Entry Requirements

MEng
Highers: AAAA, including Maths and Physics
A Levels: Year 1 entry: AAB-BBB; Year 2 entry: A*AA-AAAB including Maths and Physics
IB: 34, including Maths and Physics at HL5
Irish Leaving Certificate: AAABB, including Maths and Physics at A

BEng (Honours)
Highers: AAAB including Maths and Physics at A
A Levels: Year 1 entry: ABB-BBB; Year 2 entry: AAA-ABB including Maths and Physics
IB: 32 including Maths and Physics at HL5 or SL6
Irish Leaving Certificate: AAAB including Maths and Physics at A

For both MEng and BEng: Higher Biology (B) or National 5 A/GCSE A recommended

Contact
Academic Selector
t: 0141 548 5703
e: biomedeng-ug-admissions@strath.ac.uk
www.strath.ac.uk/studywithus

Careers
The medical technology market is estimated to be worth £150-170 billion worldwide (US $70bn, Europe $57bn).

With growth rates forecast at 10 per cent per annum over the next five or six years, fuelled by the ageing of the world’s population and increases in healthcare expenditure, the market size will approach $300 billion by 2015. In the UK alone, the medical technology sector in 2010 consisted of 3,034 companies generating a turnover of £13.1 billion and employing 55,000 individuals.

Innovation and design in this field is driven by Biomedical Engineers and the number of biomedical engineering jobs is expected to grow by 62 per cent between 2010 and 2020.

Biomedical engineers work in industry, academia, hospitals and government agencies and they need to have many attributes; they need to be creative, problem-solving, imaginative people, as well as having solid foundations in mathematics and engineering.

Biomedical engineers often work as part of a multidisciplinary team, collaborating with surgeons and other healthcare professionals, non-biomedical engineers and patients.

the place of useful learning
www.strath.ac.uk
University of Strathclyde Glasgow G1 1XQ

Information current at August 2016. Please consult the University website for the most up-to-date information.
The University of Strathclyde is a charitable body, registered in Scotland, with registration number SC015263.
The MEng/BEng (Honours) in Biomedical Engineering are multidisciplinary programmes that will enable you to apply engineering knowledge and skills to real-world clinical problems.

You will learn about the complexities of human anatomy and physiology alongside core mechanical and electrical engineering subjects. As part of the degree programme, you will have access to world-class teaching facilities, including laboratories that support internationally-leading research in engineering in general and Biomedical Engineering in particular.

Biomedical engineering is a rapidly expanding industry, with the National Health Service, industrial and academic research and development making advances to meet the increasing demands of healthcare today and tomorrow.

Biomedical Engineers have a strong underpinning of engineering skills combined with biological and medical knowledge of the human body. Our students will develop skills in advanced instrumentation, diagnostic sensors, prostheses and biomaterials, and robotic surgical tools to diagnose and treat acute and chronic medical problems.

Visits to local clinical centres and lectures from industrialists and visiting experts from the UK and overseas are an integral part of our courses. You will also have the opportunity to meet our many industrial and clinical collaborators who can give advice to help further your career.

Course Structure

Students can choose between a four-year BEng (Honours) degree or a five-year Integrated Masters degree (MEng). BEng students who do well may transfer to the MEng.

You will gain a broad training in modern biomedical engineering. Wherever possible, core learning will be contextualised to biomedical engineering and will be kept up-to-date through the cutting-edge research taking place both in the department and across the University.

A wide choice of optional classes in Years 3, 4 and 5 will enable you to develop either an in-depth knowledge of a specific field within biomedical engineering, or to gain a breadth of understanding across a variety of topics.

In the later years of the course you will also be able to choose classes from our world-renowned MSc in Biomedical Engineering which will enrich your learning and educational experience.

Learning and Teaching

Years 1 & 2

Core concepts in mathematics, mechanical engineering, electrical engineering, anatomy, physiology and molecular bioscience provide fundamental engineering and biomedical science knowledge. In these classes you will be taught alongside other engineers and biomedical scientists, while specialist classes will develop your Biomedical Engineering focus.

Year 3

You will start to apply your knowledge in specific areas of biomedical engineering (eg biomechanics and biomedical materials) as well as deepening your understanding of core engineering and biomedical science topics.

Year 4

The focus is on an individual research project. A generic skills class in research methods and professional studies will provide knowledge of research design and statistical analysis, insight into the role and environment of the biomedical engineer and an understanding of ethical, safety and quality management issues.

Year 5 (MEng only)

The group project is a major element of this year of the Masters course in which teamwork, creative collaboration, communication and effective management are developed. Advanced study in specialist areas such as medical device design, tissue engineering and robotic orthopaedic surgery will further develop and broaden your knowledge.

Assessment

The course features a range of assessment methods, including written examinations, coursework assignments, presentations and individual or group project submissions.

Strathclyde offers everything you can imagine from a top-level university. You will be challenged in new ways and learn to balance many aspects of life. The course is stretching my knowledge and improving my ability to apply it in practice. In future, hope to explore neuroscience and the connection between the brain and technology.

Brad Arthur

MEng Biomedical Engineering