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* Project rationale
 What are Low Level Jets (LLJs)?
* Analysis of Low level jets in LIDAR datasets

* Aeroelastic Modelling of wind turbines in LLJ
conditions

* Implications
e Further Work
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@\ Project Rationale

* New wind measurement techniques allow for an enhanced picture of the wind

* The wind is not simple — there are phenomena that deviate from the typically
accepted models used for wind turbine analysis

 Removing unknown risks from projects benefits owners, operators and investors

e Quantifying potential damage due to unusual wind phenomena can remove risk
and inform lifetime extension calculations — leading to potential cost
savings/increased earnings.
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What are Low Level Jets? — Vertical Profiles
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* This Project has access to 2 years worth of wind measurements from a

North Sea LIDAR

— Measurement heights up to 267m
— 10 minute averaged mean Wind Speed, direction & standard deviations

* Also used was the IJmuiden open access dataset which is similar to above

but up to 300m

ERAS Reanalysis data for both locations was also extracted for comparison

with the measurements
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s Low Level Jets in Wind Data — Definition &

Energy Systems CDT Prevalence

Baas Criteria — 2m/s or 25% ‘falloff’ above jet
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SSE Location

IJmuiden

Percentage
Day 53
Night 47
Spring 44
Summer 34
Autumn 12
Winter 10

LLJ LLJ
Percrentage | Percrentage
Falloff Falloff 2m/s
1.5m/s

3.29 2.01

6.08 4.04
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Aeroelastic Modelling — Case Study Methodology

* A Case Study LLJ event from the SSE location was used to provide the LLJ characteristics for aeroelastic modelling

e (Case study Bladed simulation of LLJ vs IEC Design Standard conditions

* Each 10 min LLJ is compared against a power law profile which provides the same rotor equivalent wind speed
* The simulation cases incrementally build in each characteristics of LLJs — each case is shown in the table below

IEC 1

IEC 2

LLJ 1

LLJ 2

LLJ 3

v““
OTHRS

J

Power Law
(0.2)

Power Law
(0.14)

LIDAR
Measured

LIDAR
Measured

LIDAR
Measured
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None

None

None

Linear — from
measurements

Linear — from
measurements
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A Aeroelastic Modelling — Averaged Results tyx
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5MW Turbine

Comparisons Blade Flap DEL % Blade Edge Del % Tower Fore-aft DEL % | Tower Side-side DEL %
Change Change Change Change

Shear Profile only 10.0 -0.4
Veer only -1.4 -0.1 -0.8 -0.9
Whole LLJ vs IEC ClassC -3 1 3.5 61.3 -71.2
Shear Profile Only 0.1 0.6 9.4 9.1
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* During a LLJ event as a whole low turbulence levels due to stable
atmospheric conditions result in a large reduction in DEL compared
to IEC standard class C.

* Shear profile shape causes differences in DEL compared to a power
law profile and ignoring turbulence differences.
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* During a LLJ event as a whole low turbulence levels due to stable
atmospheric conditions result in a large reduction in DEL compared
to IEC standard class C.

* Shear profile shape causes differences in DEL compared to a power
law profile and ignoring turbulence differences.

* How does the profile shape influence the turbine?

* Take 2 Variables to define a LLJ shape

(Hcore _ HHub)
R

489\ THE UNIVERSITY gﬁ
Y- of EDINBURGH

futureWind&Marine 2020 — George Elderfield

&= Udiff = Ucore = Unin

ALHIIN

Universityof N3

Strathclyde

Glasgow

Engineering and
Physical Sciences
Research Council




"’hi»’l{v,&’ ; NC i

Marine
Energy Systems CDT

| Comi Aeroelastic Modelling — Blade Results

* Blade Flapwise root bending moment DEL is expressed as a percentage compared to a power law profile

shape

* High Relative Damage when the jet core height is around turbine tip height
 Damage increases linearly with windspeed difference below the tip

* Jet height and windspeed appear to be linked — how often do jets have this damaging

combination?
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 Tower Fore-aft root bending moment DEL is expressed as a percentage compared to a power law profile
shape

e 10MW tower is more impacted — could be due to controller crossover frequency
* Higher overall thrust when the jet height is in the rotor plane
* Higher mean turbulence intensity in the rotor plane — leading to higher fatigue
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Site - Measured (ERA5) Mean Height [m] Mean Strength [m/s] =
SSE 116 (165.77) 10.97 (9.26)
lJmuiden 126.5 (176.22) 10.70 (10.31)
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* Low level Jets are present in the North Sea and can be measured using LIDAR as well as being
modelled (with some error) in ERA5

* Shear profile differences impact Blade and Tower fatigue with the extent of the impact being
related to Jet height relative to turbine height

* Low Level jet exist in stable atmospheric conditions — the low turbulence levels dominate and
blades and towers experience less fatigue during a LLJ event than during IEC class C conditions

* With current and next gen turbines the height of most LLJs will begin to be within the rotor plane

e This could lead to adverse impacts on the drivetrain — more work should be done to understand
these impacts.
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Thank you for the attention, any questions?
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e Blade Flapwise root bending moment DEL as an absolute value [Nm]
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* Tower Fore-aft root bending moment DEL as an absolute value [Nm]
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