
Persistence of managed populations: simple
models and an application to the Islay

barnacle goose population

David A.J. Middleton

A thesis submitted for the

degree of Doctor of Philosophy to the

Department of Statistics and Modelling Science,

 University of Strathclyde,

Glasgow.

April, 1993



The copyright of this thesis belongs to the author under

the terms of the United Kingdom Copyright Acts as

qualified by University of Strathclyde Regulation 3.49.

Due acknowledgement must always be made of the use of

any material contained in, or derived from, this thesis.

ii



Contents

———————
Abstract ..................................................................................... vii

Acknowledgements .................................................................. viii

Chapter 1:   Introduction .......................................................... 1
Background and layout of the thesis.......................................................2

Modelling in species conservation and management.............................3

Problems faced in model construction....................................................4

Criteria for judging the effect of management in stochastic models......7

Persistence time above a threshold as a population viability measure...8

Lower threshold levels............................................................................9

I.   Persistence in simple stochastic population
models................................................................... 12

Chapter 2:   First passage time distributions of  some

simple stochastic processes................................................... 13
Preliminaries, with examples from the random walk and

Wiener process.......................................................................................14

The first passage time.............................................................................18

First passage times of some simple stochastic processes.......................19

The Wiener process....................................................................19

The first passage time distribution..................................20

The probability of ultimate absorption............................22

Moments of the first passage time distribution...............22

A special case: the Wiener process with an upper

reflecting barrier..............................................................23

The Wiener process with two absorbing barriers28

The probability of ultimate absorbtion for the

Wiener process with an upper reflecting barrier.30

The expected first passage time for the

Wiener process with an upper reflecting barrier.30

The Ornstein Uhlenbeck process................................................31

The first passage time.....................................................32

The expected first passage time......................................32

iii



Comments on results from the literature................................................33

Chapter 3:   Persistence time in models with density-

independent vital rates............................................................. 35
Introduction............................................................................................36

The basic model......................................................................................37

Population growth rate and distribution in the simple model.....37

Estimation of the long run growth rate.......................................40

Persistence time in the linear model.......................................................42

General features of the persistence time distribution..................44

Determinants of  persistence time...............................................46

The probability of ultimately reaching the threshold..................47

Discussion...............................................................................................53

Chapter 4:   The linear model with an upper limit to

population size.......................................................................... 57
Introduction............................................................................................58

The model...............................................................................................58

Persistence time......................................................................................59

Features of the persistence time distribution..............................61

Discussion...............................................................................................72

An example: the Acorn woodpecker in New Mexico............................74

Chapter 5:   Persistence time in density dependent

models ....................................................................................... 86
Introduction............................................................................................87

Exact results for continuous time stochastic logistic models.................87

Ito and Stratanovich calculi........................................................88

Transformation method for persistence time distributions.........90

The logistic model with random variation in the growth rate, r .92

The distribution of population size.................................95

The persistence time distribution....................................96

Discussion.......................................................................100

Logistic model with random carrying capacity, K ......................102

Persistence time..............................................................105

Features of the persistence time distribution...................107

 Discussion......................................................................110

Applying local linearisation in the estimation of persistence time.........114

A logistic model and a linear approximation..............................114

iv



Local approximation of the moments of the

population distribution....................................................115

Persistence time distributions.........................................120

Approximating the linear model passage time distribution

using the OU process..................................................................125

Exponential approximation of the persistence time distribution130

Discussion...............................................................................................133

II:   Persistence time applied in assessing management
of the Islay wintering barnacle geese .............. 135

Chapter 6:   Barnacle geese on Islay: population status

and agricultural conflicts ......................................................... 136
The barnacle goose.................................................................................137

World distribution.......................................................................137

General ecology..........................................................................138

Breeding..........................................................................138

Wintering........................................................................139

The east Greenland breeding population................................................140

Counts.........................................................................................141

Within winter movements...........................................................143

The Islay wintering barnacle geese.........................................................144

Agricultural damage....................................................................147

Shooting......................................................................................149

Management of the conflict between agriculture

and conservation.........................................................................149

Population dynamics...................................................................153

Chapter 7:   An assessment of shooting as a tool in the

management of the Islay barnacle geese ............................... 165
A simple model.......................................................................................166

Persistence time with current vital rates.....................................170

The effects of autocorrelation in the recruitment rate.....172

The effects of shooting...........................................................................176

Persistence time under controlled shooting................................178

Analytic insights.............................................................178

Numerical analysis..........................................................181

The effects of autocorrelation in the recruitment rate.....185

v



Discussion...............................................................................................186

Chapter 8:   General discussion.............................................. 191

References ................................................................................ 198

Appendix 1:   Numerical estimation of persistence time

distributions .............................................................................. 208

Appendix 2:   Local approximation of the goose model with

threshold regulated shooting .................................................. 213

———————

vi



Abstract

———————
Persistence time is introduced as a measure of the viability of a population described

by a stochastic model of particular applicability when management decisions must be

made on the basis of available data.

Various results for the first passage time of simple stochastic processes are presented

which can provide persistence time estimates in population modelling.  This area of

the literature is found to be rather undeveloped and accurate results are not widely

available.

Application of results for the Wiener process provides a complete set of

approximations to the problem of persistence time in population models with density

and serially independent vital rates.  The properties of persistence time in such

models are investigated and various ecological implications considered.

A linear model with a hard upper bound to population size is introduced which

prevents populations growing to unrealistic sizes.  Persistence time results applied to

data for the acorn woodpecker with a limited number of territories.  Immigration

and/or density dependent vital rates are likely to be operating to account for observed

persistence.

Persistence time in density dependent models where the population is regulated

around some mean level is found to be exponentially distributed except at short

times.  Two methods are used to provide insight, but results in this area are generally

lacking.

The data relating to barnacle geese wintering on Islay is analysed.  The growing

population has come into increasing conflict with agriculture.  Persistence time is

used as a viability measure in the investigation of management strategies involving

controlled shooting.  While some of these strategies could successfully regulate the

population without greatly affecting likely persistence time, current UK and EC

legislation would make applying these methods difficult.  New compensation

measures may reduce the conflict at present, but if natural population regulation is

not seen to take effect this conflict is likely to return.

———————
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Persistence, avoidance of extinction, is at the root of the most

fundamental questions of ecology.

Strong (1990)

Chapter 1

Introduction
________________________________________
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Many areas of ecology ask questions about the persistence of species, population and

communities: if, and why, they persist, and for how long.  Persistence is also one of

the major issues involved when the science of ecology meets the "real world" on the

issue of conservation.  This thesis is concerned with one particular aspect of

ecological persistence: the time for which population size, in particular the size of

managed populations, persists above some threshold number of individuals.  The

question of how different population management strategies change the likely

persistence time is a central issue in applying these results.

Background and layout of the thesis

The work reported here grew from interest in a specific management problem, that of

managing the population of barnacle geese which winters on the island of Islay, one

of the Inner Hebrides off the west coast of Scotland.  The conflict between

conservationists (keen to see the barnacle goose population flourish) and farmers

(concerned at losses from barnacle geese grazing on their land) led the then Nature

Conservancy Council to approach R.M. Nisbet to produce models of the population

consequences of shooting geese under various control regimes.  This resulted in

various deterministic models (Nisbet 1989, Middleton, Nisbet & Kerr 1993) but

identified the need for stochastic models to account for the observed variation in the

population numbers and vital rates.  My work on these particular models makes up

the second part of this thesis, following on from work of a more general nature that

arose as a consequence of this problem.

During the investigation of these stochastic models for the Islay barnacle geese, it

became apparent that there was a need for a viability measure that allowed the impact

of various management strategies to be compared.  This criterion that has been used

here is the time that the population persists above some threshold.  In the rest of this

chapter this criterion is discussed in the context of models of managed populations.

For much of the initial work on the Islay barnacle geese models the persistence time

was calculated numerically, a process that not only requires the use of considerable

computing resources but yields relatively little insight into issues beyond the specific

cases considered.  Analytical approaches to the problem of persistence time are

therefore highly desirable.  Chapters three to five explore various analytical methods

for describing persistence time in some simple population models.  Chapter two lays

the essential ground work by bringing together, in a common notation, a variety of
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results from the literature that provide much of the mathematical background for this

work.

Modelling in species conservation and management

Those working in population management have to decide on appropriate strategies

for the management of a species which reconcile, where possible, the conflicting

demands of various interested parties.  Decisions must often be made on the basis of

less than optimal data on the population dynamics of the species in question.  The

fact that much conservation effort is directed toward a single population of a species

does not leave a great deal of room for experimenting with different management

strategies.  In this situation modelling may provide some assistance.  If, using the

data available at the time when the management decisions have to be made, a model

can be constructed that adequately represents the population dynamics of the species

in question then it should be possible to experiment with various management

strategies using the purely hypothetical replicate populations represented by the

model.

A science of conservation biology has emerged in recent years, with quite an

emphasis on applying general ecological theory, and modelling techniques (see, for

example, papers in Soulé 1986,87 and Perrins, Lebreton & Hirons 1991).  However

academic conservation biology and actual conservation practice often have differing

emphases.  For instance, academic conservation research expended much energy on

the question of whether it was better to have a single large reserve, or several small

reserves totalling a similar area, (the 'SLOSS debate'), a question initially prompted

by Diamond's (1975) application of MacArthur & Wilson's (1967) theory of island

biogeography to the problem.  However, many reserves, in the UK at least, are more

likely to have their dimensions determined by constraints such as the willingness of

landowners to sell their land and funds available to conservation organisations.

In the SLOSS debate, as in many academic studies of conservation, the main measure

of success is the conservation of biodiversity.  Usher (1986) notes that diversity

heads the popularity poll of criteria to be used in conservation evaluation.  In

practice, however, it seems that single species (especially where these are rare,

though possibly locally rather than globally rare) are the object of most conservation

efforts, notably directed towards organisms with high public popularity, such as birds

and mammals.  The issues addressed in this thesis are, I hope, pertinent to actual
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conservation practice.  This is not intended to dismiss more general conservation

biology issues, but rather to show that modelling is a tool that can be of value in

assisting practical conservation management decisions.  In general this means dealing

with situations where a single species is the focus of attention (though the techniques

used here could be extended to multi-species situations).  It is important to point out,

however, that conservation measures focusing on a single species (or a few similar

species) are not without problems.  In Australia, for instance, conservation measures

to preserve the kangaroo (combined with benefits from measures designed to benefit

cattle and sheep) have allowed the numbers of red and grey kangaroos to grow to

such a size that their wider environment is now threatened by habitat degradation as a

result of the large number of kangaroos, and a cull is now being considered (Dayton

1991).  Single species conservation measures are also not without problems in the

Antarctic regions.  The Antarctic fur seal, Arctocephalus gazella, was the first of

Antarctica's resources to be exploited, and by 1822 was practically extinct on South

Georgia (Bonner 1985).  As further populations were discovered they too were

exploited to the point of extinction.  After the collapse of the sealing industry a small

breeding population of fur seals was discovered on Bird Island to the north-west of

South Georgia, which has shown extremely rapid growth since the 1930's (Bonner

1985).  Since the Convention for the Conservation of Antarctic Seals came into force

in 1978 the taking of fur seals has been completely banned (Sage 1985).  However, as

the population has recovered it has remained localised in this area and is only

gradually beginning to recolonise sites where it was formerly numerous.  Bonner

(1985) notes that the unnaturally high concentrations of fur seals on Bird Island have

resulted in much destruction of vegetation.  Longton (1985) suggests that similar

erosion of the few vegetated areas of Antarctica by penguins may be due to the lack

of competition for krill caused by the reduction of whale stocks.  Krill also makes up

90% of the fur seal diet (Bonner 1985).  At some stage in the near future,

conservation management may require that localised seal numbers be controlled in

order to preserve the wider Antarctic environment, in particular the fragile vegetated

areas.

Problems faced in model construction

In constructing a model to aid in species management there are likely to be several

problems.  In many cases the data available on the species population dynamics will

be sparse and probably collected because of a researcher's interests rather than to

provide the information required for model construction.  While there may be a
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temptation to represent in a model all that is known or hypothesised about a species

biology, a simple model for which parameters can be estimated is likely to be of

more use in a management context than a complex model with many unknowns.

Most populations fluctuate, and to represent this in a simple model will often mean

the incorporation of a random term.  In general this is not meant to imply that the

observed population size is the outcome of "pure chance".  In some cases it is an

admission of ignorance of the mechanisms producing the observed variation in

population size.  Shaffer (1987) points out that there is, in fact, little practical

difference between a purely random event and an event that is unpredictable because

it occurs as the result of processes that are not fully understood.  However there may

also be cases when the mechanisms producing the fluctuations are understood but the

inputs nevertheless remain unpredictable (For example, variation in temperature

causing variation in individual survival leading to fluctuations in the population size.

The individual and population response to temperature may be well understood but

the changes in temperature may remain unpredictable).

Shaffer (1981) suggests that the variability affecting population size can be divided

into four categories: demographic stochasticity, arising from chance events in the

survival and reproduction of a finite number of individuals; environmental

stochasticity, temporal variation in both biotic and abiotic habitat parameters; natural

catastrophes, occurring at random times; and genetic stochasticity, where changes in

population size result from changes in gene frequencies.

An earlier classification of the variability affecting populations is that of Chesson

(1978).  What Shaffer terms demographic stochasticity, Chesson refers to as within-

individual variability.  Chesson points out that most models that consider such

variation treat individuals equally: the distribution of birth and death probabilities for

each individual is the same, variation in population size arising as a result of random

'sampling' from this distribution.  Chesson terms between-individual variation the

fact that, due to differences in phenotype, different individuals may, in fact, have

different underlying probabilities of reproduction and survival.  Chesson's (1978)

other classes of variability are refined by Chesson (1985) who subdivides

environmental variation into three classes: temporal environmental variation, spatial

variation, and 'spatiotemporal' variation (where different spatial locations show

independent fluctuations in environment through time, but spatial averages of the
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environment variables show no fluctuations through time and temporal averages do

not vary in space).

Early models of the lifetime of populations focused on demographic (within-

individual) stochasticity, modelled as birth and death processes (MacArthur &

Wilson 1967, Richter-Dyn & Goel 1972).  In such models, given a positive mean

growth rate at small population sizes, persistence times tend to be very long once the

population has exceeded a few tens of individuals (Goodman 1987a, Nisbet &

Gurney 1982).  In large populations the contribution of demographic stochasticity to

fluctuations in size is insignificant compared to the contribution of environmental

factors.  However, Chesson (1978) suggests that demographic variability may be

more important in populations which, in total, are large but which are subdivided

with limited movement.  Local subpopulations may be small enough in such cases

that demographic stochasticity remains important.

Genetic factors affecting population persistence on ecological (as opposed to

evolutionary) time scales, are only likely to be an issue when relatively small

populations are considered.  Shaffer (1987) reviews several studies and concludes

that effective population sizes of 50 to 500 individuals are of the order necessary to

provide security against the effects of inbreeding (the factor generally thought to have

most effect on short term population survival).  Such numbers should also prevent

loss of genes through random genetic drift thus maintaining sufficient genetic

diversity for continued adaptation.  Shaffer suggests that a total number of

individuals in the upper 100s to 1000s would provide such effective population sizes.

Lande (1988) criticises the fact that these genetic criteria have been used as minimum

necessary population sizes in some species management plans.  Lande suggests that

environmental stochasticity and local extinction and colonisation are likely to require

much greater population sizes in order to ensure persistence of the species in

question.

The models investigated in this thesis consider only temporal environmental

variation and are thus most appropriate for larger populations where demographic

and genetic effects on persistence are likely to be minimal.  Catastrophic effects can

often reasonably be considered as the extremes of environmental variation.  For

instance if weather conditions are included as a stochastic input to a population

model then the tails of the distribution of 'weather states' may represent such

extremes as violent storms or prolonged droughts.  These natural catastrophes arise
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as extremes of typical inputs to the system.  By contrast many man-made

catastrophes, such as oil spills or toxic waste releases, can in no sense be considered

a normal part of the biological system.

It is worth commenting that on a geological timescale, of course, all species

eventually go extinct.  Population management cannot hope to preserve species for

ever.  However, application of the methodology considered here may help population

managers choose strategies which assist a species to persist in an environment which

inevitably will be affected to some extent by the actions of the human race.

Criteria for judging the effect of management in stochastic models

Given that a population model has been constructed which incorporates

environmental variation, the problem is how to assess the effects of different

management strategies which may be incorporated into the model.  An obvious

candidate perhaps is the population growth rate.  If a particular impact on the

population could be shown to produce a negative population growth rate in the model

then that particular strategy could be deemed to endanger the viability of the

population and thus avoided.  While suitable measures of long run population growth

rate in a fluctuating environment do exist (Lewontin & Cohen 1969, Tuljapurkar &

Orzack 1980) these would not be easy to apply in all circumstances.  Consider, for

instance, the case where the data on the population in question suggest that the

population is not growing.  This could be either because the population is truly "on

the knife edge" between growth and decline, or because it is fluctuating around some

mean value due to density dependent regulation.  The detection of density

dependence from population census data is notoriously difficult (Gaston & Lawton

1987, Murdoch & Walde 1989) and it will not always be possible to distinguish

between the two possibilities.  In addition we may sometimes want information on

the impact of a fixed term effect on the population.  This may produce a reduced, or

negative, growth rate for the period but the question remains open as to whether this

would greatly affect the population's longer term prospects of persistence.

Tuljapurkar & Orzack (1980) suggest that the triplet of long run growth rate,

variance, and the probability distribution of crossing a boundary, is a valuable

combination of measures for the description of population growth, distribution, and

extinction.  Here the focus is on the third, probably least studied (from a
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mathematical viewpoint), part of the triplet as a viability measure in population

models.

Persistence time above a threshold as a population viability measure

The criterion used for assessing the stochastic population models considered here is

based on the persistence time above some threshold population size.  This gauge has

been used before in the context of conservation.  Shaffer (1983) used simulation

models to assess the minimum population sizes required to provide probabilities of

persistence for certain periods of time in the grizzly bear population of Yellowstone

National Park and Dennis, Munholland & Scott (1991) have recently investigated

persistence in various endangered bird populations under the assumption of a simple

linear model.  Ginzburg et al. (1982) recognised the value of using the time that the

population persists above some threshold as a measure of the impact of an

environmental change on a population, terming the reaching of the threshold

"quasiextinction".  Shaffer (1990) discusses 'population viability analysis' (PVA)
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threshold level given that it was above this level at the initial time considered.
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which attempts to assess the likelihood of a population's extinction by some specified

time under various scenarios of management, based on currently available data and

theory (which both contain some uncertainty).  Shaffer comments that, as yet, there

are no widely accepted standards or methodology for the carrying out of such an

analysis.

Given that the population is initially at a size greater than the threshold size of

interest, then the persistence time is defined as the first time at which the population

reaches, or falls below, the lower threshold size (Fig. 1.1).  In the literature on

stochastic processes this is known as the first passage time.  As stochastic population

models are being considered here, the population size at any time is a random

variable.  It follows that the first passage time is also a random variable; so it is the

distribution of persistence times (and appropriate summary statistics of this

distribution) that is of interest.

While this thesis focuses on persistence above a lower threshold, there may, of

course, be cases where interest is in the time that a population remains below an

upper threshold, or within certain bounds.  For example, as noted earlier, there are

instances where single-species conservation strategies have led to problems with the

conserved population growing to such an extent that the wider ecosystem is

degraded.  Indeed, while much conservation effort focuses on relict populations,

where the actions of mankind have led to reduced population size, there are also

cases where human impact on the environment has led to the population growing

well beyond its historical size.  The time a population remains below an upper

threshold, or within certain bounds, can also be addressed with the methodology

considered in this thesis.

Lower threshold levels

Before considering the question of deciding at what level at which to set the lower

threshold, it is necessary to address the issue of why the lower threshold is not simply

zero.  In other words, why consider persistence above a threshold rather than

population extinction ?

In a management context threshold population sizes above zero are of obvious

interest simply because conservation managers will become concerned not just when

the managed population is extinct, but when it drops to low levels.  In general the
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models constructed for management will be based on data from the usual range of

population sizes.  Fluctuations when the population is small may well be the result of

very different processes to those that act to produce fluctuations in large populations.

A lower threshold may therefore mark the limit of confidence in the current model.

As noted earlier, the models considered here represent only environmental

stochasticity and population sizes is treated as a continuous variable.  Nisbet &

Gurney (1982) make the point that "..there is only one mechanism for extinction of a

closed population - a single death in a population of exactly one individual".  To

consider true extinction, models should treat the population as discrete numbers of

individuals, and consider factors such as demographic and genetic stochasticity

which have greater impact as population size becomes small.

The setting of an appropriate lower threshold level is not necessarily easy.  There are

instances where lower thresholds can be chosen to have some particular biological

significance.  The concept of minimum viable population size (MVP) emerged in the

early 1980s (Shaffer 1981, Gilpin & Soulé 1986) but while this resulted in useful

attention being given to the processes threatening population persistence it quickly

became clear that providing a general minimum population size rule for a range of

species in different situations would not be possible (Soulé 1987).  Sometimes,

however, it may be possible to make recommendations for a particular population,

based on good knowledge of the species biology.  Boyd (1968) notes that 100,000

individuals is often considered to be the size below which north American goose

populations should be protected from hunting as far as possible, though he does not

explain how this figure was chosen.  Shaffer's (1983) model suggested that a

minimum population of 50 to 90 individuals was necessary to provide a 95%

probability of persistence for 100 years for the Yellowstone grizzly bear population.

Another possibility would be to use historical population sizes as a basis for

assessing the appropriate lower threshold.  In many cases however mankind's impact

on the environment will make comparisons with past population sizes rather

irrelevant.

In practice, the lower threshold considered in any modelling exercise carried out to

assess population management strategies is likely to be set rather arbitrarily.  While it

would be possible to define a threshold above which a population has a set

probability of persisting for a certain amount of time in the manner suggested by

Shaffer (1983) such statements are likely to have little practical value.  More useful
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perhaps would be to consider several levels and consider the distribution of

persistence times at each.  In the general models considered in the first section the

effect of different lower thresholds, relative to initial population size is examined.

This insight is applied in the second section where persistence time is used as a

measure of the viability of the Islay wintering barnacle goose population.  Initial

population size is, of course, fixed in this case and the choice of lower threshold

makes quite a difference to the prediction of persistence time for the model with

currently "measured" levels of environmental variability.  For comparing the effects

of different possible management strategies a single level is used chosen on the

arbitrary basis that it represents a population size which would worry many

conservationists should it occur.
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I

Persistence in Simple Stochastic Population
Models

———————

This section grew from the desire to move away from the necessity for large

simulation efforts to provide persistence time distributions.  It does not, however,

provide an analytical route for computing persistence time in any population model

incorporating environmental variation.  Instead it examines a number of simple,

stochastic models where persistence time is analytically tractable to some extent, in

order to provide a background on the methods that may prove useful, and the

persistence time distributions that may arise.  The models are chosen for their

simplicity rather than their applicability to any particular managed population.

Chapter 2 lays the foundations for this work by surveying some of the results

available in the literature for the first passage time distribution in well known

stochastic processes.  Using this background, chapter 3 examines persistence time in

a general, linear population model and discusses some interesting ecological issues

that arise.  Chapter 4 makes a start at dealing with the problem of avoiding infinitely

large populations in the linear model by examining the effect of a hard upper bound

to population size.  Despite the simplicity of the regulation method employed, an

example, persistence time in sub-populations of the acorn woodpecker, demonstrates

its applicability in a real population.  Finally, chapter 5 investigates various methods

of estimating persistence time in models which explicitly include density dependent

regulation of population size.

———————
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Chapter 2

First passage time distributions of  some
 simple stochastic processes

________________________________________

13



Chapter 1 noted that the problem of persistence time in stochastic population models

corresponds to the problem of first passage time in the probability and stochastic

processes literature.  Compared with other areas of probability theory the first

passage time problem is analytically difficult and therefore rather underdeveloped

(Blake & Lindsey 1973), with results for all but the simplest processes largely

unknown.  Indeed it appears that many results have, in fact, been derived in response

to another biological problem, namely the firing interval of neurones (Gerstein &

Mandelbrot 1964, Capocelli & Ricciardi 1971, Favella et al. 1982).  This chapter

covers the basic ideas and terminology of stochastic processes necessary to consider

the general mathematics of the first passage time.  It also draws together various

results relating to the first passage time in the Wiener and Ornstein-Uhlenbeck (OU)

processes: this is done because the population models considered later in this section

will be analysed in terms of these two well known stochastic processes.  Both these

processes are defined in continuous time and for a continuous state space.  While

these processes are relatively simple, results relating to the first passage time are

spread throughout the literature of several disciplines.  Here they are drawn together

and expressed in a common terminology and notation.  The results in this chapter

have been checked by comparison with numerically estimated passage time

distributions.  In the one case (the Wiener process with an upper reflecting barrier)

this numerical checking found errors in two published solutions.

By necessity, this chapter concentrates on the mathematics of the first passage time.

However, gathering these results in one chapter provides the freedom to concentrate

on ecological aspects of the persistence time in the following chapters.

Preliminaries, with examples from the random walk and Wiener

process

Before proceeding to a general discussion of the first passage time it is useful to

review some basic terminology; the idea of a diffusion equation (and the connection

with stochastic differential/difference equations in which most population models are

phrased [and numerically simulated]) is particularly important, as it is in such terms

the first passage time is derived later.  This section considers a simple stochastic

process, its continuous time limit, and the connection with a diffusion equation.

Consider first one of the simplest stochastic processes: the simple, symmetrical

random walk.  The state variable, Xt (which describes the state of the process at time
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t), takes integer values and changes at discrete times by either a positive or negative

step of size one, with equal probability.  (In all the population models considered

later in this thesis, the state variable is some function of population size.)  This is

described by the stochastic difference equation

X X Zt t t+ +
= +1 1 [2.1]

where t takes values 0, 1, 2, .... and the step Z
t
 has the probability distribution prob(Zt

= 1) = prob(Zt = −1) = ½.  Any particular sequence X0, X1, X2, ... is known as a single

realisation of the process.  If the process takes the value zero at time zero (i.e. X0 = 0)

then at time t = 1 the state variable can take the value 1 (with probability = ½) or   −1

(prob. = ½); at time t = 2, X takes either of the values −2 (prob. = ¼), 0 (prob. = ½),

or 2 (prob. = ¼); and so on for t = 3, 4, .....  Note that Xt can be either odd or even as t

is odd or even.  The probability that at some time, t, the state variable, X, takes some

value, x, is given by the binomial distribution:

prob X x X
t

t x t xt

t= = =
+ −0 1

2
1
2

1
20c h a f a f a f

!

! !
[2.2]

This distribution has mean zero and standard deviation t.  For t large the

distribution [2.2] converges to a normal distribution

p x t
t

x

t
, exp0

1

2 2

1
2 2

b g = FH
I
K

−F
HG

I
KJp

[2.3]

where p x t, 0b g is the probability density function.  More generally, for a process at x0

at time t = 0, p x t x dx, 0c h  is the probability that Xt lies in the range [x, x+dx] at time t.

The continuous limit of the simple random walk [2.1] is obtained (Cox & Miller

1965, p.205−208) by considering small steps of magnitude Dx taking place at small

time intervals of length Dt.  Taking the more general (i.e. possibly asymmetric)

random walk where p is the probability of a positive step and q the probability of a

negative step then, to obtain a limiting process with mean m and variance s2 in unit

time, it is required that

∆ ∆ ∆ ∆
x t p

t
q

t= = +
F
HG

I
KJ

= −
F
HG

I
KJ

s
m

s

m

s
, ,

1

2
1

1

2
1 [2.4]

For the symmetric random walk considered above, m is of course zero.  The limiting

process essentially involves summing a large number of independent random

variables and appropriate scaling of the sum.  This central limiting operation yields a

normal distribution for the continuous variable X(t) with mean mt and variance s2t.
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The important result here is that the change in position DX(t) in a small time interval 

Dt is of the order of magnitude (Dt)½.  For any two time instants k and t (k > t > 0) the

increments X(t) − X(0) and X(k) − X(t) are independent, and the latter is normally

distributed with mean m(k − t) and variance s2(k − t).  The continuous process, X(t),

obtained as a limit of the symmetric random walk has m = 0 and is known as the

Wiener process.  Where the random walk is asymmetric the continuous analogue is

known as the Wiener process with drift, m.

The continuous time analogue of the stochastic difference equation [2.1] is a

stochastic differential equation.  In [2.1], Zt is an independent, identically distributed

random variable.  Its continuous time counterpart, Z(t), must be a purely random

process, having the same distribution for all t and mutually independent values for

distinct points in time.  The difficulty with this process is that, due to its total lack of

serial correlation, it is not a smooth function and so cannot be differentiated in the

usual sense.  The discussion of the limiting process above suggests that it is

appropriate to write

X t t X t Z t t+ = +D Da f a f a f [2.5]

where Z(t) is a Gaussian process with zero mean and unit variance. The change in the

state of the process in a small time interval is then given by

D DX t Z t ta f a f= [2.6]

A process with drift m and variance s2 is obtained by writing

∆ ∆ ∆X t t Z t ta f a f= +m s [2.7]

This can be written as the differential equation for the Wiener process with drift

dX t dt Z t dta f a f= +m s [2.8]

The derivative of the Wiener process without drift and with unit variance (which, as

mentioned already, is not a derivative in the usual sense but what Turelli (1977) calls

a generalised derivative) is known as Gaussian white noise.  The Wiener increment,

often denoted by dW, has a central role in the wider theory of stochastic differential

equations, a general SDE being defined by

dX t x dt x dW( ) ( ) ( )= +a b [2.9]

For a more complete outline of stochastic differential equations and the problems of

white noise see Turelli (1977), Ricciardi (1977), Mortensen (1969) and Nisbet &

Gurney (1982).
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The derivation of the first passage time distribution considered next involves

describing the model by a diffusion equation: a partial differential equation which
describes the change in the probability density function p x t x, 0c h for continuous

changes in state and time.

The diffusion equations for the Wiener process can be obtained by applying the

limiting process considered earlier to the transition probabilities of the simple

random walk (see Cox & Miller 1965, p.208−210).  Consider small steps of size Dx

occuring in small intervals Dt.  For the general (i.e. possibly asymmetric) case where

the probability of a positive step of size one in [2.1] is p, and a negative step has

probability q, the transition probability can be written

p x t x pp x x t t x qp x x t t x, , ,0 0 0c h c h c h= − − + + −∆ ∆ ∆ ∆ [2.10]

Suppose p(x,t|x0) can be differentiated a suitable number of times and expanded in a

Taylor series, i.e.:

p x x t t x p x t x t
p

t
x

p

x
x

p

x
− − = − + + +∆ ∆ ∆ ∆ ∆, , ...0 0

1
2

2
2

2
c h c h a f∂

∂

∂

∂

∂

∂
[2.11]

Expanding [2.10] in this way, using the relations [2.4], and letting Dt Æ 0 yields the

forward diffusion equation for the Wiener process

∂

∂
s

∂

∂
m

∂

∂t
p x x t

x
p x x t

x
p x x t0

2
2

2 0 0

1

2
, , ,c h c h c h= − [2.12]

A diffusion equation takes the general form

∂

∂

∂

∂

∂

∂t
p x t x

x
v x p x t x

x
w x p x t x, ( ) , ( ) ,0 0

2

2 0c h c h c h= − + [2.13]

v(x) and w(x) are known as the infinitesimal mean and variance and can be thought of

as describing the deterministic and stochastic parts of the process respectively

(Turelli 1977). The initial value x0 takes the form of a delta function:
p x x x x,0 0 0c h b g= −δ .

The coefficients of the general stochastic differential equation [2.9] are related to the

infinitesimal mean and variance of the corresponding diffusion equation.  For the

subset of stochastic differential equations where b is a constant and not a function of

x, the relation is simply
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v x x

w

( ) ( )=

=

a

b
2 [2.14]

Note that the infintesimal variance, w, is also a constant in this case, rather than a

function of x as in the general diffusion equation [2.13].  For cases where b is a

function of the state variable, x, the relationship between the SDE and the diffusion

equation is rather more complicated.  This will be discussed further in chapter 5.

The first passage time

In chapter 1 the first passage time was defined heuristically in terms of the

persistence time of a population over a threshold.  Mathematically the first passage

time to a level a for a process starting at x0 can be defined by as the time T such that

X x a X a T X T a( ) , ( ) , ( )0 00= > > ∀ < < ≤τ τ

with probability density function g t x a0,c h.

In practice the first passage time is calculated by considering a changed stochastic

process which has an "absorbing barrier" at the level to which we want to calculate

the first passage time, such that all realisations reaching this level remain there.

Thus, for the first passage time to some low level x = a (where a < x0) the process is

constrained to the interval [a, ∞].  This requires a boundary condition on the

diffusion equation [2.13], namely

p a t x, 0 0c h = [2.15]

Now let P t x a T t0,c h k p= ≥prob  be the probability that absorption at the barrier a has

not occurred by time t i.e.

P t x a p x t x a dx X a t X t a X x
a

0 0 00 0, , , ( ) , ( ) ( )c h c h m r= = > ∀ < < ≤ =
+

∞

z prob  t t [2.16]

where a+ is infinitesimally above the absorbing barrier a, thus avoiding integrating

over the d−function at a which is created by the boundary condition [2.15].
P t x a0,c h is either constant or monotonically decreasing.  The probability density

function of the first passage time, g t x a0,c h, is the negative of the rate of decrease of

P t x a0,c h, the probability that absorption has not occurred by time t.  Thus

g t x a
d

dt
P t x a0 0, ,c h c h= − [2.17]
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Substituting from [2.16], changing the order of integration, then substituting from

[2.13] (with w constant) gives

g t x a
t

p x t x a dx w
x

p x t x a
x

v x p x t x a dx

a a

0 0

2

2 0 0

1

2
, , , , , ( ) , ,c h c h c h c h= −XZY = − −F

HG
I
KJ

X
ZY+ +

∞ ∞

∂

∂

∂

∂

∂

∂

= − −L
NM

O
QP

=
∞

1

2

1

20 0 0w
x

p x t x a v x p x t x a w
x

p x t x a
a a

∂
∂

∂
∂

, , ( ) , , , ,c h c h c h [2.18]

as p a t x a, ,0 0c h =  and +• is a natural boundary.

This is a general method for linking the probability density function for x,
p x t x a, ,0c h, to the probability density function for the first passage time T, g t x a0,c h,
for a continuous state space, continuous time stochastic process confined by a single

absorbing barrier.

An important function of the first passage time is the probability of ultimate

absorption at the barrier, a, which is simply the area under the curve defined by the

first passage time probability density function

G x g t x a dt∞ =
∞

z0 0

0

c h c h, [2.19]

If  G(•) does not equal one then the first passage time distribution is an improper

probability distribution.

First passage times of some simple stochastic processes

The Wiener process

The Wiener process, introduced above as the limit of the simple random walk, is

probably the best known continuous state space, continuous time stochastic process.

Here both the standard symmetrical Wiener process and the Wiener process with drift

are considered.  These arise as approximations to multiplicative population models

with density independent vital rates.

The stochastic differential equation for the Wiener process was given at [2.8].  Using

the relations [2.14] the forward diffusion equation is given by

∂

∂
s

∂

∂
m

∂

∂t
p x x t

x
p x x t

x
p x x t0

2
2

2 0 0

1

2
, , ,c h c h c h= − [2.20]
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where m is the drift term and s2 is the infinitesimal variance.  This, of course,

coincides with the diffusion equation [2.12] found by applying a limiting process to

the transition probabilities of the simple random walk [2.1].  The no drift case is

obtained by setting m equal to zero.  The solution of this diffusion equation is well

known (e.g. Cox and Miller, 1965)

p x t x
t

x x t

to( , ) exp=
− −F

HG
I
KJ

1

2 2
0

2

2s p

m

s

b g
[2.21]

Thus, in accordance with the previous limiting operations, the probability density of

the Wiener process is seen to be normally distributed with mean and variance of the

increment X(t) − X(0) given by mt and s2t respectively.

The first passage time distribution

x

x

′0

a

0

0

Figure 2.1  The method of images: a sample path and its reflection in the absorbing barrier.  The

reflection principle states that the number of paths from x0 to xt which touch or cross the level a is

equal to the number of all paths from ¢x0
 to xt (Feller 1968).
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As in the general case above the first passage time of the Wiener process to a level a

(a < x0) is obtained by considering an absorbing barrier at x = a.  This necessitates the

imposition of the boundary condition

p a t x, 0 0c h = [2.22]

on the diffusion equation [2.20].  To solve for p x t x a, ,0c h in this changed process a

number of methods could be used.  For this particular boundary condition the method

of images is commonly used (e.g. Cox and Miller 1965).  This requires considering
an "image source", ¢x0 , at the reflection of x0 in the barrier a:

′ = − − = −x a x a a x0 0 02b g  (see Fig. 2.1).

As equation [2.20] is linear and homogeneous the superposition principle holds.  A

possible solution is therefore

p x t x a p x t x Ap x t a x, , , ,0 0 02c h c h b gd i= − −

where A is chosen to ensure that the boundary condition [2.22] holds.

Putting A
a x

=
−F

HG
I
KJ

exp
2 0

2

m

s

b g
 and substituting from [2.21] gives

p x t x a
t

x x t

t

a x x a x t

t

, , exp

exp

0
0

2

2

0
2

0

2

2

1

2 2

2 2

2

c h b g

b g b g

=
− − −F
HG

I
KJ

L

N
M
M

−
−

−
− + −F

HG
I
KJ
O

Q
P
P

s p

m

s

m

s

m

s

[2.23]

which satisfies the diffusion equation [2.20] and boundary condition [2.22].  The

probability density function [2.23] for the Wiener process with a lower absorbing

barrier differs from the probability density function for the unrestricted process [2.21]

by  the presence of a term which reduces the probability remaining in the interval [a+,

•] as t increases.  This is due to the fact that realisations reaching the absorbing

boundary a stay there.  The first passage time distribution is obtained the by using the

result [2.18] above
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g t x a
x

p x t x a

t

a x t

t

a x t

t

a x t

t t

x a

t

a x t

t

a
0

2
0

2 0

2

2
0
2

0

2

2 2

0

3

0

2

2

1

2

1

2

1

2 2 2

1

2

2 2

, , ,

exp

exp

c h c h

b g b g b g

b g

=

= −
− −F

HG
I
KJ

− −
+

− −
−

L

N
M
M

O

Q
P
P

= − −
− −F

HG
I
KJ

s
∂

∂

s
s p

m

s

m m

s

m

s

s p

m

s

[2.24]

In the statistical literature this distribution is known as the Inverse Gaussian

distribution and a number of features can be gleaned from this literature (Johnson &

Kotz 1970, Lande & Orzack 1988).

The probability of ultimate absorption

Substituting [2.24] in the expression for the probability of ultimate absorption at the

lower boundary, a, [2.19] yields

G x
x a

∞ =
≤

− −F
H

I
K >

R
S|

T|
0

2 0

1 0
2

0
c h

a f
b g a f

m
m

s
mexp

[2.25]

Thus for cases with drift away from the absorbing barrier (m > 0) there is a finite

chance that the process will never reach the absorbing barrier.  In such cases the

probability density function for the first passage time is an improper distribution as

the area under the curve does not integrate to one.  A proper probability distribution

can be obtained by dividing the original distribution of passage times by the

probability of ultimate absorption to give the distribution of passage times

conditional on ultimate absorption:

g t x a
g t x a

G x
* ,

,
0

0

0

c h
c h
c h=
∞

So, for m > 0

g t x a

x a

t

a x t

t

x a

x a

t

a x t

t

* ,

exp

exp

exp

0

0

3

0

2

2

2 0

0

3

0

2

2

2 2

2

2 2

c h

b g

b g

b g b g

=

− −
− −F

HG
I
KJ

− −F
H

I
K

=
− − − +F

HG
I
KJ

s p

m

s

m

s

s p

m

s

[2.26]

Thus, for any m, the conditional probability distribution is
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g t x a
x a

t

a x t

t
* , exp0

0

3

0

2

2
2 2

c h b g
= − −

− +F

H
G

I

K
J

s p

m

s
[2.27]

Moments of the first passage time distribution

The moments for the conditional distribution are (Capocelli & Ricciardi 1974)

mean=
−x a0b g
m

[2.28]

variance=
−s

m

2
0

3

x ab g
[2.29]

Thus for the no drift case, m = 0, the mean and variance of the first passage time are

infinite.

The shape of the first passage time distribution [2.24] is determined by a parameter f

(Johnson & Kotz 1970), where

f
m

s
=

−x a0
2

b g
[2.30]

As f increases the first passage time probability density function becomes more

symmetrical, with the mode approaching the mean as f tends to infinity.

For many cases of interest in a population context (examples will be found in

chapters 3 and 7), the first passage time distribution tends to be skewed, with a long

tail to longer times.  The mode of the distribution is also therefore of interest.  For the

unconditional distribution the mode is (Johnson & Kotz 1970, Capocelli & Ricciardi

1974)

mode=

−
=

−
+

−

F
HG

I
KJ

− ≠

R

S
|
|

T
|
|

x a

x a

x a

0

2

2

0
4

2
0

2

2

2

3
0

1
9

4

3

2
0

1
2

b g a f

b g
b g

a f

s
m

m

s

m

s

m
m

[2.31]

A special case: the Wiener process with an upper reflecting barrier

In chapter 4 a population model with density independent vital rates and a crude form

of regulation, a hard upper bound to population size, is considered.  Persistence time

in this model is approximated by considering another change to the Wiener process:
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the imposition of a reflecting barrier at the level of the upper limit.  Like the

absorbing boundary the reflecting boundary prevents the process from passing that

level.  However, while the absorbing boundary traps the process at the boundary, a

reflecting boundary allows the process to leave the boundary and return into the

interval over which the process is defined.  Consider a Wiener process confined to an

interval [a, b] (with a < x0 < b) with a absorbing and b reflecting.  The behaviour at

the reflecting barrier is represented as a further boundary condition on the diffusion

equation [2.20] (Cox & Miller 1965, p. 223-225)

1

2
02 0

0s
∂

∂
m

p x t x a b

x
p x t x a b

x b

, , ,
, , ,

c h
c h−

L

N
M
M

O

Q
P
P

=
=

[2.32]

This boundary condition is derived by considering the Wiener process with a single

reflecting barrier at b (b > x0).  Realisations are therefore limited to the region [−•,

b].  Thus

p x t x dx
b

, 0 1c h
−∞
z = [2.33]

Unlike the absorbing boundary considered above which, by trapping realisations at

the boundary caused a decrease in the probability density in the interval [a+, •] as

time increased, there is no "loss" of probability associated with a reflecting barrier.

Consequently

∂

∂

∂

∂t
p x t x dx

t
p x t x dx

b b

, ,0 0 0c h c h
−∞ −∞
z z= = [2.34]

Substituting [2.20] in [2.34] yields the boundary condition [2.32] above.

Diffusion equations with more complex boundary conditions, such as this, are

generally solved using eigenvalue methods, rather than the method of images.

However, both "solutions" of the diffusion equation for the Wiener process with one

absorbing and one reflecting barrier found in the literature (Goel & Richter-Dyn

1974, Sweet & Hardin 1970) are, in fact, incorrect.  Roy Veitch (pers. comm., Dept.

Statistics & Modelling Science, University of Strathclyde) has produced a corrected

version of Sweet & Hardin's analysis.  [Schwarz (1992), apparently unaware of Sweet

& Hardin's work, has also recently tackled the problem of the Wiener process with an

absorbing and reflecting barrier].

The required probability density function is (Veitch, pers. comm.):
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p x t x a b
t
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t

b a

Y b x Y b x x x h
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exp

exp
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[2.35]

where

Y x x xn n
n

n( ) cos sin= −l
m

s l
lb g b g

2
[2.36]

the "eigenvalues" ln satisfy

tan l
l s

m
n

nb a− =a fb g
2

[2.37]

such that 0 < l1 < l2 < ..., and

h

b a

t

b a
a x a x

b a

t
q

q

b a q

V b x V b x

b a

=

−
<

−FHG
I
KJ −

− −
−

=

− F
H
I
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L
NM

O
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s
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( )

[2.38]
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where

V x qx
q

qx( ) cosh sinh= −a f a fm

s 2
[2.39]

and q is the positive solution of

tanh q b a
q− =a fb g s

m

2

[2.40]

When computing the probability density function some care must be taken in finding

the eigenvalues, a fact which is not immediately obvious from the notation used here

(which follows that of Sweet & Hardin) (Roy Veitch pers. comm.).  This becomes

apparent if the eigenvalue equation is written in the form tan z mza f = , where

m
b a

=
−

s

m

2

a f .  Then the eigenvalues are obtained from the values of z at which the

line y = mz intersects the curve y = tan(z).  The intersections z1, z2,.. give l1(b − a),

l2(b − a),...  There are four cases of interest, illustrated in Fig. 2.2, which

demonstrates that the case 
m

s 2
1b a− <a f  in [2.38] actually covers two situations:

0

0

(a)

z
z z1 2

0

0

(b)

z
z z 1

0

0

0

(c)

z
z 1

z2

0

0

(d)

z
z 1 z

2

Figure 2.2  Intersection of the line y = mz with the curve y = tan(z), for different values of m. (a) m >

1, (b) m = 1, (c) 0 < m < 1, (d) m < 0.
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m > 1 0 1
2

< − <F
H

I
K

m

s
b aa f , and m < 0 

m

s 2
0b a− <F

H
I
Ka f . When m > 1 there is an

"extra" eigenvalue due to the intersection of the line y = mz with the tan curve which

passes through the origin.

The procedure for obtaining the first passage time distribution is similar to that used

for the general single barrier case above [2.18]

g t x a
d

dt
p x t x a b

t
p x t x a b dx
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p x t x a b
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=

This leads to the probability density function for the first passage time distribution

g t x a b
t

x a
b a
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Y b x
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[2.41]

where
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a f
exp

sinh ( )

sinh ( ) / ( ) [2.42]

Note that this result cannot be used for cases where the drift velocity is zero (m = 0).

However, Goodman (1987a) noted that, in this no drift case, a Wiener process on the

interval [a, b] where a is absorbing and b reflecting, is equivalent to a process on the

interval [a, (2b − a)] with both end states absorbing (Fig. 2.3).

The Wiener process with two absorbing barriers

Consider the case where the Wiener process is constrained by absorbing barriers to

the interval [a,b] (where a < x0 < b).  This satisfies the diffusion equation [2.20] with
the additional boundary condition p b t x, 0 0c h = .  To solve this requires a rather more

complex image system than the single barrier case above (as we must allow for

images of images etc.).  In fact a doubly infinite system of images is needed.
Following Cox and Miller (1965, p.222) this is denoted by sources at the points ′xn  (n

= ±1, ±2,...) with strength exp /m s′xn
2c h and ′′xn  with strength − ′′exp /m sxn

2c h  where

′ = − +x n b x an 2 2 0b g and ′′ = − − ′x n b x xn n2 0b g .  The superposition of the solution for

each source, weighted by the corresponding strength, gives the required probability

density function

p x t x a b
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[2.43]
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b

a

−a

b

2

x0

Figure 2.3  Illustration of Goodman's method for the first passage time with an absorbing barrier at

a and a reflecting barrier at b for the Wiener process with no drift.  The first passage time

distribution for trajectories starting from x0 with absorption at a and b reflecting is equivalent to the

distribution with a and (2b − a) both absorbing.

While the first passage time probability density function could be found by extending

the single barrier methods used previously, this is not, in fact, necessary here as the

only result required in this thesis is for the no drift case (m = 0) which is used to

provide the first passage time for the case with a lower absorbing and upper

reflecting barrier using Goodman's method.  This is given by Darling and Siegert

(1953) (who also assume s2 = 1)
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∞
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[2.44]

Darling and Siegert's result can be generalised for cases with non-unit variance by

recognising that a Wiener process on the interval [a, b] with a < x0 < b with arbitrary

variance is equivalent to a process on 
a b

σ σ
,L

NM
O
QP
 with 

a x b

σ σ σ
< <0  and s2 = 1.
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The probability of ultimate absorbtion for the Wiener process with an upper

reflecting barrier

For the Wiener process on the interval [a, •] with positive drift there was a finite

chance that absorbtion at a would never take place (see [2.25]) as a realisation could

continue growing to infinity.  For a finite reflecting barrier, b, such escape from

absorption at a is not possible.  Whilst it is possible to obtain an expression for the

probability of ultimate absorbtion by direct integration of [2.41], consider instead the

following argument (Veich, pers. comm.), where G(T) is the probability of absorbtion

by time T:

G T g t dt
d

dt
p x t a b dx dt

p x t a b dx

p x T a b dx p x a b dx

p x T a b dx

T T

a

b

t

t T

a

b

a

b

a

b

a

b

a f a f b g

b g

b g b g

b g

= = −XZY

= −

= − +

= − +

z z

z

z z

z

=

=

0 0

0

0

1

, ,

, ,

, , , ,

, ,

Thus

G p x a b dx
a

b

∞ = − ∞za f b g1 , , [2.45]

Integration of [2.35] over the range [a, b] will produce a sum of terms each of which

has a factor e−t.  For t = • all these terms will be zero, and the integral in [2.45] will

be zero.  Thus G(•) = 1 for all finite reflecting barriers.

The expected first passage time for the Wiener process with an upper reflecting

barrier

Cox and Miller (1965, p.234) give the expected first passage time for the Wiener

process with an absorbing and a reflecting barrier
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The Ornstein Uhlenbeck process

The Ornstein Uhlenbeck (OU) process is another well known stochastic process.  It

was introduced by Uhlenbeck & Ornstein (1930) as an alternative to the Wiener

process as a model for Brownian motion.  In the context of the population models

considered in this thesis it will be used to provide the persistence time in density

dependent models (chapter 5), where it arises both as a transformation of a logistic

model with random carrying capacity and as a local linearisation about the

equilibrium for a large class of density dependent models.  The OU process can be

represented by the stochastic differential equation

dX t xdt Z t dt( ) ( )= − +m s [2.47]

(conditional on X(t) = x) and has diffusion equation

∂

∂
s

∂

∂
m

∂

∂t
p x x t

x
p x x t

x
xp x x t0

2
2

2 0 0

1

2
, , ,c h c h c h= + [2.48]

The probability density function for the OU process is normal with mean and

variance given by

E X t x t Var X t t( ) exp , ( ) expa f a f a f a fb g= − = − −0

2

2
1 2m

s

m
m [2.49]

As t → ∞ a normal distribution with mean zero and variance s m2 2  results (Cox &

Miller 1965).  For the population models considered later, the OU state variable, X(t),

(which can be positive or negative) represents the deviation of population size (or

some function of population size) from the mean population size, which is

represented by the asymptotic zero mean of the OU process.
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The first passage time

Later in this section the first passage time for the OU process to a lower absorbing

barrier, a, where a < x0 and a < 0 will be of interest.  The full first passage time

distribution has only been obtained for the case where a = 0 (Darling & Siegert 1953,

Blake & Lindsey 1973).  This is relatively uninteresting as zero is the asymptotic

mean of the OU process and is equivalent to mean population size in the models of

considered in chapter 5.  However exact results are available for the moments of the

general first passage time problem (Sato 1978, Cerbone, Ricciardi & Sacerdote 1981,

Ricciardi & Sato 1988), together with various approximations both to the moments

(Thomas 1975, Sato 1978, Ricciardi & Sato 1988) and the distribution (Ricciardi &

Sato 1988).

The expected first passage time

Exact expressions for the expected first passage time for the OU process with a

single absorbing barrier are given by several authors (Sato 1977; Cerbone, Ricciardi

& Sacerdote 1981; Nobile, Ricciardi & Sacerdote 1985).  The form given below is

that of Cerbone, Ricciardi & Sacerdote (1981) as their power series are

computationally easier than some of the other forms in the literature.  Cerbone,

Ricciardi & Sacerdote obtained their expressions for the case of an upper absorbing

barrier, x0 < a.  However, due to the symmetry of the OU process −x0 can be

substituted for x0 and −a for a (Nobile, Ricciardi & Sacerdote 1985), giving
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where
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The double factorial, x!!, is equal to  x.(x − 2).(x − 4)....  where the last factor is either

1, if x is odd, or 2, if x is even.

32



Cerbone, Ricciardi & Sacerdote also give exact expressions for the variance and

skewness of the OU process first passage time.  More recent work by Nobile,

Ricciardi & Sacerdote (1985) and Ricciardi & Sato (1988) gives insight into the

distribution of passage times.  For a fixed initial state, x0, (where −x0 < −a), as  |a|

increases, an exponential first passage time probability density function arises with

mean equal to the mean first passage time from zero to the boundary:

g t x a
E T a

t

E T a
o
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,
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M
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Q
P
P

[2.52]

where E T a0,b g is given by [2.50] above.  A similar asymptotic result arises for large

times.

Ricciardi & Sato suggest approximating the mean first passage time, for |a| large, by

1/k(a) where

k a
a a

( ) exp= −FHG
I
KJ2 2

2

p [2.53]

For small t, g t x a0,c h is of order exp /− −x a t0

2
2b ge j (Ricciardi & Sato 1988).

Comments on results from the literature

This review has brought together a range of first passage time results which can be

used to investigate persistence time in simple stochastic population models.  Such

results tend to be widely scattered in the literature and, as the problem of obtaining

the probability density function for the Wiener process with an upper reflecting

barrier has shown, published results may well be inaccurate.  While the first passage

time distribution for the simple Wiener process is easily obtained, the increase in

complexity when a reflecting barrier is added, and the lack of exact results for the

OU process first passage time distribution, tend to suggest that closed form results

for the persistence time distributions of more complex stochastic population models

than those considered in the next few chapters are unlikely to be obtained easily.

Numerical estimates of the persistence time distribution in such cases will, therefore,

probably remain important.  The insight obtained from the examination of simple

models where analytical approximations are available is, therefore, very useful.

Finally, it is worth noting that while this chapter has only considered the first passage

time when the absorbing boundary is constant the problem of the passage time to a
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level which varies with time has also received some attention in the literature.

Examples include Favella et al. (1982) and Buonocore et al. (1990).
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Chapter 3

Persistence time in models with
 density-independent vital rates

________________________________________
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Introduction

This chapter investigates persistence in a simple linear model of population

dynamics.  Results for persistence time in similar models have previously been

discussed by Capocelli & Ricciardi (1974), who consider a continuous time

formalisation as opposed to the discrete time model used here, and both Tuljapurkar

& Orzack (1980) and Lande & Orzack (1988) who consider structured (matrix)

models.  These discussions have focused on very small thresholds (usually one

individual) in order to approximate extinction, rather than persistence above larger

thresholds in the context of population management.  The main shortcoming of the

formalisation used here from an ecological viewpoint is the fact that it does not

include any representation of natural population regulation (density-dependence) so

unrealistically large populations may arise easily.  The detection of density

dependence in population census data is notoriously difficult and far from reliable

(Gaston & Lawton 1987; Murdoch & Walde 1989).  While more recent analyses

(Turchin 1990, Woiwod & Hanski 1992, see also Godfray & Hassell 1992) have been

more successful in finding evidence of density-dependence, it is rather more difficult

to establish the appropriate functional form for its representation in a model.  As such

regulation can be introduced into a model in a variety of ways it is useful to have a

good understanding of persistence in the linear model before looking at more

complex situations.

Linear models of the form discussed below are quite likely to arise in applied

modelling situations.  In endangered (usually small) populations vital rates are likely

to be density independent.  In a management context it may, at times, be preferable to

adopt a linear model for which parameters can be estimated, rather than a nonlinear

model built on more less certain foundations.  It has been pointed out many times

(e.g. Murdoch 1970, Murdoch & Walde 1989) that experimental, rather than

observational, studies are likely to be superior in providing information on density

dependence and regulation of a population.  Most populations of conservation

interest are not, however, suited to experimental studies (as they are often rare and

endangered) and must therefore rely on analysis of census data for information on

their dynamics.  Orzack & Tuljapurkar (1989) suggest that linear models can provide

a "sufficient biological framework" when data regarding density dependence are

lacking.  The difficulty in detecting density dependence in population census data

does not, of course, mean that such effects are not present and operating in the
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population.  This must be borne in mind when assessing the results for population

persistence in the linear model.

The basic model

The basis of this chapter is a multiplicative population model, in discrete time, with

the general form

N N Nt t t i
i

t

+
=

= = ∏1 0
0

l l [3.1]

where Nt is the size of the population, and lt is the multiplicative growth rate, at time

t.  This formalisation can, of course, include the case where the growth rate is a

function of population size, but for the rest of this chapter only the case where lt is

independent of population size will be considered.  Further, it will be assumed that lt

is an independent and identically distributed random variable (in other words, the lt

are not autocorrelated and are drawn from a stationary distribution).

Population growth rate and distribution in the simple model

The model defined above is, of course, well known in the literature (see, for example,

Lewontin & Cohen 1969).  It is an obvious extension of the deterministic model,

where the growth rate is constant, which results in exponential growth if l > 1,

exponential decline if l < 1, and constant population size if l = 1.  Population growth

rate in the stochastic model, however, is slightly more complicated and is best

understood by first considering the asymptotic distribution of population size.

Taking logs in the model defined above and writing ln( )N Xt t=  and ln( )lt tr=  gives

X X r r Xt t t i
i

t

+
=

= + = +∑1
0

0 [3.2]

The term ri∑  is a sum of random variables with common mean and common, finite

variance and will therefore (by the Central Limit Theorem) be asymptotically

normally distributed.  This leads to an asymptotically lognormal distribution for

population size, Nt (Lewontin & Cohen 1969, Capocelli & Ricciardi 1974).  There

are parallel results for structured models which state that the total population size (i.e.

summed over all age/stage classes, or some subset of the classes) will converge to a

lognormal distribution (Tuljapurkar & Orzack 1980; Heyde & Cohen 1985).

The speed with which the distribution of population size converges to a lognormal

distribution is, of course, important if use is to be made of these asymptotic results.
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Figure 3.1.  Illustration of the speed of convergence of the probability distribution of log population

size in the simple model [3.1] to a normal distribution.  The distribution of ln(N), quantile-quantile

plots (Chambers et al. 1983) of ln(N) and the distribution of lambda are shown for time steps 1, 2, 3, 4,

8, 12, 16 and 20.  The distributions were constructed from 5000 trials with N0 = 100.
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For the case where there is no autocorrelation in the random inputs the convergence

is generally fast, (Tuljapurkar & Orzack 1980).  The rapid convergence of the

probability distribution of log population size to a normal distribution is illustrated in

Fig. 3.1.  Here 5000 replicates of the simple multiplicative population model [3.1]

have been run, from a common initial state, for twenty time steps.  The population

growth rate is drawn from a uniform distribution which results in a uniform

distribution of log population size at the first time step.  However, this rapidly

converges to a normal distribution, the visual impression of the histograms being

confirmed by the straightening line in the quantile-quantile plots which plot the

quantiles of the estimates distribution against those of the standard normal

distribution (Chambers et al. 1983).  Serial correlation in the multiplicative growth

rate, l, will make the convergence to a normal distribution slower (Lewontin &

Cohen 1969).

The moments of the asymptotic distributions of population size and log population

size at time t are related by the standard (and exact) formulae relating the mean and

variance of a normal distribution and the 'associated' lognormal distribution (Johnson

& Kotz, 1970, p.115):

E E
Var

Var E Var Var

( ) exp

( )

N X
X

N e e e

t t
t

t
X X Xt t t

= +
F
HG

I
KJ

= −

b g b g

e jb g b g b g

2

12

[3.3]

Note that Caswell's (1989, p.214, eqn. [8.38]) formula for the variance of the

population size is different.  A simple numerical experiment confirms that the form

given here [3.3] is the correct form.

Returning now to the question of population growth rate, taking expectations in the

model [3.1] yields

E N N E Nt i
i

t
t

+
=

+= F
HG

I
KJ =∏1 0

0
0

1b g l l [3.4]

(as the expectation of the product is the product of the expectation for an

independent, identically distributed random variable).  The expected population size

thus grows exponentially at a rate given by the arithmetic mean of the growth rates.

However, as shown above, population size, and the product of the multiplicative

growth rate, is lognormally distributed.  The expected population size is therefore

greatly influenced by the very large population sizes occurring, with low probability,
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in the tail of the distribution.  The modal population size is much less, corresponding

to the much more likely values of the product of the growth rates.  Lewontin &

Cohen (1969) demonstrate (see also the clear discussion in Caswell, 1989, though

note the errors in his equations [8.38] and [8.53] referred to elsewhere) that the

ultimate fate of the population is determined by the expected value of the logarithm
of the growth rates, E tln lb g .  If E tln lb g  is less than zero then all populations

tend to zero as time tends to infinity.  The expected value of the logarithm of the

growth rate is not the logarithm of the expectation of the growth rate, rather it is the

logarithm of the geometric mean growth rate, i.e.:

E Et t
tln ln ...l l l lb g b ge j= 1 2

1

[3.5]

For Var(l) > 0 the expected geometric mean is always less than the expected

arithmetic mean of the multiplicative growth rate.  It is therefore possible to have the

situation where the expected population size grows to infinity but the probability of

observing  any population size other than ultimately tending to zero, is zero.

Thus, the appropriate measure of population growth is the expectation of the
logarithm of the growth rate, E tln lb g  which describes the fate of the majority of

realisations of [3.1], rather than the minority which dominate the value of E[l].

Tuljapurkar & Orzack (1980) show that essentially the same result holds for the
growth of total population size in structured populations.  E tln lb g  will be referred

to as the long run population growth rate and will generally be denoted by m, and its

variance denoted by s2.

Estimation of the long run growth rate

The persistence time results considered below are determined to a large extent by the

long run growth rate, m, and its variance, s2.  Because the multiplicative growth rate

can be distributed in many ways there is not a single, simple relationship between the

mean and variance of the multiplicative growth rate for a time t, lt, and the mean and

variance of the long run growth rate.  Tuljapurkar (1982) and Lande & Orzack (1988)

consider approximations for m and s2 for structured populations.  Dennis,

Munholland & Scott (1991) consider maximum likelihood estimators for m and s2

based on an observed time series of population censuses.

For the unstructured model considered here, an obvious candidate for the

approximation of m and s2 is based on the fact that the population size at a given
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time, and thus the product of growth rates to that point, is lognormally distributed.

Rearrangement of the same formulae (Johnson & Kotz, 1970, p.115) that were used

to relate the mean and variance of population size (at time t) to the mean and variance

of log population size (eqn. [3.3]), suggests the approximations

m l
s

s
l

l

≅ −

≅ +FHG
I
KJ

ln

ln
( )

d i
2

2

2

1
Var

2

[3.6]

Lewontin & Cohen (1969) suggest an alternative approximation for m based on

expansion of ln(l) around l , the mean multiplicative growth rate:

m l
l

l
≅ −lnd i b gVar

2 2
[3.7]

(note that this differs from Caswell's (1989, p. 216) eqn. [8.53] by the presence of the

squared mean in the denominator.  Lewontin & Cohen's form appears much more

reasonable).  They suggest no approximation for the variance of the long run growth

rate.  However, one of Lande & Orzack's (1988) approximations may be adapted to

give

s l m2 2≅ −lnd i [3.8]

Table 3.1 compares these two approximations to the long run growth rate and its

variance with numerical estimates, and exact results where possible, for several

possible distributions of the multiplicative growth rate, l.  For the exponential and

two state distributions of lambda the alternative approximations of [3.7] and [3.8] are

slightly nearer the numerical (and, for the two state lambda, exact) values of the long

run growth rate and its variance.  However, the alternative approximation for l

lognormally distributed is wildly inaccurate.

This is obviously not the case for the lognormal approximation.  The lognormal

approximation performs more or less as well as the alternative approximations for the

normal and uniformly distributed multiplicative growth rates.  The lognormal

approximation is therefore used throughout the thesis when it is necessary to obtain

estimates of m and s2 for given l  and Var(l).

Both approximations considered here, and the numerical and exact results of Table

3.1, demonstrate the important feature of the long run growth rate which is that m (=

E[ln(l)] is always less than ln(E[l]) whenever Var(l) > 0.
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Table 3.1.  Numerical estimates for m and s2 for a variety of distributions of the multiplicative growth

rate.  Numerical estimates based on drawing 1.0E+6 sample multiplicative growth rates from the

distributions specified and calculating m = E(lnl) and s2 = Var(lnl).  "Lognormal" approximations

from [3.6], "alternative" approximations from [3.7] and [3.8].  Exact m and s2 for lognormally

distributed l from [3.3].  The "two state" distribution is Lewontin & Cohen's (1969) extreme example

where l can either take the value 0.5 or 1.7 with equal probability.

Multiplicative growth rate Long run (i.e. logarithmic) growth rate

Exact Numerical Approximations

distrib- estimates lognormal alternative

ution l Var(l) m s2 m s2 m s2 m s2

uniform 1.00e+0 8.33e-2 -4.49e-2 9.45e-2 -4.00e-2 8.00e-2 -4.16e-2 8.33e-2

two state1.10e+0 3.60e-1 -8.13e-2 3.74e-1 -8.05e-2 3.74e-1 -3.49e-2 2.60e-1 -5.35e-2 2.98e-1

normal 2.00e+19.00e+0  2.98e+0 2.39e-2 2.98e+0 2.23e-2 2.98e+0 2.25e-2

log-

normal

2.44e+24.85e+81.00e+09.00e+0 1.00e+09.00e+01.00e+09.00e+0-4.05e+38.10e+3

expon-

ential

1.00e+01.00e+0 -5.76e-1 1.65e+0-3.47e-1 6.93e-1 -5.00e-1 1.00e+0

Persistence time in the linear model

The logarithmic form of the model [3.2] in fact describes a generalised random walk

which, as is well known, is approximated by a Wiener process in the continuous time

limit (Cox & Miller 1965, p.235).  Given the speed at which the log of population

size converges to a normal distribution it is natural to consider whether the required

persistence time results for the multiplicative population model [3.1] can be

approximated by the first passage time distribution of the Wiener process, discussed

in chapter 2.  Using [2.24] it is possible to write the persistence time distribution for

the simple multiplicative model as

g t N N
N N

t

N N t

ta
a a

0
0

3

0

2

2
2 2

,
ln /

exp
ln /

c h b g b gc h
= −

−F

H
GG

I

K
JJs p

m

s
[3.9]

where m and s2 are the long run population growth rate and its variance respectively,

N0 is the population size at time zero and Na is the lower threshold of interest.  Fig.

3.2 compares the persistence time distribution given by [3.9] with that obtained
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Figure 3.2.  Simulated persistence time distributions for the simple multiplicative population model

(points), and (lines) distributions from the Wiener process approximation [3.9].  The lt were drawn

from a normal distribution and m and s estimated from [3.6], as discussed above.  (a)  N0 = 8000, Na =

3000, l  = 1, Var(l) = 0.2; (b) N0 = 6.0E+12, a = 3000, l  = 0.9, Var(l) = 0.2.

numerically from simulation of the model [3.1] (the numerical methods used are

discussed in appendix one).  The fit is very good, the most noticeable deviation being

the slight overestimation of absorption probability at the mode of the distribution.

Lande & Orzack (1988) attribute this to the discrete nature of the model [3.1], which

only allows crossing to the  threshold at integer times, as opposed to the continuous

nature of the Wiener process.  If time steps less than one are used in the discrete

model (i.e. euler integration) the fit does indeed improve: the scaling down of both

time steps and changes in population size makes the Wiener approximation even

more appropriate.

Expressions for various statistics of the persistence time of the model are also easily

obtained from the results of chapter 2.  Thus the conditional mean and mode are

given by (where m and s are again given by [3.6]):

mean=
ln /N Na0b g

m
[3.10]

mode=
=

+
F
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[3.11]
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General features of the persistence time distribution

Fig 3.3 shows the shape of this persistence time distribution [3.9] for various sets of

parameters (chosen more to illustrate the shape of the distribution rather than

demonstrate any particular biological point).  The distributions are unimodal and

either skewed to the left (lines a, b, c) or almost symmetrical (lines d & a).

Substitution in [2.30] gives an expression for f, the parameter that controls the shape

of the persistence time distribution:

f
m

s
=

ln N Na0
2

b g
[3.12]

The values of f for the curves of Fig. 3.3 are included with the modal and mean

persistence time in Table 3.2.  As expected from the discussion of the shape of the

Wiener process passage time distribution in chapter 3, the more symmetrical curves

(d and e in Fig. 3.3) have larger values of f.  It is clear from [3.12] and the example
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Figure 3.3.  Examples of the distribution of persistence times (from eqn. [3.9]) for the simple

population model [3.1] with lt a serially-independent, identically distributed random variable.  The

parameters used are in Table 3.2.
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Table 3.2.  Parameters used in eqn. [3.9] to produce the lines in Fig. 3.3.  Also included are the

expected and modal persistence times calculated from [3.10] and [3.11] respectively (both given to

two decimal places).

N
0

N
a l Var(l) E(T) modal T f

a 8.0E+3 3.0E+3 1 0.04 50.02 7.97 0.49

b 8.0E+3 3.0E+3 1 0.01 197.15 31.41 0.49

c 8.0E+3 3.0E+3 1 0.0025 785.64 125.17 0.49

d 6.0E+8 3.0E+3 0.95 0.04 167.26 155.49 20.54

e 6.0E+13 3.0E+3 0.9 0.04 183.21 178.95 63.70

parameters (Table 3.2) producing the example curves in Fig. 3.3 that, in a population

context, the vast majority of likely parameters will lead to a skewed persistence time

distribution, with a tail of long persistence times arising with low probability.

Fig. 3.3 and Table 3.2 illustrate a further feature of the persistence time that is of

some importance, namely that the long tail in some of the more skewed distributions

results in large expected persistence times.  Thus the expected persistence times for

parameter sets (b) and (c) exceed the expected times for sets (d) and (e).  However

the modal passage times for (d) and (e) exceed those of (b) and (c).

This feature has some consequences for the use of passage time distributions in the

evaluation of population models.  In particular it would probably be unsatisfactory to

conclude (on the basis of the expected persistence time) that a population described

by a model giving rise to distribution (b) in Fig. 3.3 would be likely to persist longer

than that a population with persistence time from distribution (e).  While a few

realisations of the process with persistence time distribution (b) will persist for

considerably longer than virtually all realisations of process (e), the majority of

realisations of (b) will reach the lower threshold before those of process (e).  Given

that we will generally be interested in the fate of a single population (i.e. a single

realisation) the mode is likely to be a better indicator of persistence above the

threshold.  This problem is investigated further in Fig. 3.4 where the cumulative

persistence time distributions (i.e. the probability that absorption has taken place by

time t) are shown for two of the curves specified by in Table 3.2.  The cumulative

45



0 50 100 150 200 250 300

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time

G
(t

) b

e

Figure 3.4.  Probability of absorption by time t, G(t), for the parameter sets (b) and (e) of Table 3.2.

probability for (b) begins to accumulate sooner than that of (e), but (e) overtakes (b)

around t = 200.

There is, it appears, no "perfect" summary statistic for comparing persistence time

distributions for different parameter sets or different models.  However it will

generally be convenient to use some summary statistic rather than continually

compare pictures of distributions.  The preceding discussion illustrates the need to

choose the statistic with some care, and to investigate other features of the

distribution where possible.  At times this will mean resorting to numerical estimates

of the persistence time distribution due to the fact that, as emphasised in chapter 2,

closed form expressions for more complex models are difficult to obtain.

Determinants of  persistence time

In this section the effect of varying the parameters of the simple multiplicative model

on the persistence time is examined.  While various authors (Capocelli & Ricciardi

1974; Lande & Orzack 1988) have considered the persistence time in terms of the
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long run growth rate, there are advantages to considering the model [3.1] in the actual

terms in which it is conceived.  In particular it is useful to distinguish what Shaffer

(1981) terms the systematic pressures and stochastic perturbations facing a

population.  A multiplicative growth rate less than one could be termed a systematic

pressure leading to a population reaching some low threshold size, while the variance

in this growth rate represent the stochastic perturbations.  The long run growth rate, m

, in contrast is a measure which incorporates the effects of both systematic pressure

and environmental stochasticity.  While this is useful in some circumstances, it may

also lead to some confusion.  Lande & Orzack state, for instance, that "the mean time

to extinction....depends on the infinitesimal variance, s2, only through its effect on

the long run growth rate of the population, m" (see eqns. [3.6] and [3.10]).  While this

statement is undeniably true it may serve to detract attention from the important role

that environmental variance (introduced in the multiplicative growth rate and greatly

affecting s2) actually plays in determining persistence times.  Stacey & Taper (1992)

are apparently unaware of the distinction between the long run growth rate and the

multiplicative growth rate and thus rediscover the fact that environmental variance

leads to all realisations of their model (which is discussed further at the end of

chapter 4) reaching a lower threshold, even when l = 1.

The effects of three variables are of interest: the multiplicative growth rate, l , and

its variance, Var(l), and the ratio of initial population size, N0, to the threshold level

Na.  It would seem natural to suggest that for constant distance between the initial

population size and the lower threshold, (N0 − Na), the persistence time distribution

should be the same.  This is not, in fact, the case.  The lognormal distribution of

population size means that the persistence time distribution from, say, 100000 to

97000 individuals is not the same as the distribution from 8000 to 5000 individuals.

This is illustrated in Fig. 3.5.  From [3.9] it can be seen that the appropriate measure

is N0/Na.

The probability of ultimately reaching the threshold

As noted in chapter 2 in the discussion of the first passage time of the Wiener process

with a single absorbing barrier, there are cases where ultimate (i.e. as t → ∞)

absorption is not certain.  Similarly, for the simple multiplicative population model

there are cases where the population growth rate is sufficiently large (and the

variation in this rate suitably small) that at least some of the realisations of the model

will not ever reach the threshold level.  By making the appropriate substitutions in
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Figure 3.5.  Persistence time distributions (calculated using eqn. [3.9]) for (a) N0 = 100000, Na =

97000, (b) N0 = 8000, Na = 5000, with l  = 1 and Var(l) = 0.01 in both cases.  Despite the fact that

(N0 − Na) = 3000 in both (a) and (b) the lognormal distribution of population size means that these

distributions are not the same.

equation [2.25] expressions for the probability of ultimately reaching the threshold

are obtained:

G N N
N Na

a

∞ =
≤

−FH
I
K >

R
S|

T|
0

2 0

1 0
2

0
,

exp ln /
c h

a f
b g a f

m
m

s
m

[3.13]

where, as before m and s are given by [3.6].  Thus, where the long run population

growth rate, m, is positive, there is the potential for at least some of the realisations to

persist above the threshold indefinitely.

Fig. 3.6 illustrates (for various values of Var(l)) the effect of increasing l  on the

probability that the threshold level is eventually reached.  Especially for lower values

of Var(l) the transition from certain absorption at the threshold to almost zero

probability of ultimately reaching the threshold takes place over a remarkably small
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Figure 3.6  The effect on G(∞) of varying l  for various values of Var(l).  N0 = 8000, and Na = 3000.

range of l .  Fig. 3.7 shows the mean and modal persistence times as l  varies in this

transition zone.  Both mean and modal persistence times actually decrease as l

increases.  In isolation this is a slightly surprising result.  However this must be seen

in the context of rapidly decreasing probability of absorption, and the fact that we are

considering the mean conditional on the threshold actually being reached.  As l

increases the only realisations that reach the threshold are those that have a

downwards fluctuation while the population size is still very near the initial value.

As the population grows quickly from this level, later absorption is very unlikely.

Thus the decreasing (conditional) mean and modal persistence times are reflecting

the fact that the chance of the threshold being reached is falling, and those

realisations that do reach the threshold are mainly those that happen to fluctuate

downwards when t is small.
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Figure 3.7.  The change in conditional mean ( ) and modal (--) persistence time as l  is varied

through values which produce the transition from G(∞) = 1 to G(∞) ≈ 0. [Var(l) = 0.1, N0 = 8000, and

Na = 3000].

Thus the first stage in a quantitative evaluation of the effect on persistence of a

change in the parameters of the simple model [3.1] is to check whether the

probability of ultimate absorption is changed.  For the rest of this section the

confounding effect of changes in G(∞) is avoided by considering only cases where

reaching the threshold is certain, given sufficient time [G(∞) = 1].  The effect of

varying l , Var(l), and N0/Na on the persistence time is investigated.  This is not to

imply that the distribution of persistence times is not of interest where G(∞) < 1:

indeed the behaviour of the model in finite time is still likely to be important.

However, interest here is in the general effects of a change in parameters on modal

and mean persistence times and comparison is really only relevant if G(∞) is

constant.  The only level at which G(∞) can easily be fixed is one.

In Fig. 3.8 Var(l), N0 , and Na are constant while l  is varied through a range which

mostly produces certain ultimate absorption (G(∞) = 1).  The transition to  G(∞) < 1

is marked by the decline following the sharp peak in the conditional mean persistence
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Figure 3.8.  The effect of varying l  on the conditional mean ( ) and modal (--) persistence time

with Var(l) = 0.1, N0 = 8000, and Na = 3000.  Note that the ordinate is plotted logarithmically.

time.  This figure illustrates the fact, apparent from eqn [3.10], and emphasised by

Lande & Orzack (1988), that the conditional distribution of mean persistence times is

symmetrical about m = 0.  The conditional mean (and the conditional distribution of

persistence times) thus depends on the absolute magnitude of the long run growth

rate, not whether it is positive or negative.

For smaller values of l  the conditional mean and modal persistence times are

similar in magnitude and increase steadily with increasing l .  However for larger

values of l  the mean increases much more rapidly than the mode.  This coincides

with the long run population growth rate, m, approaching zero.  The rapid increase in

mean persistence time is due to the fact that, despite the long run growth rate being

negative and ultimate absorption certain, a few realisations continue for very long

times before reaching the lower threshold.  Thus some populations described by the

simple multiplicative model may, in fact, persist for a long time despite negative long

term growth rates.  However the majority of realisations continue to reach the
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Figure 3.9.  The effect of varying Var(l) on the conditional mean ( ) and modal (--) persistence

time with l
_
 = 1, N0 = 8000, and Na = 3000.

threshold within a reasonably short time: thus the modal persistence time does not

increase nearly so rapidly as the mean as l
_
 is increased.

Fig. 3.9 investigates the effect of changing Var(l) on the mean and modal persistence

times.  The relationship is simple − increasing the variance of the multiplicative

population growth rate rapidly decreases both the modal and conditional mean

persistence times.  The modal persistence time decreases rather more rapidly than the

mean as Var(l) is increased.  Again this is due to the fact that some realisations may

persist for long times, thus  increasing the mean.

Fig. 3.10 illustrates the effect of varying the ratio of initial population size to

threshold population size (N0/Na) on the mean and modal persistence time, for a given

mean and variance of the multiplicative growth rate.  Unsurprisingly, increasing this

ratio increases both the mean and modal persistence times.  Note, however the

abscissa is logarithmic.  Thus, as a result of the logarithmic distribution of population
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Figure 3.10.  The effect of varying the ratio N0/Na on the conditional mean ( ) and modal (---)

persistence time with l
_
 = 1, Var(l)  = 0.1.

size, mean persistence time increases only logarithmically with increases in the ratio

of initial population to threshold population.  The modal persistence time increases

even less rapidly.

Discussion

The persistence time distribution of the simple linear model has several lessons for

the use of persistence time as a viability criterion in the comparison of management

strategies in stochastic models.  Firstly, it is important to recognise that the

distribution may be highly skewed.  Thus, while the majority of realisations of the

model may reach the lower threshold in a relatively short time, a small number may

have extremely long persistence times leading to large mean persistence times.

Where that fate of a single population is of interest the modal value is more likely to

be useful.  However, where the probability of ultimate absorption is constant, the

modal and mean persistence time generally show a similarly shaped response when a

single parameter is varied.  The exception to this is the behaviour of the mean in the
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region where the long run growth rate, m, is near zero.  In such cases mean

persistence time is considerably greater than the most likely persistence time.  This,

of course, is of particular interest in conservation problems where populations may

be on the "edge of viability" with a long run growth rate near zero.  A further lesson

for the use of persistence time as a viability criterion is that the ultimate probability

of reaching the threshold may have to be considered in addition to the change in

either modal, or mean, persistence time.

Shaffer (1987) suggests that average persistence times will increase linearly with

increasing population size under the effects of environmental stochasticity.  Fig. 3.10

suggests, that for the linear model considered here, the picture is in fact rather

different.  While both mean and modal persistence times do increase as the initial

population size is increased, the rate of this increase is logarithmic.  Increased

population size may not, therefore, be as good a route to increased persistence times

as was once assumed.

One area of applied biology where the relationship between initial population size

and persistence time may be of great importance is in the field of biological control.

The size of the initial release of the control species is likely to be one of the main

financial implications for any biological control scheme, whereas persistence time of

the vector in the environment into which it is released is likely to be one of the main

determinants of the scheme's success.  It is conceivable that any exotic species

released into an ecosystem in considerable numbers will be described quite well by a

simple linear model.  For example, it is likely to take some time for predator

populations to adapt to the biological control species as a suitable prey item.  The

relationship between initial population size and likely persistence time of Fig 3.10

may, therefore, provide a useful basis for a form of cost-benefit analysis when

making the decision about initial release size.

Lande & Orzack (1988) make the point that mean persistence time, for a given

threshold and initial population size, is a function only of the long run population

growth rate, m.  However this growth rate is heavily influenced by the magnitude of

the environmental variance.  As Fig. 3.9 shows, increasing the variance of the

multiplicative growth rate, Var(l), results in substantial decreases in both mean and

modal persistence times in the linear model.  Any impact envisaged on a population

must, therefore, consider not only its affect on the growth rate, l, but also its

variance.
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In the introduction to this chapter it was suggested that one problem with the linear

model considered here is that it fails to represent density dependent population

regulation.  However, this does give the opportunity to evaluate persistence time in

the absence of such regulation.  Sinclair (1989), in reviewing population regulation in

animals, notes that "... the most contentious aspect of Andrewartha & Birch's theory

is that populations could persist without regulation.  It is generally recognised that

such populations would show a random walk through time and eventually go extinct

..".  Thus, the very fact that populations are observed to persist is often used as an

argument for the necessity of density dependent regulation.  However, as noted

above, the logarithm of population size described by the linear model is, in fact, a

generalised random walk.  The persistence time distribution for the linear model

shows that (with low probability) some realisations may actually persist for very long

times, despite the lack of density dependent regulation.  Indeed eqn. [3.13]

demonstrates that, if the long run population growth rate is positive, there is actually

a finite chance that the population will persist indefinitely above some lower

threshold.  Fig. 3.8 demonstrated that, even when ultimately reaching the lower

threshold is certain (m ≤ 0), the mean persistence time may be extremely long and,

indeed, when the long run growth rate, m, is zero the mean persistence time is

actually infinite.

Sinclair (1989) goes on to quote Strong (1984) who asserts that extinction in random

walk models is too frequent to mimic the behaviour of real populations.  Sinclair

points out that this assertion is actually rather difficult to test.  However, it is

interesting to note that recent studies of the persistence time of island populations

(Schoener & Spiller 1987) suggest that short persistence times are quite common,

and local extinction rather frequent.  The persistence time distribution of the linear

model, with a tail of very long persistence times indicates a mechanism by which a

fragmented population may persist for much longer than any one of its component

sub-populations.  If the sub-populations vary in size, or experience locally variable

environments, then a range of persistence times will result.  If the sub-populations are

sufficiently connected such that recolonisation is possible, then local extinction may

be frequent while, overall, the population continues to persist.  The effect of

fragmented populations is receiving increasing attention in the ecological literature as

the concept of "metapopulation" dynamics gains strength (see, for instance, Gilpin &

Hanski 1991).
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The discussion above illustrates the fact that long persistence times may result in

populations without density dependent regulation.  This is not, however, to suggest

that such regulation is either absent or unimportant.  Indeed as longer population

census time series, and improved statistical methods, become available, the detection

of density dependence in real world data becomes more frequent (Godfray & Hassell

1992; Woiwod & Hanski 1992).  As evidence of the importance of non-linearities in

the dynamics of populations accumulates from real data, proponents of density

dependence can perhaps put aside the well worn, but false, argument that a "random

walking" population must necessarily go extinct.  Part of the confusion which arises

can be traced to the use of terms such as density dependence, regulation and

persistence in an effectively interchangeable manner.  A recent discussion of the

problems of terminology in this area is Hanski (1990).

The persistence time distribution for the simple linear stochastic population model

thus results in insight into various areas of ecological theory as well as providing

baseline results for comparison with persistence in more complex models.
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Chapter 4

The linear model with an upper
 limit to population size

________________________________________
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Introduction

The simple multiplicative population model considered in the previous chapter had a

population growth rate that was independent of population size.  While this model

may be appropriate in certain circumstances, it suffers from the rather unrealistic

feature that infinitely large populations may arise.  One way to avoid this is to

incorporate explicit dependence of growth rate on population size. However, this

could be done in a number of ways and, in the context of models for population

management, it may not be clear which functional form should be used.  An

alternative approach, which prevents the problem of infinite populations while

avoiding the many complexities associated with non-linear stochastic models, is to

simply fix a hard upper limit to population size.  While this is chosen largely for

computational ease in order to give insight into the effects of a "first approximation"

to population regulation, a hard upper limit to population size is not totally without a

biological basis.  For instance, an absolute maximum population may arise as an

extreme form of contest competition (Varley, Gradwell & Hassell 1973) where, in a

population below the maximum size, all individuals get sufficient resources, while

any excess recruitment of individuals results in their rapid death (rather than their

taking a share of the resources, thus reducing the per capita resource use by the

population).  An example of this is competition for breeding territories as there is

likely to be some limit to the number of territories into which a given area can be

divided (Stacey & Taper 1992).  An upper limit to population size, with a region

below this limit where fluctuations in size are produced purely by environmental

variation, also has some similarities to Strong's (1986a,b) concept of density-vague

regulation.  Strong (1986a) considers the case of populations with a density-vague

region below some ceiling which may be imposed through resource depletion, natural

enemies or emigration.  The ceilings considered by Strong are rather more general

than the upper limit considered in this chapter: Strong's (1986a, Fig. 15.4) illustrates

ceilings which vary through time, a situation which complicates the mathematics of

the first passage time immensely.

The model

The model is essentially the same as that used in chapter 3: an unstructured

population model with an independent and identically distributed multiplicative

growth rate.  However, in addition we now define a level, Nb, such that Nt ≤ Nb for all

t:
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Persistence time

In chapter 3 the logarithm of population size was approximated as a Wiener process

and the Wiener process first passage time distribution was found to closely

approximate the persistence time distribution of the model.  The upper limit to

population size, Nb, is equivalent to imposing an upper reflecting barrier at ln(Nb) on

the Wiener process approximation to log population size.  Thus, by referring back to

chapter 2, an approximate expression for the persistence time distribution for the

simple multiplicative model with a hard upper bound can be found.

If the long run population growth rate, m, equals zero then the persistence time

probability density function is given (from [2.44]) by
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where m and s are given by [3.6].

If m ≠ 0 then, from [2.41],
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where Y xn ( ) is given by [2.36], the ln satisfy
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where V(x) is given by [2.39], and q is the positive solution of
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The expected persistence time is given by
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Features of the persistence time distribution

Unlike the model of chapter 3, where populations with a positive long run growth

rate had a chance of never reaching the lower threshold, a finite upper limit to

population size means that reaching some low level is ultimately certain.  Fig. 4.1

investigates the change in persistence time distribution resulting from the imposition

of an upper bound for parameters that give different values of m

=s m2 ln N Nb ab gd i , which relates to different forms of the persistence time

distribution (see Fig. 2.2).  The parameters used are given in Table 4.1.

The case m < 0 can obviously only come about when the long run growth rate, m, is

negative.  It is not surprising (given that the population is naturally decreasing) that in

this situation the distribution of persistence times (Fig. 4.1b) is similar for the

unbounded model of chapter 3 and the model with an upper limit [4.1].  There are,

however, slight differences, most notably the fact that the distribution of persistence

times in the unbounded model has a longer tail.  This is due to the fact that even a

population with m negative may occasionally fluctuate to large population sizes and
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Figure 4.1.  Persistence time distributions for the linear model with [4.1] (——) and without [3.9]

(–  –  –) a hard upper bound to population size.  The parameters used are in Table 4.1.
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Table 4.1.  Parameters used in equations [4.3] and [3.9] to produce the persistence time distributions

of Fig. 4.1.

l
- Var(l) N0 Na Nb m s m

(a) 1.1 0.1 8000 3000 12000 0.056 0.28 1.03

(b) 1.0 0.1 8000 3000 12000 −0.048 0.31 −1.44

(c) 1.10155 0.09999 8000 3000 12000 0.057 0.28 1.00

(d) 1.3 0.1 8000 3000 12000 0.23 0.24 0.18

therefore achieve a long persitence time.  This possibility is prevented in the model

with the upper limit to population size.

The cases m >1 and m = 1 (Fig. 4.1a,c) arise where m is moderate relative to the

standard deviation in the growth rate.  In these cases the addition of an upper limit to

population size greatly raises the tail of the persistence time distribution relative to

that of the unrestricted model.  Whereas the positive long run growth rate in these

cases allows some realisations of the unrestricted model to continue growing and

never reach the threshold, in the restricted model all realisations reach the threshold.

The area under the persistence time distribution of the restricted model is thus

noticeably greater.  When 0 < m < 1 (i.e. the long run growth rate is large relative to

its standard deviation and the distance between the upper limit and lower threshold)

the situation is slightly different (Fig. 4.1d).  The initial part of the persistence time

distribution of the restricted model is very close to that of the unrestricted model; the

main difference is the raised tail of the distribution for the restricted model.  In this

case the probability of reaching the threshold at any particular time is very small - in

the restricted model the raised tail declines only very slowly, such that a small

probability of reaching the threshold continues to long times.

The observation that, for m strongly positive, the greatest difference between the

persistence time distributions of the restricted and unrestricted models are in the tail

of the distribution, is important.  While the probability of ultimately reaching the

threshold in the restricted model is one, much of this probability could represent

realisations reaching the threshold only at very long times.  Fig. 4.2 considers the
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Figure 4.2.  The probability of reaching the lower threshold by time T = 1000 for the linear model

with an upper limit to population size [4.1] as the mean multiplicative growth rate, l
-

, is increased.

(a) no upper limit, (b) Nb = 100000, (c) Nb = 40000, (d) Nb = 20000, (e) Nb = 12000, (f) Nb = 10000.

In all cases Var(l) = 0.1, Na = 3000, N0 = 8000.

probability, G T g t dt
T

a f a f= z
0

, of reaching the threshold by some time, T, which is

large but finite.

Fig. 4.2 demonstrates that for times which are finite, but nevertheless long in

ecological terms, the probability of reaching the threshold by T may be less than one

for both the unrestricted and restricted models.  The shape of the curve of G(T)

against l- is similar to that of G(•) against l- for the unrestricted model (Fig. 3.6): as

l- is increased past a certain level the probability that the threshold is reached by time

T decreases rapidly.  Thus, for fixed Na, Nb, N0 and Var(l), there is a range of values

of l- for which reaching the threshold by time T = 1000 is certain, but as l- is

increased there is a rapid transition to the situation where G(1000) is small.  As the

upper limit, Nb, is set at successively lower population sizes the curves of Fig. 4.2 are
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shifted to the right, such that the range of population growth rates for which reaching

the threshold by T = 1000 is certain is increased.

For the unrestricted model of chapter 3 where the population growth rate was high

the chance that a realisation reached the lower threshold depended a great deal on the

sequence of environments encountered in the first few time steps.  If a poor run of

growth rates, taking the population to the threshold, was not encountered then the

population grew rapidly away from the threshold.  Those realisations that did reach

the threshold did so at short times.  With a hard upper limit to population size

realisations do not have the "escape" mechanism of growing to very large sizes.

Populations at any finite upper limit retain some probability of decline to the lower

threshold, though for large upper limits (or low variance in a high growth rate) this

probability may be very small.

In particular when m is large, the persistence time distribution for the linear model

restricted by an upper limit can be considered as consisisting of two parts: the tail of

the distribution which relates to the probability that a population encounters a run of

poor environments causing it to leave the region of the upper limit and reach the

lower threshold; and (for all cases where N0 < Nb) an "initial condition" part

associated with the possibility that the lower threshold may be reached before the

upper limit is ever encountered.  This latter effect is the same effect as a realisation of
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Figure 4.3.   The persistence time distributions for l
_
 = 1.3, Var(l) = 0.1 and Na = 3000 with (a) no

upper limit to population size, (b) an upper limit of 12000 individuals. ææ N0 = 8000, - - - - N0 =

12000.
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the unrestricted model encountering an initial run of low growth rates causing it to

decline to the threshold size despite an overall high growth rate.

Fig. 4.3 demonstrates these effects.  The persistence time distributions in Fig. 4.3a

are for the unrestricted model, and those in Fig. 4.3b for the restricted model.  The

solid line shows the case where, for the restricted model, N0 < Nb.  For t small the

persistence time distributions for the two models are similar, the sharp peak

corresponding to the few realisations that rapidly decline from the initial population

size to reach the threshold.  In the unrestricted model, after this initial peak, the

probability of reaching the threshold is zero as the high growth rate causes

populations to grow to infinite size.  In the restricted model the tail of the distribution

is raised, and declines only very slowly, representing the probability of leaving the

region of the upper limit and reaching the lower threshold.  If, in the restricted model,

N0 = Nb (as shown by the dashed line in Fig. 4.3b) the initial peak disappears such

that the persistence time distribution consists solely of the slowly declining tail.

Fig. 4.4 investigates the effect on mean and modal persistence time of changes in l
-

for the model with and without an upper limit to population size.  The most striking

differences are between the conditional means for the two models.  As discussed in

the previous chapter the conditional mean persistence time for the model with no

upper limit declines rapidly from the point at which the long run growth rate becomes

positive and ultimately reaching the lower threshold is no longer certain (marked by

the vertical line in Fig. 4.4).

For the model with an upper limit, however, the conditional mean behaves rather

differently.  For lower values of l
-

 the mean is similar to the model without upper

limit.  This is due to the fact that the long run growth rate is negative in both cases

and all realisations decline rapidly to the lower threshold.  When the long run growth

rate is only slightly negative the mean persistence time in the model without the

upper limit is characterised by high values resulting from the fact that some

realisations have excursions to very high populations.  Such excursions are prevented

by the upper limit in the alternative model and the increase in mean persistence time

is, therefore, not so dramatic.  While the conditional mean in the unrestricted model

declines sharply as soon as the long run growth rate becomes positive (and ultimately

reaching the lower threshold is no longer certain), in the restricted model the mean

persistence time continues to rise.  This is because the upper limit prevents the
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Figure 4.4.  The conditional mean and modal persistence time for the simple multiplicative model

with and without a limit to population size.   Var(l) = 0.1,  N0 = 8000,  Na = 3000,  Nb = 12000.  

  mean persistence time for model without upper limit, conditional on reaching the threshold (from

eqn. [3.10]),   -   mean persistence time for model with upper limit (from eqn. [4.7]), − − −

modal persistence time for model without upper limit (from eqn. [3.11]),       modal

persistence time with upper limit (calculated numerically by Brent's method of function

maximisation, Press et al. 1989).  The dashed vertical line marks the value of l
-

 at which the

probability of ultimately reaching the lower threshold becomes less than one for the model with no

upper limit.

growth of realisations to very large population sizes and the occasional realisation

encounters a run of growth rates that enable it to leave the upper limit and reach the

lower threshold.  Thus, while the only realisations that reach the threshold in the

unrestricted model are those that encounter a particularly "bad" run of growth rates

early in the realisation, in the restricted model there remains a small probability of

reaching the threshold even at quite long times.  This results in the increase in the

conditional mean persistence time seen in Fig. 4.4.
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While the differences in conditional mean between the models with and without an

upper barrier are striking, Fig 4.4 demonstrates that there are also differences

between the model persistence times of the two models.  As noted in the previous

chapter, the peak in modal passage time for the unrestricted model occurs at a slightly

higher value of l
-

 than the peak in expected passage time.  The modal passage time

for the restricted model follows the same pattern, and for both low and high values of

l
-

 the modes are in fact the same.  At intermediate values (0.7 < l
-

 < 1.3 for the

parameters of Fig 4.4), however, the curves separate somewhat and the restricted

model actually has slightly higher modal persistence times.  For at least part of this

range G(∞) = 1 for the unrestricted, as well as the restricted, model so comparison is

not complicated by different ultimate probabilities of reaching the lower threshold.

Fig 4.5 examines part of the persistence time probability density function for the

restricted and unrestricted models with parameters which result in G(∞) = 1 for both,

but give a slightly longer modal passage time for the restricted model.  The reason for
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Figure 4.5.   The persistence time probability density function for the unrestricted (− −) and

restricted (  ) (Nb = 12000) models.  l
_
 = 1, Var(l) = 0.1, N0 = 8000 and Na = 3000.
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the increase in modal persistence time for the restricted model is clear: for the part of

the distribution illustrated, the distribution of persistence times for the restricted

model has a raised tail relative to the unrestricted model, and this simply shifts the

mode slightly to the right.

The increase in modal persistence time observed by restricting the population to sizes

less than some upper limit is rather small, certainly not enough to suggest that the

longevity of the population is enhanced in any way by the imposition of the barrier

(this fact is obvious from Fig 4.5).  Another way to look at this is to consider the

probability of reaching the lower threshold before some time t (Fig 4.6).  This

confirms that, despite the slightly increased modal persistence time, the model with

the upper barrier still represents a less favourable situation for the population as the

probability of reaching the lower threshold is generally higher for the restricted

model.  The difference is greatest at intermediate times.  Fig 4.6 also examines the

effect of different upper limits on the probability of reaching the threshold by a
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Figure 4.6.  The probability of reaching the lower threshold by time t for the unrestricted (− −) and

restricted (   Nb = 12000,     Nb = 30000) models.  l
-

 = 1, Var(l) = 0.1, N0 = 8000 and Na =

3000.
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certain time.  Increasing the upper limit from 12000 to 30000 individuals greatly

reduces the difference between the curves for the restricted and unrestricted models.

Fig. 4.7 examines the change in expected persistence time as the upper limit to

population size is increased for a set of parameters which mean that ultimately

reaching the lower threshold is certain.  As the level of the upper limit is increased

from a level not far above the initial population size the expected persistence time

increases rapidly.  However as the upper limit is increased further the increase in

persistence time slows and appears to asymptote at the expected persistence time for

the unrestricted multiplicative model.  For cases where ultimately reaching the lower

threshold is not certain the expected persistence time for the restricted model

continues to rise, as a small probability of reaching the threshold persists for quite

long times (Fig. 4.3).  However, the modal persistence time for the restricted and

unrestricted models is very similar in all cases (whether or not ultimately reaching the
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Figure 4.7.  The mean persistence time for the restricted multiplicative model (  -  ) as the upper

limit to population size, Nb, is varied.     mean persistence time for model without upper limit.  l
-

= 1, Var(l) = 0.1, N0 = 8000, Na = 3000.
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lower threshold is certain).

Fig. 4.8 investigates the modal and mean persistence times in the unrestricted and

restricted models as the variation of the multiplicative growth rate is increased.

When the variation is such that ultimately reaching the lower threshold is certain in

both the restricted and unrestricted models (all values to the right of the vertical line

in Fig. 4.8) the effect of further increasing Var(l) is essentially the same as that

observed in Fig. 3.9, in that both mean and modal persistence times decrease.

However, while the expected persistence time for the restricted model is less than the

expected time for the unrestricted model (as excursions to large population sizes are
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Figure 4.8.  The conditional mean and modal persistence time for the simple multiplicative model

with and without a limit to population size as Var(l) is increased.  l
-

 = 1.1, N0 = 8000, Na = 3000,

Nb = 12000.     mean persistence time for model without upper limit, conditional on reaching the

threshold (from eqn. [3.10]),   -   mean persistence time for model with upper limit (from eqn.

[4.7]), − − − modal persistence time for model without upper limit (from eqn. [3.11]),     

modal persistence time with upper limit (calculated numerically by Brent's method of function

maximisation, Press et al. 1989).  The vertical dotted line marks the point at which G(∞) becomes

equal to one in the unrestricted model.
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Figure 4.9.  The conditional mean and modal persistence time for the simple multiplicative model

with and without a limit to population size for different values of the initial population size, N0.  l
-

 =

1.1, Var(l) = 1, Na = 3000, Nb = 12000.     mean persistence time for model without upper limit

(from eqn. [3.10]),   -   mean persistence time for model with upper limit (from eqn. [4.7]), − − −

modal persistence time for model without upper limit (from eqn. [3.11]),       modal

persistence time with upper limit (calculated numerically by Brent's method of function

maximisation, Press et al. 1989).

prevented by the upper limit), the modal persistence times are very similar.

Figs. 4.9 and 4.10 examine the mean and modal persistence times as the initial

population size, N0, and the level of the lower threshold, Na, respectively are varied

for parameters where ultimately reaching the lower threshold is guaranteed in the

unrestricted model.  The pattern of change is similar for the unrestricted and

restricted models in both cases.  Like Fig 4.8, the expected persistence time in the

restricted model is less than that of the unrestricted model, but the modal persistence

times are very similar.
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Figure 4.10.  Change in the mean and modal persistence time for the simple multiplicative model

with and without a limit to population size as the lower threshold, Na, is increased. l
-

 = 1.1,  Var(l)

= 1, N0 = 8000, Nb = 12000.     mean persistence time for model without upper limit (from eqn.

[3.10]),   -   mean persistence time for model with upper limit (from eqn. [4.7]), − − − modal

persistence time for model without upper limit (from eqn. [3.11]),       modal persistence time

with upper limit (calculated numerically by Brent's method of function maximisation, Press et al.

1989).

Discussion

Imposing an upper limit to population size on the simple linear model affects

persistence time in various ways.  Perhaps the most interesting effects are those

which occur when the long run population growth rate is around zero.  Here, the most

marked feature of the unrestricted model of the previous chapter was the fact that

very long expected persistence times could arise even when the ultimately reaching

the lower threshold was certain.  Indeed where the long run growth rate was equal to

zero the unrestricted model had an infinite mean persistence time.  In the restricted

model the mean persistence time is finite for m = 0.  While the imposition of an upper

limit to population size reduces the expected persistence time in such situations (Fig.
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4.4), this results mainly from the fact that populations are prevented from growing to

infinite size.  In contrast with the mean persistence time, the modal persistence time

is generally not reduced by the presence of the upper barrier, even when the upper

limit is set at a fairly small number of individuals (Figs. 4.4, 4.5).

For cases where the ultimate probability of reaching the lower threshold is

comparable, the pattern of variation in the mean and modal persistence times tends to

be similar in the restricted and unrestricted models.  In general, the expected

persistence time is rather less in the model with an upper limit, but the modal

persistence times are virtually the same.  Thus the major effect of an upper limit to

population size is to eliminate population fluctuations to large sizes.  This appears to

have rather little effect on the most likely persistence time.

In one respect all that the upper limit to population size actually does is make the

linear model more realistic, as no environment could support an infinitely large

population.  However, from the point of view of population management it is of

some reassurance that in some cases a reductions in the number of individuals that a

habitat can support does not greatly affect the most likely persistence time of the

population.

At the end of the previous chapter it was suggested that the argument, from random

walk models, that persistence of a population required density dependent regulation

of population size should really be abandoned.  This was suggested for two reasons:

the fact that there was a finite probability of not reaching a lower threshold if the long

run growth rate was positive, and the fact that, even when reaching the threshold was

certain, some populations may still persist, unregulated, for very long times.  One

criticism that could be made of this argument is that the linear model allowed the

(unrealistic) possibility of infinitely large populations.  This possibility is excluded

by the imposition of an upper barrier.  While reaching the lower threshold is

ultimately certain in the restricted model considered in this chapter, as Fig. 4.2

shows, there are occasions where the probability of reaching the lower threshold by

some long time, T, is small.

In general then, the linear model with an upper limit to population size is similar to

the linear model of chapter 3 which had no upper limit.  The main effect of the upper

limit is to eliminate the unrealistic infinite population sizes that could arise in the

unrestricted linear model.
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An example: the Acorn woodpecker in New Mexico

Stacey & Taper (1992) present a simulation model to investigate persistence in the

acorn woodpecker, Melanerpes formicivorus, which occurs in small, rather isolated,

populations in the southwest of the United States.  They present data relating to the

population of woodpeckers in a single canyon in the Magdalena Mountains of New

Mexico from 1975 to 1984.  The population is thought never to be greater than 60

individuals and a large proportion are colour ringed allowing calculation of

survivorship and reproductive rates from individual histories.  Stacey and Taper's

data is reproduced in Table 4.2.

Stacey & Taper construct a simulation model to investigate the likely persistence

time of the population in the absence of interchange with other breeding groups, and

assuming that the calculated demographic parameters are density independent.  From

the description given it is possible to write the model in the form of a difference

equation:
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where Nt is the population size at the start of the breeding season in year t, rt is the

reproductive rate per pair, jt is the probability that a fledgling survives to breed in

year t + 1, and at is the probability that an adult survives to breed in the subsequent

year.  I have represented Stacey & Taper's "carrying capacity" by Nb.  This is the

maximum number of breeding individuals that the area can support, twice the

maximum number of breeding pairs.  The number of territories for the acorn

woodpecker appears to be determined by the availability of acorns and other nuts

which are collected by the birds in autumn and stored in holes in "granary trees" as a

winter food supply (Stacey 1979).  In their model Stacey & Taper assume that any

excess of birds over the maximum number determined by the limited number of

territories available are lost to the system.  This imposes a reflecting boundary,

referred to in this chapter as an upper limit to population size, at Nb.  The population

is considered to be extinct if it falls below two breeding individuals in size.  Stacey &

Taper assess persistence time using simulation where the yearly demographic

parameters are drawn, independently, from the sets of observed values.  However the

analytic results presented in this chapter may easily be applied to give analytic results

for the model with no immigration.
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In the absence of the upper limit, the model [4.8] can be written in the form of the

general multiplicative model

N Nt t t+ =1 l [4.9]

where

lt
t t

t

r j
a= +

2
[4.10]

Applying this to the data of Table 4.2 yields a mean multiplicative growth rate of

0.987 with a (sample) variance of 0.114.  Inserting these values in equations [3.6]

Table 4.2.  Stacey & Taper's (1992, Table 1) data for the population of acorn woodpeckers in Water

Canyon, New Mexico.  Population size is the total number of birds residing in the study area in May at

the start of the breeding season.  Adult survivorship represents the probability that an individual alive

at the start of the year's breeding season would still be alive at the start of the next year, while juvenile

survivorship represents the probability that a bird survives from fledging to the start of the following

breeding season.  Survivorships were calculated from the histories of ringed individuals.  Annual

reproductive success is the mean number of young produced per breeding pair, from observations of

all nesting attempts.  Birds known to have survived the winter but which left the area before the

breeding season are recorded as emigrants.

Reproductive Population
Adult Juvenile rate size Number

Year survivorship survivorship (young/pair) (no. adults) of emigrants

1975 0.53 0.56 3.38 46 3

1976 0.68 0.64 1.27 46 4

1977 0.71 0.30 2.77 40 1

1978 0.38 0.40 2.17 51 2

1979 0.54 0.00 0.05 52 0

1980 0.69 0.38 4.00 32 0

1981 0.66 0.18 2.37 46 1

1982 0.49 0.25 0.50 49 1

1983 0.61 0.44 1.60 35 1

1984 2.00 36

mean 0.588 0.350 2.011 43.3 1.44
sample
variance 0.012 0.038 1.490 50.01 1.78
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gives the long run population growth rate, m, as −0.069 and the infinitesimal

variance, s2, as 0.111.  These values can be used in conjunction with [4.3] to provide

the probability density of persistence times in the closed population model.  The

distribution of persistence times predicted by [4.3] is shown in Fig. 4.11 (solid line)

with a histogram, reproduced from Stacey & Taper's Fig. 2, showing the results of a

"typical run" of their simulation model for a closed population.  It is immediately

apparent that the two do not agree very closely.
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Figure 4.11.  Stacey & Taper's (1992, Fig. 2) persistence time distribution for a closed population

(histogram) compared with the persistence time distributions obtained from [4.3] with (solid line)

parameters assuming observed values are samples drawn from some distribution, and (broken line)

parameters from mean and variance of the 720 l values that can arise using Stacey & Taper's

simulation method.  Open circles represent numerical estimate of persistence time distribution of

[4.8] using values drawn at random from Table 4.2 and excluding the 1979 juvenile survival value.

In order to produce persistence time distributions comparable with Stacey & Taper's Fig. 2 the

probability of reaching the lower threshold has been integrated over three year intervals and

multiplied by 1000 (the number of  simulations that went into Stacey & Taper's persistence time

histogram).  Nb = 52 individuals.
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In an effort to uncover the reason for the discrepancy between the two, I implemented

Stacey & Taper's simulation model exactly as they described, calculating the change

in population size each iteration of the model [4.8] by randomly selecting one of the

observed values for reproductive rate per pair, juvenile and adult survival (excluding

the 1979 zero value for juvenile survival).  The results of this exercise are shown as

the open circles on Fig. 4.11, again very different from Stacey & Taper's result.

Before considering the reason for the discrepancy between Stacey & Taper's

simulated persistence time distribution and the analytical and numerical persistence

times calculated here, it is first of interest to consider the less marked discrepancy

between the analytical persistence time distribution (the solid line in Fig. 4.11) and

the numerical distribution marked by the open circles on Fig 4.12.  This discrepancy

is largely due to the simulation methodology employed.  In the analytical treatment

above, the data of Table 4.2 for which reproductive rate, juvenile survival and adult

survival were known (i.e. 1975 to 1983) were used to calculate a long term rate

population growth rate, m, and its variance, s2, and these values were used to produce

the persistence time distribution using [4.3].  In the simulated persistence time

distribution the value for juvenile survival for 1979 is excluded and the reproductive

rate for 1984 is included.  Perhaps most important, however, is the fact that the

values of Table 4.2 represent the complete set of rates incorporated in the simulation

and the sample variance of l, used to calculated the variance in the long run growth

rate will therefore overestimate the realised variance.  If the mean and variance of the

720 possible combinations of rt, jt and at actually used in the simulation are used to

calculate the persistence time distribution the broken line in Fig. 4.11 results, which

is rather closer to the simulated distribution.  This illustrates the problem of Stacey &

Taper's methodology in considering the set of observed values for the demographic

parameters to be the only possible values, rather than samples from some

distribution.

Returning to the problem of the rather larger discrepancy between Stacey & Taper's

simulated persistence time distribution for the closed population and the distribution

obtained here, it seems, initially, that a rather simple explanation may be

forthcoming.  While Stacey & Taper's explanation of their simulation model makes

no mention of emigration, it would appear that their simulation model for the closed

population does in fact involve subtracting one of the observed emigration values

such that [4.8] should, in fact, read
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Figure 4.12.  Simulated persistence time distribution (triangles) from [4.11] where rt, jt, at, and Et

are chosen at random from the values of Table 4.2 (excluding the 1979 juvenile survival value),

compared with Stacey & Taper's (1992, Fig. 2) persistence time distribution for a "closed

population" (histogram).  The solid line is given by the formula [4.3] when emigration is included

as a component of adult survival (see text).
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where Et is the number of individuals lost through emigration.  Allowing for

emigration by randomly selecting one of the observed numbers of emigrating

individuals each iteration of the model produces a numerical persistence time

distribution very close to that presented by Stacey & Taper (Fig. 4.12).

Stacey & Taper's aim in modelling the acorn woodpecker population as if it were

closed is to provide a baseline against which to measure the importance of additional

factors (immigration and density dependence) in ensuring population persistence.  It

is debatable whether the assumption that the population is closed should force
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individuals known to have emigrated from the population (despite the fact it was

below the maximum of 52 individuals) to remain in the population, or whether these

should be treated as additional losses.  Despite their explanation, Stacey & Taper

seem to have chosen to treat these as additional losses.  Thus, to adequately apply the

theory developed in this chapter, the mean and variance of the multiplicative growth

rate, lt, must be calculated treating the individuals known to have emigrated as

deaths.  Defining at to be the compound survivorship representing the probability

that a breeding adult in year t has not died or emigrated by the beginning of the

breeding season in year t + 1 leads to the expression

a t t t t tN a N E= − [4.12]

Using at instead of at in the calculation of the multiplicative growth rate gives an

expression for the multiplicative growth rate in each of the years for which data is

available

lt
t t t t t

t

r j a N E

N
= + −

2
[4.13]

which leads to a mean of 0.955 and a variance of 0.109 (see Table 4.3).  This is

equivalent to a long run growth rate (m) of −0.103 with variance 0.113.  These values,

when inserted in [4.3], result in the persistence time distribution given by the solid

line in Fig. 4.12.  Despite the incorporation of emigration in the estimated

multiplicative growth rate, the persistence time distribution that results from Stacey

& Taper's simulation method is still not well represented by the simple multiplicative

model with an upper limit.  Stacey & Taper's simulations predict smaller modal

persistence times and have a considerably shorter tail of long persistence times than

the model distribution.

The reason for the continuing discrepancy between the model of this chapter and the

simulations carried out by Stacey & Taper seems to be due to their simulation

methodology.  While they checked that the adult and juvenile survival rates, and the

reproductive rate, were not correlated with each other they do not appear to have

considered correlations between these parameters and the number of individuals

emigrating each year, despite the fact that the observed emigration values have

apparently been included in the simulation.  In fact there is a significant positive

correlation between the observed juvenile survival rate and the number of individuals

surviving the winter, but leaving the population prior to breeding (Spearman's rank

correlation, r = 0.7625, p = 0.0165 [one sided test]).  The effect of neglecting this

correlation and treating the emigration rate as an independent parameter, as Stacey &
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Taper appear to have done in their simulations, is to subtly introduce inverse density

dependence.  There are 6480 combinations of the observed survival, reproductive and

emigration rates, excluding the 1979 juvenile survival rate.  Using [4.13] the mean

multiplicative growth rate, where at, jt, rt and Et are chosen independently from the

set of observed values, can be calculated for all population sizes between the lower

bound of two individuals and the upper bound of 52 individuals, as determined by the

number of available territories.  This is illustrated in Fig. 4.13, which demonstrates

that the mean growth rate declines dramatically when the population size falls below

10 to 15 individuals.

A similar situation results if the survival and reproductive rates are chosen from

normal distributions and the number of emigrants from a poisson distribution.  This
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Figure 4.13.  The spurious inverse density dependence introduced into the multiplicative growth

rate as a result of choosing emigration rate independently from the observed data (+).  The mean

growth rate, l , was calculated by taking the mean of the 6480 possible combinations of

demographic parameters at each population size and applying eqn. [4.13].  A more general model

where at, jt and rt are chosen from normal distributions with mean and variance from the data of

Table 4.2, and Et from a poisson distribution with mean from the data of Table 4.2 produces a

similar result - each point (◊) is the mean of 8000 values of lambda where the component

demographic parameters have been chosen independently.
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is due to the fact that at smaller population sizes a given number of emigrants

represent a larger proportion of the population than they would do at larger

population sizes.  Stacey & Taper thus fail in their stated aim of establishing the

likely persistence time for a closed population with a density independent growth

rate.

This spurious fall in growth rate at smaller population sizes is responsible for the

shorter persistence times observed in Stacey & Taper's simulations relative to the

persistence times predicted by the model of this chapter.  Because the method of

estimating the multiplicative growth rate employed here [4.13] does not rely on the

independence of any of the demographic components, the solid line in Fig. 4.12 is

likely to be a better indication of the distribution of persistence times for the acorn

woodpecker population in the absence of immigration.  However, despite the

problems with Stacey & Taper's simulation method noted here, many of their

conclusions are supported by the application of the methods of this chapter.  For the

case where the population growth rate is estimated with the inclusion of the observed

emigration the modal persistence time is seventeen years (this increases to 21 years

for the model [4.8] where the population is truly closed and emigration is prevented).

The probability of persistence for 70 years in the model where emigration is

permitted is less than 0.01.  While this is considerably larger than the probability of <

0.000001 that Stacey & Taper estimate from their simulations, it still suggests that

survival for this length of time is relatively unlikely (given that the mean and

variance of the multiplicative growth rate do not change).  As Stacey & Taper report,

the population of acorn woodpeckers in Water Canyon is known to have survived for

at least 70 years.  They consider two candidate mechanisms that may lead to

increased persistence times: immigration from other subpopulations in the

Magdalena Mountains, and density dependence leading to an increased population

growth rate at low numbers.

The effects of immigration on persistence time can be incorporated in the model by a

similar mechanism to that used to incorporate emigration.  If the population growth

rate for each of the years 1975 to 1983 is recalculated using the formula

lt
t t t t t

t
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= + − +

2
[4.14]

where I is the effective immigration rate (that is, the number of individuals arriving

in Water Canyon and successfully joining the breeding population each year) then it
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Figure 4.14.  The effects on mean (• ) and modal (+) persistence time of a set number, I, of

individuals joining the population each year.  Note that the ordinate is plotted on a logarithmic

scale.

is possible to again estimate the mean and variance of this multiplicative growth rate

for different levels of effective immigration.  The effects on persistence time are

demonstrated in Fig. 4.14.  In common with Stacey & Taper's results persistence time

increases substantially as the effective number of immigrants per year is increased.

In fact, there is considerable evidence from the data of Table 4.2 that interchange

with other breeding groups is an important factor in the Water Canyon woodpecker

population dynamics.  The number of immigrants each year can be inferred by

calculating, using [4.11], the size of breeding population that would be expected in

the absence of immigration and relating this to the actual breeding population

recorded (Table 4.3).

In most years there is evidence for an effective immigration of up to around 10

individuals.  In two years (1977, 1977), however, a negative number of immigrants is

produced by this method.  In the analysis above it was assumed that excess birds over

the maximum number of breeding individuals that the canyon could support were

lost to the population.  In fact emigration to other subpopulations may be occurring at
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Table 4.3.  Various quantities derived from the data of Table 4.2.  The multiplicative growth rate, lt,

without emigration is given by [4.10]; the expected number of adults is the number of adults predicted

each year from the observed demographic rates without any emigration or immigration (from [4.8]),

and the estimated immigration is the difference between the expected number of breeding adults and

the observed number, taking account of known emigrants.  The compound survival is given by [4.12]

and the multiplicative growth rate, lt, with emigration is by [4.13].

Year

lt  without

emigration

Expected

no. of adults

Estimated

immigration

Compound

survival, at

lt with

emigration

1975 1.48 0.46 1.41

1976 1.09 67.91 -17.91 0.59 1.00

1977 1.13 49.97 -8.97 0.69 1.10

1978 0.81 45.02 7.98 0.34 0.77

1979 0.54 41.51 10.49 0.54 0.54

1980 1.45 28.08 3.92 0.69 1.45

1981 0.87 46.40 0.60 0.64 0.85

1982 0.55 40.17 9.83 0.47 0.53

1983 0.96 27.07 8.93 0.58 0.93

1984 33.67 2.33

mean 0.987 0.556 0.955

sample variance 0.114 0.013 0.109

levels greater than those recorded.  This is closely related to the discussion at the end

of chapter 3 where it was suggested that fragmented populations may persist longer

than any of the sub-populations involved.  In the case considered here, the upper limit

to the number of breeding territories may produce a form of density dependent

emigration.  Assuming that the environmental variation, which seems to influence

juvenile survivorship in particular, affects subpopulations independently to some

extent then excess individuals from a good year's breeding in one subpopulation may

swell the numbers of another subpopulation which experienced a poorer recruitment.

Such interchange will, of course, not only produce longer persistence in the

component subpopulations, but lead to persistence of the species in the wider area.

As Stacey & Taper point out, the acorn woodpecker appears to have solved the

problem of persistence in a fragmented resource landscape.  Again, see Gilpin &

Hanski (1991) for further consideration of the dynamics of fragmented populations.
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The other mechanism postulated as contributing to persistence times greater than

those predicted by the model of [4.11] was an increased population growth rate at

small population sizes.  As the plots of Fig. 4.15 show, there is ample evidence in

Stacey & Taper's data (Table 4.2) that such density dependent effects do occur.

While the survival rate of fledged young appears largely independent of population

size, both adult survival and the mean number of young per pair show evidence of a

decrease with increasing population size (though neither are quite significant at the

5% level when a simple linear regression is calculated).  When known emigrants are

included with adult survival to produce an estimate of compound survival, a

significant decrease in survival with population size is observed.  The assumed net

interchange of birds with other acorn woodpecker subpopulations also shows a

significant decrease with the predicted population size in the absence of interchange.

This is heavily influenced by the three negative values representing emigration of

significantly more individuals than actually observed.  The ratio of the observed

breeding population in one year to that in the preceding year measures the realised

population growth rate.  Again a significant decrease with increased population size

is observed, suggesting that the actual "equilibrium" population size is around 44

individuals.

Stacey & Taper do incorporate the effects of density dependence in their simulation

model.  They fit various models to the growth rate defined, quite properly, as
r N Nt t t= +ln /1b g .  Unfortunately their Fig. 5, which plots this growth rate against

population size, shows growth rates which bear scant resemblance to the values that

should occur given the data they present.  For instance, their plot suggests that only

one value of rt is positive.  The data of Table 4.2 suggest there should, in fact, be five

positive values.  As their simulations of density dependent models are based on

fitting various models to the growth rates they show, their results should be treated

with some caution.  However their general conclusion, that persistence times are

enhanced by density dependent effects acting to regulate the woodpecker population

around some "equilibrium" size, seems sound.

Various analytical methods to determine the effect of density dependent growth rates

on the persistence time of populations are investigated in subsequent chapters.

However, the example provided by the acorn woodpecker demonstrates the

usefulness of the simple multiplicative model with an upper limit to population size

in the analysis of the persistence of real biological populations.
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Figure 4.15.  The relation of various demographic parameters to population size.  Probability

values given are the probability that slope resulting from a linear least squares regression is zero. (a)

Measured adult survival against observed number of breeding adults (p = 0.0576); (b) juvenile

survival versus breeding adults (p = 0.434); (c) reproductive rate versus breeding adults (p =

0.0944); (d) compound survival (from [4.12]) against breeding adults (p = 0.0464); (e) net assumed

interchange (the difference between the number of observed breeding adults and the expected

number of breeding adults from [4.8]) against the expected number of adults (p = 0.0088); (f) the

realised population growth rate (Nt+1/Nt) against the observed number of breeding adults in year t (p

= 0.0133).
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Chapter 5

Persistence time in density dependent models
________________________________________
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Introduction

Approximation of the persistence time distributions of the linear models discussed in

chapters 3 and 4 by the first passage time distributions of the Wiener process with

suitable boundary conditions provided a very general result for persistence time in

density independent population models.  In contrast, the wide variety of ways in

which density dependence can be formulated means that such general results for non-

linear models are unlikely to be forthcoming.  In order to gain a feeling for the kind

of persistence time distributions that may arise in density dependent models, this

chapter examines persistence time in stochastic interpretations of the familiar logistic

model which remains the most widely known density dependent population model,

despite problems of assigning practical ecological meaning to its parameters.

Two distinct approaches to the problem of persistence in logistic models are

investigated here: (i) transformations of the stochastic differential equation such that

the first passage time results for the Wiener and Ornstein Uhlenbeck processes

(chapter 2) can be invoked to provide exact results for the persistence time; and (ii)

an examination of whether persistence time results for locally linear approximations

to the full non-linear models can provide useful information on persistence time in

the full model.  While neither approach is without problems, some qualitative

features of persistence time are forthcoming, at least for the case where a population

is regulated around some mean value.

Exact results for continuous time stochastic logistic models

Despite its encouraging title this section reports work which is limited by some quite

severe restrictions, both in the models employed and the methods used.  The work

here follows up work by Goel & Richter-Dyn (1974) using their methods to

investigate persistence time in a logistic model.  In contrast to the other models

considered in this thesis which are phrased in discrete time (but use continuous time

approximations) the starting point here is the continuous time logistic.  In the well

known deterministic logistic model the change in population size through time is

described by the differential equation

dN

dt
rN

N

K
= −FH

I
K1 [5.1]

A common approach to considering the effect of environmental variation in such

deterministic models is to replace one of the constant parameters (r or K) by a

randomly varying parameter with some mean and a variance term given by scaled
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white noise, giving rise to a stochastic differential equation.  This "heuristic"

approach (Turelli 1977) contrasts with the situation in chapter 2 where stochastic

differential equations arose as continuous time limits of discrete models.  The non-

linear stochastic differential equations in this chapter have the general form

dX t x dt x dW( ) ( ) ( )= +a b [5.2]

In contrast to the cases considered in chapter 2, b is now a function of x.  This means

that the problem, which was only alluded to previously, of different ways of

interpreting such SDEs must now be tackled.  These difficulties arise, as before, from

the fact that white noise is not a smooth differentiable function.

Ito and Stratanovich calculi

The two most popular interpretations of stochastic differential equations, such as

[5.2], are known as the Ito and Stratanovich calculi (Feldman & Roughgarden 1975;

Turelli 1977).  In the present context the most important difference between these

two interpretations is that they provide different ways of relating the stochastic

differential equation to the diffusion process

∂

∂

∂

∂

∂

∂t
p x t x

x
v x p x t x

x
w x p x t x, ( ) , ( ) ,0 0

2

2 0c h c h c h= − + [5.3]

and it is by manipulation of the diffusion equation that results relating to the

persistence time will be obtained.  Under the Stratanovich interpretation of the

stochastic differential equation, the infinitesimal mean and variance of the diffusion

equation are given by (Turelli 1977, Roughgarden 1979, p.380-381):

v x x
x

x

w x x

( ) ( ) ( )

( ) ( )

= +

=

a
∂

∂
b

b

1

4
2

2

[5.4]

whereas the Ito interpretation gives

v x x

w x x

( ) ( )

( ) ( )

=

=

a

b 2
[5.5]

The simplest way to numerically integrate a stochastic differential equation is to use

Euler's method (Nisbet & Gurney 1982, p.275).  This method, however, corresponds

to an Ito interpretation of the SDE.  One way round this difficulty is to apply the

method suggested by Nisbet & Gurney (1982).  They point out that it is possible to

associate two different stochastic differential equations with a given, well defined,

diffusion process by applying either [5.4] or [5.5].  The process is illustrated in Fig.
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5.1.  The starting point here is the stochastic differential equation heuristically

derived from the deterministic model.  By applying the Stratanovich interpretation

[5.4] a well defined diffusion process is obtained.  Then, by asking the question

"what stochastic differential equation would have led to this diffusion equation had

the Ito interpretation been used ?", a different stochastic differential equation is

obtained.  By numerically integrating the two stochastic differential equations using

Euler's method, both Ito and Stratanovich interpretations of the original stochastic

differential equation result.

Stratanovich interpretation
of SDE (1)

What SDE, under Ito interpretation

(1)

(2)

(3)

Euler integration Euler integration

Ito interpretation
of SDE (1)

Stratanovich interpretation
of SDE (1)

would give diffusion equation (2) ?

dX t x dt x dW( ) ( ) ( )= +a b
dX x

x
x dt x dW= +L

NM
O
QP

+a
∂

∂
b ba f a f a f1

4
2

v x x
x

x

w x x

( ) ( ) ( )

( ) ( )

= +

=

a
∂

∂
b

b

1

4
2

2 v x x

w x x

( ) ( )

( ) ( )

=

=

a

b 2

∂

∂

∂

∂

∂

∂t
p x t x

x
v x p x t x

x
w x p x t x, ( ) , ( ) ,0 0

2

2 0c h c h c h= − +

Figure 5.1.  Flow chart of steps involved in obtaining both Ito and Stratanovich interpretations of a

stochastic differential equation (1) using Euler integration.
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Nisbet & Gurney (1982, p.273) urge that the choice of SDE interpretation should be

made on ecological rather than mathematical grounds.  In the remainder of this

section this sound advice is sadly laid to one side: the method of obtaining

persistence time results presented below relies on the application of the rules of

ordinary calculus.  This implies interpreting the stochastic differential equation in the

sense suggested by Stratanovich.  Turelli (1977) considers the appropriate choice of

calculus working on the basis that heuristically derived SDEs such as [5.2] are only

ever intended as approximations to biological reality.  He concludes that the

Stratanovich interpretation is appropriate when the "true" underlying process is a

continuous time process subject to continuous noise.  Turelli suggests that in most

situations in population biology environmental factors are indeed likely to be

autocorrelated to some extent, but that underlying process is also characterised by

events discrete in time such as seasonal breeding.  Where the "true model" is a

difference equation subject to autocorrelated noise neither the Ito nor the

Stratanovich interpretation is necessarily appropriate.  However, Turelli shows that

for a suite of simple models the Ito interpretation is generally more biologically

reasonable.

It is against this background that the analysis of this section proceeds.  From the

foregoing paragraphs it may safely be concluded that quantitative estimates of

persistence time based on the following should be treated with a fair amount of

scepticism.  However, I believe that the qualitative conclusions (in particular for the

logistic with random carrying capacity) are useful.  In the specific cases considered

later in this section, the difference that an Ito interpretation of the model would make

to the persistence time distribution is considered, and investigated numerically.

Transformation method for persistence time distributions

Consider a stochastic differential equation of the form

dx

dt
x x F t= +a b( ) ( ) ( ) [5.6]

where F(t) is Gaussian white noise with zero mean and unit variance.  Goel &

Richter-Dyn (1974) demonstrate the solution of such equations by transformation to

simpler equations in a variable z.  Dividing the stochastic differential equation [5.6]

by b(x) gives
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dz

dt
v z F t= +$( ) ( ) [5.7]

where

dz
dx=

b (x) [5.8]

and

$( )
( )

( )
v z

x z

x z
=

a

b

a f
a f [5.9]

This corresponds to the diffusion equation

∂

∂

∂

∂
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k z z t

t z
v z k z z t

z
k z z t

0

0

2

2 0

1

2

, $( ) , ,
c h

c h c h= - + [5.10]

where k z z t0,c h is the probability density function for z.  The probability density

functions for the untransformed and transformed processes, p x x t0,c h and k z z t0,c h,
are linked by the relation

k z z t p x z x t x z0 0, ( ) , ( )c h c h a f= b [5.11]

The aim here is to use Goel & Richter-Dyn's transformation method to obtain the
probability density function g t x a0,c h of the first passage time, T - the time taken for

a population initially of size x0 to reach a lower threshold size of a (a < x0).

Following the same procedure as that used in chapter 2, a is represented as an

absorbing barrier.  Then

g t x a
d

dt
p x x a t dx

dp x x a t

dt
dx

x
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[5.12]

using the relation [5.11] and representing the absorbing barrier for the transformed

process z by b.
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By the chain rule,

∂

∂

∂

∂

∂

∂x
w x k z z b t

z
w x k z z b t

z

x
( ) , , ( ) , ,

1
2

1
2

0 0c he j c he j=

and from [5.8] above 
∂

∂

z

x w x
=

1
1
2( )

Thus

g t x a
z

k z z b t g t z b
z b

0 0 0

1

2
, , , ,c h c h c h= =

=

∂

∂
[5.13]

where g t z b0,c h is the first passage time form z0 to b.

There is, therefore, a very simple relationship between the first passage time

distribution for the original process, x, and that of the transformed process, z.

The logistic model with random variation in the growth rate, r

Starting with the differential equation for the deterministic logistic model [5.1]

random variation can be introduced into the growth rate, r, by replacing the constant

by the stochastic form:

r t r F ta f = +s ( ) [5.14]

where r  is the mean growth rate with variance s2, and F(t) is Gaussian white noise.

This gives the stochastic differential equation

dN

dt
rN

N

K
N

N

K
F t= −FH

I
K + −FH

I
K1 1s ( ) [5.15]

It should be noted at the outset that this model has some rather strange properties

(which will become clear below).  However, it seems appropriate to consider it

further for two reasons: it is easily obtained (perhaps all to easily) by the heuristic

process of allowing one of the parameters in the deterministic logistic to suffer a

random "wobble"; and, in addition, this model has already been discussed in the

context of risk assessment in population managment by Ginzburg et al. (1982), who

fail to comment on its peculiarities.

Using the Stratanovich interpretation [5.4] yields the infinitesimal mean and variance

for the corresponding diffusion process
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In order to produce numerical realisations of the model [5.15] the stochastic

differential equation can be rewritten expressing the white noise in terms of the

increment of the Wiener process

dN rN
N

K
dt N

N

K
Z t dt= -

F
H

I
K + -

F
H

I
K1 1s ( ) [5.17]

Under Euler integration this represents the Ito interpretation of the stochastic

differential equation [5.15].  Following the method outlined in Fig. 5.1, the

Stratanovich interpretation of [5.15] is obtained by Euler integration of

dN N
N

K
r

N

K
dt N

N

K
Z t dt= -

F
H

I
K + -

F
H

I
K

L
NM

O
QP

+ -
F
H

I
K1

2
1 1

2s
s ( ) [5.18]

Realisations of [5.18] are shown in Fig 5.2 and of [5.17] in Fig 5.3.  From these

figures it is could perhaps be suggested that the Ito and Stratanovich interpretations
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Figure 5.2.  Realisations of the logistic with random r, [5.15], using the Stratanovich interpretation

(Euler integration of [5.18]).  r– = 0.3, K = 300.  (a) s2 = 0.3, (b) s2 = 0.5, (c) s2 = 0.9, (d) s2 = 1.3.
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Figure 5.3.  Realisations of the logistic with random r, [5.15], using the Ito interpretation (Euler

integration of [5.17]).  r– = 0.3, K = 300.  (a) s2 = 0.3, (b) s2 = 0.5, (c) s2 = 0.9, (d) s2 = 1.3.

of [5.15] produce broadly similar realisations.  In fact, it is possible to be more
specific.  Where the stochasticity is weak s 2 2 < rc h  then under both Stratanovich

and Ito interpretations all realisations converge to the close neighbourhood of K

(Roughgarden 1979).  With stronger stochasticity then, under the Ito interpretation,

some realisations may alternatively approach zero (in the absence of an absorbing

barrier at a larger population size).

The realisations of Figs. 5.2 & 5.3 demonstrate the peculiar feature of the model

(obvious from examination of [5.15]) which is that the variance in the population

growth rate is affected by the density dependent term, as well as the mean growth

rate.  Thus, the variance of the growth rate, r, approaches zero as the population size

approaches the carrying capacity, K, which acts as a "built-in" absorbing state (as

opposed to the absorbing states imposed, through boundary conditions, on the

processes considered in chapter 2).  Thus any realisations reaching the vicinity of K

are trapped there and have no possibility of excursions down to the threshold level.

This is probably rather unrealistic from a biological point of view as it is difficult to

conceive of mechanisms where the effects of environmental variation on population

size are affected to such an extent by population density, and where a population
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attaining the maximum sustainable size is destined to remain at this level.  However,

as some of the realisations in Figs. 5.2 & 5.3 demonstrate, the population may

fluctuate for some time at sizes below the carrying capacity when the variance in r is

large relative to the mean.  In such cases (and also perhaps where the carrying

capacity is very large) the model, and its persistence time distribution, may be of

some interest.

The distribution of population size

Goel & Richter-Dyn (1974) introduce the transformation

z N
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K
dN= −FH

I
K

L
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O
QP
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I
K

L
NM

O
QP

−
1

1 1
1

s
sln / [5.19]

in order to obtain the probability density function for N.  Rewriting [5.15] in terms of

the transformed variable yields the stochastic differential equation

dz

dt

r
F t= +

s
( ) [5.20]

which is the SDE for an unrestricted Wiener process for which the probability density

function was given in chapter 2.  Using [5.11] and [5.16] gives the probability

density function
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To obtain the distribution of times that the population persists above a level Na it is

necessary to consider a lower boundary, b, on the transformed process, z

b N
N

K
b za

a= −FH
I
K

L
NM

O
QP

<1
1 0

s
ln / b g [5.22]

such that the transformed process now has diffusion equation

∂
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k z z b

z
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2
0

2

1

2

, , ,c h c h c h
= - + [5.23]

with boundary condition k b z t0 0,c h = .

Using chapter 2 [2.23] the probability density function for the transformed variable in

the presence of the lower boundary can easily be found
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and again applying the relations [5.11] and [5.16] gives the probability density

function for the population size, N, in the presence of the lower threshold:
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[5.25]

The persistence time distribution

The persistence time distribution for the transformed variable is the first passage time

distribution for the Wiener process, and is again given in chapter 2 [2.24]

g t z b
z b

t

b z
rt

t0
0

3

0

2

2 2
, expc h = − − − −F

H
I
K

F

H

G
G
G

I

K

J
J
Jp

s [5.26]
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Using [5.13] and [5.19], the persistence time distribution for the untransformed

processes is obtained simply by substituting

z
N

N K
b

N

N K
a

a
0

0

0

1

1

1

1
=

-

F
HG

I
KJ

=

-

F
HG

I
KJs s

ln
/

, ln
/

[5.27]

Thus the required persistence time distribution is
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s p
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[5.28]

This corresponds with the result previously obtained by Ginzburg et al. (1982) for the

logistic with random r (but who fail to mention the necessity of assuming a

Stratanovich interpretation in order to make the required transformations to the

Wiener process).  In Fig. 5.4 the persistence time distribution given by [5.28] is

compared with distributions obtained numerically by Euler integration of [5.17] and

[5.18].  In these cases the persistence time distributions resulting from Ito and

Stratanovich interpretations of [5.15] are in fact very similar, despite the fact that

s 2 2 > r  in three of the four examples.  The persistence time distribution of [5.28],

not surprisingly, gives a slightly better fit to the distributions obtained using a

Stratanovich interpretation.  Nevertheless, in the examples illustrated at least, the Ito

case is approximated by [5.28] extremely well.  In Fig. 5.4b to d the Ito interpratation

results in a slightly higher probability of reaching the lower threshold at short times.

This is presumably due to the fact that in these cases the Ito interpretation results in

some realisations approaching zero rather than the carrying capacity, K.

Because the persistence time distribution [5.28] is simply the first passage time

distribution of a scaled Wiener process, many of the results of chapter 2 are again

available.
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Figure 5.4.  Persistence time distributions obtained by Euler integration of [5.18] (Stratanovich

interpretation of [5.15]) and [5.17] (Ito interpretation of [5.15]).  Lines from persistence time

distribution [5.28], obtained by transformation method.  (a) r– = 0.3, s = 0.5, K = 300, N0 = 150, Na

= 100; (b) r– = 0.3, s = 1.1, K = 300, N0 = 150, Na = 100; (c) r– = 0.1, s = 0.7, K = 300, N0 = 150, Na

= 100; (d) r– = 0.0, s = 0.5, K = 300, N0 = 150, Na = 100.
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The probability of ultimately reaching the lower threshold is given by
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[5.29]

As the model [5.15] is really only of any interest when r  is non negative, there will

always be a finite probability that the lower threshold is not reached (Ginzburg et al.

(1982) consider cases where r  is negative without apparently realising the biological

absurdity of a model where the density dependent effect is to decrease the mean

growth rate as the population get smaller).  In contrast, however, to the linear model

of chapter 2, this is not due to the fact that populations are attaining infinite size, but

rather to the fact that realisations are trapped at the built-in absorbing barrier at K.

The mean persistence time, conditional on reaching the threshold, is given by

mean=
−

F
HG

I
KJ

−
−

F
HG

I
KJ

F
HG

I
KJ

ln
/

ln
/

N

N K

N

N K

r

a

a

0

01 1

[5.30]

Thus the mean persistence time is unaffected by the variance in the population

growth rate, and an increased mean growth rate leads to decreased mean persistence

times.  This is because  as r  is increased it becomes increasingly easy for realisations

to reach the carrying capacity, and the only realisations reaching the threshold are

those that experience a run of low growth rates early in the realisation.  This is

essentially the same reason that increasing positive long run growth rates, m, in the

linear model led to shorter mean persistence times.  The modal persistence time is

given by
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[5.31]

Like the mean persistence time, the mode falls as the mean growth rate is increased

(Fig 5.5).  However, in contrast to the expected persistence time, the modal

persistence time is affected by the magnitude of the variation in growth rate.  This is

illustrated in Fig. 5.6 which demonstrates that increased variance in the growth rate

produces a reduction in modal persistence time.

Figure 5.7 investigates the change in mean and modal persistence time as the carrying

capacity, K, is increased.  Both mean and mode decrease, accompanied by an

increasing ultimate probability of reaching the lower threshold.  These changes

appear to be due to the fact that increasing the carrying capacity means that the "safe

state" that K represents is further away from the initial population size and the

population is, therefore, more likely to reach the lower threshold.

Discussion

Examination of the logistic model with random growth rate demonstrates that it is

possible to get exact results for the models persistence time distribution by

transformation to a simpler stochastic process for which results are available.

Unfortunately the method relies on assuming a Stratanovich interpretation of the

model's stochastic differential equation, thought the simulations carried out suggest

that persistence time under an Ito interpretation is broadly similar.
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Figure 5.5.  Modal persistence time (from [5.31]) in the logistic with random r as r– is increased.   s
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0.5, K = 300, N0 = 150, Na = 100.
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However, many aspects of the persistence time distribution considered here can be

attributed to the rather peculiar situation caused by the built in absorbing state at the

carrying capacity, K.  This effectively guarantees persistence to any realisation

attaining a population size near K, due to the fact that variation in the growth rate

decreases with population size.  This feature would seem to have more to do with the

way in which environmental variance has been incorporated in the model than

biological reality.  It would, therefore, be rather imprudent to attach any biological

significance to the persistence time results obtained here.  The issue of whether the

Ito or Stratanovich calculus is appropriate is rather less important than recognition of

the fact that this simple extension of the deterministic logistic model sheds little light

on the issue of persistence in regulated populations.

Logistic model with random carrying capacity, K

The logistic model with random r considered above was applicable, at best, to a

population growing from a level well below the carrying capacity.  Because the

variation in r was density dependent the absurd situation was produced where any
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Figure 5.7.  Mean ( ) and modal (--) persistence time as a function of K.  r– = 0.5, s2 = 0.5, N0 =

150, Na = 100.
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population growing to near the level of the carrying capacity persisted indefinitely.

Here the other possible stochastic extension of the simple logistic is considered,

namely where the carrying capacity is affected by environmental variation.  This

situation is likely to be of greater interest in a management context than the logistic

model with random r, because the census data available for populations often shows

an average growth rate around zero, but are insufficient to distinguish whether the

population is unregulated with a low growth rate, or fluctuating around some

"equilibrium" size.  It is therefore of interest to understand the differences between

presistence in a model with varying carrying capacity, and persistence in a linear

model with a low growth rate.

Fluctuations in the carrying capacity must be introduced into the logistic model [5.1]

through a function linear in K  (Roughgarden 1979, p.379).  Following Goel &

Richter-Dyn (1974) this is done by defining M(t), where

M t
K t

( )
( )

= 1
[5.32]

Then fluctuations are introduced in M such that M t M F tM( ) ( )= +s .  Substituting in

the original deterministic logistic model [5.1] leads to the stochastic differential

equation

dN

dt
rN rN M F tM= − +2 s ( ) [5.33]

In order to investigate the distribution of population size, Goel & Richter-Dyn

introduce the transformation

z
N M

rM

=
−1/c h

s
[5.34]

The transformed variable, z, has the stochastic differential equation

dz

dt
rz F t= − + ( ) [5.35]

This is the SDE for an Ornstein-Uhlenbeck process.  Goel & Richter Dyn (1974) and

Levins (1969) show that asymptotically, as t Æ •, the reciprocal of population size,

1/N, is normally distributed with mean M  and variance

 
1

2 2s Mr
[5.36]

Realisations of the model [5.33] (Fig. 5.8) again show a certain amount of similarity

between the Ito and Stratanovich interpretations.  However differences do exist,
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dicussed by Turelli (1977) and Roughgarden (1979).  The infintesimal means for the

associated diffusion processes are

v x rN rMN

v x rN rMN r N

a f
a f

= −

= − +

2

2 2 2 3

Ito interpretation

Stratanovich interpretations
[5.37]

The extra term under the Stratanovich interpretation means that, despite the density

dependent regulation, explosion to infinite population sizes can take place.  The
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Figure 5.8.  Realisations of the logistic with random variation in the carrying capacity.

Stratanovich interpretation obtained by Euler integration of [5.40], Ito interpretation using [5.39].

M– = 0.0002, sM = 0.00009, N0 = 5000. (a) r = 0.01; (b) r = 0.05; (c) r = 0.25.
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model itself is also not without problems.  As the range of the random variable is not

restricted negative carrying capacities may also arise on occasions, in which case the

model becomes an undamped quadratic growth model (Turelli 1977).  The

persistence time results that follow are therefore only likely to be of interest when the

carrying capacity, and its variance, are not too large.

Persistence time

As the transformed variable, z, is described by an Ornstein-Uhlenbeck process,

results for the persistence time are again available in chapter 2.  In particular, the

mean persistence time of a population initially of size N0 above a lower threshold

size, Na, is given by
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[5.38]

where y(x) and c(x) are defined in [2.51].

Again, numerical simulations can be used to check the extent to which the Ito

interpretation of the stochastic differential equation [5.33] differs from the mean

persistence time based on a Stratanovich interpretation.  Realisations of the model

[5.33] using an Ito interpretation of the Wiener increment are obtained by Euler

integration of

dN

dt
rN rN M rN Z t dtM= − −2 2s ( ) [5.39]

while Stratanovich realisations are obtained by Euler integration of

dN

dt
rN rN M r N rN Z t dtM= − + −2 2 2 3 2s s ( ) [5.40]

Table 5.1 compares mean persistence times for the logistic with a randomly varying

carrying capacity [5.33] given by [5.38] with numerical estimates using both the

Stratanovich and Ito interpretations of [5.33].  The mean persistence time obtained by

the transformation method is close to the numerical estimates obtained under both Ito

and Stratanovich interpretations.  However, given that [5.38] is an exact result for the

Stratanovich interpretation, it is noticeable that the corresponding numerical

estimates produce a slightly longer mean persistence time.  The explanation for this

discrepancy is associated with the problems of numerical simulation, in particular the
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Table 5.1.  Mean persistence times given by [5.38] compared with persistence times estimated under

Ito (Euler integration of [5.39]) and Stratanovich (Euler integration of [5.40]) interpretations of the

logistic with randomly varying carrying capacity [5.33].

Expected persistence time

Exact result Numerical estimates
r M– sM

N0 Na [5.38] Ito Stratanovich

(a) 0.5 0.01 0.002 100 90 5.0186 5.0531 6.6532

(b) 0.5 0.01 0.002 100 85 14.055 13.108 17.252

(c) 0.5 0.01 0.002 100 80 54.028 45.676 64.066

(d) 0.9 0.01 0.002 100 85 3.8469 3.6983 4.9285

(e) 0.5 0.01 0.005 100 85 2.4705 1.9628 3.1210

use of a fixed time step producing a discrete approximation to the continuous model.

These problems are discussed further in the next section (where local linearisation

methods are used in the estimation of persistence time in a discrete time logistic

model).  For the present it should be noted that the main difference between the

Stratanovich and Ito interpretations is that the mean persistence time is generally less

under the Ito interpretation, a fact that results from the diffusion process under a

Stratanovich interpretation having a larger infintesimal mean at smaller population

sizes (Turelli 1977).

Using the result of Nobile, Ricciardi & Sacerdote (1985) (see chapter 2 [2.48]) it

should be possible, for large times, to approximate the probability density function of

the persistence time distribution as

g t N N
E T N

t

E T N
a

a a

0

1

0 0
,

,
exp

,
c h

c h c h= −
F
HG

I
KJ

[5.41]

where E T Na0,c h  is given by [5.38] above.  This has been done for several of the

numerical persistence time distributions that were estimated in order to provide the

mean persistence time estimates of Table 5.1.  The results are shown in Fig. 5.9 and

demonstrate that, for these examples, [5.41] provides an useful approximation to the

distribution of persistence times for most of the distribution, with the exception of t

small.
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Figure 5.9.  Numerical estimates of the persistence time distribution of the logistic with random K

under both Ito and Stratanovich interpretations (obtained by Euler integration of [5.39] and [5.40]

respectively) with lines showing the approximated distribution given by [5.41].  Parameters given in

Table 5.1 (a to c).

Features of the persistence time distribution

Figs. 5.10, 5.11 and 5.12 investigate the effect on the expected persistence time of

changes in one of the parameters of the model.  Fig. 5.10 demonstrates that an

increased population growth rate, r, actually leads to a rapidly declining expected

persistence time in the logistic with random carrying capacity.  This is because a

higher growth rate leads to greater variance in population size [5.36] (Fig. 5.8).  This
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Figure 5.10.  Mean persistence time for the logistic with randomly varying carrying capacity as r is

increased.  M– = 0.002, sM = 0.00009, N0 = 5000, Na = 3500.

can be attributed to the higher growth rate making the population size more reactive

to changes in the carrying capacity.  Goel & Richter-Dyn (1974) give the most

probable (i.e. modal) population size as  1 2 3M r M−s .  Modal population size is

thus reduced by an increased growth rate, a fact which will also contribute to the

decreased expected persistence time.

It is clear from [5.36] and the expression given above for modal population size that

the variance in the carrying capacity, s M
2 , acts in a similar way to the population

growth rate, r.  Therefore increased environmental variation in the carrying capacity

reduces the expected persistence time of the population.  This is illustrated in Fig

5.11.

Fig. 5.12 demonstrates the difference in expected persistence time for different lower

threshold values, given a constant growth rate and constant carrying capacity mean

and variance.  For lower thresholds fairly near to the mean carrying capacity expected

persistence times are, of course, short.  As lower thresholds are considered the

expected persistence time increases rapidly .
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Figure 5.11.  Mean persistence time for the logistic with randomly varying carrying capacity as the

variation in the carrying capacity increased.  r = 0.5, M– = 0.002, N0 = 5000, Na = 3500.
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Figure 5.12.  Mean persistence time for the logistic with randomly varying carrying capacity as the

lower threshold is increased.  r = 0.5, M– = 0.002, sM = 0.00009, N0 = 5000.
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Discussion

The model considered here, with a randomly fluctuating carrying capacity, is of

rather more interest than the previous model with fluctuations introduced into r.

However, as mentioned earlier, this model is not without problems resulting both

from the enforced Stratanovich interpretation and the easy, but rather non-rigorous,

method of producing a stochastic logistic by simply adding noise to a parameter of

the deterministic logistic model.  For instance, as found numerically in Table 5.1, an

Ito interpretation of the SDE [5.33] produces a shorter expected persistence time.

Despite this, the general, qualitative, features of the persistence time distribution

investigated here probably represent the features that would arise in a wide range of

density dependent models where the population size fluctuates around some mean

value or "equilibrium" size.  It is reasonably intuitive that in such situations an

exponential distribution persistence of persistence times should arise.  This  reflects

the fact that particularly poor sequences of environmental conditions, causing the

population to leave the 'normal' range of sizes and reach a lower threshold, should

arise more or less randomly in time.  In addition, the rapid increase in expected

persistence time as smaller threshold levels are considered is consistent with the fact

that the probability that a regulated population has an excursion to a low level should

decrease rapidly as the level considered becomes further removed from the

populations normal range, as given, for instance, by the standard deviation of the

population distribution.

While an exponential persistence time distribution seems likely in most situations

where there is some mean or "equilibrium" population size around which the

population fluctuates in a more or less bounded manner, it must be emphasised that

such a situation is not necessarily an inevitable outcome of a non-linear (density

dependent) model.  There are, of course, many instances where (deterministic) non-

linear models have cyclical or chaotic dynamics rather than a point equilibrium, as is

the case with the deterministic logistic model.  Introducing stochasticity into models

other than those where the deterministic case has a point equilibrium may produce

rather different persistence time results than those presented here.  If, for instance, a

population exhibits fluctuations in size largely bounded around a cyclically varying

mean, the persistence time distribution is unlikely to be unimodal.  Nisbet & Gurney

(1982, p.228) show the stepped shape of the curve of probability that extinction has

occured, against time, for one such cyclical model.
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Ginzburg, Ferson & Akçakaya (1990) carried out a simulation study of the effect of

density dependence on persistence.  Using a single functional form, the Ricker stock

recruitment curve, the found that weak to moderate density dependence generally

extended persistence time but strong density dependence shortened persistence times,

relative to the density independent case.  The reason for this is that the weaker

density dependence produces point equilibria in the deterministic case, but stronger

density dependence produces cyclical behaviour.  The additional fluctuations in

population size due to environmental stochasticity means that models with a cyclic

deterministic equilibrium may have a greater probability of reaching some low

threshold size than those models where population growth rate is independent of

population size.

It was suggested previously that in applied situations the situation may often arise

where a population seems to be fluctuating around some level but where, due to

limitations on the data available, it is not possible to say whether the population is

regulated or whether it just has a very low growth rate.  The data available for the

acorn woodpecker population considered at the end of chapter 4 in fact provided

fairly clear evidence that the population was regulated in a density dependent

manner.  The linear model with an upper barrier suggested that in the absence of

immigration or density dependent reproduction or survival the most likely persistence

time of the population would be quite short.  Stacey & Taper (1992) suggest that

much of the variation in population size in the woodpecker population can be

attributed to the annual variation in the production of acorns, the populations

overwinter food supply.  Stacey (1979) described how birds may be forced to leave

the study canyon by a small acorn crop.  Such a fluctuating resource level is of course

an example of a varying carrying capacity so it is of interest to consider the data in

the light of the model presented here and compare the persistence time distributions

obtained with those suggested by the linear model applied previously.  It must be

emphasised however that the continuous time model considered here is far from the

most appropriate model for the acorn woodpecker population.  The woodpeckers

reproduce seasonally (in the spring of each year) and reproduction is thus temporally

distinct from the main impacts of the fluctuating resource levels.  In addition the

parameters of the logistic model with a fluctuating carrying capacity are not readily

equated with the demographic parameters measured by Stacey & Taper.  Proceeding

with these caveats in mind the parameters of [5.33] may be crudely fitted to the data

of Table 4.1 yielding estimates of r = 1.0023, M  = 0.024, s M
2  = 0.0001.  Realisations

of the model with these parameters are shown in Fig. 5.13.
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Figure 5.13.  (a, b) Realisations of the logistic with randomly varying carrying capacity [5.33] with

parameters estimated from Stacey & Taper's (1992) acorn woodpecker (Table 4.1) as r = 1.0023, M– =

0.024, s M
2  = 0.0001. (a) Stratanovich interpretation (from [5.40]), (b) Ito interpretation (from [5.39]).

In both cases an integration time step of 0.01 was used, but the population size is only plotted for
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yearly intervals.  The actual population size recorded by Stacey & Taper in the spring of each year is

shown in (c).

Despite the problems noted above the model, with these parameters, produces

realisations which are similar in appearance to the observed series of population

sizes.   In Fig 5.14 the expected persistence time for the logistic with varying carrying

capacity (with the parameters fitted to Stacey & Taper's (1992) data) is compared

with the expected persistence time for the linear model with a hard upper limit of 52

individuals, and parameters including the effect of immigration, described at the end

of chapter 4.  It is obvious from this figure that the density dependent model has

much greater mean persistence times for lower threshold levels.  For instance, the

logistic considered here has an expected persistence time of 1.34E+24 years above a

threshold of 10 individuals, whereas the linear model with an upper limit of 52

individuals and parameters incorporating the effect of immigration has an expected

persistence time above the same threshold level of only about 11 years.  Density

dependent regulation thus has a major effect in prolonging persistence times in this

situation.
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Figure 5.14.  The natural logarithm of expected persistence time for the logistic with varying carrying

capacity ( r = 1.0023, M– = 0.024, s M
2  = 0.0001, solid line), and the linear model with an upper limit

(l  = 0.955, Var(l) = 0.109, Nb = 52, dashed line) for a range of lower threshold values.  The initial

population size is 52 for both models.
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Applying local linearisation in the estimation of persistence time

While the previous sections have demonstrated that exact solutions to some aspects

of the persistence time problem are possible for certain non-linear population models,

the methods used are not really very general and unfortunately are constrained

somewhat by the problem of different interpretations of stochastic differential

equations.  A technique that has enjoyed great success in determining the stability

properties of deterministic models (Maynard-Smith 1974, May 1974, Nisbet &

Gurney 1982), and estimation of moments in stochastic models (Nisbet & Gurney

1982, ch7, Nisbet, Gurney & Pettiphar 1977), is local linearisation.

Several authors (McNeil & Schach 1973, Chesson 1982, Nisbet & Gurney 1982,

Turelli 1986) have pointed out that many continuous time stochastic population

models which incorporate density dependence give rise to an Ornstein-Uhlenbeck

(OU) process when linearised around the mean.  Similarly, many discrete time

models give rise to an autoregressive process [Renshaw (1987) discusses the

connection between the OU process and autoregressive processes].  As first passage

time results for the OU process are available (see chapter 2) it is worth considering

whether this is a useful route for investigation.

The first question that must be considered is whether persistence time in the full non-

linear model is adequately reflected by that of the locally linear approximation.

Locally linear models specifically consider infinitely small deviations from the

population mean (or from the equilibrium when the stability of a deterministic model

is under investigation).  While this has proved to be a very robust technique in some

instances, there is good reason to suppose that its use in the determination of

persistence times may be more limited.  Given that the lower threshold for which the

persistence time distribution is sought is generally somewhat smaller that the mean

population size, and probably outwith the "normal" range of population size, then the

events which lead to the arrival of a population trajectory at the lower threshold

involve deviations from the mean of some magnitude, and may therefore not be

reflected adequately in the locally linear approximation.

A logistic model and a linear approximation

A simple way to discover whether the persistence time distribution of the locally

linear model is an adequate representation of that of the full model is, of course, to

simply compare the two.  Here the numerically derived passage time distributions for
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a full, non linear, stochastic model and its linearisation are compared.  The model

considered is a discrete time model, as this is less computationally intensive.  Its

linearisation is therefore an autoregressive, rather than an OU, process.  Nevertheless,

in the first instance it allows the testing of the concept of whether a locally linear

model can adequately reproduce the persistence time distribution of the non-linear

model it approximates.  The model investigated here is the discrete time stochastic

logistic of Roughgarden (1975).

Roughgarden considers the discrete logistic with constant intrinsic rate of increase, r,

and random carrying capacity, Kt:

N r
r

K
N Nt

t
t t+ = + −

F
HG

I
KJ1 1 [5.42]

Introducing nt and kt as the deviation from the deterministic equilibrium population

size (N–) and mean carrying capacity (K–) respectively i.e. ,k K K n N Nt t t t= − = −c h
and using the identity 1− + = +K K k k K kt t t/ /c h c h , gives an expression for the

deviation from the deterministic equilibrium in the full model

n r
K

K k
n r

K

K k
k r

k n

K k
nt

t
t

t
t

t t

t
t+ = −

+
F
HG

I
KJ

L
N
M

O
Q
P +

+
F
HG

I
KJ

+ −
+

F
HG

I
KJ1 1 [5.43]

For nt and kt small, K K kt/ + ≈c h 1, and the final term in [5.43] will be negligible.

Thus the full non linear model [5.43] should be approximated by the linear model

n r n rkt t t+ = − +1 1a f [5.44]

Following Roughgarden, attention is restricted here to cases where 0 < r < 2.  This

corresponds to stability in the deterministic model (i.e. where Kt = K).

Local approximation of the moments of the population distribution

Roughgarden investigates in particular the case where kt is a first order autoregressive

process:

k k Zt t t= + − < <−l l1 1 1b g [5.45]

Here Zt is an independent and identically distributed random variable with zero mean
and variance s Z

2.  Then the variance in the carrying capacity, s k
2, is given by

s
s

l
k

Z2
2

21
=

−
[5.46]

and the variance in population size in the linear model is then given by
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a f [5.47]

Roughgarden (1975) considers only the case where the equlibrium of the

deterministic model is used to estimate the mean population size in the stochastic

model.  Thus,  the mean deviation, n–, is estimated to be zero.  In cases where the

variation in the carrying capacity is serially independent (i.e. l in [5.45] is zero) this

"first approximation" can also be improved using locally linear approximations
(Bartlett 1957, Nisbet & Gurney 1982, p.189, Ellner 1985).  Putting ∆N N Nt t t+ += −1 1

and K K kt t= + , [5.42] can be written

∆N rN
N

K k Kt t
t

t
+ = −

+

F
HG

I
KJ1 1

1c h [5.48]

Expanding 1 1+ k Ktc h in a Taylor series allows [5.48] to be written as

∆N rN
N

K
r

N

K
kt t

t t
t+ = −FH

I
K + FH

I
K −1

2

1 ( )other terms [5.49]

Substituting N N nt t= +  leads to

∆n rn
rn

K

rk N n

Kt t
t t t

+ = − − +
+

1

2
2

2

c h
[5.50]

Taking expectations in [5.50], and noting that E n E f N k∆a f a fb g= =0 0,  (as only

cases where l is zero are being considered here), and s n E n E n2 2 2= −c h a f  leads to a

quadratic expression for the mean deviation:

E n
K

E nna f a fd i= − +1 2 2s [5.51]

where s n
2 can be provided by using the linear estimate [5.47] above.  The appropriate

root of [5.51] is

E n
K Kna f

e j
=

− + −1 1 4

2

2s
[5.52]

Roughgarden used a single run of 1000 random numbers to compare the non-linear

and full models.  Here, prior to investigating the persistence time distribution, a more

extensive simulation investigation has been carried out to test the use of the linear
approximations in estimating the moments of the full model, as r, l, and s k

2 are

varied.  Fig. 5.15 demonstrates that the mean value of nt in the full model is generally

less than zero: when l equals zero the approximate mean deviation given by [5.52]

improves upon the assumption that the mean population size in the stochastic model
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is equal to the deterministic equlibrium.  The difference between the numerical

estimate of n– and the prediction of the linear model increases as the variance in

carrying capacity increases, and as r is increased.
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Figure 5.15.  Comparison of the mean deviation from the deterministic equilibrium estimated by

simulation of the full model [5.43] (points) with the approximation [5.52] (dashed line).  Each point

is the result of 5000 simulations, each of 1000 time steps.  Error bars show 95% confidence

intervals. (a) r = 1, K
–
 = 1000, l = 0; (b) K

–
 = 1000, l = 0, sk = 50; (c) r = 1, K

–
 = 1000, sk = 50.
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Lower values of l also reduce the mean of nt in the full model.  The fact that the

mean of nt is lower in the full model than either of the approximations to the mean

from the linear model is likely to have consequences for the reliability of estimates of

the persistence time distribution based on the linear model.  The reduction in the

mean deviation caused by the non-linearities gives the full model a "push" in the

direction of the lower threshold that the linear model does not share.

The variance in nt for the full model is compared with that given by [5.47] for the

linear model in Fig. 5.16.  As the variance in carrying capacity is increased the linear

model has a tendency to underestimate the variance of the full model.  However for

higher values of r, the linear model overestimates the full model variance in nt.  For l

in the range -1 to 1 the variance in nt of the full model is humped (Fig 5.16c)

compared with the constant variance predicted by the linear model.  However the

deviations in Var(nt) for the full model at different values of l are small compared to
the deviations at higher values of r or s k

2.  It is thus safe to conclude that for smaller

values of r and s k
2 the variance given by [5.47] for the linear model is a good

approximation of the variance of the full non linear model.
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Figure 5.16.  Comparison of the variance around the deterministic equilibrium predicted by the linear

model [5.44] (line) with the mean deviation estimated by simulation of the full model [5.43] (points).

Each point is the result of 5000 simulations, each of 1000 time steps.  Error bars show 95% confidence

intervals. (a) r = 1, K
–
 = 1000, l = 0; (b) K

–
 = 1000, l = 0, sk = 50; (c) r = 1, K

–
 = 1000, sk = 50.
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Persistence time distributions

Figs. 5.17 to 5.19 compare the persistence time distributions of Roughgarden's full

[5.43] and linear [5.44] models for various sets of parameters, and different values of

the lower threshold.  To incorporate the linear estimate of the mean deviation from

the deterministic equilibrium in Fig. 5.18 (as l is zero in this case) a second linear

model is used :

n r n n rk nt t t+ = − − + +1 1a fb g [5.53]

where n– is given by [5.52].  For shorter times, the probability of reaching the lower

threshold at a time t, g(t), is consistently smaller for both linear models (the

persistence time distributions of model [5.53] are slightly nearer the full model

persistence time distributions as it takes some account of the fact that the mean

population size in the stochastic model is generally less than the deterministic

equlibrium).  At longer times the distributions tend to cross over giving a higher g(t)

for the linear models.  However, while the values of the persistence time distributions

for the full and linear models are different, the shape of the distributions are broadly

similar.  In particular, the position of the mode is about the same and, where the full

model tends to show a bimodal distribution (e.g. Fig. 5.17b), this feature is also

shown by the linear model persistence time distributions.  The differences between

the linear and full model persistence time distributions in Figs. 5.17 to 5.19 are

consistent with the relationships of Figs 5.15 & 5.16.  The linear and full model

distributions in Fig. 5.17 are closer than those in Fig. 5.18 - this is in line with a

slightly decreased mean(nt) and slightly increased Var(nt) caused by reducing l from

0.5 to 0.  The rather poor match between the full and linear passage time distributions

in Fig. 5.19 can likewise be attributed to the fact that increasing sk to 150 means that

both linear models significantly overestimate the mean, and underestimate the

variance, of the full model's nt.

Various statistics can be calculated for the numerically estimated persistence time

distributions.  If T is the last time for which the distribution was estimated, then the

total proportion of trials reaching the barrier by time T, G(T), is given by

G T g t
t

T

a f a f=
=
∑

1

[5.54]

and the mean persistence time, conditional on reaching the threshold, by

E T tg t G TC
i

T

a f a f a f=
=
∑ /

1

[5.55]
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Figure 5.17.  Comparison of numerical estimates of the persistence distributions for Roughgarden's

full (o) and linear (∑) models; r = 0.5, K
–
 = 1000, sk = 50, l = 0.5,  n0 = 0, k0 = 20.  Lower barriers at

(a) −80, (b) −100, (c) −120.
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Figure 5.18.  Comparison of numerical estimates of the persistence distributions for Roughgarden's

full (o) and linear (∑) models, and the linear model [5.53] (.); r = 0.5, K
–
 = 1000, sk = 50, l = 0,  n0 =

0, k0 = 20.  Lower barriers at (a) −60, (b) −80, (c) −120.
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Figure 5.19.  Comparison of numerical estimates of the persistence distributions for Roughgarden's

full (o) and linear (∑) models; r = 0.5, K
–
 = 1000, sk = 150, l = 0.5,  n0 = 0, k0 = 20.  Lower barriers

at (a) −300, (b) −400, (c) −500.
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Table 5.2 shows these statistics, and the mode, for the distributions of Figs. 5.17 to

5.19.  Considering first the probability of reaching the threshold by time T, it is

apparent that as the lower barrier is moved further from the mean population size the

difference between G(T) for the full and the linear models increases.  G(T) is, in

general, larger for the full model, and for lower barriers can be several times larger,

than the linear model's G(T).  This is in line with the observation that g(t) is generally

lower for the linear model than the full model for the times for which the persistence

time distribution was calculated.  For those cases where a reasonable number of the

trials in the simulation reached the threshold the mode of the linear and full

distributions are similar.  In the cases where the low threshold resulted in few trials

being absorbed (i.e. (c) in Figs. 5.17 to 5.19) the mode is highly variable.  This is due

to the fact that the distributions are very noisy and the position of the mode cannot

really be measured with any great accuracy.  Comparing the conditional mean of the

linear and full, non linear, persistence time distributions gives some encouragement

to the idea of using the linear model to estimate the persistence time distribution.  In

general the two models give similar conditional means, with the linear model

consistently giving a slightly longer mean.

Table 5.2.  Statistics of the persistence distributions plotted in Figs 5.17 to 5.19.  K
–
 = 1000 in all

cases.  To remove some of the noise in the distributions and thus facilitate estimation of the position of

the mode in the numerically estimated distributions, the distributions were smoothed using symmetric

nearest neighbour linear least squares smoothing with a span of 1% of the data range before

calculating the statistics given.  The conditional mean persistence was also estimated from the

smoothed distribution.

Parameters mode EC(T) G(T)

r sk l na full linear full linear full linear

Fig. 5.17a 0.5 50 0.5 −80 9 10 91.5839 108.608 0.991 0.985

Fig. 5.17b 0.5 50 0.5 −100 18 18 188.91 205.198 0.799 0.696

Fig. 5.17c 0.5 50 0.5 −120 17 14 237.752 243.102 0.305 0.209

Fig. 5.18a 0.5 50 0 −60 7 7 45.6402 67.2682 0.994 0.995

Fig. 5.18b 0.5 50 0 −80 9 19 155.55 200.996 0.921 0.716

Fig. 5.18c 0.5 50 0 −120 106 69 249.17 252.914 0.051 0.007

Fig. 5.19a 0.5 150 0.5 −300 10 15 151.461 321.377 0.996 0.907

Fig. 5.19b 0.5 150 0.5 −400 19 190 413.366 492.562 0.664 0.126

Fig. 5.19c 0.5 150 0.5 −500 111 231 487.858 495.361 0.160 0.003

124



Approximating the linear model passage time distribution using the OU process

The results of the previous section demonstrate that the linear model persistence time

distribution, while certainly not reproducing the distribution of the full model, can at

least give some insight into the full model's distribution.  In particular the conditional

mean persistence time of the linear model can be a reasonable estimate of that of the

full model.

In this section, therefore, the approximation of the linear model by the Ornstein-

Uhlenbeck process (for which an expression for the mean first passage time is given

in chapter 2) is investigated.

Renshaw (1987) discusses a discrete time analogue for the OU process.  The result of

interest here is that, for an OU process as given by Uhlenbeck & Ornstein (1930):

m
dU

dt
fU F t= − + ( ) [5.56]

where F(t) is white noise, the equivalent discrete scheme is

U Ut t t= − +−1 1( )d e [5.57]

where d = f/m, and et+1 = (1/m)Fn.  For independent and identically distributed et

[5.57] is, of course, a first order autoregressive process.

When l = 0 in [5.45] (i.e. the fluctuations in the carrying capacity are generated by an

independent, identically distributed process rather than an autoregressive process)

Roughgarden's linear model [5.44] also yields an autoregressive process of order one:

n r n r Zt t k t+ = − +1 1a f s [5.58]

Using Renshaw's result above, Cerbone, Ricciardi & Sacerdote's formula for the

mean first passage time of the OU process, as given in [2.50], can be applied:
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[5 .59]

where na represents the threshold level and y[z] and c[z] are given in [2.51].
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To test this, Table 5.3 compares the expected persistence time calculated from [5.59]

with that estimated from numerical distributions using [5.55].

Estimating the expected persistence time from simulated distributions using eqn

[5.55] requires that the complete distribution be estimated in order to obtain a reliable

estimate of the expectation.  Another approach is however possible.  As the

distribution of persistence times being considered is believed to be asymptotically

exponential then the tail of the distribution should be linear when plotted semi-

logarithmically (ln[g(t)] vs. t).  From the equation of the line the coefficient of the

exponential distribution can then be recovered.  This coefficient is the expected

persistence time from a zero initial state to the lower threshold.  Specifically, given a

"one-parameter" exponential distribution (Johnson & Kotz 1970):

Table 5.3.  Expected persistence times for Roughgarden's linear model [5.44] from [5.59] and from

[5.55] for numerical estimates of the passage time distribution.  In order that [5.55] would yield a

figure suitable for comparison with [5.59] it is necessary that the whole passage time distribution be

calculated i.e. the numerically estimated passage time distribution must have maximum time, T, such

that g(t) = 0 for all t > T.  The parameters used here are chosen so this criteria can be fulfilled.

Parameters EC(T)

r sk
n0 na formula simulation

0.5 50 0 −60 43.989 67.1631

1 50 0 −60 6.300 9.698

1.5 50 0 −60 2.575 4.656

0.5 75 0 −60 10.798 18.285

0.5 100 0 −60 5.780 10.958

0.5 125 0 −60 3.916 8.348

0.5 150 0 −60 2.956 7.041

0.5 50 5 −80 297.904 396.135

1 50 5 −80 16.641 19.212

1.5 50 5 −80 5.276 6.301

0.5 75 5 −80 26.108 41.367

0.5 100 5 −80 10.557 18.280

0.5 125 5 −80 6.359 12.052
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g t
E T

t

E T
( ) exp=

-F
HG

I
KJ

1

0 0a f a f [5.60]

where g(t) is the asymptotic persistence distribution and E0(T) is the expected

passage time from zero to the threshold then

ln lng t
E T

t

E T
a f a f a f=

L
NM

O
QP

-
1

0 0

[5.61]

By comparison with the equation of a straight line, y ax b= + , E0(T) can be estimated

from either the intercept of the line ln[g(t)] vs. t, E T a0 1a f = - / , or its slope,

E T b0 1a f a f= / exp .  Fig 5.20 shows that plotting ln[g(t)] vs. t for Roughgarden's

linear model does indeed yield a linear relationship.  Two lines have been fitted to the

points of Fig 5.20, one using normal least squares regression, the other using more

robust (Rousseeuw & Leroy 1987) least median squares regression.  Clearly the least

median squares line is going to give a better indication of the slope, and this has

therefore been used whenever E0(T) has been estimated from the simulated passage
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Figure 5.20.  Plot of ln[g(t)] vs. t for Roughgarden's linear model [5.44] with r = 0.5, sk = 75, n0 =

0, na = −60.  The lines are fitted by least squares regression (LS) and least median squares

regression (LMS).
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time distributions.

Table 5.4 compares the values of E0(T) recovered by fitting a straight line to ln[g(t)]

vs. t, with the value given by [5.55] for the same simulated distributions as Table 5.2,

and the discrete OU approximation [5.59].  The three estimates of E0(T) from the

simulated distributions generally agree to within ±5, and are such that the estimation

from the intercept of the straight line is less that the estimate from the slope, which in

turn is less the estimate from eqn. [5.59].  All three estimates however share the

feature, also apparent in Table 5.3, that the discrete OU approximation generally

Table 5.4.  The expected persistence from a zero initial state to a lower threshold for Roughgarden's

linear model.  OU approx. gives the approximate persistence time from [5.59].  The remaining

columns give estimated derived from the simulated distributions used in Table 5.2. 'estimate' refers to

the estimate from [5.55] (and is therefore not available for simulated distributions where not all

replicates reached the lower threshold by the last time considered), 'intercept' and 'slope' refer to the

estimates derived from fitting a straight line to ln[g(t)] vs. t.  Least median squares regression was used

and, before the regression was carried out, values falling to the left of the mode of the distribution

were removed so regression was only carried out on the linear portion of the data (i.e. the exponential

tail of the distributions).

Parameters E0(T)

r sk
na OU approx. estimate intercept slope

0.5 50 −60 43.989 67.1631 62.90 65.37

1 50 −60 6.300 9.698 7.18 8.33

1.5 50 −60 2.575 4.656 1.95 3.14

0.5 75 −60 10.798 18.285 15.33 16.84

0.5 100 −60 5.780 10.958 8.64 9.67

0.5 125 −60 3.916 8.348 6.04 7.08

0.5 150 −60 2.956 7.041 4.87 5.86

0.5 50 −80 298.37 393.66 396.05

1 50 −80 16.81 16.52 17.79

1.5 50 −80 5.37 3.12 4.61

0.5 75 −80 26.43 37.29 39.24

0.5 100 −80 10.80 14.88 16.54

0.5 125 −80 6.55 9.57 10.70
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underestimates the actual expected persistence.  In a few cases (notably those with

E0(T) small) the discrete OU approximation yields a value of E0(T) which actually

falls within the estimates from the simulated passage time distribution, but overall

the result is rather disappointing.

The explanation for this appears to associated with using results for the continuous

time OU process for a discrete time model.  In chapter 3 it was noted that the Wiener

process did not give an exact fit to persistence time distributions for a discrete time

model, in particular it tended to produce a slight overestimate of the probability of

reachng the threshold in the region of the mode.  In that case, however, the Wiener

process still gave reliable estimates for the moments of the persistence time

distribution.  The same cannot be said for the OU process and the discrete time

model considered here.  Fig. 5.21 demonstrates that simulating [5.58] with time steps

less than one produces a steeper relationship between the linear portion of ln[g(t)]

and time.  While this steepening appears relatively slight, it is apparent from [5.61]
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-60, r = 0.5, sk = 50.  Line c is fitted to the points (by least median squares regression) for a

simulation with Dt = 1.  Lines a and b are fitted to simulations with Dt = 0.01 and 0.1 respectively.
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that a smaller time step results in a smaller estimate of mean persistence time.  Thus,

as Dt is reduced the mean first passage time for the OU process provides a better

estimate of persistence time for "discrete OU" models.

Exponential approximation of the persistence time distribution

So far in this section Nobile, Ricciardi & Sacerdote's (1985) results have been used

exclusively to estimate the mean persistence time for the linear model.  As discussed

in chapter 2, and applied above, it is possible to approximate the persistence time

distribution simply as an exponential distribution.  This is done in Fig 5.22, which

uses the same simulated persistence time distributions as Fig 5.18.  Two one-

parameter exponential curves have been added to each plot, one with the coefficient

estimated by fitting the tail of the linear model persistence time distribution as

described above, the other by using the mean OU persistence time from zero to the

threshold as the coefficient.  The simple exponential distribution, with the coefficient

obtained by least mean squares regression on the distribution tail, gives a very good

approximation of the persistence time distribution for the linear model with the

exception of very short times.

In Fig. 5.23 ln[g(t)] vs. t for Roughgarden's full model is plotted.  The distributions

clearly have a linear tail demonstrating that the full non-linear model gives rise to an

asymptotically exponential persistence time distribution.  What is yet to be obtained

is, of course, an analytical approximation for the mean persistence time that performs

better than the linear approximation considered above.

130



0 100 200 300 400 5000.
0

0.
00

5
0.

01
0

0.
01

5
0.

02
0

0.
02

5
A

B

.

.

.

..
.......

........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

g(
t)

(a)

0 100 200 300 400 5000.
0

0.
00

1
0.

00
2

0.
00

3
0.

00
4

0.
00

5
0.

00
6

A

B

.

.

.

.
......

.......
.....

........
.........

.
........................

..................
............................

...................................................
.........

.......................
........................................................................................................

..........................................................................................
.................................................................................................................

g(
t)

(b)

0 100 200 300 400 5000.
0

0.
00

00
4

0.
00

00
8

0.
00

01
2

A

B..
..
..
.

.
.
.
.
.
..
..

.
.
.
.
.
.
..
.
...
.

..
..
.
.......

.

...
......

...
.

.
...
..
..
..

.
.

..
.
..

.

....
..
.
.
.

.
.
.....

.
.......

.......
.

.
..
....

..

.
...
..
.
.
..
...
.
.

.
.
.

.....
..
.
.

..

.

..
..
..
..
.
.
.
.
.

.
.
.
.
.
.
..
...
.
.
.
.
....
..

.
..

.

..
.
.
..
.
...
..

.
.
.
.
..
..
..
.....

.

.

.

.
.

.

.

..
.
..

.
..

.
.......

.
.
...
.
.

.
.
.
.
.
.
..
....
.
....
.

.
..

.
.
..
..

.

.
.
.

.
...
.

..
....
..
..
..
.

.

.
...
.

.
.
.

.....

..
...
..
.
.
....
.
...
.
...
.
..
....
...
.

.

.
.
..
.
.

.

.

.
..
.....

.

.

.
....

.
.
.......

.

.
.
.
.
..

.

.
.

.
.
.
..
.

.
.
...
..

.

.

.
.
.

..
.
.
..
..
.

..

.

.
.
...
...
..
...
.
..
..
...
.

.

.
..

.

.
.
.....

.
..

.

..

...
..
.
.
.

.
.
.

...

..

...

.

......
.
..
.
.
.

.....
..
.
.
.

.
...
.
.

.

.
.

.
.

g(
t)

time

(c)

Figure 5.22.  Comparison of numerical estimates of the persistence distributions for Roughgarden's

full (+) and linear (.) models; r = 0.5, K
–
 = 1000, sk = 50, l = 0.5.  n0 = 0, k0 = 20.  Lower barriers at

(a) −80, (b) −100, (c) −120.  Exponential curves added using coefficient estimated from (A) slope

of a least median squares regression for the linear portion of ln[g(t)] vs. t of the linear model, (B)

mean persistence from zero to threshold as given by OU approximation [5.59].
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Figure 5.23.  ln[g(t)] vs. t for Roughgarden's full model; r = 0.5, K
–
 = 1000, sk = 50, l = 0.5.  n0 = 0,

k0 = 20.  Lower barriers at (a) −80, (b) −100, (c) −120.
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Discussion

In this section two things have been investigated.  Firstly, a numerical comparison of

persistence times in a non-linear population model and a simpler model obtained by

local linearisation of the full model, was carried out.  Secondly, the approximation of

the persistence time distribution of locally linear model (a first order autoregressive

process) by the first passage time distribution of the OU process was considered.

It is apparent, from the results obtained above, that there can be quite large

differences between the persistence time distributions of the full non-linear model,

and its linear counterpart.  In general, the full model shows a greater probability of

reaching a low threshold at short or intermediate times, than the linear model.  These

differences are explained by recourse to the differences between the mean and

variances of the full model [5.43] and the linear model [5.44] investigated initially.

In particular the mean population size of the non-linear model is always smaller than

that of the linear model.  In addition, as the variance in the carrying capacity is

increased, the variance in population size in the non-linear model is underestimated

by the variance in the linear model.

Two features, however, suggest that locally linear approximations may be of some

use in the estimation of persistence time in non-linear models.  Firstly, the shapes of

the persistence time distributions of the linear and non-linear models tend to be

similar, generally showing a common mode (though, of course, no expression for the

mode of the linear model is actually available at present).  The similarity in shape

leads, however, to the fact that the conditional mean persistence time in the full

model and linear model are similar.  Understandably the linear model, with its

smaller probability of reaching the threshold at small times, has the larger conditional

mean.  For various sets of parameters the linear and non-linear model conditional

mean persistence time have a similar, though not identical, rank order.  This suggests

that a linear approximation may be of use in giving a qualitative idea of the effect on

expected persistence time of changing one of the full model parameters.  However,

locally linear approximations are unlikely to be of much use in comparing persistence

times between different models.

The use of the OU process first passage time distribution to approximate the expected

persistence time of the linear model, which took the form of a first order

autoregressive process, also produced rather equivocal results.  In general, the
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expected persistence time suggested by the OU process approximation was less than

that from numerical estimates of the linear model's persistence time distribution.

This appears to be due to the estimation of results for a discrete time model from the

continous time OU process: where a continous time model is linearised to produce an

OU process this difficulty should not arise.  The continuous OU process can give an

estimate of persistence time correct to order of magnitude for a discrete model but

cannot be expected to be much more accurate.

Both of the linear models considered here ([5.44] and [5.53]), and the OU process

itself, share the feature that the state variable is normally distributed around the

mean.  Nisbet & Gurney (1982, p.207-210) demonstrate that a skewed distribution

may be more appropriate.  Using locally linear approximations to the mean and

variance they show that considering a negative binomial, rather than a normal,

distribution improves their estimates of extinction time.  Dennis & Patil (1984)

suggest using the gamma distribution to approximate the distribution of a stochastic

model where the corresponding deterministic model has a stable equilibrium.

One feature shared by persistence time distributions of the full non-linear model and

the local linearisation is that the distribution is exponential at all but short times.  As

discussed previously, this is likely to be a feature of most models where the

population size is regulated around some mean value.  Features of the persistence

time of the continuous time logistic considered previously, such as the rapid increase

in mean persistence time as the distance between the mean population size and the

lower threshold is increased (Fig. 5.12), will also arise in such situations.
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II

Persistence time applied in assessing
management of the Islay wintering barnacle

geese

———————

This section presents the work that led to my interest in persistence time in

population models, and in particular its use as a viability measure in the conservation

management of populations.

Chapter 6 presents an overview of the distribution and biology of the barnacle goose.

The situation of the wintering geese on Islay that has led to the conflict between

agricultural and conservation interests is considered, and the available data analysed.

In chapter 7 persistence time is used as the primary population viability measure in

the assessment of controlled shooting as a management strategy, with the aim of

discovering whether this method could lessen agricultural problems without

endangering the goose population.

———————
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Chapter 6

Barnacle geese on Islay: population status
 and agricultural conflicts

________________________________________
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The barnacle goose

World distribution

The barnacle goose, Branta leucopsis Bechstein, is a medium sized goose, 58−70cm

in length with a wing span of 132−145cm (Cramp & Simmons 1977).  Like many

western Palearctic goose species (Madsen 1991) its population size has increased

greatly in the second half of this century.  In 1960's the world population was

estimated at 40,000 individuals, growing to c.80−90,000 in 1986 (Owen, Atkinson-

Willes & Salmon 1986).  Owen (1990b) suggests that the current world population of

barnacle geese stands at over 120,000 individuals.

Traditionally the world population has been separated into distinct three sub-

populations (Fig. 6.1) (Owen 1980), breeding in east Greenland (c.30,000 birds in

1976), Svalbard (c.7000 birds in 1976) and western Siberia (c.54,000 birds in

1976/77).  However, during the 1980's a fourth population of c.5000 individuals

became established in Gotland and neighbouring islands of the Swedish Baltic

(Owen 1990b).  The largest (Siberian breeding) group winters in the Netherlands

(Owen, Atkinson-Willes & Salmon 1986), but the Greenland and Svalbard

populations winter exclusively in British Isles.  The Greenland breeding group

winters mainly on islands off western Scotland and Ireland, while the Svalbard

population winters on the Solway Firth.  Ringing suggests the populations are

basically discrete, even in winter when the Greenland and Svalbard populations are

separated by less than 150km (Owen 1990b).  A small amount of interchange does

occur: Owen (1990b) reports that 0.1% of ringed individuals have moved from the

Svalbard population to other populations. Percival (1988) found that nine birds,

previously marked in the Svalbard population, had been incorporated in the

Greenland population and that three of these had bred successfully during the three

year period of his study.  Only one ringed goose from the Greenland breeding

population has been recorded with the Svalbard birds, spending one winter on the

Solway but later moving back to the Greenland population (Owen 1990b).  As a

smaller proportion of the Greenland breeding population are ringed compared to the

Svalbard group, immigration from the Greenland breeding group is less likely to be

detected.

The fact that such a large part of the world population of barnacle geese winter in a

relatively small area of the British Isles appears to have been a major reason for the

species inclusion in Annex 1 of the EEC directive on the conservation of wild birds
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Figure 6.1.  The breeding, staging and wintering grounds of the three main world populations of the

barnacle goose, Branta leucopsis.  From information in Owen, Atkinson-Willes & Salmon (1986).

(EEC, 1979).  The Annex 1 species are to be the subject of conservation measures

relating to their habitat, in order to ensure their "survival and reproduction in their

area of distribution".  They are also protected from hunting and sale (Haigh 1984).

Britain's compliance with this EEC directive is part of the Wildlife and Countryside

Act of 1981 (Haigh 1984).

General ecology

Barnacle geese are gregarious throughout the year.  They form monogamous, life

long pair bonds, but if a bird's mate dies, or is separated during migration, it will

form a new pairing (Cramp & Simmons 1977; Owen 1990b).  Outside the breeding

season flocks include family parties, adults without broods (mostly in pairs) and

second year birds, some of which are paired.  Barnacle geese may live for up to

twenty years (Owen & Black 1989).

Breeding

Barnacle geese arrive on their arctic breeding grounds in late May.  They are ready to

breed immediately but may be delayed by snow cover for up to two weeks (Owen
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1980).  Nests are built on rocky cliffs away from Arctic foxes.  Cramp & Simmons

(1977) state that a pair raises one brood, with a normal clutch size of four to five

eggs.  Eggs are laid largely from body reserves (Owen & Black 1989) and are

incubated by the female for 24 to 25 days.  This is followed by a fledging period of

40 to 45 days.  The young stay with their parents until they return to breeding

grounds in the subsequent year.  The usual age of first breeding is three years, but

occasionally two.

Breeding success in barnacle geese is highly variable from year to year.  On the

wintering grounds the three populations have shown proportions of first year birds

ranging from 7.5 to 47.2% (Cramp & Simmons 1977).  Breeding success depends

critically on the condition of the female on arrival on breeding grounds, the greatest

loss of breeding potential being due to a failure to nest, or to remain loyal to the nest

(Owen 1990b).  Losses of goslings during the first week after hatching are high, and

by arrival on the wintering grounds the average brood size has decreased from 3.5 − 4

to about 2 (Owen 1990b).  Cabot et al. (1984) report that 15% of goslings leaving the

nest were lost to predators (mainly Arctic foxes) while 26% were lost in the boulder

scree at the foot of the cliffs used for nesting.  In both the Greenland and Svalbard

breeding populations a high proportion of the geese fail to breed each year, such that

only a relatively small proportion of the adults on the wintering grounds (up to

c.15%) are part of family groups with young (Cabot & West 1983).

Wintering

Losses on autumn migration from the breeding to wintering grounds appear to be the

main source of year-to-year mortality in barnacle geese (Owen 1990b).  Owen

(1990b) suggests that shooting is the main source of overwinter mortality as winter

food supplies are largely unlimited, with the only reports of winter starvation in

barnacle geese coming from the Outer Hebrides, in severe winters.

On the wintering grounds the geese roost in large groups, no further than 5km from

their feeding grounds (Owen, Atkinson-Willes & Salmon 1986).  While their

traditional habitat is machair (grassland on shell sand) most wintering barnacle geese

now feed on agricultural grasslands.  Black, Deerenberg & Owen (1991) studied

barnacle geese of the Svalbard population on their staging grounds off western

Norway.  In recent years an increasingly large part of the population has moved to

feeding on agricultural grassland in preference to the traditional rougher grazing.
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Their observations suggest that conditions are more favourable on the agricultural

land with geese feeding at a higher rate, and spending less time in total on feeding,

than on the traditional grazing sites.  They found some (non significant) evidence that

the geese feeding on the agricultural land have higher reproductive success.

The east Greenland breeding population

The east Greenland breeding barnacle geese leave their breeding grounds from mid-

September, stopping for a month in southern Iceland before arriving in the British

Isles in late October.  They remain on the wintering grounds until April, stopping for

three weeks in north-western valleys of Iceland on their journey back to the

Greenland (Owen, Atkinson-Willes & Salmon 1986) (see Fig. 6.1).

The wintering grounds of the east Greenland barnacle geese are scattered widely over

the west coasts of Scotland and Ireland, mostly on islands (Fig. 6.2).  The majority of

Ireland
22.0%

Islay
58.7%

Inner Hebrides
4.6%

Skye & Outer Hebrides
9.0%

North & West Coasts
5.7%

Figure 6.2.  The distribution of the east Greenland breeding barnacle goose population on its

wintering grounds recorded by the March 1988 aerial survey (Fox et al. 1990).
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the population, however, winters on Islay in the Inner Hebrides.  Islay has held

around 60% of the Greenland population since the 1960's.

Counts

No attempts were made to census the wintering Greenland barnacle geese before

1955 due to the dispersed nature of the wintering grounds (Boyd 1968).  Numbers

prior to this date rely on a mixture of sources of varying reliability.  Air censuses are

the only way of counting the whole Greenland population, as a large number of

islands that make up the wintering grounds are remote and uninhabited (Ogilvie

1983b).  However, the numbers of birds on Islay are such that aerial counts would be

impractical so the Islay wintering birds have always been counted from the ground.

Air censuses have taken place at five year intervals in recent years and are generally

carried out in late March or early April (Fox et al. 1990).

Boyd (1968) reports irregular counts of the Islay wintering portion of the east

Greenland barnacle geese, made by a number of people, going back to 1952.  Regular

November and spring (March or April) counts of the Islay wintering geese began in

the mid-1960's (Ogilvie 1983a).  Counting has intensified in recent years with

monthly counts by Nature Conservancy Council (now Scottish Natural Heritage) and

Wildfowl and Wetlands Trust personnel (Easterbee et al. 1987; Bignal, Curtis &

Matthews 1988).

First winter barnacle geese retain juvenile coverts and other juvenile feathers (Cramp

& Simmons 1977) enabling the proportion of young in wintering flocks to be

estimated.  This has been done for the Islay wintering birds in conjunction with the

annual counts.  Estimates of the proportion of young in the Islay wintering barnacle

geese typically involve counting at least 4000 birds (Ogilvie 1983b).  There are some

problems in the estimation of the proportion of young birds, such as the fact that

young geese tend to be concentrated at the edges of feeding flocks (Owen 1980).

However, in their work on the Russian breeding population of barnacle geese

Ebbinge, van Biezen & van der Voet (1991) found no significant difference between

estimates of the proportion of young in a flock from observations compared to the

proportion estimated from birds caught for ringing.

141



0

5000

10000

15000

20000

25000

30000

35000

1960 1965 1970 1975 1980 1985 1990

Islay

Ireland

Scotland, excluding Islay

Total population

Figure 6.3.  The size of the east Greenland breeding barnacle goose population censused on the

wintering grounds in Scotland and Ireland.  Areas other than Islay censused by aerial counts, Islay

and Inishkea Islands wintering geese counted from the ground.  Data from Boyd (1968), Ogilvie &

Boyd (1975), Ogilvie (1983b), Fox et al. (1990).

The number of east Greenland barnacle geese wintering on the Inishkea Islands has

also been counted regularly from the ground, and estimates of the proportion of

young obtained (Cabot & West 1983).

Fig. 6.3 charts the change in size of the east Greenland breeding population over the

period that air censuses of the wintering grounds have taken place.  It is evident that

the great increases in the total population size that took place in the three decades

from 1960 are due more or less entirely to increases in the Islay wintering portion of

the population.  While the Islay wintering group dominates the totals there have been

some variations in the number of geese elsewhere in the wintering range.  The

number of geese wintering on the Inishkea islands (the major Irish haunt) remained

reasonably stable in the two decades to 1983, with a mean population around 2300

individuals (Cabot & West 1983).  However, Fox et al. (1990) point out that the total

number of barnacle geese wintering in Ireland has recently increased.  Numbers in

the Inner Hebrides, including islands near Islay, have remained fairly stable, while

there has been a recent decline in the number of barnacle geese wintering in the Outer

Hebrides (Fox et al. 1990).
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Cabot & West (1983) suggest that Islay is a rather more food rich environment for

the wintering geese, with greater primary production than the Inishkea Islands.  For

the winters 1961/2 to 1982/3 the mean percentage of first year birds on the Inishkea

Islands was 6% (data of Cabot & West 1983).  By contrast the mean on Islay for that

period was over 13% (data from Ogilvie 1983b).  While losses also appear to have

been greater for the Islay population (around 10% compared to 7% for the Inishkeas,

Cabot & West 1983; Ogilvie 1983b), it is this differential breeding success,

combined with faithfulness to sites within the wintering range (Percival 1988) that

appears to be responsible for the increase in the number of geese wintering on Islay

relative to the rest of the wintering range.

Within winter movements

The movements of the east Greenland barnacle geese between different sites on the

west coasts of Scotland and Ireland during the course of a winter, and their

faithfulness to sites from year to year, are not known in any great detail.  It appears

reasonably clear that most birds are largely faithful to wintering sites from year to

year (Cabot & West 1983; Percival 1988, 1991; Newton & Percival 1989).  Percival's

(1988) study of individually marked birds on Islay over three winters suggests that

the majority of birds spend the whole winter on the island but a proportion (up to

20%) are mobile to some extent.

Ogilvie (1983b) noted that the February or March counts on Islay tend to be similar

in size to, or even slightly larger than, counts the previous November.  Given that

reasonably large numbers of geese were being shot on Islay during the period of the

counts to 1983, Ogilvie thus suggested that a move of geese onto Islay during the

winter must take place.  Cabot & West (1983), however, asked where these birds

could come from as they saw little evidence for substantial numbers of birds moving

from Irish wintering sites to Islay in the spring.  In fact, little evidence in support of

Ogilvie's hypothesis has been forthcoming in recent years.  Newton & Percival

(1989) found little evidence for a spring movement of birds from Tiree to Islay and

Percival (1988) detected an influx of ringed birds in only one winter (1985/6) during

the three winter period of his study.

In the winters of 1983/4 and 1984/5 intensive counts of geese arriving on Islay were

carried out by Easterbee et al. (1987) who noted that the number of geese on the
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island tended to peak for about two days towards the end of October.  In 1984/5 they

found a second, slightly smaller, peak in November.  Percival's (1988) counts

throughout the winters of 1984/5, 85/6 and 86/7 also suggest that there is a peak in

the number of birds on Islay towards the end of October, followed by a second influx

of birds in mid-November, before numbers settle down somewhat for the winter.

Percival (1988) concludes that Islay is particularly important as a staging site in the

autumn before geese move to other wintering sites.

The increased proportion of the Greenland barnacle goose population that now bears

individually marked rings, combined with visits to other parts of the wintering range

has given some insight into the complex within winter movements.  From

observations of geese on Coll and Tiree, Newton & Percival (1989) found several

patterns of behaviour: some birds stay the whole winter on Tiree each year, others

stop on Islay in the autumn but move to Tiree or Coll by mid-winter or spring, while

others change their wintering site from year to year.  Newton & Percival also found

that a few Islay birds visited Tiree in midwinter.

The pattern that is emerging from studies in the last decade is that the majority of east

Greenland barnacle geese are faithful to a single wintering area from year to year and

do not move between wintering sites in the course of the winter (though some may

stage on Islay for a short time before continuing to their "real" winter destination).

However, a small portion of the population may change wintering sites from one year

to the next while other birds move between sites in the wintering range during the

course of a single winter.  These patterns have led Fox et al. (1990) to suggest that

the optimum period to assess the distribution of Greenland barnacle geese over their

wintering sites is between December and January, as this pattern should represent the

distribution for the majority of the winter.

The Islay wintering barnacle geese

Islay has been the major stronghold of the wintering Greenland barnacle geese since

at least 1870 (Owen, Atkinson-Willes & Salmon 1986) and, as noted above (Fig.

6.3), it is the growth of the Islay wintering barnacle goose population that has been

largely responsible for the growth of the whole east Greenland breeding population.

The birds arrive mainly towards the end of October each year, departing from mid-

April through to May (Ogilvie 1983a).  The principal roost sites are at the heads of

Loch Gruinart and Loch Indaal (Fig. 6.4).
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Figure 6.4.  The location of the main barnacle goose feeding and roosting sites on Islay.  Also

shown is the 60m contour.  Redrawn from Ogilvie (1983a).

The wintering barnacle geese feed almost exclusively on improved ryegrass pasture,

the area of which has increased greatly since the 1950's (Owen, Atkinson-Willes &
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Salmon 1986).  The improvements of pastures on Islay through fertilisation and

reseeding leading to extended and improved feeding opportunities for the wintering

geese has undoubtedly been a major reason for the large increases in the Islay

wintering barnacle goose population in three decades since 1960 (Ogilvie 1983a;

Owen, Atkinson-Willes & Salmon 1986).  While the link has yet to be established

conclusively, it is likely that the higher quality winter feeding on the resown Islay

pastures is largely responsible for the difference in breeding success between Islay

and Ireland wintering birds discussed previously (where the success of birds

wintering on the Inishkeas in Co. Mayo may only be 50% of that of Islay wintering

birds) (Cabot & West 1983; Ogilvie 1983b).  Similarly, Newton & Percival (1989)

noted that the proportion of young in barnacle goose flocks wintering on Tiree was

often less than that observed in Islay wintering flocks.  Another factor, of course, that

may influence these differences in breeding success is continued segregation on the

breeding grounds of birds that winter in different areas.  Cabot et al. (1984) report

that significant differences in breeding success exist between different nesting areas

in Greenland.

From observations of individually ringed geese, Percival (1988, 1991) found that

birds are not only faithful to Islay as a wintering site but are faithful to restricted

feeding areas within Islay both during a winter, and from year to year.  Percival also

found some evidence that the breeding success of the different groups wintering on

Islay is different and suggests that this is not readily explained by differences in

winter feeding on the sites but may be due to continued association throughout the

year of birds from each site.

However the distribution of wintering geese across Islay is not constant throughout

the course of the winter.  Easterbee et al. (1987) suggest that the birds tend to

concentrate in the Loch Gruinart area on arrival on Islay before dispersing to other

parts of the island, and presumably, given the peak in the number of birds on Islay in

late October, to other parts of the wintering range.  The distribution of barnacle geese

over Islay during the winter of 1989/90 is shown in Fig. 6.5.  Each of the three counts

is the mean of two counts made on consecutive days (Easterbee et al. 1991).  In

addition to the changes through the course of the winter apparent from Fig. 6.5,

changes in distribution were also recorded between the two days of each of the three

counts.  Weather conditions were not always the same for the counts and Easterbee et

al. attribute some of the variation between the counts on consecutive days to this fact.
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Figure 6.5.  The distribution of barnacle geese over different areas of Islay for the winter 1989/90.

Each point is the mean of two counts on consecutive days (3/4 December 1989, 10/11 February

1990, 1/2 April 1990) expressed as the percentage of barnacle geese recorded on the island at that

time.  Data from Easterbee et al. 1991.  Mean numbers on the island for the two counts in

December, February and April were 24861.5, 23093.5 and 21993 respectively.

Agricultural damage

Given that the large numbers of barnacle geese wintering on Islay are feeding almost

entirely on agricultural land, some conflict with agricultural interests is inevitable.

Ogilvie (1992) reports that barnacle geese were recorded as doing "great damage to

grass" as early as the 1890's.

Percival (1988, 92) studied the effects of goose grazing on agricultural grasslands on

Islay.  Comparing grazed and neighbouring ungrazed (fenced) plots, Percival found
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that at all sites studied in three winters there was a significant reduction in grassland

yield after grazing by geese.  He found that newly reseeded grasslands tended to

attract the greatest number of geese and thus suffered the greatest reduction in yield.

Winter goose grazing also reduced the yield of silage cut in June.  However, due to

the great variation in yield of different areas, Percival was not able to associate a

given amount of goose grazing (as measured by dropping counts) with a given yield

loss.  Year to year variation in grassland production meant that the areas with greater

goose grazing may have lower yields than areas with less grazing in some years, but

higher yields in other years.  Percival suggests that the presence of grazing barnacle

geese may make up to 80% of early spring grass growth unavailable to farm stock.

He also found that, in addition to the direct loss in spring grass and silage yields due

to goose grazing, yield was further reduced by the delays in the application of

fertiliser caused by the presence of geese.  The magnitude of the yield loss found by

Percival was slightly less than that of a previous study on Islay by Patton & Frame

(1981).  Patton & Frame suggest that goose grazing may also result in the need to

reseed fields at more frequent intervals.

Percival (1988) demonstrated that the Islay wintering barnacle geese show a strong

preference for feeding on newly reseeded fields, and that fertiliser application may

also increase goose grazing (though this depended on the original nutrient status of

the field).  A similar preference for improved pasture was noted by Bignal, Curtis &

Matthews (1988).  Despite their willingness to move to reseeded fields, Percival

(1988, 1991) found that many individuals tended to be faithful to a relatively

restricted range of feeding sites on Islay.

Reviewing several studies (including those of Percival (1988)) of agricultural damage

resulting from grazing by several goose species in different areas, Patterson (1991)

concludes that there is ample evidence of significant losses in both grass and cereal

crops at a wide range of goose grazing levels, but suggests that the wide variability in

losses makes it unlikely that losses could be adequately predicted from observed

levels of goose grazing.

Brodie (1991) points out that the agricultural economy of Islay is based entirely on

grass production supporting cattle and sheep.  Geese therefore compete directly with

cattle for early spring grass growth.  Brodie (1991) suggests that financial losses, in

addition to the necessity of purchasing extra winter feed, are incurred by farmers as a
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result of delays in fertiliser application which lead to poorer quality fodder, and,

therefore, poorer milk yields and poorer condition of livestock at sale.

Thus there appears to be ample evidence that, for at least some farmers on Islay, the

agricultural and financial implications of the wintering barnacle geese may be quite

serious.  Brodie (1991) points out that island farmers are already disadvantaged,

relative to their mainland counterparts, by the costs of transporting feed and fertiliser

to the island and livestock to the mainland markets.  On a national scale agricultural

damage by wildfowl is negligible.  However the damage tends to be localised and

individual farmers may suffer badly.  Even within Islay there are considerable

differences in the degree to which farmers are affected by grazing of wintering

barnacle geese.

Shooting

Shooting of wintering barnacle geese was permitted on Islay during December and

January from 1955 (Owen, Atkinson-Willes & Salmon 1986).  In 1976 the open

season was extended from these two months to five (Owen, Atkinson-Willes &

Salmon 1986).  While increasing agricultural damage by the growing barnacle goose

population was cited as the main reason for this change, Bignal, Stroud & Easterbee

(1991) report that shooting towards the end of the 1970's was largely commercial

sport shooting organised by the major Islay estates and hotels.  The annual kill of

barnacle geese in the late 1970's and early 1980's has been estimated at 1500−2000

individuals, up from previous levels of 500−700 birds a year (Elliot 1989).

This situation changed in 1981 with the introduction of the Wildlife and Countryside

Act which banned sport shooting of barnacle geese.  However, under this act a

licence to shoot geese in order to scare flocks from agricultural land may be issued if

there is serious damage to livestock, foodstuff for livestock, crops or vegetables

(Brodie 1991).  Licences are issued to farmers after assessment by members of the

agricultural inspectorate and consultation with local Nature Conservancy Council

staff (Brodie 1991).

Management of the conflict between agriculture and conservation

The relationship between agricultural interests concerned at the financial implications

of the growing number of wintering barnacle geese on Islay, and conservation

interests pleased to see the population flourishing, has often been rather acrimonious
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since the introduction of the 1981 act.  The conflict has reached the national

newspapers in several winters in recent years.  The problem, essentially, is how to

implement the conservation management of the wintering barnacle goose in line with

the requirements of national and European law (and recognising the birds as part of

the natural heritage) without putting the farmers on whose fields the geese graze at a

significant financial disadvantage.

Since 1981 the management policy on Islay has been one of refuge provision.  This

takes the form of Sites of Special Scientific Interest (SSSIs) declared because of their

importance to the wintering geese.  These have been supplemented by the Royal

Society for the Protection of Birds' (RSPB) purchase of the farmland around Loch

Gruinart which is the most important area on the island for the wintering barnacle

geese (Easterbee et al. 1987).  Farmers within SSSIs receive compensation for the

effects of goose grazing on their land.  The main problem with this management

policy has been the fact that in some years almost half of the wintering geese feed

outside SSSI and other refuge areas in early spring (Brodie 1991).  Brodie (1991)

suggests that the proportion of geese remaining in refuge areas throughout the winter

is higher in winters with better grass production.  The unfortunate consequence of

this is that it is in the harder winters, in which grass production for livestock is most

limited, that the geese tend to graze more outwith refuge areas, thus producing

heightened conflict.

The management policy on the RSPB reserve has been to farm the land in such a way

as to produce pastures of a quality designed to attract the maximum possible number

of feeding geese.  Owen (1977) suggested that the Greenland barnacle goose

population would become limited by factors acting on the breeding grounds and that

a relatively small reserve area could thus provide sufficient feeding to accommodate

the population when damage to farmland was most likely.  However, as a result of

the faithfulness to feeding sites shown by the wintering barnacle geese (Percival

1988, 91) the movement of geese to the RSPB reserve has been less than was hoped.

Attempts have been made to scare the geese from fields outwith the refuge areas

(Percival, Halpin & Houston 1988; Ogilvie 1992) by organised groups as an more

systematic scaring measure than the issuing of licences to shoot geese.  While this

appeared successful initially  (Percival, Halpin & Houston 1988) with a movement of

birds onto refuge areas, some reversal of this trend may have occurred (Bignal, Stoud

& Easterbee 1991).  The success of the organised scaring scheme is still a matter of

some doubt (Ogilvie 1992).
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A basic premise of the provision of refuges for the wintering geese must be that, at

some stage, density dependent regulation of the population will occur.  To date no

such regulation of the east Greenland breeding barnacle goose population has been

detected (see section on population dynamics below) and the general trend of the

Islay wintering population is still one of increasing numbers (Fig. 6.6a).  If it is true

that the primary reason for the increase in numbers of the Islay wintering barnacle

geese is the availability of improved pastures leading to heightened breeding success

relative to the rest of the wintering range (Ogilvie 1983a; Owen, Atkinson-Willes &

Salmon 1986), then a "worst case" view of the refuge policy is that it merely serves to

increase Islay's 'carrying capacity' for wintering barnacle geese.  Given the observed

faithfulness of the geese to feeding sites on the island (Percival 1988, 91) then the

increased area of improved pasture provided by the refuge areas may serve only to

exacerbate the problem, leading to increased numbers of geese which disperse from

refuge areas in search of better feeding when food becomes scarce.  It is conceivable

that the numbers of wintering geese may ultimately be limited by the availability of

winter feeding rather than factors on the breeding grounds.  Faced with the apparently

continuing upward trend in goose numbers, many Islay residents have called for the

numbers of wintering barnacle geese to be reduced and regulated (Brodie 1991).  In

other parts of Britain too, farmers previously keen to work with conservation bodies

in goose management have joined in calls for population control in the face of

continuing increases in the size of many goose populations (see discussion in Owen

& Pienkowski 1991).

As mentioned above, a major cause of friction between conservation and agricultural

interests on Islay has resulted from the fact that goose grazing is not restricted to the

refuge areas but compensation payments (other than payments to help provide

scaring) are restricted to these areas.  Bignal, Stroud & Easterbee (1991) point out

that the original Brigend Flats SSSI proposed in 1971 would have included feeding

areas in the Ballygrant valley (which are the focus of much of the barnacle goose

grazing that occurs outwith refuge areas), but was restricted to the roost areas after

consultation with the owners, Islay Estates.  In retrospect it would appear that this

omission, which presumably resulted from moves to protect sport shooting access, is

responsible for much of the "two-tier system" that excludes some farmers from

compensation payments.  The issue of sport shooting of wintering barnacle geese on

Islay, while officially outlawed, has continued to cause friction among

conservationists and "agricultural" interests.  Indeed, it appears that some licences
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issued for the purpose of scaring geese have actually been used to enable sport

shooting, with the result that the prevention of agricultural damage through scaring

has not really occurred (Bignal, Stroud & Easterbee 1991; Haigh 1984).

Figure 6.6.  The basic population data for the population of barnacle geese wintering on Islay:  (a)

the number of wintering geese counted in November, and (b) the proportion of first year birds in the

flocks arriving on Islay.  Data from Boyd (1968), Ogilvie (1983,92), and Nature Conservancy

Council counts.
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The issue of realistic compensation for farmers outwith SSSIs suffering goose

damage has been hindered by the fact that it has proved impossible to associate a

given level of goose grazing with a certain level of damage (Percival 1988; Patterson

1991).  Farmers and conservationists have disagreed over the problem of perceived

versus actual reduction in the grazing available to livestock as a result of goose

feeding (Owen 1990a).  A possible way forward may have been provided by the

recent Scottish Natural Heritage Act, which empowers Scottish Natural Heritage (the

successor to the Nature Conservancy Council for Scotland) to offer management

payments to farmers whose land is outwith SSSIs (A. J. Kerr, pers. comm., Ogilvie

1992).

Population dynamics

Fig. 6.6a,b shows the times series of the "raw data" relating to the population of

barnacle geese wintering on Islay: the November count data, and the proportion of

first winter birds in the flocks, assessed during the November count.  The remainder

of this section investigating the population dynamics of the Islay wintering portion of

the Greenland barnacle geese will use only this November count data.  This is for two

reasons: the November count data is the longest series of counts available (though

count methods have been adapted to cope with the larger numbers of wintering geese

over the course of the period 1960−91), and the proportion of first year birds year

birds in the flocks is assessed around this time.  As discussed previously, there is

growing evidence that Islay as used as a staging area in the autumn by more geese

than subsequently spend the majority winter on the island.  This has led to

suggestions that the November counts may be susceptible to anomalies where counts

may have coincided with large numbers of staging birds being present on the island

in some years and not others (Easterbee et al.  1987).  However the data of Easterbee

et al.  (1987) and Percival (1988) suggests that the main peak of staging birds will

generally have left the island by the time of the November counts.  Fig. 6.7

demonstrates that, for years for which such data are available, the November counts

are closely related to both the mean and maximum numbers of barnacle geese

overwintering on Islay.

The proportion of first winter birds in barnacle goose flocks wintering on Islay is

highly variable (Fig. 6.6b).  Ogilvie (1983a) attributed this wide observed range in

breeding success to weather in spring and summer in Scotland, Iceland and
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Figure 6.7.  The relationship between mean and maximum numbers of barnacle geese wintering on

Islay, and November count.  Mean overwintering numbers for 1983/4 to 1989/90 from Bignal,

Stroud & Easterbee (1991, Table 4.1); maximum numbers for 1985/6 to 1989/90 from Kirby,

Waters & Prys-Jones (1990).

Greenland.  This was investigated by Fox & Gitay (1991) who gathered

meteorological data from the Hebrides, Iceland and east Greenland and carried out a

multiple regression investigation of the effect of these meteorological variables on

the breeding success of the Islay wintering barnacle geese.   Fox & Gitay suggest that

up to 60% of the variance in breeding success can be attributed to weather conditions

in Scotland in spring, in Iceland during staging, and on arrival in Greenland.

However, while Fox & Gitay use a measure of breeding success based on the

proportion of young in flocks overwintering on Islay, they only incorporate

meteorological data for January to July in their analysis.  It is likely that the effects of

weather on the autumn migration from the breeding to the wintering grounds will

also contribute to the numbers of first winter birds recorded on the breeding grounds.

If meteorological variables for this part of the year had also been included in the

analysis it is conceivable that even more of the variance in breeding success could be

attributable to the effects of weather.

The dominant feature of the November count time series (Fig. 6.6a), after the

dominant upward trend in numbers discussed previously, is the general decline in the
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Islay wintering population in the period 1977 to 1983.  This decline is generally

attributed directly to the increased overwintering mortality caused by the increased

shooting activity in the late 1970's (Owen, Atkinson-Willes & Salmon 1986; Owen

1990b; Fox et al. 1990; Bignal, Stroud & Easterbee 1991).

Some insight into the causes of the fluctuations in the size of the population of

barnacle geese wintering on Islay in the period 1961−1991 can be gained by

considering the year to year changes in per capita recruitment and mortality.  The

wintering barnacle geese in the November of any year, t, can be partitioned into

juveniles (first winter birds), jt, and adults (non first winter birds), at, simply given by

j y N

a N y

t t t

t t t

=

= −1b g [6.1]

where Nt is the number of birds counted in the November of year t, and yt is the

proportion of first year birds in the wintering flocks.  To estimate recruitment and

mortality from these data some assumptions must be made, the first of which is that

the Islay wintering barnacle geese represent a closed population.  While the Islay

birds are, of course, just a part of the east Greenland breeding barnacle goose

population there is, as discussed above, increasing evidence that individuals are

faithful to wintering sites from year to year, and that such segregation may be present

on the breeding grounds as well.  Given this assumption, the mortality rate from the

November count in year t to the November count in year t+1 is given by

m
a

Nt
t

t

= −
−

1
1 [6.2]

where at/Nt−1 is the per capita survival from the November of year t−1 to the

November of year t.  Mortality estimates are not independent from year to year as the

population size in a given year appears in the numerator of the fractional part of eqn.

[6.2] in one year and the denominator the next.  Ebbinge, van Biezen & van der Voet

(1991) suggest that while individual survival estimates may be inaccurate, the mean

will be reasonably accurate as the appearance of a population count in the numerator

one year and denominator the next will lead to a cancelling out of counting errors.

For the Russian breeding barnacle goose population Ebbinge, van Biezen & van der

Voet found that the mean survival rates estimated by the method considered here

were very close to estimates derived from the resighting of ringed individuals.
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Figure 6.8.  Three year running means of recruitment (calculated from [6.3]) and mortality

(calculated from [6.2]) the November count data for the Islay wintering barnacle geese.  Data from

Boyd (1968), Ogilvie (1983,92), and Nature Conservancy Council counts.

Assuming that the age of first breeding is three years then the number of adult birds,

at, in a winter t represents three groups: second winter birds that will not breed the

following spring, a2,t, third winter birds that will breed for the first time the following

spring, a3,t, and older birds, a4+,t.  The number of birds in the November of year t that
have the potential to breed the following year is thus given by a a aB t t t, ,= − 2 .  Making

the further assumption that the survival rate is the same for birds of all ages the
number of second winter birds can be is given by a j st t t2 1 1, = − −  where st−1 is the per

capita survival rate, a Nt t−1 , considered above.  The recruitment rate is then given by

b
j

at
t

B t

= +1

,

[6.3]

Fig. 6.8 compares three year running means of recruitment and mortality rates for the

period of the available November count data.  This demonstrates that mortality does

indeed exceed recruitment in four of the six years during the period 1976 to 1981

when the more liberal shooting regime was in place on Islay.  However, while

mortality during this period was above average, an equally important reason for the

observed decline in numbers of Islay wintering geese was the low recruitment rates in

the late 1970's and early 1980's.  Ogilvie (1983b) recognises that poor breeding
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successes as well as increased shooting contributed to the decline in numbers from

1980−1983.  Fox et al. (1990) assert that the poor breeding success observed in the

late 1970's and early 80's is probably attributable to geese reaching the breeding

grounds in poorer condition as a result of the increased disturbance, due to shooting,

in this period.  Fig. 6.8, however, suggests that breeding success was in decline from

the mid-1970's, before the increased shooting was permitted, and that it did not

reattain its pre-1975 level until the mid-1980's, some time after shooting was

restricted by the Wildlife and Countryside Act of 1981.  This tends to suggest that the

poor breeding results during these period are not solely attributable to increased

shooting on the wintering grounds.  It would be interesting to examine the residual

variances from the multiple regression of breeding success on meteorological

variables carried out by Fox & Gitay (1991) to see if less of the variation in the

proportion of young on the wintering grounds is attributable to the weather during the

period of increased shooting from 1976 to 1981.  Unfortunately Fox & Gitay do not

give sufficient detail in their paper to do this without additional information.

For the period since the Wildlife and Countryside Act came into force, the number of

geese shot under licences issued to farmers suffering agricultural damage has had to

be reported (Feare 1991).  While some doubts have been raised regarding the

reliability with which the numbers shot are reported (Appleby 1991) others (Feare

1991) feel that reporting is reasonably accurate.  Other than the general view that

prior to 1976 500-600 birds were shot annually increasing to 1500 to 2000 in the late

1970's (Elliot 1989) the numbers shot under licence provide the only published data

on shooting levels.  Using these data the effect of the numbers shot on recruitment

and mortality is investigated in Fig. 6.9.  It is apparent from Fig. 6.9a that there is

little relationship between mortality and the number reported shot.  This suggests that

the overwintering mortality due to shooting (which Owen (1990b) suggested is the

main source of overwinter mortality) is less important in determining overall

mortality than deaths at other times of the year.  Owen & Black (1991) suggest that

mortality on the autumn migration is the major source of mortality affecting the

Svalbard breeding barnacle goose population.  It is likely that migration mortality

also contributes substantially to the annual mortality of the Islay wintering barnacle

geese.  Mortality, as calculated from [6.2], is actually negative in two years.  There is,

of course, no way of knowing whether these "impossible" values are due to counting

errors or the interchange of individuals between different areas of the wintering range

from year to year.
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Figure 6.9.  The relationship between reported numbers of barnacle geese shot under licence on

Islay in a given winter, t, (1982/3 to 1989/90) and (a) mortality (from the November count in winter

t to the count in winter t+1) and (b) recruitment (based on counts in winter t+1), calculated from

eqns. [6.2] and [6.3] respectively (shooting data from Brodie 1991).

(b)

Fig. 6.9b also shows little evidence of a strong relationship between breeding success

and the number of geese reported shot the previous winter.  This is not really

surprising in the light of Fox & Gitay's (1991) suggestion that at up to 60% of the

158



(a)

Number of potential breeding birds in winter t

re
c

ru
it
m

e
n

t 
m

e
a

su
re

d
 i
n

 w
in

te
r 

t+
1

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

6000 8000 10000 12000 14000 16000 18000 20000

Total number of individuals in winter t

re
c

ru
it
m

e
n

t 
m

e
a

su
re

d
 i
n

 w
in

te
r 

t+
1

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 5000 10000 15000 20000 25000 30000

Figure 6.10.  The relationship between recruitment (based on the proportion of first year birds in a

year t+1), given by [6.3] and (a) the number of potential breeders in winter t, aB,t, and (b) the total

number of individuals in winter t.

(b)

variance in breeding success may be attributable to the weather conditions

encountered by the geese in the first half of the year.

159



Overall then, it would appear that, despite common assertions to the contrary (Owen,

Atkinson-Willes & Salmon 1986; Owen 1990b; Fox et al. 1990; Bignal, Stroud &

Easterbee 1991), the evidence that shooting plays a major role in determining the

dynamics of the Islay wintering barnacle geese is actually rather weak.

Another aspect of the population dynamics that must be considered is whether

recruitment and mortality are affected by population size.  While the limitation of

population size either by lack of feeding on the wintering grounds or competition for

nesting sites or food on the breeding grounds will inevitably limit the Greenland

breeding barnacle goose population, there is little published evidence that such

factors have been operating in recent years.  Fox & Gitay (1991) found no evidence

of density dependence operating in breeding success: the number of successfully

breeding pairs was directly related to the size of the breeding population over a range

of population sizes.  In fact, there is little evidence for density dependent regulation

of population growth in any of the British wintering goose populations (Owen 1990a;

Summers & Underhill 1991), with the exception of the Svalbard breeding barnacle

goose population which has recently shown a density dependent decline in

recruitment (Owen & Black 1989).  Figs. 6.10 to 6.12 investigate possible density

dependence in the November count data.

Fig. 6.10a demonstrates that there is no relationship between the recruitment

determined by the proportion of individuals in a given winter, t+1, (measured by

[6.3]) and the number of potential breeders in the previous November, aB,t.  Similarly,

recruitment shows no relationship to the total number of individuals (potentially

breeding adults, and first and second winter birds).

Fig. 6.11 considers the relationship between survival from the November count in

one winter (t) to the count in the next winter (t+1), and the population size in the first

winter (t).  The initial impression from this figure is one of a decrease in year to year

survival as population size increases.  However, it should be noted that the highest

values of survival are all "impossible" values, greater than one.  These values occur

when population size is small, which places them near the beginning of the time

series (the highest survival value, 1.63, occurred from 1966/7 to 1967/8).  It seems

likely, therefore, that part of the reason for these very high values can be attributed to

less accurate census techniques in the early years of the time series.  Restricting

attention to those survival values less than one (for which population sizes are in the
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Figure 6.11.  The relationship of survival from one winter to the next and population size, in

barnacle geese wintering on Islay.

region 12500 to 28000 individuals) reveals little evidence of a relationship between

survival and population size.

Finally, consider the relationship between population size and the logarithmic

population growth rate:

r N Nt t t= +ln /1b g [6.4]

This is shown in Fig. 6.12.  The growth rate appears to decline with population size,

but this impression is again influenced greatly by outlying points, in particular the

high growth rate recorded from the November count in 1966 to the count in

November 1967.  This corresponds to the very high survival rate in Fig. 6.11.  For

population sizes in the range 10000 to 30000 individuals (a range which includes all

but three of the calculated values of rt) there is little evidence of a decrease in

population growth rate with population size.  Thus, at current population sizes, there

is little evidence of density dependent effects in the dynamics of the Islay wintering

barnacle geese.

In summary, it would appear that the population dynamics of the Islay wintering

barnacle geese are strongly influenced by the apparently random influence of the

161



Number of individuals in winter t

r

-0.4

-0.2

0

0.2

0.4

0.6

0.8

0 5000 10000 15000 20000 25000 30000

Figure 6.12.  The relationship between population size in winter t and the logarithmic growth rate,

rt, given by eqn. [6.4], for the November count data for barnacle geese wintering on Islay.

weather.  While shooting on the wintering grounds can be a significant source of

mortality, the level of shooting does not appear to determine overall annual mortality,

which may be determined to a large extent by mortality on the autumn migration.

There is little evidence to link shooting on the wintering grounds with breeding

success, which also appears to be influenced heavily by weather conditions (Fox &

Gitay 1991).  At current population sizes there is little evidence of density dependent

regulation.  While such regulation would undoubtedly begin to act more obviously

should the population continue to grow, it is possible that any current density

dependence operating is being masked by the stochastic influence of the weather on

the population growth rate.

Before leaving this discussion of the dynamics of the Islay wintering barnacle geese, I

would like to investigate one other possible feature.  Note however that, given the

data currently available, this amounts to little more than speculation: hence its

position at the end of this chapter.  Considering again the time series of Fig. 6.8, a

certain amount of symmetry in the 3 year running means of recruitment may be

discernible.  It is tempting, if perhaps rash, to suggest that the low recruitment rates

in the late 1970's and early 1980's may represent a trough in a rate which is varying in

a cyclic (or at least quasi-cyclic, sensu Nisbet & Gurney (1982)) manner, rather than
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Figure 6.13.  The autocorrelation function of the 3 year running mean (Fig. 6.8) of recruitment in

the Islay wintering barnacle geese calculated, using [6.3], from the November count data.  Lags in

years.  The dotted lines mark approximate 95% confidence intervals for the hypothesis that the

autocorrelation is not significantly different from zero.  Note that the length of the time series of

recruitment rates does not really justify calculating autocorrelation at the longer lags illustrated here

and that this figure must therefore be treated with some scepticism.

simply fluctuating around some mean level.  This can be investigated further by

calculation of the autocorrelation function (Fig. 6.13).

While the shape of the correlation function is basically in line with the idea that the

recruitment rate is somewhat cyclic, it must be emphasised that calculating the

autocorrelation for lags that are similar in length to that of the time series has little

validity.  Given that the period of the speculative cycles in recruitment is of the order

of 15 to 20 years, it will require considerably more years of data collection before it

could be stated with any real justification that the poor breeding success of the Islay

wintering barnacle geese during the late 1970's and early 80's was indeed due to some

cyclic variation rather than simply a run of poor years.  However, it is interesting to
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note that the breeding success in 1992, determined by the proportion of young in

wintering flocks on Islay, appears to be low (S.M. Percival, pers. comm.).  This

follows the lowest breeding success ever recorded, in 1991 (Ogilvie 1992).

If quasi-cyclic variation in recruitment in the Islay wintering barnacle geese is ever

established, what are possible causes ?  Summers & Underhill (1987) found good

evidence for a three year cycle in breeding success in brent geese (Branta b. bernicla)

which breed on the Taimyr Peninsula.  This appears to be related to the well

established three year cycle in lemming (Lemmus sibiricus and Dicrostonyx

torquatus) numbers in the area, with a poor breeding year in the geese following a

year in which a peak in lemming numbers occurred and good goose breeding success

when lemming numbers are high.  The explanation offered for this pattern is that

predators, such as the arctic fox (Alopex lagopus), are forced to switch to feeding on

goslings when lemming numbers crash (Dhondt 1987; Summers & Underhill 1987).

Cabot et al. (1984) reported that, in the summer of 1984, arctic foxes were

responsible for the deaths of as much as 43% of barnacle goose goslings surviving

the jump from some nesting cliffs in Greenland.  They suggest that barnacle goose

breeding success may be related to the abundance of arctic foxes, which in turn may

be related to the numbers of lemmings in the area.  However, the cycle period in

arctic foxes in Greenland averages four years (Angerbjörn et al. 1991, and references

therein).  It is not immediately apparent how this would relate to cycles of longer

periods in barnacle goose recruitment.  Given that the existence of such cycles is, at

best, highly speculative it is, therefore, probably not necessary to worry too much

about their causes at this time.
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Chapter 7

An assessment of shooting as a tool in
the management of the Islay barnacle geese

________________________________________
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In this chapter the use of controlled shooting in the management of the population of

barnacle geese wintering on Islay is investigated.  This follows the increasing calls in

recent years from farmers on Islay for a cull to regulate the continuing trend of

increasing numbers of geese wintering on the island.  As the analyses of the previous

chapter showed, there is relatively little information available on the mechanisms

driving the changes in the number of wintering birds.  This chapter therefore applies

the methodology outlined in the first section of this thesis, with the construction of a

population model with random inputs, and the analysis of possible shooting strategies

using the distribution of persistence times as a population viability measure.

The data relating to the Islay wintering barnacle geese consists, to a large extent, of

the November census data and the counts of the proportion of young in the flocks

(Table 7.1).  By contrast, the smaller Svalbard breeding barnacle goose population

has been extensively studied through the used of ringing to identify individuals (see,

for instance, Owen & Black, 1989, who consider the lifetime reproductive output of

individuals in the Svalbard population).  However, the differences in dynamics and

behaviour of the three main barnacle goose populations (some of which are discussed

by Percival, 1991, and Cabot & West, 1983) suggest that it would not be very useful

to attempt to apply results of the Svalbard population in the modelling of the east

Greenland breeding population.

A simple model

Attempting to build a complex model which incorporates as much detail as is known,

or supposed, about the dynamics of the Islay wintering barnacle geese would

inevitably result in a situation where the parameters of the model could take such a

wide range of values that the results obtained would probably have minimal value.

Consider instead the simple model

N b N S Nt t t t t+ = +1 [7.1]

where Nt is the number of female barnacle geese counted on Islay in the autumn of

year t, St is the probability that a female survives and returns the following winter,

and bt represents the number of female young arriving on Islay in year t+1 per female

present at the start of the winter of year t.  The parameters bt and St are calculated

from the November count data of Table 7.1 by application of the relations:

b y P P

S P P b
t t t t

t t t t

=
= −

+ +

+

1 1

1

[7.2]
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Table 7.1.  The November count data for the years 1960−91 (from Boyd 1968, Ogilvie 1983b, 92, and

Nature Conservancy Council counts) with the number of geese shot under licence for winters

beginning November 1982−89, from Brodie (1991).  Recruitment, bt, and survival, St, from eqns.

[7.2], and growth rate, rt, given by ln(Pt+1/Pt).  Means and variances in parenthesis exclude years with

survival rates greater than one.

November count data Number

Year Count (Pt) % young shot bt St rt

1960   4600   9.7 0.13 1.13 0.23

1961   5800 10.7 0.08 0.97 0.05

1962   6100   7.6

1963 30.6

1964   8300   7.5

1965 11.2

1966   8400 13.0 0.34 1.63 0.68

1967 16500 17.1 0.08 0.73 -0.22

1968 13300   9.5 0.22 0.86 0.07

1969 14300 20.0 0.20 0.82 0.01

1970 14500 19.4 0.16 0.99 0.14

1971 16600 13.6 0.13 0.92 0.04

1972 17300 12.1 0.18 0.86 0.05

1973 18100 17.4 0.14 0.93 0.07

1974 19400 13.0 0.14 0.90 0.04

1975 20200 13.9 0.27 0.92 0.17

1976 24000 22.4 0.04 0.78 -0.20

1977 19600   4.9 0.13 0.99 0.12

1978 22000 12.0 0.07 0.72 -0.24

1979 17300   8.3 0.14 1.05 0.17

1980 20500 11.4 0.05 0.67 -0.33

1981 14800   7.3 0.06 0.81 -0.15

1982 12800   6.7 956 0.13 1.14 0.24

1983 16217   9.9 731 0.14 0.92 0.06

1984 17213 13.4 447 0.11 0.93 0.04

1985 17875 10.7 541 0.19 1.04 0.21

1986 21970 15.5 791 0.12 0.87 0.00

1987 21900 12.5 505 0.11 0.82 -0.07

1988 20380 12.0 752 0.22 1.00 0.20

1989 24860 18.1 915 0.27 0.86 0.12

1990 28000 23.7 0.04 0.75 -0.24

1991 22000   4.7

Mean 0.14 (0.134) 0.93 (0.864) 0.05 (-0.012)

Variance 0.01 (0.005) 0.03 (0.009) 0.04 (0.022)
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where Pt is the total November population count in year t, and yt the proportion of

first winter birds in the flocks.

The model [7.1] is thus easily paramaterised from the available data.  The relations

[7.2] require the assumption of a constant, age-independent sex ratio.  There is little

available data to judge this assumption.  The few catches of adult geese reported in

the literature (e.g. Cabot et al. 1984) show no significant deviation from a 1:1 sex

ratio.  Studies of individually marked birds have shown a higher mortality rate in

females in the Svalbard breeding population (Owen & Black 1989) but not in the

Russian breeding population (Ebbinge, van Biezen & van der Voet 1991).

In the remainder of this chapter bt will be referred to as recruitment and St as survival.

The form of the model [7.1] essentially suggests that the barnacle geese wintering on

Islay is a closed population.  As was discussed in chapter 6, however, there is

evidence that a minority of birds are mobile between wintering areas, both within a

winter and between winters (Percival 1988, 1991; Newton & Percival 1989).  These

facts can be accommodated in the framework of the simple model presented here by

recognising that some of the adult birds counted on Islay in November may, in fact,

have spent the previous winter elsewhere and are, therefore, strictly immigrants to the

Islay group rather than survivors from the previous winter, and that some young birds

may be the offspring of females which did not spend the previous winter on Islay.

The parameters termed "recruitment" and "survival", as calculated from [7.2],

actually incorporate these other factors.

The presence of birds on Islay during a November count one winter, that wintered in

areas other than Islay in previous years, may be one reason why "impossible" survival

values greater than one arise on occasions (Table 7.1).  Another reason may of course

be counting errors.  Ebbinge, van Biezen & van der Voet (1991) point out that if an

abnormally large proportion of birds are missed in one November count, but not the

next, the presence of a given count in the numerator of the survival estimates one

year and the denominator the next, will lead to an underestimated survival rate

followed by an overestimate.  They found, however, that the mean survival value

determined by estimates of the proportion of young in flocks compared favourably

with estimates based on resightings of ringed individuals.

Recruitment, as given by bt in eqn. [7.2], differs from the definition of recruitment

used in the previous chapter.  There recruitment was based on the number of young
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estimated to be present on Islay in one winter per adult present the previous winter

that could be classified as a potential breeding bird.  It was assumed that the age of

first breeding was three years.  To calculate this "age-structured" recruitment

necessitated the assumption that survivorship was constant for all ages.  This delay

before first reproduction is not incorporated in the model of [7.1].  This omission is

not as unfortunate as it may seem at first.  Fig 7.1 demonstrates that there is, in fact,

an almost linear relationship between the age-structured recruitment considered in

chapter 6, and recruitment as defined here (eqn. [7.2]).

The structured recruitment of [6.3] is, of course, slightly larger than the per capita

recruitment here as [7.2] attributes the same number of young birds to more females.

In the absence of information on differential mortality attributable to age the

relationship of Fig. 7.1 suggests that the use of a structured model will be of little

value.  The evidence from observations of the number of pairs that are accompanied

by broods on the wintering grounds (Cabot & West 1983; Fox & Gitay 1991), and of

direct observations of breeding success in Greenland (Cabot et al. 1984), is that the

young present on the wintering grounds are actually the offspring of a rather small

proportion of the breeding population, with many birds of a breeding age actually

failing to successfully rear any young in a given year.

recruitment from eqn. [7.2]

"a
g

e
-s

tr
u

c
tu

re
d

" 
re

c
ru

it
m

e
n

t

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

Figure 7.1.  The relationship between the age-structured recruitment of chapter 6 (eqn. [6.3]) and

the unstructured recruitment of [7.2].
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In common with the recruitment and survival estimates discussed in chapter 6, bt and

St here (Table 7.1) show no obvious relationship with population size.

Persistence time with current vital rates

The simple model considered here, eqn. [7.1], to represent the dynamics of the Islay

wintering barnacle geese from the November count data is, of course, just a special

case of the simple multiplicative model of chapter 3.  Here, the multiplicative growth

rate, lt, is equal to bt + St.   The long run population growth rate, m, and  its variance 

s2, are estimated by the mean and variance of the logarithmic growth rate rt,

calculated in Table 7.1.  So m is estimated as 0.05 and s2 as 0.04.  The long run

growth rate thus supports the observed upwards trend in population size.  Note that

the formulae [3.6], which were used to approximate the long run growth rate and its

variance from information on the multiplicative growth rate in the first section of this

thesis, give very acceptable estimates of m and s2 of 0.050 and 0.034 respectively.

However, a rather different situation emerges if the few years with "impossibly" high

survival rates are excluded from the calculation of the mean and variance of the

logarithmic growth rate.  In this case m is estimated as −0.012 and s2 as 0.022; in

other words, there is a slightly negative long term growth rate.  As discussed above

either counting errors or immigration could have led to the survival rates greater than

one, and the positive growth rate obtained earlier is doubtless the most representative

of the data series.  What this exercise demonstrates, however, is the importance of a

few "good" years in producing the positive population growth rate over the last three

decades.  If population limiting mechanisms, such as a shortage of the better breeding

sites in Greenland, are beginning to take effect then a long run growth rate around

zero may be in prospect.  In much of the following analysis two situations will be

considered: (a) persistence time with the 'best estimate' from the data of a growth rate

of 0.05, and (b) persistence time when the long run growth rate is around zero.  The

latter situation is included to give an indication of likely persistence times under a

rather more pessimistic view of likely population growth rates.

From the analyses of chapter 3 it is apparent that, particularly where long run growth

rates are positive, persistence time results depend on the level at which the lower

threshold is set.  Current numbers of female barnacle geese on Islay are in the region

of 11000 individuals (from counts in the winter 1991/2).  It is probably reasonable to

assume that many conservationists would be concerned were the number of females
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Figure 7.2.  The probability, G(•), of ultimately reaching the 'critical' lower population size, Na, as

this critical size is varied, calculated from [3.8].  m = 0.05, s2 = 0.04.

to drop to, say, 5000.  Fig. 7.2 demonstrates the change in ultimate probability of

reaching this level of concern, as the population size at which the level is set is

varied.  Thus, while the number of female barnacle geese wintering on Islay is quite

likely to drop to 9000 or 10000 individuals, the probability of reaching a level of

5000 females is 0.139, given the observed positive growth rate.  Of course, should

the population growth rate be nearer zero, reaching a level of 5000 females is

virtually certain (eqn. [3.13]).

Fig. 7.3 shows the probability density functions, calculated from eqn. [3.9], for

persistence time under the two scenarios considered above.  The two curves are

similar in shape (because both sets of parameters give rise to fairly similar values of 

f, the shape parameter discussed in chapter 3, eqn. [3.12]) but the area under the

persistence time distribution for the positive growth rate, which was the best estimate

of the population growth rate from the data of Table 7.1, is much smaller.  This is, of

course, a feature of the much reduced ultimate probability of reaching the threshold

conferred by the positive growth rate.  With a growth rate, m, equal to 0.05 the
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Figure 7.3.  The persistence time distribution for the simple model [7.1], calculated from eqn. [3.9]

with (− − −) m = 0.05, s2= 0.04 (best estimate of population growth rate from data of Table 7.1: see

text, p.170); (——) m = −0.012, s2 = 0.022 (population growth rate calculated with survival rates

greater than one excluded).  N0 = 11000, Na = 5000.  Ultimate probability of reaching the threshold,

G(•), calculated using [3.13].

greatest probability of reaching a level of 5000 females occurs in the next decade.  If

the population continues to grow at this rate then the probability of dropping to this

small population size is much reduced.  Where the growth rate is calculated with the

exclusion of the few years with high survival rates, reaching a level of 5000 females

is ultimately certain.  The most likely persistence time is of the order of 10 years, but

reasonably long persistence times could also arise.

The effects of autocorrelation in the recruitment rate

The analysis of chapter 6 suggests that there may be a tendency for some clustering

of good or bad years in the rate of recruitment of juvenile birds.  The simple model of

chapter 3 considered only the case of serially independent fluctuations in the

population growth rate.  Tuljapurkar & Orzack (1980) suggest that, while the

ultimate probability of reaching a lower threshold is not likely to be greatly affected
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by autocorrelation, the actual distribution of persistence times in a linear population

model is likely to be quite sensitive to environmental autocorrelation.

The effect of autocorrelation in the recruitment rate on persistence time in the model

[7.1] can be evaluated by calculating persistence times numerically, with the

recruitment and survival rate given by

b b b Z

S S Y

t t Z t

t S t

= − + +

= +
−1 1a a s

s

a f
[7.3]

where b– and S– are mean recruitment and survival rates, a is a measure of

autocorrelation in recruitment rates, and Zt, Yt are Gaussian random variables with

zero mean and unit variance.
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Figure 7.4.  The effect of autocorrelation in recruitment rate on persistence time in the model [7.1]

with recruitment and survival given by [7.3].  a = 0.8 (——), a = 0.2 (........), a = 0 (− − −).  In all

cases the initial number of females, N0, is 11000; the lower threshold, Na, is 5000 females, b
–
 =

0.134, S
–
 = 0.864, sZ = 0.0707, sS = 0.0949.  Persistence time distributions were estimated

numerically and smoothed using a symmetric nearest neighbour linear least squares procedure with

a span of 5 time steps.
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Fig. 7.4 demonstrates the effect on persistence time of different levels of

autocorrelation in the recruitment rate when the 'driving' environmental variance, sZ,

is fixed and the population is not growing.  Such autocorrelation in general produces

a reduction in persistence time, rather slight at lower levels of autocorrelation, but

more marked as the autocorrelation is increased.  Where the population is growing

and autocorrelation is introduced into the birth rate (Fig. 7.5) the major effect is to

increase the ultimate probability of reaching the threshold, especially when the

autocorrelation is strong.  In contrast to Fig. 7.4 there is no tendency for the modal

persistence time to be reduced.

The autocorrelated rate of recruitment, bt, as given by [7.3], is a first order
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Figure 7.5.  The effect of autocorrelation in recruitment rate on persistence time in the model [7.1]

with recruitment and survival given by [7.3].  a = 0.8 (——), a = 0.2 (........), a = 0 (− − −).  In all

cases the initial number of females, N0, is 11000; the lower threshold, Na, is 5000 females, b
–
 = 0.14,

S
–
 = 0.93, sZ = 0.1, sS = 0.17.  Persistence time distributions were estimated numerically and

smoothed using a symmetric nearest neighbour linear least squares procedure with a span of 5 time

steps.
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autoregressive process.  The variance in growth rate is, therefore, given by (Chatfield,

1984, p.45):

s
s

a
b

Z2
2

21
=

−c h
[7.4]

Increasing the degree of autocorrelation (a) thus increases the variance in recruitment

rate.  The decrease in persistence time noted in Fig. 7.4, and the decreased probability

of persistence of Fig. 7.5, cannot, therefore, be attributed solely to the effects of

autocorrelation: the increased variance in recruitment rate will also affect the

persistence time distribution.
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Figure 7.6.  The effect of autocorrelation in recruitment rate on persistence time in the model [7.1]

with recruitment and survival given by [7.3] and a chosen to give constant variance in recruitment

rate.  a = 0.8, sZ = 0.0424 (——); a = 0.2, sZ = 0.0693 (........); a = 0, sZ =  0.0707 (− − −).  In all

cases the initial number of females, N0, is 11000; the lower threshold, Na, is 5000 females, b
–
 =

0.134, S
–
 = 0.864, sS = 0.0949.  Persistence time distributions were estimated numerically and

smoothed using a symmetric nearest neighbour linear least squares procedure with a span of 5 time

steps.
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To investigate the effects of autocorrelation alone on persistence time eqn. [7.4] can
be used to choose values of s Z

2 such that the variance in recruitment rate, s b
2, is

constant for different levels of autocorrelation, determined by a.  This has been done

in Fig. 7.6 which demonstrates that, where the population does not have a positive

long term growth rate, autocorrelation alone still tends to reduce persistence time

with the mode of the persistence time distributions under autocorrelation being at

shorter times, and a higher probability of reaching the lower threshold, than the mode

in the persistence time distribution without autocorrelation.  The shift in the

distribution towards shorter persistence times is, however, less marked than that

observed in Fig. 7.4 where the environmental variance, s Z
2, was constant producing

the confounding effect of increasing variance in recruitment with increasing

autocorrelation.

For a growing population the effect of autocorrelation in the recruitment rate is again

to increase the probability of reaching a lower threshold though the increase is not as

great as that noted in Fig. 7.5 where the environmental variance, s Z
2, rather than the

variance in recruitment rate, was constant.

The effects of shooting

To consider the effects of shooting the number, Ht, of female barnacle geese shot in

the winter of year t is incorporated in the model [7.1] to give

N b N cH S N Ht t t t t t+ = − + −1 b g b g [7.5]

Male and female geese are likely to be equally vulnerable to shooting.  The total

number of geese shot in a winter is then 2Ht.  The parameter c (which can take values

between 1 and 2) is necessary because some females will lose their mate to shooting

and thus fail to breed the following summer.  Birds losing their mate in this way are

assumed to have re-paired no later than the second breeding season after the loss of

their mate (if they survive).

The only effect of shooting incorporated in [7.5] is actual loss of birds.  As noted in

the previous chapter there is little evidence of a direct effect of shooting on breeding

success.  In addition no redistribution of geese to other parts of the wintering range as

a result of shooting is included.  Ogilvie (1983b) found no evidence of geese being

driven from Islay by the increased shooting pressure in the late 1970's.
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Different management regimes for the regulation of shooting result in different

functional forms for Ht.  If shooting is to reduce conflict between farming and

conservation interests then controlled shooting must not only curtail population

growth, but must seek to prevent the population becoming endangered.  If the

population growth rate were constant from year to year (i.e. making [7.1] a

deterministic model) then this compromise could be specified by insisting that the

functional form for Ht should produce a stable equilibrium size for Nt in [7.5].  On

this basis shooting controlled in a manner that does not take account of population

size, such as shooting a constant number or proportion of geese annually, can be

rejected as a suitable management strategy (Nisbet 1989; Middleton, Nisbet & Kerr

1993).  Two reasonably simple strategies for controlling shooting which have

functional forms for Ht that produce a stable equilibrium in a model with constant

vital rates are (Nisbet 1989; Middleton, Nisbet & Kerr 1993):

(i) shooting a fixed fraction, a, of the excess of females above some threshold, T

H
a N T N T

t
t t=
− >R

S
T

if 

otherwise0
[7.6]

(ii) as (i) but based on the number of females counted in the previous winter

H
a N T N T

t
t t=

− >R
S
T

− −1 1

0

if 

otherwise
[7.7]

The strategy (ii) has the advantage that shooting levels for a particular winter could

be decided on the basis of the population census in the previous winter.  This

contrasts with strategy (i) which relies on counts of the birds arriving at the beginning

of winter to determine shooting levels for that same winter.

The criterion that a shooting strategy should produce a stable equilibrium in the

model [7.5] when vital rates are constant enables totally unsuitable strategies to be

rejected.  However, further analysis, that takes account of the observed fluctuations in

the recruitment and survival rates (Table 7.1), is required before it can be concluded

that either of the strategies above are suitable for the observed situation where vital

rates fluctuate a great deal.  For this reason changes in the persistence time

distribution under the shooting strategies [7.6] and [7.7] are considered.
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Persistence time under controlled shooting

Analytic insights

The shooting strategies [7.6] and [7.7] stabilise the size of the population described

by [7.5] because they impose a form of density dependent mortality in a model where

the vital rates otherwise fluctuate independently of population size.  The inclusion of

a threshold in these strategies, below which no shooting takes place, suggests

comparison with the model of chapter 4, where a hard upper bound to population size

was imposed on a linear (i.e. density independent) population model.  In particular,

where the proportion, a, of females over the threshold which is shot is one, similarity

to the model with a hard upper limit equivalent to the threshold, T, is likely to be

high.  The main difference between the model considered here and the model of

chapter 4 arises from the fact that the model here is based on a November census

which takes place between the summer breeding and the winter when the threshold is

enforced by shooting.  The November census is the variable on which the persistence

time above the lower critical size is based.  In the model of chapter 4 this variable

could not exceed the upper threshold, Nb.  Here, the threshold may be exceeded due

to the temporal separation of breeding and shooting mortality.  Thus, even with the

proportion shot, a, equal to one the shooting threshold, T, differs to some extent from

a hard upper bound to population size.

Fig. 7.7 compares numerical estimates of persistence time under strategy (i) where a

= 1, with persistence time distributions calculated from eqn. [4.3] with the upper

limit, Nb, equal to the shooting threshold, T.  The approximation is tolerable given the

differences in the models discussed above.  The mode of the distributions calculated

from [4.3] coincide with the modes of the numerically estimated distributions and the

distributions are similarly skewed.  However both distributions of the persistence

time under shooting show a slightly bimodality which cannot be produced by [4.3].

While the parallels between the model where all females over some threshold

population size are shot and the model with a hard upper limit of chapter 4 are

interesting, and the approximation to the distribution of persistence times reasonable,

it is unlikely that such a high value of a would ever occur in a conservation

management situation.  Rather more relevant is comparison with the situation

considered in chapter 5 where a population is fluctuating around some mean value.
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For the threshold shooting strategies [7.6] and [7.7] necessary and sufficient

conditions for a positive equilibrium with constant recruitment, b–, and survival, S–, are

(Nisbet 1989; Middleton, Nisbet & Kerr 1993):
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Figure 7.7.  Comparison of (.....) numerically estimated persistence time distributions for the goose

model with shooting regulated under strategy (i), with the proportion over the threshold shot equal

to one, and (——) the linear model with a hard upper threshold where persistence time is given by

[4.3].  (a) growing population: b
–
 = 0.14, sb = 0.1, S

–
 = 0.93, sS = 0.17; (b) no growth: b

–
 = 0.134, sb

= 0.0707, S
–
 = 0.864, sS = 0.0949.  Na = 5000, N0 = 11000, T (= Nb) = 10000 in both cases.
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b S

a b S bc S

+ >

< + − +

1

1c h c h
[7.8]

For local stability shooting under [7.6] requires the condition

a b S bc S< + + +1c h c h
[7.9]

in addition to the inequalities [7.8] while strategy [7.7] requires the additional

condition

a bc S< +1 c h
[7.10]

Thus, if recruitment and survival were constant at their mean values (calculated from

the data of Table 7.1) of 0.14 and 0.93 respectively, shooting under strategy (i) with c

= 2, eqn. [7.6], would result in a stable equilibrium for 0.06 < a < 1.71 whilst strategy

(ii), eqn. [7.7], requires 0.06 < a < 0.83.  For the mean rates calculated with years

with "impossible" survival rates excluded a positive equilibrium would not arise as b–

+  S– < 1.

With fluctuating recruitment and survival rates the population size may fluctuate

around some mean value related to, but (as was the case in Roughgarden's model

investigated in chapter 5) probably less than, the deterministic equilibrium population

size.  The existence of such a "stochastic equilibrium" is, of course, dependent on the

level of variability in these rates.  In particular the long run growth rate, m, would

require to be positive (replacing the condition for the deterministic case that b S+ >1

is necessary).  Some narrowing of the potential values for a would also be likely,

though the extent to which this occurs depends on what level of fluctuation around

the mean population size is considered "stable".

The results of chapter 5 for the persistence time of populations fluctuating around

some mean value suggest that the persistence time distribution will be exponential

for all but short times.  Unfortunately a general method for calculating the mean

persistence times in such situations was not forthcoming.  Local linearisation of the

deviation from the mean population size under the threshold shooting strategies

produces an autoregressive process (appendix 2).  While such approximations were

found to produce 'ball park' estimates for mean persistence time for Roughgarden's

(1975) logistic with random carrying capacity, Fig. A2.2 demonstrates that the

observed variance in recruitment and survival places the Islay barnacle geese outwith

the range where the local linearisation is likely to be useful.  The approximation
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[A2.7] underestimates the variance in population size when compared with

simulations of the full model.  In addition the mean population size is found to be

less than the deterministic equilibrium when vital rates are constant.  In the next

section the effect of shooting on persistence time is therefore investigated with the

aid of numerically estimated persistence time distributions.

Numerical analysis

Persistence time distributions for the model [7.5] with shooting given by [7.6] or

[7.7] can be estimated numerically with recruitment and survival given by

b b Z

S S Y

t b t

t S t

= +

= +

s

s
[7.8]
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Figure 7.8.  Numerical estimates of persistence time distributions for the model [7.5] with (− − −)

no shooting; (........) shooting under strategy (i), [7.6], with a = 0.2, T = 10000, c = 2; (——)

shooting under strategy (ii), [7.7], with a = 0.2, T = 10000, c = 2.  In all cases the initial number of

females, N0, is 11000; the lower threshold, Na, is 5000 females, b
–
 = 0.134, S

–
 = 0.864, sb = 0.0707, s

S = 0.0949.  Persistence time distributions were estimated numerically and smoothed using a

symmetric nearest neighbour linear least squares procedure with a span of 10 time steps.
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where Zt and Yt are independent, Gaussian, random variables with mean zero and unit

variance.

Figs. 7.8 and 7.9 illustrate the effect of shooting regulated under strategies [7.6] and

[7.7] on the distribution of persistence times.  For a slightly negative long run

population growth rate (Fig. 7.8) the main effect of shooting under either strategy is

to raise the probability of the population reaching the lower 'critical size' of 5000

individuals at short times.  Because the ultimate probability of reaching the lower

threshold is one in all three cases there is a corresponding reduction in the probability

of reaching the threshold at longer times.  The important point, however, is that the

mode of the persistence time is not shifted to a shorter time by the imposition of

shooting.
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Figure 7.9.  Numerical estimates of persistence time distributions for the model [7.5] with (——)

no shooting; (........) shooting under strategy (i), [7.6], with a = 0.2, T = 10000, c = 2; (− − −)

shooting under strategy (ii), [7.7], with a = 0.2, T = 10000, c = 2.  In all cases the initial number of

females, N0, is 11000; the lower threshold, Na, is 5000 females, b
–
 = 0.14, S

–
 = 0.93, sb = 0.1, sS =

0.17.  Persistence time distributions were estimated numerically and smoothed using a symmetric

nearest neighbour linear least squares procedure with a span of 5 time steps.
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For a population growth rate equivalent to the "best estimate" from the data of Table

7.1 there is a similar increase in probability of reaching the threshold at short times

when shooting is imposed (Fig. 7.9), and again the modal persistence time is

approximately the same as the no shooting case.  However, the dominant feature of

the persistence time distributions under shooting is the raised distribution tail.  In this

case shooting considerably increases the ultimate probability of the population

reaching the lower threshold: this is due to the fact that the unconstrained population

growth that was possible with a positive growth rate, and no (natural or imposed)

regulation, is now prevented.  The tail of the distribution is exponential, in line with

the analyses of chapter 5 where an exponential persistence time distribution arose in

models where the population was regulated around some mean size.  The persistence
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Figure 7.10.  Persistence time distributions for the model [7.5] with shooting regulation based on

the number of females in the previous winter, eqn. [7.7].  —— : a = 0.6, T = 10000, c = 2; ........ : a

= 0.6, T = 10000, c = 1; — — : a = 0.6, T = 15000, c = 2; − − − : a = 0.2, T = 10000, c = 2.  In all

cases N0 = 11000, Na = 5000, b
–
 = 0.14, S

–
 = 0.93, sb = 0.1, sS = 0.17.  Persistence time distributions

were estimated numerically and smoothed using a symmetric nearest neighbour linear least squares

procedure with a span of 5 time steps.
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time distributions under shooting also show a bimodality similar to that exhibited by

Roughgarden's (1975) stochastic logistic, one of the models investigated in chapter 5.

Fig. 7.10 shows persistence time distributions for different values of a (the

proportion shot), T (the threshold number of females, below which no shooting is

allowed), and c (the effect of mate loss on recruitment).  In all cases the modes of the

distributions are similar to that of the persistence time distribution without shooting.

The main effect of a change in parameters is in the probability of reaching the

threshold at a given time.  For a threshold level, T, an increase in the proportion of

females over the threshold shot results in an increased probability of reaching the

small population size of interest, Na, at short times (balanced by a decreased

probability at longer times).  Decreasing the value of c (i.e. assuming that a greater

proportion of the females whose mates are shot form new pairings before the

summer) results in a slightly decreased probability of reaching the 'critical' level at

short times (the first two decades from the imposition of controlled shooting).
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Figure 7.11.  Realisations of the model [7.5] with N0 = 11000, b
–
 = 0.14, S

–
 = 0.93, sb = 0.1, sS =

0.17.  − − − : number of females with no shooting.  —— : number of females (and ........ number of

females shot) with shooting regulated by  [7.7] with a = 0.6, T = 10000, c = 2.
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Setting the shooting threshold at a higher number of females, for a given value of a,

reduces the probability of dropping to the critical level at short times.  In general

increasing the impact of shooting (by increasing a or lowering T) does not greatly

change the most likely persistence time, rather it results in a narrowing of the

persistence time distribution such that long persistence times become less likely.

Fig. 7.11 shows realisations of the model [7.5] with and without shooting for the 'best

estimate' recruitment and survival rates of Table 7.1.  Without shooting the positive

long run growth rate of 0.05 means that the population, despite fluctuating a great

deal, rapidly grows beyond the scale of the figure.  By contrast, the population with

shooting regulated by strategy [7.7] is prevented from growing and remains

fluctuating around a moderate level.  The value of the parameter a in the threshold

shooting strategies [7.6] and [7.6] determines the extent to which the number of

females can fluctuate to high levels.  Shooting has much less effect on the lower limit

to which the population fluctuates.  Because shooting ceases when the number of

females falls below the threshold level the lower limit is largely a product of the

variance in the population growth rate.  By restricting the upper limit of population

size, shooting means that a poor run of growth rates will bring the population to the

lower limit (which is also, for the same reason, slightly lower as a result of shooting)

more often.  It is this effect which results in the higher probability of reaching a low

population size at short times.

The effects of autocorrelation in the recruitment rate

It was demonstrated above that autocorrelation in the rate of recruitment tended to

increase the probability of reaching the lower population size of interest at shorter

times.  It is important to consider whether this effect is accentuated under shooting, in

particular where there are lags in the regulation imposed by shooting, as in strategy

(ii), eqn. [7.7].  Fig. 7.12 shows the effect of shooting, where the number shot is

based on the number of females in the previous winter, eqn. [7.7]) for simulations

with the same parameters as Fig. 7.4.  In all cases the imposition of shooting raises

the probability of reaching the lower population size of interest at shorter times.

However, there is little evidence that the shooting interacts with the autocorrelated

recruitment rate to reduce persistence times beyond that of the independent effects of

autocorrelation and shooting.
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Figure 7.12.  The effect of autocorrelation in recruitment rate on persistence time distributions for

the model [7.5] with shooting regulated by [7.7].  a = 0.8 (——), a = 0.2 (........), a = 0 (− − −).  In

all cases the initial number of females, N0, is 11000; the lower threshold, Na, is 5000 females, b
–
 =

0.134, S
–
 = 0.864, sZ = 0.0707, sS = 0.0949, a = 0.2, T = 10000, c = 2.  Persistence time

distributions were estimated numerically and smoothed using a symmetric nearest neighbour linear

least squares procedure with a span of 5 time steps.

Discussion

It is apparent from the analysis above that shooting, controlled under a strategy such

as [7.6] or [7.7] which imposes a form of density dependent mortality on the

population, could effectively regulate the numbers of barnacle geese wintering on

Islay (i.e. prevent future increases in population size due either to long term positive

growth, or 'chance' fluctuations to larger sizes in a population with a growth rate near

zero) without reducing the most likely persistence time above some lower 'critical'

population size.  For the population growth rate of 0.05, estimated from the data of

Table 7.1, the imposition of shooting controlled under a threshold strategy results in

an increase in the ultimate probability of the population dropping to the small size of

interest.  This is due to the fact that populations are prevented from growing without

limit, a situation which the model [7.1] admits in the absence of shooting.  It could be

186



argued that this possibility is unrealistic and that the increase in the ultimate

probability of reaching a small population size when shooting is imposed is thus

overestimated (in other words, the 'true' probability of fluctuations to a low size in the

absence of shooting is greater).

An important question that remains is to judge what the effect of imposing shooting

on a naturally regulated population would be.  If natural population regulation is

currently active in the Islay barnacle goose population but undetected by the analyses

of the previous chapter, or perhaps would occur if the population were to grow much

more, would the imposition of the threshold shooting strategies [7.6] or [7.7] have a

deleterious effect on population persistence undetected by the foregoing analysis ?

The results of chapter 5 suggest that if natural density dependence were to act to

regulate the population around some mean size then the most noticeable effects on

the persistence time distribution would probably be at longer times, producing a

distribution with an exponential tail, rather similar to the effect of imposed regulation

demonstrated in Fig. 7.9.  Natural density dependence may result in a raised ultimate

probability of dropping to a small population size relative to the linear model, as

growth to extremely large population sizes would be prevented.  If the form of

natural population regulation was such that population growth was enhanced at

especially small population sizes then this could have a major effect on the lower

limit to population size, reducing the probability of reaching the critical level.  The

effect of controlled shooting on a naturally regulated population is thus likely to

further regulate fluctuations to larger population sizes, but unlikely to have any effect

on persistence time other than a slightly increased probability of reaching the lower

threshold.

While the modelling exercise carried out in this chapter suggests that shooting

regulated in such a manner that it imposes a form of density dependent regulation on

the Islay barnacle goose population may well be a satisfactory method of regulating

population size (thus preventing increased conflict with agricultural interests) without

greatly affecting the likely persistence time of the population, this result must be

considered in the light of relevant legislation, public opinion, and practicality.  While

modelling can assess the affects of management on a populations dynamics it can say

virtually nothing about the moral perspective of culling an internationally protected

species !
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Figure 7.13.  The relationship between the number of licences issued by DAFS for shooting

barnacle geese on Islay in the winters 1982/3 to 1989/90, and the number of geese reported shot.

Data from Brodie (1991).

From a (possibly naive) legal perspective a strategy of controlled shooting may be

permissible under the provisions of shooting to prevent agricultural damage.

However the current licence system is unlikely to be of much use in its

implementation.  Brodie (1991) points out that there is no relationship between

number of licences issued and the number of geese reported shot (Fig. 7.13).  Further,

restricting shooting to those issued with licences of the type currently issued would

restrict shooting to areas outwith SSSIs.  The model [7.5] assumes that shooting is

spread uniformly across the population.  Given that the Islay wintering barnacle

goose population is known to be made up of groups faithful to different feeding sites

on the island (Percival 1988,91), restricting shooting to part of the wintering

population could have adverse consequences not detected in the analysis of this

chapter.

Administering the shooting strategy through the provision of sport shooting would

not currently be legal under either UK or European legislation.  Owen (1990a)

suggests that wildfowlers would not be want to be associated with any culling

strategy, a view confirmed by Harradine (1991).  Owen also suggests that increased

shooting would attract considerable public outcry.  However, it is interesting to note
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that the mean number of female geese shot in the simulation of Fig. 7.11 was only

488.  Doubling this gives an estimate of the mean annual kill of both male and female

geese.  This figure, in the region of 1000, birds is not an especially great increase on

the mean number reported shot under licence in the winters 1982/3 to 1989/90 of 705

(Table 7.1, data from Brodie 1991), though relating the number shot to the

population size means that in some years the number shot will be much higher than

this mean.  Shooting is also likely to be more widely acceptable as a population

management tool than other culling methods such as trapping or poisoning (either on

the wintering or breeding grounds), as it is already widely accepted as a sport (Boere

1990).

It is possible that the provisions of the recent Scottish Natural Heritage Act which

removes the 'two tier' compensation system on Islay, by allowing for payments to

farmers outwith SSSIs suffering damage by goose grazing, will silence calls for

culling of the wintering barnacle geese in the immediate future.  However, if the

upward trend in population size of the last three decades continues, such calls will

doubtless be heard again.  Even if the Islay wintering barnacle geese begin to exhibit

natural regulation of population size, either by factors operating on the breeding

grounds in Greenland or saturation of the wintering grounds, the population is still

likely to show large fluctuations in size as a result of the observed variance in

recruitment and survival (Table 7.1).  In such circumstances a policy of allowing a

certain amount of shooting over a threshold level, while perhaps not contributing

greatly to the reduction of agricultural damage, may nevertheless act to defuse

conflict between agricultural and conservation interests.

Some conservationists frequently cite the fact that the population of barnacle geese is

very small in global terms (Ogilvie 1983b; Owen 1990a; Fox et al. 1990; Fox &

Gitay 1991) implying that continued increases in the population are only to be

welcomed.  However, it is a fact that some species are naturally much rarer than

others.  Much of the recent increase in barnacle goose numbers can be attributed to

the impact of man on the environment through the agricultural improvements carried

out on Islay.  Some examples of the problems associated with single species

conservation measures which can result in degradation of the wider ecosystem were

discussed in chapter 1.  Boere (1990) acknowledges that increases in the quantity of

wildfowl is not necessarily positive in a wider ecological context.  Whilst there is

little evidence that the large numbers of barnacle geese on Islay currently pose a

threat to naturally occurring species, independently of the loss of semi-natural habitat
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resulting from the taking of more land into agriculture, this may not be the case if

numbers continue to grow.  The effect of increased numbers of barnacle geese on the

staging and breeding habitats should also receive some consideration.  Perhaps it is

time for the objective of conservation plans for the Islay wintering barnacle goose to

be concerned with maintenance of the population (recognising that fluctuations in

numbers arise naturally as a result of the dependence of population growth rate on

weather conditions) rather than its continued growth.

The provision of sanctuary areas has so far been the major management policy for the

conservation of the Islay wintering barnacle geese (Bignal, Stroud & Easterbee 1990;

Owen 1977,90a).  While this has been successful from the point of view of

safeguarding the geese, it has not prevented conflict with agriculture.  Indeed by

increasing the quality of grassland in an attempt to attract birds that were actually

faithful areas elsewhere, it may only have served to increase both the population and

the conflict.  A future policy of population maintenance recognising the need to

compensate farmers outwith sanctuary areas for having geese grazing on their land,

and possibly allowing shooting at high population sizes (especially if the upwards

trend in population size continues), may be more successful.  Such a policy would

preferably be part of an integrated conservation approach encompassing other species

and habitats, rather than concentrating on a single species.  Agricultural surpluses,

and increasing potential for "natural heritage" to play a part in the economy of the

highlands and islands of Scotland may make for an easier change to such a policy.

The Islay wintering barnacle geese are without doubt a national asset and must, as

such, be protected.  The part that agriculture on Islay plays in maintaining this asset is

often, perhaps, underestimated.  Like any asset, careful management is essential and

in this case population modelling can help optimise the use of current knowledge in

making management decisions.
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Chapter 8

General discussion
________________________________________
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This chapter is designed to give an overview of the results included in this thesis and

to identify areas with potential for further work.  Its purpose is not to repeat the

discussions that are found at the end of each chapter but rather to present some

general conclusions.  Like the thesis, this chapter falls naturally into two sections: a

discussion of persistence in simple population models, and a discussion of issues

relating specifically to the Islay wintering barnacle geese.

Persistence time in simple population models

There is no doubt that persistence time is a useful measure of the behaviour of a

stochastic population model.  While persistence time was introduced in this thesis

specifically in the context of population management, it also relates to issues in

general ecological theory as the discussion of persistence and density dependence of

chapter 3 demonstrated.  The survey (chapter 2) of first passage time results available

for simple stochastic processes demonstrated that the mathematics necessary for

investigating the problem of persistence time is not very well developed, or

especially accessible, at the current time.  It is therefore very satisfying that, at least

for persistence time in linear population models with independent environments, a

fairly complete set of results exists, based on the first passage time of the Wiener

process.  The characteristics of persistence time in such models was extensively

investigated in chapter 3.  The most prominent omission from the current theory for

persistence time in density independent models is a method for dealing with

autocorrelated stochastic inputs.  Turelli (1977) suggests that in many populations the

underlying processes will in fact be subject to autocorrelated noise and that assuming

independent environments is necessarily an approximation.  Nisbet & Gurney (1982)

suggest that "coloured" noise, with non-zero short term autocorrelation, is a more

useful way of introducing stochasticity into population models than the uncorrelated

white noise more often used.  Lande & Orzack (1988) found that numerical estimates

of persistence time in an age-structured model with density independent rates were

approximated well by persistence time estimates based on the Wiener process first

passage time distribution, if they accounted for the "built-in" autocorrelation

introduced by age structure into their estimates of the long run growth rate and its

variance.  Numerical persistence time estimates for the model of Islay wintering

barnacle geese considered in chapter 7 suggested that autocorrelated growth rates

may have a substantial effect on persistence time.  It would be interesting to

investigate how well the persistence time distribution [3.9] approximates persistence

time in an autocorrelated environment with appropriate adjustments in the mean and
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variance of the long run growth rate, despite the fact that the Wiener process (with its

purely random inputs) can no longer be invoked as the limiting model.

In chapter 4 it was demonstrated that one unsatisfactory feature of most linear

population models - the potential for unlimited growth resulting in unreasonably

large population sizes - could be dealt with by the incorporation of a hard upper limit

on population size.  A biological mechanism giving rise to such a limit is competition

for a finite and indivisible resource, such as breeding territories.  Persistence time in

such cases, where a linear model describes all changes in population size beneath this

upper limit, can be found by considering the Wiener process with an upper reflecting

barrier.  The accurate expression for the first passage time of this process provided in

chapter 2 allowed the thorough investigation of the properties of the persistence time

distribution of this model in chapter 4.  The advantage of having analytical results for

persistence time in this model was demonstrated by the application to Stacey &

Taper's (1992) Acorn Woodpecker data which discovered flaws in their numerical

treatment.

While persistence time in models with density independent vital rates, and the useful

extension to models with regulation through an upper limit to population size, is well

characterised in chapters 3 and 4, persistence time in population models where the

growth rate is density dependent remains unresolved in the general case.  However

some general insights are still possible.  Non-linear stochastic population models

where the population fluctuates around some constant mean size can be expected to

give rise to an exponential distribution of persistence times for reasonably long times.

For Roughgarden's discrete logistic with random carrying capacity, and the goose

model of chapter 7 with threshold shooting, there is evidence of a bimodal

distribution of persistence times, the second peak in the distribution marking the

onset of the exponential portion of the distribution.  Chapter 5 did not yield a general

method for the mean persistence time based on this exponential distribution.

One difficulty of the two models considered in the first part of chapter 5, where it

was possible to obtain expressions for the persistence time (or mean persistence time)

by transformation to a simpler stochastic process, was the problem of differing

interpretations of the stochastic differential equations.  The "Ito-Stratanovich

controversy" dogged stochastic population modelling for several years.  Turelli

(1977) suggested that, if any, the Ito calculus may be most appropriate for

populations where the "true" underlying model can be considered to be a stochastic
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difference equation with autocorrelated noise.  However, by its application of the

rules of standard calculus, the transformation method of chapter 5 implied

interpretation of the stochastic differential equations according to Stratanovich rules.

Despite the fact that numerical estimates suggested that the two interpretations may

lead to similar persistence time distributions for certain parameter combinations, it is

well known that in some cases the different interpretations may lead to very different

conclusions (Feldman & Roughgarden 1975, Turelli 1977).  If a model is phrased in

terms of stochastic differential equations it remains inherently ambiguous unless the

appropriate calculus is also specified.  It would be useful to find a model where

persistence time could be investigated analytically for both Ito and Stratanovich

interpretations.  While this would necessarily be rather model specific, it may provide

a qualitative feel for the effect of differing interpretations on persistence time.

Chapter 5 also investigated the use of local linearisation around a deterministic

steady state as a means of approximating persistence time by utilising results for the

Ornstein Uhlenbeck process.  Where environmental variation is significant, and

where the lower threshold of interest lies outwith the 'normal' range of fluctuations in

population size (as will generally be the case in management situations), the

persistence time distribution of the locally linear model may differ significantly from

the distribution of persistence times in the full non-linear model.  This results from

the fact that the linear approximation underestimates the variance of the full model

(though overestimation is also possible, e.g. Nisbet, Gurney, & Pettipher (1977)) and

also that the actual mean population size in the stochastic model may be considerably

less than the equilibrium size of the equivalent deterministic model, a feature which

is especially important when persistence times are of interest.  In addition to the

problem of the linear model inadequately representing persistence time in the full non

linear model, the results of chapter 5 also showed that the mean persistence time of

the continuous time OU process generally underestimates mean persistence in the

"corresponding", discrete time, autoregressive process.  While persistence time

results for the density independent models were insensitive to changes in time step,

this is not the case in the density dependent situations considered here, a problem

which must be considered in future investigations of persistence time in density

dependent population models.

In summary then, a great deal of work remains to be done before insight into

persistence time in density dependent population models reaches anywhere near the

degree of completeness that exists for density independent models.  In addition to
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considering general methods for persistence time in models with a constant mean

population size, the problem of persistence time in cases where the corresponding

deterministic model does not yield a stable point equilibrium (such as cyclic or

chaotic models) must be considered.

One approach that may prove to be useful is that of Goodman (1987a,b).  Goodman

begins with the expression for expected persistence time in a birth and death process,

then redefines the birth and death rates such that environmental variation (as well as

demographic variation) can be incorporated.  This gives an expression for mean

persistence time which, in theory, could allow the incorporation of arbitrary forms of

the dependence of growth rate on population size.  If such a process proves to be

generally valid then the resulting expression for mean persistence time, combined

with the observation that populations fluctuating around a constant mean size show

an exponential distribution of persistence times, could lead to more general insight.

The models considered in this thesis have all considered a spatially homogenous

population affected by a temporally varying environment.  An area that deserves

attention is the affect of spatial (e.g. between patch) variability on population

persistence.  In chapter 3 it was suggested that a population subdivided into local

populations affected by different temporal patterns of environmental variability could

well have a much longer overall persistence time than any of its component

subpopulations, if these were sufficiently connected that recolonisation took place

after local extinction.  A similar mechanism is also a possible explanation for the

long persistence time observed in the Acorn Woodpecker population considered in

chapter 4.  Persistence time in both local and metapopulations will undoubtedly be

the subject of much investigation in the near future as spatially variable populations

are currently attracting a great deal of interest.  Verboom, Lankester & Metz (1991),

for instance, consider a stochastic metapopulation model for the badger (Meles

meles).  They find that a simple model with patches either in an occupied or empty

state adequately describes a more complex model with detailed representation of

local population processes.  Fragmentation of suitable habitat is found to be

especially important in persistence of the metapopulation: if suitable habitat is too

widely spaced recolonisation does not happen frequently enough to compensate for

the effects of local extinctions.
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Population dynamics and management of the Islay barnacle geese

As a result of changes in the law to allow payments to farmers whose land attracts

grazing geese but does not fall in a Site of Special Scientific Interest the conflict

between agriculture and barnacle goose conservation on Islay at present is,

apparently, not as acute as in previous years.  However the overall trend in population

size, despite the poor breeding success in the past two years, appears still to be one of

increases in size.  Unless natural population regulation is seen to be taking affect then

the conflict with agriculture is likely to continue.  The question of where population

regulation will take effect needs to be considered.  If the population is not currently

limited by factors operating on the breeding grounds, such as shortage of suitable

nesting areas, then continued agricultural improvements on Islay, together with

increased refuge areas, and combined with the faithfulness of birds to particular

feeding areas, are likely to lead to further increases in population size.  If this is seen

to happen, then consideration of the impact, not only on agriculture, but on the wider

ecosystem may lead to the conclusion that some form of population limitation

(possibly controlled shooting) is appropriate.  Should this be the case then it is

important that the shooting should be regulated in a manner that takes account of

population size and that shooting is stopped  when the population falls below some

threshold size.

Understanding of the dynamics of the east Greenland breeding geese is fairly limited

at present.  The available data relates mostly to the Islay wintering birds, on which

the models considered here were based, and to birds wintering on the Inishkea

islands.  Increased ringing and observation of marked birds in other parts of the

wintering range is essential if understanding of the dynamics of the whole population

(rather than just the Islay wintering portion) is to be advanced.  However, as far as the

situation on Islay is concerned, the most important area for study relates to the

question of whether natural density dependence is beginning to act to limit

population size.  Given the problems of elucidating such information from simple

census data, following the success of reasonably large numbers of individually

marked birds is likely to be an important technique in this area also.

At the modelling level there is still opportunity for progress based on current

knowledge and data.  Of particular interest is the question of alternative management

strategies.  Protected areas, rather than controlled shooting, remain the current policy
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on Islay.  Owen (1990a) suggests that a policy which sets up 'favoured areas' for

geese, within which farming is oriented towards providing feeding for the geese and

the geese are protected from disturbance, could be the model for protection of other

geese populations wintering in Britain.  Outwith these areas Owen suggests that

shooting over agricultural land be permitted so long as the population does not fall

below a certain level.

Models which incorporate favourable habitat surrounded by hostile areas have been

used by biologists for some time (Gurney & Nisbet 1975, McMurtie 1978, Nisbet &

Gurney 1982).  The primary conclusion from these models is that dispersal

mechanism and size of the favoured area may be as important as survival and

recruitment in determining population viability.  These models, however, generally

consider random movement between areas, and simultaneous recruitment and death.

Evaluating a policy of refuge provision in the case of the Islay barnacle geese

necessitates considering several deviations from this simple model.  This includes

diurnal movement of the geese between feeding and roost sites (which may not both

be in refuge areas), and within season movement between Islay and other wintering

areas in the Inner Hebrides and Ireland.  While, as discussed above, data on these

matters is limited a modelling framework could be put in place and the policy

evaluated in the light of current understanding of the population dynamics.

Persistence time would be a useful measure of population viability in such efforts.
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Appendix 1

Numerical estimation of
persistence time distributions

________________________________________
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This appendix briefly outlines the methods used in the numerical estimation of

persistence time distributions.  These methods were used both to confirm the analytic

results presented in this thesis (and were thus instrumental in revealing the problems

with published probability density functions for the Wiener process with an upper

reflecting and lower absorbing barriers discussed in chapter 2) and also to estimate

the persistence time distribution when the model of interest could not be cast in a

form in which one of the first passage time distributions of chapter 2 could be

applied.

Persistence time distributions were estimated by the "brute force" method of

repeatedly iterating the difference equation describing the model, from a given initial

state, and recording the time step at which the population size reached, or fell below,

the lower threshold value of interest.  The number of trials reaching the threshold at

each time was then divided by the total number of trials to give an estimate of the

probability of reaching the threshold at that time.  Typically 300,000 to 500,000 trials

were necessary to produce a persistence time distribution without too much

variability in the probability of absorption at a given time (see Fig. A1.1).

The program was written along the same lines as other tools used by the

mathematical biology group: the actual model for which the persistence time

distribution was to be estimated being specified in a different file than the main

program.  This allowed different models to be specified with great ease.  The

program was initially implemented on a personal computer in Borland Turbo Pascal

v.3.  However the necessity of carrying out a great many trials in order to build up a

clear picture of the persistence time distribution meant that this was not a viable

platform, a single distribution taking several days to compute.  The program was

therefore rapidly ported to an Atari ATW transputer workstation and recoded in

Prospero ProPascal.  This provided the platform for computing simulated persistence

time distributions for the first year of the project.  The creation of the Department of

Statistics and Modelling Science with extensive computing facilities enabled another

change of computing environment, to Sun sparcstations and Sun Pascal.  This

enabled persistence time distributions to be computed in 10 to 15% of the time

previously required.  Without this computing power estimating persistence time

distributions for continuous time models with euler integration would not have been

possible.
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The correct working of this program was tested by numerically estimating the first

passage time distribution for the "Gambler's ruin" problem, for which the exact

distribution is known.  This problem considers a gambler, with initial capital £z, who

loses or gains £1 each round with equal probability (½).  The question is how long

the game continues before the gambler is ruined (i.e. no capital remaining).  This is,

of course, equivalent to finding the first passage time of a simple, symmetric random

walk to an absorbing barrier at zero.  The probability at ruin at time (or round) t is

given by (Feller 1968, eqn. III.7.5)
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Figure A1.1.  The first passage time for the classical gambler's ruin problem determined

numerically by the methods described in this appendix, and compared with the exact formula

[A1.1].  (a) 3.0E+2 trials, (b) 3.0E+3 trials, (c) 3.0E+4 trials, (d) 3.0E+5 trials.  The initial capital,

z, equals £10 in all cases.
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Fig. A1.1 compares the distribution given by [A1.1] with that found numerically.

This figure demonstrates both that the numerical method successfully estimates the

first passage time distribution, and illustrates the earlier point about the large number

of trials required to produce a distribution with as little variance as possible.

Euler integration of continuous time models

The program described here was constructed specifically to estimate persistence time

in discrete time models described by difference equations with a time step of one.

Persistence time for continuous time stochastic models could, however, be estimated

by appropriately scaling the results to produce euler integration.

 As an example consider the Wiener process with drift mW and variance s W
2 .  The first

passage time distribution is estimated by euler integration of the generalised random

walk

X X Zt t t+ = +1 [A1.2]

where Zt is a Gaussian random variable with mean mRW and variance s RW
2 .  To

simulate the Wiener process with an integration time step of Dt [A1.2] is iterated

with

m m

s s

RW W

RW W

t

t

=

=

∆

∆ [A1.3]

The first passage time distribution obtained must then be scaled appropriately:

g t
g t t

tW
RWa f
a f

=
∆

∆
[A1.4]

Because a smaller time step is being considered there are more "opportunities" for a

trial to reach the threshold in a given length of time.  Thus for the same clarity of

estimated persistence time distribution (i.e. similar variances in estimated probability

of reaching the threshold at time t) as the Dt = 1 case the number of trials required is

multiplied by 1/Dt.  Euler integration with a time step Dt = 0.1 thus increases the

computation effort by an order of magnitude over the Dt = 1 case.  As the number of

trials required is large, even for the unit time step case, this is not a trivial increase

and may require runs lasting several days even with the latest (sun) version of the

program.
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Random number generation

Uniform random deviates were produced using Sun Pascal's built in random

function which appeared to perform as well as Press et al.'s (1989) ran3 uniform

random deviate generating function, as regards lack of serial correlation and

uniformity of distribution.  The built in function was generally preferred for reasons

of speed  When required Gaussian random deviates were produced from uniform

random deviates by the transformation method (Press et al. 1989, function gasdev).
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Appendix 2

Local approximation of the goose
model with threshold regulated shooting

________________________________________
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This appendix considers an approximation, in the neighbourhood of the deterministic

equilibrium, to the goose model discussed in chapter 7 [7.5] with shooting under

strategy (i), eqn. [7.6], where a proportion of the excess of females over a threshold

are shot.

Consider first the deterministic model with constant recruitment, b–, and survival, S–.

Substituting [7.6] for Ht in [7.5] yields

N b N ca N T S N a N Tt t t t t+ + +
= − − + − −1 d i d i

[A2.1]

where the shorthand notation [ ]+ is defined by the rule [x]+ = x if x > 0 and zero

otherwise.

The map of Nt+1 against Nt is illustrated in Fig. A2.1 with the deterministic

equilibrium N– given by

N
aT cb S

b S a cb S
=

+

− − + +

c h
c h1

[A2.2]

T N
_

N
_

Nt

Nt+1

Figure A2.1.  Map of Nt+1 against Nt for the goose model with shooting a constant fraction of the

females above a threshold [A2.1].
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The model is linear in the region of the equilibrium: this is obvious if [A2.1] is

written in the form

N b ca S a N aT cb S N Tt t t+ = − + − + + >1 1 1a f a f c h b g
[A2.3]

To investigate the effect of fluctuating vital rates nt, vb,t and vS,t are introduced as

deviations from the mean values of number of female geese, recruitment and survival

respectively such that

N N n

S S v

b b v

t t

t S t

t b t

= +

= +

= +
,

, [A2.4]

Inserting [A2.4] in [A2.3], expanding, and discarding terms which involve products

of any two of nt, vb,t or vS,t yields an approximation for the deviation from the mean

population size

n n Zt t t+ = +1 a [A2.5]

where

a = − + −

=
− + + − +

− − + +

b ca S a

Z
aT v c cS S v b cb

b S a cb S
t

b t S t

1 1

1

1

a f a f

c h c h
c h

, ,

[A2.6]

The approximation [A2.5] is a first order autoregressive process with variance given

by (Chatfield 1984)

s
s

a
n

Z2
2

21
=

− [A2.7]

Note that a similar approximation process for the model with shooting defined by

eqn. [7.7], where the number shot is based on the number of females on Islay in the

previous winter, would produce a second order autoregressive process.  For
independent recruitment and survival, with variances s b

2 and s S
2 respectively, the

variance of Zt is given by

s

s s

Z

b Sa T c cS S b cb

b S a cb S

2

2 2 2 2 2 2

2

1

1
=

− + + − +

− − + +

c h c h

c h
[A2.8]

Fig. A2.2 compares the variance in nt obtained from simulations of [A2.1] with that

given by the approximation [A2.7].  As the variance of Zt increases, the

approximation [A2.7] tends to underestimate the actual variance in the deviation
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Figure A2.2.  Standard deviation of the departure from equilibrium population size, sn, as the

environmental standard deviation, sZ, increases.  Line: approximation of eqn. [A2.7]; points: mean

standard deviation (with 95% confidence interval) for 5000 simulations, each of 1000 years, of the

full model [A2.1].

from the deterministic equilibrium population size.  The point with the highest

variances in Fig. A2.2 corresponds to the values calculated for the Islay wintering

barnacle geese from the data of Table 7.1 (chapter 7).

In addition to underestimating the variance in population size at higher levels of the

input variance, the first order autoregressive approximation also overestimates the

mean population size.  While the approximation [A2.5] suggests the average

deviation from the deterministic equilibrium [A2.2] will be zero, the simulations

carried out confirm that, in common with Roughgarden's (1975) stochastic logistic,

the mean population size when the vital rates are varying is generally less than the

deterministic equilibrium.  For the variance in recruitment and survival measured

from the Islay goose data of Table 7.1 the mean deviation, n–, from the deterministic

equilibrium is    −1272.7 (measured over 5000 replicates of 1000 years).
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