

# Module Descriptor Form

## Civil and Environmental Engineering

## CL216 - Hydraulics And Hydrology

| Module Code          | CL216 Module Title Hydraulics And Hydrology |                           |       |     |          |    |                |   |
|----------------------|---------------------------------------------|---------------------------|-------|-----|----------|----|----------------|---|
| Module Registrar     | White, Pro                                  | White, Prof Christopher J |       |     |          |    |                |   |
| Other Staff Involved | Dr Kamila Nieradzinska (Lecturer)           |                           |       |     |          |    |                |   |
| Credit Weighting     | 20                                          | Seme                      | ester | 1/2 | Elective | No | Academic Level | 2 |
| Pre-requisites       |                                             |                           |       |     |          |    |                |   |
| Required for         |                                             |                           |       |     |          |    |                |   |

### Module Format and Delivery (hours):

| Lectures Tutorials |    | Assignments | Labs | Private Study | Total |  |
|--------------------|----|-------------|------|---------------|-------|--|
| 44                 | 33 | 60          | 6    | 57            | 200   |  |

### **Educational Aim**

This module aims to:

- Develop an understanding of the processes underlying catchment hydrology and establish the key drainage relationships of rainfall and runoff from a site.
- Develop understanding of applied hydraulics in civil engineering including simple examples of pipe and open channel flow and control structures.

#### **Syllabus**

This module will teach the following:

- · Hydrological cycle; homogeneous measurements; records with missing data
- Atmospheric water; Water vapour, Precipitation, Evapotranspiration
- Hydrologic Measurement of atmospheric water and surface water; rain gauges, calculation of catchment inflow from multiple rain gauges Theissen polygons, isohyets
- Catchment water balance
- Catchment Hydrology: Precipitation; evaporation; overland flow; groundwater flow; rainfall and runoff analysis; the Unit Hydrograph; reservoir routing; flood frequency analysis.
- Storm Drainage systems and SUDs basic principles
- Flow Visualisation: streamlines, pathlines and stream tubes
- Conservation of Mass: Application of Conservation of Mass Principle to steady flow through pipes and nozzles, and the derivation of the Continuity Equation
- Conservation of Momentum: application of the Linear Momentum Equation to steady flow through a nozzle and the calculation of forces on pipe bends
- Bernoulli's Equation: application to steady flow through a pipe, and to a Water Siphon
- Properties of gases, liquids, vapours and speed of sound and Mach Number
- An introduction to pipe flow: flow classification and energy diagrams applied to water supply systems
- Flow Measuring Devices: Venturi meter, orifice plate and nozzle meter
- The Energy Equation for open and closed system
- · Flow control by weirs and Venturi flumes: specific energy, specific energy diagrams and critical flow

#### **Learning Outcomes**

On Completion of the module, the student is expected to be able to:

|          |     | · · · · · · · · · · · · · · · · · · ·                                                                               |
|----------|-----|---------------------------------------------------------------------------------------------------------------------|
| LO       | : 1 | Apply the hydrological cycle as a tool in analysing catchment hydrology using simple analytical techniques in order |
|          |     | to undertake a range of design and calculation activities based on engineering hydrology, analysing spatially       |
|          |     | distributed rainfall, and appreciating the underlying relationships and uncertainties.                              |
| LO       | : 2 | Undertake a range of design and calculation activities based on engineering hydrology, analysing real and           |
|          |     | synthetic rainfall-runoff relationships, surface runoff, ground water flows and appreciating the underlying         |
|          |     | relationships and uncertainties.                                                                                    |
| LO       | : 3 | Apply conservation equations to flows in pipes & horizontal open channels.                                          |
| <u> </u> |     |                                                                                                                     |
| LLO      | : 4 | Analyse simple flow measuring devices and control structures.                                                       |
| 1        |     |                                                                                                                     |

(UK SPEC suggests no more than 4 learning outcomes per module. Statements must be broad and be syllabus free and link in with the intended learning outcomes on the programme specifications.)

## **Assessment of Learning Outcomes - Criteria**

Learning Outcome: 1

|   | Criteria                                                                                                    |
|---|-------------------------------------------------------------------------------------------------------------|
| 1 | Detail the underlying principles and individual components of the hydrological cycle                        |
| 2 | Use catchment and environmental characteristics to determine contributions of hydrological cycle components |
| 3 | Ability to perform a basic catchment water balance                                                          |
| 4 | Detail methods to spatially distribute rainfall based on gauge data                                         |
| 5 | Ability to spatially distribute and convert rain gauge data to estimate rainfall to a catchment             |

## Learning Outcome: 2

|   | Criteria                                                                                        |
|---|-------------------------------------------------------------------------------------------------|
| 1 | The ability to review, adjust and analyse basic hydrological data to convert rainfall to runoff |
| 2 | The ability to solve complex hydrological analyses to determine rainfall-runoff responses       |

## Learning Outcome: 3

|   | Criteria                                                         |  |  |
|---|------------------------------------------------------------------|--|--|
| 1 | Use of energy diagrams to describe a hydraulic system            |  |  |
| 2 | Application of Bernoulli's equation to open channel & pipe flows |  |  |
| 3 | Calculation of forces on pipe bends and nozzles                  |  |  |

## Learning Outcome: 4

|   | Criteria                                                                            |  |  |
|---|-------------------------------------------------------------------------------------|--|--|
| 1 | Application of the principles of the Venturi meter and other flow measuring devices |  |  |
| 2 | Use of specific energy diagram to describe open channel flow                        |  |  |
| 3 | Applications of critical depth, for weirs and channel contractions                  |  |  |

## Assessment Method(s) Including Percentage Breakdown and Duration of Exams

To Pass the module, students need to gain a summative mark of:

40%

| Description                    | Semester | Start<br>Week | Duration | Weight | Submission<br>Week | Linked Criteria |
|--------------------------------|----------|---------------|----------|--------|--------------------|-----------------|
| Hydrology Quiz 1. Closed Book  | 1        |               | 1.00     | 1%     | 5                  |                 |
| Hydrology Quiz 2. Closed Book  | 1        |               | 1.00     | 1%     | 6                  |                 |
| Hydrology Quiz 3. Closed Book  | 1        |               | 1.00     | 1%     | 7                  |                 |
| Hydrology Quiz 4. Closed Book  | 1        |               | 1.00     | 1%     | 8                  |                 |
| Hydrology Quiz 5. Closed Book  | 1        |               | 1.00     | 1%     | 10                 |                 |
| Loch Katrine Group Project     | 1        | 3             |          | 15%    | 10                 |                 |
| Exam. Closed Book              | 1        |               | 2.00     | 30%    | E                  |                 |
| Hydraulics Quiz 1. Closed Book | 2        |               | 1.00     | 1%     | 2                  |                 |
| Hydraulics Quiz 2. Closed Book | 2        |               | 1.00     | 1%     | 4                  |                 |
| Hydraulics Quiz 3. Closed Book | 2        |               | 1.00     | 1%     | 8                  |                 |
| Lab report                     | 2        | 4             |          | 12%    | 9                  |                 |
| Exam. Closed Book              | 2        |               | 2.00     | 35%    | E                  |                 |

### **Principles of Assessment Feedback**

Principle 1: Assessment and feedback practices promote effective student learning:

- 1. Laboratory classes and coursework assignments are designed to focus student learning on key topics and learning material
- 2. Tutorial problems with answers to encourage and guide private study are provided.
- 3. Tutorial classes are held frequently for one-to-one interaction between instructors and students and timely feedback.

Principle 2: Assessment and feedback practices are appropriate, fair, and transparent:

- 1. All assignments and assessments combine straightforward and challenging tasks.
- 2. Model solutions are provided for some coursework assignments.

Principle 3: Assessment and feedback practices are clearly communicated to students and staff:

- 1. All assessed coursework assignments are open to view from the start of the course
- 2. All assessed coursework assignments are returned to students with feedback including annotations and comments.

Principle 4: Assessment and feedback practices are continuously reviewed:

- 1. Interim student feedback is taken during each semester to review progress and resolve current issues; final semester student feedback taken upon completion of lecture courses to monitor student experience.
- 2. Coursework assignment and examination marks reviewed at end of year to monitor attainment and compared to student experience.

#### **Additional Information**

Students need to gain a summative mark of 40% to pass the module. Students who fail the module at the first attempt will be re-examined during the August diet. This re-examination will consist entirely of exam. Students who are absent from both exams will be returned as Absent.

#### **Resit Procedure**

Students who fail the module at the first attempt will need to resit an exam for each semester that they failed. If a student has failed both semesters (S1 & S2), then they will need to resit two exams, one for S1 material and another exam for S2 material, each accounting for 50%. Students must achieve a mark of 40% overall in the resit to pass the module. No marks from any previous attempts will be transferred to the resit attempt.

Semester 1 resit: 2-hour formal examination in August with same format as in December.

Semester 2 resit: 2-hour formal examination in August with same format as in May/June.

#### **Recommended Reading**

- \*\* EM Wilson, Engineering Hydrology, 4th Ed, Palgrave MacMillan
- \* EM Shaw, Hydrology in Practice, 4th Ed. Routledge, Taylor Francis
- \*\* L Hamill, Understanding Hydraulics, 3rd Ed, Palgrave MacMillan
- \* LJF Douglas, JM Gasiorek, JA Swaffield, LB Jack. Fluid Mechanics, Prentice Hall
- \* YA Cengel, JM Cimbala. Fluid Mechanics, McGraw-Hill
- \* Chadwick & Morfett. Hydraulics in Civil and Environmental Engineering, E&FN Spon
- \* MC Potter, DC Wiggert and BH Ramadan, Mechanics of Fluids, Cengage Learning
- \* Featherstone & Nalluri, Civil Engineering Hydraulics, BSP

\*\*\*Purchase recommended \*\*Highly recommended reading \*For reference

## **Module Timetable**

| Week | Semester 1              | Semester 2      |
|------|-------------------------|-----------------|
| 0    |                         |                 |
| 1    |                         |                 |
| 2    |                         | Test 1%         |
| 3    |                         |                 |
| 4    |                         | Test 1%         |
| 5    | Test 1%                 |                 |
| 6    | Test 1%                 |                 |
| 7    | Test 1%                 |                 |
| 8    | Test 1%                 | Test 1%         |
| 9    |                         | Submission 12%  |
| 10   | Test 1%, Submission 15% |                 |
| 11   |                         |                 |
| E    | Examination 30%         | Examination 35% |

## **Date of Last Modification**

10-09-2025