Wind )\) Predicting wind turbine generator bearing failure
O Alan Turnbull, Dr James Carroll, Dr Alasdair McDonald
\ J

/& Ma rine University of
Wind & Marine Energy Systems CDT, Rm 3.36, Royal College Building Str th l,
University of Strathclyde, 204 George Street, Glasgow, G| | XW a c y

Energy Systems CDT Engineering

a.turnbull@strath.ac.uk

LA*“ -
° egeo ° ° \ o ° A
Reliability of wind turbine generators \ Generator bearing failure \
Generator faults can contribute significantly to the overall downtime experienced by a wind farm Bearings are the most common failure associated with doubly fed
due to component failure, with around | failure per year in state of the art offshore wind induction generators (DFIG) [2]. This bearing failure is due to
turbines. The figure below shows the largest contributors to failure modes related to generators fluctuating loads and raised temperatures causing wear and relative
and associated failure rate [1]. motion between the generator shaft and bearing inner race.
slectrical System The figure below shows damage caused at the time of failure to the
Siectronic control generator shaft (left) and inner race (right).
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