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Motivation of research

• O&M can contribute significantly to overall LCOE

• Costs are expected to increase as wind farms are 
located further offshore

• Increasing reliability and optimising O&M becomes 
increasingly important

• As wind farms scale up the cost of specialist services 
will also increase

• Automation and big data analytics are key to driving 
down costs and addressing these issues

Why WT Generators?

Ref. [1]
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Adapted from Ref. [2]
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PhD Overview -

Machine learning for fault diagnosis & prognosis
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PhD Overview - Fault diagnostics
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Accuracy of prediction will depend on:
• Capabilities of diagnostic indicator
• Models inputs/predictors and training data available
• How well previous examples of faults/failures are classified and labelled
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Gen DE bearing – RUL prediction

Methodology:

1. Determine diagnostics for possible generator bearing faults
2. Create database of failure examples
3. Analyse how diagnostics change leading up to failure

• How different is fault progression between failures?
• Can we identify ‘end-of-life’ indicators?

4. Feature engineering – what features influence baseline 
diagnostic level?

5. Label and group failure data
6. Train, validate and classification model
7. Use on new data to identify fault and RUL
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15 wind turbines

306 vibration samples (per sensor)

7 wind farms

~ 10s sample time with ~25kHz sample rate

Data pool in numbers
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Gen DE bearing – RUL prediction

Methodology:
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Results
• Diagnostics: Correctly diagnosis of bearing 

fault with up to ~98% accuracy
• Prognostics: Correctly predicting failure within 

1-2 months with up to ~86 % accuracy

Cluster 1 Cluster 2
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Conclusions

• Machine learning can assist engineers in many 
aspects of condition monitoring including automated 
anomaly detection and fault classification  

• Specialist engineering knowledge is fundamental to 
unlock this potential by understanding underlying 
component kinematics and fault diagnostics for 
feature engineering

• Improvements in prognostics requires more examples 
of components that have been run to failure to be 
made available, or more information about fault 
progression at the time of replacement – data that is 
lacking in academic research
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Thank you for the attention, any questions?
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