of long-run

productivity growth and long-run price inflation. As discussed later in the wage inflation block,

this theoretical restriction defines the law of motion for w-star and constitutes an additional

20Gali and van Rens (2020) using a structural macro model interpret the weakening procyclicality of labor
productivity in part to increased flexibility of the US labor market post-1984, which has enabled firms to make
adjustment at the extensive margin quickly and easily in response to shocks.

21Fernald and Wang (2016) documents weakening in the cyclicality of productivity at the industry level,
suggesting that results of Gali and van Rens (2020) are not due to changes in the industry composition.

22Carriero, et al. (2019) and Tallman and Zaman (2020) document superior forecast accuracy of variables in-
cluding labor productivity from Bayesian VARs with SV compared to VARs without SV; suggesting the usefulness
of allowing for SV. We also find empirical support for the inclusion of SV.
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channel influencing the dynamics of p-star.

2.6. Price inflation block

We use price inflation as measured by the Personal Consumption Expenditures (PCE) price

index, the inflation measure that the Federal Reserve targets. Our formulation for price inflation

block closely follows CKP and CCK, combining elements from both of these papers. Specifically,

as in CKP, the stationary component, inflation gap (defined as the deviation of inflation from

pi-star),23 is modeled as a function of one-quarter lagged inflation gap, unemployment gap, and

an error term, whose variance is allowed to vary over time.

The coefficient, ρπ on the lagged inflation gap, which captures persistence in inflation dy-

namics (i.e., persistence in deviation of inflation from pi-star), is allowed to vary over time.24

The motivation for time-variation stems from evidence in Weise (2012), who documents that in

the period of Great Inflation, deviations of inflation from the desired target were very persistent

because the Fed at the time either was unable or unwilling to enact policy to reduce inflation

to its desired level. However, in the 1980s, the Fed was aggressive in returning inflation to the

desired target; Ashley, Tsang, and Verbrugge (2020) also provide empirical evidence in support

of this claim. Modeling time-variation in this parameter allows such contrasting behavior to be

captured.

πt − π∗t = ρπt (πt−1 − π∗t−1) + λπt (Ut − U∗t ) + επt , ε
π
t ∼ N(0, eh

π
t ) (21)

ρπt = ρπt−1 + ερπt , ε
ρπ
t ∼ TN(0− ρπt−1, 1− ρπt−1; 0, σ2

ρπ) (22)

The innovations to the AR(1) coefficient, ρπ are truncated so that 0 < ρπt < 1, ensuring

that the inflation gap (in equation 21) is stationary at each point in time t.

λπt = λπt−1 + ελπt , ελπt ∼ TN(−1− λπt−1, 0− λπt−1; 0, σ2
λπ) (23)

λπ is the slope of price Phillips curve and is constrained in the interval (-1,0).

The parameter λ estimates the price Phillips curve relationship (i.e., the relationship between

the inflation gap and the unemployment gap at business cycle frequency). There is ample

empirical evidence in support of a time-varying price Phillips curve (e.g., Stella and Stock,

2015; CKP; Del Negro et al., 2020) hence our choice of allowing for time-variation in the

23Modeling inflation in gap form, where gap is defined as the difference between inflation and slowly-moving
trend, was popularized by Cogley, Primiceri and Sargent (2010), and since then has been a widely used approach
to modeling inflation in macroeconomic models for policy and forecasting (e.g., Faust and Wright, 2013).

24Chan et al. (2013), CKP, and CCK have found strong empirical support for the time-variation in the
coefficient of inflation gap. Our results reinforce the empirical importance of allowing for time-variation in this
coefficient.
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parameter λπ.25

hπt = hπt−1 + εhπt , εhπt ∼ N(0, σ2
hπ) (24)

The SV process is defined as a random walk in the log-variance.

Both the theoretical and empirical literature emphasizes the usefulness of the signal from

fluctuations in labor costs for inflation dynamics. Post-Keynesian theory posits that excess wage

inflation over labor productivity gains puts upward pressure on price inflation, i.e., causality runs

from labor costs to price inflation. In comparison, the Neo-Classical theory suggests causality

runs in the opposite direction, from price inflation to nominal wage inflation. The empirical

evidence in the US data is inconclusive in that there is no clear evidence in the direction of the

causality. If anything, the evidence suggests they co-move together (see Knotek and Zaman,

2014 and references therein).

Given the empirical evidence of co-movement, we explore an alternative specification in

which we allow for a connection between two cyclical inflation components, nominal wage in-

flation gap and price inflation gap, by adding the nominal wage inflation gap as an explanatory

variable in the equation describing price inflation gap. The parameter γπ captures the strength

of the relationship between the two cyclical inflation measures. The expression γπ

1−ρπ can be

interpreted as the passthrough from cyclical wage inflation to cyclical price inflation.26

πt − π∗t = ρπt (πt−1 − π∗t−1) + λπt (Ut − U∗t ) + γπ(Wt −W ∗t ) + επt , ε
π
t ∼ N(0, eh

π
t ) (21b)

Similarly, as shown later, we add the price inflation gap to the equation describing the nom-

inal wage inflation gap.

Pi-star is modeled as a driftless random walk component, and the variance of the shocks to

this component is assumed to be constant (as in CKP). This latter assumption of homoscedastic

errors is in contrast to Stock and Watson (2007), Mertens (2016), and several others. Our choice

not to incorporate SV into shocks to pi-star is made to keep the estimation manageable and

maintain consistency with our modeling assumptions for the stars.27

25See Del Negro et al. (2020) for a comprehensive literature review of the instability of the Phillips curve
in the US data, and similarly Banbura and Bobeica (2020) for the euro area data. We note that the literature
documenting empirical evidence in support of nonlinear Phillips curve (e.g., Ashley and Verbrugge, 2020) supports
time variation in the parameter λπ.

26We explored the possibility of allowing for time-variation in γπ but the estimation ran into difficulties hence
we resort to time-invariant γπ.

27Allowing SV in the inflation gap component and not in the trend component is not without precedent. Be-
sides CKP, Chan (2013) is a recent paper modeling SV only in the measurement equation (i.e., cyclical/transitory
component). Berger et al. (2016) find support for SV in the inflation gap component but weak evidence for SV
in the trend component. Our preliminary results indicate similar findings that adding SV to the pi-star equation
neither helps nor hurts the model fit.
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π∗t = π∗t−1 + επ∗t , ε
π∗
t ∼ N(0, σ2

π∗) (25)

Following CCK (and others, such as Mertens and Nason, 2020) to improve pi-star’s econo-

metric estimation, we bring in information from the long-run survey expectations (of PCE

inflation). An important empirical finding of CCK is that long-run survey expectation of in-

flation is a biased measure of the underlying trend inflation, at least at some times. Hence,

simply equating pi-star with the long-run survey expectation or assuming survey expectation

as an unbiased measure of pi-star or calibrating econometric estimates of pi-star to surveys (as

is commonly done) may not be a reasonable strategy.

Accordingly, we add an equation linking long-run survey expectations of inflation,Zπ to

pi-star, where the intercept, Cπt , is time-varying to capture possibly time-varying differential

between the two.28

Zπt = Cπt + βππ∗t + εzπt , ε
zπ
t ∼ N(0, σ2

zπ) (26)

Cπt = Cπt−1 + εcπt , ε
cπ
t ∼ N(0, σ2

cπ) (27)

Our model specification modifies the baseline model of CCK in five important ways. First, we

allow a time-varying Phillips curve relationship by adding the cyclical unemployment component

(similar to CKP).29 Second, we explore a model specification that allows for a link between the

nominal-wage inflation gap and the price-inflation gap (capturing the evolving passthrough

from labor costs to price inflation). Third, we adopt a more simplistic approach to modeling

the link between survey expectations and pi-star. Fourth, the variance of the shocks to the pi-

star process does not entertain SV. Fifth, pi-star is restricted to satisfy the long-run restriction

informed by theory (see equation 28).

2.7. Wage inflation block

The long-run equilibrium level of nominal wage inflation (w-star) is the nominal wage growth

rate consistent with its fundamentals – p-star and pi-star. As noted earlier, in the long-run,

economic theory posits that the nominal wage inflation equals the sum of the long-run growth

rate of labor productivity and the long-run level of price inflation. In other words, in the

long-run, labor productivity growth is the only fundamental driver of real wages; therefore,

price inflation and nominal wage inflation have to adjust relative to each other to maintain the

28Our formulation is flexible but less so than the one adopted by CCK. In addition to time-variation in the
intercept, CCK add time-variation in the slope coefficient, and moving average (MA) in the error term. For PCE
inflation, CCK did not find the addition of the MA in the error term useful. We think our relatively simplistic
equation suffices in its aim of influencing econometric estimation of pi-star through the survey expectations.

29CCK explored an alternative specification in which they add cyclical unemployment but as an exogenous
variable (constructed using the CBO estimate of the natural rate). CCK found that adding the cyclical unem-
ployment slightly worsened the fit of their model.
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fundamental relationship. In our setup, we impose this relationship to define w-star.

W ∗t = π∗t + P ∗t + εw∗t , εw∗t ∼ N(0, σ2
w∗) (28)

The above equation implies that W ∗ is approximately equal to sum of π∗t + P ∗t

In order to assess empirical support for the theoretical restriction defined by equation (28),

we explore an alternative specification that models W ∗ as a RW process,

W ∗t = W ∗t−1 + εw∗t , εw∗t ∼ N(0, σ2
w∗) (28b)

Equation (29) relates the nominal wage inflation gap – defined as the difference between the

nominal wage inflation and w-star – to its one-quarter lagged gap, the cyclical unemployment

gap, and the price inflation gap.30 The variance of the error term, εwt , is allowed to vary over

time. The latter feature is motivated by findings in Tallman and Zaman (2020) and Peneva and

Rudd (2017), who document better fit of the VAR with SV to nominal wage data compared to

VAR without SV.

Wt −W ∗t = ρwt (Wt−1 −W ∗t−1) + λwt (Ut − U∗t ) + κwt (πt − π∗t ) + εwt , ε
w
t ∼ N(0, eh

w
t ) (29)

The SV process is defined as random walk in the log-variance.

hwt = hwt−1 + εhwt , εhwt ∼ N(0, σ2
hw) (30)

The findings in Knotek and Zaman (2014) motivate the inclusion of a one-quarter lagged

nominal wage inflation gap, with time-variation in the parameter ρw; the latter quantifies the

persistence in wage inflation dynamics.

ρwt = ρwt−1 + ερwt , ερwt ∼ TN(0− ρwt−1, 1− ρwt−1; 0, σ2
ρw) (31)

The innovations to the AR(1) coefficient, ρw are truncated so that 0 < ρwt < 1, to ensure

that the wage gap (in equation 29) is stationary at each point in time t.

The parameter λw in equation (29) measures the strength of the cyclical relationship between

the nominal wage gap and labor market slack (aka the wage Phillips curve). Many studies, both

theoretical (e.g., Gali, 2011) and empirical (e.g., Knotek and Zaman, 2014; Peneva and Rudd,

30Following the literature on modeling price inflation in the gap, Knotek and Zaman (2014) apply a similar
transformation to modeling nominal wage inflation for the US. In particular, they construct the nominal wage
inflation gap as nominal wage inflation less pi-star, where pi-star is survey expectations. They note the com-
petitive forecasting properties of their model is due to modeling in gaps. Following Knotek and Zaman (2014),
Bobeica, Ciccarelli, and Vansteenkiste (2019) construct a nominal wage inflation gap for the euro area data and
find empirical support for the gap specification.
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2017; Gali and Gambetti, 2019), have documented strong support for the existence of a wage

Phillips curve in the US data. These studies have also demonstrated the instability of the wage

Phillips curve, motivating the need for time-variation in the parameter λw.31

λwt = λwt−1 + ελwt , ελwt ∼ TN(−1− λwt−1, 0− λwt−1; 0, σ2
λw) (32)

where λw is the slope of wage Phillips curve and is constrained in the interval (-1,0).

As discussed earlier in the price inflation block, both theory and empirical evidence point to

the connection between price inflation and nominal wage inflation. The standard fully structural

models describing the New Keynesian Phillips curve posit a tight relationship between price and

wage inflation via the channel of current and expected future marginal costs. In these models,

price inflation today is a function of expected price inflation and expected future marginal costs,

where marginal costs are generally linked to wages. Knotek and Zaman (2014) provide empirical

evidence of the connection between nominal wage and price inflation. In particular, they show

no clear evidence of one Granger-causing the other; instead, both wage and price inflation

generally tend to move together. This reasoning would suggest the importance of modeling

the direct relationship between wage inflation and price inflation. Hence, this motivates the

inclusion of the price inflation gap in the measurement equation (29).

Several studies document a significant weakening in the empirical link between price infla-

tion and nominal wage inflation since the 1980s (e.g., Peneva and Rudd, 2017; Knotek and

Zaman, 2014), motivating time-variation in the parameter κw.32 The expression
κwt

1−ρwt
could be

interpreted as an estimate of the passthrough from price inflation to wage inflation.

κwt = κwt−1 + εκwt , εκwt ∼ N(0, σ2
κw) (33)

To assess empirical support for the inclusion of the price inflation gap in the equation

describing the nominal wage gap, we estimate an alternative model that replaces equation (29)

with the following,

Wt −W ∗t = ρwt (Wt−1 −W ∗t−1) + λwt (Ut − U∗t ) + εwt , ε
w
t ∼ N(0, eh

w
t ) (29b)

2.8. Interest rate block

We close our model with the interest-rate block characterizing the interest rate dynamics

and the law of motion for r-star (the long-run equilibrium real short-term interest rate).

Our first equation of the block brings information from the nominal short-term interest rate

31Literature has posited various explanations for the instability of the wage Phillips curve, including downward
nominal wage rigidities, where the degree of rigidity varies with the phase of the business cycle (see Daly and
Hobijn, 2014).

32Bobeica et al (2019) find that in the euro area the link between labor compensation and price inflation
continues to remain strong post-1980.
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via a Taylor-type rule (TR) to aid in identifying r-star. Past research has shown the TR’s

usefulness in characterizing the monetary policy reaction function over the past four decades.

Specifically, this equation characterizes the dynamics of the short-term nominal interest rate

gap, where the gap is the difference between the nominal short-term interest rate i, and the

long-run level of the nominal neutral rate of interest, i-star. (i-star = pi-star + r-star). When

modeling the nominal short-term interest rate, especially in a framework like ours, one must

account for the effective lower bound (ELB) period.

Recent literature provides at least two options to handle the ELB. The first is to explicitly

but separately model the observed short-term nominal rate, which cannot go below zero, and

the “shadow interest rate,” which is a hypothetical unobserved and unbounded counterpart.

Wu and Xia (2016) popularized the concept of the shadow interest rate, and JM and Gonzalez-

Astudillo and Laforte (2020) are two recent approaches well suited for inclusion in UC models.

The second approach is to treat the estimate of the “shadow rate” obtained from Wu and Xia

(2016) as the measure of the short-term nominal interest rate in measurement equations such

as the TR (e.g., Pescatori and Turunen, 2016).33

Given our model’s size and complexity, we adopt the latter approach, which is simpler

though not perfect. Using a direct measure of the nominal shadow rate allows us to capture

both conventional and unconventional monetary policy effects when the (observed) nominal

federal funds rate is constrained at the ELB.34

Equation (34) relates the nominal interest rate gap (based on the shadow federal funds rate)

to its one-period lag interest rate gap, current quarter inflation gap (i.e., deviation of inflation

from pi-star), and unemployment rate gap (i.e., deviation of unemployment rate from u-star).

This equation roughly characterizes the monetary policy reaction function as defined by Taylor

(1999).35 There is a broad consensus that policy adjustments outside of cyclical turning points

are made very gradually. Hence, this motivates the inclusion of the lagged interest rate gap

term.

Chan and Eisenstat (2018a; 2018b) and JM document strong empirical support for constant

parameters in the Taylor rule equation while allowing for stochastic volatility in the errors.

Accordingly, we allow for SV in the interest-rate equation. JM, Gonzalez-Astudillo and Laforte

(2020), and Brand and Mazelius (2019) document the usefulness of adding the TR equation

to identify r-star. The latter two do not entertain SV, which JM has found to be empirically

important. As discussed later, we also found that adding the TR equation improves the precision

of the r-star estimates significantly, and data strongly favors allowing for SV in the error process.

33The estimates from Wu and Xia (2016) are publicly available and regularly updated.Treating the shadow
rate as the measure of the short-term nominal rate in place of the federal funds rate is commonly done, and often
academic papers report results indicating robustness to the use of Wu and Xia (2016) shadow rate (e.g., Beyer
and Wieland, 2019; Lewis and Vazquez-Grande, 2019)

34The nominal shadow federal funds rate is identical to the nominal federal funds rate when effective lower
bound (ELB) is not binding.

35It is worth emphasizing that we denote this equation as a “Taylor-type rule” and not an exact Taylor-rule
because in our equation, pi-star refers to the estimate of trend inflation which may or may not equal to central
bank’s long-run inflation goal.
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it − π∗t − r∗t = ρi(it−1 − π∗t−1 − r∗t−1) + λi(Ut − U∗t ) + κi(πt − π∗t ) + εit, ε
i
t ∼ N(0, eh

i
t) (34)

where, ρi is truncated so that 0 < ρi < 1.

hit = hit−1 + εhit , ε
hi
t ∼ N(0, σ2

hi) (35)

The SV process is defined as random walk in the log-variance.

Our second equation motivated by LW heeds to the economic theory suggesting the role of

various real factors in influencing movements in r-star. These factors include long-run output

growth (and long-run productivity growth), trend labor force growth (reflecting shifts in demo-

graphics and net migration), taxation structure, government expenditure shifts, and shifts in

liquidity preferences (e.g., Del Negro et al., 2017; Bullard, 2018). Accordingly, equation (36)

expresses r-star as a linear function of g-star and a “catch-all” component D. In our baseline

specification, both g-star and D follow random walk processes similar to LW (and many other

papers). The RW assumption for D is an appropriate one, given our focus is the long-run r-star

that should, in principle, be influenced over time by permanent shifts in aggregate supply and

demand (Laubach and Williams, 2016).36

r∗t = ζg∗t +Dt. (36)

Dt = Dt−1 + εdt , ε
d
t ∼ N(0, σ2

d) (37)

In more recent literature on long-run r-star, modeling r-star as a random walk process has

performed better empirically than model specifications relying on the link between g-star and

r-star.37 Accordingly, we explore an additional specification that models r-star simply as the

RW process (similar to g-star, p-star, pi-star, u-star). The RW assumption for r-star implies

that we are agnostic about the underlying unobserved forces driving r-star but acknowledge

those forces reflect persistent structural shifts in aggregate demand and supply that ought to

have a bearing on r-star.

r∗t = r∗t−1 + εr∗t , ε
r∗
t ∼ N(0, σ2

r∗) (36b)

Lastly, the equations linking implied estimate of the long-run survey expectations of real

36Researchers have also explored AR process for component D, which would be consistent if the interest is in
medium-term r-star (see Lewis and Vazquez-Grande, 2019), as this would allow r-star to be influenced by the
transitory shocks to aggregate demand (via the AR process) and permanent shocks to aggregate supply (via the
RW process for g-star). In studies focused on the long-run notion of r-star, such as LW, Laubach and Williams
(2016), Clark and Kozicki (2005), and Kiley (2020) specification based on RW assumption has shown empirically
to be favored by data compared to AR assumption.

37See Kiley (2020), Gonzael-Astudillo and Laforte (2020), JM, Orphanides and Williams (2002)
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short-term interest rate, Zr to r∗ is defined as:38

Zrt = Crt + βrr∗t + εzrt , ε
zr
t ∼ N(0, σ2

zr) (38)

Crt = Crt−1 + εcrt , ε
cr
t ∼ N(0, σ2

cr) (39)

All in all, information from six sources and or elements inform the econometric identification

of r-star. These sources include: an IS equation (14)), TR equation (34), which allows for SV;

an equation linking r-star to survey expectations; shadow rate; and an equation relating r-star

to g-star. As we show shortly, all these sources play a role in improving r-star’s precision. To

reiterate, in our framework, we utilize information from both short-term nominal interest rates

(via a TR equation) and long-term nominal interest rates (via an IS equation) to inform the

estimation of r-star.39

2.9. Base model and its variants

The equations (6), (7). . . (39) defines our baseline model formulation (denoted Base). Figure

1 provides a visual representation of our Base model. And section A1.a. of the appendix lists

all the equations for the Base model for easy reference. To assess the usefulness of survey

information in the econometric estimation of our multivariate UC model, we also estimate a

variant of the baseline model that excludes the equations linking long-run survey expectations

to stars (i.e., excluding equations 9, 10, 15, 16, 26, 27, 38, and 39). We denote the latter

specification as Base-NoSurv. The model specifications Base and Base-NoSurv constitute our

two main model specifications. To assess the empirical support for numerous additional features

(informed from theory and past empirical research) embedded in our modeling framework, we

formulate several additional model specifications, each of which is a restricted variant of the

Base. For instance, to assess the empirical support of the theoretical restriction defined by

equation 28 (which defines w-star as the sum of pi-star and p-star), we estimate a variant of the

baseline model that replaces equation 28 with a random walk assumption for w-star as defined

by the equation 28b. We denote this specification as Base-W*RW.

Similarly, to assess the empirical support for the theoretical restriction defined by equation

36 (the link between gstar and rstar), we estimate a model specification that replaces equation

36 with a random walk assumption for r-star as defined by the equation 36b. Table 1 reports the

description of model specifications that are formulated to assess various features of importance.

38The r-star survey estimates are not direct estimates instead they are inferred from the Blue Chip survey
long-run estimates of GDP deflator and short-term interest rates using the long-run Fisher equation. The survey
expectations for r-star goes back to 1983.Q1. Please refer to the appendix A9 for details on the procedure to
back cast estimates all the way back to 1959

39Del Negro et al. (2017), JM, Bauer and Rudebusch (2020), Gonzael-Astudillo and Laforte (2020) are recent
studies that have highlighted the usefulness of exploiting information from both short-term and long-term interest
rates in the identification of r-star.

23



We ran few additional specifications to explore the role of priors in influencing r-star, and for

brevity purposes they are relegated to the appendix. To keep the length of paper manageable,

we report selected results from the auxiliary model specifications in the main part of the paper

with additional results included in the appendix.

3. Data and Bayesian Estimation

3.1. Data

We estimate the empirical model using the following quarterly data: (1) the unemploy-

ment rate; (2) Real GDP growth; (3) Nonfarm labor productivity growth; (4) inflation rate in

Personal Consumption Expenditures (PCE) price index; (5) Average Hourly Earnings (AHE)

of production and nonsupervisory workers (total private industries);40 (6) Federal funds rate;

(7) Nominal yield on 10-year Treasury Bond; (8) Shadow federal funds rate from Wu and Xia

(2016); (9) Blue Chip (real-time) long-run projections of 3-month Treasury Bill, real output

growth, the unemployment rate, and GDP deflator inflation; (10) Long-run inflation expecta-

tions of PCE inflation (PTR series). We also collect the real-time long-run CBO projections

of real output growth, level of real potential output, and the natural rate of unemployment.

For forecast evaluation exercises, the real-time data vintages of real GDP growth, PCE infla-

tion, the unemployment rate, AHE, and nonfarm labor productivity spanning 1998Q1 through

2019Q4 are downloaded from the ALFRED database maintained by the St. Louis Fed and the

real-time database maintained by the Federal Reserve Bank of Philadelphia. For the data series

labeled (1) through (7), which comprises our core dataset, we collect two vintages of revised

data: 2020Q2 and 2020Q4 vintages, respectively. We use data starting 1959Q4 through 2019Q4

from the 2020Q2 vintage (which includes the third estimate of 2019Q4) as a featured sample

for this paper. To show the implications of the COVID-19 data on our model estimates, we

estimate our model(s) using the 2020Q4 vintage, which has data spanning from 1959Q4 through

2020Q3. The vintages corresponding to the revised data are downloaded from Haver Analytics.

3.2. Bayesian Estimation

We use Bayesian estimation methods to fit our Base model and its variants. The use of

inequality restrictions on latent parameters in our model(s) setup leads to a non-linear state-

space model, which renders estimation using standard Kalman filter methods infeasible. Ac-

cordingly, we implement our Markov chain Monte Carlo (MCMC) posterior sampler based on

computational methods developed in Chan, Koop, and Potter (2013) and CKP, which uses the

band and sparse matrix algorithms detailed in Chan and Jeliazkov (2009). Specifically, the

MCMC posterior sampler is a significantly scaled-up version of the sampler employed by CKP.

40Average Hourly Earnings (AHE) of production and nonsupervisory workers in total private industries goes
back to 1964Q1. From 1959Q4 through 1963Q4, we use the AHE of production and nonsupervisory workers in
goods producing industries. We splice them together.
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The CKP posterior sample developed for a relatively smaller-scale nonlinear state-space model

is carefully extended to accommodate the additional structure and numerous features of our

model(s). Since the computational methods used in this paper are based on CKP, we relegate

the specific details of the sampler to the appendix A1.

In a methodological sense, this paper’s novelty is in assembling the existing sampling al-

gorithms based on the fast band and sparse matrix routines to solve a large nonlinear and a

high-dimensional UC model. We found that the use of inequality restrictions such as bounds on

the u-star and other parameters is crucial to estimate the model, especially in the Base-NoSurv

model. Intuitively, features such as truncated distributions that we implement for some of the

time-varying parameters, e.g., the Phillips curve (price and wage), persistence, and bounds on

u-star facilitate estimation by guiding the estimation procedure to the credible regions of the

parameter space.

For each model, we simulate 1 million posterior draws from the MCMC posterior sampler.

We then discard the first 500,000 draws, and of the remaining, we keep every 100th draw.

Accordingly, all the reported results for the Base model and its variants are based on 5000

retained draws.

As emphasized by Chan (2017), the MCMC algorithm is considered efficient if the draws it

produces have low autocorrelation – they are autocorrelated by construction – and the time it

takes to sample a given number of posterior draws is reasonable. In the appendix, we report

efficiency diagnostics of our MCMC algorithm. Those diagnostics, which include inefficiency

factors and convergence metrics, indicate good convergence properties (and low autocorrelation)

of our sampler for both Base and Base-NoSurv models.41

Bayesian model comparison is based on the marginal likelihood metric. In computing

marginal likelihood for various models, we use the approach proposed by CCK, which decom-

poses the marginal density of the data (e.g., inflation) into the product of predictive likelihoods;

see appendix A1.d for details.42 An important advantage of the CCK approach is that it allows

us to separately compute marginal data density for each variable of interest: inflation, nominal

wages, interest rate, real GDP, the unemployment rate, and labor productivity. The variable

specific marginal densities prove useful for us because it allows for deeper insights about the

source of the deficiencies, which helps differentiate models at a more granular level.

We note that our prior settings are similar to those used in CKP, CCK, Gonzalez-Astudillo

and Laforte (2020). As discussed in CCK, UC models with several unobserved variables, such

as the one developed in this paper, require informative priors. That said, our priors settings

for most variables are only slightly informative. The use of inequality restrictions on some

41Regarding computational time, given the high-dimensionality of our model(s) and the number of posterior
simulations we require, the speed is quite fast (in our assessment). When applied to the Base model, the MCMC
algorithm, which is implemented in Matlab, takes about 350 seconds to generate 10,000 posterior draws using a
laptop computer with an Intel(R) Xeon(R) E-2176M CPU @ 2.70 GHz processor. To generate 1 million posterior
draws, it takes less than 10 hours.

42Alternatively, one could use the cross-entropy (Kullback-Leibler divergence) approach proposed by Chan
and Eisenstat (2018a,b). We leave this for future extension.
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parameters such as the Phillips curve, persistence, and bounds on u-star could be viewed as

additional sources of information that eliminates the need for tight priors, something also noted

by CKP. The parameters for which there is a strong agreement in the empirical literature on

their values, such as the Taylor-rule equation parameters, we use relatively tight priors, such

that prior distributions are centered on prior means with small variance. In model comparison

exercises, the priors are kept the same for the common parameters across models. We also

perform some prior sensitivity analysis reported in the appendix A2.

4. Full Sample Estimation Results

This section sequentially discusses results for each of the six blocks, particularly the full-

sample estimates of stars. Here, we briefly highlight some of the noteworthy findings. Compar-

ing estimates of the stars between model specification Base and Base-NoSurv, a clear pattern

emerges. The precision of the estimates, as measured by the width of the 90% credible in-

tervals, indicates that the Base model, which explicitly accounts for the links between stars

and survey data, yields more precise estimates of the stars than Base-NoSurv. Although the

broader contours seen in the estimates of stars from our two main model specifications, Base

and Base-NoSurv, are comparable, at times, the differences can be notable, especially in the

case of r-star. In the case of g-star (and, in turn, the output gap), our two model specifications

yield very similar trajectories as implied by the posterior mean estimates. This result suggests

that data are very informative about g-star, and not so much about r-star, confirming Kiley’s

finding (2020).

Furthermore, the Bayesian model comparison indicates marginally higher support in data

for Base over Base-NoSurv, as shown in table 3. The breakdown of the marginal data density by

variables suggests that the Base model’s improved fit over Base-NoSurv is due to its improved fit

to inflation and nominal interest rate data. But that improved fit is offset mainly by worsening

fit to the unemployment and wage data. The table also reports the marginal data density for

two additional Base model variants that the Bayesian model comparison indicates a comparable

fit to the data. Overall, we find that bringing additional information from surveys – by directly

modeling the connection to the stars – leads to more reasonable values, provides more precise

estimates, and marginally improves the model fit.

4.1. Estimation results for u-star

Figure 2 plots the evolution of u-star (and its uncertainty) covering the period 1960 through

2019. Panel (a) plots the posterior estimates from the Base model and panel (b) from the

Base-NoSurv model. Also plotted are the corresponding 90% credible intervals. Both models

imply smooth evolution of u-star. In the past six decades, the (posterior mean of) u-star has

fluctuated between 4.4% and 5.7%, peaking in the early-1980s and early-2010s; and troughs in

the late-1990s and at the end of our sample period. The contours of u-star from both models
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are generally similar (as can also be seen conveniently in panel d); however, the level of u-star

can differ notably in some periods. From 1960 through the late-1970s, the u-star has gradually

increased (from 5.4% to 5.7% in Base and 5.0% to 5.6% in Base-NoSurv). But, since the mid-

1980s through the late-1990s, u-star has steadily drifted lower (to 4.5%). This downward trend

in the later period is also documented in the u-star literature based on job-flows data, which

attributes the decline in u-star to declining trends in job-separation and job-finding rates (e.g.,

Crump et al., 2019; Tasci, 2012).

From early-2000 through early 2010, the u-star has trended higher, with a sharp pickup

during the Great Recession period. Since 2010, u-star has steadily drifted lower. By the end of

2019, Base has u-star at 4.4% (with a 90% interval covering 3.7% to 5.2%) and Base-NoSurv at

4.5% (with a 90% interval covering 3.7% to 5.4%). As shown in figure 3, at the end of 2019, the

unemployment gap implied by both models is negative, i.e., the unemployment rate is below

the estimated u-star.

The use of survey information in the Base model mainly contributes to the difference in the

levels of the u-star across the two models. To facilitate comparison, panel (a) also plots u-star

from the survey. As is evident from the plot, u-star from the survey displays more pronounced

shifts in u-star than the model-based estimates. However, due to a strong estimated relationship

between the survey u-star and Base u-star (i.e., posterior mean of βu = 0.988), the Base estimate

of u-star reflects the contours in survey u-star. As can be seen in panel (e), which plots the

precision (measured as the width of the 90% intervals), taking onboard survey information

improves the precision of u-star notably (comparing Base and Base-NoSurv).

Surprisingly, based on the Bayesian model comparison, the Base model has an inferior fit to

the unemployment data compared to Base-NoSurv. As shown later, this result contrasts with

the results for pi-star, r-star, and g-star, for which survey information helps improve the model

fit or at least does not worsen the fit.43

Sensitivity of u-star to modeling assumptions including information set

Panel (c) plots additional estimates of u-star (posterior mean) from the variants of the

Base model to highlight the sensitivity of u-star to modeling assumptions and the informational

aspect of joint modeling. The plot denoted Base-NoBoundU* represents the Base model variant

that eliminates the bound on the random walk process describing the u-star. Doing so has a

trivial effect on the estimates of u-star, the precision of u-star, and model fit. Comparing

between panels (a) and (c), the posterior mean estimate of u-star is quite similar across Base

and Base-NoBoundU*. Similarly, there is little change in the u-star estimate’s precision across

the two models, with Base only marginally better in the latter part of the sample (as shown

in panel e). Not surprisingly, the Bayesian model comparison suggests equal support for both

Base and Base-NoBoundU*.

43Wright (2013) and Tallman and Zaman (2020) use long run survey information in an attempt to improve
VAR model forecasts. In both cases, survey information did not improve unemployment rate forecast accuracy,
although they found survey forecasts useful in improving accuracy for a range of other macroeconomic variables.

27



We highlight two noteworthy comments in regards to the implementation of bounds on u-

star. First, the trivial difference in the estimates between Base and Base-NoBoundU* is because

the bounds defined on u-star are wide. Put differently, the values of the bound we have set

are not binding on the Base model. Second, we find that using bounds on u-star is extremely

important in the Base-NoSurv, as it helps keep the estimation tractable. In other words, the

advantages of using bounds on the random walk processes that were stressed in CKP were in

full display in the estimation of Base-NoSurv. Hence, we prefer to keep bounds on u-star in our

main models.

When writing this paper, the world was hit with a COVID-19 shock, an extreme and an

unprecedented global health shock along various dimensions, leading several analysts to call it

a “once-in-a-lifetime upheaval.” As we will show in section 6, the implementation of bounds on

u-star is part of the story in preventing our models from blowing up in response to COVID-19

data.

The other model variants plotted in Panel (c) are all nested specification of the Base model:

the Bivariate model of GDP and the unemployment rate (a Base model that excludes survey

information and everything else except the equations describing the dynamics of GDP and

unemployment rate); Bivariate+Surv, which is Bivariate but adds survey data for GDP and

unemployment; and CKP Adjusted, which is a bivariate model of inflation and the unemploy-

ment rate as in CKP but with no bounds on pi-star. For visual reasons (to limit the number

of plots), u-star from Base in panel (c) is not shown. However, for the sake of discussion, we

could treat the plot representing Base-NoBoundU* as the estimate for the Base model, since

they are identical to each other (as discussed in the preceding paragraph).

These plots show that different model specifications could provide very different signals

about the level of long-run unemployment, indicating the sensitivity of u-star to modeling

assumptions. As evident from the figure, the small-scale model specifications indicate u-star

range-bound between 5.3% and 6.5% over the sample. In contrast, the Base specification has

u-star fluctuating over a broader range. A model specification that infers the estimate of u-star

from inflation and unemployment data only, i.e., the price Phillips curve (CKP Adj. model),

has a higher trajectory of u-star compared to Base. The story is similar in the case of the

model specification that infers the estimate of u-star from GDP and the unemployment data

only, i.e., the Okun’s law relationship (Bivariate model), though the trajectory of u-star is lower

than implied by the CKP-Adj model. Once the Bivariate model is augmented with survey data

for GDP and unemployment, the trajectory is revised higher to resemble CKP-Adj, but with

contours similar to Base (because of the survey data).

Panel (d) compares the u-star estimates from our main model specifications with the CBO

estimate of the long-run unemployment rate. Interestingly, except for the 2000-2007 period, the

CBO u-star’s contour is similar to our model-based estimates, though the level of CBO u-star

estimate is significantly higher from 1960 through the early-2000s. From 2000 to 2007, both

Base and Base-NoSurv indicate a steadily rising u-star, whereas CBO has u-star trending lower.
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At the onset of the Great Recession and through the early phase of the economic recovery, all

three have u-star continuing to move higher. Whereas Base and Base-NoSurv peak in late 2010

at 5.5% and 5.2%, respectively, CBO has u-star peaking in late 2011 at 5.8%. Since then, u-star

has steadily moved lower, with the pace of decline quite similar across CBO and Base. CBO

has u-star at the end of 2019 at 4.4%, identical to Base and just a tenth shy of Base-NoSurv.

Precision of u-star

The panel (e) plots the precision of u-star estimates for Base, Base-NoSurv, Base-NoBoundU*,

and Bivariate+Surv. We make several observations. First, comparing between Base and Bi-

variate+Surv, both these model specifications use information from the surveys and the Okuns

relationship. However, Base relies on greater information and additional structure (e.g., wage

Phillips curve, price Phillips curve, cyclical productivity, monetary policy stance via the Taylor-

type policy rule) to infer the u-star compared to Bivariate+Surv, hence the more improved

precision of the resulting u-star. The latter reasoning contributed to the very different estimate

of u-star from the Base than Bivariate+Surv discussed earlier (and shown in panel c). And the

model comparison indicates a significantly higher fit of the Base model to the unemployment

data compared to the Bivariate+Surv.

Second, comparing with Base and Base-NoSurv, additional information from survey fore-

casts improve the precision of u-star, but this improved precision does not translate into the

improved model fit, which instead worsens somewhat (as shown in table 4).

Panel (f) shows the precision of u-star for Base-NoSurv, Bivariate (GDP and unemploy-

ment), and CKP-Adj (which is bivariate model of price inflation and unemployment rate). As

indicated earlier, the u-star from Base-NoSurv is inferred from a broader information set and

structure than the other two small-scale models. Accordingly, Base-NoSurv estimate of u-star

is, for the most part, more precise and the model comparison indicates a substantially higher

fit to the unemployment data than the other two. The plots also show that u-star inferred

from the Okun’s law relationship (i.e., Bivariate model) is less precise than inferred from the

price Phillips curve (i.e., CKP-Adj model). In contrast, the Bayesian model comparison lends

support to the Bivariate model over the CKP-Adj model.

The results also provide evidence that adding survey data to the Bivariate model (Bivari-

ate+Surv) improves further both the precision of the u-star (comparing Bivariate and Bivariate-

Surv in panels e and f) and the fit to the unemployment data (Bivariate: -56.5 vs. Bivari-

ate+Surv: -46.5, as shown in table 4). This latter finding of improved fit from adding survey

data is interesting because in the case of Base, adding survey data worsens the model fit (Base:

-24.6 vs. Base-NoSurv: -21.7). Importantly, it suggests that survey forecasts of u-star are likely

useful in the case of parsimonious models but of limited use for models that already are utilizing

various sources of information to infer u-star.

Cyclical unemployment
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Figure 3 presents the posterior mean estimate of the unemployment gap (i.e., the cyclical

component of the unemployment rate) and the corresponding 90% credible intervals. The top

panel plots the estimates from the Base model, and the bottom panel from the Base-NoSurv

model. A visual inspection indicates that the movements in the cyclical unemployment corre-

spond quite well with the NBER’s business cycle dating. For instance, cyclical unemployment

falls in economic expansions and rises during recessions. Both models show a significant spike in

the cyclical unemployment rate in the 1982-83 and 2007-09 recessions. And a sharper recovery

following the 1982-83 recession but a more gradual recovery following the Great Recession. The

figure also highlights that both models produce similar estimates of cyclical unemployment.

Comparing estimates of (smoothly evolving) u-star in the previous figure to estimates of the

cyclical unemployment rate indicates that fluctuations in the observed unemployment rate are

attributed mainly to cyclical unemployment.

4.2. Estimation results for g-star and the output gap

The panels (a) and (b) in figure 4 plot the g-star estimates from several sources, and panel

(c) plots the corresponding precision. As is evident, g-star estimates from all sources shown

indicate a steady decline throughout the sample, except a temporary rise in the late 1990s,

which the literature has attributed to the technology boom. According to the posterior mean

estimates of g-star from our Base and Base-NoSurv models, the growth rate of potential output

has continuously drifted lower from an annualized rate of close to 4.5% in early 1960 to 1.4%

by the end of 2019. The estimate of g-star fell to 1.2% in 2012 and remained there through

2015 and then began very slowly to move up. The story is generally similar based on the

inference from simpler (nested) specifications of the Base model: (1) univariate model (which

is Chan and Grant 2017 model); (2) the bivariate model of real GDP and unemployment rate;

(3) and the bivariate model augmented to include survey data for g-star and u-star (denoted

Bivariate+Surv).

This continuous reduction in the growth rate of potential output has been extensively doc-

umented elsewhere (e.g., Berger et al., 2016; Chan and Grant, 2017; Coibion et al., 2018) and

in particular the decline since 2009 has been of great concern among the policymakers. Sev-

eral other researchers including, Summers (2014), Eggertson, Mehrotra, and Summers (2016),

Pescatori and Turunen (2016), LW (2016), Antolin-Diaz, Drechsel, and Petrella (2017) have

also documented the secular decline in g-star over the past two decades.

Not surprisingly, the precision of the g-star estimates (and of the output gap) display pat-

terns that align well with intuition. For instance, model specifications that incorporate survey

expectations (i.e., Base and Bivariate + Surv) yield more precise estimates than specifications

that ignore survey data. As discussed earlier, previous researchers have shown unemployment

data to be the most critical indicator for the estimation of g-star and the output gap, and the

plots provide evidence to that effect. For example, the model specification Bivariate, which

builds on the univariate GDP model by adding the unemployment rate, yields a substantial
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improvement in the precision of the g-star estimate. Interestingly, the g-star estimate’s preci-

sion from Bivariate is about the same as the Base-NoSurv, suggesting that unemployment is

the most crucial variable influencing estimation of g-star. However, as we show shortly, model

comparison results indicate support for Base-NoSurv over Bivariate in the output gap case.

Output gap estimates

Next, we examine the estimates of the output gap. In figure 4, panels (d) and (e) plot the

output gap estimates from the same sources as in the case of g-star, and panel (f) plots the

corresponding precision. Overall, the estimates of the output gap from Base and Base-NoSurv

are quite similar. They accord well with the NBER recession dates. Furthermore, as noted by

Morley and Piger (2012) and Johannsen and Mertens (2015), our model-based estimates provide

evidence of asymmetry in that recessions are shorter in duration but deeper than expansions

in the US. It is instructive to highlight that estimates imply a more negative output gap (of

−10.5%; posterior mean) during the 1981-82 recession compared to the Great Recession period

(−7%) when output fell more dramatically. At a first pass, this may seem odd. But a closer

inspection reveals that in comparison to the 1981-82 recession during the Great Recession, g-

star fell significantly (as can be seen in panel a), resulting in a smaller negative output gap; in

contrast, during the 1981-82 recession, g-star is estimated to have remained stable.

Bivariate models are consistent with a similar story, but there are notable differences in

the estimates implied from a univariate model. For instance, the latter model suggests a less

dramatic fall in the output gap in 1973-74, 1981-82, and 2007-09 recessions. In the mild 2001

recession, the univariate model estimates a positive output gap, although less positive than

before the recession. Also, as of 2019, according to this model, the output gap remains negative,

which is in sharp contrast to other models and the consensus view (e.g., CBO output gap).

The precision estimates and the Bayesian model comparison indicate the inferior quality of

the univariate model’s output gap estimate. Table 5 reports the assessment of model fit to the

GDP data for the various model specifications discussed in this section. As in the case of g-star,

the output gap estimate from the univariate model is subject to a great deal of uncertainty. The

bivariate model, that brings additional information from the unemployment rate helps improve

the precision significantly. This improved precision is also reflected in the bivariate model’s

substantially improved fit to GDP data compared to the univariate model (Bivariate: -280.4 vs.

Univariate: -296.5). In our subjective assessment, the estimate of the bivariate model’s output

gap is more reasonable because its trajectory aligns well with Base and Base-NoSurv, and as

shown shortly, with the consensus view.

Further improvements in precision are realized by bringing in additional information from

the surveys (comparing Bivariate vs. Bivariate+Surv); however, the model fit, which reflects

uncertainty about other model parameters in addition to g-star and the output gap, is little

changed – in fact, it slightly deteriorates. The usefulness of survey data in improving the qual-

ity of the g-star and output gap estimates is also apparent comparing precision between Base
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and Base-NoSurv; however, model fit is nearly similar. Contributing to comparable model-fit

between the two models is that beginning 1990 onwards, the precision of output gap across

the two models is identical. Unlike, in the case of g-star, the Base-NoSurv yields significantly

more precise estimates of output gap than Bivariate, suggesting the usefulness of additional

information and structure embedded in Base-NoSurv; hence, on-net the slightly better fit of the

Base-NoSurv model to GDP data compared to Bivariate (Base-NoSurv: -279.1 vs. Bivariate:

-280.4)

Posterior parameter estimates for the output block

Next, we discuss the Base model’s parameter estimates of the output block that drive the

dynamics of g-star and the output gap. The posterior mean estimates of parameters ρg1 and ρg2
indicate a high degree of persistence (ρg1 + ρg2 = 0.74) and suggest a hump-shaped response of

output gap to shocks (as ρg1 > 1). These parameters are precisely estimated as evidenced by

tight posterior credible intervals. The posterior estimate of parameter λg (the coefficient on the

unemployment gap in the output gap equation) is negative and highly significant statistically.

The estimated posterior mean of λg is −0.46 (with 90% interval −0.58 to −0.34). Similarly,

the parameter φu (the coefficient on output gap in the unemployment equation), discussed

earlier, is also negative and highly significant statistically. Together, these estimates indicate

a strong Okun’s law relationship in the data. The implied posterior mean estimate of the

Okun’s law coefficient,
(1−ρu1−ρu2 )

φu
is −2.1, with 90% credible intervals spanning −2.3 to −1.8.

This estimated coefficient is strikingly identical to the conventional estimate often discussed

in macroeconomic textbooks. Therefore, not surprisingly, both the estimated output gap and

unemployment gap (shown earlier) reveal similar cyclical dynamics. For instance, according to

both cyclical measures, the 1981-82 recession is estimated to have been deeper than the Great

Recession.

The parameter ar, which relates the output gap to the real rate gap (characterizing the IS

relation), is negative and much smaller than the prior mean. The estimated posterior mean of

ar is −0.07 (with 90% interval −0.14 to −0.00).

The posterior mean estimate of E(σ2
gdp∗), the variance parameter of the innovations to the

process governing the evolution of the g-star (and gdp-star), is nearly identical across the Base

and Base-NoSurv models: 0.022. For comparison, the prior mean E(σ2
gdp∗) is 0.012. Similarly,

for the output gap, the posterior mean estimate of E(σ2
ogap), the variance parameter of the

innovations to the IS equation, is also identical across the two models: 0.722 (compared with a

prior of 12).44 The estimation results suggest that data is quite informative in influencing the

dynamics of both output gap and g-star, confirming Kiley (2020).

44Note, our prior setting implying a high ratio of
σ2
ogap

σ2
gdp∗

is consistent with the high noise to signal ratio

suggested in Kamber et al. (2016). Specifically, they recommend fixing the noise-to-signal ratio to a high value
to obtain large and more persistent cycles when estimating output using Morley et al. (2003) UC model with
maximum likelihood estimation.
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Model-based estimates of output gap vs. CBO and others

Figure 5 presents estimates from outside sources, CBO, and LW model to gauge how our

model-based output gap estimates compare to measures from other sources. Also plotted are

estimates from Base and Base-NoSurv in panel (a) and from the Bivariate and Bivariate+Surv

models in panel (b) to facilitate comparison with the outside estimates. A few observations

immediately stand out. First, the output gap estimate implied from the LW model is notably

different over most of the sample period. In particular, during the Great Recession period,

the output gap from LW turned slightly negative, while other estimates implied larger negative

gaps. The slight negative gap in the LW model is the result of the LW model estimating a

dramatic fall in potential output, in line with the collapse in the actual output.

Second, both Base and Base-NoSurv models produce estimates of the output gap generally

similar to the CBO estimate. This close similarity is notable because the CBO approach is

based upon an entirely different methodology, a production function approach (see Shackleton,

2018).45 Note that the Bivariate models of real GDP and the unemployment rate (with and

without survey), which are nested specifications of our bigger Base model, produce estimates

of the output gap broadly similar, though not identical, to our two main model specifications.

Interestingly, in periods when the output gap estimates from our Base (and Base-NoSurv) differ

from the CBO estimates, the Bivariate models’ estimates are identical to the CBO’s. And in

periods when Bivariate models differ from CBO, the Base (and Base-NoSurv) estimates are

identical to CBO’s.

The estimation results suggest an important takeaway: that joint modeling of real GDP and

the unemployment rate is the key to obtaining credible output gap estimates. Morley and Wong

(2020), who estimate the output gap using a large BVAR, also found that the unemployment

rate is the most crucial indicator for the output gap. (In section 6, we compare our model

estimates with additional estimates, including Morley and Wong’s). Recently, Barbarino et al.

(2020) use a range of small-scale UC models to estimate the output gap and similarly find that

the unemployment rate is the most valuable indicator.

Our paper’s result indicating a close resemblance of our models’ output gap estimates to

the CBO’s output gap provides evidence supporting the common practice of using output gap

estimates from the CBO as an exogenous variable in empirical macroeconomic models (e.g.,

JM; Stock and Watson, 2020). We view this result as a useful contribution to the applied

macroeconomics literature.

On the one hand, the fact that model-based estimates of the output gap bear a strong

resemblance to institutional forecasts, i.e., CBO, are encouraging and lends credibility to our

model(s). However, on the other hand, in light of the evidence reported in Coibion et al. (2018),

the strong resemblance to outside estimates is an unfortunate outcome. We say this for the

following reason. Coibion et al. (2018) examine estimates of potential output taken from a

45We note that in recent years, more and more papers using UC models, which jointly models real GDP
growth and unemployment rate, yield estimates of output gap similar to CBO output gap (e.g., Johannsen and
Mertens, 2015; Berger et al., 2016; Kiley, 2020; Gonzalez-Astudillo and Laforte, 2020).

33



variety of model-based and external sources, including CBO and survey forecasts, and based on

a range of shock measures, find that (in real-time) the estimates of potential output are unable

to distinguish between transitory and permanent shocks effectively. Put differently, they find

that their estimates of potential output respond “gradually and similarly” to both supply shocks

and demand shocks that drive cyclical fluctuations in real GDP. This is unfortunate, since, by

definition, potential output (and g-star) should only adjust in response to permanent shocks.

Coibion et al. (2018) in their conclusion postulate whether a framework that jointly esti-

mates the dynamics of potential output with other relevant stars (as theory would imply) better

distinguish between permanent and transitory components and hence lead to more credible es-

timates of potential output. Unfortunately, our model estimates, both based on full sample and

real-time (shown in section 5) suggest otherwise.

4.3. Estimation results for p-star

Figure 6 presents posterior estimates of p-star and other parameters of the productivity

block. The panels (a), (b), and (c) present p-star estimates from the Base, Base-NoSurv, and

Base-W*RW models, respectively. Both the posterior mean and the 90% credible intervals are

shown. Also plotted is the actual labor productivity series. A visual inspection of the actual

series indicates the unusually high volatility of the quarterly productivity data. In addition,

this series is subject to a high-degree of revisions in subsequent data vintages, suggesting the

extreme difficulties of its measurement in real-time (see Jacobs and van Norden, 2016). Perhaps,

a quote from the former Chair of the Federal Reserve, Alan Greenspan (courtesy of Jacobs and

van Norden, 2016), would be instructive to reflect a general sentiment about the productivity

data,

“The productivity numbers are very rough estimates because we are measuring a whole set of

production outputs from one set of data and a whole set of labor inputs from a different set.

That they come out even remotely measuring actual labor productivity is open to question. . . ”

(Transcript: Meeting of the Federal Open Market Committee, March 25, 1998, p. 96)

Not surprisingly, researchers have emphasized that these difficulties of extreme volatility,

extensive revisions, and real-time measurement issues with productivity data complicate its

trend-cycle decomposition (e.g., Edge, Laubach and Williams, 2007; Kahn and Rich, 2007).

Our model-based estimates reflect these challenges. For instance, the estimate of the parameter

ρp, reported in table 2, indicates close to zero persistence in the labor productivity data, defined

as the difference between the growth rate in labor productivity and p-star. Similarly, our

estimation indicates that labor productivity data has very little influence on the estimate of

p-star. Put differently, the data is so volatile to allow for a meaningful identification of trend

in the productivity data. The posterior mean of E(σ2
p∗), the variance of the shock process for

p-star, is essentially the same as the prior mean.46 As a result, the degree of time-variation

46We tried different values for the prior mean on this parameter, and found that posterior moves with the
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in p-star is primarily influenced by the prior setting. So conditional on our prior belief, which

allows p-star to evolve slowly from one quarter to the next, we find considerable evidence of

gradual time-variation in p-star over the post-war sample. The evidence of time-variation is

economically significant and is consistent with the findings of Roberts (2001), Benati (2007),

Edge, Laubach and Williams (2007), and Fernald (2007).

Comparing across the three top panels in the figure, the paths of p-star (posterior mean

estimates) from Base and Base-NoSur are lower than Base-W*RW. The latter model removes

the restriction that the long-run w-star grows at a rate equal to the sum of pi-star and p-star.

So removing this restriction eliminates the direct influence on p-star from wages and prices and

helps raise the level of p-star. As evident from the Bayesian model comparison reported in

table 6, the elimination of this restriction improves the fit of the model to the productivity data

but reduces the overall model fit to other data, particularly interest rates – via the changes

in pi-star and u-star in the Taylor-type rule equation. That said, all three models generally

indicate similar broad patterns in p-star.

After averaging between 2% and 3% in the 1960s, the models indicate that p-star experienced

a sharp deceleration in the 1970s through mid-1980s, mirroring the dramatic fall in productivity

growth. Both Base and Base-NoSurv estimates show p-star trending lower from 2.4% (2.3%)

in early 1970 to 0.5% by mid-1980, whereas Base-W*RW has it falling close to 1.5%, with wide

90% credible intervals that range from 0.4% to 2.3%. From there on through to the late 1990s,

p-star increased sharply, at a pace roughly equivalent to its deceleration in prior periods, to

reach a level of 2.0 to 2.4% by 1999. The literature attributes part of this acceleration in the

latter half of the 1990s to the information technology boom. Roberts (2001), Edge, Laubach,

and Williams (2007), and Benati (2007) document estimates of trend productivity generally

similar to the p-star implied from the Base-W*RW model.47

In the 2000s, the models have p-star gradually declining to a level close to 1.0%-1.2% by

2010. It remained close to that level through most of the past decade, but since 2018, it has

steadily increased. At the end of our sample, all three models estimate the posterior mean

of p-star at, or close to, 1.5%. As we show in appendix A12, these estimates of p-star are

consistent with the narrative implied by the two-regime Markov-switching model of Kahn and

Rich (2007), an influential contribution in the trend productivity literature.

The uncertainty around the posterior mean estimates of p-star is large. Panel (d) quan-

tifies this uncertainty by reporting the width of the 90% credible intervals corresponding to

all three models. The plots provide evidence that the theoretical restriction (defined by eq.

28) contributes to a substantially improved precision of p-star (just like it does for pi-star and

w-star), as evident by Base and Base-NoSurv plots lying below the Base-W*RW. Interestingly,

the estimate of p-star from the Base is more precise than Base-NoSurv in 1960 through the

mid-1980s, even though we do not utilize survey based long-run expectations of productivity in

prior.
47Edge et al. (2007), who collect real-time estimates of long-run productivity from various sources, including

historical Economic Reports of the President, document a similar pattern in the trend productivity estimates.
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the estimation of our model. Based on the Bayesian model comparison, the Base model’s fit to

productivity data is marginally better than Base-NoSurv. The improved precision and better

fit of the Base model to productivity data suggest there are important spillover effects in the

estimation from survey forecasts of other stars.

Cyclical dynamics of labor productivity

Panel (e) plots the estimate of the parameter λp, which relates cyclical unemployment to the

productivity gap, from all three models. The plots indicate a high level of uncertainty around

the estimates of λp. The 90% credible intervals are wide, such that they include both positive

and negative values complicating reliable inference. Going just by the posterior mean estimate,

the evidence suggests a counter-cyclical behavior of labor productivity, with this relationship

weakening over time.

The model specification Base-P*CycOutputgap, which relates productivity to output gap in-

stead of unemployment gap (through parameter φp), provides generally similar inference about

the cyclical nature of labor productivity. The plot for the time-varying parameter φp is rel-

egated to appendix A13 to conserve space. The credible intervals are wide and include both

positive and negative values. Based on the posterior estimate of parameter φp, productivity

is procyclical in the 1960s and post-2010, but it is either acyclical or countercyclical in other

periods. Overall, the empirical evidence generally corroborates the evidence presented in Gali

and van Rens (2020). The model comparison results indicate a slightly inferior fit of the Base-

P*CycOutputgap model compared to Base (-608.1 vs. -606.9 in the case of productivity data

and -1773.8 vs. -1771.7 for the overall fit).

The importance of SV in productivity equation

An essential element of our decomposition of labor productivity into the trend, cyclical, and

idiosyncratic components, which others have abstracted from, is that we permit a time-varying

variance of the idiosyncratic component. Empirically, our results show this to be an important

extension, as shown in the SV plots included in panel (f) and the model comparison results

reported in table 6. The plots indicate statistically significant evidence of time-variation in

the volatility of the idiosyncratic component. The model comparison further provides evidence

supporting SV inclusion, as the Base-NoSV is the worst performing and has a significantly worse

fit to productivity data compared to Base.

We also explored the possibility that the SV may be soaking up the variation in produc-

tivity, which otherwise would have been attributed to the cyclical component of productivity.

The model specification Base-NoSV, which shuts down SV in the idiosyncratic component of

productivity (and other model equations), yields estimates of λp similar to Base, suggesting

that SV is not contributing to the ambiguous result on the cyclicality of labor productivity.
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4.4. Estimation results for π-star

Figure 7, panels (a) and (b) plot the posterior mean estimates of pi-star along with the

90% credible intervals from the Base and Base-NoSurv model specifications, respectively. Panel

(c) plots the corresponding precision estimates, defined as the width of the 90% intervals. A

quick visual inspection shows that the pi-star from the Base specification is significantly more

precise than Base-NoSurv, as evidenced by narrower credible bands and the precision plot

corresponding to Base lying below the Base-NoSurv plot. Based on the marginal likelihood

criteria, the fit of the inflation equation to the data in the case of Base is substantially greater

than Base-NoSurv (as reported in Table 8). The fit of the overall Base model to the data is

also higher than Base-NoSurv. Our finding that adding survey expectations improves both the

model fit and the precision of pi-star is consistent with CCK.

The broad contours reflected in the posterior mean pi-star from the two models are similar

to those documented elsewhere in the literature (e.g., CCK). For instance, pi-star was low in the

1960s, high in the 1970s, fell sharply in the 1980s, continued a steady deceleration in the 1990s,

fluctuated in a narrow range between 2.0% and 2.5% in the 2000s, and has been below 2% since

2012. This general pattern is consistent with the widely held view. Focusing on the specifics,

unlike some papers (e.g., Stock and Watson, 2007; Mertens, 2016), which show two peaks in

pi-star, one in the mid-1970s and another in the early 1980s, our model-based estimates (both

with and without survey data) do not show the earlier peak (similar to CCK). Relatedly, in

those same papers, the pi-star is estimated to peak at a level of 10% or higher; in contrast, the

mean estimate of pi-star in our model specifications peak at a lower level (similar to CCK and

Mertens, 2016 – in his model spec that augments survey data).48

Comparing estimates from Base and Base-NoSurv specifications, the level of pi-star is simi-

lar in the 1960s but starting in early 1970, pi-star from the Base specification sharply accelerates

to peak at 6% in early 1980, whereas, while the estimates of pi-star from Base-NoSurv specifi-

cation also accelerate but peaks at a lower level of 4.5%. As shown, uncertainty about pi-star

increases sharply in early 1980, with the Base-NoSurv estimates experiencing a much more

dramatic rise. It is the case that uncertainty around pi-star (as measured by the width of 90%

credible intervals) inferred from the Base-NoSurv is higher compared to the Base throughout

the estimation sample. But in early 1980, the differential in uncertainty is twice as large, as

can be seen comparing dotted and solid plots in panel (c).

A similar rise in model-based estimates of pi-star uncertainty in the late 1970s through early

1980 (known as the Great Inflation period) has been noted elsewhere (e.g., Mertens, 2016). A

subset of literature attributes the rise in pi-star uncertainty to un-anchoring of inflation ex-

pectations during the Great Inflation period. Beginning early 1980 through early 2000, both

models have (posterior mean of) pi-star steadily declining to 2%. Between 2000 and 2012,

48Since both Stock and Watson (2007) and Mertens (2016) endow SV to the RW process governing the pi-star
whereas we do not, this difference in the modeling assumption may explain why the difference in the pi-star
estimates around the Great Inflation period. However, CCK, who also allows SV in the pi-star process, yields
pi-star generally similar to our pi-star estimates suggest that the SV assumption is likely not the answer.
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whereas in the case of Base, pi-star is flat at 2%, in Base-NoSurv, it is stable at a slightly higher

level of 2.3%. Since 2012, pi-star has slowly moved down to reach 1.5% (in Base) and 1.4% (in

Base-NoSurv).

Inflation gap persistence

Panel (d) shows the posterior mean estimates of parameter ρπ for Base (solid line) and Base-

NoSurv (dotted line). Also plotted are the 90% credible intervals from the Base model. As is

evident, the uncertainty around the posterior mean is high. That said, both models indicate

quite similar estimates of persistence in the deviations of inflation from pi-star. There is also

strong evidence of time-variation in inflation gap persistence. For example, gap persistence was

low (0.25 to 0.35) in early 1960, but from thereon began to increase steadily, reaching close

to 0.85 by early 1970, and remained at that level through the early 1980s. Subsequently, the

persistence declined steadily to 0.4 by the early 1990s. From the late 1990s to the early 2000s,

persistence fell further to 0.3, and it remains at that level.

Price Phillips curve

Panel (e) plots the posterior mean estimate of parameter λπ, which is the slope of the price

Phillips curve. As before, the plots from the main model specifications are shown. (The 90%

credible intervals are from the Base model). The plots indicate both model specifications yield

very similar estimates of the parameter linking the inflation gap to the unemployment gap. The

estimates also indicate strong evidence of time-variation in the slope of the Phillips curve. For

example, both models estimate a steeper Phillips curve in the 1960s that subsequently weakens

(becomes less negative) over time through 2010. From thereon, it slowly begins to become

steeper (more negative), ending 2019 at -0.23, which is still weak historically speaking and is

surrounded by wide intervals spanning -0.05 to -0.52. This pattern is consistent with the famil-

iar narrative (also documented in several other papers) that the “Phillips curve has weakened

over time.”

SV in price inflation equation

Panel (f) plots the volatility estimates (i.e., the standard deviation of the shocks to the

inflation gap, eh
π
t ) corresponding to the two model specifications. The figure shows that the

posterior mean estimates are quite similar. The estimates imply high volatility during the pe-

riod of Great Inflation that fell subsequently. Inflation volatility increased sharply again during

the Great Recession but has trended lower since then. By 2019, inflation volatility had re-

turned to the low levels of the early 2000s but remains shy of historic lows of the mid-1960s

and mid-1990s. The contours of the volatility in the inflation gap are generally similar to those

reported in CCK and Chan, Koop and Potter (2013). Bayesian model comparison indicates

strong evidence supporting the inclusion of SV in the price inflation equation.
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Link between survey and pi-star

In figure A6 (appendix), panels (a) and (b) plot the posterior estimates of the coefficients Cπ

and βπ that provide a sense of the estimated relationship between survey forecast and pi-star.

The prior assumes an unbiased relationship between survey forecasts and pi-star (i.e., prior

mean βπ = 1 and at all periods Cπt = 0). The model estimation yields posterior mean estimate

of 0.99 for βπ, with 90% credible interval spanning 0.91 to 1.07 (also reported in table 2). The

posterior mean of Cπt displays considerable time-variation; however, the 90% credible intervals,

for the most part, include zero. Taken together, the posterior estimates of βπ and Cπt imply

that the survey forecast, on average, is somewhat a biased measure of pi-star. This latter result

confirms the findings of CCK.

In the appendix A11.a, we include the results and discussion comparing pi-star estimates

from the Base model to external models: CCK, CKP, and UCSV. The estimates indicate that

the CCK model generates the most precise pi-star, followed by the Base model, CKP, and

UCSV. The latter model yields volatile and erratic estimates of pi-star (and precision).

Summary: pi-star

All told, we summarize the analysis of the inflation block as follows. First, the Base model

and its variants indicate contours of pi-star that corroborate the narrative documented elsewhere

in the literature. However, in some periods, pi-star estimates can differ notably across models,

and as emphasized in CCK, these differences can have important implications for monetary

policy. Second, comparing across Base and Base-NoSurv specifications, and comparing the

Base specification with outside models, strongly suggests the usefulness of survey forecasts in

improving the econometric estimation of pi-star (i.e., survey forecast information yields sensible

estimates of pi-star and improved precision); hence, corroborating evidence in CCK, Mertens

(2016), and Nason and Smith (2020). Third, we find evidence in support of incorporating

time-variation in the price Phillips curve. Specifically, suggesting, in a broad sense, weakening

of the relationship between inflation and labor market slack since the 1960s, something also

documented by several others (e.g., CKP; Stella and Stock, 2015; Del Negro et al., 2020).

Fourth, as found by CKP, CCK, Mertens and Nason (2020), among others, we find evidence

supporting time-variation in the persistence of the inflation gap. Fifth, as noted by many,

including Stock and Watson (2007) and Clark and Doh (2014), we find strong evidence of SV

in the innovations of the inflation equation. Sixth, as in CCK, we find evidence that the survey

forecast of PCE inflation is a biased measure of pi-star. Lastly, the Base model’s improved fit

to inflation data compared to some of its variants provides evidence supporting the long-run

theoretical restriction defined by equation (28), which imposes w-star = pi-star + p-star.
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4.5. Estimation results for W-star

In modeling w-star, a novel feature of our framework is the decomposition of w-star into its

fundamental components, pi-star and p-star. Figure 8 presents posterior estimates of w-star

along with the decomposition. The first row in the figure plots estimates from the Base model,

and the second-row plots estimates from the Base-NoSurv. Third-row plots p-star estimates

from other model variants alongside Base and Base-NoSurv models, and also presents precision

estimates of the w-star.

The estimates imply w-star increased steadily in the 1970s and peaked in the early 1980s.

This increasing w-star reflected upward drift in pi-star that more than offset the downward

drift in p-star, as evidenced by the widening in the shaded area representing pi-star and slight

narrowing of the shaded area representing p-star. Base model implies w-star peaked at 7.3% in

the early 1980s, while Base-NoSurv has w-star peaking at 6%. Both models have w-star sharply

drifting lower through much of the 1980s to reach near 4% by early 1990. From thereon, the

path of w-star across the two models is very similar and indicates a gradual slowing to 2.5%

by the end of 2017. W-star moved up to 3.0% by the end of 2018, only to fall back to 2.8% in

2019.

Not surprisingly, w-star is more precisely estimated in the Base model than in the Base-

NoSurv model, as shown in panel (f). The considerable uncertainty around w-star, implied by

the Base-NoSurv model during the 1970s, is mostly driven by pi-star. As noted earlier, the

pi-star estimate from the Base-NoSurv was highly imprecise during the 1970s. Interestingly,

despite the inferior precision of the Base-NoSurv compared to Base, the Bayesian model com-

parison suggests a better fit of the Base-NoSurv model to the nominal wage data than Base

(see Table 7). However, the overall fit of the Base-NoSurv to data (which includes data beyond

nominal wage) is slightly worse than Base.

Sensitivity of w-star to modeling assumptions

Panel (e) plots estimates of w-star from two additional Base model variants, Base-W*RW

and Base-NoPT. The Base-W*RW model eliminates the long-run restriction that w-star is the

sum of p-star and pi-star (on average) and instead models w-star as a RW process. Interestingly,

the path of w-star implied by Base-W*RW is similar to Base-NoSurv through the mid-1980s.

From thereon, w-star from Base-W*RW is below the Base-NoSurv through early 2010. Since

then, it is identical to Base and Base-NoSurv. Although in the first half of the estimation

sample, the w-star from Base-W*RW is less precisely estimated than Base, in the second half

of the sample, it is more precise. According to the Bayesian model comparison, the fit of the

Base-W*RW to the nominal wage data is inferior to both Base-NoSurv and Base. However,

compared to Base, the degree of inferiority is only slight. The overall fit of the Base-W*RW

model to the data is substantially worse than achieved by either the Base and Base-NoSurv

model.

The Base-NoPT model eliminates the passthrough from prices, i.e., it removes the price
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inflation gap from the equation describing the wage inflation gap. In other words, the direct

link between the cyclical components of prices and nominal wages is eliminated, but the con-

nection between the permanent components pi-star and w-star remains. Doing so has notable

implications for the estimate of w-star and the model’s fit. As shown in panel (e), the w-star

implied from Base-NoPT is higher than that implied by the other models through the first half

of the sample. While the Base model has w-star peaking at a little above 7% in the early 1980s,

the Base-NoPT model implies a higher peak of 8.2%. The acceleration in w-star implied by the

Base-NoPT model during the 1970s is much stronger than that implied by the Base model es-

timates. This stronger path of w-star is associated with more precise estimates of w-star in the

1970s compared to the Base and other models, as can be seen in panel (f). However, according

to the Bayesian model comparison reported in table 7, removing the connection between the

cyclical components negatively impacts the model fit, as evidenced by the substantially inferior

fit of the Base-NoPT model to data compared to the Base model.

Wage persistence, Wage Phillips curve, Passthrough from prices, and SV in wage equation

Figure 9 presents the time-varying posterior estimates of the parameters describing the per-

sistence in the nominal wage gap, the wage Phillips curve, the short-run passthrough from prices

to wages, and stochastic volatility of the shocks to the nominal wage equation. Estimates from

three models, Base, Base-NoSurv, and Base-W*RW are presented. A quick visual inspection

indicates both statistically and economically significant evidence of time-variation in these pa-

rameters that capture important empirical relationships.

Wage gap persistence

Panel (a) plots the posterior estimates of the parameter ρw, capturing the persistence in the

nominal wage inflation gap. Also included are the 90% credible intervals from the Base model.

The posterior mean estimates for the three models indicate increasing persistence in the wage

inflation gap beginning in early 1960 and peaking in mid-1980. The Base model shows a notably

higher peak at 0.45 compared to 0.39 and 0.33 for Base-NoSurv and Base-W*RW, respectively.

The higher peak suggests that the Base model attributes a higher share of fluctuations in the

cyclical nominal wages to the persistence component than that implied by the other two models.

From the mid-1980 to the early 1990s, the persistence steadily declines but after that increases

through the mid-2000s; from there on through the early 2010s, the estimated persistence in the

nominal wage gap falls to levels seen in the mid-1970s. Since then, it has been slowly increasing.

It is worth noting that credible intervals around the posterior mean are wide, suggesting high

uncertainty in the inference about the estimated persistence.

Wage Phillips curve

In Figure 9, panel (b) plots the estimates of parameter λw, which captures the wage Phillips

curve relationship in the US data. The plot provides strong evidence supporting the existence of
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the wage Phillips curve in the post-war data. Notably, the plot also offers convincing evidence

of a time-variation in this relationship. According to the posterior mean estimate, from the

early 1960s through mid-1970s, our models imply the strength of the wage Phillips curve at

a moderate level, but from thereon through the mid-1980s, the wage Phillips curve steepened

sharply in Base and Base-NoSurv (less steep in Base-W*RW). By the mid-1980s, in the Base

model, the posterior mean of the wage Phillips curve parameter is estimated to be −0.5, with

90% credible intervals ranging from −0.23 to −0.75. From thereon, it gradually flattened until

the mid-2000s, but soon afterward, it began to flatten more rapidly through to early 2010. In

2010, all three models estimate the posterior mean of the Phillips curve parameter at −0.2. The

prevalence of the downward wage rigidities during the Great Recession is among the primary

explanations for the flattening wage Phillips curve (see Daly and Hobijn, 2014).

From 2010 onwards, with an improving economy, the estimated wage Phillips curve has

steadily steepened. Our empirical evidence on the wage Phillips curve is consistent with the

findings of Knotek and Zaman (2014), Peneva and Rudd (2017), and Gali and Gambetti (2019),

who all document strong support for the continuing existence of a wage Phillips curve in the

US data.

Passthrough from prices

Panel (c) plots the estimates of the short-run passthrough from prices to wages defined as
κwt

1−ρwt
. The posterior estimates of passthrough indicate a weakening relationship between cyclical

nominal wage inflation and cyclical price inflation over the estimation sample, confirming the

evidence presented in Peneva and Rudd (2017) and Knotek and Zaman (2014). The relationship

between the two was strong in the 1970s through to the mid-80s, but since then, it has gradually

weakened such that it has been nonexistent (i.e., the passthrough is estimated to be zero) for

the past decade. This period of the breakdown in the relationship between the two cyclical

components has coincided with low and stable price inflation. Literature has attributed various

explanations to this breakdown in the relationship that includes improved anchoring of inflation

expectations (Peneva and Rudd, 2017) and amplification of downward wage rigidities during

low levels of price inflation (Daly and Hobijn, 2014).

Our empirical finding also supports the results of Bobeica et al. (2019), who show using

euro area and US data that the link between labor compensation and price inflation in the

short-run importantly depends on the prevailing inflation regime. They find a high inflation

regime associated with a tighter connection between labor costs and price inflation and a low

inflation regime associated with a weaker link. All three of our models imply similar inference.

Both Base-NoSurv and Base-W*RW indicate a stronger passthrough than the Base model in the

1970s and 1980s, periods associated with high inflation in the US. Comparing between panels

(a) and (c) suggests that during that period, Base attributes more of the increase in nominal

wage inflation to increase in persistence than to the passthrough from price inflation, hence the

less strong passthrough estimate than seen in the Base-NoSurv and Base-W*RW models.
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SV in the wage equation

Panel (d) plots the time-varying standard deviation of the innovations to the nominal wage

inflation gap. The plot indicates the importance of allowing for SV in the equation for nominal

wage inflation. All three models show very similar posterior mean estimates of SV. The estimates

suggest that volatility in the early 1960s was high but then subsequently fell to rise back up

again in the late 1960s and early 1970s. From thereon through the mid-1970s, it fell steeply. It

increased in the early 1980s, but less sharply than in the previous decades. From the mid-1980s

through the early 1990s, volatility moderated to low levels, and since then, it remains flat at that

low level. The Bayesian model comparison indicates further evidence supporting the inclusion

of SV in the wage equation, as evident by the substantially inferior fit of the Base-NoSV model

to nominal wage inflation data compared to Base and Base-NoSurv models (Base-NoSV: -344.3

vs. Base: -277.5; see table 7).

4.6. Estimation results for r-star

Figure 10 presents r-star and the “catch-all” component D estimates for our two main model

specifications. The top row of the figure plots the estimates of r-star (panel a) and component D

(panel b) from the Base model. Also included in panel (a) are the survey expectations of r-star

(which enters our Base model). As can be seen, the contours of (posterior mean) r-star from

the Base model track the survey estimate; this suggests that survey data plays an influential

role in guiding the model’s assessment of r-star. The posterior mean estimate from the Base

model shows r-star staying relatively flat at 3.5% in the 1960s, and then slowly trends down

through the 1970s to reach 3% by early 1980. Thereafter, it fluctuates in a range between 2.8%

and 3.5% through to the beginning of 2000. From there on, it steadily declines to reach 1.1%

at the end 2019.

Panel (b) plots the estimate of component D, whose dynamics are shaped by the survey

expectations data and by information from the Taylor rule and IS equations. As can be seen in

the figure, component D is imprecisely estimated. According to the posterior mean estimate,

in the 1960s, component D exerts slight upward pressure on r-star that is mostly offset by

downward pressure coming from g-star (via equation 36), helping keep r-star relatively flat.

After that, with D remaining flat through 2000, developments in g-star shape the trajectory of

r-star. Beginning in 2000 and onwards, all forces (as captured through the model structure)

work in the same direction to push r-star steadily downwards. The estimated link between

r-star and g-star is of moderate strength (posterior mean of parameter m = ζ
4 = 0.701); see

table 2); therefore, movements in g-star play an influential role in driving r-star.

Moving on to the Base-NoSurv model specification, in panel (c), the mean estimate shows

r-star rising from 2% in early 1960 to 3.5% through early 1980 and then remaining stable

through early 2000. This trajectory is similar to Gonzalez-Astudillo and Laforte (2020), who

also utilize the Taylor-rule and information from long-term interest rates in their estimation.
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Beginning 2000 onwards, r-star steadily declines to reach 1.4% at the end 2019. The trajectory

of r-star from 2000 onwards is similar to that from the Base model. It is worth noting that

our models’ indication of a secular decline in the r-star beginning in 2000 is also documented

elsewhere in the literature tackling r-star (the exception being JM).49 However, the extent of

decline varies considerably across studies. The literature attributes this secular decline in r-star

to various explanations, including: a trend decline in g-star (e.g., LW, 2016); rising premiums

for convenience yield, i.e., increased demand for safety and liquidity Treasury bonds (see Del

Negro et al., 2017; Bullard, 2018); and excess global savings (Pescatori and Turunen, 2016).

The uncertainty around the r-star estimate from the Base-NoSurv model is substantially

higher than Base, as can be seen by comparing panel (a) and panel (c) of figure 10, and also

shown in panel (b) of figure 11. The increased uncertainty in r-star comes from component D,

which is imprecisely estimated without the survey data. Furthermore, based on the marginal

likelihood criteria, the Base model is favored over the Base-NoSurv model (see table 9).

Without the survey information about r-star, the estimated link between g-star and r-star

is significantly weaker (posterior mean of m = ζ
4 = 0.390; see table 2), which is consistent with

the evidence documented in Hamilton et al. (2016) and Lunsford and West (2019). Therefore,

the movements in component D significantly dominate the contours of r-star in Base-NoSurv

model. Both the IS curve and Taylor rule equations shape the evolution of component D. The

hump-shaped patterns in both D and r-star reflect the trends in real long-term interest rates

(informed from the IS equation) and short-term interest rates (from the Taylor-rule equation).

It is interesting to note that the r-star estimate from JM (and Gonzalez-Astudillo and Laforte

(2020)) – who use the Taylor-rule equation and information from both short and long-term

interest rates – also exhibit hump-shaped behavior (though, in the case of JM, it is only slight).

As we show shortly, the prior setting on the shock process for r-star (in our Base and Base-

NoSurv cases, component D) plays an essential role in shaping the contours of r-star.

As discussed earlier, the estimates of g-star from both Base and Base-NoSurv models are

quite similar. Therefore, the primary source of the differential in the r-star estimates between

Base and Base-NoSurv is the quantitatively weaker relation estimated between r-star and g-star

in Base-NoSurv than Base.

Assessment of policy stance

Panel (e) of figure 10 provides an assessment of the stance of monetary policy. Following

Pescatori and Turunen (2016), we gauge monetary policy’s stance as the deviation of the short-

term nominal interest rate from the long-run nominal neutral rate of interest (defined as the

sum of r* and pi*) – this is the interest rate gap from the Taylor rule equation. A positive

interest rate gap characterizes a restrictive monetary policy stance, and a negative interest rate

49JM document that r-star from their preferred specification (which allows for SV in TR equation) is generally
flat over their sample spanning 1960 through 2018. However, in an alternative specification, which does not permit
SV, the r-star estimate exhibits decline in r-star similar to that documented elsewhere. In our examination, r-star
trajectory is little changed comparing between Base specification and Base without SV (i.e., Base-NoSV).
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gap implies a stimulative stance. The solid line corresponds to the policy stance inferred from

the Base model and the dashed line to that inferred from the Base-NoSurv model. Even with

notable differences in the estimates of r-star across the two models, the assessment of the policy

stance is remarkably similar throughout the sample. So why are they so similar?

The answer lies in the differences in pi-star estimates across two model specifications, as

shown in figure 7 (panels a and b). In other words, the differences between r-star estimates

across the two models are compensated (i.e., offset) by the differences between pi-star, such that

assessment about the stance of monetary policy across the two models is strikingly similar. For

instance, in the 1960s, the r-star estimate from the Base is on average 1.34 percentage points

(ppts) higher than that of Base-NoSurv. However, over the same period, the pi-star estimate

from the Base model is 0.54 ppt lower than that of the Base-NoSurv model, which reduces the

difference between their associated assessments of policy stance.

According to our model(s) estimates, the policy stance appeared to be slightly restrictive

before the Great Recession, but at the onset of the Great Recession, the policy stance immedi-

ately turned accommodative. Since then, it has remained very accommodative (reflecting the

effects of unconventional monetary policy). After peaking in late 2015, the degree of accommo-

dation has gradually declined (i.e., the interest rate gap has become less negative), such that,

by the end of 2019, it has edged closer to the neutral threshold.

A closer inspection of the figure reveals an interesting insight. Since 1990, both the degree

and duration of policy accommodation in response to the recession have been more significant

than the previous recession. For instance, the monetary policy stance was more accommodative

both in terms of level and duration following the 2001 recession than the 1990-1991 recession.

Similarly, during and following the Great Recession, the policy stance in terms of level and

duration was more significant than following the 2001 recession. Broadly speaking, our model

implied assessment of the stance of monetary policy mirrors that in the assessment documented

in Brand and Mazelis (2019).

Random walk assumption for r* vs. Base (and Base-NoSurv)

As is commonly done when estimating stars, a random walk assumption for r-star is a

popular choice (e.g., Kiley, 2020; JM). Accordingly, we explore this particular modeling choice’s

fit to the data and empirical properties by replacing the equation linking r-star to g-star and the

RW component D with an equation that assumes a random walk process for r-star in our main

model specifications (Base and Base-NoSurv). We denote these specifications, Base-R*RW and

Base-NoSurv-R*RW. By adopting a RW assumption for r-star, the models will be unable to

attribute any specific causes of movements in estimates of r-star.

Figure 11, panel (a) plots the posterior mean r-star estimates from the Base-R*RW and

Base-NoSurv-R*RW models. To facilitate comparison, also shown are estimates from Base

and Base-NoSurv models. Panel (b) plots the corresponding r-star precision estimates (defined

as the width of 90% credible intervals). A few observations immediately stand out. First,
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the estimated r-star from model specifications with the RW assumption, although exhibiting

broadly similar contours, are higher than those obtained from the specifications that impose

a relation between r-star and g-star. Second, beginning 2000 and onwards, r-star estimates

from the specifications with the assumed link between r-star and g-star experience a more stark

decline than those from the specifications with the RW assumption. For instance, by late 2019,

the estimates of r-star from both the Base-R*RW and Base-NoSurv-R*RW models settle at

close to 2%, whereas those from the Base and Base-NoSurv models fall further to the range of

1.2 to 1.4%. This differential is mostly explained by the lack of direct downward pressure from

g-star in the specifications with RW assumption.

Fourth, bringing information from the survey improves the precision of the r-star estimates

substantially, irrespective of whether r-star is modeled simply as RW process or the combination

of RW component and a component linking r-star to g-star. Fifth, the specifications that

allow for a link between r-star and g-star are more precise than those that do not. The Base

specification generates the most precise r-star estimates relative to those obtained from the

other three specifications.

Based on the model comparison metric reported in table 9, the model indicating the most

precise r-star does not necessarily rank as the best fitting model. The fit of the Base specification

is slightly inferior to that of both the Base-R*RW specification and the Base-NoSurv-R*RW,

but not by very much. This evidence nicely illustrates that the marginal likelihood metric has

a built-in penalty that increases as the model complexity goes up. When comparing between

Base-NoSurv-R*RW and Base-R*RW specifications, the addition of survey data increases the

model’s fit to the interest rate data slightly from -215.58 to -214.04 (but reduces overall model

fit marginally from -1769.3 to -1770.8). In comparison, moving from the Base-NoSurv to the

Base specification, the fit to the interest rate data increases, from -221.98 to -216.4 (and the

overall model fit from -1772.8 to -1771.7).

Taken together, the evidence described above suggests that the RW assumption for r-star

is a viable option, but bringing in information from surveys helps improve precision of the

estimates of r-star substantially. Another result worth highlighting from the model comparison

exercise concerns the marginal value of survey information in the estimation of r-star. In a

model specification that imposes a relationship between r-star and g-star (e.g., Base; Base-

NoSurv), adding survey information is crucial in making the model a competitive alternative.

By bringing in survey information, which has a high correlation between g-star and r-star survey

expectations (0.8), the estimated link between g-star and r-star in the model becomes stronger

(m = ζ
4 = 0.701 in Base vs. m = ζ

4 = 0.390 in Base-NoSurv).

Given the evidence on model comparison and the precision of r-star estimates, our preferred

choice is the Base model because its fit to the data is competitive (just marginally inferior to

spec with RW assumption). And it produces the most precise r-star estimate compared to

the alternative specifications. An additional factor that influences our choice is the ability to

provide an explanation for movements in r-star, which is made possible due to its direct link to
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g-star.

In a supplementary set of exercises, we illustrate the usefulness of the Taylor-type rule

equation and the equation linking r-star to survey expectations for identifying r-star. The

addition of the Taylor-type rule equation turns out to be crucial to yield plausible and precise

estimates of r-star (see appendix A10.d).

We also explored the role of data versus prior in determining r-star, and in the interest

of brevity, the results of the exercises are relegated to the appendix (see A10.a). Here, we

briefly mention that results indicate that in the case of the Base-NoSurv model, the prior views

determine the shape of the posterior for r-star, confirming Kiley (2020). However, in the Base

model, which links r-star to survey expectations, the data does have some influence. In the case

of the Base-NoSurv model, we also find that if we loosen the prior on the variance of the r-star

process (to values similar to Kiley, 2020), then the data begin to shape the posterior. But, this

comes at the cost of worsening fit to the interest rate data.

Overall, we find that when it comes to r-star, specification choices matter a lot (something

also highlighted by Clark and Kozicki (2005), Beyer and Wieland (2019), and Kiley (2020)). The

model specifications that include survey expectations yield estimates that are both reasonable

and the most precise. In our examinations, the Base specification, which allows the link between

g-star and r-star, is equally preferred by the data to variant of the Base specification that

assumes r-star as a RW. Since 2000, the best fitting model specifications indicate a steady

decline in r-star, similar to documented elsewhere in the literature.

5. Real-time Estimates and Forecasting

In this section, we perform two real-time, out-of-sample, forecasting exercises. In the first

exercise, we compare the real-time forecasting performance of our two main models, Base and

Base-NoSurv. We evaluate both the point and density forecast accuracy for real GDP growth,

PCE inflation, the unemployment rate, nominal wage inflation, labor productivity growth, and

the shadow federal funds rate. We show that the Base model is more accurate on average

compared to Base-NoSurv for all variables of interest except the unemployment rate. We also

document our Base model’s superior forecasting properties relative to “hard to beat” bench-

marks, including some of the recently proposed UC models for inflation forecasting. By-products

of our real-time forecasting exercise are the real-time estimates of the stars from 1999 through

2019. We compare these real-time estimates to the final (smoothed) estimates – based on the

entire sample spanning 1959Q4 through 2019Q4.

In the second forecasting exercise, we illustrate the efficacy of the stars’ estimates produced

from our models by demonstrating their usefulness in forecasting with external models (e.g.,

steady-state VARs). We find that the quality of our estimates of the stars from the Base model

is generally competitive to the survey estimates, which are commonly used as proxies for stars in

VAR forecasting models. For brevity purposes, we relegate the discussion of this latter exercise
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to the appendix A5.

Table 10 presents the results from comparing the out-of-sample forecasting performance

(both point and density) between the two models over the forecast evaluation sample spanning

1999Q1 through 2019Q4. The forecast evaluation is based on real-time data vintages and uses a

recursively expanding estimation window, where each recursive run uses an additional quarterly

data point in the estimation sample.50 The forecast accuracy (point and density) is computed

from one-quarter ahead to 20 quarters out. Partly due to our focus on the medium-term horizon

and partly in the interest of space, we report accuracy metrics for four, eight, twelve, sixteen,

and twenty quarters ahead. We evaluate the forecast accuracy using real-time data; specifically,

we treat the “actual” as the third release of a given quarterly estimate.51 For instance, in the

case of real GDP, the third estimate for 2018Q4 corresponds to the GDP data available in late

2019Q1. The point forecast accuracy is assessed using the root mean squared error (RMSE)

metric, and the density forecast accuracy is evaluated using the log predictive score (LPS).

The statistical significance of the point forecast accuracy is gauged using the Diebold-Mariano

and West test and in the case of density forecast accuracy based on the likelihood-ratio test of

Amisano and Giacomini (2007).

The top panel of the table reports the results corresponding to the point forecast accuracy,

while the lower panel for the density forecast accuracy. The numbers reported in the table

correspond to relative RMSE –RMSE Base relative to RMSE of Base-NoSurv – in point forecast

comparison, and relative mean LPS – LPS Base minus LPS Base-NoSurv – in the case of density

forecast comparison. Hence, numbers less than one in the top panel suggest that point forecast

accuracy of the Base forecast is more accurate on average, and positive numbers in the bottom

panel suggest that density forecast accuracy of the Base forecast is more accurate than Base-

NoSurv forecast.

As is evident by the numbers reported in the table, except for point forecast accuracy of

the unemployment rate, the evidence generally favors the Base model as more accurate than

Base-NoSurv. The evidence in support of the Base model is strongest for PCE inflation and

labor productivity growth. In the case of the unemployment rate, as was the case with the

in-sample model fit (see table 3), the Base-NoSurv model outperforms the Base model in point

forecast accuracy. However, over the forecast evaluation sample, the uncertainty around the

point forecast of unemployment rate implied by the Base-NoSurv model was higher than the

Base model (on average). This higher uncertainty contributed to inferior density forecasts from

the Base-NoSurv model compared to the Base model, as is evident by the positive numbers in

50Going back in time means that we are using relatively fewer observations to estimate model(s). As is
commonly done when performing real-time forecasting using multivariate UC models, we need to tighten priors
on the shocks’ variances driving the latent components (see, for instance, Barbarino et al., 2020). Accordingly, we
devise a systematic approach to adjusting the prior on the Scale parameters of the inverse gamma distributions
defining the variances of the stars. We multiply the Scale parameter with the factor = ( 2T

N
− 1) ∗ ( T

N+5(N−T )
),

where N is total sample size from 1959Q4 through 2019Q4, and T refers to the number of data points in a given
data vintage. At the end of the sample,the factor = 1 because T = N .

51Results are qualitatively similar if we instead use the revised data (2020Q1 vintage data) as the actual values
in the forecast evaluation exercises. The results are available on request from the author.

48



the row corresponding to the unemployment rate. It is generally the case across all variables,

except the real GDP growth, the accuracy of the density forecasts from the Base model are

more accurate than Base-NoSurv. In the case of real GDP growth, even though, for the most

part, the point forecast accuracy between the two models are similar on average, the density

forecasts from the Base-NoSurv model are more accurate than the Base model.

We also compared the forecasting performance of our Base model to the outside benchmark

models, which forecasting literature has shown to be useful forecasting devices. Specifically,

we compare the accuracy of the inflation forecasts from our Base model to the following three

models, UCSV of Stock and Watson (2007) [UCSV], Chan, Koop, and Potter (2016) [CKP],

and Chan, Clark, and Koop (2018) [CCK]. We compare the accuracy of the unemployment

rate forecasts from our Base model to the Chan, Koop, and Potter (2016), and the accuracy

of the nominal wage inflation from the Base model to the UCSV model applied to the nominal

wage inflation – motivated by Knotek (2015). Our forecasting results provide strong evidence

in support of our Base model’s competitive forecasting properties. For the sake of brevity, the

results are included in the appendix A4 table A3.

Real-time versus final estimates

Up to this point, we only examined the smoothed estimates of the stars inferred using all

the sample data, i.e., from 1959Q4 through 2019Q4, which we denote here as final estimates. As

discussed in CKP and Clark and Kozicki (2005), the examination of final estimates is beneficial

for “historical analysis,” such as the evaluation of past policy. But for real-time analysis, such

as forecasting and policy-making, real-time estimates at time t – estimates based on data and

model estimation through time t (instead of through 1:T) – are the relevant measures. In

estimating the stars, a voluminous number of papers have documented the typical pattern of

notable differences between real-time and final estimates, e.g., see Clark and Kozicki (2005) and

Beyer and Wieland (2019) for r-star and Tasci (2019) for u-star.52

Relatedly, several researchers have attributed the inability to precisely know the location

of these stars in real-time to past policy mistakes, see Powell (2018) and references therein.

The documented differences between the real-time and final estimates, which at times could

be dramatic, and the recognition of these differences by policymakers have been the primary

reason limiting the usefulness of real-time estimates of the stars in policy discussions in recent

years (see Powell, 2018). Hence, there is a strong preference for methods that can provide more

credible inferences about stars in real-time.53

52Both revisions to past data and the accrual of additional data could contribute to the observed differences
between the real-time and final estimates. The estimation with additional data has been found by many to be
the primary factor causing revisions to historical estimates of the stars and contributing to divergence between
the real-time and final estimates (see Tasci, 2019; Clark and Kozicki, 2005).

53The issue of imprecision in the estimation of stars is an important one. It has been long recognized that
considerable uncertainty surrounds the estimated stars complicating reliable inference (e.g., Cross, Darby and
Ireland, 2005). Despite the stars’ imprecision, they continue to be used as inputs into policymaking and for other
purposes (see Williams, 2018; for r-star). After all, as discussed in Mester (2018), uncertainty about the stars is
just one source of uncertainty among many that confront policymakers.
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Comparing real-time and final estimates of the stars from our Base model suggests that

we have made some progress in mitigating the difficulties in previous real-time estimation of

the stars. However, in the Base-NoSurv model, there is less success in mitigating this issue.

We believe a big reason for this lack of success in the latter case is that we estimate a very

high-dimensional model with a lot less data (as will be the case when stopping estimation at

earlier periods). An artifact of this is that it requires the imposition of very tight priors in

earlier periods than when estimating with more recent periods, which, in turn, impacts on the

posterior estimates of model parameters and the stars. This latter fact mechanically contributes

to more considerable observed differences between real-time and final estimates in the first half

of the sample period analyzed. In the case of the Base model, the use of survey information

helps anchor the estimates to more reasonable values even in the face of tight priors.

Figure 12 plots the real-time posterior mean estimates of the stars from 1999Q1 to 2019Q4.

Also plotted are the corresponding final (posterior mean) smoothed estimates and the 68% and

90% credible bands, respectively. The real-time estimates are the end-sample posterior mean (of

the smoothed) estimates at any given period, e.g., 1999Q1 estimate corresponds to estimating

the model(s) from 1959Q4 to 1999Q1; similarly, 1999Q2 estimate corresponds to estimating the

models from 1959Q4 to 1999Q2. As can be seen, for the most part, the real-time estimates of

the stars generally remain within the credible intervals, especially the 68% credible sets implied

based on full sample information. The exception is the g-star, and in turn, the output gap,

the latter shown in figure A3 of the appendix for brevity purpose. In the case of g-star, the

real-time estimate, which before 2007 is not aware that the Great Recession (GR) is about to

occur, is relatively upbeat like the survey estimate (at 2.9% vs. 2.25% for the final). Between

2007 and 2011, the real-time estimate gradually decelerates to 2.5%, but from thereon through

2015, it declines very rapidly, catching up to the final estimate.

Interestingly, the BC survey (which is real-time data) fell by only two-tenths over this period,

but between 2015 and 2017, it dropped another three-tenths to 2.0% and remained at that level

through the end of 2019. Whereas beyond 2017, the survey estimate remained flat, the real-

time model estimate gradually moved back up partly in response to stronger realizations in real

GDP growth than the implied g-star. The more gradual decline in the real-time g-star during

the GR implies a larger (negative) output gap estimate than is indicated by the final estimate.

In the case of u-star, interestingly, in the first half of the forecast evaluation sample, the

real-time estimate generally fell outside the 68% credible intervals but inside the 90% intervals.

In contrast, in the second half, it remained inside the 68% intervals and tracked quite closely

the posterior mean of the final estimate. In the case of p-star, the real-time posterior mean

estimate largely remained inside the 68% intervals, and post-2007, the implied inference on

p-star is consistent with the final estimate, as evident by similar contours of the real-time and

final estimates. It is worth noting that both the real-time and final estimates of p-star are

notably lower than the survey estimate of p-star; recall that the survey estimate of p-star is not

used in the estimation of the Base model.
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In the case of pi-star, the real-time estimate closely tracked the final estimate from 1999

through 2004, and from thereon through 2016, it averaged three tenths higher. From 2017

through 2019, the real-time estimate once again closely tracked the final estimate. The contours

of the real-time and final estimates are similar, and the real-time estimate remained within the

90% credible intervals throughout the sample period analyzed. Consistent with a generally

higher real-time estimate of p-star and pi-star than the final estimate, the real-time estimate

of w-star is higher than the final. Just as in the case of p-star and pi-star, the contours of the

real-time and final estimates of w-star are similar, and the real-time estimate of w-star remained

within the 90% credible intervals. Also plotted are the implied survey estimates of the w-star,

constructed by adding p-star and pi-star survey estimates. Arguably, these implied estimates

are implausibly high given that the actual realizations of nominal wage inflation in the post-

2007 period were mostly below these implied estimates. The results of a forecasting exercise

presented in the appendix further confirm the implausibility of the implied survey estimate.

In the case of r-star, the contours of the real-time and final estimates are remarkably similar.

Between 2000 and 2005, and post-2014, the real-time estimate closely tracked the final estimate.

From 2006 through 2013, the real-time estimate averaged 35 basis points higher than the final

estimate. In our assessment, the magnitude of the gap between real-time and final estimates is

relatively small compared to the uncertainty estimate around the posterior mean and estimates

of uncertainty typically reported in papers estimating r-star, e.g., Clark and Kozicki (2005),

Laubach and Williams (2016), and Lubik and Matthes (2015). Furthermore, the real-time

estimate of r-star remained within the 68% credible intervals throughout the sample period

considered. The width of the estimated 68% (and 90%) intervals from the Base model has been

remarkably stable between 0.9 and 1.2 percent (1.5 and 2.0 percent) in the last 25 years. For

reference, the typical estimates of 90% bands from popular models such as LW and Lubik and

Matthes (2015) have a width averaging more than 4% and 3.5%, respectively.54 Given that

the 68% and 90% credible intervals are significantly narrower compared to typical estimates

reported elsewhere in the literature, we view the evidence of our real-time r-star remaining

inside the estimated credible intervals as encouraging.

Overall, the real-time estimates of stars and forecast evaluation based on the past twenty

years of data provide empirical evidence supporting the competitive forecasting and real-time

properties of the Base model. Unfortunately, the high dimensionality of our models and the

limited availability of real-time data on nominal wage inflation prevent the evaluation of models’

forecasting properties over a more extended historical sample.

54We note that recent approaches to model r-star such as JM and Del Negro et al. (2017) also generate precise
intervals similar to ours, with JM marginally less precise and Del Negro and all measurably more precise than
ours.
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6. The implications of COVID-19 Pandemic on Stars

At the time of writing this paper, the global economy is in the midst of an ongoing global

pandemic crisis (GPC), which has continued to inflict significant disruption to economic activity

both here in the US and globally. The GPC, which started in early 2020, contributed to

extreme movements in many US macroeconomic indicators, including those used in this paper.

For instance, the US real GDP growth in quarterly annualized term declined from -5% in Q1

to -31% in Q2, the deepest contraction in post-war data (COVID-19 recession). And in Q3,

growth rebounded to +33%, a record increase in the post-war data. These extreme movements,

which were several standard deviations away from their historical averages, contributed to the

breakdown of many conventional time series models, especially the time-invariant VAR models

estimated with monthly data, see Lenza and Primiceri (2020) and Carriero et al. (2021).

Up to this point, our analysis has focused on the pre-GPC data. In light of the recent work

documenting the difficulties of the standard time-series models handling pandemic data, we are

naturally curious to see how our two main models respond to the COVID-19 GPC data. What

do data during the pandemic imply for the estimates of the stars, or, in other words, what

are the estimated long-run consequences of the GPC data? As we illustrate shortly, the short

answer to the first question is that both models, Base and Base-NoSurv, handled the pandemic

data well; but the Base model, in our judgment, did a better job than the Base-NoSurv.

The answer to the second question is a bit complicated. But, briefly, the models indicate

that, at the moment, the long-run consequences of the economic developments related to the

pandemic are highly uncertain. We view this latter characterization as a reasonable one. Let’s

take long-term productivity growth. Based on past research, pandemics are associated with a

notable hit to long-term productivity growth; think of disruptions to schools and universities,

the loss of skilled and knowledgeable workers, and dramatic shifts in demand and supply that

necessitate costly and time-consuming adjustments.55 On the other hand, the current research

argues that recent technological advances and the unique nature of the GPC – which has raised

prospects of recurrent pandemics – will lead to an acceleration in automation (see Leduc and

Liu, 2020) and, in turn, boost long-term productivity. The net effect of these opposing factors on

p-star is uncertain, and our model-based estimates of p-star reflect this via increased assessment

of uncertainty around p-star, as shown in the appendix A8.

We believe that the rich features of our models helped position our models, especially the

Base model, to handle the pandemic data quite well.56 In the interests of brevity, we refer

to appendix A8 for the results comparing pre-pandemic and pandemic periods, and results

comparing estimates from the Base model to outside sources including CBO and Morley and

Wong (2020).

55Aucejo et al.(2020) document negative impact of the COVID-19 on the students’ academic performance.
56The rich features include: (1) modeling the changing economic relationships via the implementation of

time-varying parameters; (2) allowing for changing variance of the innovations to various equations (i.e., SV); (3)
imposing bounds on some of the random walk processes; (4) joint modeling of the output gap and unemployment
gap in particular; (5) and the use of survey forecasts;
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7. Conclusion

This paper takes up the challenge of developing a large-scale UC model to jointly estimate

the dynamics of inflation, nominal wages, labor productivity, the unemployment rate, real GDP,

interest rates, and their respective survey expectations to back out the estimates of long-run

counterparts of these variables. These long-run counterparts include potential output (gdp-

star), the growth rate of potential output (g-star), the equilibrium level of the unemployment

rate (u-star), the equilibrium real rate of interest (r-star), the trend in inflation (pi-star), the

trend in labor productivity (p-star), and the trend in nominal wage inflation (w-star). The

structure of our UC model is guided by economic theory and past empirical research. Past

research has highlighted strong evidence of changing macroeconomic relationships and allowing

for stochastic volatility in the shocks to cyclical components of a range of macroeconomic

indicators. Accordingly, our model structure permits time-varying parameters and stochastic

volatility in most model equations.

An essential feature of our model structure is the explicit role of the long-run survey forecasts

in possibly informing the econometric estimation of the stars. Like other researchers, we find

adding information from surveys to be an important element in yielding reasonable and credible

estimates of the stars. Incorporating a rich set of empirical features leads to a very flexible but

heavily parameterized model. To feasibly estimate this model (and its variants), we use Bayesian

techniques, specifically the efficient sampling techniques developed in Chan, Koop, and Potter

(2013), and the precision sampler proposed in Chan and Jeliazkov (2009).

We explore the empirical relevance of various features incorporated in our baseline model

by estimating several variants of the baseline model. The Bayesian model comparison results

provide strong support to model features informed based on past research and confirm findings

documented elsewhere. For instance, we find that allowing for SV in the model equations to be

very important. Similarly, we find economically and statistically significant evidence of time-

varying price Phillips curve, wage Phillips curve, the evolving cyclicality of labor productivity,

a changing passthrough relationship between wages and prices, and evolving persistence in

price inflation and wage inflation gaps. Given the richness of our model, we document an

expansive set of empirical results that we hope will prove helpful for both applied and theoretical

macroeconomists alike.

The estimates of the stars from our modeling framework generally echo the contours of

stars documented elsewhere in the literature utilizing smaller-scale models. However, they are

more precise, a consequence of the use of surveys, a flexible multivariate approach, and jointly

modeling the dynamics of several stars. We also show that our baseline model held up well when

including the COVID-19 pandemic data. The rich set of features endowed in our UC model

helped handle the pandemic data without any difficulties. Lastly, we document the competitive

real-time forecasting properties of both our main model and, separately, the estimates of the

stars, if they were to be used as steady-state values in external models.
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Fig. 1. Visual Overview of Interactions Between Blocks

Notes: The solid lines represent contemporaneous relationship between the element(s) of the

blocks. LR link denotes long-run relationship, i.e., link between stars.
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Table 1: Description of Model Specifications

Panel (a): Main Models

Model Description

Base Full model as formulated in equations (6) through (39)

Base-NoSurv Model as defined by baseline but excluding equations linking surveys to

stars (i.e., excluding 9, 10, 15, 16, 26, 27, 38 and 39).

Aim: assess the usefulness of survey data

Panel (b): Auxiliary Models

Base-W*RW Base but replaces eq. (28) with a RW assumption for W ∗ as defined eq. (28b).

Aim: assess the support for the theoretical restriction W ∗ = π∗ + P ∗

Base-PT-Wages-to-Prices Base but replaces eq. (21) with eq. (21b) .

Aim: asses the usefulness of allowing for pass-through from wages to prices

(for reference, Base allows for pass-through from prices to wages)

Base-NoPT Base but replaces eq. (29) with eq. (29b).

Aim: assess the usefulness of inclusion of wage inflation in the price equation

AND the inclusion of price inflation in the wage equation.

Base-NoSurv-NoPT Base w/o surveys and replaces eq. (29) with eq. (29b).

Aim: usefulness of inclusion of wage inflation in the price equation

AND the inclusion of price inflation in the wage equation in a Base-NoSurv.

Base-P*CycOutputGap Base but replaces eq. (17) with eq. (17b).

Aim: assess empirical link between output gap and productivity gap and

whether data support inclusion of output gap instead of unemployment gap.

Base-NoR*Surv Base but excludes survey expectations of r∗; i.e., removes eq. (38) and eq. (39).

Aim: assess specifically the marginal value of survey expectations of r∗

Base-NoR*Surv-NoTRule Base but excludes (1) survey expectations of r∗, i.e., removes eq. (38) and eq. (39);

and (2) policy rule eq. (34).

Aim: assess the marginal value of the policy rule equation to the model.

Base-R*RW Base but replaces eq.(36) and eq.(37) with a RW assumption for r∗ as in eq. (36b).

Aim: assess the support for the theoretical link between r∗ and g∗.

Base-NoSurv-R*RW Base-NoSurv but replaces eq.(36) and eq.(37) with a RW for r∗ as in eq. (36b).

Aim: assess support for the link between r∗ and g∗ in a spec. w/o survey data.

Base-R*AR Base but replaces eq. (37) with AR assumption for D.

Aim: support of r∗ defined as comb. of permanent and transitory components.

Base-NoSurv-R*AR Base-NoSurv but replaces eq. (37) with AR assumption for D

Aim: support of r∗ defined as comb. of permanent and transitory components.

Base-NoSurv-R*TightPrior Base specification but tighter prior for std. of the shock to process D.

Aim: assess the impact on r∗ estimate of using a tighter prior for D.

Base-NoSV Base specification but with no SV in any of the measurement equations.

Aim: assess the importance of stochastic volatility in shock variances.

Base-NoBoundU* Base specification without the bounds on the U∗ process in eq. (8).

Aim: assess empirical support for imposing bounds on U∗.
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Table 2: Parameter Estimates

Parameter Parameter description Posterior estimates

Base Base-NoSurv

Mean 5% 95% Mean 5% 95%

ar Coefficient on interest-rate gap -0.069 -0.141 0.002 -0.054 -0.130 0.015

ρg1 + ρg2 Persistence in output gap 0.738 0.678 0.797 0.732 0.669 0.794

ρu1 Lag 1 coefficient on UR gap 1.283 1.238 1.327 1.277 1.232 1.322

ρu2 Lag 2 coefficient on UR gap -0.504 -0.542 -0.466 -0.503 -0.540 -0.466

ρu1 + ρu2 Persistence in UR gap 0.778 0.736 0.821 0.774 0.733 0.814

ρp Persistence in productivity gap -0.005 -0.118 0.110 -0.001 -0.119 0.115

m = ζ
4 Relationship between r* and g* 0.701 0.621 0.784 0.390 0.270 0.560

ρi Persistence in interest-rate gap 0.879 0.838 0.917 0.860 0.816 0.904

λi Interest rate sensitivity to UR gap -0.229 -0.278 -0.180 -0.243 -0.293 -0.194

κi Interest rate sensitivity to inflation 0.061 0.014 0.107 0.085 0.035 0.134

λg Output gap response to UR gap -0.457 -0.580 -0.339 -0.454 -0.575 -0.333

φu UR gap response to Output gap -0.108 -0.130 -0.086 -0.118 -0.140 -0.096
(1−ρu1−ρu2 )

φu
Implied Okuns Law -2.054 -2.327 -1.803 -1.929 -2.179 -1.699

βg Link between g* and survey 0.929 0.774 1.082 — — —

βu Link between u* and survey 0.988 0.919 1.055 — — —

βr Link between r* and survey 1.018 0.923 1.117 — — —

βπ Link between π∗ and survey 0.991 0.912 1.070 — — —

σ2
π∗ Variance of the shocks to π∗ 0.1212 0.1002 0.1412 0.1272 0.0842 0.1822

σ2
p∗ Variance of the shocks to p∗ 0.1452 0.1112 0.1832 0.1412 0.1092 0.1762

σ2
u∗ Variance of the shocks to u∗ 0.0752 0.0642 0.0892 0.0842 0.0712 0.1002

σ2
gdp∗ Variance of the shocks to gdp∗ 0.0182 0.0142 0.0212 0.0212 0.0162 0.0262

σ2
d Variance of the shocks to d 0.0932 0.0772 0.1102 0.1142 0.0842 0.1482

σ2
w∗ Variance of the shocks to w∗ 0.1582 0.1122 0.2152 0.1582 0.1112 0.2202

σ2
ogap Variance of the shocks to Output gap 0.7252 0.6722 0.7812 0.7232 0.6692 0.7802

σ2
u Variance of the shocks to UR gap 0.2682 0.2482 0.2892 0.2652 0.2452 0.2862

σ2
hp Var. of the Volatility – Productivity eq. 0.2742 0.2192 0.3362 0.2732 0.2202 0.3352

σ2
h Var. of the Volatility – Price Inf. eq. 0.2972 0.2372 0.3642 0.2982 0.2382 0.3652

σ2
hw Var. of the Volatility – Wage Inf. eq. 0.3012 0.2372 0.3742 0.3032 0.2392 0.3732

σ2
hi Var. of the Volatility – Interest rate eq. 0.3772 0.2932 0.4692 0.3692 0.2872 0.4542

σ2
λπ Var. of the shocks to TVP λπ 0.0412 0.0322 0.0522 0.0412 0.0322 0.0512

σ2
λw Var. of the shocks to TVP λw 0.0412 0.0322 0.0512 0.0402 0.0322 0.0502

σ2
λp Var. of the shocks to TVP λp 0.0442 0.0342 0.0572 0.0452 0.0342 0.0572

σ2
κw Var. of the shocks to TVP κw, PT 0.0412 0.0322 0.0522 0.0412 0.0322 0.0522

σ2
ρw Var. of the shocks to TVP ρw 0.0422 0.0332 0.0532 0.0422 0.0322 0.0522

σ2
ρπ Var. of the shocks to TVP ρπ 0.0482 0.0372 0.0622 0.0472 0.0362 0.0602
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Table 3: Bayesian Model Comparison: Main Models and selected variants

Base Base-NoSurv Base-R*RW Base-NoSurv-R*RW

MDD of Inflation -366.6 -368.6 -366.8 -370.1

MDD of Productivity -606.9 -607.1 -607.5 -607.4

MDD of Nominal Wage -277.5 -274.3 -278.0 -274.9

MDD of Unemployment -24.6 -21.7 -24.7 -21.8

MDD of Interest rate -216.4 -222.0 -214.0 -215.6

MDD of GDP -279.7 -279.1 -279.8 -279.5

MDD -1771.7 -1772.8 -1770.8 -1769.3

Table 4: Model Comparison: Variants focused on Unemployment rate (UR)

Base Base-NoSurv Base-NoBoundU* Bivariate Bivariate+Surv CKP-Adj

MDD of UR -24.6 -21.7 -25.0 -56.5 -46.5 -61.9

Table 5: Model Comparison: Variants focused on GDP

Base Base-NoSurv Univariate Bivariate Bivariate+Surv

MDD of GDP -279.7 -279.1 -296.5 -280.4 -281.9

Table 6: Model Comparison: Variants focused on labor productivity

Base Base-NoSurv Base-W*RW Base-P*CycOutputGap Base-NoSV

MDD of Productivity -606.9 -607.1 -603.5 -608.1 -633.4

MDD of model -1771.7 -1772.8 -1790.8 -1773.8 -2024.3

Table 7: Model Comparison: Variants focused on nominal wages

Base Base-NoSurv Base-W*RW Base-NoPT Base-NoSV

MDD of Nominal wages -277.5 -274.3 -277.7 -281.5 -344.3

MDD of model -1771.7 -1772.8 -1790.8 -1776.3 -2024.3

57



Fig. 2. Full Sample Estimates for Unemployment rate block

Notes: The posterior estimates are based on the full sample (from 1959Q4 through 2019Q4).

In panel (e), CKP Adj. refers to the bivariate model of inflation and the unemployment rate

as in CKP but with no bounds on pi-star.
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Fig. 3. Full Sample Estimates for Cyclical Unemployment

Notes: The posterior estimates are based on the full sample (from 1959Q4 through 2019Q4).

The shaded areas represent the NBER recession dates.
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Fig. 4. Full Sample Estimates for Output block

Fig. 5. Model-based output gap vs. CBO
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Fig. 6. Full Sample Estimates for Productivity block

Notes: The posterior estimates are based on the full sample (from 1959Q4 through 2019Q4).
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Fig. 7. Full Sample Estimates for Price inflation block

Notes: The posterior estimates are based on the full sample (from 1959Q4 through 2019Q4).

Table 8: Model variants for price inflation

Model variant MDD of Price inflation MDD Model

Base -366.6 -1771.7

Base-NoSurv -368.6 -1772.8

Base-W*RW -367.0 -1790.8

Base-PT-Wages-to-Prices -366.7 -1771.4

Base-NoPT -365.2 -1776.3

Base-NoSV -413.9 -2024.3
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Fig. 8. Full Sample Estimates for Nominal Wage block

Notes: The posterior estimates are based on the full sample (from 1959Q4 through 2019Q4).
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Fig. 9. Wage Persistence, Wage Phillips Curve, Passthrough from Prices, and SV

Notes: The posterior estimates are based on the full sample (from 1959Q4 through 2019Q4).
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Fig. 10. Full Sample Estimates for interest rate block

Notes: The posterior estimates are based on the full sample (from 1959Q4 through 2019Q4).

In top panel, the plot labeled ”survey exp.” is an implied estimate: inferred from the Blue Chip

survey long-run estimates of GDP deflator and short-term interest rates (3-month Treasury

bill) using the long-run Fisher equation. Specifically, the long-run forecast of 3-month Treasury

bill less the long-run forecast of GDP deflator. To this differential, we add +0.3 to reflect the

average differential between the federal funds rate and the 3-month Treasury bill.
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Fig. 11. More Estimates for interest rate block

Table 9: Model variants for interest rate
Model variant MDD of Interest rate MDD Model

Base -216.4 -1771.7

Base-NoSurv -222.0 -1772.8

Base-R*RW -214.0 -1770.8

Base-NoSurv-R*RW -215.6 -1769.3

Base-NoSurv-R*TightPrior -232.0 -1773.6

66



Fig. 12. Real-time Recursive Estimates of Stars: Base model

Notes: The plots labeled Base are posterior estimates reflecting information in the full sam-

ple (from 1959Q4 through 2019Q4). The plots labeled Base:RealTime are posterior estimates

reflecting information available at a given point in time (i.e., truly real-time).
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Table 10: Real-Time Forecasting Accuracy: Base vs. Base-NoSurv

Panel A: Point Forecast Accuracy (Recursive evaluation: 1999.Q1-2019.Q4)

Relative RMSE: RMSE Base / RMSE BaseNoSurv

h=4Q h=8Q h=12Q h=16Q h=20Q

Real GDP 1.07* 1.03 1.01 1.00 0.99

PCE Inflation 0.96 0.94* 0.91* 0.89 0.88*

Productivity 0.98* 0.98 0.97 0.98* 0.97

Nominal Wage (AHE) 0.98 1.01 1.05 1.05 1.02

Unemployment Rate 1.07* 1.05* 1.03* 1.02* 1.00

Shadow FFR 0.98 1.00 1.00 0.99 0.98

Panel B: Density Forecast Accuracy (Recursive evaluation: 1999.Q1-2019.Q4)

Relative Log Predictive Score (LPS): LPS Base - LPS BaseNoSurv

h=4Q h=8Q h=12Q h=16Q h=20Q

Real GDP -0.003* -0.002* -0.002* -0.001* -0.001*

PCE Inflation 0.018* 0.020* 0.025* 0.027* 0.026*

Productivity 0.001 0.002* 0.002* 0.002* 0.003*

Nominal Wage (AHE) 0.017* 0.016* 0.018* 0.018* 0.019*

Unemployment Rate -0.003 0.005 0.009* 0.012* 0.013*

Shadow FFR 0.020* 0.007* 0.003 0.000 0.000

Notes for Table: The top panel compares the point forecast accuracy of Base model with Base-NoSurv model. The numbers less than 1

indicates that Base model is more accurate on average. The bottom panel reports the corresponding density forecast accuracy performance.

A positive value (for the relative mean predictive log score) suggests that Base model is on average more accurate. The log predictive

scores are computed using parametric normal approximation. The table reports statistical significance based on the likelihood-ratio test of

Amisano and Giacomini (2007) for the density forecast accuracy, and based on the Diebold-Mariano and West test (with the lag h− 1

truncation parameter of the HAC variance estimator) for the point forecast accuracy. The test statistics for likelihood-ratio test use

two-sided t-test. In the case of the Diebold-Mariano and West test, the test statistics use two-sided standard normal critical values for

horizons less than equal to 8 quarters, and two-sided t-statistics for horizons greater than 8 quarters. *up to 10% significance level.
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A1. Bayesian Estimation Details

A1.a. Base Model equations

For convenience, we list all model equations keeping the numbering as in the main text.

Ut = U∗t + U ct (6)

Ut − U∗t = ρu1(Ut−1 − U∗t−1) + ρu2(Ut−2 − U∗t−2) + φuogapt + εut , ε
u
t ∼ N(0, σ2

u) (7)

where, ρu1 + ρu2 < 1, ρu2 − ρu1 < 1, and |ρu2 | < 1; φu < 0

U∗t = U∗t−1 + εu∗t , ε
u∗
t ∼ TN(au − U∗t−1, bu − U∗t−1; 0, σ2

u∗) (8)

Zut = Cut + βuU∗t + εzut , ε
zu
t ∼ N(0, σ2

zu) (9)

Cut = Cut−1 + εcut , ε
cu
t ∼ N(0, σ2

cu) (10)

gdpt = gdp∗t + ogapt (11)

gdp∗t = 2gdp∗t−1 − gdp∗t−2 + εgdp∗t , εgdp∗t ∼ N(0, σ2
gdp∗) (12)

g∗t ≡ 4gdp∗t
g∗t = g∗t−1 + εgdp∗t (13)

ogapt = ρg1(ogapt−1) + ρg2(ogapt−2) + ar(rt − r∗t ) + λg(Ut − U∗t ) + εogapt (14)

where, εogapt ∼ N(0, σ2
ogap), ρ

g
1 + ρg2 < 1, ρg2 − ρ

g
1 < 1, and |ρg2| < 1; λg < 0

Zgt = Cgt + βg ∗ 4 ∗ g∗t + εzgt , ε
zg
t ∼ N(0, σ2

zg) (15)

Cgt = Cgt−1 + εcgt , ε
cg
t ∼ N(0, σ2

cg) (16)

Pt − P ∗t = ρp(Pt−1 − P ∗t−1) + λpt (Ut − U∗t ) + εpt , ε
p
t ∼ N(0, eh

p
t ) (17)

where, |ρp| < 1

λpt = λpt−1 + ελpt , ε
λp
t ∼ N(0, σ2

λp) (18)

hpt = hpt−1 + εhpt , ε
hp
t ∼ N(0, σ2

hp) (19)

P ∗t = P ∗t−1 + εp∗t , ε
p∗
t ∼ N(0, σ2

p∗) (20)

πt − π∗t = ρπt (πt−1 − π∗t−1) + λπt (Ut − U∗t ) + επt , ε
π
t ∼ N(0, eh

π
t ) (21)

ρπt = ρπt−1 + ερπt , ε
ρπ
t ∼ TN(0− ρπt−1, 1− ρπt−1; 0, σ2

ρπ) (22)

where, ρπ are truncated so that 0 < ρπt < 1.

λπt = λπt−1 + ελπt , ελπt ∼ TN(−1− λπt−1, 0− λπt−1; 0, σ2
λπ) (23)

λπ is the slope of price Phillips curve and is constrained in the interval (-1,0).

hπt = hπt−1 + εhπt , εhπt ∼ N(0, σ2
hπ) (24)

π∗t = π∗t−1 + επ∗t , ε
π∗
t ∼ N(0, σ2

π∗) (25)

3



Zπt = Cπt + βππ∗t + εzπt , ε
zπ
t ∼ N(0, σ2

zπ) (26)

Cπt = Cπt−1 + εcπt , ε
cπ
t ∼ N(0, σ2

cπ) (27)

W ∗t = π∗t + P ∗t + εw∗t , εw∗t ∼ N(0, σ2
w∗) (28)

Wt −W ∗t = ρwt (Wt−1 −W ∗t−1) + λwt (Ut − U∗t ) + κwt (πt − π∗t ) + εwt , ε
w
t ∼ N(0, eh

w
t ) (29)

hwt = hwt−1 + εhwt , εhwt ∼ N(0, σ2
hw) (30)

ρwt = ρwt−1 + ερwt , ερwt ∼ TN(0− ρwt−1, 1− ρwt−1; 0, σ2
ρw) (31)

λwt = λwt−1 + ελwt , ελwt ∼ TN(−1− λwt−1, 0− λwt−1; 0, σ2
λw) (32)

λw is the slope of wage Phillips curve and is constrained in the interval (-1,0).

κwt = κwt−1 + εκwt , εκwt ∼ N(0, σ2
κw) (33)

it − π∗t − r∗t = ρi(it−1 − π∗t−1 − r∗t−1) + λi(Ut − U∗t ) + κi(πt − π∗t ) + εit, ε
i
t ∼ N(0, eh

i
t) (34)

where, ρi is truncated so that 0 < ρi < 1.

hit = hit−1 + εhit , ε
hi
t ∼ N(0, σ2

hi) (35)

r∗t = ζg∗t +Dt. (36)

Dt = Dt−1 + εdt , ε
d
t ∼ N(0, σ2

d) (37)

Zrt = Crt + βrr∗t + εzrt , ε
zr
t ∼ N(0, σ2

zr) (38)

Crt = Crt−1 + εcrt , ε
cr
t ∼ N(0, σ2

cr) (39)
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A1.b. Prior Elicitation

Our prior settings are similar to those used in Chan, Koop, and Potter (2016) [CKP], Chan,
Clark, and Koop (2018) [CCK], and Gonzalez-Astudillo and Laforte (2020). As discussed in
CCK, UC models with several unobserved variables, such as the one developed in this paper,
require informative priors. That said, our priors settings for most variables are only slightly
informative. The use of inequality restrictions on some parameters such as the Phillips curve,
persistence, bounds on u-star could be viewed as additional sources of information that elimi-
nates the need for tight priors, something also noted by CKP. The parameters for which there is
a strong agreement in the empirical literature on their values, such as the Taylor-rule equation
parameters, we use relatively tight priors, such that prior distributions are centered on prior
means with small variance.

In the table below, the notation N(a, b) denotes Normal distribution with mean a, and
variance b; and IG(ν, S) denotes Inverse Gamma distribution with degrees of freedom parameter
ν, and scale parameter S.

Table A1: Prior settings

Parameter Parameter Description Prior

ar Coefficient on interest-rate gap in output gap equation N(0, 1)
ρg1 Persistence in output gap: lag 1 N(1.3, 0.12)
ρg2 Persistence in output gap: lag 2 N(−0.5, 0.12)
ρu1 Persistence in UR gap: lag 1 N(1.3, 0.12)
ρu2 Persistence in UR gap: lag 2 N(−0.5, 0.12)
ρp Persistence in productivity gap N(0.1, 1)
ζ Relationship between r* and g* N(1, 0.1)
ρi Persistence in interest-rate gap N(0.85, 0.12)
λi Interest rate sensitivity to UR gap: (−2 ∗ (1− ρi)) N(−0.3, 0.12)
κi Interest rate sensitivity to inflation: (0.5 ∗ (1− ρi)) N(0.075, 0.12)
λg Output gap response to UR gap N(−0.02, 1)
φu UR gap response to Output gap N(−0.02, 1)
βg Link between g* and survey N(1, 0.12)
βu Link between u* and survey N(1, 0.052)
βr Link between r* and survey N(1, 0.12)
βπ Link between π∗ and survey N(1, 0.052)
σ2
π∗ Var. of the shocks to π∗ IG(10, 0.12 × 9)
σ2
p∗ Var. of the shocks to p∗ IG(10, 0.1422 × 9)

σ2
u∗ Var. of the shocks to u∗ IG(10, 0.12 × 9)
σ2
gdp∗ Var. of the shocks to gdp∗ IG(10, 0.012 × 9)

σ2
d Var. of the shocks to d IG(10, 0.12 × 9)
σ2
w∗ Var. of the shocks to w∗ IG(10, 0.1422 × 9)
σ2
ogap Var. of the shocks to Ogap IG(10, 1× 9)

σ2
u Var. of the shocks to UR gap IG(10, 0.7072 × 9)
σ2
hp Var. of the volatility – Productivity eq. IG(10, 0.3162 × 9)

σ2
h Var. of the volatility – Price Inf. eq. IG(10, 0.3162 × 9)
σ2
hw Var. of the volatility – Wage Inf. eq. IG(10, 0.3162 × 9)

Continued on next page
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Table A1 – continued from previous page

Parameter Parameter Description Prior

σ2
hi Var. of the volatility – Interest rate eq. IG(10, 0.3162 × 9)
σ2
λπ Var. of the shocks to TVP λπ, Price Phillips curve IG(10, 0.042 × 9)
σ2
λw Var. of the shocks to TVP λw, Wage Phillips curve IG(10, 0.042 × 9)
σ2
λp Var. of the shocks to TVP λp, Cyc. Productivity IG(10, 0.042 × 9)

σ2
κw Var. of the shocks to TVP κw, PT: π to Wages IG(10, 0.042 × 9)
σ2
ρw Var. of the shocks to TVP ρw, Persist. Wage-gap IG(10, 0.042 × 9)

σ2
ρπ Var. of the shocks to TVP ρπ, Persist. Inflation-gap IG(10, 0.042 × 9)

Cπ0 Time-varying Intercept in eq. linking survey to pi-star N(0, 0.1)
Cu0 Time-varying Intercept in eq. linking survey to u-star N(0, 0.1)
Cg0 Time-varying Intercept in eq. linking survey to g-star N(0, 0.1)
Cr0 Time-varying Intercept in eq. linking survey to r-star N(0, 0.1)
σ2
cπ Var. of the shocks to TVP Cπ IG(10, 0.12 × 9)
σ2
cu Var. of the shocks to TVP Cu IG(10, 0.12 × 9)
σ2
cg Var. of the shocks to TVP Cg IG(10, 0.12 × 9)

σ2
cr Var. of the shocks to TVP Cr IG(10, 0.12 × 9)
σ2
zπ Var. of the shocks in measurement eq. Zπ, IG(10, 0.2× 9)
σ2
zu Var. of the shocks in measurement eq. Zu, IG(10, 0.3× 9)
σ2
zg Var. of the shocks in measurement eq. Zg, IG(10, 0.1× 9)

σ2
zr Var. of the shocks in measurement eq. Zr, IG(10, 0.2× 9)
π∗0 Initial value of pi-star N(3, 52)
u∗0 Initial value of u-star, t = 0 N(5, 52)
u∗−1 Initial value of u-star, t = −1 N(5, 52)
p∗0 Initial value of p-star N(3, 52)
w∗0 Initial value of w-star, E(p∗0) + E(π∗0) = 6 N(6, 52)
D0 Initial value of D, ”catch-all” component of r-star N(0, 0.31622)
gdp∗0 Initial value of gdp-star, t = 0 N(750, 102)
gdp∗−1 Initial value of gdp-star, t = −1 N(750, 102)
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A1.c. MCMC Algorithm

The estimation of our complex UC model and sampling from its joint posterior distribution
reduces to sequentially drawing from a set of conditional posterior densities, some of which are
standard and some that are non-standard.

Collect all the time-invariant model parameters into θ:
θ = (ρu1 , ρ

u
2 , σ

2
u, φu, σ

2
u∗, β

u, σ2
zu, σ

2
cu, σ

2
gdp∗, ρ

g
1, ρ

g
2, a

r, λg, σ2
ogap, σ

2
zg, σ

2
cg, β

g, ρp, σ2
hp, σ

2
p∗, σ

2
λπ, ...

σ2
ρπ, σ

2
hπ, σ

2
π∗, σ

2
zπ, σ

2
cπ, β

π, σ2
w∗, σ

2
hw, σ

2
ρw, σ

2
λw, σ

2
κw, ρ

i, λi, κi, σ2
hi, σ

2
zr, σ

2
cr, β

r, σ2
d)

We denote • as representing all other model parameters.
1. p(U∗|Y, •) 2. p(gdp∗|Y, •) 3. p(P ∗|Y, •) 4. p(π∗|Y, •) 5. p(w∗|Y, •) 6. p(r∗|Y, •)
7. p(λp|Y, •) 8. p(ρπ|Y, •) 9. p(λπ|Y, •) 10. p(ρw|Y, •) 11. p(λw|Y, •) 12. p(κw|Y, •)
13. p(hp, hπ, hw, hi|Y, •) 14. p(Cu, Cg, Cπ, Cr|Y, •) 15. p(D|Y, •) 16. p(θ|Y, •)

Step 1. Derive the conditional distribution p(U∗|Y, •)

The derivation of this distribution is most complex because the information about U∗ comes
from eight sources (i.e., model equations). Below, we derive an expression for each of the eight
sources.

The first source is the state equation of U∗. We rewrite it in a matrix notation as follows,

HU∗ = αu + εu∗ εu∗ ∼ N(0,Ωu∗), where Ωu∗ = diag(ω2
u∗, σ

2
u∗, ..., σ

2
u∗) (40)

where,

αu =


U∗0
0
0
...
0

 , H =


1 0 0 · · · 0
−1 1 0 · · · 0
0 −1 1 · · · 0
...

. . .
...

0 0 · · · −1 1


That is, the prior density for U∗ is given by

p(U∗|σ2
U∗) ∝ −

1
2(U∗ −H−1αu)

′
H
′
Ω−1
u∗H(U∗ −H−1αu) + gu∗(U

∗, σ2
u∗)

where,
au < U∗ < bu for t = 1, ..., T , and

gu∗(U
∗, σ2

u∗) = −log
(

Φ

(
bu
ωu∗

)
− Φ

(
au
ωu∗

))
−

T∑
t=2

log

(
Φ

(
bu − U∗t−1

σu∗

)
− Φ

(
au − U∗t−1

σu∗

))

The second source of information comes from the unemployment measurement equation. Rewrite
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the equation in a matrix notation,

KuU = µu +KuU
∗ + εu εu ∼ N(0,Ωu), where Ωu = IT ⊗ σ2

u (41)

and,

µu =


ρu1(U0 − U∗0 ) + ρu2(U−1 − U∗−1)

ρu2(U0 − U∗0 )
0
...
0

 , Ku =


1 0 0 · · · 0
−ρu1 1 0 · · · 0
−ρu2 −ρu1 1 · · · 0

...
. . .

...
0 · · · −ρu2 −ρu1 1


Ignoring any terms not involving U∗, we have

log p(U |U∗, •) ∝ −1
2(U −K−1

u µu − U∗)′K
′
uΩ−1

u Ku(U −K−1
u µu − U∗)

The third source of information comes from the inflation measurement equation. Rewrite the
equation in a matrix notation,

Z = ΛπU∗ + επ επ ∼ N(0,Ωπ), where Ωπ = diag(eh
π
1 , eh

π
2 , ..., eh

π
T ) (42)

where,

zt = (πt − π∗t )− ρπt (πt−1 − π∗t−1)− λπt Ut,

Z = (z1, ..., zT )′ and Λπ = diag(−λπ1 , ...,−λπT )

Ignoring any terms not involving U∗, we have

log p(π|U∗, U, π∗, hπ, ρp, •) ∝ −1
2(Z − ΛπU∗)′Ω−1

π (Z − ΛπU∗)

The fourth source of information comes from the productivity measurement equation. Rewrite
the equation in a matrix notation,

MP = ΛPU∗ + εP εP ∼ N(0,ΩP ), where ΩP = diag(eh
p
1 , eh

p
2 , ..., eh

p
T ) (43)

where,

mt = (Pt − P ∗t )− ρP (Pt−1 − P ∗t−1)− λPt Ut,

MP = (m1, ...,mT )′ and ΛP = diag(−λP1 , ...,−λPT )

Ignoring any terms not involving U∗, we have

log p(P |U∗, U, P ∗, hp, ρp, •) ∝ −1
2(MP − ΛPU∗)′Ω−1

P (MP − ΛPU∗)
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The fifth source of information comes from the wage measurement equation. Rewrite the
equation in a matrix notation,

Mw = ΛwU∗ + εw εw ∼ N(0,Ωw), where Ωw = diag(eh
w
1 , eh

w
2 , ..., eh

w
T ) (44)

where,

mw
t = (Wt −W ∗t )− ρWt (Wt−1 −W ∗t−1)− λWt Ut − κWt (πt − π∗t ),

Mw = (mw
1 , ...,m

w
T )′ and Λw = diag(−λW1 , ...,−λWT )

Ignoring any terms not involving U∗, we have

log p(W |U∗,W,W ∗, hw, ρW , •) ∝ −1
2(Mw − ΛwU∗)′Ω−1

w (Mw − ΛwU∗)

The sixth source of information comes from the output gap measurement equation. Rewrite
the equation in a matrix notation,

Mg = ΛgU∗ + εg εg ∼ N(0,Ωogap), where Ωogap = diag(σ2
ogap, ..., σ

2
ogap) (45)

where,

mg
t = ogapt − ρg1(ogapt−1)− ρg2(ogapt−2)− λgUt − ar(rt − r∗t ),

Mg = (mg
1, ...,m

g
T )′ and Λg = diag(−λg, ...,−λg)

Ignoring any terms not involving U∗, we have

log p(ogap|U∗, U, •) ∝ −1
2(Mg − ΛgU∗)′Ω−1

ogap(M
g − ΛgU∗)

The seventh source of information comes from the Taylor-type rule measurement equation.
Rewrite the equation in a matrix notation,

Mui = ΓuiU∗ + εi εi ∼ N(0,Ωi), where Ωi = diag(eh
i
1 , eh

i
2 , ..., eh

i
T ) (46)

where,

mui
t = it − π∗t − r∗t − ρi(it−1 − π∗t−1 − r∗t−1)− κi(πt − π∗t )− λiUt,

Mui = (mui
1 , ...,m

ui
T )′ and Γui = diag(−λi, ...,−λi)

Ignoring any terms not involving U∗, we have

log p(i|U∗, U, π, •) ∝ −1
2(Mui − ΓuiU∗)′Ω−1

i (Mui − ΓuiU∗)

The eighth source of information comes from the measurement equation that links survey to
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U∗. Rewrite the equation in a matrix notation,

F u = βuU∗ + εzu εzu ∼ N(0,Ωzu), where Ωzu = diag(σ2
zu, ..., σ

2
zu) (47)

where,

fut = Zut − Cut ,

F u = (fu1 , ..., f
u
T )′

Ignoring any terms not involving U∗, we have

log p(Zu|U∗, U, π, •) ∝ −1
2(F u − βuU∗)′Ω−1

zu (F u − βuU∗)

Combining the above eight conditional densities we obtain,

log p(U∗|Y, •) ∝ −1
2(U∗ − Û∗)′D−1

U∗(U
∗ − Û∗) + gu∗(U

∗, σ2
u∗)

where,
DU∗ = (H ′Ω−1

U∗H + K
′
uΩ−1

u Ku + Λπ
′
Ω−1
π Λπ + Λw

′
Ω−1
w Λw + Λg

′
Ω−1
ogapΛ

g + Γui
′
Ω−1
i Γui +

ΛP
′
Ω−1
P ΛP + (βu)2Ω−1

zu )−1

Û∗ = DU∗(H
′Ω−1
U∗αu +K

′
uΩ−1

u Ku(U −K−1
u µu) + Λπ

′
Ω−1
π Z + Λw

′
Mw + Λw + Λg

′
Ω−1
ogapM

g +

Γui
′
Ω−1
i Mui + ΛP

′
Ω−1
P MP + βuΩ−1

zu F
u)

The addition of the term gu∗(U
∗, σ2

u∗) leads to a non-standard density. Accordingly, we sample
U∗ using an independence-chain Metropolis-Hastings (MH) procedure. This involves first gen-
erating candidate draws from N(Û∗, DU∗) using the precision based algorithm that are then
accepted or rejected based on accept-reject Metropolis-Hastings (ARMH) algorithm (discussed
in Chan and Strachan, 2012).

Step 2. Derive the conditional distribution p(gdp∗|Y, •)

The information about gdp∗ comes from five sources. Below, we derive an expression for each
of these sources.

The first source is the state equation of gdp∗. We rewrite it in a matrix notation as follows,

H2gdp
∗ = αgdp∗ + εgdp∗ εgdp∗ ∼ N(0,Ωgdp∗), where Ωgdp∗ = diag(ω2

gdp∗, σ
2
gdp∗, ..., σ

2
gdp∗)

(48)

where,
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αgdp∗ =


gdp∗0 +4gdp∗0
−gdp∗0

0
...
0

 , H2 =



1 0 0 0 · · · 0
−2 1 0 0 · · · 0
1 −2 1 0 · · · 0
0 1 −2 1 · · · 0
...

. . .
...

0 · · · 0 1 −2 1


H2 is a band matrix with unit determinant and hence is invertible.

The prior density for gdp∗ is given by

p(gdp∗|σ2
gdp∗) ∝ −

1
2(gdp∗ −H−1

2 αgdp∗)
′
H
′
2Ω−1

gdp∗H2(gdp∗ −H−1
2 αgdp∗)

The second source of information about gdp∗ is from the output gap measurement equation.
Rewrite in matrix form,

Hrhoggdp = Hrhoggdp
∗+arr̃+λgũ+αgmore+ε

ogap εogap ∼ N(0,Ωogap), where Ωogap = diag(σ2
ogap, ..., σ

2
ogap)

(49)

where,

αgmore =


ρg1(gdp0 − gdp∗0) + ρg2(gdp−1 − gdp∗−1)

ρg2(gdp0 − gdp∗0)
0
...
0

 , Hrhog =



1 0 0 0 · · · 0
−ρg1 1 0 0 · · · 0
−ρg2 −ρg1 1 0 · · · 0

0 −ρg2 −ρg1 1 · · · 0
...

. . .
. . .

. . .
. . . 0

0 · · · 0 −ρg2 −ρg1 1


,

r̃ =


r1 − r∗1
r2 − r∗2
r3 − r∗3

...
rT − r∗T

 ũ =


U1 − U∗1
U2 − U∗2
U3 − U∗3

...
UT − U∗T



log p(gdp|gdp∗, •) ∝ −1
2(gdp−H−1

rhog(Hrhoggdp
∗+arr̃+λgũ+αgmore))

′H
′
rhogΩ

−1
ogapHrhog(gdp−

H−1
rhog(Hrhoggdp

∗ + arr̃ + λgũ+ αgmore))

The third source of information comes from the unemployment gap measurement equation.
Rewrite that equation in matrix notation,

Y ugdp = Γugdp∗ + εu εu ∼ N(0,Ωu), where Ωu = diag(σ2
u, ..., σ

2
u) (50)

where,

yugdpt = ũt − ρu1 ˜ut−1 − ρu2 ˜ut−2 − φugdp, where ũt = (Ut − U∗t )
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Y ugdp = (yugdp1 , ..., yugdpT )′

Ignoring any terms not involving gdp∗, we have

log p(U |gdp∗, •) ∝ −1
2(Y ugdp − Γugdp∗)′Ω−1

u (Y ugdp − Γugdp∗)

The fourth source of information comes from the equation linking r-star to g-star, i.e.,

r∗t = ζ(gdp∗t − gdp∗t−1) +Dt (51)

Rewrite this equation in matrix notation,

r∗ = ζHgdp∗ + αgr +D (52)

where,

αgr = (−ζgdp∗0, 0, 0, ...., 0)′

Ignoring any terms not involving gdp∗, we have

log p(r∗|gdp∗, D, •) ∝ −1
2(r∗ − (ζHgdp∗ + αgr +D))′(r∗ − (ζHgdp∗ + αgr +D))

The fifth source of information comes from the measurement equation that links survey to
g∗. Rewrite the equation in a matrix notation,

F g = βg(Hgdp∗ − αg) + εzg εzg ∼ N(0,Ωzg), where Ωzg = diag(σ2
zg, ..., σ

2
zg) (53)

where,

fgt = Zgt − C
g
t , F g = (fg1 , ..., f

g
T )′

αg = (gdp∗0, 0, 0, ...., 0)′ is a T × 1 vector.

Ignoring any terms not involving gdp∗, we have

log p(Zg|gdp∗, •) ∝ −1
2(F g − βg(Hgdp∗ − αg))′Ω−1

zg (F g − βg(Hgdp∗ − αg))

Combining the above five conditional densities we obtain,

log p(gdp∗|Y, •) ∝ −1
2(gdp∗ − ˆgdp

∗
)
′
D−1
gdp∗(gdp

∗ − ˆgdp
∗
)

where,
Dgdp∗ = (H

′
2Ω−1

gdp∗H2 +H
′
rhogΩ

−1
ogapHrhog + Γu

′
Ω−1
u Γu + (ζH)

′
(ζH) + βgH ′Ω−1

zg β
gH)−1

ˆgdp
∗

= Dgdp∗(H
′
2Ω−1

gdp∗H2αgdp∗+H
′
rhogΩ

−1
ogap(Hrhoggdp−arr̃−λgũ−αgmore)+Γu

′
Ω−1
u Y ugdp+

(ζH)
′
(r∗ − αgr +D) + βgH ′Ω−1

zg F
g)
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Step 3. Derive the conditional distribution p(P ∗|Y, •)

First, rewrite the productivity measurement eq. as

KpP = µp +KpP
∗ + εP εP ∼ N(0,ΩP ), where ΩP = diag(eh

p
1 , eh

p
2 , ..., eh

p
T ) (54)

µp =


ρP1 (P0 − P ∗0 ) + λP1 (U1 − U∗1 )

λP2 (U2 − U∗2 )
λP3 (U3 − U∗3 )

...
λPT (UT − U∗T )

 , KP =


1 0 0 · · · 0
−ρP2 1 0 · · · 0

0 −ρP3 1 · · · 0
...

. . .
...

0 0 · · · −ρPT 1

 , P ∗ =


P ∗1
P ∗2
P ∗3
...
P ∗T


Since | KP |= 1 for any ρP , KP is invertible. Therefore, we have likelihood

p(P |P ∗, U, •) ∼ N(K−1
P µP + P ∗, (K

′
PΩ−1

P KP )−1)

i.e.,

log p(P |U, •) ∝ −1
2 ιTh

P − 1
2(P −K−1

P µP − P ∗)
′
K
′
PΩ−1

P KP (P −K−1
P µP − P ∗),

where ιT is a T × 1 columns of ones.

Similarly, rewrite the state equation for P ∗ as

HP ∗ = αp + εP∗ εP∗ ∼ N(0,ΩP∗), where ΩP∗ = diag(ω2
P∗, σ

2
P∗, ..., σ

2
P∗) (55)

where,

αp =


P ∗0
0
0
...
0

 , KP =


1 0 0 · · · 0
−1 1 0 · · · 0
0 −1 1 · · · 0
...

. . .
...

0 0 · · · −1 1


That is, the prior density for P ∗ is given by

p(P ∗|σ2
P∗) ∝ −

1
2(P ∗ −H−1αp)

′
H
′
Ω−1
P∗H(P ∗ −H−1αp)

Now account for the third source of information about P* in the equation W ∗ = P ∗+π∗+ εw∗,

p(P ∗|W ∗, π∗, σ2
W∗) ∝ −

1
2(P ∗ − (W ∗ − π∗))′Ω−1

W∗(P
∗ − (W ∗ − π∗))
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where,

ΩW∗ = diag(σ2
W∗, σ

2
W∗, ..., σ

2
W∗), W

∗ = (W ∗1 , ...,W
∗
T )′, π∗ = (π∗1, ..., π

∗
T )′

Combining the above three conditional densities we obtain,

log p(P ∗|Y, •) ∝ −1
2(P ∗ − P̂ ∗)′D−1

P∗(P
∗ − P̂ ∗)

where,
DP∗ = (H

′
Ω−1
P∗H +K

′
PΩ−1

P KP + Ω−1
W∗)

−1

P̂ ∗ = DP∗(H
−1Ω−1

P∗αp +K
′
PΩ−1

P KP (P −K−1
P µP ) + Ω−1

W∗(W
∗ − π∗))

The candidate draws are sampled from N(P̂ ∗, DP∗) using the precision based algorithm.

Step 4. Derive the conditional distribution p(π∗|Y, •)

The information about π∗ comes from six sources. Below, we derive an expression for each
of these sources.

The first source is the inflation measurement equation. Rewrite it in a matrix notation as,

Kππ = µπ +Kππ
∗ + επ επ ∼ N(0,Ωπ), where Ωπ = diag(eh

π
1 , eh

π
2 , ..., eh

π
T ) (56)

where,

µπ =


ρπ1 (π0 − π∗0) + λπ1 (U1 − U∗1 )

λπ2 (U2 − U∗2 )
λπ3 (U3 − U∗3 )

...
λπT (UT − U∗T )

 , Kπ =


1 0 0 · · · 0
−ρπ2 1 0 · · · 0

0 −ρπ3 1 · · · 0
...

. . .
...

0 0 · · · −ρπT 1


Since | Kπ |= 1 for any ρπ, Kπ is invertible. Therefore, we have likelihood

log p(π|U,U∗, •) ∝ −1
2 ιTh

π − 1
2(π − (K−1

π µπ + π∗))′K
′
πΩ−1

π Kπ(π − (K−1
π µπ + π∗))

The second source of information is from the state equation of π∗. Rewrite it in a matrix
notation,

Hπ∗ = απ + επ∗ επ∗ ∼ N(0,Ωπ∗), where Ωπ∗ = diag(ω2
π∗, σ

2
π∗, ..., σ

2
π∗) (57)

where,
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απ =


π∗0
0
0
...
0


That is, the prior density for π∗ is given by

p(π∗|σ2
π∗) ∝ −1

2(π∗ −H−1απ)
′
H
′
Ω−1
π∗H(π∗ −H−1απ)

Now account for the third source of information about π∗ in the equation W ∗ = P ∗+π∗+ εw∗,

p(π∗|W ∗, P ∗, σ2
W∗) ∝ −

1
2(π∗ − (W ∗ − P ∗))′Ω−1

W∗(π
∗ − (W ∗ − P ∗))

where,

ΩW∗ = diag(σ2
W∗, σ

2
W∗, ..., σ

2
W∗), W

∗ = (W ∗1 , ...,W
∗
T )′, P ∗ = (P ∗1 , ..., P

∗
T )′

The fourth source of information is from the wage measurement equation. Rewrite in ma-
trix notation,

Mwπ = Xwππ
∗ + εw εw ∼ N(0,Ωw), where Ωw = diag(eh

w
1 , eh

w
2 , ..., eh

w
T ) (58)

where,

mwπ
t = wt − w∗t − ρwt (wt−1 − w∗t−1)− λwt (Ut − U∗t )− κwt πt

Mwπ = (mwπ
1 ,mwπ

2 , ...,mwπ
T )

Xwπ =


−κw1 0 0 · · · 0

0 −κw2 0 · · · 0
0 0 −κw3 · · · 0
...

. . .
...

0 0 · · · 0 −κwT



log p(W |π∗, •) ∝ −1
2(Mwπ −Xwππ

∗)′Ω−1
w ((Mwπ −Xwππ

∗)

The fifth source is the Taylor-rule equation. Rewrite the equation in the matrix notation,

Mπi = απi + (Kπi + Γπ)π∗ + εi εi ∼ N(0,Ωi), where Ωi = diag(eh
i
1 , eh

i
2 , ..., eh

i
T ) (59)
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where,

mπi
t = it − ρiit−1 − r∗t + ρir∗t−1 − λi(Ut − U∗t )− κiπt

Mπi = (mπi
1 ,m

πi
2 , ...,m

πi
T )′

Kπi =


1 0 0 · · · 0
−ρi 1 0 · · · 0
0 −ρi 1 · · · 0
...

. . .
...

0 0 · · · −ρi 1

 , Γπ =


−κi 0 0 · · · 0

0 −κi 0 · · · 0
0 0 −κi · · · 0
...

. . .
...

0 0 · · · 0 −κi

 , απi =


−ρiπ∗0

0
0
...
0


log p(i|π∗, π, •) ∝ −1

2(Mπi − (απi + (Kπi + Γπ)π∗))′Ω−1
i (Mπi − (απi + (Kπi + Γπ)π∗))

The sixth source of information comes from the measurement equation that links survey to
π∗. Rewrite the equation in a matrix notation,

F π = βππ∗ + εzπ εzπ ∼ N(0,Ωzπ), where Ωzπ = diag(σ2
zπ, ..., σ

2
zπ) (60)

where,

fπt = Zπt − Cπt ,

F π = (fπ1 , ..., f
π
T )′

Ignoring any terms not involving π∗, we have

log p(Zπ|π∗, π, •) ∝ −1
2(F π − βππ∗)′Ω−1

zπ (F π − βππ∗)

Combining the above six conditional densities we obtain,

log p(π∗|Y, •) ∝ −1
2(π∗ − π̂∗)′D−1

π∗ (π∗ − π̂∗)

where,
Dπ∗ = (H ′Ω−1

π∗H + K
′
πΩ−1

π Kπ + Ω−1
w∗ + X

′
wπΩ−1

w Xwπ + (K
′
πi + Γπ)

′
)Ω−1

i (K
′
πi + Γπ)

′
+

(βπ)2Ω−1
zr )−1

π̂∗ = Dπ∗(H
′Ω−1
π∗ απ + K

′
πΩ−1

π Kπ(π − K−1
π µπ) + Ω−1

w∗(W
∗ − P ∗) + X

′
wπΩ−1

w Mwπ + (K
′
πi +

Γπ)
′
Ω−1
i (Mπi − απi) + βπΩ−1

zr F
π)

The candidate draws are sampled from N(π̂∗, Dπ∗) using the precision based algorithm.

Step 5. Derive the conditional distribution p(w∗|Y, •)
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The information about w∗ comes from two sources. Below, we derive an expression for each of
these sources.

The first source is the nominal wage measurement equation. Rewrite it in a matrix notation as,

KwW = µw +KwW
∗ + εw εw ∼ N(0,Ωw), where Ωw = diag(eh

w
1 , eh

w
2 , ..., eh

w
T ) (61)

where,

µw =


ρw1 (W0 −W ∗0 ) + λw1 (U1 − U∗1 ) + κw1 (π1 − π∗1)

λw2 (U2 − U∗2 ) + κw2 (π2 − π∗2)
λw3 (U3 − U∗3 ) + κw3 (π3 − π∗3)

...
λwT (UT − U∗T ) + κwT (πT − π∗T )

 , Kw =


1 0 0 · · · 0
−ρw2 1 0 · · · 0

0 −ρw3 1 · · · 0
...

. . .
...

0 0 · · · −ρwT 1


Since | Kw |= 1 for any ρw, Kw is invertible. Therefore, we have likelihood

Ignoring any terms not involving w∗, we have

log p(W |W ∗, •) ∝ −1
2 ιTh

w − 1
2(W − (K−1

w µw +W ∗))′K
′
wΩ−1

w Kw(W − (K−1
w µw +W ∗))

The second source is the state equation of W ∗, which describes W ∗ as the sum of P ∗ and
π∗. This equation can be thought of describing prior density for W ∗. Rewrite it in a matrix
form.

W ∗ = P ∗ + π∗ + εw∗ εw∗ ∼ N(0,Ωw∗) (62)

p(W ∗|P ∗, π∗, σ2
w∗) ∝ −1

2(W ∗ − (P ∗ + π∗))
′
Ω−1
w∗(W

∗ − (P ∗ + π∗))

Combining the above two conditional densities we obtain,

log p(W ∗|Y, •) ∝ −1
2(W ∗ − Ŵ ∗)′D−1

W∗(W
∗ − Ŵ ∗)

where,

DW∗ = (K
′
wΩ−1

w Kw + Ω−1
W∗)

−1

Ŵ ∗ = DW∗(K
′
wΩ−1

w (KwW − µw) + Ω−1
w∗(P

∗ + π∗))

The candidate draws are sampled from N(Ŵ ∗, DW∗) using the precision based algorithm.

Step 6. Derive the conditional distribution p(r∗|Y, •)

The information about r∗ comes from four sources. Below, we derive an expression for each of
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these sources.

The first source is the output gap measurement equation. We rewrite it in a matrix nota-
tion as follows,

Hrhogogap = αogap − arr∗ + εogap εogap ∼ N(0,Ωogap) (63)

where,

αogap =


ρg1(ogap0) + ρg2(ogap−1) + arr1 + λg(U1 − U∗1 )

ρg2(ogap0) + arr2 + λg(U2 − U∗2 )
arr3 + λg(U3 − U∗3 )

...
arrT + λg(UT − U∗T )


Ignoring any terms not involving r∗, we have
log p(ogap|r∗, •) ∝ −1

2(ogap−H−1
rhog(αogap−a

rr∗))′H
′
rhogΩ

−1
ogapHrhog(ogap−H−1

rhog(αogap−a
rr∗))

The second source is the state equation linking r∗ to g∗. We rewrite it in a matrix notation as
follows,

r∗ = ζ4gdp∗ +H−1εd εd ∼ N(0,Ωd), where Ωd = diag(ω2
d, σ

2
d, ..., σ

2
d) (64)

Ignoring any terms not involving r∗, the prior density for r∗ is given by
log p(r∗|gdp∗, σ2

d, •) ∝ −
1
2(r∗ − ζ4gdp∗)′H ′Ω−1

d H(r∗ − ζ4gdp∗)

The third source is the Taylor-type rule equation. We rewrite it in a matrix notation as follows,

M ri = αri +Kπir
∗ + εi εi ∼ N(0,Ωi), where Ωi = diag(eh

i
1 , eh

i
2 , ..., eh

i
T ) (65)

where,

mri
t = it − ρiit−1 − π∗t + ρiπ∗t−1 − λi(Ut − U∗t )− κi(πt − π∗t ),

M ri = (mri
1 ,m

ri
2 , ...,m

ri
T )′

αri =


−ρir∗0

0
0
...
0

 , Kπi =


1 0 0 · · · 0
−ρi 1 0 · · · 0
0 −ρi 1 · · · 0
...

. . .
...

0 0 · · · −ρi 1


Ignoring any terms not involving r∗, we have
log p(i|r∗, •) ∝ −1

2 ιTh
i − 1

2(M ri − (αri +Kπir
∗))′Ω−1

i (M ri − (αri +Kπir
∗))
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The fourth source of information comes from the measurement equation that links survey to
r∗. Rewrite the equation in a matrix notation,

F r = βrr∗ + εzr εzr ∼ N(0,Ωzr), where Ωzr = diag(σ2
zr, ..., σ

2
zr) (66)

where,

f rt = Zrt − Crt ,

F r = (f r1 , ..., f
r
T )′

Ignoring any terms not involving r∗, we have

log p(Zr|r∗, •) ∝ −1
2(F r − βrr∗)′Ω−1

zr (F r − βrr∗)

Combining the above four conditional densities we obtain,

log p(r∗|Y, •) ∝ −1
2(r∗ − r̂∗)′D−1

r∗ (r∗ − r̂∗)

where,
Dr∗ = ((−ar)2Ω−1

ogap +H
′
Ω−1
d H +K

′
πiΩ
−1
i Kπi + (βr)(2)Ω−1

zr )−1

r̂∗ = Dr∗(−arΩ−1
ogap(Hrhogogap−αogap)+H

′
Ω−1
d Hζ4gdp∗+K

′
πiΩ
−1
i (M ri−αri)+βrΩ−1

zr F
r)

The candidate draws are sampled from N(r̂∗, Dr∗) using the precision based algorithm.

Step 7. Derive the conditional distribution p(λp|Y, •)

The information about λp comes from two sources. Below, we derive an expression for each of
these two sources.

The first source is the productivity measurement equation. Rewrite it in a matrix notation,

B = Xuλ
p + εp εp ∼ N(0,Ωp) (67)

where,

B = (p̃1 − ρpp̃0, ..., p̃T − ρpp̃T−1)
p̃t = pt − p∗t
ũt = Ut − U∗t
Xu = diag(ũ1, ..., ũT )

Ignoring any terms not involving λp, we have the likelihood
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log p(p|λp, •) ∝ −1
2(B −Xuλ

p)′Ω−1
p (B −Xuλ

p)

The second source of information comes from state equation for λp. We rewrite it in a ma-
trix notation as follows,

Hλp = ελp ελp ∼ N(0,Ωλp), where Ωλp = diag(ω2
λp, σ

2
λp, ..., σ

2
λp) (68)

Ignoring any terms not involving λp, the prior density for λp is given by

log p(λp|σ2
λp,Ωλp) ∝ −1

2(λp)′H ′Ω−1
λpH(λp)

Combining the above two conditional densities we obtain,

log p(λp|Y, •) ∝ −1
2(λp − λ̂p)′D−1

λp (λp − λ̂p)

where,
Dλp = (H ′Ω−1

λpH +X ′uΩ−1
p Xu)−1

λ̂p = Dλp(X
′
uΩ−1

p B)

The candidate draws are sampled from N(λ̂p, Dλp) using the precision based algorithm.

Step 8. Derive the conditional distribution p(ρπ|Y, •)

The information about ρπ comes from two sources. Below, we derive an expression for each of
these two sources.

First, we define some notation,

π̃t = πt − π∗t
ũt = Ut − U∗t
Π̃ = (π̃1, ..., π̃T )′

ũ = (ũ1, ..., ũT )′

The first source is the price inflation measurement equation. Rewrite it in a matrix notation,

Π̃ + Λũ = Xπρ
π + επ επ ∼ N(0,Ωπ) (69)

where,

Xπ = diag(π̃0, ..., π̃T−1)
Λ = diag(−λπ1 , ...,−λπT )

Ignoring any terms not involving ρπ, we have the likelihood
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log p(π|ρπ, •) ∝ −1
2(Π̃− (Xπρ

π − Λũ))′Ω−1
π (Π̃− (Xπρ

π − Λũ))

The second source comes from state equation for ρπ. We rewrite it in a matrix notation as
follows,

Hρπ = ερπ ερπ ∼ N(0,Ωρπ), where Ωρπ = diag(ω2
ρπ, σ

2
ρπ, ..., σ

2
ρπ) (70)

0 < ρπt < 1 for t=1,....,T

Ignoring any terms not involving ρπ, the prior density for ρπ is given by

log p(ρπ|σ2
ρπ,Ωρπ) ∝ −1

2(ρπ)′H ′Ω−1
ρπH(ρπ) + gρπ(ρπ, σ2

ρπ)

where,

gρπ(ρπ, σ2
ρπ) = −

T∑
t=2

log

(
Φ

(
1− ρπt−1

σρπ

)
− Φ

(
0− ρπt−1

σρπ

))
Combining the above two conditional densities we obtain,

log p(ρπ|Y, •) ∝ −1
2(ρπ − ρ̂π)

′
D−1
ρπ (ρπ − ρ̂π) + gρπ(ρπ, σ2

ρπ)

where,
Dρπ = (H ′Ω−1

ρπH +X ′πΩ−1
π Xπ)−1

ρ̂π = Dρπ(X ′πΩ−1
π (Π̃ + Λũ))

The addition of the term gρπ(ρπ, σ2
ρπ) leads to a non-standard density. Accordingly, we sam-

ple ρπ using an independence-chain Metropolis-Hastings (MH) procedure. This involves first
generating candidate draws from N(ρ̂π, Dρπ) using the precision based algorithm that are then
accepted or rejected based on accept-reject Metropolis-Hastings (ARMH) algorithm (discussed
in Chan and Strachan, 2012).

Step 9. Derive the conditional distribution p(λπ|Y, •)

The information about λπ comes from two sources. Below, we derive an expression for each of
these two sources.

First, we define some notation,

π̃t = πt − π∗t
ũt = Ut − U∗t
NW = (π̃1 − ρπ1 π̃0, ..., π̃T − ρπT π̃T−1)′
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The first source is the price inflation measurement equation. Rewrite it in a matrix notation,

NW = Xuλ
π + επ επ ∼ N(0,Ωπ) (71)

where,

Xu = diag(ũ1, ..., ũT )

Ignoring any terms not involving λπ, we have the likelihood

log p(π|λπ, •) ∝ −1
2(NW −Xuλ

π)′Ω−1
π (NW −Xuλ

π)

The second source comes from state equation for λπ. We rewrite it in a matrix notation
as follows,

Hλπ = ελπ ελπ ∼ N(0,Ωλπ), where Ωλπ = diag(ω2
λπ, σ

2
λπ, ..., σ

2
λπ) (72)

−1 < λπt < 0 for t=1,....,T

Ignoring any terms not involving λπ, the prior density for λπ is given by

log p(λπ|σ2
λπ,Ωλπ) ∝ −1

2(λπ)′H ′Ω−1
λπH(λπ) + gλπ(λπ, σ2

λπ)

where,

gλπ(λπ, σ2
λπ) = −

T∑
t=2

log

(
Φ

(
0− λπt−1

σλπ

)
− Φ

(−1− λπt−1

σλπ

))
Combining the above two conditional densities we obtain,

log p(λπ|Y, •) ∝ −1
2(λπ − λ̂π)

′
D−1
λπ (λπ − λ̂π) + gλπ(λπ, σ2

λπ)

where,
Dλπ = (H ′Ω−1

λπH +X ′uΩ−1
π Xu)−1

λ̂π = Dλπ(X ′uΩ−1
π NW )

The addition of the term gλπ(λπ, σ2
λπ) leads to a non-standard density. Accordingly, we sam-

ple λπ using an independence-chain Metropolis-Hastings (MH) procedure. This involves first
generating candidate draws from N(λ̂π, Dλπ) using the precision based algorithm that are then
accepted or rejected based on accept-reject Metropolis-Hastings (ARMH) algorithm (discussed
in Chan and Strachan, 2012).
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Step 10. Derive the conditional distribution p(ρw|Y, •)

The information about ρw comes from two sources. Below, we derive an expression for each of
these two sources.

First, we define some notation,

w̃t = wt − w∗t
ũt = Ut − U∗t
w̃ = (w̃1, ..., w̃T )′

ũ = (ũ1, ..., ũT )′

π̃t = πt − π∗t
π̃ = (π̃1, ..., π̃T )′

The first source is the wage inflation measurement equation. Rewrite it in a matrix notation,

w̃ + Λwũ+ Λwππ̃ = Xwρ
w + ερw ερw ∼ N(0,Ωw) (73)

where,

Xw = diag(w̃0, ..., w̃T−1)
Λw = diag(−λw1 , ...,−λwT )
Λwπ = diag(−κw1 , ...,−κwT )

Ignoring any terms not involving ρw, we have the likelihood

log p(w|ρw, •) ∝ −1
2(w̃ − (Xwρ

w − Λwũ− Λwππ̃))′Ω−1
w (w̃ − (Xwρ

w − Λwũ− Λwππ̃))

The second source comes from state equation for ρw. We rewrite it in a matrix notation
as follows,

Hρw = ερw ερw ∼ N(0,Ωρw), where Ωρw = diag(ω2
ρw, σ

2
ρw, ..., σ

2
ρw) (74)

0 < ρwt < 1 for t=1,....,T

Ignoring any terms not involving ρw, the prior density for ρw is given by

log p(ρw|σ2
ρw,Ωρw) ∝ −1

2(ρw)′H ′Ω−1
ρwH(ρw) + gρw(ρw, σ2

ρw)

where,
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gρw(ρw, σ2
ρw) = −

T∑
t=2

log

(
Φ

(
1− ρwt−1

σρw

)
− Φ

(
0− ρwt−1

σρw

))
Combining the above two conditional densities we obtain,

log p(ρw|Y, •) ∝ −1
2(ρw − ρ̂w)

′
D−1
ρw (ρw − ρ̂w) + gρw(ρw, σ2

ρw)

where,
Dρw = (H ′Ω−1

ρwH +X ′wΩ−1
w Xw)−1

ρ̂w = Dρw(X ′wΩ−1
w (w̃ + Λwũ+ Λwππ̃))

The addition of the term gρπ(ρπ, σ2
ρπ) leads to a non-standard density. Accordingly, we sam-

ple ρπ using an independence-chain Metropolis-Hastings (MH) procedure. This involves first
generating candidate draws from N(ρ̂π, Dρπ) using the precision based algorithm that are then
accepted or rejected based on accept-reject Metropolis-Hastings (ARMH) algorithm (discussed
in Chan and Strachan, 2012).

Step 11. Derive the conditional distribution p(λw|Y, •)

The information about λw comes from two sources. Below, we derive an expression for each of
these two sources.

First, we define some notation,

w̃t = wt − w∗t
ũt = Ut − U∗t
π̃t = πt − π∗t
Bw = (w̃1 − ρw1 w̃0 − κw1 π̃1, ..., w̃T − ρwT w̃T−1 − κwT−1π̃T )′

The first source is the wage inflation measurement equation. Rewrite it in a matrix notation,

Bw = Xuλ
w + εw εw ∼ N(0,Ωw) (75)

where,

Xu = diag(ũ1, ..., ũT )

Ignoring any terms not involving λw, we have the likelihood

log p(w|λw, •) ∝ −1
2(Bw −Xuλ

w)′Ω−1
w (Bw −Xuλ

w)

The second source comes from state equation for λw. We rewrite it in a matrix notation
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as follows,

Hλw = ελw ελw ∼ N(0,Ωλw), where Ωλw = diag(ω2
λw, σ

2
λw, ..., σ

2
λw) (76)

−1 < λwt < 0 for t=1,....,T

Ignoring any terms not involving λw, the prior density for λw is given by

log p(λw|σ2
λw,Ωλw) ∝ −1

2(λw)′H ′Ω−1
λwH(λw) + gλw(λw, σ2

λw)

where,

gλw(λw, σ2
λw) = −

T∑
t=2

log

(
Φ

(
0− λwt−1

σλw

)
− Φ

(−1− λwt−1

σλw

))
Combining the above two conditional densities we obtain,

log p(λw|Y, •) ∝ −1
2(λw − λ̂w)

′
D−1
λw (λw − λ̂w) + gλw(λw, σ2

λw)

where,
Dλw = (H ′Ω−1

λwH +X ′uΩ−1
w Xu)−1

λ̂w = Dλw(X ′uΩ−1
w Bw)

The addition of the term gλw(λw, σ2
λw) leads to a non-standard density. Accordingly, we sam-

ple λw using an independence-chain Metropolis-Hastings (MH) procedure. This involves first
generating candidate draws from N(λ̂w, Dλw) using the precision based algorithm that are then
accepted or rejected based on accept-reject Metropolis-Hastings (ARMH) algorithm (discussed
in Chan and Strachan, 2012).

Step 12. Derive the conditional distribution p(κw|Y, •)

The information about kappaw comes from two sources. Below, we derive an expression for
each of these two sources.

First, we define some notation,

w̃t = wt − w∗t
ũt = Ut − U∗t
π̃t = πt − π∗t
Bκw = (w̃1 − ρw1 w̃0 − λw1 ũ1, ..., w̃T − ρwT w̃T−1 − λwT−1ũT )′

The first source is the wage inflation measurement equation. Rewrite it in a matrix notation,

Bκw = Xπκ
w + εw εw ∼ N(0,Ωw) (77)
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where,

Xπ = diag(π̃1, ..., π̃T )

Ignoring any terms not involving κw, we have the likelihood

log p(w|κw, •) ∝ −1
2(Bκw −Xπκ

w)′Ω−1
w (Bκw −Xπκ

w)

The second source comes from state equation for κw. We rewrite it in a matrix notation
as follows,

Hκw = εκw εκw ∼ N(0,Ωκw), where Ωκw = diag(ω2
κw, σ

2
κw, ..., σ

2
κw) (78)

Ignoring any terms not involving κw, the prior density for κw is given by

log p(κw|σ2
κw,Ωκw) ∝ −1

2(κw)′H ′Ω−1
κwH(κw)

Combining the above two conditional densities we obtain,

log p(κw|Y, •) ∝ −1
2(κw − κ̂w)

′
D−1
κw (κw − κ̂w)

where,
Dκw = (H ′Ω−1

κwH +X ′πΩ−1
w Xπ)−1

κ̂w = Dκw(X ′πΩ−1
w Bκw)

The candidate draws are sampled from N(κ̂w, Dκw) using the precision based algorithm.

Step 13. Derive the conditional distribution p(hp, hπ, hw, hi|Y, •)

Given parameters and other latent states, the stochastic volatility, hp, hπ, hw, hi are condition-
ally independent and so can be drawn separately. Following, Chan, Koop, and Potter (2013;
2016), we draw hp, hπ, hw, hi using the Accept-Reject independence-chain Metropolis Hastings
(ARMH) algorithm of Chan and Strachan (2012; page 32-34).

Step 14. Derive the conditional distribution p(Cu, Cg, Cπ, Cr|Y, •)

Given parameters and other latent states, Cu, Cg, Cπ, Cr are conditionally independent and
so can be drawn separately.
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Beginning with Cu, the information about it comes from two sources. Below, we derive an
expression for each of these two sources.

The first source is the measurement equation linking survey to U∗. Rewrite it in a matrix
notation,

N zu = Cu + εzu εzu ∼ N(0,Ωzu) (79)

where,

nzut = Zut − βuU∗
N zu = (nzu1 , nzu2 , ..., nzuT )′

Ωzu = diag(σ2
zu, ..., σ

2
zu)

Ignoring any terms not involving Cu, we have the likelihood

log p(Zu|Cu, •) ∝ −1
2(N zu − Cu)′Ω−1

zu (N zu − Cu)

The second source comes from state equation for Cu. We rewrite it in a matrix notation
as follows,

HCu = αcu + εcu εcu ∼ N(0,Ωcu), where Ωcu = diag(ω2
cu, σ

2
cu, ..., σ

2
cu) (80)

where,

αcu =


Cu0
0
0
...
0


Ignoring any terms not involving Cu, the prior density for Cu is given by

log p(Cu|σ2
cu,Ωcu) ∝ −1

2(Cu −H−1αcu)′H ′Ω−1
cu H(Cu −H−1αcu)

Combining the above two conditional densities we obtain,

log p(Cu|Y, •) ∝ −1
2(Cu − Ĉu)

′
D−1
Cu(Cu − Ĉu)

where,
DCu = (H ′Ω−1

cu H + Ω−1
zu )−1

Ĉu = DCu(H ′Ω−1
cu αcu + Ω−1

zuN
zu)

The candidate draws are sampled from N(Ĉu, DCu) using the precision based algorithm.
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Following similar logic,

N(Ĉr, DCr)

DCr = (H ′Ω−1
cr H + Ω−1

zr )−1

Ĉr = DCr(H
′Ω−1
cr αcr + Ω−1

zr N
zr)

where,

nzrt = Zrt − βrr∗
N zr = (nzr1 , n

zr
2 , ..., n

zr
T )′

Ωzr = diag(σ2
zr, ..., σ

2
zr)

N(Ĉπ, DCπ)

DCπ = (H ′Ω−1
cπ H + Ω−1

zπ )−1

Ĉπ = DCπ(H ′Ω−1
cπ αcπ + Ω−1

zπN
zπ)

where,

nzπt = Zπt − βππ∗
N zπ = (nzπ1 , nzπ2 , ..., nzπT )′

Ωzπ = diag(σ2
zπ, ..., σ

2
zπ)

N(Ĉg, DCg)

DCg = (H ′Ω−1
cg H + Ω−1

zg )−1

Ĉg = DCg(H
′Ω−1
cg αcg + Ω−1

zg N
zg)

where,

nzgt = Zgt + βgαg − βggdp∗
N zg = (nzg1 , n

zg
2 , ..., n

zg
T )′

Ωzg = diag(σ2
zg, ..., σ

2
zg)

αg = (gdp∗0, 0, 0, ...., 0)′

Step 15. Derive the conditional distribution p(D|Y, •)

Given the posterior draws of r∗, ζ, and g∗, the posterior draw for D is constructed as,
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D = r∗ − ζg∗ (81)

Step 16. Derive the conditional distribution p(θ|Y, •)

There are 40 parameters in the vector θ. These parameters are drawn in 38 separate blocks
using standard regression procedures. Following similar notation to Chan, Koop, and Potter
(2016), we denote θ−x to refer all parameters in θ except the parameter x.

Substep 16.1 Derive the conditional distribution p(ρu|Y, •)

Given the stationary constraints, ρu1 + ρu2 < 1, ρu2 − ρu1 < 1, and |ρu2 | < 1

ρu = (ρu1 , ρ
u
2)′ is a bivariate truncated normal. To obtain draws from this truncated normal

distribution, ARMH sampling algorithm is applied to the candidate draws from the proposal
density, N(ρ̂u, Dρu).

Dρu = (V −1
ρu +X

′
uXu/σ

2
u)−1

ρ̂u = Dρu(V −1
ρu ρ

u
0 +X

′
u(ũ− φuogap)/σ2

u)

where,

V −1
ρu is the prior variance and ρu0 is the prior mean,

Xu =


ũ0 ũ−1

ũ1 ũ0
...

ũT−1 ũT−2


Substep 16.2 Derive the conditional distribution p(σ2

u|Y, •)

p(σ2
u|Y, •) is a standard inverse-Gamma density,

p(σ2
u|Y, •) ∼ IG(νu0 + T

2 , Su0 + 1
2

T∑
t=1

(ũt − ρu1 ũt−1 − ρu2 ũt−2 − φuogapt)2)

Substep 16.3 Derive the conditional distribution p(φu|Y, •)

Given the constraint φu < 0, the conditional distribution p(φu|Y, •) is a truncated normal
density. The candidate draws are sampled from the proposal distribution N(φ̂u, Dφu) using the
precision based algorithm, and simple Accept-Reject step is applied to the candidate draws.

Rewrite the unemployment rate (gap) measurement equation in matrix notation as
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Y φ = φuogap+ εu εu ∼ N(0, σ2
u) (82)

where,

yφt = ũt − ρu1 ũt−1 − ρu2 ũt−2

Y φ = (yφ1 , ..., y
φ
T )′

Dφu = (V −1
φu + ogap

′
ogap/σ2

u)−1

φ̂u = Dφu(V −1
φu φ

u
0 + ogap

′
Y φ/σ2

u)

where,

V −1
φu is the prior variance and φu0 is the prior mean,

Substep 16.4 Derive the conditional distribution p(σ2
u∗|Y, •)

p(σ2
u∗|Y, •) is a non-standard density because U∗ is a bounded random walk,

log p(σ2
u∗|Y, •) ∝ −(νu∗0+1)log σ2

u∗− Su∗0
σ2
u∗
− T−1

2 log σ2
u∗− 1

2σ2
u∗

∑T
t=2(U∗t −U∗t−1)2+gu∗(U

∗, σ2
u∗)

The candidate draws from p(σ2
u∗|Y, •) are obtained via the MH step with the proposal den-

sity

IG(νu∗0 + T−1
2 , Su∗0 + 1

2

T∑
t=2

(U∗t − U∗t−1)2)

Substep 16.5 Derive the conditional distribution p(βu|Y, •)

Candidate draws are sampled from N(β̂u, Dβu) using the precision based algorithm.

where,

Dβu = (V −1
βu + U∗

′
Ω−1
zuU

∗)−1

β̂u = Dβu(V −1
βu β

u
0 + U∗

′
Ω−1
zu J

zu)

jzut = Zut − Cut
Jzu = (jzu1 , ..., jzuT )′

V −1
βu is the prior variance and βu0 is the prior mean for βu

Substep 16.6 Derive the conditional distribution p(σ2
zu|Y, •)
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p(σ2
zu|Y, •) is a standard inverse-Gamma density,

Candidate draws are sampled from

p(σ2
zu|Y, •) ∼ IG(νzu0 + T

2 , Szu0 + 1
2

T∑
t=1

(Zut − Cut − βuU∗)2)

Substep 16.7 Derive the conditional distribution p(σ2
cu|Y, •)

p(σ2
cu|Y, •) is a standard inverse-Gamma density,

Candidate draws are sampled from

p(σ2
cu|Y, •) ∼ IG(νcu0 + T−1

2 , Scu0 + 1
2

T∑
t=2

(Cut − Cut−1)2)

Substep 16.8 Derive the conditional distribution p(σ2
gdp∗|Y, •)

p(σ2
gdp∗|Y, •) is a standard inverse-Gamma density,

Candidate draws are sampled from

p(σ2
gdp∗|Y, •) ∼ IG(νgdp∗0 + T−1

2 , Sgdp∗0 + (gdp∗ − αgdp∗)′ ∗H2H2 ∗ (gdp∗ − αgdp∗)/2)

where (although they are defined above but for convenience we redefine them),

αgdp∗ =


gdp∗0 +4gdp∗0
−gdp∗0

0
...
0

 , H2 =



1 0 0 0 · · · 0
−2 1 0 0 · · · 0
1 −2 1 0 · · · 0
0 1 −2 1 · · · 0
...

. . .
...

0 · · · 0 1 −2 1


H2 is a band matrix with unit determinant and hence is invertible.

Substep 16.9 Derive the conditional distribution p(ρg|Y, •)

Given the stationary constraints, ρg1 + ρg2 < 1, ρg2 − ρ
g
1 < 1, and |ρg2| < 1

ρg = (ρg1, ρ
g
2)′ is a bivariate truncated normal. To obtain draws from this truncated normal

distribution, ARMH sampling algorithm is applied to the candidate draws from the proposal
density, N(ρ̂g, Dρg).

Dρg = (V −1
ρg +X

′
ρgXρg/σ

2
ogap)

−1

ρ̂g = Dρg(V
−1
ρg ρ

g
0 +X

′
ρgYogap/σ

2
ogap)
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where,

V −1
ρg is the prior variance and ρg0 is the prior mean,

Xρg =


0 0

ogap1 0
ogap2 ogap1

...
ogapT−1 ogapT−2


yogapt = ogapt − ar(rt − rt−1)− λgũt)
Yogap = (yogap1 , ..., yogapT )′

Substep 16.10 Derive the conditional distribution p(ar|Y, •)

Candidate draws are sampled from N(âr, Dar) using the precision based algorithm.

where,

Dar = (V −1
ar +X

′
arΩ
−1
ogapXar)

−1

âr = Dar(V
−1
ar a

r
0 +X

′
arΩ
−1
ogapJ

ar)

jart = ogapt − ρg1ogapt−1 − ρg2ogapt−2 − λgũt
Jar = (jar1 , ..., jarT )′

Xar = (r̃1, ..., r̃T )′

r̃t = rt − r∗t

V −1
ar is the prior variance and ar0 is the prior mean for ar

Substep 16.11 Derive the conditional distribution p(λg|Y, •)

Given the constraint λg < 0, the conditional distribution p(λg|Y, •) is a truncated normal
density. The candidate draws are sampled from the proposal distribution N(λ̂g, Dλg) using the
precision based algorithm, and simple Accept-Reject step is applied to the candidate draws.

where,

Dλg = (V −1
λg +X

′
uΩ−1

ogapXu)−1

λ̂g = Dλg(V
−1
λg λ

g
0 +X

′
uΩ−1

ogapB
g)

bgt = ogapt − ρg1ogapt−1 − ρg2ogapt−2 − arr̃t
Bg = (bg1, ..., b

g
T )′

Xu = diag(ũ1, ..., ũT )′

r̃t = rt − r∗t

32



V −1
λg is the prior variance and λg0 is the prior mean for λg

Substep 16.12 Derive the conditional distribution p(σ2
ogap|Y, •)

p(σ2
ogap|Y, •) is a standard inverse-Gamma density,

Candidate draws are sampled from

p(σ2
ogap|Y, •) ∼ IG(νogap0 + T

2 , Sogap0 + 1
2

T∑
t=1

(ogapt − ρg1ogapt−1 − ρg2ogapt−2 − λgũt − arr̃t)2)

Substep 16.13 Derive the conditional distribution p(σ2
zg|Y, •)

p(σ2
zg|Y, •) is a standard inverse-Gamma density,

Candidate draws are sampled from

p(σ2
zg|Y, •) ∼ IG(νzg0 + T

2 , Szg0 + 1
2

T∑
t=1

(Zgt − C
g
t − βggdp∗t−1 + βggdp∗t )

2)

Substep 16.14 Derive the conditional distribution p(σ2
cg|Y, •)

p(σ2
cg|Y, •) is a standard inverse-Gamma density,

Candidate draws are sampled from

p(σ2
cg|Y, •) ∼ IG(νcg0 + T−1

2 , Scg0 + 1
2

T∑
t=2

(Cgt − C
g
t−1)2)

Substep 16.15 Derive the conditional distribution p(βg|Y, •)

Candidate draws are sampled from N(β̂g, Dβg) using the precision based algorithm.

where,

Dβg = (V −1
βg + (Hgdp∗ − αg)

′
Ω−1
zg (Hgdp∗ − αg))−1

β̂g = Dβg(V
−1
βg β

g
0 + (Hgdp∗ − αg)Ω−1

zg J
zg)

jzgt = Zgt − C
g
t

Jzg = (jzg1 , ..., jzgT )′

αg = (gdp∗0, 0, 0, ...., 0)′

V −1
βg is the prior variance and βg0 is the prior mean for βg
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Substep 16.16 Derive the conditional distribution p(ρp|Y, •)

Given the stationary constraint, |ρp| < 1

ρp is a truncated normal. To obtain draws from this truncated normal distribution, AR sam-
pling step is applied to the candidate draws from the proposal density, N(ρ̂p, Dρp).

Dρp = (V −1
ρp +X

′
prodΩ

−1
P Xprod)

−1

ρ̂p = Dρp(V
−1
ρp ρ

p
0 +X

′
prodΩ

−1
P Y prod)

where,

V −1
ρp is the prior variance and ρp0 is the prior mean,

p̃t = Pt − P ∗t

Xprod = (p̃0, ..., p̃T−1)′

yprodt = p̃t − λpt ũt

Y prod = (yprod1 , ..., yprodT )′

Substep 16.17 Derive the conditional distribution p(σ2
hp|Y, •)

p(σ2
hp|Y, •) is a standard inverse-Gamma density,

Candidate draws are sampled from

p(σ2
hp|Y, •) ∼ IG(νhp0 + T−1

2 , Shp0 + 1
2

T∑
t=2

(hpt − h
p
t−1)2)

Substep 16.18 Derive the conditional distribution p(σ2
p∗|Y, •)

p(σ2
p∗|Y, •) is a standard inverse-Gamma density,

Candidate draws are sampled from

p(σ2
p∗|Y, •) ∼ IG(νp∗0 + T−1

2 , Sp∗0 + 1
2

T∑
t=2

(P ∗t − P ∗t−1)2)

Substep 16.19 Derive the conditional distribution p(σ2
λπ|Y, •)

p(σ2
λπ|Y, •) is a non-standard density because of the constraints on λπ,
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log p(σ2
λπ|Y, •) ∝ −(νλπ0+1)log σ2

λπ−
Sλπ0
σ2
λπ
− T−1

2 log σ2
λπ−

1
2σ2
λπ

∑T
t=2(λπt −λπt−1)2+gλπ(λπ, σ2

λπ)

The candidate draws from p(σ2
λπ|Y, •) are obtained via the MH step with the proposal den-

sity

IG(νλπ0 + T−1
2 , Sλπ0 + 1

2

T∑
t=2

(λπt − λπt−1)2)

Substep 16.20 Derive the conditional distribution p(σ2
ρπ|Y, •)

p(σ2
ρπ|Y, •) is a non-standard density because of the constraints on ρπ,

log p(σ2
ρπ|Y, •) ∝ −(νρπ0 +1)log σ2

ρπ−
Sρπ0
σ2
ρπ
− T−1

2 log σ2
ρπ− 1

2σ2
ρπ

∑T
t=2(ρπt −ρπt−1)2 +gρπ(ρπ, σ2

ρπ)

The candidate draws from p(σ2
ρπ|Y, •) are obtained via the MH step with the proposal den-

sity

IG(νρπ0 + T−1
2 , Sρπ0 + 1

2

T∑
t=2

(ρπt − ρπt−1)2)

Substep 16.21 Derive the conditional distribution p(σ2
hπ|Y, •)

p(σ2
hπ|Y, •) is a standard inverse-Gamma density,

Candidate draws are sampled from

p(σ2
hπ|Y, •) ∼ IG(νhπ0 + T−1

2 , Shπ0 + 1
2

T∑
t=2

(hπt − hπt−1)2)

Substep 16.22 Derive the conditional distribution p(σ2
π∗|Y, •)

p(σ2
π∗|Y, •) is a standard inverse-Gamma density,

Candidate draws are sampled from

p(σ2
π∗|Y, •) ∼ IG(νπ∗0 + T−1

2 , Sπ∗0 + 1
2

T∑
t=2

(π∗t − π∗t−1)2)

Substep 16.23 Derive the conditional distribution p(σ2
zπ|Y, •)

p(σ2
zπ|Y, •) is a standard inverse-Gamma density,

Candidate draws are sampled from
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p(σ2
zπ|Y, •) ∼ IG(νzπ0 + T

2 , Szπ0 + 1
2

T∑
t=1

(Zπt − Cπt − βππ∗)2)

Substep 16.24 Derive the conditional distribution p(σ2
cπ|Y, •)

p(σ2
cπ|Y, •) is a standard inverse-Gamma density,

Candidate draws are sampled from

p(σ2
cπ|Y, •) ∼ IG(νcπ0 + T−1

2 , Scπ0 + 1
2

T∑
t=2

(Cπt − Cπt−1)2)

Substep 16.25 Derive the conditional distribution p(βπ|Y, •)

Candidate draws are sampled from N(β̂π, Dβπ) using the precision based algorithm.

where,

Dβπ = (V −1
βπ + π∗

′
Ω−1
zπ π

∗)−1

β̂π = Dβπ(V −1
βπ β

π
0 + π∗

′
Ω−1
zπ J

zπ)

jzπt = Zπt − Cπt
Jzπ = (jzπ1 , ..., jzπT )′

V −1
βπ is the prior variance and βπ0 is the prior mean for βπ

Substep 16.26 Derive the conditional distribution p(σ2
w∗|Y, •)

p(σ2
w∗|Y, •) is a standard inverse-Gamma density,

Candidate draws are sampled from

p(σ2
w∗|Y, •) ∼ IG(νw∗0 + T−1

2 , Sw∗0 + 1
2

T∑
t=2

(w∗t − π∗t − P ∗t )2)

Substep 16.27 Derive the conditional distribution p(σ2
hw|Y, •)

p(σ2
hw|Y, •) is a standard inverse-Gamma density,

Candidate draws are sampled from

p(σ2
hw|Y, •) ∼ IG(νhw0 + T−1

2 , Shw0 + 1
2

T∑
t=2

(hwt − hwt−1)2)
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Substep 16.28 Derive the conditional distribution p(σ2
ρw|Y, •)

p(σ2
ρw|Y, •) is a non-standard density because of the constraints on ρw,

log p(σ2
ρw|Y, •) ∝ −(νρw0+1)log σ2

ρw−
Sρw0

σ2
ρw
−T−1

2 log σ2
ρw− 1

2σ2
ρw

∑T
t=2(ρwt −ρwt−1)2+gρw(ρw, σ2

ρw)

The candidate draws from p(σ2
ρw|Y, •) are obtained via the MH step with the proposal den-

sity

IG(νρw0 + T−1
2 , Sρw0 + 1

2

T∑
t=2

(ρwt − ρwt−1)2)

Substep 16.29 Derive the conditional distribution p(σ2
λw|Y, •)

p(σ2
λw|Y, •) is a non-standard density because of the constraints on λw,

log p(σ2
λw|Y, •) ∝ −(νλw0+1)log σ2

λw−
Sλw0

σ2
λw
−T−1

2 log σ2
λw−

1
2σ2
λw

∑T
t=2(λwt −λwt−1)2+gλw(λw, σ2

λw)

The candidate draws from p(σ2
λw|Y, •) are obtained via the MH step with the proposal density

IG(νλw0 + T−1
2 , Sλw0 + 1

2

T∑
t=2

(λwt − λwt−1)2)

Substep 16.30 Derive the conditional distribution p(σ2
κw|Y, •)

The candidate draws are obtained from

IG(νκw0 + T−1
2 , Sκw0 + 1

2

T∑
t=2

(κwt − κwt−1)2)

Substep 16.31 Derive the conditional distribution p(ρi|Y, •)

Given the constraint |ρi| < 1, the conditional distribution p(ρi|Y, •) is a truncated normal
density. The candidate draws are sampled from the proposal distribution N(ρ̂i, Dρi) using the
precision based algorithm, and simple Accept-Reject step is applied to the candidate draws.

where,

Dρi = (V −1
ρi +X

′
ρiΩ
−1
i Xρi)

−1

ρ̂i = Dρi(V
−1
ρi ρ

i
0 +X

′
ρiΩ
−1
i Mρi)

mρi
t = it − π∗t − r∗t − λiũt − κiπ̃t

Mρi = (mρi
1 , ...,m

ρi
T )′
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Xρi = (i0 − π∗0 − r∗0, ..., iT−1 − π∗T−1 − r∗T−1)′

V −1
ρi is the prior variance and ρi0 is the prior mean for ρi

Substep 16.32 Derive the conditional distribution p(λi|Y, •)

The candidate draws are sampled from the proposal distribution N(λ̂i, Dλi) using the pre-
cision based algorithm.

where,

Dλi = (V −1
λi +X

′
λiΩ
−1
i Xλi)

−1

λ̂i = Dλi(V
−1
λi λ

i
0 +X

′
λiΩ
−1
i Mλi)

mλi
t = it − π∗t − r∗t − ρi(it−1 − π∗t−1 − r∗t−1)− κiπ̃t

Mλi = (mλi
1 , ...,m

λi
T )′

Xλi = (ũ1, ..., ũT )′

V −1
λi is the prior variance and λi0 is the prior mean for λi

Substep 16.33 Derive the conditional distribution p(κi|Y, •)

The candidate draws are sampled from the proposal distribution N(κ̂i, Dκi) using the pre-
cision based algorithm.

where,

Dκi = (V −1
κi +X

′
κiΩ
−1
i Xκi)

−1

κ̂i = Dκi(V
−1
κi κ

i
0 +X

′
κiΩ
−1
i Mκi)

mκi
t = it − π∗t − r∗t − ρi(it−1 − π∗t−1 − r∗t−1)− λiũt

Mκi = (mκi
1 , ...,m

κi
T )′

Xκi = (π̃1, ..., π̃T )′

V −1
κi is the prior variance and κi0 is the prior mean for κi

Substep 16.34 Derive the conditional distribution p(σ2
hi|Y, •)

p(σ2
hi|Y, •) is a standard inverse-Gamma density,
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Candidate draws are sampled from

p(σ2
hi|Y, •) ∼ IG(νhi0 + T−1

2 , Shi0 + 1
2

T∑
t=2

(hit − hit−1)2)

Substep 16.35 Derive the conditional distribution p(σ2
zr|Y, •)

p(σ2
zr|Y, •) is a standard inverse-Gamma density,

Candidate draws are sampled from

p(σ2
zr|Y, •) ∼ IG(νzr0 + T

2 , Szr0 + 1
2

T∑
t=1

(Zrt − Crt − βrr∗t )2)

Substep 16.36 Derive the conditional distribution p(σ2
cr|Y, •)

p(σ2
cr|Y, •) is a standard inverse-Gamma density,

Candidate draws are sampled from

p(σ2
cr|Y, •) ∼ IG(νcr0 + T−1

2 , Scr0 + 1
2

T∑
t=2

(Crt − Crt−1)2)

Substep 16.37 Derive the conditional distribution p(βr|Y, •)

Candidate draws are sampled from N(β̂r, Dβr) using the precision based algorithm.

where,

Dβr = (V −1
βr + r∗

′
Ω−1
zr r
∗)−1

β̂r = Dβr(V
−1
βr β

r
0 + r∗

′
Ω−1
zr J

zr)

jzrt = Zrt − Crt
Jzr = (jzr1 , ..., j

zr
T )′

V −1
βr is the prior variance and βr0 is the prior mean for βr

Substep 16.38 Derive the conditional distribution p(σ2
d|Y, •)

p(σ2
d|Y, •) is a standard inverse-Gamma density,

Candidate draws are sampled from

p(σ2
d|Y, •) ∼ IG(νd0 + T−1

2 , Sd0 + 1
2

T∑
t=2

(Dt −Dt−1)2)
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A1.d Marginal likelihood computation

Bayesian model comparison is based on the marginal likelihood (marginal data density) metric.
In computing marginal likelihood for various models, we use the approach proposed by CCK,
which decomposes the marginal density of the data (e.g., inflation) into the product of predic-
tive likelihoods. This approach allows us to separately compute marginal data density for each
variable of interest: inflation, nominal wages, interest rate, real GDP, the unemployment rate,
and labor productivity. The variable specific marginal densities prove quite useful because it
allows for deeper insights about the source of the deficiencies, which in turn helps differentiate
models at a more disaggregated level.

Specifically, marginal data density of the variables of interest is computed as follows,

p(yj |Xj
i ,Mi) =

T∏
t=3

p(yjt |y
j
1:t−1, X

j
1:t,i,Mi) (83)

where, j = PCE inflation (π), unemployment rate(ur), real GDP(gdp), labor productivity(prod),
nominal wage inflation(wage), nominal short-term interest rate(int) ;
p(yjt |y

j
1:t−1, X

j
1:t,i,Mi) is the predictive likelihood for variable j, and Xj

i is set of covariates that
influences variable j in model Mi. For example, in the case of short-term interest rate, the
covariates in the Base model include ur, π, gdp, and survey data. Whereas, in the Base-NoSurv
model, the covariates will not include the survey data.

To compute the overall marginal data density of Y = (yπ, yur, ygdp, yprod, ywage, yint)′ for
model Mi,

p(Y |Xi,Mi) = p(yπ|Xπ
i ,Mi)× p(yur|Xur

i ,Mi)× p(ygdp|Xgdp
i ,Mi)...

×p(yprod|Xprod
i ,Mi)× p(ywage|Xwage

i ,Mi)× p(yint|Xint
i ,Mi) (84)

A2. Prior Sensitivity Analysis

In the paper, we noted that our prior settings are similar to those used in CKP, CCK, Gonzalez-
Astudillo and Laforte (2020). As discussed in CCK, UC models with several unobserved vari-
ables, such as the one developed in this paper, require informative priors. That said, our priors
settings for most variables are only slightly informative. The use of inequality restrictions on
some parameters such as the Phillips curve, persistence, bounds on u-star could be viewed as
additional sources of information that eliminates the need for tight priors, something also noted
by CKP. The parameters for which there is a strong agreement in the empirical literature on
their values, such as the Taylor-rule equation parameters, we use relatively tight priors, such
that prior distributions are centered on prior means with small variance. So besides the prior
on the Taylor-rule equation parameters, all other prior settings are taken from related papers.

Here, we examine the sensitivity of loosening the priors on the variances of the shocks to the
pi-star, p-star, u-star, and r-star (i.e., for the process D). Specifically, we double the prior mean
of the variances from 0.01 to 0.03. Table A2 reports the posterior estimates. The top panel
reports the posterior estimates from the main text to facilitate easy comparison, and the bottom
panel reports the posterior estimates of re-running the models with these new prior values. The
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results for p-star are as expected. In the paper, we noted that the prior view primarily shapes
p-star, and we see that manifest here too; prior (E(σ2

p∗)) and posterior (E(σ2
p∗|Data)) are fairly

identical. Similar evidence is seen in the case of r-star (i.e., D) for the Base-NoSurv model.
For pi-star, u-star, and r-star (in the case of Base), the posterior mean estimates’ differences
between the two panels are small. In fact, the posterior mean estimates from the runs with
looser prior are pushed toward values that are closer to the prior mean estimates used in the
main paper, lending credibility to our default prior settings used in the main paper.

Table A2: Parameter Estimates

Panel A: From the main paper, where prior E(σ2
π∗) = E(σ2

u∗) = E(σ2
d) = 0.12 and E(σ2

p∗) = 0.142

Parameter Parameter description Posterior estimates
Base Base-NoSurv

Mean 5% 95% Mean 5% 95%
σ2
π∗ Variance of the shocks to π∗ 0.1212 0.1002 0.1412 0.1272 0.0842 0.1822

σ2
p∗ Variance of the shocks to p∗ 0.1452 0.1112 0.1832 0.1412 0.1092 0.1762

σ2
u∗ Variance of the shocks to u∗ 0.0752 0.0642 0.0892 0.0842 0.0712 0.1002

σ2
d Variance of the shocks to d 0.0932 0.0772 0.1102 0.1142 0.0842 0.1482

Panel B: Prior sensitivity, where prior E(σ2
π∗) = E(σ2

u∗) = E(σ2
d) = E(σ2

p∗) = 0.1732

Parameter Parameter description Posterior estimates
Base Base-NoSurv

Mean 5% 95% Mean 5% 95%
σ2
π∗ Variance of the shocks to π∗ 0.1432 0.1242 0.1632 0.1902 0.1452 0.2362

σ2
p∗ Variance of the shocks to p∗ 0.1722 0.1342 0.2142 0.1662 0.1302 0.2072

σ2
u∗ Variance of the shocks to u∗ 0.1022 0.0902 0.1152 0.1212 0.1032 0.1402

σ2
d Variance of the shocks to d 0.1222 0.1062 0.1402 0.1752 0.1362 0.2182
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A3. MCMC Convergence Diagnostics

In this section, we document the diagnostic properties of our MCMC algorithm in the Base and
Base-NoSurv models. Following Primiceri (2005), Koop, Leon-Gonzalez, and Strachan (2010),
and Korobilis (2017), we report the autocorrelation functions of the posterior draws (10th and
50th order sample autocorrelation), inefficiency factors (IFs), and convergence diagnostic (CD)
of Geweke (1992).1

One of the most common metrics examined to assess the efficiency of the MCMC sampler
is to look at the autocorrelation function of the draws, which indicates how well the chain is
mixing. Low autocorrelations are preferred to higher because the lower the autocorrelation, the
closer the draws are to being independent and higher the efficiency of the algorithm. The plots
shown in the top panel of the figures correspond to 10th and 50th order autocorrelations in the
draws, and as can be seen, they indicate very low autocorrelation. In the case of 50th order
autocorrelation, all of them indicate close to zero, and in the case of 10th order except for a
couple most indicate correlation below 0.2.

The inefficiency factor related to the autocorrelation functions is the inverse of Geweke’s
(1992) relative numerical efficiency measure (RNE). It is computed using the following for-
mula, (1 + 2

∑∞
i=1 ρi), where ρi refers to the k − th order autocorrelation of the chain. The

middle panel in the figures plots the IF for each of the parameters. The values lower than
or close to 20 are considered desirable. As shown, in the case of the Base model, all the IFs
are below 20, and most at below 10. Similarly, in the case of Base-NoSurv, except one, for
all other parameters, IFs are below 20. (Note: IFs are computed using the default setting in
LeSage’s toolbox: estimation of spectral density at frequency zero uses a tapered window of 4%)

As discussed in Koop, Leon-Gonzalez, and Strachan (2010), to assess whether the MCMC
sampler has converged, a rough rule of thumb is to look at the CDs and see whether 95% of
them are less than 2. If they are, then convergence is likely achieved. Based on the plots in
figures A1 and A2 (third-panel), most CDs are within +/- 2. The very few that exceed 2 are
only slightly larger than 2.

We also note that the results are fairly identical to the different initial conditions of the
chain (picked randomly) and to a significantly lower number of simulations (and burn-in). For
example, a run using 320K posterior draws with a burn-in of the first 300K and retaining all the
remaining draws provide similar inference. However, the MCMC convergence properties favor
higher simulations because it allows for a greater degree of thinning.

Overall, these diagnostic measures provide us confidence in the good convergence properties
of our MCMC algorithm in both the Base and Base-NoSurv models.

1In computing some of these metrics, we have benefitted from the Matlab toolbox developed by James P.
LeSage. Detailed explanation including intuition for these convergence diagnostics are provided in Koop (2006;
page 67-68) and Chan, Koop, Poirier, and Tobias (2019; page 209).
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Figure A1: MCMC Diagnostics of Base Model
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Figure A2: MCMC Diagnostics of Base-NoSurv Model
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A4. Additional Forecasting Results: Base vs. Benchmarks

In this section we compare the real-time forecasting performance of our Base model to the
outside benchmark models, which forecasting literature has shown to be useful forecasting
devices. Specifically, we compare the accuracy of the inflation forecasts from our Base model
to the following three models, UCSV of Stock and Watson (2007) [UCSV], Chan, Koop, and
Potter (2016) [CKP], and Chan, Clark, and Koop (2018) [CCK]. We compare the accuracy of
the unemployment rate forecasts from our Base model to the CKP, and the accuracy of the
nominal wage inflation from the Base model to the UCSV model applied to the nominal wage
inflation – motivated by Knotek (2015).

Table A3 presents the forecast evaluation results for headline PCE inflation, nominal wage
inflation, and the unemployment rate. These results indicate following three observations.
First, in terms of point forecast accuracy, inflation forecasts from all the four models considered
are competitive to each other. There is some statistically significant evidence that the Base
model is more accurate than UCSV at h=12Q. Regarding the density forecast accuracy, the
Base model is more accurate than the UCSV but inferior to CCK, as the latter produces more
precise intervals than the Base model. Second, in the case of nominal wage inflation, the Base
model generates more accurate forecasts (both point and density) than UCSV, and the gains
are statistically significant for the most part.

Third, the accuracy of the unemployment forecasts from the Base model is competitive to
the CKP model statistically speaking, even though the relative numbers favor CKP. A closer
inspection of the forecast errors reveals that the Base model, which incorporates survey forecasts
of the unemployment rate, experienced significantly bigger misses than the CKP model around
the Great Recession period. Outside of this period, the Base model is slightly more accurate
than the CKP, and when combined with the Great Recession period, on the net, the much
bigger misses of the Base model results in overall higher RMSE.

As illustrated in Tallman and Zaman (2020), just before and at the onset of the Great Reces-
sion, the survey participants projected relatively upbeat long-run forecasts of unemployment,
which indicated a declining natural rate of unemployment. It was not until few months into the
recession that survey participants recognized the extent of the labor market damage and began
to revise their estimates of the long-run unemployment higher. Hence, models such as the Base
model that take signals from the survey forecasts experienced big misses.

To sum up, we view these forecasting results as providing evidence supporting our Base
model’s competitive forecasting properties.
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Table A3: Out-of-Sample Forecasting Performance: Base vs. Benchmarks

Full Sample (Recursive evaluation: 1999.Q1-2019.Q4)

Point forecasting Density forecasting
4Q 8Q 12Q 20Q 4Q 8Q 12Q 20Q

PCE Inflation
Relative RMSE Relative Log Score

Base/UCSV 0.95 0.97 0.93* 0.96 Base - UCSV 0.013* 0.023* 0.028* 0.041*
Base/CCK 1.01 1.04 1.01 1.04* Base - CCK -0.018* -0.030* -0.046* -0.058*
Base/CKP 0.98 0.99 0.97 1.02 Base - CKP 0.002 0.001 -0.003* -0.008*

Nominal Wage
Relative RMSE Relative Log Score

Base/UCSV 0.89* 0.87* 0.92 0.64 Base - UCSV 0.012 0.027* 0.037* 0.041*
Unemployment Rate
Relative MSE Relative Log Score

Base/CKP 1.08 1.12 1.15 1.24 Base - CKP 0.001 0.000 -0.004 -0.007

Notes for Table: For variables PCE inflation and nominal wage (i.e., average hourly earnings), the forecasts and associated accuracy

correspond to the quarterly annualized rate. Base forecast is defined as the Steady-State (SS) VAR forecast in which the steady states are

assumed to be the estimates of the stars from the Base model. UCSV forecast corresponds to the forecast from the univariate unobserved

component stochastic volatility model similar to Stock and Watson (2007). The model is used to construct forecasts of PCE inflation and

nominal wage inflation. CCK forecast corresponds to the forecast from the bivariate unobserved component stochastic volatility model of

Chan, Clark and Koop (2018). CKP forecast corresponds to the forecast from the bivariate unobserved component stochastic volatility

model of Chan, Koop and Potter (2016), with the bounds on u-star fixed to values identical to the Base model. The left panel reports

results for the point forecast accuracy (relative root mean squared errors) and the right panel reports the corresponding density forecast

accuracy (mean of the relative log predictive score). The table reports statistical significance based on the Diebold-Mariano and West test

with the lag h− 1 truncation parameter of the HAC variance estimator and adjusts the test statistic for the finite sample correction

proposed by Harvey, Leybourne, and Newbold (1997); *up to 10% significance level. The test statistics use two-sided standard normal

critical values for horizons less than equal to 8 quarters, and two-sided t-statistics for horizons greater than 8 quarters.
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A5. Additional Forecasting Results: SSBVAR, Base stars vs.
Survey

In macroeconomic forecasting, research by Wright (2013) and Tallman and Zaman (2020),
among others, show using workhorse Bayesian VAR models that the predictive performance
boils down to good starting conditions (i.e., nowcasts) and terminal conditions (i.e., steady-
states proxied by stars). Survey forecasts provide both nowcasts and long-run projections,
whose accuracy has been shown by past research to be quite good. Wright (2019) empha-
sizes the desirable forecasting properties of the survey forecasts and highlights that econometric
approaches utilizing survey projections are at the forecasting frontier, especially in inflation fore-
casting. Most empirical research on forecasting has focused on proposing methods to improve
the accuracy of the nowcast estimates relative to survey nowcasts’ accuracy, but only little ef-
fort has been dedicated to improving estimates of long-run projections. Hence, this paper raises
the natural curiosity in the usefulness of the stars’ estimates from our modeling framework for
macroeconomic forecasting using Bayesian VARs (via the imposition of steady-states).

To assess the efficacy of our star’s estimates for the external VAR models, we perform
a real-time out-of-sample forecasting evaluation similar to Wright (2013) and Tallman and
Zaman (2020). These studies informed the time-varying steady-states for the steady-state
(SS) BVAR using the long-run survey projections and found that doing so leads to significant
accuracy gains. Accordingly, the design of our forecasting examination is as follows. We take
the SSBVAR from Tallman and Zaman (2020) and perform three sets of recurive real-time out-
of-sample forecasting runs. In the first run, we inform the steady-states for real GDP growth,
PCE inflation, core PCE inflation, the unemployment rate, nominal wage inflation, and labor
productivity growth using the long-run survey projections. For the latter two variables, we use
the survey expectations from the SPF.2 The forecasts from this run are denoted ‘Survey’ in
table A4. In the second run, we repeat the exercise, but this time inform the steady-states
using the real-time estimates of the stars from the Base-NoSurv model, denoted ‘BaseNoSurv’.
In the third run, we inform the steady-states using the real-time estimates of stars from the
Base model, denoted ‘Base’.

Each of the three forecasting runs is based on estimating the SSBVAR with a recursively
expanding sample, i.e., the recursive execution uses an additional quarterly data point in the
estimation. The SSBVAR is estimated with quarterly data beginning 1959Q2. The model
consists of ten variables: (1) real GDP growth; (2)real consumption expenditures; (3) headline
PCE inflation; (4) core PCE inflation; (5) labor productivity growth; (6) growth in average
hourly earnings; (7) growth in payroll employment; (8) the unemployment rate; (9) the shadow
federal funds rate; (10) and the risk spread, defined as the difference between the yield on
10-year Treasury Bond and yield on BAA Bond. The out-of-sample forecasting period spans
1999Q1 through 2019Q4. The forecast accuracy (point and density) is computed from one-
quarter ahead to 20 quarters out. Partly due to focus on the medium-term horizon and partly
in the interest of space, we report accuracy metrics for four, eight, twelve, and twenty quarters
ahead.

We evaluate the forecast accuracy using real-time data; specifically, we treat the “actual”
as the third quarterly estimate. For instance, in the case of real GDP, the third estimate for
2018Q4 corresponds to the GDP data available in late 2019Q1. The point forecast accuracy is
assessed using the root mean squared error (RMSE) metric, and the density forecast accuracy

2In the case of nominal wage inflation, we construct an implied survey projection by adding the survey
expectation of PCE inflation and productivity, both of which are obtained from the SPF.
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is assessed using either the continuous ranked probability score (CRPS). Forecasts with lower
RSME and CRPS are preferred. The statistical significance of the point and density forecast
accuracy is gauged using the Diebold-Mariano and West test. The description of these tests is
listed in the notes accompanying the tables reporting forecast accuracy.

Table A4 reports forecast evaluation results corresponding to this exercise. The left panel
reports the point forecast accuracy results, while the right panel results for the density forecast
accuracy. We evaluate and compare the point, and density forecast accuracies among the Base,
BaseNosurv, and Survey forecasts in a pairwise fashion. For each variable, the three rows
report the relative RMSE (for point forecast accuracy) and the relative CRPS (for density
forecast accuracy). The first row reports the RMSE of the Base relative to Survey, the second
row reports the RMSE of BaseNoSurv to Survey, and the third row reports the RMSE of
BaseNoSurv relative to Base. A model with a lower values of RMSE and CRPS is preferred
to a model with higher values. These relative metrics indicate the following. First, for real
GDP growth, statistically speaking, Survey outperforms both Base and BaseNoSurv. A closer
inspection of the errors reveals that most of the gains of Survey over Base and BaseNoSurv are
achieved over the post-Great Recession period.

As indicated in the figures plotting real-time estimates (see figure A5), starting in 2011
onwards, while both Base and Base-NoSurv have g-star falling sharply in the vicinity of 1.0%,
the Survey has g-star falling only a little to 2.0%. This more rapid deceleration in g-star inferred
by our models hurts the forecast accuracy of real GDP forecasts. This particular forecasting
result suggests that our models misleadingly attribute a higher portion of the low GDP growth
realizations in the post-Great Recession period to a trend decline in real GDP growth instead
of cyclical fluctuations.

For headline PCE inflation, all three are competitive to each other, with some statistically
significant gains in the density forecast accuracy of Base and Base-NoSurv over Survey. In
the case of nominal wage inflation, both Base and Base-NoSurv generate forecasts that are
substantially more accurate than Survey on average. The gains are statistically significant for
the most part. In the case of labor productivity, while Base is more accurate than BaseNoSurv,
both are inferior to the Survey. This result suggests that maybe bringing in survey information
about productivity in the Base model may improve the econometric estimation of p-star.

For the unemployment rate, both Base and BaseNoSurv are inferior to the Survey, but
the gains are not statistically significant for the most part. The SSBVAR with steady-states
informed from the Base model generates more accurate unemployment forecasts than Base-
NoSurv, but the forecast gains are statistically significant only for the very long horizons. In
the case of the shadow federal funds rate, both Base and Survey are competitive but are inferior
to BaseNoSurv for h=4Q and h=8Q.

Overall, these forecasting results lend credibility to our stars’ estimates (except for g-star)
in their use to inform steady-states for VAR forecasting models. We also note the results of
this section lend support to the survey projections in their use as proxies for stars, something
also documented by Tallman and Zaman (2020), among others.

The fact that the estimates of stars from our models are generally competitive to survey
long-run projections we believe is a good outcome. It has been well-established that survey
expectations are at the frontier of forecasting (e.g., Wright, 2019). However, the preference
is for forecasts (or estimates of stars) obtained using a single multivariate model because the
resulting forecasts will be coherent and allow for a credible narrative in a systematic manner.
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Table A4: Out-of-Sample Forecasting Performance: Steady-State BVAR

Full Sample (Recursive evaluation: 1999.Q1-2019.Q4)

Point forecasting Density forecasting
4Q 8Q 12Q 20Q 4Q 8Q 12Q 20Q

Real GDP
Relative RMSE Relative CRPS

Base/Survey 1.05* 1.07* 1.06* 1.01 Base - Survey 0.09* 0.09* 0.07* 0.01
BaseNoSurv/Survey 1.04 1.09* 1.07* 1.03* BaseNoSurv - Survey 0.06 0.12* 0.09* 0.03
BaseNoSurv/Base 0.98 1.02 1.01 1.02* BaseNoSurv - Base -0.02 0.03 0.01 0.02

PCE Inflation
Relative RMSE Relative CRPS

Base/Survey 0.99* 0.98 1.00 1.05 Base - Survey -0.02* -0.02* -0.01 0.04
BaseNoSurv/Survey 0.97 1.00 1.04 1.06 BaseNoSurv - Survey -0.03* -0.01 0.02 0.04
BaseNoSurv/Base 0.99 1.02 1.04 1.01 BaseNoSurv - Base -0.02 0.01 0.03 0.00

Productivity
Relative RMSE Relative CRPS

Base/Survey 1.04* 1.08* 1.05* 1.00 Base - Survey 0.04* 0.08* 0.06* 0.00
BaseNoSurv/Survey 1.06* 1.13* 1.12* 1.05 BaseNoSurv - Survey 0.07* 0.13* 0.12* 0.05
BaseNoSurv/Base 1.02 1.05* 1.06* 1.05* BaseNoSurv - Base 0.02 0.05* 0.06* 0.05*

Nominal Wage
Relative RMSE Relative CRPS

Base/Survey 0.73* 0.77* 0.84* 0.92* Base - Survey -0.08* -0.09* -0.09* -0.08*
BaseNoSurv/Survey 0.72* 0.76* 0.93* 1.06 BaseNoSurv - Survey -0.08* -0.09* -0.05* 0.03
BaseNoSurv/Base 0.98 0.99 1.10 1.16 BaseNoSurv - Base 0.00 0.00 0.04 0.11

Unemployment Rate
Relative MSE Relative CRPS

Base/Survey 1.05 1.08* 1.09 1.11 Base - Survey 0.03 0.09* 0.13* 0.18*
BaseNoSurv/Survey 1.07 1.13 1.19 1.27* BaseNoSurv - Survey -0.08 -0.15 -0.10 0.20*
BaseNoSurv/Base 1.02 1.05 1.09 1.14* BaseNoSurv - Base 0.02 0.10 0.19 0.31

Shadow FFR
Relative RMSE Relative CRPS

Base/Survey 0.98 0.99 1.01 1.06 Base - Survey -0.02 -0.02 0.02 0.18
BaseNoSurv/Survey 0.91* 0.92 0.96 1.07 BaseNoSurv - Survey -0.08* -0.15 -0.10 0.20
BaseNoSurv/Base 0.93* 0.93* 0.95 1.01 BaseNoSurv - Base -0.06* -0.13* -0.12 0.02

Notes for Table: For the variables real GDP, PCE inflation, productivity, nominal wage (i.e., average hourly earnings), the forecasts and

the associated accuracy correspond to the quarterly annualized rate. Base forecast is defined as the Steady-State (SS) VAR forecast in

which the steady states are assumed to be the estimates of the stars from the Base model. BaseNoSurv forecast is defined as the SS-VAR

forecast in which the steady states are taken from the Base-NoSurv model. The left panel reports results for the point forecast accuracy

(relative root mean squared errors) and the right panel reports the corresponding density forecast accuracy (mean of the relative

continuous ranked probability score). The table reports statistical significance based on the Diebold-Mariano and West test with the lag

h− 1 truncation parameter of the HAC variance estimator and adjusts the test statistic for the finite sample correction proposed by

Harvey, Leybourne, and Newbold (1997); *up to 10% significance level. The test statistics use two-sided standard normal critical values for

horizons less than equal to 8 quarters, and two-sided t-statistics for horizons greater than 8 quarters.
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A6. Additional Real-time Estimates Stars

Figure A3: Real-time Recursive Estimates of Output gap: Base model

Notes: The plot denoted Base corresponds to smoothed (posterior mean) estimates which are
based on the full sample information, i.e., 1959.Q4 through 2019.Q4. The plot denoted Base:
RealTime corresponds to real-time recursive (posterior mean) estimate generated by estimating
Base model at different points in time, specifically 1999.Q1 through 2019.Q4. The credible
intervals reflect the uncertainty around the posterior mean smoothed estimates.
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Figure A4: Real-time Recursive Estimates of Stars: Base-NoSurv model

Notes: The plots denoted Base-NoSurv correspond to smoothed estimates which are based on
the full sample information, i.e., 1959.Q4 through 2019.Q4. The plots denoted Base-NoSurv:
RealTime correspond to real-time recursive estimates generated by estimating Base-NoSurv
model at different points in time, specifically 1999.Q1 through 2019.Q4.

51



Figure A5: Real-time Recursive Estimates of Stars: Base model vs. Base-NoSurv model

Notes: The plots correspond to real-time recursive estimates generated by estimating Base
and Base-NoSurv models at different points in time, specifically 1999.Q1 through 2019.Q4.
To facilitate comparison, real-time estimates from the survey either Blue Chip or Survey of
Professional Forecasters (SPF) are also plotted.
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A7. Estimated relationship between Survey and Stars

Figure A6: Estimated Link Between Survey Forecasts and Stars

Notes: The posterior estimates are based on the full sample (from 1959Q4 through 2019Q4).
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A8. Additional COVID-19 Pandemic Results

Figure A7 presents posterior estimates of u-star, g-star, and r-star from Base and Base-NoSurv
models based on estimating data through 2020Q3. Also plotted to facilitate comparison are the
corresponding posterior estimates based on estimation through 2019Q4. Figure A8, similarly,
provides estimates of pi-star, p-star, and w-star. A visual inspection of the plots suggests
the following four observations. First, estimates appear reasonable, indicating the model isn’t
blowing up. Second, adding pandemic data to the estimation sample has small effects on the
historical estimates of stars in the Base model and, for the most part, also applies to the Base-
NoSurv model. For u-star, there are some notable revisions in the estimates obtained from
the Base-NoSurv model comparing between estimation pre-and post-pandemic recession. The
considerable revision in the posterior mean of u-star is associated with decreased precision, as
evidenced by the larger width of the 90% credible intervals; however, in the Base model, the
estimation with pandemic data is associated with increased precision of u-star.

Third, in the case of g-star, estimation using pandemic data yields posterior mean estimates
of g-star that are revised four-tenths higher starting 2000 onwards compared to estimation using
pre-pandemic data. Fourth, as would be expected (see Carriero et al., 2021), the precision plots
indicate an uptick in uncertainty towards the end of the sample period associated with pandemic
data. Though except for p-star and w-star, the uptick in uncertainty is small. The Base model
generally held up better because the survey forecasts help anchor the econometric estimates of
stars to a reasonable range. Without it, extreme data movements in the unemployment rate
profoundly influenced the econometric estimates of u-star in the Base-NoSurv model. In light
of the discussion in the preceding paragraph, we view the uptick in uncertainty around p-star
as a reasonable result.

We believe that the rich features of our models, which includes: (1) modeling the changing
economic relationships via the implementation of time-varying parameters; (2) allowing for
changing variance of the innovations to various equations (i.e., SV); (3) imposing bounds on
some of the random walk processes; (4) joint modeling of the output gap and unemployment
gap in particular; (5) and the use of survey forecasts; helped position our models to handle the
pandemic data better.

Carriero et al. (2021) using monthly Bayesian VARs show models that allow for SV bet-
ter handle pandemic observations than those without SV. But, even models with SV have a
drawback in the context of pandemic data. This drawback arises from the standard approach
to modeling SV, which assumes a random walk process or a very persistent AR process. So in
the face of a temporary spike in volatility, the model will attribute this spike incorrectly to a
persistent increase in volatility. Inspired by the outlier treatment method of Stock and Watson
(2016) for UCSV models, Carriero et al. (2021) propose an outlier-adjusted SV method that
models the VAR residuals as a combination of persistent and transitory changes in volatility.

We believe that this drawback of standard SV applies more to monthly VARs and to a lesser
extent in quarterly models, as is the case here. However, we stress that Stock and Watson out-
lier treatment method can be conveniently implemented in our modeling framework. It would
also require introducing SV in both the output gap and the unemployment gap equations. To
keep the length of the paper manageable, we leave this extension for future research.

The COVID-19 pandemic provides an excellent real-time illustration of the importance of
using survey expectations data in the econometric estimation of the stars. The unprecedented
nature of the pandemic crisis and the extreme movements in the data induced by the pandemic
are too volatile to provide a timely and credible signal about the long-run macroeconomic
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consequences. Complicating the signal extraction problem from the data during the pandemic
period is that consensus has been developing (perhaps rightly so) to treat macroeconomic data
for the periods 2020Q2 and 2020Q3 as outliers in estimating the macro-econometric models; see
Schorfhedie and Song (2020), Lenza and Primiceri (2020), Carriero et al. (2021), among others.

On the other hand, judgment assessment informed from past event studies and understand-
ing of many decades of economics research indicates that the COVID pandemic is likely going
to have implications on the long-run productivity growth (p-star), the growth rate of potential
output (g-star), the natural rate of unemployment (u-star), the long-run real rate of interest
(r-star); see Jorda, Singh, and Taylor (2020). As time rolls forward, and more is revealed about
the possible long-term macroeconomic impacts of the pandemic on the underlying trends, the
survey participants would judgmentally adjust their estimates of long-run projections in a more
timely manner. And by extension, our Base model, which incorporates the long-run survey
projections.

Base model vs. external sources: post-pandemic Recession

We next compare our Base model estimates with those produced by externals sources (and
or models) to assess further the reliability of our Base model estimates post-pandemic recession.
Figure A9 compares the estimates of the output gap (panel a), r-star (panel b), u-star (panel c),
and pi-star (panel d) from the Base model to the outside estimates.3 The estimates are based
on data through 2020Q3 (specifically vintage of data corresponding to late November 2020). In
the case of CBO, the projections correspond to an update as of late July 2020.

The plots in panel (a) indicate remarkable similarity between the posterior mean estimate
of the base model’s output gap and the CBO output gap. Compared with Morley and Wong
(2020), even though before the pandemic, the base model’s output gap estimates indicated less
tight resource utilization, for 2020, they are quite similar. Morley and Wong (2020), based on
a BVAR approach, could be viewed more flexibly than ours because it explicitly considers the
possible error correlation across model equations. However, at the same time, their approach
could be deemed less flexible than ours because it does not explicitly model time-variation
in parameters and stochastic volatility – i.e., abstracts from the issue of “changing economic
environment.” Both the Base model and Morley and Wong (2020) estimates the output gap at
-3.5% for 2020Q3, with CBO just a tenth higher at -3.6%.

Panel (b) plots the estimates of the r-star from various sources. Except for Laubach
and Williams (2003) [LW], all others are based on information available as of late Novem-
ber 2020. LW estimate reflects information through August 2020. Comparing between 2019Q4
and 2020Q3, the Base model, Johannsen and Mertens (2019), and Del Negro et al. (2017), all
three estimate r-star to have changed only a little; Base model: from 1.36% to 1.26%, Del Negro
et al. (2017): from 1.11% to 1.08%, Johannsen and Mertens (2019): from 1.48% to 1.47%. In
contrast, Lubik and Matthes (2015) have r-star increasing from 0.64% to 1.0%. However, in
their estimate, r-star first falls from 0.64% to -0.68% and then bounces back to 1.0% in 2020Q3.

3Morley and Wong (2020) estimates are based on their updated work Berger, Morley, and Wong (forthcoming)
and are available to download from outputgapnow.com. The estimates were downloaded in the last week of
November, which included the nowcast estimate for 2020Q4 that we do not plot. Thank Murat Tasci, for providing
the estimates of the u-star from the Tasci (2012) model. And also, thank Benjamin Johannsen for providing
the r-star estimates from Johannsen and Mertens (2019). The LW estimates of r-star were downloaded from the
New York Fed website. Del Negro et al. (2017) estimates of r-star were downloaded from github.com/FRBNY-
DSGE/rstarBrookings2017. Lubik and Matthes estimates were downloaded from the Richmond Fed website in
late November 2020.
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Their estimate of r-star displays considerable volatility compared to others.
Panel (c) plots the estimates of the u-star from four sources, Base model, CBO, Tasci

(2012), and Chan, Koop, and Potter (2016). Comparing between the Base model and CBO,
the contours of the u-star plots are quite similar. But, the levels through 2010 are notably
different, with CBO higher than the Base model. From mid-2013 onwards, the levels are quite
similar, and in 2020Q3, both indicate u-star at 4.3% (Base) and 4.4% (CBO). Interestingly, both
CBO and the Base model have u-star remaining mostly stable between 2019Q4 and 2020Q3,
suggesting that they attribute most of the increase in the pandemic’s unemployment rate to
the cyclical component. It is worth highlighting that the (median) estimate of u-star reported
in the September 2020 Summary of Economic Projections, which the Federal Reserve compiles,
also indicated a stable u-star (at 4.1%) between 2019Q4 and 2020Q3.

Broadly speaking, the contour of the u-star implied by the CKP (bivariate Phillips curve)
is similar to the Base model and CBO. But, the estimated level of u-star is significantly higher.
According to the CKP model, the estimated u-star in 2020Q3 is 5.7%, just a tenth higher than
2019Q4. The Tasci (2012) model, which is based on the flow rates in-and-out of unemployment,
is significantly impacted by the pandemic data, as the u-star is estimated to have increased from
4.7% in late 2019 to 5.2% in 2020Q3. Part of the explanation of more significant movements in
u-star seen in the Tasci model in response to pandemic data is that the model is estimated using
maximum likelihood methods, which are relatively known to have done a less well job in handling
extreme pandemic induced movements in variables. More generally, Tasci (2019) document the
challenges of estimating u-star in real-time with these models during crisis periods.

Panel (d) presents pi-star estimates from three sources: the Base model, CCK model, and
CKP model. All three models indicate pi-star to have remained stable between 2019Q4 and
2020Q3. However, the pi-star estimates differ slightly across models, with the Base model at
1.65%, CCK at 1.50%, and CKP at 1.44% (in 2020Q3).
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Figure A7: Estimates of Stars pre- vs. post-COVID Recession

Notes: The plots labeled Pre Pandemic reflect posterior estimates based on information in the
sample 1959Q4 through 2019Q4, and plots labeled Post Pandemic reflect posterior estimates
based on the sample 1959Q4 through 2020Q3.
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Figure A8: Estimates of Stars pre- vs. post-COVID Recession

Notes: The plots labeled Pre Pandemic reflect posterior estimates based on information in the
sample 1959Q4 through 2019Q4, and plots labeled Post Pandemic reflect posterior estimates
based on the sample 1959Q4 through 2020Q3.
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Figure A9: Estimates of Stars post-COVID Recession: Base vs. Outside

Notes: In the case of Johannsen and Mertens (2019), Del Negro et al. (2017), and Lubik and
Matthes (2015), the estimates plotted are the posterior median, for all others it is the (posterior)
mean estimate.
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A9. R*: Backcast Survey R* from 1959-1982

The survey estimates of g-star, u-star, and pi-star are direct reads from the survey. In contrast,
the r-star survey estimate is not a direct estimate. Instead, it is inferred from the Blue Chip
survey long-run estimates of GDP deflator and short-term interest rates (3-month Treasury
bill) using the long-run Fisher equation. Specifically, the long-run forecast of 3-month Treasury
bill less the long-run forecast of GDP deflator. To this differential, we add +0.3 to reflect the
average differential between the federal funds rate and the 3-month Treasury bill. (r-star refers
to the long-run equilibrium federal funds rate)

Survey projections are not available before 1983Q1. To fill in estimates for the survey
variables between 1959Q4 and 1982Q4, we use CBO long-run projections in the case of real
GDP growth and the unemployment rate. In the case of inflation, we use the PTR series
available from the Federal Reserve Board website; this series is used in many studies employing
long-run expectations of inflation (e.g., CCK, Tallman and Zaman, 2020). We do not have a
readily available historical source for long-run forecasts for interest rates (and r-star). So we
backcast a particular time series of implied r-star using CBO’s long-run projections of g-star.
Specifically, we first fit a simple linear regression model over the post-1983 period that regresses
survey r-star on a constant, its lags (2 lags), and a one-period lag “gap,” defined as the difference
between survey r-star and survey g-star. We use the estimated model and the CBO long-run
projections of g-star over the sample 1959Q4 through 1982Q4 to backcast the implied survey
r-star estimates. (When backcasting, the initial values of r-star for 1959Q2 and 1959Q3 are
assumed identical to CBO g-star)

r∗,Survt = c+ β1gap
r∗,g∗,Surv
t−1 + β2r

∗,Surv
t−1 + β3r

∗,Surv
t−2 + ε∗,Survt , ε∗,Survt ∼ N(0, σ2

∗,Surv) (85)

where, gapr∗,g∗,Survt = g∗,Survt − r∗,Survt

The OLS estimation yields, c = −0.0745; β1 = 0.06; β2 = 1.167; β3 = −0.148

Figure A10 plots the survey g-star and r-star estimates in solid, and the CBO g-star and
the backcast r-star in dashed lines.

Figure A10: Survey r* and g*
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A10. R* : Additional Full Sample Results

A10.a. Role of data vs. prior in shaping r-star

Kiley (2020), using a model in which r-star follows a RW process, documents an essential finding
that data provide very little information in shaping the r-star process. Hence, the model-based
r-star estimate is mainly driven by the modeler’s prior views. Our results generally confirm
Kiley’s findings. However, in our Base specification, where the variance of the g-star process
influences both the prior and the posterior for the r-star process, the data does influence the r-
star estimate; because we find evidence that data provide information about the g-star process.
This latter evidence of data’s influence on the identification of g-star is also noted by Kiley
(2020).

We begin by comparing the prior and posterior estimates of the parameter σ2
r∗, which governs

the shock variance of the r-star process, in the Base-R*RW and Base-NoSurvR*RW – both these
specs model r-star as a RW similar to Kiley (2020). We set prior for E(σ2

r∗) = 0.12), which
is the same as in Astudillo and Laforte (2020) but tighter than 0.252 used by Kiley.4 (Our
choice of tighter prior than Kiley is due to a significantly more complex model). Our model
estimation yields posterior estimates of 0.092 (with 90% credible intervals 0.072 to 0.112) in
Base-R*RW and 0.12 (with 90% interval 0.082 to 0.132) in Base-NoSurvR*RW, respectively. It
appears that in the case of Base-NoSurv-R*RW, the prior setting of the r-star process is driving
the trajectory as evidenced by the posterior mean of the parameter σ2

r∗ identical to the prior.
But in the case of Base, the posterior mean of the parameter σ2

r∗ is slightly different from the
prior mean, suggesting that by bringing survey data in the estimation, the data does play a role
in shaping r-star.

We next confirm our finding by re-doing our exercise setting a looser prior for E(σ2
r∗) =

0.252), same as in Kiley (2020). The updated model estimation yields posterior estimates of
E(σ2

r∗) = 0.152) (with 90% credible intervals 0.132 to 0.172) in Base-R*RW and E(σ2
r∗) = 0.222)

(with 90% interval 0.182 to 0.272 in Base-NoSurvR*RW, respectively. The fit of these models
to interest rate data (and other model data) is significantly worse compared to Base and Base-
NoSurv.

We explored the impact on the r-star estimates of even more looser priors on the shock
process governing r-star. We find that as the prior on the r-star process loosens, data becomes
more informative in shaping the r-star estimate (echoing Lewis and Vazques-Grande, 2019).
But it comes at the cost of worsening model fit, higher volatility in the r-star estimate, and
worsening precision of r-star.

A10.b. Base vs. External models

In figure A11, the left panel plots r-star from Base (solid line) and two external models, the
seminal model of LW (dashed line) and the more recent model developed in Del Negro et al.
(2017) (dotted line). As is the case with most r-star estimates presented in the literature, the
LW estimate shows a marked decline in r-star from 2000 and beyond. As shown in the figure,
compared to the r-star estimate from the Base, the LW estimate is lower over this period. Part
of the explanation of this difference in the estimates comes from the different estimates of g-star
(not shown).

4We also explore a model specification in which prior variance is set at 0.252, the fit of this specification was
significantly inferior, and the r-star estimate was quite volatile.
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In the LW model, the mechanical reason for this steadily declining trajectory of r-star is
coming from the fact that their model estimate of g-star has been steadily declining over the
same period. Over this period, GDP grew just slightly above their estimate of g-star, even
though the real short-term rate is significantly below zero over this period. The model explains
the combination of moderate growth in GDP (suggesting a small positive output gap) and
negative real short-term interest through a low level of r-star estimate so to obtain a negative
real interest rate gap (see LW, 2016). In our Base (and Base-NoSurv) model, because the
estimate of g-star is even lower than LW, which implies a more positive output gap (than LW),
a less negative real interest rate gap (than LW) is required to explain the output gap. The less
negative real interest rate gap (i.e., a smaller interest rate gap) implies a higher level of r-star
than LW.

The r-star estimate from Del Negro et al. is stable around 2% from 1960 through early
1980 and then slowly move up, reaching 2.5% by late 1990. From thereon, it begins a gradual
decline ending 2019 at 1.2%, identical to Base, and two-tenths lower than Base-NoSurv. It is
worth noting that Del Negro et al. also utilize survey expectations on r-star to estimate r-star
but their approach in how they model the link between the two is very different than ours.5

They also assume a relationship between g-star (in their case, long-run productivity growth)
and r-star. However, their model structure is different compared to ours. Shortly, we show an
r-star estimate from our model specification with the tighter prior assumption for the r-star
process, which is remarkably similar to Del Negro et al.

A10.c. Sensitivity of r-star to the prior setting

As just shown and noted by others (e.g., Kiley (2020)), the prior elicitation for the variance
parameter of the shock process governing r-star has a notable influence on the dynamics of
r-star. We briefly show another illustration highlighting the sensitivity of r-star to the prior
setting. In figure A11, the right panel plots the posterior mean r-star obtained from model spec-
ification, Base-NoSurv-R*TightPrior, which is Base-NoSurv but with a tighter prior value for
the parameter σ2

d (0.012 instead of 0.12). The parameter σ2
d refers to the variance of the shock

process defining the “catch-all” component D. Also plotted are the posterior estimates of r-star
from Base-NoSurv and Del Negro et al. (2017) model. Three things immediately stand out.
First, imposing a tighter prior has a notable impact on r-star, as shown by comparing dashed
and solid lines in the figure. Second, the model specification Base-NoSurv-R*TightPrior has
the posterior mean of r-star near 2% from early 1960 through mid-1980, which is similar to
the r-star estimate reported in Kiley (2020). Third, the entire trajectory of r-star from the
Base-NoSurv-R*TightPrior is remarkably similar to the median estimate of r-star from the Del
Negro et al. model. These results indicate that very different approaches could provide similar
estimates, yet somewhat related approaches could yield very different estimates.

5Del Negro et al. use survey expectations from Survey of Professional Forecasters, which start from 1992
onwards. In addition, in their framework survey expectations is one of the several financial indicators that they
use to extract a common trend. So arguably, in their approach, the survey expectations of r-star will be less
influential in driving r-star than in our approach in which a direct connection between r-star and survey data is
assumed.
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Figure A11: R* estimates
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A10.d. The usefulness of the Taylor-rule equation and the equation linking
r* to survey

In recent studies on estimating r-star, a Taylor-type rule equation is added to the model struc-
ture to improve the econometric estimation. Our Base model also includes a Taylor-type rule.
As we now illustrate, this addition is crucial to improve precision and the plausibility of the r-
star estimates significantly. The left panel in figure A12 plots three estimates of r-star obtained
from model specifications Base (solid line), Base-NoR*Surv (dashed line), and Base-NoR*Surv-
NoTRule (dotted line). The right panel plots the corresponding precision of the r-star estimates.
The specification Base-NoR*Surv excludes the equation linking r-star to survey expectations
from the model (but keeps equations relating other stars to survey). Doing so produces a tra-
jectory of r-star similar to the Base-NoSurv spec; and not surprisingly, the precision of r-star
is reduced relative to the Base spec, as evidenced by the plot corresponding to Base-NoR*Surv
lying above the Base.

The specification Base-NoR*Surv-NoTRule excludes the equation linking r-star to survey
expectations and the Taylor-rule equation. So in this spec, r-star is identified from the IS-
curve equation, and the equation relating r-star to g-star. As expected, shrinking the model’s
structure further by excluding the Taylor-rule equation reduces the r-star estimate’s precision
dramatically, as evidenced by Base-NoR*Surv-NoTRule plot located above all the others in the
left panel. Besides the impact on the precision, as would be expected, changes in the system’s
structure result in notable differences in the estimated level of the r-star. The posterior mean
estimate of r-star, which has the r-star declining steadily over the sample, is substantially lower
than both Base and Base-NoR*Surv. However, the uncertainty around the posterior mean is
enormous complicating inference with a reasonable degree of certainty.

Figure A12: The Usefulness of Taylor Rule equation

Notes: The posterior estimates are based on the full sample (from 1959Q4 through 2019Q4).
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A11. Pi* : Additional Full Sample Results

A11.a. Pi-star comparison Base vs. outside models

In figure A13, panel (a) plots posterior mean estimates of pi-star from some related (smaller
size) models from the literature alongside Base to facilitate comparison. In particular, estimates
are shown for CKP, CCK, and the celebrated UCSV model of Stock and Watson (2007).6 Panel
(b) plots the corresponding precision estimates of pi-star.

There are some interesting similarities and differences across the pi-star estimates. Whereas
UCSV displays very volatile and erratic estimates of pi-star, others show smoother evolution of
pi-star. CKP indicates a lower estimate of pi-star than others from the early 1970s through the
late 1980s. The primary factor contributing to lower pi-star in CKP is the model assumption
of a bounded random walk for pi-star. As discussed in CKP, the addition of bounds on pi-star
leads the model to attribute a substantial share of the high observed inflation of the 1970s to
the increased persistence of the inflation gap and only a small increase in the pi-star. Hence,
pi-star is estimated to have risen less than implied by other models. For instance, CCK model
had pi-star peaking at 4.9%, Base at 6.0% and CKP at 3.2%. As alluded in CKP, this small
rise in pi-star is consistent with a specific narrative that during the Great Inflation period, the
Fed had a low implicit target for inflation but was either unable to or unwilling to correct large
deviations of inflation from the target.

The contours of pi-star from Base is similar to CCK through 2000, but from 2000 to 2012,
Base is identical to CKP, with CCK a touch lower. It is interesting to note that from the early
2000s through 2010, both Base and CKP indicate pi-star at 2%. From 2012 through 2019, both
Base and CKP gradually drift lower to 1.5% (same as CCK) and 1.3%, respectively.

Panel (b), which plots the corresponding precision of pi-star, reveals some interesting pat-
terns. First, the precision of the pi-star evolved generally with the level of pi-star. As pi-star
increased during the Great Inflation, pi-star became more uncertain, i.e., more imprecise. Sub-
sequently, as pi-star trended lower during the Volcker disinflation, so did the uncertainty about
it (i.e., precision increased). Second, comparing across models, there is significant heterogene-
ity in the precision of pi-star. From 1960 through the mid-1970s, the Base model indicates
the most precise pi-star, followed by CCK and CKP. UCSV model shows volatile estimates of
precision, sharply fluctuating between the most precise to least precise. From the mid-1970s
through 2019, the CCK model indicates the most precise (least uncertain) pi-star, followed by
Base, CKP, and UCSV. CCK had the uncertainty of pi-star gradually trending down starting in
the mid-1970s. In contrast, in others, the uncertainty continued to trend higher until peaking
in the early 1980s.

Third, between 2000 and 2019, the uncertainty around pi-star implied by CCK and Base has
been reasonably stable, an artifact of the use of survey data. During this period, the precision of
pi-star implied by CCK is on average 40 basis points higher (i.e., uncertainty is lower) compared
to Base. This improved precision of CCK is interesting because both CCK and Base utilize
information from survey expectations of inflation. However, at the same time, compared to
Base, which has a rich structure (hence more parameters), the CCK model is parsimonious, as
it uses information from inflation and survey only to estimate pi-star.

An additional factor that could contribute to the differential in precision is that, unlike
Base, CCK allows SV in the pi-star equation. A more in-depth inspection of the estimation
results reveals the primary factor driving the superior precision of the CCK estimate of pi-star

6Whereas in estimating the UCSV model, Stock and Watson (2007) fix the parameters governing the smooth-
ness of the SV processes, we estimate them.
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compared to Base is tighter priors on the assumed relationship between survey forecast and
pi-star. And that translates into a posterior estimate implying a stronger connection between
survey forecast and pi-star in CCK than Base.

Figure A13: Pi* estimates: Base vs. External models

Notes: The posterior estimates are based on the full sample (from 1959Q4 through 2019Q4).
In all cases, the inflation measure is the PCE inflation.
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A11.b. Sensitivity of pi-star to modeling assumptions

Figure A14, panel (a) indicates the sensitivity of the pi-star estimates to modeling assumptions.
The plot labeled Base-W*RW is the variant of the Base model that removes the theoretical
restriction imposed by equation (28) and instead assumes a random walk assumption for w-star.
Comparing the Base and Base-W*RW plots indicate the effects of the theoretical restriction
on pi-star. As shown, the posterior mean estimate of pi-star from Base-W*RW is marginally
lower than Base in the period 1970 through the early 1980s (Great Inflation period). However,
from thereon, estimates of pi-star are identical. During the high-inflation period, compared to
the Base model, the Base-W*RW allocates a higher share of the increase in inflation to the
persistence component than pi-star (i.e., the random walk component); see figure A14. Hence,
the lower level of pi-star in Base-W*RW than Base.

The plot labeled Base-NoPT is the variant of the Base model that eliminates the passthrough
from prices to wages, modeled via equation (29b)—doing so results in a slightly higher pi-star
(Base-NoPT) from 1970 through the early 1980s. However, thereafter, estimates of pi-star
are identical between Base and Base-NoPT. During the high-inflation period, compared to the
Base model, the Base-NoPT allocates a lower share of the increase in inflation to the persistence
component than pi-star; hence, the higher level of pi-star in Base-NoPT than Base. Based on
the model comparison, Base-W*RW model’s fit to the inflation data and other data is inferior
compared to Base. In the case of Base-NoPT, the fit to the inflation data is slightly higher than
Base. However, the overall fit of the Base-NoPT is significantly worse than Base. The Base-
NoPT model’s reduced fit is the net effect of its reduced ability to fit wages and its improved
ability to fit prices.

We also explored a variant of the Base model that allowed the passthrough from wages
to prices in the price inflation equation, denoted Base-PT-Wage-to-Prices in table 1. The esti-
mates of pi-star (and of other parameters) are identical to those of the Base; hence, they are not
shown. Therefore, not surprisingly, as reported in table 8 (main paper), both models’ ability to
fit inflation data are very similar. We also highlight that allowing SV in the inflation equation
is very important, as evidenced by a significantly reduced fit of the Base-NoSV model, which is
the Base model variant that does not feature SV in any model equations.

Figure A14: More Estimates for Price inflation block

Notes: The posterior estimates are based on the full sample (from 1959Q4 through 2019Q4).
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A11.c. Pi-star estimates for some variants of the Base model

Figure A15: Pi* estimates: Base vs. Base model variants

Notes: The posterior estimates are based on the full sample (from 1959Q4 through 2019Q4).
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A12. P*: Base comparison with Kahn and Rich (2007)

In this section, we compare our model-based estimates of p-star with the narrative about p-star
implied from the two-regime Markov switching model of Kahn and Rich (2007).7 A regime-
switching framework (as in Kahn and Rich) allows for deterministic values of p-star, where
the number of deterministic values equals the number of possible regimes. Accordingly, in a
2-regime setup, the estimated p-star would periodically alternate from one-regime (e.g., low
productivity regime) to the other regime (e.g., high productivity regime). In contrast, the
random walk assumption for p-star adopted in this paper (and in others such as Roberts, 2001;
Edge et al., 2007; Benati, 2007) allows for the possibility that p-star may be (slowly) changing
in every period. This latter assumption implies that the possible values of p-star could equal
the number of periods in the estimation sample. The differences in the stochastic conception
between the two frameworks complicate direct comparison in p-star.

One possible albeit imperfect approach to comparing the implied p-star from two frameworks
is to use the regime-switching model’s identified regimes to assess how well those corroborate
with p-star estimates implied from the RW assumption model. Specifically, for the RW model,
compute the “average” p-star over the specific periods (identified regimes). Then assess the
following: (1) whether the “average” rates imply characterization of regimes that corroborate
with the identified regimes; (2) how close the “average” rates of p-star are to the deterministic
values of p-star estimated in the regime-switching model. We use this approach to compare the
estimates of p-star from our models to the p-star estimated by the Kahn and Rich model.

Figure A16 presents the comparison of p-star. Panel (a) compares the Base model with
Kahn and Rich model, and panel (b) compares the Base-W*RW model with Kahn and Rich
model. In the panels, the shaded areas refer to the two regimes identified by the Kahn and Rich
model using the same vintage of data as our models. The lighter shaded area corresponds to the
“high productivity regime,” and the darker shaded area “low productivity regime.” Their model
identifies two subperiods of high productivity regimes: the beginning of our sample through
1974Q4 and 1996Q3 through 2004Q4. Similarly, two subperiods of low productivity regime:
1975Q1 through 1996Q2 and 2005Q1 through the end of the sample, 2019Q4. Based on the
“average” rates of p-star computed for the specific two regimes from our models, if we assume
a cutoff of 1.5%, with “average” rate of p-star <= 1.5% as defining low productivity regime,
and “average” rate > 1.5% as defining high productivity regime, then the characterization of
regimes (and in-turn the narrative) aligns perfectly with Kahn and Rich.

Next, we compare the “average” rates for the two-regimes implied by our models to Kahn
and Rich model. The Base model implies for a low productivity regime an “average” rate
of 1.3% (for both subperiods) and for a high productivity regime an “average” rate of 2.1%
(subperiod beginning of our sample through 1974Q4) and 1.7% (subperiod 1996Q3 through
2004Q4). The Base-W*RW model implies for a low productivity regime an “average” rate of
1.5% (for both subperiods) and for a high productivity regime an “average” rate of 2.5% (in the
first subperiod) and 2.3% (in the second subperiod). In comparison, Kahn and Rich’s model
implies a p-star of 1.33% for a low productivity regime for both subperiods – p-star are equal
across subperiods by construction; and 2.96% p-star for a high productivity regime. For the
low productivity regime, the implied p-star is similar between our models and Kahn and Rich,
but for the high productivity regime, Kahn and Rich’s model is on the higher side than our
models.

7The estimates of p-star implied by the Kahn and Rich (2007) model are routinely updated and made available
for download at James A. Kahn’s website: http://sites.google.com/view/james-a-kahn-economics/home/trend-
productivity-update
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Overall, this illustration suggests that the two approaches provide generally similar infer-
ences about developments in p-star, and we view this as a useful result for macroeconomists
tasked with modeling and tracking productivity developments.

Figure A16: P* consistent with narrative from 2-Regime Markov-Switching Model

Notes: The shaded areas refer to the two regimes identified by the Kahn and Rich model using
the same vintage of data as our models. The lighter shaded area corresponds to the “high
productivity regime,” and the darker shaded area “low productivity regime.” The plots labeled
Base and Base-W*RW are the posterior mean estimates based on the full sample (from 1959Q4
through 2019Q4).
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A13. P* : Additional Full Sample Results

A13.a. Cyclical Productivity based on Output gap

Figure A17: Base-P*CycOutputGap model

Notes: The posterior estimates are based on the full sample (from 1959Q4 through 2019Q4).
The solid line represents the posterior mean and the dotted lines represent the 90% credible
intervals.
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