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Abstract

Persistencéime is introducedasa measuref the viability of a populationdescribed
by a stochastianodelof particularapplicabilitywhenmanagementecisionamustbe
made on the basis of available data.

Variousresultsfor thefirst passagéime of simplestochastiqrocessesarepresented
which canprovide persistencdéime estimatesn populationmodelling. This areaof
the literatureis found to be ratherundevelopedand accurateresultsare not widely
available.

Application of results for the Wiener process provides a complete set of
approximationgo the problemof persistencéime in populationmodelswith density
and serially independentvital rates. The propertiesof persistenceime in such
models are investigated and various ecological implications considered.

A linear model with a hard upper boundto populationsize is introducedwhich

preventspopulationsggrowingto unrealisticsizes. Persistencéme resultsappliedto

datafor the acornwoodpeckerwith a limited numberof territories. Immigration
and/ordensitydependentital ratesarelikely to be operatingto accountfor observed
persistence.

Persistencdime in density dependentmodels where the populationis regulated
aroundsome meanlevel is found to be exponentiallydistributed exceptat short
times. Two methodsareusedto provideinsight, but resultsin this areaaregenerally
lacking.

The datarelating to barnaclegeesewintering on Islay is analysed. The growing
populationhas comeinto increasingconflict with agriculture. Persistencdime is
usedasa viability measurdn the investigationof managemenstrategiesnvolving
controlledshooting. While someof thesestrategiesould successfullyregulatethe
population without greatly affecting likely persistencetime, current UK and EC
legislation would make applying these methods difficult. New compensation
measuresnay reducethe conflict at presentbut if naturalpopulationregulationis
not seen to take effect this conflict is likely to return.
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Persistence, avoidance of extinction, is at the root of the most
fundamental questions of ecology.
Strong (1990)

Chapter 1

Introduction




Many areasof ecologyaskquestionsaboutthe persistencef speciespopulationand
communitiesif, andwhy, theypersist,andfor how long. Persistencés alsoone of
the majorissuesnvolved whenthe scienceof ecologymeetsthe "real world" on the
issue of conservation. This thesisis concernedwith one particular aspectof
ecologicalpersistencethe time for which populationsize,in particularthe size of
managedpopulations,persistsabove somethresholdnumberof individuals. The
guestion of how different population managementstrategieschange the likely
persistence time is a central issue in applying these results.

Background and layout of the thesis

Thework reportedheregrewfrom interestin a specificmanagemenproblem,that of

managingthe populationof barnaclegeesewhich winterson the island of Islay, one
of the Inner Hebrides off the west coast of Scotland. The conflict between
conservationistgkeento seethe barnaclegoosepopulationflourish) and farmers
(concernedht lossesfrom barnaclegeesegrazingon their land) led thethen Nature
ConservancyCouncil to approachR.M. Nisbetto producemodelsof the population
consequencesf shooting geeseunder various control regimes. This resultedin

various deterministicmodels (Nisbet 1989, Middleton, Nisbet & Kerr 1993) but
identified the needfor stochastianodelsto accountfor the observedvariationin the
populationnumbersandyvital rates. My work on theseparticularmodelsmakesup
the secondpart of this thesis,following on from work of a more generalnaturethat
arose as a consequence of this problem.

During the investigationof thesestochasticmodelsfor the Islay barnaclegeese,it
became apparent that there vaaseedfor aviability measurehatallowedtheimpact
of variousmanagemenstrategieso be compared. This criterionthat hasbeenused
hereis thetime thatthe populationpersistsabovesomethreshold. In the restof this
chapter this criterion is discussed in the context of models of managed populations.

For muchof theinitial work on the Islay barnaclegeesemodelsthe persistenceime
was calculatednumerically,a procesghat not only requiresthe useof considerable
computingresource$ut yieldsrelativelylittle insightinto issuesbeyondthe specific
casesconsidered. Analytical approachego the problem of persistenceime are
thereforehighly desirable. Chapterghreeto five explorevariousanalyticalmethods
for describingpersistencgéime in somesimple populationmodels. Chaptertwo lays
the essentiagroundwork by bringing together,in a commonnotation,a variety of



resultsfrom the literaturethat providemuchof the mathematicabackgroundor this
work.

Modelling in species conservation and management

Thoseworking in populationmanagemenhaveto decideon appropriatestrategies
for the managemenof a specieswhich reconcile,where possible,the conflicting
demandsf variousinterestedparties. Decisionsmustoften be madeon the basisof
lessthan optimal dataon the populationdynamicsof the speciesin question. The
fact that muchconservatioreffort is directedtowarda single populationof a species
doesnot leave a greatdeal ofroom for experimentingwith different management
strategies. In this situation modelling may provide someassistance.If, usingthe
dataavailableat the time whenthe managementiecisionshaveto be made,a model
canbe constructedhatadequatelyepresentshe populationdynamicsof the species
in questionthen it should be possibleto experimentwith various management
strategiesusing the purely hypothetical replicate populationsrepresentedoy the
model.

A scienceof conservationbiology has emergedin recent years, with quite an
emphasion applying generalecologicaltheory,and modelling techniqueqsee,for
example papersin Soulé1986,87andPerrins,Lebreton& Hirons 1991). However
academicconservatiorbiology and actualconservatiorpracticeoften havediffering
emphases.For instance academiaconservatiorresearchexpendednuch energyon
the questionof whetherit wasbetterto havea singlelargereserve or severalsmall
reservedotalling a similar area,(the 'SLOSSdebate") a questioninitially prompted
by Diamond's(1975) applicationof MacArthur & Wilson's (1967) theory of island
biogeographyo the problem. However,manyreservesin the UK at least,aremore
likely to havetheir dimensionsdeterminedby constraintssuchasthe willingnessof
landowners to sell their land and funds available to conservation organisations.

In the SLOSS debate, asrimanyacademicstudiesof conservationthe mainmeasure
of successs the conservationof biodiversity. Usher (1986) notesthat diversity
headsthe popularity poll of criteria to be usedin conservationevaluation. In

practice, however, it seemsthat single species(especially where these are rare,
thoughpossiblylocally ratherthanglobally rare)arethe objectof mostconservation
efforts, notablydirectedtowardsorganismswith high public popularity,suchasbirds
and mammals. The issuesaddressedn this thesisare, | hope, pertinentto actual



conservationpractice. This is not intendedto dismissmore generalconservation
biology issues,but ratherto show that modellingis a tool that can be of valuein
assisting practical conservation managendegisions.In generakhis meangdealing
with situationswherea singlespeciess thefocusof attention(thoughthetechniques
usedherecould be extendedo multi-speciessituations). It is importantto point out,
however,that conservatiormeasuregocusingon a single speciegor a few similar
speciesrenot without problems. In Australia,for instance conservatiormeasures
to preservehe kangaroo/combinedwith benefitsfrom measureslesignedo benefit
cattle and sheep)have allowed the numbersof red and grey kangarooso grow to
such a size that their wider environmemow threatenedy habitatdegradatiorasa
resultof the largenumberof kangaroosanda cull is now beingconsideredDayton
1991). Single speciesconservationrmeasuresre also not without problemsin the
Antarctic regions. The Antarctic fur seal, Arctocephalus gazella, was the first of
Antarctica'sresourceso be exploited,andby 1822 was practically extinct on South
Georgia (Bonner 1985). As further populationswere discoveredthey too were
exploitedto the point of extinction. After the collapseof the sealingindustrya small
breedingpopulationof fur sealswasdiscoveredon Bird Islandto the north-westof
SouthGeorgia,which hasshownextremelyrapid growth sincethe 1930's(Bonner
1985). Sincethe Conventionfor the Conservatiorof Antarctic Sealscameinto force
in 1978 the taking of fur seals has been completely banned (Sage He®&ver,as
the population has recoveredit has remainedlocalisedin this areaand is only
gradually beginningto recolonisesites whereit was formerly numerous. Bonner
(1985) notesthatthe unnaturallyhigh concentrationsf fur sealson Bird Islandhave
resultedin much destructionof vegetation. Longton (1985) suggestghat similar
erosionof the few vegetatedareasof Antarcticaby penguinsmay be dueto the lack
of competitionfor krill causeddy the reductionof whalestocks. Krill alsomakesup
90% of the fur seal diet (Bonner 1985). At some stage in the near future,
conservatiormanagemeninay requirethat localisedsealnumbersbe controlledin
orderto preservehe wider Antarctic environmentjn particularthe fragile vegetated
areas.

Problems faced in model construction

In constructinga modelto aid in speciesmanagementhereare likely to be several
problems. In manycaseghe dataavailableon the speciepopulationdynamicswill

be sparseand probably collectedbecauseof a researcher'snterestsratherthan to
provide the information requiredfor model construction. While there may be a



temptationto representn a modelall thatis known or hypothesisedbouta species
biology, a simple model for which parametersan be estimatedis likely to be of
more use in a management context than a complex model with many unknowns.

Most populationsfluctuate,andto representhis in a simple modelwill often mean
the incorporationof a randomterm. In generalthis is not meantto imply that the
observedpopulationsize is the outcomeof "pure chance". In somecasesit is an
admissionof ignoranceof the mechanismsproducing the observedvariation in
population size. Shaffer (1987) points out that there is, in fact, little practical
differencebetweenra purely randomeventandan eventthatis unpredictablédoecause
it occursastheresultof processeshatarenot fully understood.Howevertheremay
alsobe casesvhenthe mechanismgroducingthe fluctuationsareunderstoodut the
inputs neverthelessemain unpredictable(For example, variation in temperature
causingvariationin individual survivalleadingto fluctuationsin the populationsize.
The individual and populationresponsdo temperaturanay be well understoodut
the changes in temperature may remain unpredictable).

Shaffer(1981) suggestshat the variability affecting populationsize can be divided
into four categories:demographic stochasticity, arising from chanceeventsin the
survival and reproduction of a finite number of individuals; environmental
stochasticity, temporalvariationin bothbiotic andabiotic habitaparameterspatural
catastrophes, occurringat randomtimes; andgenetic stochasticity, wherechangesn
population size result from changes in gene frequencies.

An earlier classificationof the variability affecting populationsis that of Chesson
(1978). What Shaffertermsdemographicstochasticity Chessorrefersto aswithin-

individual variability. Chessonpoints out that most models that consider such
variationtreatindividualsequally:the distributionof birth anddeathprobabilitiesfor

eachindividual is the same yariationin populationsizearisingasa resultof random
'sampling'from this distribution. Chessonterms between-individual variation the

fact that, due to differencesin phenotype different individuals may, in fact, have
different underlying probabilities of reproductionand survival. Chesson'g1978)
other classesof variability are refined by Chesson (1985) who subdivides
environmentalariationinto threeclasses: temporanvironmentalariation, spatial
variation, and 'spatiotemporal’variation (where different spatial locations show
independenfluctuationsin environmentthroughtime, but spatial averagesof the



environmentvariablesshow no fluctuationsthroughtime and temporalaveragesio
not vary in space).

Early models of the lifetime of populationsfocused on demographic(within-

individual) stochasticity, modelled as birth and death processegMacArthur &

Wilson 1967, Richter-Dyn& Goel 1972). In suchmodels,given a positive mean
growthrateat small populationsizes,persistencéimestendto be very long oncethe

population has exceededa few tens of individuals (Goodman1987a, Nisbet &

Gurney1982). In large populationsthe contributionof demographicstochasticityto

fluctuationsin size is insignificant comparedto the contribution of environmental
factors. However, Chesson(1978) suggestshat demographicvariability may be

more importantin populationswhich, in total, are large but which are subdivided
with limited movement. Local subpopulationsnay be small enoughin suchcases
that demographic stochasticity remains important.

Genetic factors affecting population persistenceon ecological (as opposedto

evolutionary) time scales,are only likely to be anissue when relatively small

populationsare considered. Shaffer (1987) reviews severalstudiesand concludes
that effective populationsizesof 50 to 500 individuals are of the order necessaryo

provide security against the effects of inbreeding fglotor generallythoughtto have
most effect on shortterm populationsurvival). Suchnumbersshouldalso prevent
loss of genesthrough random genetic drift thus maintaining sufficient genetic
diversity for continued adaptation. Shaffer suggeststhat a total number of

individualsin the upper100sto 1000swould providesucheffectivepopulationsizes.
Lande (1988) criticises the fact that these geretieriahave beemsedasminimum

necessaryopulationsizesin somespeciesnanagemenplans. Landesuggestghat
environmentaktochasticityandlocal extinctionandcolonisationarelikely to require
much greater population sizes in order to ensure persistenceof the speciesin

guestion.

The models investigatedin this thesis consider only temporal environmental
variation and are thus most appropriatefor larger populationswhere demographic
andgeneticeffectson persistencarelikely to be minimal. Catastrophieffectscan
often reasonablybe consideredas the extremesof environmentalvariation. For
instanceif weatherconditionsare included as a stochasticinput to a population
model then the tails of the distribution of 'weather states'may representsuch
extremesasviolent stormsor prolongeddroughts. Thesenaturalcatastrophesarise



as extremesof typical inputs to the system. By contrast many man-made
catastrophessuchasoil spills or toxic wastereleasesganin no sensebe considered
a normal part of the biological system.

It is worth commentingthat on a geological timescale,of course, all species
eventuallygo extinct. Populationmanagementannothopeto preservespeciesfor
ever. However,applicationof the methodologyconsiderecheremay help population
managershoosestrategiesvhich assista speciedo persistin anenvironmentwhich
inevitably will be affected to some extent by the actions of the human race.

Criteria for judging the effect of management in stochastic models

Given that a population model has been constructed which incorporates
environmentalvariation, the problem is how to assess theeffects of different
managemenstrategieswhich may be incorporatedinto the model. An obvious
candidateperhapsis the population growth rate. If a particular impact on the
population could be shown to produceegativepopulationgrowthratein the model
then that particular strategy could be deemedto endangerthe viability of the
populationandthusavoided. While suitablemeasuresf long run populationgrowth
ratein a fluctuating environmentdo exist (Lewontin & Cohen1969, Tuljapurkar&
Orzack1980)thesewould not be easyto apply in all circumstances.Consider,for
instance,the casewhere the data on the populationin questionsuggestthat the
populationis not growing. This could be either becausehe populationis truly "on
theknife edge"betweergrowth anddecline,or becausat is fluctuatingaroundsome
mean value due to density dependentregulation. The detection of density
dependencéom populationcensusdatais notoriouslydifficult (Gaston& Lawton
1987, Murdoch & Walde 1989) and it will not always be possibleto distinguish
betweenthe two possibilities. In addition we may sometimesvant informationon
theimpactof a fixed term effect on the population. This may producea reducedpr
negative growth ratefor the periodbut the questionremainsopenasto whetherthis
would greatly affect the population's longer term prospects of persistence.

Tuljapurkar & Orzack (1980) suggestthat the triplet of long run growth rate,
variance, and the probability distribution of crossinga boundary,is a valuable
combinationof measuregor the descriptionof populationgrowth, distribution,and
extinction. Here the focus is on the third, probably least studied (from a



mathematicalviewpoint), part of the triplet as a viability measurein population
models.

Persistence time above a threshold as a population viability measure

The criterion usedfor assessinghe stochastigpopulationmodelsconsiderechereis
basedon the persistencéime abovesomethresholdpopulationsize. This gaugehas
beenusedbeforein the contextof conservation. Shaffer (1983) usedsimulation
modelsto assess theninimum populationsizesrequiredto provide probabilitiesof
persistencdor certainperiodsof time in the grizzly bearpopulationof Yellowstone
National Park and Dennis, Munholland & Scott (1991) have recently investigated
persistencén variousendangeretird populationsunderthe assumptiorof a simple
linear model. Ginzburget al. (1982)recognisedhe value of usingthe time thatthe
population persists above some threshold as a measureof the impact of an
environmentalchange on a population, terming the reaching of the threshold
"quasiextinction”. Shaffer (1990) discussespopulation viability analysis'(PVA)
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Figure 1.1. Thepersistencdéime is thefirst time thatthe populationsizereachespr falls below,some

threshold level given that it was above this level at the initial time considered.



which attemptgo assess thikelihood of a population'sextinctionby somespecified
time undervariousscenarioof managementhasedon currently availabledataand
theory (which both containsomeuncertainty). Shaffercommentghat, asyet, there
are no widely acceptedstandardsor methodologyfor the carrying out of suchan
analysis.

Given that the populationis initially at a size greaterthan the thresholdsize of
interest,thenthe persistencéime is definedasthefirst time at which the population
reachesor falls below, thelower thresholdsize (Fig. 1.1). In the literature on
stochastigrocessethis is known asthefirst passagéime. As stochastigopulation
models are being consideredhere, the population size at any time is a random
variable. It follows thatthe first passagéime is alsoa randomvariable;soit is the
distribution of persistencetimes (and appropriate summary statistics of this
distribution) that is of interest.

While this thesisfocuseson persistenceabove a lower threshold,there may, of

course,be caseswhereinterestis in the time that a populationremainsbelow an

upperthreshold,or within certainbounds. For example,as notedearlier,thereare
instancesvheresingle-speciesonservatiorstrategiehaveled to problemswith the

conservedpopulation growing to such an extent that the wider ecosystemis

degraded. Indeed, while much conservationeffort focuseson relict populations,
where the actionsof mankind have led to reducedpopulationsize, there are also
caseswhere humanimpact on the environmenthasled to the populationgrowing

well beyondits historical size. The time a population remainsbelow an upper
threshold,or within certain bounds,can also be addressedvith the methodology
considered in this thesis.

Lower threshold levels

Before consideringthe questionof decidingat whatlevel at which to setthe lower
threshold, it is necessary to addréssissueof why the lower thresholds not simply
zero. In other words, why consider persistenceabove a threshold rather than
population extinction ?

In a managementontext threshold population sizes above zero are of obvious
interestsimply becauseonservatiormanagersvill becomeconcernecdot just when
the managedoopulationis extinct, but whenit dropsto low levels. In generalthe



modelsconstructedor managementwill be basedon datafrom the usualrangeof
populationsizes. Fluctuationsvhenthe populationis smallmaywell be theresultof
very differentprocesse$o thosethatactto producefluctuationsin largepopulations.

A lower threshold may therefore mark the limit of confidence in the current model.

As noted earlier, the models considered here representonly environmental
stochasticityand populationsizesis treatedas a continuousvariable. Nisbet &
Gurney(1982)makethe pointthat"..thereis only onemechanisnfor extinctionof a
closedpopulation- a single deathin a populationof exactly one individual®. To
considertrue extinction, modelsshouldtreat the populationas discretenumbersof
individuals, and consider factors such as demographicand genetic stochasticity
which have greater impact as population size becomes small.

The settingof anappropriatdower thresholdevel is not necessarilyeasy. Thereare

instancesvherelower thresholdscan be chosento have someparticularbiological

significance. The conceptof minimumviable populationsize (MVP) emergedn the

early 1980s(Shaffer1981, Gilpin & Soulé 1986) but while this resultedin useful

attentionbeing givento the processeshreateningpopulationpersistencet quickly

becameclearthat providing a generalminimum populationsize rule for a rangeof

speciesin different situationswould not be possible (Soulé 1987). Sometimes,
however,it may be possibleto makerecommendationfor a particularpopulation,
basedon good knowledgeof the specieshiology. Boyd (1968) notesthat 100,000
individuals is often consideredto be the size below whichnorth Americangoose
populationsshouldbe protectedirom huntingasfar aspossible thoughhe doesnot

explain how this figure was chosen. Shaffer's (1983) model suggestedthat a

minimum population of 50 to 90 individuals was necessaryto provide a 95%

probability of persistencdor 100 yearsfor the Yellowstonegrizzly bearpopulation.
Another possibility would be to use historical population sizes as a basis for

assessinghe appropriatdower threshold. In manycaseshowevermankind'simpact
on the environmentwill make comparisonswith past population sizes rather
irrelevant.

In practice,the lower thresholdconsideredn any modelling exercisecarriedout to
assespopulationmanagementtrategiess likely to be setratherarbitrarily. While it
would be possible to define a threshold above which a population has a set
probability of persistingfor a certainamountof time in the mannersuggestedy
Shaffer(1983) suchstatementarelikely to havelittle practicalvalue. More useful

10



perhapswould be to consider several levels and consider the distribution of

persistencgimes at each. In the generalmodelsconsideredn the first sectionthe
effect of different lower thresholdsyelative to initial populationsize is examined.
This insight is appliedin the secondsectionwhere persistencdime is usedas a
measureof the viability of the Islay wintering barnaclegoosepopulation. Initial

populationsizeis, of course,fixed in this caseand the choice of lower threshold
makesquite a differenceto the prediction of persistencdime for the model with

currently"measuredlevels of environmentalariability. For comparingthe effects
of different possible managemenstrategiesa single level is usedchosenon the
arbitrary basis that it representsa population size which would worry many
conservationists should it occur.

11



Persistence in Simple Stochastic Population
Models

This section grew from the desire to move away from the necessityfor large
simulation efforts to provide persistencdime distributions. It doesnot, however,
provide an analyticalroute for computingpersistenceime in any populationmodel
incorporatingenvironmentalvariation. Insteadit examinesa number of simple,
stochastianodelswherepersistenceime is analytically tractableto someextent,in
order to provide a backgroundon the methodsthat may prove useful, and the
persistencetime distributions that may arise. The models are chosenfor their
simplicity rather than their applicability to any particular managed population.

Chapter2 lays the foundationsfor this work by surveying some of the results
available in the literature for the first passagetime distribution in well known
stochastigorocessesUsing this backgroundchapterd examinegoersistenceime in
a general linear populationmodel and discussesomeinterestingecologicalissues
thatarise. Chapter4 makesa startat dealingwith the problemof avoidinginfinitely
large populationsin the linear modelby examiningthe effect of a hardupperbound
to populationsize. Despitethe simplicity of the regulationmethodemployed,an
example persistencéime in sub-population®f the acornwoodpeckerdemonstrates
its applicabilityin areal population. Finally, chapter5 investigatesariousmethods
of estimatingpersistencdime in modelswhich explicitly include densitydependent
regulation of population size.

12



Chapter 2

First passage time distributions of some
simple stochastic processes
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Chapterl notedthatthe problemof persistencéime in stochastigpopulationmodels
correspondgo the problemof first passagdime in the probability and stochastic
processediterature. Comparedwith other areasof probability theory the first
passagdime problemis analytically difficult and thereforerather underdeveloped
(Blake & Lindsey 1973), with resultsfor all but the simplest processedargely
unknown. Indeedit appearghat manyresultshave,in fact, beenderivedin response
to anotherbiological problem, namelythe firing interval of neuronegGerstein&
Mandelbrot1964, Capocelli& Ricciardi 1971, Favellaet al. 1982). This chapter
coversthe basic ideasndterminologyof stochastiqorocessesiecessaryo consider
the generalmathematicsof the first passageime. It also drawstogethervarious
resultsrelatingto the first passage¢ime in the Wienerand Ornstein-UhlenbeckOU)
processeghis is donebecauseghe populationmodelsconsideredaterin this section
will be analysedn termsof thesetwo well known stochastiqprocesses.Both these
processeare definedin continuoustime and for a continuousstatespace. While
theseprocessesre relatively simple, resultsrelating to the first passagdime are
spreadhroughoutthe literatureof severaldisciplines. Herethey aredrawntogether
and expressedn a commonterminology and notation. The resultsin this chapter
have beenchecked by comparisonwith numerically estimated passagetime
distributions. In the one case(the Wiener processwith an upperreflecting barrier)
this numerical checking found errors in two published solutions.

By necessitythis chapterconcentrate®n the mathematicof the first passageaime.
However,gatheringtheseresultsin one chapterprovidesthe freedomto concentrate
on ecological aspects of the persistence time in the following chapters.

Preliminaries, with examples from the random walk and Wiener
process

Before proceedingto a generaldiscussionof the first passagdime it is useful to

review somebasicterminology;the idea ofa diffusion equation(andthe connection
with stochastidifferential/differenceequationsn which mostpopulationmodelsare
phrasedand numericallysimulated])is particularlyimportant,asit is in suchterms
the first passagdime is derivedlater. This sectionconsidersa simple stochastic
process, its continuous time limit, and the connection with a diffusion equation.

Considerfirst one of the simplest stochasticprocessesthe simple, symmetrical
randomwalk. The statevariable, X, (which describeghe state of the processattime

14



t), takesintegervaluesand changest discretetimesby eithera positive or negative
stepof size one, with equalprobability. (In all the populationmodelsconsidered
later in this thesis,the statevariableis somefunction of populationsize.) This is
described by the stochastic difference equation

Xon = X+ Z,o [2.1]

wheret takesvalues0, 1, 2,.... andthe stepZ, hasthe probability distributionprob,
=1) = prob{, = -1) = ¥%2. Any particularsequence,, X,, X,, ... is knownasasingle
realisation of the process. If the process takes the valueat¢iroe zero(i.e. X, = 0)
thenattimet = 1 the statevariablecantakethevaluel (with probability=%2) or -1
(prob.=1%%); attimet = 2, X takeseitherof the values-2 (prob.= %4), 0 (prob.=%2),

or 2 (prob. = ¥); and so on foe 3, 4,..... NotethatX, canbeeitheroddor evenast
is oddor even. The probability thatat sometime, t, the statevariable, X, takessome
value,x, is given by the binomial distribution:

prob{x, =%, =0) =

r(3) [2.2]

N

[5( t+x]'[ (t=x)]!

This distribution has mean zero and standard deviation \/f For t large the
distribution R.2] converges to a normal distribution

p(x,t0) = (%)2 exr{%) [2.3]

where p(x,t|0) is the probability density function. More generallyfor a processatx,
at timet = 0, p(x,t|xo)dx is the probability thaX, lies in the rangex| x+dx] at timet.

The continuouslimit of the simple randomwalk [2.1] is obtained(Cox & Miller

1965, p.205-208) by consideringsmall stepsof magnitudeAx taking placeat small
time intervals of length At. Taking the more general(i.e. possibly asymmetric)
randomwalk wherep is the probability of a positive stepandq the probability of a
negativestepthen,to obtaina limiting processwith meanu andvarianceo? in unit

time, it is required that

Ax = N, p—§(1+“m) q:%(l—“?mj [2.4]

For the symmetricrandomwalk consideredabove,u is of coursezero. The limiting
process essentially involves summing a large number of independentrandom
variablesandappropriatescalingof the sum. This centrallimiting operationyieldsa
normal distributionfor the continuousvariable X(t) with meanut and varianceo?.

15



Theimportantresulthereis thatthe changean positionAX(t) in a smalltime interval
At is of the orderof magnitudgAt)% Foranytwo time instantsk andt (k >t > 0) the
incrementsX(t) — X(0) and X(k) — X(t) areindependentand the latter is normally
distributedwith meanu(k — t) andvarianceo?(k — t). The continuousprocessX(t),
obtainedas a limit of the symmetricrandomwalk hasu = 0 andis known as the
Wienerprocess. Wherethe randomwalk is asymmetricthe continuousanalogueis
known as the Wiener procesgh drift, u.

The continuoustime analogueof the stochasticdifference equation[2.1] is a
stochastidifferential equation. In [2.1], Z, is anindependentidentically distributed
randomvariable. Its continuoustime counterpart,Z(t), must be a purely random
processhaving the samedistribution for all t and mutually independenvaluesfor
distinctpointsin time. Thedifficulty with this processs that,dueto its total lack of
serial correlation,it is not a smoothfunction and so cannotbe differentiatedin the
usual sense. The discussionof the limiting processabove suggeststhat it is
appropriate to write

X(t+At) = X(t)+ Z(t)VAt [2.5]

whereZ(t) is a Gaussiarprocessvith zeromeanandunit variance .The changean the
state of the process in a small time interval is then given by

AX(t) = Z(t)V/At [2.6]
A process with drifu and variances? is obtained by writing
AX(t) = pit +0Z(t)/At [2.7]
This can be written as the differential equation for the Wiener process with drift
dX(t) = udt +oZ(t)J/dt [2.8]
The derivativeof the Wienerprocesswithout drift andwith unit variance(which, as
mentionedalready,is not a derivativein the usualsensebut what Turelli (1977)calls
a generalisedlerivative)is known as Gaussiarwhite noise. The Wienerincrement,

often denotedby dW, hasa centralrole in the wider theory of stochastidifferential
equations, a general SDE being defined by

dX(t) = o (X)dt + B (x)dW [2.9]

For a morecompleteoutline of stochastidifferential equationsandthe problemsof
white noise seeTurelli (1977), Ricciardi (1977), Mortensen(1969) and Nisbet &
Gurney (1982).
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The derivation of the first passagetime distribution considerednext involves
describingthe model by a diffusion equation:a partial differential equationwhich
describesthe changein the probability density function p(x,t|xo) for continuous

changes in state and time.

The diffusion equationsfor the Wiener processcan be obtainedby applying the
limiting processconsideredearlier to the transition probabilities of the simple
randomwalk (seeCox & Miller 1965,p.208-210). Considersmall stepsof size Ax
occuringin smallintervalsAt. Forthe general(i.e. possiblyasymmetric)casewhere
the probability of a positive stepof sizeonein [2.1] is p, and a negativestep has
probability g, the transition probability can be written

p(x,t|x0) = pp(x - Ax,t —At|x0) +ap(x +Ax,t —At|x0) [2.10]

Suppose(x,t]x,) canbe differentiateda suitablenumberof timesandexpandedn a
Taylor series, i.e.:
20° p

2

p(x - Axt —At|xo) = p(x,t|x0) —At% +Ax% +1(AX) +..  [217]

Expanding[2.10] in this way, usingthe relations[2.4], andletting At — 0 yieldsthe

forward diffusion equation for the Wiener process

2
9 p(Xx,.t) _1509

J
o 507 5 PXx.t) =5 p(Xx6 ) [2.12

A diffusion equation takes the general form

2 plxt) = =2 [up(xtpe )] + 2o [weop(xp)]  [213

v(X) andw(x) are knowrasthe infinitesimalmeanandvarianceandcanbe thoughtof
as describing the deterministic and stochasticparts of the processrespectively
(Turelli 1977). The initial value x, takes the form of a delta function:

p(x,0%;) = 8(x = x,).

The coefficientsof the generalstochastidifferential equation[2.9] arerelatedto the
infinitesimal meanand varianceof the correspondingdiffusion equation. For the
subsebf stochastidifferential equationsvheref is a constanandnot a function of
X, the relation is simply
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V(X) =0 (X)
w=[B]

Note that the infintesimal variance,w, is also a constantin this case,ratherthana
function of x asin the generaldiffusion equation[2.13]. For caseswherej is a
function of the statevariable,x, the relationshipbetweenthe SDE andthe diffusion
equation is rather more complicated. This will be discussed further in chapter 5.

[2.14]

The first passage time

In chapter1 the first passagetime was defined heuristically in terms of the
persistenceime of a populationover a threshold. Mathematicallythe first passage
time to a leveh for a process starting gfcan be defined by as the timiesuch that

X(0)=x,>a, X(1)>a O 0<1<T, X(T)<a

with probability density functiorg(t|xo, a).

In practicethe first passageaime is calculatedby consideringa changedstochastic
processwvhich hasan "absorbingbarrier” at the level to which we wantto calculate
the first passagdime, suchthat all realisationsreachingthis level remain there.
Thus,for the first passagdéime to somelow level x = a (wherea < x,) the processs

constrainedto the interval [a, «]. This requiresa boundary condition on the

diffusion equationZ.13], namely

p(a,t|xo) =0 [2.15]

Now let P(t|x0, a) = prob{T >t} be theprobabilitythatabsorptioratthe barriera has

not occurred by timei.e.

00

P(t|xo,a) = '[ p(x,t|x0,a)dx =prob{X(r) >a0 0<7 <t, X(t) <& X(0) =x,} [2.16]

at

wherea* is infinitesimally abovethe absorbingbarrier a, thus avoiding integrating
over the é—function at a which is createdby the boundary condition [2.15].
P(t|xo,a) is either constantor monotonicallydecreasing. The probability density

function of thefirst passag¢ime, g(t|x0, a), is the negativeof the rate of decreasef
P(t|xo,a), the probability that absorption has not occurred by timEhus

oltx ) =~ Pltx,) [2.17)
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Substitutingfrom [2.16], changingthe order of integration,then substitutingfrom
[2.13] (with w constant) gives

00

(d 19 J
o(t|x,.a) = Jﬁ (%,t|xo,a)dx = J(Z g p(x,tx, .2 —&[v(x)p(x,qxo,a)]jdx

00

[1wi p(x,t|x0,a) -v(X) p(x,t|x0,a)} = %w% p(x,t|x0,a)

W a [2.1]

a

as p(a,t|x0,a) =0 and +- is a natural boundary.

This is a general method for linking the probability density function for x,
p(x,t|x0,a), to the probability densityfunctionfor thefirst passagéime T, g(t|x0,a),

for a continuousstatespace continuoustime stochastiqprocessconfinedby a single
absorbing barrier.

An important function of the first passagetime is the probability of ultimate
absorptionat the barrier,a, which is simply the areaunderthe curve definedby the
first passage time probability density function

Gloo[x,) = Tg(t|xo,a)dt [2.19]

If G(e) doesnot equalonethenthe first passagedime distributionis an improper
probability distribution.

First passage times of some simple stochastic processes
The Wiener process

The Wiener process,ntroducedaboveas the limit of the simple randomwalk, is
probablythe bestknown continuousstatespace continuoustime stochastiqrocess.
Here both the standard symmetrical Wiener process and the Wiener pvihel#t
are considered. Theseariseas approximationgo multiplicative populationmodels
with density independent vital rates.

The stochastidifferential equationfor the Wienerprocessvasgivenat[2.8]. Using
the relations.14] the forward diffusion equation is given by

d 1 _,0°? d
gp(x|x0,t):Eozyp(xm,t)—u& p(x%,,t) [2.20]
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where u is the drift term and o2 is the infinitesimal variance. This, of course,
coincideswith the diffusion equation[2.12] found by applyinga limiting processo

the transition probabilitiesof the simple randomwalk [2.1]. The no drift caseis

obtainedby settingu equalto zero. The solution of this diffusion equationis well

known (e.g. Cox and Miller, 1965)

PO tx,) = — le_m exp[(x_ ’2(; ;t“t) ] [2.21]

Thus,in accordancavith the previouslimiting operationsthe probability densityof
the Wienerprocesss seento be normally distributedwith meanand varianceof the
incrementX(t) — X(0) given byut ando# respectively.

The first passage time distribution

o J

Figure 2.1 The methodof images:a samplepathandits reflectionin the absorbingbarrier. The

reflectionprinciple statesthat the numberof pathsfrom x, to x, which touchor crossthe level a is
equal to the number of all paths froghto x, (Feller 1968).
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As in the generalcaseabovethefirst passagéime of the Wienerprocesdo alevel a
(a <x,) is obtained by considering an absorbing ba#aier= a. This necessitatethe
imposition of the boundary condition

p(a,x,)=0 [2.22]
on the diffusion equation[2.20]. To solvefor p(x,t|x0,a) in this changedorocessa

numberof methodscouldbe used. For this particularboundaryconditionthe method
of images is commonlyused(e.g. Cox and Miller 1965). This requiresconsidering

’

an '"image source", X;, at the reflection of x, in the barrier a
x, =a—(x, —a) =2a —x, (see Fig. 2.1).

As equation[2.2(] is linear and homogeneoughe superpositiormprinciple holds. A
possible solution is therefore

p(x,t}%,.8) = p(x.t|x,) - Ap(x.t[(2a—x,))

whereA is chosen to ensure that the boundary condi2d&?] holds.

2 —_
Putting A= ex;{M] and substituting from2[21] gives

(o)
2
1 {GX;{—(X—XO—M)]
o+ 2nt 20 %t

_exp(Zu(a—xo) (x=2atx ) ]]

p(x,t|x,,a) =
(2.23

o 20%t

which satisfiesthe diffusion equation[2.20] and boundarycondition[2.22]. The
probability density function [2.23] for the Wiener processwith a lower absorbing
barrier differs from the probability density function tbe unrestrictegprocesg2.21]

by thepresenc®f atermwhich reduceghe probabilityremainingin theinterval[ar,

o] ast increases. This is due to the fact that realisationsreachingthe absorbing
boundarya stay there.Thefirst passagéme distributionis obtainedthe by usingthe
result R.18] above
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2

d
&p(x t|x0,a)

1 F{ a- X, —ut ][/,L(a—xo—/,Lt)+(a—xo—ut)2 1

1
(t|x0,a)—§c:

-— [2.24]
o2t

o 20 4t*? 2t
(a=x, - ut)’
o'\/ 20t

In the statistical literature this distribution is known as the Inverse Gaussian
distributionanda numberof featurescanbe gleanedrom this literature(Johnson&
Kotz 1970, Lande & Orzack 1988).

The probability of ultimate absorption

Substituting[2.24] in the expressiorfor the probability of ultimate absorptionat the
lower boundarya, [2.19] yields

1 (u<0)
Glespo) = exr{—i—‘j(xo —a)) (1 >0) 229

Thusfor caseswith drift away from the absorbingbarrier (u > 0) thereis a finite
chancethat the processwill neverreachthe absorbingbarrier. In suchcasesthe
probability densityfunction for the first passageime is animproperdistribution as
the areaunderthe curvedoesnot integrateto one. A properprobability distribution
can be obtained by dividing the original distribution of passagetimes by the
probability of ultimate absorptionto give the distribution of passagetimes
conditional on ultimate absorption:

*(t|x0, ) B g(t|XO,a)

"~ Glofx,)

So, foru >0

ex;{—cle(xo - a)) [2.26]

_(%-a) [ —(a-x,+ut)’
N o~2nts exy{ 20 % ]

Thus, for any, the conditional probability distribution is
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X, —a (a=x, +|ult)’

g (t|xo,a) = e exy{—T] [2.27]

Moments of the first passage time distribution

The moments for the conditional distribution are (Capocelli & Ricciardi 1974)

mean= (XT —|a) [2.28]
u
2 —
variance= % [2.29]
u

Thusfor the no drift case u = 0, the meanandvarianceof the first passag¢ime are
infinite.

The shapeof thefirst passagéime distribution[2.24] is determinedy a parameter
(Johnson & Kotz 1970), where

p="""0 Y [2.30]

As ¢ increaseshe first passagdime probability density function becomesmore
symmetrical, with the mode approaching the meaptaads to infinity.

For many casesof interestin a population context (exampleswill be found in
chapters3 and7), thefirst passagéime distributiontendsto be skewed with along
tail to longer times. The mode of the distribution is #heveforeof interest. For the
unconditionaldistributionthe modeis (Johnsor& Kotz 1970,Capocelli& Ricciardi
1974)

(%, -a)’ _
362 (;u'_o)
mode= (xo—a) 9 3 357 [2.31]
1 S| -2 (u#0
i (+4u2<xo—a>] 207 H70

A special case: the Wiener process with an upper reflecting barrier

In chapter 4 a population modeith densityindependentital ratesanda crudeform
of regulation,a hardupperboundto populationsize,is considered.Persistencéime
in this modelis approximatedy consideringanotherchangeto the Wienerprocess:
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the imposition of a reflecting barrier at the level of the upper limit. Like the
absorbingboundarythe reflecting boundarypreventsthe processfrom passingthat
level. However,while the absorbingboundarytrapsthe processat the boundary,a
reflecting boundaryallows the processto leave the boundaryand return into the
intervaloverwhich the processs defined. Considera Wienerprocessonfinedto an
interval[a, b] (with a < x, < b) with a absorbingandb reflecting. The behaviourat
the reflecting barrieris representeas a further boundarycondition on the diffusion
equation 2.20] (Cox & Miller 1965, p. 223-225)

1 ., dplxtx,,ab
Ecﬂ%—up(x,qxo,a,b) =0 [2.32]

x=b

This boundaryconditionis derivedby consideringthe Wiener processwith a single
reflectingbarrieratb (b > x;). Realisationsare thereforelimited to the region[—eo,
b]. Thus

[ p(x.t]x,)ox =1 [2.33]

Unlike the absorbingboundaryconsideredabovewhich, by trappingrealisationsat
the boundarycauseda decreasen the probability densityin the interval [a*, -] as
time increasedthereis no "loss" of probability associatedvith a reflecting barrier.

Consequently
b b

%jp(x,qxo)dx: J'% p(x,t|x,)dx =0 [2.34]

—00 —00

Substituting 2.20] in [2.34] yields the boundary conditio.B2] above.

Diffusion equationswith more complex boundary conditions, such as this, are
generally solved using eigenvaluemethods, rather than the method of images.
However,both "solutions"of the diffusion equationfor the Wienerprocesswith one
absorbingand onereflecting barrier found in the literature (Goel & Richter-Dyn
1974,Sweet& Hardin 1970)are,in fact, incorrect. Roy Veitch (pers.comm.,Dept.
Statistics& Modelling Science University of Strathclyde)hasproduceda corrected
version of Sweet & Hardin's analysis. [Schwarz (1992), apparently unaware of Sweet
& Hardin's work, haslsorecentlytackledthe problemof the Wienerprocesswith an
absorbing and reflecting barrier].

The required probability density function is (Veitch, pers. comm.):
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where

Y, (x) = cod 4, x) -

the "eigenvaluesl, satisfy

tan(4,(b-2)) ==

suchthat0 €4, <A, < ..., and

ool -2 (2) -

2q°
(b-a)(a® ~(u/o?)") + /o
xV(b=x)V(b=-x,)

25
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¢ H0-a)

2

¢ Mb-a)

[2.37]

[2.38]



where

V(x) = cosHgx) — #2 sinh(gx) [2.39
qo

andq is the positive solution of

tant{(q(b-a)) = 9%

[2.40]

Whencomputingthe probability densityfunction somecaremustbe takenin finding
the eigenvaluesa fact which is notimmediatelyobviousfrom the notationusedhere
(which follows that of Sweet& Hardin) (Roy Veitch pers.comm.). This becomes
apparentif the eigenvalueequationis written in the form tar(z) = mz, where
2
m= %. Thenthe eigenvaluesre obtainedfrom the valuesof z at which the
u(b-a

line y = mz intersectshe curvey = tan). Theintersections, z,,.. give 4,(b — a),

A(b — a),... There are four casesof interest, illustrated in Fig. 2.2, which
u

o.2

demonstrateshat the case——; (b-a) <1 in [2.38] actually coverstwo situations:

(a)

(c)

Figure 2.2 Intersectionof the line y = mz with the curvey = tan), for differentvaluesof m. (a) m >
1, (b)m=1, (c) 0<m< 1, (dm<O0.
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o? o?
"extra" eigenvaluedueto the intersectiornof theline y = mz with the tancurvewhich

passes through the origin.

m>1(0< u(b—a)<1], andm<0(“(b—a)<0].Whenm>lthereisan

The procedurdor obtainingthe first passageéime distributionis similar to thatused
for the general single barrier case ab@:&§]

b

b
__d _ (0
olt]x,.a) = _EJ p(x,tx,a,b) = _fﬁ p(x .2 b)dx

a
a

- J (_azgx_z Pt a.0) =2 [l ,a,b)]jdx

b

1 0 1 )
= —[562& p(x,t|x0,a,b) —up(x,t|x0 ,a,b)}a = 50'2& p(x 1%, a b)

a

asp(a,t|x,,a,b) = OandBO'2 % p(x,t/x,,a,b) = up(x,t/x, ,a,b)} =0

x=b

This leads to the probability density function for the first passage time distribution

2 2
g(t|x0,a,b) :exp{—'u_t _iz(xo _a)j o

2c6% o© b-a
- 2 _2 A sin(A (b-
= 1_l§(b—a)(yZSIn2(/ln(b_a))
) 12t o ) o2
+ ex% 20‘2 F(XO a)jm k [241]

where
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0 if %q
k = ?’(XO—_E:) ¢ ub-a) _,
(b-a) o’
exp{qza 2tj
y 2qgsinh(q(b-a)) V(b-x,) o’
~1+sink?(q(b -a)) i / (o 2(b —a)q?) ° [2.42]

Note thatthis resultcannotbe usedfor casesvherethe drift velocity is zero(u = 0).
However,Goodman(1987a)notedthat,in this no drift case.a Wienerprocesson the
interval[a, b] wherea is absorbingandb reflecting,is equivalentto a processon the
interval [a, (20 — a)] with both end states absorbing (Fig. 2.3).

The Wiener process with two absorbing barriers

Considerthe casewherethe Wiener processs constrainedoy absorbingbarriersto

theinterval[a,b] (wherea < x, < b). This satisfiesthe diffusion equation2.20] with
the additionalboundarycondition p(b,t|x0) =0. To solvethisrequiresarathermore

compleximage systemthan the single barrier caseabove (as we must allow for

imagesof imagesetc.). In fact a doubly infinite systemof imagesis needed.
Following Cox andMiller (1965, p.222}hisis denotedoy sourcesatthe pointsx;, (n
= +1,+2,...) with strengtrexpl ux, / 52) andx! with strength-exp( ux’ / 52) where
x! =2n(b-2x, +a) and x" =2n(b-x,) —x.. The superpositiorof the solution for

eachsource,weightedby the correspondingstrength,gives the requiredprobability
density function

1 - ux' (x=x! - ut)®
)t ’ !b = * -
TR RS
n — "_ 2
e pxt (x=x;—ut)
c? 20%t

[2.43
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Figure 2.3 lllustration of Goodman'snethodfor thefirst passagéime with anabsorbingbarrierat
a and a reflecting barrier at b for the Wiener processwith no drift. The first passagdeime
distributionfor trajectoriesstartingfrom x, with absorptiorat a andb reflectingis equivalento the

distribution witha and (b — a) both absorbing.

While thefirst passagéime probability densityfunction could be found by extending
the single barriermethodsusedpreviously,this is not, in fact, necessarphereasthe
only resultrequiredin this thesisis for the no drift case(u = 0) which is usedto
provide the first passagetime for the casewith a lower absorbingand upper
reflecting barrier using Goodman'smethod. This is given by Darling and Siegert
(1953) (who also assunag = 1)

00

olt]x,.a.b) = +Z (-D)"(n+3)

((b-a)/2)°
[2.44]

e ( +1)E(XO_((b+a)/2)) _(n+%)2ﬂ'2t
e (b-a)/2 ex 2A(b-a)/ 2]

Darling and Siegert'sresult can be generalisedor caseswith non-unitvarianceby

recognisinghata Wienerproceson theinterval[a, b] with a < x, < b with arbitrary

: : : abl] .. a_x _b
variance is equivalent to a proces e—n—} with — <=2 <— ando? = 1.
o0 O 0 O
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The probability of ultimate absorbtionfor the Wiener processwith an upper

reflecting barrier
For the Wiener processon the interval [a, -] with positive drift therewas a finite
chancethatabsorbtionat a would nevertake place(see[2.25]) asarealisationcould
continuegrowing to infinity. For a finite reflecting barrier, b, such escapefrom
absorptionat a is not possible. Whilst it is possibleto obtainan expressiorfor the
probability of ultimateabsorbtionby directintegrationof [2.41], considerinsteadthe
following argument (Veich, pers. comm.), wh&€) is the probability of absorbtion
by timeT:

G(T)= ]-g(t)dt :J —%j p(x,t/a,b)dxdt

p(xtla, b)dx|;

b
p(x, T|a,b)dx +_[ p(x,0/a,b)dx

p(x, T|a,b)dx +1

DV — T D — T Q——T

Thus

G(0) = 1—'T p(x, co|a, b)dx [2.45]

Integrationof [2.35] overtherange[a, b] will producea sumof termseachof which
hasafactoret. Fort =« all thesetermswill be zero,andtheintegralin [2.45] will
be zero. Thu&(e) = 1 for all finite reflecting barriers.

The expectedirst passageime for the Wiener processwith an upperreflecting
barrier
Cox and Miller (1965, p.234)ive the expectedfirst passagdime for the Wiener
process with an absorbing and a reflecting barrier
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uz0
_ZM(on—a)exp(_Zu(bz—a)ﬂ
E(T|x,,a,b) = ° °
(x, —a)(2b-a=-x,) 1=0

[2.46]

The Ornstein Uhlenbeck process

The OrnsteinUhlenbeck(OU) processs anotherwell known stochastigprocess. It
was introducedby Uhlenbeck& Ornstein(1930) as an alternativeto the Wiener
processas a modelfor Brownian motion. In the contextof the populationmodels
consideredn this thesisit will be usedto provide the persistencdime in density
dependentodels(chapter5), whereit arisesboth as a transformationof a logistic
model with random carrying capacity and as a local linearisation about the
equilibrium for a large classof densitydependentnodels. The OU processcanbe
represented by the stochastic differential equation

dX(t) = — uxdt +cZ(t)+/dt [2.47]
(conditional onX(t) = x) and has diffusion equation
% 1 ,0°? %
ap(x|xo,t)=502y p(x|x0,t)+,u&xp(x|xo,t) [2.48]

The probability density function for the OU processis normal with mean and

variance given by
2

9 (1-exd —2ut)) [2.49

E(X(0) = xoexe(-ut).  Var(X(1) =2

Ast - o anormaldistributionwith meanzeroandvariances */2 u results(Cox &
Miller 1965). For the population modedensideredater,the OU statevariable, X(t),
(which can be positive or negative)representghe deviation of populationsize (or
some function of population size) from the mean population size, which is
represented by the asymptotic zero mean of the OU process.
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Thefirst passage time

Laterin this sectionthe first passageime for the OU procesgo a lower absorbing
barrier,a, wherea < x, anda < O will be of interest. The full first passagdime

distributionhasonly beenobtainedfor the casewherea = 0 (Darling & Siegert1953,
Blake & Lindsey 1973). This is relatively uninterestingas zero is the asymptotic
mean ofthe OU processandis equivalentto meanpopulationsizein the modelsof

consideredn chapter5. Howeverexactresultsareavailablefor the momentsof the
generafirst passagéme problem(Sato1978,CerboneRicciardi& Sacerdotd 981,
Ricciardi & Sato1988),togetherwith variousapproximationsoth to the moments
(Thomasl1975,Sato1978,Ricciardi & Sato1988)andthe distribution (Ricciardi &

Sato 1988).

The expected first passage time

Exact expressiondor the expectedfirst passagdime for the OU processwith a
singleabsorbingbarrierare given by severalauthors(Sato1977; Cerbone Ricciardi
& Sacerdotel981; Nobile, Ricciardi & Sacerdotel985). The form given below is
that of Cerbone, Ricciardi & Sacerdote (1981) as their power series are
computationallyeasierthan some of the other forms in the literature. Cerbone,
Ricciardi & Sacerdotebtainedtheir expressiongor the caseof an upperabsorbing
barrier, x, < a. However, due to the symmetry of the OU process-x, can be
substituted fox, and—a for a (Nobile, Ricciardi & Sacerdote 1985), giving

E(T|x0,a)=% %{‘/’['a[g_u) _Xo[;_;ﬂ
@p{-x{z—;r]—xl- 2]

4

[2.50]

Nl

where

n2n N

n—\Mg

[2.51]
xl7= Z 2"n!( 2n+ ]

The double factoriak!!, is equalto x.(x — 2).(x — 4).... wherethelastfactoris either
1, if xis odd, or 2, ik is even.
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Cerbone,Ricciardi & Sacerdotealso give exact expressiondor the varianceand
skewnessof the OU processfirst passagetime. More recentwork by Nobile,
Ricciardi & Sacerdotg(1985) and Ricciardi & Sato (1988) gives insight into the
distribution of passageimes. For a fixed initial state,x,, (where-x, < —a), as [a]
increasesan exponentialfirst passagdime probability densityfunction ariseswith
mean equal to the mean first passage time from zero to the boundary:

1 t 1 t

where E(T|0,a) is givenby [2.50] above. A similar asymptoticresultarisesfor large

times.

Ricciardi & Satosuggesapproximatinghe meanfirst passageime, for |a| large,by
1/k(a) where

k(a) = —o— ex;{_a_z)
V2r 2 [2.53

For smallt, g(t|x0,a) is of orderexp{—(xO —a)2 / Zt) (Ricciardi & Sato 1988).

Comments on results from the literature

This review hasbroughttogethera rangeof first passage¢ime resultswhich canbe
usedto investigatepersistencdime in simple stochasticpopulationmodels. Such
resultstendto be widely scatteredn the literatureand, asthe problemof obtaining
the probability density function for the Wiener processwith an upper reflecting
barrierhasshown,publishedresultsmay well beinaccurate. While the first passage
time distribution for the simple Wiener processis easily obtained,the increasein
complexity when a reflecting barrieris added, andhe lack of exactresultsfor the
OU procesdirst passageime distribution,tendto suggesthat closedform results
for the persistenceaime distributionsof more complexstochastigpopulationmodels
than thoseconsideredn the next few chaptersare unlikely to be obtainedeasily.
Numericalestimateof the persistencéime distributionin suchcaseswill, therefore,
probably remainimportant. The insight obtainedfrom the examinationof simple
models where analytical approximations are available is, therefore, very useful.

Finally, it is worth notingthatwhile this chaptetasonly consideredhefirst passage
time whenthe absorbingboundaryis constantthe problemof the passagdime to a
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level which varies with time has also received some attentionin the literature.
Examples include Favelk al. (1982) and Buonocort al. (1990).
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Chapter 3

Persistence time in models with
density-independent vital rates
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Introduction

This chapter investigatespersistencein a simple linear model of population
dynamics. Resultsfor persistencetime in similar models have previously been
discussedby Capocelli & Ricciardi (1974), who consider a continuous time
formalisationasopposedo the discretetime modelusedhere,andboth Tuljapurkar
& Orzack (1980) and Lande & Orzack (1988) who consider structured(matrix)
models. Thesediscussionshave focusedon very small thresholds(usually one
individual) in orderto approximateextinction, ratherthan persistenceabovelarger
thresholdsn the contextof populationmanagement.The main shortcomingof the
formalisation used here from an ecologicalviewpoint is the fact that it doesnot
include any representatiorf naturalpopulationregulation(density-dependencep
unrealistically large populations may arise easily. The detection of density
dependencén populationcensusdatais notoriouslydifficult and far from reliable
(Gaston& Lawton 1987; Murdoch & Walde 1989). While more recentanalyses
(Turchin 1990, Woiwod & Hanski 1992, see also Godfray & Hassell 1992) have been
moresuccessfuin finding evidenceof density-dependencd,is rathermoredifficult
to establish the appropriate functional form for its representatiamodel. As such
regulationcanbe introducedinto a modelin a variety of waysit is usefulto havea
good understandingof persistencein the linear model before looking at more
complex situations.

Linear models of the form discussedbelow are quite likely to arise in applied
modellingsituations. In endangeredusually small) populationsvital ratesarelikely

to be density independenin a managementontextit may,attimes,be preferableo

adopta linear modelfor which parameterganbe estimatedratherthana nonlinear
model built on more lesscertainfoundations. It hasbeenpointed out manytimes
(e.g. Murdoch 1970, Murdoch & Walde 1989) that experimental,rather than
observationalstudiesare likely to be superiorin providing information on density
dependenceand regulation of a population. Most populationsof conservation
interestare not, however,suitedto experimentaktudies(asthey are often rare and
endangeredand mustthereforerely on analysisof censusdatafor information on

their dynamics. Orzack& Tuljapurkar(1989)suggesthatlinearmodelscanprovide
a "sufficient biological framework" when dataregarding density dependencere
lacking. The difficulty in detectingdensity dependencén populationcensusdata
doesnot, of course,meanthat such effects are not presentand operatingin the
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population. This mustbe bornein mind when assessinghe resultsfor population
persistence in the linear model.
The basic model

The basisof this chapteris a multiplicative populationmodel,in discretetime, with
the general form

t

N = AN, =N, [ 4 [3.4]

1=0
whereN, is the sizeof the population,and 4, is the multiplicative growthrate,at time
t. This formalisationcan, of course,include the casewhere the growth rate is a
function of populationsize, but for the restof this chapteronly the casewhereA, is
independenof populationsizewill be considered.Further,it will beassumedhat A,
is anindependenandidentically distributedrandomvariable(in otherwords, thei,
are not autocorrelated and are drawn from a stationary distribution).

Population growth rate and distribution in the simple model

The model defined above is, of course, well knowtheliterature(see for example,
Lewontin & Cohen1969). It is an obviousextensionof the deterministicmodel,
where the growth rate is constant,which resultsin exponentialgrowth if A > 1,
exponential decline it < 1, and constant population sizelif 1. Population growth
rate in the stochasticmodel, however,is slightly more complicatedand is best
understood by first considering the asymptotic distribution of population size.

Taking logs in the model defined above and writimg\,) = X, andIn(A,) =r, gives

Xer =% 40 =3 14X, (32

Theterm Z r. is asumof randomvariableswith commonmeanandcommon finite

variance and will therefore (by the Central Limit Theorem) be asymptotically
normally distributed. This leadsto an asymptoticallylognormal distribution for
populationsize, N, (Lewontin & Cohen1969, Capocelli& Ricciardi 1974). There

are parallel results for structured models which state that the total population size (i.e.
summedover all age/stagelassespr somesubsenf the classeswill convergeto a
lognormal distribution (Tuljapurkar & Orzack 1980; Heyde & Cohen 1985).

The speedwith which the distribution of populationsize convergedo a lognormal
distribution is, of course, important if use is to be made of these asymptotic results.
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Figure 3.1. lllustration of the speedof convergencef the probability distribution of log populatior
sizein the simple model[3.1] to a normaldistribution. The distribution of In(N), quantile-quantil
plots (Chamberst al. 1983) of In{\) and the distribution of lambda are shown for time steps 1, 2
8, 12, 16 and 20. The distributions were constructed from 5000 trial&yviti.00.
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For the casewherethereis no autocorrelationn the randominputsthe convergence
is generally fast, (Tuljapurkar & Orzack 1980). The rapid convergenceof the
probability distributionof log populationsizeto a normaldistributionis illustratedin
Fig. 3.1. Here 5000 replicatesof the simple multiplicative populationmodel [3.1]
have beemun, from a commoninitial state,for twenty time steps. The population
growth rate is drawn from a uniform distribution which results in a uniform
distribution of log populationsize at the first time step. However, this rapidly
convergesto a normal distribution, the visual impressionof the histogramsbeing
confirmed by the straighteningline in the quantile-quantileplots which plot the
guantiles of the estimatesdistribution against those of the standard normal
distribution (Chamberset al. 1983). Serial correlationin the multiplicative growth
rate, A, will make the convergenceo a normal distribution slower (Lewontin &
Cohen 1969).

The momentsof the asymptoticdistributionsof populationsize andlog population
sizeattimet arerelatedby the standardand exact)formulaerelatingthe meanand
varianceof a normaldistributionandthe 'associatedbgnormaldistribution(Johnson
& Kotz, 1970, p.115):

E(Nt):eX[{E()(t).FVarz(xt)]

[3.3]
Var(N ) — eZE(Xt)eVar(Xt)(eVar(X‘) _1)
t

Note that Caswell's (1989, p.214, eqn. [8.38]) formula for the variance of the
populationsizeis different. A simple numericalexperimentconfirmsthatthe form
given here 3.3] is the correct form.

Returningnow to the questionof populationgrowth rate, taking expectationsn the
model B.1] yields

t

[ A‘j = N,A™ [3.4]

E(N,,)= NOE(

(as the expectationof the product is the product of the expectationfor an
independentidentically distributedrandomvariable). The expectedoopulationsize
thusgrows exponentiallyat a rate given by the arithmeticmean ofthe growth rates.
However, as shown above, populationsize, and the product of the multiplicative
growth rate, is lognormally distributed. The expectedpopulationsize is therefore
greatlyinfluencedby the very large populationsizesoccurring,with low probability,
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in thetail of thedistribution. The modalpopulationsizeis muchless,corresponding
to the much more likely valuesof the productof the growth rates. Lewontin &
Cohen(1969) demonstrat€seealso the clear discussionin Caswell, 1989, though
note the errorsin his equations[8.38] and [8.53] referredto elsewhere)that the

ultimate fate of the populationis determinedby the expectedvalue of the logarithm
of the growth rates, E[In(4,)]. If E[In(,)] is lessthan zerothenall populations

tendto zero astime tendsto infinity. The expectedvalue of the logarithm of the
growthrateis not the logarithmof the expectatiorof the growth rate, ratherit is the
logarithm of thegeometric mean growth rate, i.e.:

E[in(%)]= In(E[(ﬂ,llz...At)%]) [3.5]

For Var(1) > 0 the expectedgeometricmeanis always less than the expected
arithmeticmean ofthe multiplicative growthrate. It is thereforepossibleto havethe

situationwherethe expectedoopulationsize growsto infinity but the probability of

observing any population size other than ultimately tending to zero, is zero.

Thus, the appropriatemeasureof population growth is the expectationof the
logarithm of the growth rate, E[In()&t )] which describeghe fate of the majority of

realisationsof [3.1], ratherthan the minority which dominatethe value of E[A].

Tuljapurkar & Orzack (1980) show that essentiallythe sameresult holds for the
growth of total populationsizein structuredoopulations. E[In(&)] will bereferred

to asthelong run populationgrowth rateandwill generallybe denotedby u, andits
variance denoted b2

Estimation of the long run growth rate

The persistencéime resultsconsideredelow aredeterminedo a large extentby the
long run growthrate, i, andits variance,02. Becausehe multiplicative growth rate
canbedistributedin manywaysthereis not a single,simplerelationshipbetweerthe
meanandvarianceof the multiplicative growthratefor atimet, 4, andthe meanand
variance of the long run growthte. Tuljapurkar(1982)andLande& Orzack(1988)
consider approximationsfor u and o2 for structured populations. Dennis,
Munholland& Scott (1991) considermaximumlikelihood estimatorsfor u and o2
based on an observed time series of population censuses.

For the unstructured model considered here, an obvious candidate for the
approximationof u and o2 is basedon the fact that the populationsize at a given
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time, and thus the productof growth ratesto that point, is lognormally distributed.
Rearrangemertf the same formulag¢Johnson& Kotz, 1970,p.115)thatwereused
to relate the mean and variance of population size (atl}itodhe mean and variance
of log population size (eqn3.]), suggests the approximations

o* oz Y2

/12

[3.6]

Lewontin & Cohen (1969) suggestan alternative approximationfor u basedon
expansion of In{) aroundA , the mean multiplicative growth rate:

u Oin(Z)- v:%(;l)

[3.7]

(notethatthis differs from Caswell's(1989,p. 216) eqn.[8.53] by the presenc®f the
squaredmeanin the denominator. Lewontin & Cohen'sform appearsmuch more
reasonable).They suggesho approximationfor the varianceof the long run growth
rate. However,oneof Lande& Orzack's(1988) approximationgnay be adaptedo
give

o? Dz[ln(ﬂf)— u] [3.8]

Table 3.1 compareshesetwo approximationgto the long run growth rate and its
variancewith numerical estimates,and exact results where possible,for several
possibledistributionsof the multiplicative growth rate, A. For the exponentialand
two statedistributionsof lambda thealternativeapproximation®f [3.7] and[3.8] are
slightly nearerthe numerical(and,for the two statelambda,exact)valuesof the long
run growth rate and its variance. However, the alternative approximationfor A
lognormally distributed is wildly inaccurate.

This is obviously not the casefor the lognormal approximation. The lognormal
approximation performs more or less as well as the alternative approxinfatitimes
normal and uniformly distributed multiplicative growth rates. The lognormal
approximationis thereforeusedthroughoutthe thesiswhenit is necessaryo obtain
estimates oft ando? for given A and Varg).

Both approximationsonsideredhere,and the numericaland exactresultsof Table

3.1, demonstrat¢he importantfeatureof the long run growth ratewhichis that u (=
E[In(A)] is always less than In(E]) whenever Varf) > 0.
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Table 3.1. Numericalestimategor u and o2 for a variety of distributionsof the multiplicative growth
rate. Numerical estimatesbasedon drawing 1.0E+6 sample multiplicative growth ratesfrom the
distributionsspecifiedand calculatingu = E(InA) and 62 = Var(InA). "Lognormal” approximations
from [3.6], "alternative" approximationsfrom [3.7] and [3.8]. Exact u and ¢? for lognormally
distributedA from [3.3]. The"two state"distributionis Lewontin& Cohen'{1969)extremeexample

whereA can either take the value 0.5 or 1.7 with equal probability.

Multiplicative growth rate Long run (i.e. logarithmic) growth rate
Exact Numerical Approximations
distrib- estimates lognormal alternative
ution )T Var(A) u o? u o0? U 0?2 u o?
uniform 1.00e+(C 8.33e-2 -4.49e-2 9.45e-2 -4.00e-Z 8.00e-2 -4.16e-2 8.33e-2
two state 1.10e+C 3.60e-1 -8.13e-z 3.74e-1 -8.05e-2 3.74e-1-3.49e-z 2.60e-1 -5.35e-2 2.98e-1
normal 2.00e+19.00e+(C 2.98e+( 2.39e-2 2.98e+( 2.23e-2 2.98e+0 2.25e-2

log- 2.44e+24.85e+€£1.00e+C9.00e+( 1.00e+C9.00e+( 1.00e+( 9.00e+( -4.05e+38.10e+:
normal
expon- 1.00e+C1.00e+C -5.76e-11.65e+(-3.47e-1 6.93e-1 -5.00e-1 1.00e+(

ential

Persistence time in the linear model

Thelogarithmicform of the model[3.2] in fact describes generalisedandomwalk
which, asis well known, is approximatedy a Wienerprocessn the continuougime
limit (Cox & Miller 1965, p.235). Giventhe speedat which the log of population
sizeconvergedo a normaldistributionit is naturalto considerwhetherthe required
persistencetime results for the multiplicative population model [3.1] can be
approximateddy the first passageime distributionof the Wienerprocessdiscussed
in chapter2. Using[2.24]it is possibleto write the persistencéime distributionfor
the simple multiplicative model as

In(Ny /N,) [ (In(N, /Ny ) = pat)°
tiNy, N, ) = —F7—=- - :
oltNo. N, ) == 2 —5+~ex = [3:9]

whereu and o? arethelong run populationgrowth rateandits variancerespectively,
N, is the populationsize at time zeroandN, is the lower thresholdof interest. Fig.
3.2 comparesthe persistenceiime distribution given by [3.9] with that obtained
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Figure 3.2. Simulatedpersistencdime distributionsfor the simple multiplicative populationmodel
(points), and (lines) distributionsfrom the Wiener processapproximation[3.9]. The A, were drawn
from a normaldistributionandu and o estimatedrom [3.6], asdiscusse@bove. (a) N, =8000,N, =

3000,A =1, Var@) = 0.2; (b)N, = 6.0E+12a = 3000,A = 0.9, Varg) = 0.2.

numerically from simulation of the model [3.1] (the numericalmethodsusedare
discussedn appendixone). Thefit is very good,the mostnoticeabledeviationbeing
the slight overestimationof absorptionprobability at the mode of the distribution.
Lande& Orzack(1988)attributethis to the discretenatureof the model[3.1], which

only allows crossingto the thresholdat integertimes,asopposedo the continuous
natureof the Wiener process. If time stepslessthan one are usedin the discrete
model(i.e. eulerintegration)the fit doesindeedimprove:the scalingdown of both

time stepsand changesin populationsize makesthe Wiener approximationeven
more appropriate.

Expressiondor variousstatisticsof the persistencéime of the modelarealsoeasily
obtainedfrom the resultsof chapter2. Thus the conditionalmeanand mode are
given by (whereg: ando are again given bya[6]):

meanzw [3.10]
u
(I[N, /N, ])°
U/ N,]) 27 ] (u=0)
mode= (N./N.) A 3 , [3.11]
| 1+ i 2 _362 (u#0)
Iz 4u*(NgIN,)" ) 2u
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General features of the persistence time distribution

Fig 3.3 showsthe shapeof this persistencd¢ime distribution[3.9] for varioussetsof

parameters(chosenmore to illustrate the shapeof the distribution rather than
demonstrateany particular biological point). The distributions are unimodal and
either skewedto the left (lines a, b, ¢) or almost symmetrical (lines d & a).

Substitutionin [2.30] givesan expressiorior ¢, the parametethat controlsthe shape
of the persistence time distribution:

6= Iulln(aNzo/Na) (312

The valuesof ¢ for the curvesof Fig. 3.3 are includedwith the modal and mean
persistencdime in Table3.2. As expectedrom the discussiorof the shapeof the
Wienerprocesgassageime distributionin chapter3, the more symmetricalcurves
(d andein Fig. 3.3) havelargervaluesof ¢. It is clearfrom [3.12] andthe example

g
0.010 0.015 0.020 0.025 0.030

0.005

0.0

L I I I
0 50 100 150 200 250 300

time

Figure 3.3. Examplesof the distribution of persistencdimes (from eqn.[3.9]) for the simple
populationmodel[3.1] with A, a serially-independentdentically distributedrandomvariable. The

parameters used are in Table 3.2.
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Table 3.2. Parameteraisedin eqn.[3.9] to producethe lines in Fig. 3.3. Also included are the
expectedand modal persistencdimes calculatedfrom [3.10] and[3.11] respectively(both given to

two decimal places).

N, N, A Var(h) E(T) modalT ¢
a 8.0E+3 3.0E+3 1 0.04 50.02 7.97 0.49
b 8.0E+3 3.0E+3 1 0.01 197.15 31.41 0.49
c 8.0E+3 3.0E+3 1 0.0025 785.64 125.17 0.49
d 6.0E+8 3.0E+3 0.95 0.04 167.26 155.49 20.54
e 6.0E+13 3.0E+3 0.9 0.04 183.21 178.95 63.70

parameter¢Table3.2) producingthe examplecurvesin Fig. 3.3 that,in a population
context,the vastmajority of likely parametersvill leadto a skewedpersistenceéime
distribution, with a tail of long persistence times arising with low probability.

Fig. 3.3 and Table 3.2 illustrate a further featureof the persistencdime that is of
someimportance namelythatthe long tail in someof the more skeweddistributions
resultsin large expectedoersistencdimes. Thusthe expectedoersistencdimes for
parametesets(b) and (c) exceedthe expectedimesfor sets(d) and(e). However
the modal passage times for (d) and (e) exceed those of (b) and (c).

This featurehassomeconsequencef®r the useof passageime distributionsin the
evaluationof populationmodels. In particularit would probablybe unsatisfactoryo
conclude(on the basisof the expectedpersistenceime) that a populationdescribed
by a modelgiving riseto distribution(b) in Fig. 3.3 would be likely to persistionger
than that a populationwith persistenceime from distribution (). While a few
realisationsof the processwith persistencetime distribution (b) will persist for
considerablylonger than virtually all realisationsof process(e), the majority of
realisationsof (b) will reachthe lower thresholdbeforethoseof procesqe). Given
that we will generallybe interestedin the fate of a single population(i.e. a single
realisation)the mode is likely to be a better indicator of persistenceabove the
threshold. This problemis investigatedfurther in Fig. 3.4 where the cumulative
persistencdime distributions(i.e. the probability that absorptionhastakenplaceby
time t) are shownfor two of the curvesspecifiedby in Table3.2. The cumulative
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Figure 3.4. Probability of absorption by timeG(t), for the parameter sets (b) and (e) of Table 3.2.

probability for (b) beginsto accumulatesoonerthanthatof (e), but (e) overtakeqb)
aroundt = 200.

Thereis, it appearsno "perfect” summarystatisticfor comparingpersistencdime
distributions for different parametersets or different models. However it will
generally be convenientto use some summary statistic rather than continually
comparepicturesof distributions. The precedingdiscussionillustratesthe needto
choose the statistic with some care, and to investigate other features of the
distributionwherepossible. At timesthis will meanresortingto numericalestimates
of the persistencdime distributiondueto the fact that, asemphasised chapter2,
closed form expressions for more complex models are difficult to obtain.

Determinantsof persistencetime

In this sectionthe effectof varyingthe parametersf the simple multiplicative model
on the persistencdime is examined. While various authorg¢Capocelli& Ricciardi
1974; Lande & Orzack1988) have consideredhe persistencdime in termsof the
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long run growth rate, there are advantages to considering the rBddiéh the actual
termsin which it is conceived. In particularit is usefulto distinguishwhat Shaffer
(1981) terms the systematic pressuresand stochastic perturbations facing a

population. A multiplicative growth ratelessthanonecould be termeda systematic
pressurdeadingto a populationreachingsomelow thresholdsize,while the variance
in this growth rate represetiite stochastigerturbations.Thelong run growthrate,u

, in contrastis a measuravhich incorporateghe effectsof both systematiqpressure
andenvironmentaktochasticity. While this is usefulin somecircumstancest may

alsoleadto someconfusion. Lande& Orzackstate for instancethat"the meantime

to extinction....dependsn the infinitesimal variance,o?, only throughits effect on

the long run growth rate oifie population,u” (seeeqns.[3.6] and[3.10]). While this

statements undeniablytrueit may serveto detractattentionfrom the importantrole

thatenvironmentalariance(introducedin the multiplicative growth rateandgreatly
affecting 0?) actuallyplaysin determiningpersistencéimes. Stacey& Taper(1992)

are apparentlyunawareof the distinction betweenthe long run growth rate and the

multiplicative growth rate and thus rediscoverthe fact that environmentalvariance
leadsto all realisationsof their model (which is discussedurther at the end of

chapter 4) reaching a lower threshold, even wherl.

The effectsof threevariablesare of interest:the multiplicative growth rate, A , and
its variance Var(4), andthe ratio of initial populationsize,N,, to the thresholdlevel
N,. It would seemnaturalto suggesthat for constantdistancebetweenthe initial
populationsize andthe lower threshold,(N, — N,), the persistencegime distribution
should be the same. This is not, in fact, the case. The lognormaldistribution of
populationsize meansthat the persistenceime distribution from, say, 100000to
97000individualsis not the sameasthe distributionfrom 8000to 5000individuals.
This is illustratedin Fig. 3.5. From[3.9] it canbe seenthatthe appropriatemeasure
iS N/N..

The probability of ultimately reaching the threshold

As noted in chapter 2 in the discussion of the first passagefithe Wienerprocess
with a single absorbingbarrier, there are caseswhere ultimate (i.e. ast - o)
absorptionis not certain. Similarly, for the simple multiplicative populationmodel
there are caseswhere the population growth rate is sufficiently large (and the
variationin this ratesuitablysmall) thatat leastsomeof the realisationf the model
will not everreachthe thresholdlevel. By makingthe appropriatesubstitutionsin
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Figure 3.5. Persistenceime distributions(calculatedusing eqn. [3.9]) for (a) N, = 100000,N, =

97000,(b) N, = 8000,N, = 5000, with A=1 andVar(4) = 0.01in both cases. Despitethe fact that

(N, = N,) = 3000in both (a) and (b) the lognormaldistribution of populationsize meansthat these

distributions are not the same.

equation[2.25] expressiongor the probability of ultimately reachingthe threshold
are obtained:

1 (u<0)
Gleo|Ny, N, ) = exp{—i—‘z‘m(NO / Na)) (1 >0) (313

where,asbeforeu and o aregiven by [3.6]. Thus,wherethe long run population
growthrate,yu, is positive,thereis the potentialfor atleastsomeof the realisationdo
persist above the threshold indefinitely.

Fig. 3.6 illustrates(for variousvaluesof Var(1)) the effect of increasingA on the
probabilitythatthe thresholdevel is eventuallyreached.Especiallyfor lower values
of Var(A) the transition from certain absorptionat the thresholdto almost zero
probability of ultimately reachingthe thresholdtakesplaceover a remarkablysmall
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Figure3.6 The effect orG(w) of varying/f for various values of Vakj. N,= 8000, and\, = 3000.

rangeof A . Fig. 3.7 showsthemeanandmodalpersistencéimesas A variesin this
transition zone. Both meanand modal persistencdimes actually decreaseas A

increases.In isolationthis is a slightly surprisingresult. Howeverthis mustbe seen
in the contextof rapidly decreasingrobability of absorptionandthefact thatwe are
consideringthe meanconditional on the thresholdactually being reached. As 4

increasesthe only realisationsthat reach the threshold are those that have a
downwardsfluctuation while the populationsizeis still very nearthe initial value.
As the populationgrows quickly from this level, later absorptionis very unlikely.

Thus the decreasing conditional) meanand modal persistencdimes are reflecting
the fact that the chanceof the threshold being reachedis falling, and those
realisationsthat do reachthe thresholdare mainly thosethat happento fluctuate
downwards whemis small.

49



500

o0
T

10

Figure 3.7. The changein conditionalmean(O ) and modal (--) persistencdime as A is varied
throughvalueswhich producethetransitionfrom G(w) = 1 to G() = 0. [Var(4) = 0.1, N, = 8000,and
N, = 3000].

Thus the first stagein a quantitativeevaluationof the effect on persistenceof a
changein the parametersof the simple model [3.1] is to check whether the
probability of ultimate absorptionis changed. For the rest of this section the
confoundingeffect of changedn G(«) is avoidedby consideringonly caseswhere
reachingthe thresholdis certain, given sufficient time [G(«) = 1]. The effect of
varying 4, Var(1), and N,/N, on the persistenceime is investigated. This is not to
imply that the distribution of persistencdimesis not of interestwhere G(w) < 1:
indeed the behaviourof the model in finite time is still likely to be important.
However,interesthereis in the generaleffectsof a changein parameter®n modal
and mean persistencetimes and comparisonis really only relevantif G(c) is
constant. The only level at whi€¥(c) can easily be fixed is one.

In Fig. 3.8 Var(4), N,, andN, areconstantwhile A is variedthrougha rangewhich

mostly producecertainultimate absorption(G(«) = 1). Thetransitionto G(w) <1
is marked by the decline following the sharp peathe conditionalmeanpersistence
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Figure 3.8. The effect of varying A onthe conditionalmean(J ) and modal (--) persistencdime
with Var() = 0.1,N,= 8000, andN, = 3000. Note that the ordinate is plotted logarithmically.

time. This figure illustratesthe fact, apparenfrom eqn[3.10], and emphasisedby
Lande& Orzack(1988),thatthe conditionaldistributionof meanpersistencéimesis
symmetricalaboutu = 0. The conditionalmean(andthe conditionaldistribution of
persistencdgimes) thus dependson the absolutemagnitudeof the long run growth
rate, not whether it is positive or negative.

For smaller valuesof A the conditional mean and modal persistencetimes are
similar in magnitudeand increasesteadilywith increasingA . Howeverfor larger
valuesof A the meanincreasesnuch more rapidly thanthe mode. This coincides
with thelong run populationgrowthrate,u, approachingero. Therapidincreasan
meanpersistencdime is dueto the fact that, despitethe long run growth rate being
negativeand ultimate absorptioncertain, a few realisationscontinuefor very long
timesbeforereachingthe lower threshold. Thus somepopulationsdescribedoy the
simple multiplicative model may, ifact, persistfor along time despitenegativelong
term growth rates. However the majority of realisationscontinue to reach the
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Figure 3.9. Theeffectof varyingVar(A) on the conditionalmean(d ) and modal (--) persistence

time with4 = 1,N, = 8000, andN, = 3000.

thresholdwithin a reasonablyshorttime: thus the modal persistence¢ime doesnot

increase nearly so rapidly as the mean msincreased.

Fig. 3.9 investigates the effectdiangingvar(A) onthe meanandmodalpersistence
times. The relationshipis simple — increasingthe varianceof the multiplicative

population growth rate rapidly decreasedoth the modal and conditional mean

persistencéimes. The modalpersistencéime decreasesthermorerapidly thanthe

mean a¥/ar(A) is increased.Again this is dueto the fact that somerealisationgnay

persist for long times, thus increasing the mean.

Fig. 3.10 illustrates the effect of varying the ratio of initial population size to
threshold population siz&lf/N,) on the mean and modal persistence time, for a given
meanandvarianceof the multiplicative growth rate. Unsurprisingly,increasingthis
ratio increasesboth the mean and modal persistencetimes. Note, however the
abscissa is logarithmicThus,asa resultof the logarithmicdistributionof population
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Figure 3.10. The effect of varying the ratio N/N, on the conditionalmean( ) and modal (---)

persistence time with = 1, Var@) = 0.1.

size,meanpersistencéime increase®nly logarithmicallywith increasesn theratio
of initial populationto thresholdpopulation. The modal persistencdime increases
even less rapidly.

Discussion

The persistenceime distribution of the simple linear modelhasseverallessonsor
the useof persistenceime asa viability criterionin the comparisorof management
strategiesin stochasticmodels. Firstly, it is important to recognisethat the
distribution may be highly skewed. Thus, while the majority of realisationsof the
modelmay reachthe lower thresholdin a relatively shorttime, a small numbermay
have extremely long persistencetimes leading to large mean persistencetimes.
Wherethatfate of a singlepopulationis of interestthe modalvalueis morelikely to
be useful. However,wherethe probability of ultimate absorptionis constantthe
modalandmeanpersistencéime generallyshowa similarly shapedesponsavhena
singleparameters varied. The exceptionto this is the behaviourof the meanin the
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region where the long run growth rate, u, is near zero. In such casesmean
persistencdime is considerablygreaterthanthe mostlikely persistenceime. This,
of course,is of particularinterestin conservatiorproblemswhere populationsmay
be on the "edgeof viability" with along run growthratenearzero. A furtherlesson
for the useof persistencdime asa viability criterionis that the ultimate probability
of reachingthe thresholdmay haveto be consideredn additionto the changein
either modal, or mean, persistence time.

Shaffer (1987) suggestghat averagepersistencedimes will increaselinearly with
increasingoopulationsizeunderthe effectsof environmentaktochasticity. Fig. 3.10
suggeststhat for the linear model consideredhere, the picture is in fact rather
different. While both meanand modal persistencdimes do increaseas the initial
population size is increased,the rate of this increaseis logarithmic. Increased
populationsize may not, therefore be asgooda routeto increasegersistenceéimes
as was once assumed.

One areaof appliedbiology wherethe relationshipbetweeninitial populationsize
andpersistencéime may be of greatimportanceis in the field of biological control.

The size of the initial releaseof the control speciess likely to be one of the main

financialimplicationsfor any biological control schemewhereagersistencéime of

thevectorin theenvironmeninto which it is releaseds likely to be oneof the main

determinantsof the scheme'ssuccess. It is conceivablethat any exotic species
releasednto anecosystenin considerablesumberswill be describedquite well by a

simple linear model. For example,it is likely to take sometime for predator
populationsto adaptto the biological control speciesas a suitableprey item. The

relationshipbetweeninitial populationsize and likely persistencdime of Fig 3.10
may, therefore,provide a useful basis for a form of cost-benefitanalysiswhen
making the decision about initial release size.

Lande & Orzack (1988) make the point that mean persistenceime, for a given
thresholdand initial populationsize,is a function only of the long run population
growthrate,u. Howeverthis growth rateis heavily influencedby the magnitudeof
the environmentalvariance. As Fig. 3.9 shows, increasingthe variance of the
multiplicative growth rate, Var(A), resultsin substantiadecreases both meanand
modal persistenceimesin the linear model. Any impactenvisagedn a population
must, therefore,considernot only its affect on the growth rate, A, but also its
variance.
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In the introductionto this chapterit was suggestedhat one problemwith the linear
model consideredhere is that it fails to representdensity dependentpopulation
regulation. However,this doesgive the opportunityto evaluatepersistenceime in
the absence of such regulation. Singa#89),in reviewingpopulationregulationin
animals,notesthat"... the mostcontentiousaspeciof Andrewartha& Birch'stheory
is that populationscould persistwithout regulation. It is generallyrecognisedhat
suchpopulationswould showa randomwalk throughtime andeventuallygo extinct
..". Thus,the very fact that populationsare observedo persistis often usedasan
argumentfor the necessityof density dependentregulation. However, as noted
above,the logarithm of populationsize describedby the linear modelis, in fact, a
generalisedandomwalk. The persistencdaime distribution for the linear model
showsthat (with low probability) somerealisationsmay actuallypersistfor very long
times, despite the lack of density dependentregulation. Indeed eqn. [3.13]
demonstratethat, if the long run populationgrowth rateis positive,thereis actually
a finite chancethat the population will persist indefinitely above some lower
threshold. Fig. 3.8 demonstratedhat, even when ultimately reachingthe lower
thresholdis certain(u < 0), the meanpersistencgime may be extremelylong and,
indeed, when the long run growth rate, u, is zero the mean persistenceime is
actually infinite.

Sinclair (1989)goeson to quoteStrong(1984)who assertghat extinctionin random
walk modelsis too frequentto mimic the behaviourof real populations. Sinclair
points out that this assertionis actually rather difficult to test. However, it is
interestingto note that recentstudiesof the persistencdime of island populations
(Schoener& Spiller 1987) suggestthat short persistencdimes are quite common,
andlocal extinctionratherfrequent. The persistenceaime distribution of the linear
model,with atail of very long persistencg¢imesindicatesa mechanismby which a
fragmentedpopulationmay persistfor muchlongerthan any one of its component
sub-populations.If the sub-populationyary in size, or experiencdocally variable
environments, then a range of persistence times will reduhe sub-populationsire
sufficiently connectedsuchthat recolonisations possible thenlocal extinction may
be frequent while, overall, the population continuesto persist. The effect of
fragmented populations isceivingincreasingattentionin the ecologicalliteratureas
the conceptof "metapopulation’lynamicsgainsstrength(see for instance Gilpin &
Hanski 1991).
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The discussionaboveillustratesthe fact that long persistencdimes may resultin

populationswithout densitydependentegulation. This is not, however,to suggest
that suchregulationis either absentor unimportant. Indeedas longer population
censudime seriesandimprovedstatisticalmethodspecomeavailable the detection
of densitydependencen realworld databecomesnorefrequent(Godfray& Hassell
1992; Woiwod & Hanski1992). As evidenceof the importanceof non-linearitiesn

the dynamicsof populationsaccumulatesfrom real data, proponentsof density
dependenceanperhapgut asidethe well worn, but false,argumentthata "random
walking" populationmustnecessarily go extinct. Partof the confusionwhich arises
can be tracedto the use of terms such as density dependenceregulation and
persistencan an effectively interchangeablenanner. A recentdiscussionof the
problems of terminology in this area is Hanski (1990).

The persistencdime distribution for the simple linear stochasticpopulationmodel

thus resultsin insight into various areasof ecologicaltheory as well as providing
baseline results for comparison with persistence in more complex models.

56



Chapter 4

The linear model with an upper
limit to population size
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Introduction

The simplemultiplicative populationmodelconsideredn the previouschapterhada

populationgrowth rate that was independenbdf populationsize. While this model

may be appropriatein certain circumstancesit suffersfrom the rather unrealistic
feature that infinitely large populationsmay arise. One way to avoid this is to

incorporateexplicit dependencef growth rate on populationsize. However, this

could be donein a numberof ways and, in the contextof modelsfor population
managementjt may not be clear which functional form should be used. An

alternative approach,which preventsthe problem of infinite populationswhile

avoiding the many complexitiesassociatedvith non-linearstochasticmodels,is to

simply fix a hard upperlimit to populationsize. While this is chosenlargely for

computationakasen orderto give insightinto the effectsof a "first approximation”
to populationregulation,a hardupperlimit to populationsizeis not totally without a

biological basis. For instance,an absolutemaximum populationmay arise as an

extremeform of contestcompetition(Varley, Gradwell& Hassell1973)where,in a

populationbelow the maximumsize, all individuals get sufficient resourceswhile

any excessrecruitmentof individuals resultsin their rapid death(ratherthan their

taking a shareof the resourcesthus reducingthe per capita resourceuse by the

population). An exampleof this is competitionfor breedingterritoriesas thereis

likely to be somelimit to the numberof territoriesinto which a given areacan be

divided (Stacey& Taper1992). An upperlimit to populationsize, with a region

below this limit where fluctuationsin size are producedpurely by environmental
variation, also hassomesimilarities to Strong's(1986a,b)conceptof density-vague
regulation. Strong(1986a)considersthe caseof populationswith a density-vague
region below some ceiling which may be impo#adughresourcealepletion,natural

enemiesor emigration. The ceilings consideredoy Strongare rathermore general
thanthe upperlimit consideredn this chapter:Strong's(1986a,Fig. 15.4)illustrates
ceilingswhich vary throughtime, a situationwhich complicateghe mathematicof

the first passage time immensely.

The model

The model is essentiallythe same as that used in chapter 3: an unstructured
population model with an independentand identically distributed multiplicative
growthrate. However,in additionwe now definealevel, N,, suchthatN, < N, for all

t:
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N if AN, <N
Nt+1 — {ﬁ t )'t t . b [41]
b otherwise

Persistence time

In chapter3 the logarithmof populationsize wasapproximatedasa Wienerprocess
and the Wiener processfirst passagetime distribution was found to closely
approximatethe persistencetime distribution of the model. The upper limit to

populationsize,N,, is equivalentto imposingan upperreflectingbarrierat In(N,) on

the Wienerprocessapproximatiornto log populationsize. Thus,by referringbackto

chapter2, an approximateexpressionfor the persistenceime distribution for the

simple multiplicative model with a hard upper bound can be found.

If the long run population growth rate, u, equalszero then the persistenceime
probability density function is given (from [2.44]) by

=)

_ T _a\n 1
g(t|No,Na,Nb)—(ln(Nb/Na)/G)z Z (-)"(n+2)

N o1 nln(NO/Nb)J _(n+1)rt
co{(n 3) In(Nb/Na) exp(z(ln(Nb/Na)/G)ZH

whereu ando are given by [3.6].

[4.2]

If u# 0 then, from [2.41],

- pit o p No o’
(N, NN ) =exg —H s - B Do |9
g( | 0 a b) eXF{ 20_2 0-2 n( Na]jln(Nb/Na)

,{ )fazt) A, sin(2, In(N, /' N,))
XZ expg ——

2 u 2
1- A In(N./N
/lﬁln(Nb/Na)stm( (N, /N,))

2 2
x Y, In LA R 2 —izln Noll__ 9"
N, 26° o© N, ))In(N, /N,)

whereY, (x) is given by [2.36], thd,, satisfy

[4.3]
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arl2, (N, /) =5

suchthat0 €4, <4, < ..., and
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X

whereV(X) is given by [2.39]andq is the positive solution of

tanH{qIn(N, / Na)):q%2

The expected persistence time is given by

o2 2uIn(N, /N,)
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2

2 o

E(T|Ny, N N, ) = °

In(N, / N, ) In(N,2/N,N,)

62

60

2uIn(N, / Na)exp[_zuln(Nb / Na)ﬂ

[4.4]
pb-2a)
O_2
pb-a) _,
62
pb-a) _,
GZ
[4.5]
[4.6]
uz0
u=0
[4.7]



Features of the persistence time distribution

Unlike the model of chapter3, where populationswith a positive long run growth
rate had a chanceof neverreachingthe lower threshold,a finite upperlimit to
populationsize meansthat reachingsomelow level is ultimately certain. Fig. 4.1
investigateghe changen persistenceime distributionresultingfrom the imposition
of an upper bound for parameters that give different values of m
(:02/[uln(Nb/Na)]), which relatesto different forms of the persistencetime

distribution (see Fig. 2.2). The parameters used are given in Table 4.1.

The casem < 0 canobviouslyonly comeaboutwhenthe long run growth rate, i, is
negative. Itis not surprising (given that the population is naturally decre#sauy)
this situation the distribution of persistencetimes (Fig. 4.1b) is similar for the
unboundedmodel of chapter3 andthe modelwith anupperlimit [4.1]. Thereare,
however,slight differencesmostnotablythe fact that the distribution of persistence
timesin the unboundednodelhasa longertail. This is dueto the fact that evena
populationwith u negativemay occasionallyfluctuateto large populationsizesand
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Figure 4.1. Persistencéime distributionsfor the linear modelwith [4.1] (——) andwithout [3.9]

(-~ — -) a hard upper bound to population size. The parameters used are in Table 4.1.
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Table 4.1. Parametersisedin equationg4.3] and[3.9] to producethe persistenceime distributions
of Fig. 4.1.

2 Var(4) N, N, N, u o m
(a) 1.1 0.1 8000 3000 12000  0.056 0.28 1.03
(b) 1.0 0.1 8000 3000 12000 -0.048 0.31 -1.44
(c) 1.10155 0.09999 8000 3000 12000  0.057 0.28 1.00
(d) 1.3 0.1 8000 3000 12000 0.23 0.24 0.18

thereforeachievea long persitencdime. This possibility is preventedn the model
with the upper limit to population size.

The casesm >1 andm = 1 (Fig. 4.1a,c)arisewhere u is moderaterelative to the
standarddeviationin the growthrate. In thesecaseghe additionof anupperlimit to

populationsize greatly raisesthe tail of the persistencdime distribution relative to

that of the unrestrictednodel. Whereasthe positive long run growth ratein these
casesallows somerealisationsof the unrestrictedmodel to continuegrowing and
neverreachthe threshold,n the restrictedmodelall realisationgeachthe threshold.
The area under the persistencetime distribution of the restricted model is thus
noticeablygreater. When0 < m< 1 (i.e. thelong run growthrateis largerelativeto

its standarddeviationandthe distancebetweenthe upperlimit andlower threshold)
the situationis slightly different (Fig. 4.1d). The initial partof the persistencdime
distributionof therestrictedmodelis very closeto thatof the unrestrictednodel;the
main differenceis the raisedtail of the distributionfor the restrictedmodel. In this
casethe probability of reachingthe thresholdat any particulartime is very small - in

the restrictedmodel the raisedtail declinesonly very slowly, such that a small
probability of reaching the threshold continues to long times.

The observationthat, for u strongly positive, the greatestdifference betweenthe
persistencéime distributionsof the restrictedand unrestrictednodelsarein the tail
of the distribution, is important. While the probability of ultimately reachingthe
thresholdin the restrictedmodel is one, much of this probability could represent
realisationsreachingthe thresholdonly at very long times. Fig. 4.2 considersthe
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Figure 4.2. The probability of reachingthe lower thresholdby time T = 1000for the linear model

with anupperlimit to populationsize[4.1] asthe meanmultiplicative growth rate, 2, is increased.
(&) no upper limit, (bN,, = 100000, (cN, = 40000,(d) N, = 20000,(e) N, = 12000,(f) N,, = 10000.
In all cases Vai) = 0.1,N, = 3000,N, = 8000.

;
probability, G(T) =J.g(t)dt, of reachingthe thresholdby sometime, T, which is
0

large but finite.

Fig. 4.2 demonstrateghat for times which are finite, but neverthelesdong in
ecologicalterms,the probability of reachingthe thresholdby T may be lessthanone
for both the unrestrictedand restrictedmodels. The shapeof the curve of G(T)

againstl is similar to that of G(e) against for the unrestrictednodel(Fig. 3.6): as

A is increasecpasta certainlevel the probability thatthe thresholdis reachedy time
T decreasespidly. Thus,for fixed N,, N,, N, andVar(%), thereis a rangeof values

of A for which reachingthe thresholdby time T = 1000 is certain, but as 1 is
increasedhereis a rapid transitionto the situationwhere G(1000)is small. As the
upperlimit, N,, is setat successivelyower populationsizesthe curvesof Fig. 4.2 are
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shiftedto theright, suchthatthe rangeof populationgrowth ratesfor which reaching
the threshold by = 1000 is certain is increased.

For the unrestrictedmodel of chapter3 wherethe populationgrowth rate was high
the chancehatarealisationreachedhe lower thresholddepended greatdealon the
sequencef environmentencounteredn the first few time steps. If a poor run of
growth rates,taking the populationto the threshold,was not encounteredhen the
populationgrew rapidly away from the threshold. Thoserealisationghat did reach
the thresholddid so at short times. With a hard upper limit to populationsize
realisationsdo not have the "escape"mechanismof growing to very large sizes.
Populationsat any finite upperlimit retain someprobability of declineto the lower
threshold thoughfor large upperlimits (or low variancein a high growth rate) this
probability may be very small.

In particularwhen u is large, the persistencegime distribution for the linear model
restrictedby an upperlimit canbe consideredsconsisistingof two parts:the tail of
the distributionwhich relatesto the probability thata populationencounters run of
poor environmentscausingit to leavethe region of the upperlimit and reachthe
lower threshold; and (for all caseswhere N, < N,) an "initial condition" part
associatedvith the possibility that the lower thresholdmay be reachedbefore the
upper limit is ever encountered. This latter effect is the same affacealisationof
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Figure4.3. Thepersistencéime distributionsfor 2 = 1.3, Var(1) = 0.1andN, = 3000with (a) no
upperlimit to populationsize,(b) anupperlimit of 12000individuals.—— N, = 8000,---- N, =
12000.
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the unrestrictedmodel encounteringan initial run of low growth ratescausingit to
decline to the threshold size despite an overall high growth rate.

Fig. 4.3 demonstratesheseeffects. The persistencdime distributionsin Fig. 4.3a
arefor the unrestrictedmodel,andthosein Fig. 4.3bfor the restrictedmodel. The
solid line showsthe casewhere,for the restrictedmodel,N, < N,. Fort small the
persistencetime distributions for the two models are similar, the sharp peak
correspondindo the few realisationghat rapidly declinefrom the initial population
size to reachthe threshold. In the unrestrictedmodel, after this initial peak,the
probability of reaching the threshold is zero as the high growth rate causes
populations to grovto infinite size. In therestrictedmnodelthetail of thedistribution
is raised,and declinesonly very slowly, representinghe probability of leavingthe
region of the upper limit and reaching tbaver threshold. If, in therestrictedmodel,
N, = N, (asshownby the dashedine in Fig. 4.3b) the initial peakdisappearsuch
that the persistence time distribution consists solely of the slowly declining tail.

Fig. 4.4 investigateghe effect on meanand modal persistencéime of changesn A
for the modelwith andwithout anupperlimit to populationsize. The moststriking
differencesare betweenthe conditionalmeansfor the two models. As discussedn
the previouschapterthe conditional meanpersistencdime for the model with no
upper limit declines rapidly from the point at which the long run groatidbecomes
positive and ultimately reachingthe lower thresholdis no longer certain(markedby
the vertical line in Fig. 4.4).

For the model with an upperlimit, however,the conditional meanbehavesather

differently. For lower valuesof 1 the meanis similar to the model without upper
limit. This is dueto the fact thatthe long run growth rateis negativein both cases
andall realisationsdeclinerapidly to the lower threshold. Whenthe long run growth
rate is only slightly negativethe mean persistencedime in the model without the
upper limit is characterisedby high values resulting from the fact that some
realisationhaveexcursiongo very high populations. Suchexcursionsareprevented
by the upperlimit in the alternativemodelandthe increasen meanpersistenceime
is, therefore not so dramatic. While the conditionalmeanin the unrestrictednodel
declinessharplyassoonasthelong run growthratebecomesgositive (andultimately
reachingthe lower thresholdis no longer certain),in the restrictedmodelthe mean
persistencdime continuesto rise. This is becausethe upper limit preventsthe
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Figure 4.4. The conditionalmeanandmodalpersistenceime for the simple multiplicative model
with andwithouta limit to populationsize. Var(4) = 0.1, N, = 8000, N, = 3000, N,, = 12000.

O mean persistence time for model without upper limit, conditionaéachingthe threshold(from
egn.[3.10]), O - O meanpersistencdime for model with upperlimit (from eqn.[4.7]), — — -
modal persistencetime for model without upper limit (from eqgn. [3.11]), O O O modal

persistencetime with upper limit (calculated numerically by Brent's method of function

maximisation,Presset al. 1989). The dashedvertical line marks the value of 1 at which the
probability of ultimately reachingthe lower thresholdbecomedessthanonefor the modelwith no

upper limit.

growth of realisationsto very large populationsizesand the occasionalrealisation
encounters run of growth ratesthatenableit to leavethe upperlimit andreachthe
lower threshold. Thus, while the only realisationsthat reachthe thresholdin the
unrestrictedmodel are thosethat encountera particularly "bad" run of growth rates
early in the realisation,in the restrictedmodelthereremainsa small probability of
reachingthe thresholdevenat quite long times. This resultsin the increasen the
conditional mean persistence time seen in Fig. 4.4.
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While the differencesin conditionalmeanbetweenthe modelswith and without an
upper barrier are striking, Fig 4.4 demonstrateghat there are also differences
betweenthe model persistencdimes of the two models. As notedin the previous
chapter, the peak in modal passage time for the unrestricted model occsligtdatya

highervalue of 1 thanthe peakin expectedoassageime. The modal passagéeime
for therestrictedmodelfollows the samepattern,andfor bothlow andhigh valuesof

A the modesare in fact the same. At intermediatevalues(0.7 < A1 < 1.3 for the
parametersof Fig 4.4), however,the curvesseparatesomewhatand the restricted
model actually hasslightly highermodal persistencdimes. For at leastpart of this
rangeG(«) = 1 for the unrestrictedaswell asthe restrictedmodelso comparisons
not complicated by different ultimate probabilities of reaching the lower threshold.

Fig 4.5 examinespart of the persistenceime probability density function for the
restrictedandunrestrictednodelswith parametersvhich resultin G(«) = 1 for both,

but give a slightly longer modal passage time for the restnotetel. The reasorfor
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Figure 45. The persistenceime probability density function for the unrestricted(- -) and

restricted 0 0) (N, = 12000) models4 = 1, Var@) = 0.1,N, = 8000 and\,, = 3000.
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theincreasan modalpersistencéime for the restrictedmodelis clear:for the part of
the distribution illustrated, the distribution of persistencetimes for the restricted
model hasa raisedtail relativeto the unrestrictedmodel, andthis simply shifts the
mode slightly to the right.

Theincreasen modalpersistencéime observedy restrictingthe populationto sizes
lessthan someupperlimit is rathersmall, certainly not enoughto suggesthat the
longevity of the populationis enhancedn any way by the imposition of the barrier
(this fact is obviousfrom Fig 4.5). Anotherway to look at this is to considerthe
probability of reachingthe lower thresholdbefore sometime t (Fig 4.6). This
confirmsthat, despitethe slightly increasednodal persistencdime, the modelwith
the upperbarrierstill represents lessfavourablesituationfor the populationasthe
probability of reachingthe lower thresholdis generally higher for the restricted
model. The differenceis greatestt intermediatetimes. Fig 4.6 also examineshe
effect of different upperlimits on the probability of reachingthe thresholdby a

G(1)

Il Il
100 150 200

time
Figure 4.6. The probability of reachingthe lower thresholdby time t for the unrestricted - -) and

restricted(0 0 N, =12000,0 O N, =30000)models. 1 = 1, Var(4) = 0.1,N, = 8000andN, =
3000.
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certaintime. Increasingthe upperlimit from 12000to 30000 individuals greatly
reduces the difference between the curves for the restricted and unrestricted models.

Fig. 4.7 examinesthe changein expectedpersistencdime as the upper limit to
population size is increasedfor a set of parametersvhich mean that ultimately
reachingthe lower thresholdis certain. As the level of the upperlimit is increased
from a level not far abovethe initial populationsize the expectedpersistencdime
increasegapidly. Howeveras the upperlimit is increasedfurther the increasein
persistencéime slowsandappearso asymptoteat the expectedoersistenceime for
the unrestrictednultiplicative model. For caseswvhereultimately reachingthe lower
threshold is not certain the expectedpersistencetime for the restricted model
continuesto rise, asa small probability of reachingthe thresholdpersistsfor quite
long times (Fig. 4.3). However,the modal persistencdime for the restrictedand
unrestricted models is very similar in all cases (whether or not ultimatsthingthe
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Figure 4.7. Themeanpersistencéime for therestrictedmultiplicative model(O - 0 ) astheupper

limit to population sizelN,, is varied.J O mean persistendene for modelwithout upperlimit. A
=1, Var@) = 0.1,N, = 8000,N, = 3000.
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lower threshold is certain).

Fig. 4.8 investigateshe modal and meanpersistencdimesin the unrestrictedand
restrictedmodels as the variation of the multiplicative growth rate is increased.
Whenthe variationis suchthat ultimately reachingthe lower thresholdis certainin
both the restrictedand unrestrictednodels(all valuesto theright of the vertical line
in Fig. 4.8) the effect of further increasingVar(A) is essentiallythe sameas that
observedin Fig. 3.9, in that both mean and modal persistencetimes decrease.
However,while the expectedersistencéime for the restrictedmodelis lessthanthe
expectedime for the unrestrictednodel (asexcursiondo large populationsizesare

50
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time

10
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Var(\)

Figure 4.8. The conditionalmeanand modalpersistenceime for the simple multiplicative model

with andwithout a limit to populationsizeasVar(?) is increased.A = 1.1, N, = 8000,N, = 3000,
N, =12000. O O meanpersistencéime for modelwithout upperlimit, conditionalon reachingthe
threshold(from eqn.[3.10]), O - O meanpersistencaime for modelwith upperlimit (from eqn.
[4.7]), — — — modal persistencdime for model without upperlimit (from eqn.[3.11]), 0 O O

modal persistencdime with upper limit (calculatednumerically by Brent's method of function
maximisation,Presset al. 1989). The vertical dottedline marksthe point at which G(e) becomes

equal to one in the unrestricted model.
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Figure 4.9. The conditionalmeanand modalpersistenceime for the simple multiplicative model

with and without a limit to population size for differersluesof theinitial populationsize,N,,. A=
1.1,var(4) = 1, N, = 3000,N, = 12000. O 0 meanpersistencéime for modelwithout upperlimit
(from eqgn. [3.10])[0 -0 mean persistendene for modelwith upperlimit (from eqn.[4.7]), - ——
modal persistencetime for model without upper limit (from egn. [3.11]), O O O modal
persistencetime with upper limit (calculated numerically by Brent's method of function

maximisation, Presat al. 1989).

prevented by the upper limit), the modal persistence times are very similar.

Figs. 4.9 and 4.10 examinethe meanand modal persistencetimes as the initial
populationsize,N,, andthe level of the lower threshold,N,, respectivelyare varied
for parametersvhere ultimately reachingthe lower thresholdis guaranteedn the
unrestrictedmodel. The pattern of changeis similar for the unrestrictedand
restrictedmodelsin both cases. Like Fig 4.8, the expectedpersistencdime in the
restrictedmodelis lessthanthat of the unrestrictednodel, but the modal persistence
times are very similar.
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Figure 4.10. Changein the meanand modal persistencéime for the simple multiplicative model

with andwithout a limit to populationsizeasthe lower threshold N, is increasedA = 1.1, Var(2)
=1, N, =8000,N, = 12000. 0 O meanpersistencéime for modelwithout upperlimit (from eqgn.
[3.10]), O - O meanpersistencaime for modelwith upperlimit (from eqn.[4.7]), — — — modal
persistencgéime for modelwithout upperlimit (from egn.[3.11]), 0 O O modalpersistencd¢ime
with upperlimit (calculatednumericallyby Brent'smethodof function maximisation,Presset al.
1989).

Discussion

Imposing an upper limit to population size on the simple linear model affects
persistencdime in various ways. Perhapsthe most interestingeffects are those
which occur when the long run population growth rate is around ke, the most
markedfeatureof the unrestrictedmodel of the previouschapterwas the fact that
very long expectedoersistencdimes could arise evenwhen the ultimately reaching
thelower thresholdwascertain. Indeedwherethe long run growth ratewasequalto
zerothe unrestrictedmodel had an infinite meanpersistencdime. In the restricted
model the mean persistence time is finitetfer 0. While theimpositionof anupper
limit to populationsizereduceshe expectedoersistenceéime in suchsituations(Fig.
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4.4),this resultsmainly from the fact that populationsare preventedrom growingto
infinite size. In contrastwith the meanpersistence¢ime, the modal persistenceime
is generallynot reducedby the presenceof the upperbarrier,evenwhenthe upper
limit is set at a fairly small number of individuals (Figs. 4.4, 4.5).

For caseswhere the ultimate probability of reaching the lower threshold is

comparablethe patternof variationin the meanandmodalpersistencéimestendsto

be similar in the restricted and unrestrictedmodels. In general,the expected
persistenceime is rather less in the model with an upper limit, but the modal
persistencdéimesarevirtually the same. Thusthe major effect of an upperlimit to

populationsizeis to eliminatepopulationfluctuationsto largesizes. This appeargo

have rather little effect on the most likely persistence time.

In onerespectall that the upperlimit to populationsize actually doesis makethe
linear model more realistic, as no environmentcould supportan infinitely large
population. However, from the point of view of populationmanagemenit is of
somereassurancthatin somecasesa reductionsn the numberof individualsthata
habitat can supportdoesnot greatly affect the most likely persistencdime of the
population.

At the endof the previouschapterit wassuggestedhatthe argumentfrom random
walk models,that persistencef a populationrequireddensitydependentegulation
of populationsize shouldreally be abandoned.This was suggestedor two reasons:
the fact that there was a finite probability of not reaching a Ithvesholdf thelong

run growthratewaspositive,andthe fact that, evenwhenreachingthe thresholdwas

certain,somepopulationsmay still persist,unregulatedfor very long times. One

criticism that could be made ofthis argumentis that the linear model allowed the

(unrealistic)possibility of infinitely large populations. This possibility is excluded
by the imposition of an upper barrier. While reachingthe lower thresholdis

ultimately certain in the restrictedmodel consideredin this chapter,as Fig. 4.2

shows,thereare occasionsvherethe probability of reachingthe lower thresholdby

some long timeT, is small.

In generalthen, the linear modelwith an upperlimit to populationsizeis similar to
thelinearmodelof chapter3 which hadno upperlimit. The main effectof theupper
limit is to eliminatethe unrealisticinfinite populationsizesthat could arisein the
unrestricted linear model.
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An example: the Acorn woodpecker in New Mexico

Stacey& Taper(1992) presenta simulationmodel to investigatepersistencen the
acornwoodpeckerMelanerpes formicivorus, which occursin small, ratherisolated,
populationsin the southwesbf the United States. They presentdatarelatingto the
populationof woodpeckersn a single canyonin the MagdalenaMountainsof New
Mexico from 1975to 1984. The populationis thoughtneverto be greaterthan 60
individuals and a large proportion are colour ringed allowing calculation of
survivorshipand reproductiveratesfrom individual histories. Staceyand Taper's
data is reproduced in Table 4.2.

Stacey& Taper constructa simulation model to investigatethe likely persistence
time of the populationin the absencef interchangewith otherbreedinggroups,and

assuminghatthe calculateddemographiparametersiredensityindependent.From

the descriptiongiven it is possibleto write the model in the form of a difference
equation:

S van, i ran s,
Ny =q 2 2 (48]
N, otherwise

whereN, is the populationsize at the startof the breedingseasonin yeart, r, is the
reproductiverate per pair, j, is the probability that a fledgling survivesto breedin
yeart + 1, anda, is the probability that an adult survivesto breedin the subsequent
year. | haverepresentedstacey& Taper's“carrying capacity"by N,. This is the
maximum number of breedingindividuals that the area can support, twice the
maximum number of breeding pairs. The number of territories for the acorn
woodpeckerappeardo be determinedby the availability of acornsand other nuts
which arecollectedby the birdsin autumnandstoredin holesin "granarytrees"asa
winter food supply (Stacey1979). In their model Stacey& Taperassumethat any
excessof birds over the maximum numberdeterminedby the limited number of
territories available are lost to the system. This imposesa reflecting boundary,
referredto in this chapterasanupperlimit to populationsize,atN,. The population
is considered to be extinct if it falls below tweeedingndividualsin size. Stacey&
Taper assesspersistencetime using simulation where the yearly demographic
parameteraredrawn,independentlyfrom the setsof observedralues. Howeverthe
analyticresultspresentedn this chaptermay easilybe appliedto give analyticresults
for the model with no immigration.
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In the absenceof the upperlimit, the model[4.8] canbe written in the form of the
general multiplicative model

Nt+l = )‘tNt [4'9]
where

A =%+a[ [4.10]

Applying this to the data ofTable 4.2 yields a meanmultiplicative growth rate of
0.987with a (sample)varianceof 0.114. Insertingthesevaluesin equationg3.6]

Table 4.2. Stacey& Taper's(1992,Table 1) datafor the populationof acornwoodpeckersn Water
Canyon, New Mexico. Population sizethe total numberof birdsresidingin the studyareain May at
the startof the breedingseason.Adult survivorshiprepresentshe probability thatanindividual alive
atthestartof theyear'sbreedingseasorwould still be alive at the startof the nextyear,while juvenile
survivorshiprepresentshe probability that a bird survivesfrom fledging to the startof the following
breedingseason. Survivorshipswere calculatedfrom the historiesof ringed individuals. Annual
reproductivesuccesss the meannumberof young producedper breedingpair, from observationof
all nestingattempts. Birds known to have survived the winter but which left the areabefore the

breeding season are recorded as emigrants.

Reproductive Population
Adult Juvenile rate size Number
Year survivorship survivorship (young/pair) (no. adults) of emigrants

1975 053 0.56 3.38 46 3
1976  0.68 0.64 1.27 46 4
1977 071 0.30 2.77 40 1
1978  0.38 0.40 2.17 51 2
1979 054 0.00 0.05 52 0
1980  0.69 0.38 4.00 32 0
1981  0.66 0.18 2.37 46 1
1982  0.49 0.25 0.50 49 1
1983  0.61 0.44 1.60 35 1
1984 2.00 36

mean 0.588 0.350 2.011 43.3 1.44

\S/g:‘;)r']ec o 0.012 0.038 1.490 50.01 1.78
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gives the long run population growth rate, u, as —0.069 and the infinitesimal
variance,0?, as0.111. Thesevaluescanbe usedin conjunctionwith [4.3] to provide
the probability density of persistencdimesin the closedpopulationmodel. The
distributionof persistenceéimespredictedby [4.3] is shownin Fig. 4.11(solid line)
with a histogram reproducedrom Stacey& Taper'sFig. 2, showingthe resultsof a
"typical run" of their simulationmodel for a closedpopulation. It is immediately
apparent that the two do not agree very closely.

2?0

1?0

1?0

time (years)

Figure 4.11. Stacey& Taper's(1992,Fig. 2) persistenceéime distributionfor a closedpopulation
(histogram)comparedwith the persistencdime distributionsobtainedfrom [4.3] with (solid line)
parameterassumingpbservedvaluesare samplesdrawnfrom somedistribution,and (brokenline)
parameterdrom meanand varianceof the 720 A valuesthat can arise using Stacey& Taper's
simulationmethod. Opencirclesrepresenhumericalestimateof persistencdime distribution of
[4.8] usingvaluesdrawnat randomfrom Table4.2 andexcludingthe 1979juvenile survival value.
In orderto producepersistencdime distributionscomparablewith Stacey& Taper'sFig. 2 the
probability of reachingthe lower threshold has been integratedover three year intervals and
multiplied by 1000 (the numberof simulationsthat wentinto Stacey& Taper'spersistencdime

histogram).N, = 52 individuals.
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In an effort to uncover the reason for thiscrepancyetweerthetwo, | implemented
Stacey& Taper'ssimulationmodelexactlyasthey describedcalculatingthe change
in populationsize eachiterationof the model[4.8] by randomlyselectingone of the
observedvaluesfor reproductiverate per pair, juvenile andadult survival (excluding
the 1979zerovaluefor juvenile survival). Theresultsof this exerciseareshownas
the open circles on Fig. 4.11, again very different from Stacey & Taper's result.

Before consideringthe reasonfor the discrepancybetween Stacey & Taper's
simulatedpersistencegime distribution and the analyticaland numericalpersistence
times calculatedhere, it is first of interestto considerthe lessmarkeddiscrepancy
betweenthe analyticalpersistencdime distribution (the solid line in Fig. 4.11) and
the numericaldistributionmarkedby the opencircleson Fig 4.12. This discrepancy
is largely dueto the simulationmethodologyemployed. In the analyticaltreatment
above,the data ofTable4.2 for which reproductiverate,juvenile survivalandadult
survival were known (i.e. 1975 to 1983) were usedto calculatea long term rate
populationgrowthrate, i, andits variance 02, andthesevalueswereusedto produce
the persistencetime distribution using [4.3]. In the simulated persistencetime
distributionthe valuefor juvenile survivalfor 1979is excludedandthe reproductive
rate for 1984 is included. Perhapsmost important, however,is the fact that the
valuesof Table4.2 representhe completesetof ratesincorporatedn the simulation
andthe samplevarianceof A, usedto calculatedthe variancein the long run growth
ratewill thereforeoverestimatéherealisedvariance. If the meanandvarianceof the
720 possiblecombinationsof r,, j, anda, actuallyusedin the simulationare usedto
calculatethe persistenceime distributionthe brokenline in Fig. 4.11results,which
is rathercloserto the simulateddistribution. Thisiillustratesthe problemof Stacey&
Taper'smethodologyin consideringthe setof observedvaluesfor the demographic
parametersto be the only possible values, rather than samples from some
distribution.

Returningto the problemof the ratherlargerdiscrepancybetweenStacey& Taper's
simulatedpersistencéime distributionfor the closedpopulationandthe distribution
obtained here, it seems, initially, that a rather simple explanation may be
forthcoming. While Stacey& Taper'sexplanationof their simulationmodel makes
no mentionof emigration,it would appearthattheir simulationmodelfor the closed
populationdoesin fact involve subtractingone of the observedemigrationvalues
such that4.8] should, in fact, read

77



1?0

1(|)0

A A A A 2

[ |
0 20

IIIII.* A A 4 a4 a
[ ! I
40

time (years) ® % o
Figure 4.12. Simulatedpersistencéime distribution (triangles)from [4.11] wherer,, j,, &, andE,
are chosenat randomfrom the valuesof Table 4.2 (excludingthe 1979 juvenile survival value),
comparedwith Stacey & Taper's (1992, Fig. 2) persistencetime distribution for a "closed
population”(histogram). The solid line is given by the formula[4.3] whenemigrationis included

as a component of adult survival (see text).

N, . . N, .
rt?tlt"'atNt_Et if |:I’t7tjt+a[Nt—E[i|SNb

N, otherwise

N, = [4.11]

where E, is the number of individuals lost through emigration. Allowing for
emigration by randomly selecting one of the observednumbersof emigrating
individuals each iteration of the model producesa numerical persistencetime
distribution very close to that presented by Stacey & Taper (Fig. 4.12).

Stacey& Taper'saim in modelling the acornwoodpeckempopulationas if it were
closedis to providea baselineagainstwhich to measurehe importanceof additional
factors(immigrationand densitydependencen ensuringpopulationpersistence.lt
is debatablewhether the assumptionthat the populationis closed should force
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individuals known to have emigratedfrom the population(despitethe fact it was
belowthe maximumof 52 individuals)to remainin the population,or whetherthese
should be treatedas additionallosses. Despitetheir explanation,Stacey& Taper
seenmto havechoserto treattheseasadditionallosses. Thus,to adequatelyapply the
theorydevelopedn this chapterthe meanandvarianceof the multiplicative growth
rate, A, must be calculatedtreating the individuals known to have emigratedas
deaths. Defining o, to be the compoundsurvivorshiprepresentinghe probability
that a breedingadult in yeart hasnot died or emigratedby the beginningof the
breeding season in yelar 1 leads to the expression

aN =aN -k [4.12]

Using ¢, insteadof a, in the calculationof the multiplicative growth rate gives an
expressiorfor the multiplicative growth ratein eachof the yearsfor which datais
available

_rtjt a’(Nt_Et
=4+ -— 4.1
A > F TN [4.13

t

which leadsto a mean 0f0.955 and a varianceof 0.109 (seeTable 4.3). This is

equivalent to a long run growth rage) ©f —0.103 with variance 0.113Thesevalues,
wheninsertedin [4.3], resultin the persistencdime distribution given by the solid

line in Fig. 4.12. Despite the incorporation of emigration in the estimated
multiplicative growth rate, the persistencdime distributionthat resultsfrom Stacey
& Taper'ssimulationmethodis still not well representethy the simplemultiplicative
model with an upper limit. Stacey& Taper'ssimulationspredict smaller modal
persistencéimesandhavea considerablyshortertail of long persistencdimesthan
the model distribution.

Thereasorfor the continuingdiscrepancypetweernthe modelof this chapterandthe
simulationscarried out by Stacey& Taper seemsto be due to their simulation
methodology. While they checkedhat the adultandjuvenile survivalrates,andthe
reproductiverate, were not correlatedwith eachother they do not appearto have
consideredcorrelationsbetweenthese parametersand the number of individuals
emigrating each year, despitethe fact that the observedemigration values have
apparentlybeenincludedin the simulation. In fact thereis a significant positive
correlationbetweerthe observeduvenile survivalrateandthe numberof individuals
surviving the winter, but leaving the populationprior to breeding(Spearman'sank
correlation,p = 0.7625, p= 0.0165[one sidedtest]). The effect of neglectingthis
correlationandtreatingthe emigrationrateasanindependenparameteras Stacey&
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Taperappearto havedonein their simulations,is to subtly introduceinversedensity
dependence. There are 6480 combinations afliservedsurvival,reproductiveand
emigrationrates,excludingthe 1979juvenile survivalrate. Using[4.13] the mean
multiplicative growth rate,wherea, j,, r, and E, are chosenindependentlyfrom the
setof observedvalues,canbe calculatedfor all populationsizesbetweenthe lower
bound of two individuals and the upper bound of 52 individuals, as determiried by
numberof availableterritories. This is illustratedin Fig. 4.13, which demonstrates
thatthe meangrowth rate declinesdramaticallywhenthe populationsizefalls below

10 to 15 individuals.

A similar situationresultsif the survival and reproductiveratesare chosenfrom
normaldistributionsandthe numberof emigrantsfrom a poissondistribution. This
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Figure 4.13. The spuriousinversedensitydependencéntroducedinto the multiplicative growth
rate as a resultof choosingemigrationrate independenthfrom the observeddata(+). The mean
growth rate, )T was calculated by taking the mean of the 6480 possible combinations of
demographig@arameterst eachpopulationsize and applyingeqgn.[4.13]. A more generalmodel
wherea,, j, andr, are chosenfrom normal distributionswith meanand variancefrom the dataof
Table 4.2, and E, from a poissondistribution with meanfrom the data of Table 4.2 producesa
similar result - each point (¢) is the mean of 8000 values of lambda where the component

demographic parameters have been chosen independently.
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is due to the fact that at smaller population sizesa given number of emigrants
representa larger proportion of the population than they would do at larger
populationsizes. Stacey& Taperthusfail in their statedaim of establishingthe
likely persistencdime for a closedpopulationwith a density independengrowth
rate.

This spuriousfall in growth rate at smaller populationsizesis responsiblefor the

shorterpersistencdimes observedin Stacey& Taper'ssimulationsrelative to the

persistencdimes predictedby the model of this chapter. Becausethe method of

estimatingthe multiplicative growth rate employedhere[4.13] doesnot rely on the

independencef any of the demographiccomponentsthe solid line in Fig. 4.12is

likely to be a betterindication of the distribution of persistencdimesfor the acorn
woodpeckerpopulation in the absenceof immigration. However, despite the

problemswith Stacey & Taper's simulation method noted here, many of their

conclusionsare supporteday the applicationof the methodsof this chapter. For the

casewherethe populationgrowthrateis estimatedvith theinclusionof the observed
emigrationthe modal persistencdime is seventeeryears(this increasego 21 years
for themodel[4.8] wherethe populationis truly closedandemigrationis prevented).
The probability of persistencefor 70 years in the model where emigration is

permittedis lessthan0.01. While thisis considerabljargerthanthe probability of <

0.000001that Stacey& Taperestimatefrom their simulations,it still suggestghat
survival for this length of time is relatively unlikely (given that the mean and
varianceof the multiplicative growthratedo not change).As Stacey& Taperreport,
the populationof acornwoodpeckersn WaterCanyonis knownto havesurvivedfor

at least 70 years. They considertwo candidatemechanismsthat may lead to

increased persistence times: immigration from other subpopulationsin the
MagdalenaMountains,and density dependencéeadingto an increasedoopulation
growth rate at low numbers.

The effectsof immigrationon persistencéime canbeincorporatedn the modelby a
similar mechanisnto that usedto incorporateemigration. If the populationgrowth
rate for each of the years 1975 to 1983 is recalculated using the formula

_rtjt atNt_Et+|
=+ 1 4.14
A > ¥ N [4.14]

t

wherel is the effectiveimmigrationrate (that s, the numberof individuals arriving
in Water Canyonand successfullyjjoining the breedingpopulationeachyear)thenit
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Figure 4.14. The effectson mean(- ) and modal (+) persistenceime of a set number, |, of

individuals joining the populationeachyear. Note that the ordinateis plotted on a logarithmic

scale.

is possibleto againestimatethe meanandvarianceof this multiplicative growth rate
for different levels of effective immigration. The effects on persistencdime are
demonstrated in Fig. 4.14n commonwith Stacey& Taper'sesultspersistencéime
increases substantially as the effective number of immigrants per year is increased.

In fact, thereis considerablesvidencefrom the data of Table 4.2 that interchange
with otherbreedinggroupsis an importantfactor in the Water Canyonwoodpecker
population dynamics. The number of immigrants each year can be inferred by

calculating,using[4.11], the size of breedingpopulationthat would be expectedn

the absenceof immigration and relating this to the actual breeding population
recorded (Table 4.3).

In most yearsthere is evidencefor an effective immigration of up to around 10
individuals. In two years(1977, 1977)howevera negativenumberof immigrantsis
produced by this method. theanalysisaboveit wasassumedhatexcessirdsover
the maximumnumberof breedingindividuals that the canyoncould supportwere
lost to the populationin factemigrationto othersubpopulationsnaybe occurringat
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Table 4.3. Variousquantitiesderivedfrom the dataof Table4.2. The multiplicative growthrate, 4,,
without emigrationis givenby [4.10]; the expectechumberof adultsis the numberof adultspredicted
eachyearfrom the observeddemographiagateswithout any emigrationor immigration (from [4.8]),
andthe estimatedmmigrationis the differencebetweenthe expectechumberof breedingadultsand
the observechumber taking accountof known emigrants. The compoundsurvivalis given by [4.12]

and the multiplicative growth rat@,, with emigration is by4.13].

At without Expected Estimated = Compound At with

Year emigration  no. of adults immigration  survival, ot emigration
1975 1.48 0.46 1.41
1976 1.09 67.91 -17.91 0.59 1.00
1977 1.13 49.97 -8.97 0.69 1.10
1978 0.81 45.02 7.98 0.34 0.77
1979 0.54 41.51 10.49 0.54 0.54
1980 1.45 28.08 3.92 0.69 1.45
1981 0.87 46.40 0.60 0.64 0.85
1982 0.55 40.17 9.83 0.47 0.53
1983 0.96 27.07 8.93 0.58 0.93
1984 33.67 2.33

mean 0.987 0.556 0.955

sample variance 0.114 0.013 0.109

levelsgreaterthanthoserecorded. This is closelyrelatedto the discussiorat the end
of chapter3 whereit was suggestedhat fragmentedpopulationsmay persistlonger
than any of the sub-populations involved. In the case consideredhsarpperlimit
to the number of breedingterritories may producea form of density dependent
emigration. Assumingthat the environmentalvariation, which seemso influence
juvenile survivorshipin particular, affects subpopulationandependentlyto some
extentthenexcessndividualsfrom a goodyear'sbreedingin onesubpopulatiormay
swell the numbersof anothersubpopulatiorwhich experienced poorerrecruitment.
Such interchangewill, of course, not only produce longer persistencein the
componentsubpopulationsbut lead to persistencef the speciesn the wider area.
As Stacey& Taper point out, the acorn woodpeckerappearsto have solved the
problem of persistencen a fragmentedresourcelandscape. Again, seeGilpin &
Hanski (1991) for further consideration of the dynamics of fragmented populations.
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The other mechanismpostulatedas contributingto persistenceimes greaterthan

thosepredictedby the model of [4.11] was an increasedpopulationgrowth rate at

small populationsizes. As the plots of Fig. 4.15 show, thereis ampleevidencein

Stacey& Taper'sdata (Table 4.2) that such density dependenteffects do occur.

While the survival rate of fledgedyoung appeardargely independenbf population
size,both adult survivalandthe meannumberof youngper pair showevidenceof a

decreasavith increasingpopulationsize (thoughneitherare quite significantat the
5% level whena simplelinearregressions calculated). Whenknown emigrantsare
included with adult survival to produce an estimate of compoundsurvival, a

significantdecreasen survival with populationsize is observed. The assumedet

interchangeof birds with other acorn woodpeckersubpopulationsalso shows a

significantdecreasavith the predictedpopulationsizein the absencef interchange.
This is heavily influencedby the three negativevaluesrepresentingemigration of

significantly more individuals than actually observed. The ratio of the observed
breedingpopulationin oneyearto thatin the precedingyear measureshe realised
populationgrowth rate. Again a significantdecreasavith increasedopulationsize
is observed suggestingthat the actual "equilibrium” populationsize is around44

individuals.

Stacey& Taperdo incorporatethe effectsof densitydependencén their simulation
model. They fit various modelsto the growth rate defined, quite properly, as
r.=In(N,,/N,). Unfortunatelytheir Fig. 5, which plots this growth rate against
populationsize,showsgrowth rateswhich bearscantresemblancéo the valuesthat
shouldoccurgiven the datathey present. For instance their plot suggestghat only

onevalueof r, is positive. Thedata ofTable4.2 suggesthereshould,in fact, befive

positive values. As their simulationsof density dependentmodels are basedon

fitting variousmodelsto the growth ratesthey show, their resultsshouldbe treated
with some caution. However their generalconclusion,that persistenceimes are
enhancedy densitydependeneffectsactingto regulatethe woodpeckelpopulation
around some "equilibrium" size, seems sound.

Variousanalyticalmethodgo determinethe effectof densitydependengrowthrates
on the persistencetime of populationsare investigatedin subsequenthapters.
However, the example provided by the acorn woodpecker demonstratesthe
usefulnes®f the simple multiplicative modelwith an upperlimit to populationsize
in the analysis of the persistence of real biological populations.
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Figure 4.15. The relation of various demographicparameterdo populationsize. Probability
values given are the probability that slope resulting fedimear leastsquaresegressions zero.(a)

Measuredadult survival againstobservednumberof breedingadults (p = 0.0576); (b) juvenile

survival versushbreedingadults (p = 0.434); (c) reproductiverate versusbreedingadults (p =
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Chapter 5

Persistence time in density dependent models
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Introduction

Approximationof the persistencéime distributionsof the linear modelsdiscussedn
chapters3 and 4 by the first passagdime distributionsof the Wiener processwith
suitableboundaryconditionsprovideda very generalresult for persistencdime in
density independenpopulationmodels. In contrast, thewide variety of ways in
which densitydependenceanbe formulatedmeanghatsuchgenerakesultsfor non-
linear modelsareunlikely to be forthcoming. In orderto gain a feeling for the kind
of persistencdime distributionsthat may arisein density dependenimodels,this
chapterexaminegersistencéime in stochastidnterpretationof the familiar logistic
model which remainsthe mostwidely known densitydependenpopulationmodel,
despite problems of assigning practical ecological meaning to its parameters.

Two distinct approachesto the problem of persistencein logistic models are
investigatechere:(i) transformation®f the stochastidifferential equationsuchthat
the first passagetime resultsfor the Wiener and Ornstein Uhlenbeck processes
(chapter2) canbe invokedto provide exactresultsfor the persistenceaime; and (ii)
an examinationof whetherpersistencdime resultsfor locally linear approximations
to the full non-linearmodelscan provide usefulinformation on persistencdime in
the full model. While neither approachis without problems, some qualitative
featuresof persistencéime areforthcoming,at leastfor the casewherea population
is regulated around some mean value.

Exact results for continuous time stochastic logistic models

Despiteits encouraginditle this sectionreportswork which is limited by somequite
severerestrictions,both in the modelsemployedand the methodsused. The work
here follows up work by Goel & Richter-Dyn (1974) using their methodsto
investigatepersistencdime in a logistic model. In contrastto the other models
consideredn this thesiswhich arephrasedn discretetime (but usecontinuoustime
approximations}he startingpoint hereis the continuoustime logistic. In the well
known deterministiclogistic model the changein populationsize throughtime is
described by the differential equation

d—Ner(1—ﬁ) (5.1]

dt K
A commonapproachto consideringthe effect of environmentalvariation in such
deterministicmodelsis to replaceone of the constantparametergr or K) by a
randomlyvarying parametemwith somemeanand a varianceterm given by scaled
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white noise, giving rise to a stochasticdifferential equation. This "heuristic”
approach(Turelli 1977) contrastswith the situationin chapter2 where stochastic
differential equationsaroseas continuoustime limits of discretemodels. The non-
linear stochastic differential equations in this chapter have the general form

dX(t) = (X)dt + B (x)dW [5.2]

In contrasto the casesonsideredn chapter2, B is now afunctionof x. This means
that the problem, which was only alluded to previously, of different ways of
interpreting such SDE®uUstnow betackled. Thesedifficulties arise,asbefore,from
the fact that white noise is not a smooth differentiable function.

Ito and Stratanovich calculi

The two most popular interpretationsof stochasticdifferential equations,such as
[5.2], areknown asthe Ito and Stratanovichcalculi (Feldman& Roughgarderi975;
Turelli 1977). In the presentcontextthe mostimportantdifferencebetweenthese
two interpretationsis that they provide different ways of relating the stochastic
differential equation to the diffusion process

2 plxt) = =2 [up(tp )] + 2o [weoplx)] 153

and it is by manipulationof the diffusion equationthat results relating to the
persistencetime will be obtained. Under the Stratanovichinterpretationof the
stochastidifferential equation,the infinitesimal meanand varianceof the diffusion
equation are given by (Turelli 1977, Roughgarden 1979, p.380-381):

v(x)=a(x)+%%/32(x)

[5.4]
w(x) = B*(x)
whereas the Ito interpretation gives
V(X) = och) (5.5
w(x) = B°(x)

The simplestway to numerically integratea stochastidifferential equationis to use
Euler'smethod(Nisbet& Gurneyl1982,p.275). This method,however,corresponds
to an Ito interpretationof the SDE. One way round this difficulty is to apply the
methodsuggestedby Nisbet& Gurney(1982). They point out thatit is possibleto
associateawo different stochasticdifferential equationswith a given, well defined,
diffusion procesdoy applyingeither[5.4] or [5.5]. The processs illustratedin Fig.
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5.1. The starting point here is the stochasticdifferential equation heuristically
derivedfrom the deterministicmodel. By applying the Stratanovichinterpretation
[5.4] a well defined diffusion processis obtained. Then, by askingthe question
"what stochastidifferential equationwould haveled to this diffusion equationhad
the Ito interpretationbeenused ?", a different stochasticdifferential equationis

obtained. By numericallyintegratingthe two stochastidifferential equationsusing

Euler'smethod,both Ito and Stratanovichinterpretationsof the original stochastic
differential equation result.

(1) (3)

dX(t) = (el + B (YW | [ dx=[a(X)+%%[l3(X)]z}dt+/3(X)dW ]

(‘Stratanovich interpretation\

of SDE (1)
19 What SDE, under Ito interpretation
V(X) = o (X) +Z§ B 2(x) would give diffusion equation (2) ?|
— 2 =
(W(x) = B2(x) ) v(x) = (%)

w(x) = B*(x)

2) T

1% 1% d°
Y p(x,t|xo) = —&[v(x) p(x,t|xo)] +y[w(x) p(x,t|xo)]

[ Euler integration] [ Euler integration]
Ito interpretation Stratanovich interpretation
of SDE (1) of SDE (1)

Figure 5.1. Flow chartof stepsinvolved in obtainingboth Ito and Stratanovichinterpretationsof a

stochastic differential equation (1) using Euler integration.
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Nisbet& Gurney(1982, p.273urgethatthe choiceof SDE interpretationshouldbe
made on ecological rather than mathematicalgrounds. In the remainderof this
section this sound advice is sadly laid to one side: the method of obtaining
persistencdime results presentedoelow relies on the applicationof the rules of
ordinarycalculus. Thisimpliesinterpretingthe stochastidifferential equationin the
sensesuggestedby Stratanovich. Turelli (1977) considerghe appropriatechoiceof
calculusworking on the basisthat heuristicallyderivedSDEssuchas[5.2] areonly
ever intended as approximationsto biological reality. He concludesthat the
Stratanovichinterpretationis appropriatewhen the "true" underlying processis a
continuoustime processsubjectto continuousnoise. Turelli suggestghatin most
situations in population biology environmentalfactors are indeed likely to be
autocorrelatedo someextent, but that underlying processis also characterisedy
eventsdiscretein time such as seasonabreeding. Where the "true model" is a
difference equation subject to autocorrelatednoise neither the Ito nor the
Stratanovichinterpretationis necessarilyappropriate. However, Turelli showsthat
for a suite of simple modelsthe Ito interpretationis generally more biologically
reasonable.

It is againstthis backgroundthat the analysisof this sectionproceeds. From the
foregoing paragraphsit may safely be concludedthat quantitative estimatesof
persistencdime basedon the following should be treatedwith a fair amountof
scepticism. However,| believethatthe qualitativeconclusiongin particularfor the
logistic with randomcarrying capacity)are useful. In the specific casesconsidered
laterin this section the differencethatanIto interpretatiorof the model wouldmake
to the persistence time distribution is considered, and investigated numerically.

Transformation method for persistencetime distributions

Consider a stochastic differential equation of the form

% = () + B (YF() [5.6]

where F(t) is Gaussianwhite noise with zero meanand unit variance. Goel &
Richter-Dyn(1974)demonstratéhe solutionof suchequationshy transformatiorto
simplerequationan avariablez. Dividing the stochastidifferential equation[5.6]

by B(X) gives
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=V(2) + F(t) [5.7]

where
dz= dx
B(X) [5.8]
and
oy e (X(2)
g B(x(2) [5.9]
This corresponds to the diffusion equation
Kzt) ——[v( 2)k(2z,, t)]+——k(z|zo t) [5.10]
ot 297 '

where k(z|zo,t) is the probability density function for z. The probability density
functionsfor the untransformedandtransformecprocessesp(x|xo,t) and k(z|zo,t),

are linked by the relation
k(Z2,.t) = p(x(2) o) B(X(2)) [5.11]

The aim hereis to use Goel & Richter-Dyn'stransformationmethodto obtain the
probability densityfunction g(t|xo, a) of thefirst passageéime, T - thetime takenfor

a populationinitially of size x, to reacha lower thresholdsize of a (a < Xx,).
Following the sameprocedureas that usedin chapter2, a is representedas an
absorbing barrier. Then

d 7} (dp(X%,.at
o(t|x,,a) = “a '[ p(xx,,a,t)dx = —J%dx

= -J[-%(V(X) plxx.a.t)) +%%(W(X) p(Xlxo'a’t))}dX

00

- —[—v(x) plxx )+ (w(x) p(xlxo,a,t))} = 2.2 (w0) plxx, 1)

13foestti)] |

2 ox [wWO)T*

a

[5.17]

usingthe relation [5.11] andrepresentinghe absorbingbarrier for the transformed
procesg by b.
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By the chain rule,

oz

%([W(x)]% K(4z.b.)) = %([W(X)]% k(Z'ZO'b't))&

and from p.8] abovegz 1 T
X [w(x)J

Thus

=9(tz,,b) [5.13)

z=b

o(t]x,.a) :%%k(zqzo,b,t)

whereg(t|zo, b) is the first passage time fornto b.

There is, therefore,a very simple relationship betweenthe first passagetime
distribution for the original process, and that of the transformed process,

Thelogistic model with random variation in the growth rate, r

Starting with the differential equationfor the deterministiclogistic model [5.1]
randomvariationcanbe introducedinto the growth rate,r, by replacingthe constant
by the stochastic form:

r(t) = F +oF(t) [5.14]

wherer is the meangrowth ratewith varianceo?, andF(t) is Gaussiarwhite noise.
This gives the stochastic differential equation
dN N

E:r|\|(1—E]+o|\|(1—%)F(t) [5.19]

It shouldbe notedat the outsetthat this model has somerather strangeproperties
(which will becomeclear below). However, it seemsappropriateto considerit

further for two reasonsit is easily obtained(perhapsall to easily) by the heuristic
processof allowing one of the parametersn the deterministiclogistic to suffer a
random"wobble"; and, in addition, this model has alreadybeendiscussedn the
contextof risk assessmenh populationmanagmenby Ginzburget al. (1982),who
fail to comment on its peculiarities.

Usingthe Stratanovichnterpretatior{5.4] yieldsthe infinitesimalmeanandvariance
for the corresponding diffusion process
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V(N) = N(l—%)[n%z(l_%ﬂ

[5.16]
w(N) =0'2N2(1—%j2

In order to produce numerical realisationsof the model [5.15] the stochastic
differential equationcan be rewritten expressingthe white noise in terms of the
increment of the Wiener process

dN = r‘N(l— %jdtﬂyl\l(l— %)za)\/ﬁ [5.17]

Under Euler integration this representsthe Ito interpretation of the stochastic
differential equation [5.15]. Following the method outlined in Fig. 5.1, the
Stratanovich interpretation 05.[L5] is obtained by Euler integration of

dN = N(l— %){F+%(l—%ﬂdt +6N(1— %)za)\/ﬁ [5.18]

Realisationsof [5.18] are shownin Fig 5.2 and of [5.17] in Fig 5.3. From these
figuresit is could perhapsbe suggestedhat the Ito and Stratanovichinterpretations
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Figure5.2. Realisation®f thelogistic with randomr, [5.15], usingthe Stratanovichinterpretation
(Euler integration 0f$.18]). T =0.3,K = 300. (a)?= 0.3, (b)o?2=0.5, (c)o2=10.9, (d)o2=1.3.
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Figure 5.3. Realisationsf the logistic with randomr, [5.15], usingthe Ito interpretation(Euler

integration of $.17]). T =0.3,K =300. (a)?= 0.3, (b)o?=0.5, (c)o?=0.9, (d)o?=1.3.

of [5.15] producebroadly similar realisations. In fact, it is possibleto be more
specific. Wherethe stochasticityis weak (02/2 < r‘) then underboth Stratanovich
and Ito interpretationsall realisationsconvergeto the close neighbourhoodof K

(Roughgarderi979). With strongerstochasticitythen,underthe Ito interpretation,
somerealisationsmay alternativelyapproachzero (in the absenceof an absorbing
barrier at a larger population size).

The realisationsof Figs. 5.2 & 5.3 demonstrateghe peculiar featureof the model
(obviousfrom examinationof [5.15]) which is that the variancein the population
growth rate is affectedby the densitydependenterm, as well asthe meangrowth
rate. Thus,the varianceof the growthrate,r, approachegeroasthe populationsize
approacheshe carrying capacity,K, which actsas a "built-in" absorbingstate (as
opposedto the absorbingstatesimposed, through boundary conditions, on the
processesonsideredn chapter2). Thusanyrealisationgeachingthe vicinity of K
aretrappedthereandhaveno possibility of excursionsdown to the thresholdlevel.
This is probablyratherunrealisticfrom a biological point of view asit is difficult to
conceiveof mechanismsvherethe effectsof environmentalariationon population
size are affectedto suchan extentby populationdensity,and where a population
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attainingthe maximumsustainablesizeis destinedo remainat this level. However,
as some of the realisationsin Figs. 5.2 & 5.3 demonstrate, th@opulation may
fluctuatefor sometime at sizesbelowthe carryingcapacitywhenthevariancein r is
large relative to the mean. In such cases(and also perhapswhere the carrying
capacityis very large) the model, and its persistencdime distribution, may be of
some interest.

The distribution of population size

Goel & Richter-Dyn (1974) introduce the transformation

R

in orderto obtainthe probability densityfunctionfor N. Rewriting[5.15] in termsof
the transformed variable yields the stochastic differential equation

dz 1

— =—+F(t 5.20

i (t) [5.20]
which is the SDE for an unrestricted Wiener process for which the probaleitisity
function was given in chapter2. Using [5.11] and [5.16] gives the probability
density function

2

p(N[N,t) = : o m[ﬂ}_m & _rt] |52
o(zm)%N(l—E) 20t | N, (1_%)

To obtainthe distribution of timesthat the populationpersistsabovea level N, it is
necessary to consider a lower boundbygn the transformed procegs,

:im[Na/(l-%ﬂ (b<z,) (5.2

o

such that the transformed process now has diffusion equation

K(dz.b) _ _r Kdz.b) 10°%Kdz.b) 523
X o o 2 o7 |

with boundary conditiork(b|z,,t) = 0.

Using chapter 2 [2.23] the probability dendipctionfor the transformedrsariablein
the presence of the lower boundary can easily be found
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[5.24]

and again applying the relations [5.11] and [5.16] gives the probability density
function for the population siz&|, in the presence of the lower threshold:

1
o (27t)2 N(1- N/ K)

(i)

p( N| No,a,t) =

X

ex

20 %t
2r |n L _|n L
1-N, /K 1-N, /K
—exp .
o
C N N N 2]
In }—Zln 2 _|+In] —°% |-T1t
[1-N/K 1-N, /K 1-N, /K
20 %t
Ji5.25

The persistence time distribution

The persistence timdistributionfor the transformedvariableis thefirst passagéime
distribution for the Wiener process, and is again given in chapter 2 [2.24]
_%-b

fora]
o
o(t|z,b) = o ex o

[5.26]
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Using [5.13] and [5.19], the persistenceime distribution for the untransformed
processes is obtained simply by substituting

1 N 1 N
:_ln 0 , b:—ln -2 52
“=5 (1—N0/K] c [1—Na/K) [5.27

Thus the required persistence time distribution is

NO Na
In —-1In
1-N, /K 1-N, /K

{N,,N,) =
olt[Ns N,) V2

N, N, Y
—Inf ——2—|-In] —————— |-1t
1-N, /K 1-N, / K

20%t

xex

[5.28]

This corresponds with the result previously obtained by Ginz#ialg (1982)for the
logistic with random r (but who fail to mention the necessityof assuminga
Stratanovichinterpretationin order to make the required transformationsto the
Wiener process). In Fig. 5.4 the persistencdime distribution given by [5.28] is

comparedwith distributionsobtainednumericallyby Eulerintegrationof [5.17] and
[5.18]. In thesecasesthe persistencetime distributions resulting from Ito and
Stratanovichinterpretationsof [5.15] arein fact very similar, despitethe fact that
0?/2>T in threeof the four examples. The persistencdime distribution of [5.28§],

not surprisingly, gives a slightly better fit to the distributions obtained using a
Stratanovichnterpretation. Neverthelessin the examplesllustratedat least,the Ito

caseis approximatedy [5.28] extremelywell. In Fig. 5.4bto d thelto interpratation
resultsin a slightly higherprobability of reachingthe lower thresholdat shorttimes.
This is presumablydueto the fact thatin thesecaseghe Ito interpretationresultsin

some realisations approaching zero rather than the carrying cagacity,

Becausethe persistencdime distribution [5.28] is simply the first passaggime

distribution of a scaledWiener processmany of the resultsof chapter2 are again
available.
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Figure 5.4. Persistencdime distributionsobtainedby Euler integrationof [5.18] (Stratanovich
interpretationof [5.15]) and [5.17] (Ito interpretationof [5.15]). Lines from persistencdime

distribution[5.28], obtainedby transformatiormethod. (a) T = 0.3, 06 = 0.5,K = 300,N, = 150, N,
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= 100; (d)F = 0.0,0 = 0.5,K = 300,N,, = 150,N, = 100.
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The probability of ultimately reaching the lower threshold is given by

1 (F<0)

eXp[_Z_Z(In(l— EO/ K]_ In(l— .Zla/ KD] (F>0)
o 0 a [5.29]

As the model[5.15] is really only of anyinterestwhent is non negative therewill
alwaysbe a finite probability thatthe lower thresholdis not reached Ginzburget al.
(1982)considercasesherer is negativewithout apparentlyrealisingthe biological
absurdityof a model where the density dependeneffect is to decrease the mean
growthrateasthe populationgetsmaller). In contrasthowever to the linear model
of chapter2, this is not dueto the fact that populationsareattaininginfinite size,but
rather to the fact that realisations are trapped at the built-in absorbing bafrier at

G(OO|NO’ Na) =

The mean persistence time, conditional on reaching the threshold, is given by

(it i)

r [5.30]

mean=

Thus the mean persistenceime is unaffectedby the variancein the population
growth rate,andan increasedneangrowth rateleadsto decreasedneanpersistence
times. Thisis becauseasr isincreasedt becomesncreasinglyeasyfor realisations
to reachthe carrying capacity,and the only realisationsreachingthe thresholdare
thosethat experiencea run of low growth ratesearly in the realisation. This is
essentiallythe samereasonthat increasingpositive long run growth rates,u, in the
linear modelled to shortermeanpersistencdimes. The modal persistencdime is
given by
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No -1In N, 2
1-N, /K 1-N, /K )
357 (F=0)
mode= < 1 N, N
=|Inf———|-In] —2—
F 1-N, /K 1-N, /K
(F>0)
90 * 307
1+ 2| op
ar il v )
0 2 [5.31]

Like the meanpersistencd¢ime, the modefalls asthe meangrowthrateis increased
(Fig 5.5). However, in contrastto the expectedpersistencetime, the modal

persistencéime is affectedby the magnitudeof the variationin growthrate. Thisis

illustratedin Fig. 5.6 which demonstratethat increasedvariancein the growth rate
produces a reduction in modal persistence time.

Figure 5.7 investigates the change in mean and modal persistence timeaag/thg
capacity, K, is increased. Both mean and mode decreaseaccompaniedby an
increasingultimate probability of reachingthe lower threshold. Thesechanges
appeatto be dueto thefact thatincreasinghe carryingcapacitymeanghatthe "safe
state" that K representss further away from the initial populationsize and the
population is, therefore, more likely to reach the lower threshold.

Discussion

Examinationof the logistic modelwith randomgrowth rate demonstrateshat it is
possible to get exact results for the models persistencetime distribution by
transformationto a simpler stochasticprocessfor which results are available.
Unfortunately the methodrelies on assuminga Stratanovichinterpretationof the

model'sstochastiadifferential equation,thoughtthe simulationscarried out suggest
that persistence time under an Ito interpretation is broadly similar.
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However,many aspectof the persistencdime distribution consideredherecanbe
attributedto the ratherpeculiarsituationcausedy the built in absorbingstateat the
carrying capacity, K. This effectively guaranteegersistenceto any realisation
attaininga populationsize nearK, dueto the fact that variationin the growth rate
decreasewith populationsize. This featurewould seemto havemoreto do with the
way in which environmentalvariance has been incorporatedin the model than
biological reality. It would, therefore,be ratherimprudentto attachany biological
significanceto the persistencdime resultsobtainedhere. The issueof whetherthe
Ito or Stratanovickcalculusis appropriatds ratherlessimportantthanrecognitionof
thefactthatthis simpleextensiorof the deterministidogistic modelsheddittle light
on the issue of persistence in regulated populations.

L ogistic model with random carrying capacity, K

The logistic model with randomr consideredabovewas applicable,at best,to a
populationgrowing from a level well below the carrying capacity. Becausethe
variationin r was density dependenthe absurdsituationwas producedwhere any
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Figure5.7. Mean(O ) andmodal(--) persistencéime asa functionof K. T =0.5,0%>=0.5,N, =

150,N, = 100.
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populationgrowing to nearthe level of the carrying capacitypersistedndefinitely.

Here the other possiblestochasticextensionof the simple logistic is considered,
namely where the carrying capacityis affectedby environmentalvariation. This

situationis likely to be of greaterinterestin a managementontextthanthe logistic

modelwith randomr, because¢he censusdataavailablefor populationsoften shows
an averagegrowth rate aroundzero, but are insufficient to distinguishwhetherthe

population is unregulatedwith a low growth rate, or fluctuating around some
"equilibrium” size. It is thereforeof interestto understandhe differencesbetween
presistencen a model with varying carrying capacity,and persistencan a linear

model with a low growth rate.

Fluctuationsn the carryingcapacitymustbe introducedinto the logistic model[5.1]
through a function linear in K (Roughgardenl979, p.379). Following Goel &
Richter-Dyn (1974) this is done by definiM{t), where
1
M(t) =—— 5.32
015 [5.32
Thenfluctuationsareintroducedin M suchthat M(t) = M +o,,F(t). Substitutingin
the original deterministiclogistic model [5.1] leadsto the stochasticdifferential
equation
dN

E:rN—rNZ[M +o,F(1)] [5.33

In order to investigatethe distribution of population size, Goel & Richter-Dyn
introduce the transformation
(1/N-M)

z=— [5.34]
oul

The transformed variable, has the stochastic differential equation

% = -rz+F(t) [5.35]

Thisis the SDEfor an Ornstein-Uhlenbeckrocess.Goel & RichterDyn (1974)and
Levins (1969) showthat asymptotically,ast — <o, the reciprocalof populationsize,
1/N, is normally distributed with mead and variance

1

2051

[5.36]

Realisationsf the model[5.33] (Fig. 5.8) againshowa certainamountof similarity
betweenthe Ito and Stratanovichinterpretations. However differencesdo exist,
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dicussedoy Turelli (1977)andRoughgarderi1979). The infintesimalmeansor the

associated diffusion processes are
v(x) =rN -rMN? lto interpretation

- [5.37]
v(x)=rN-rMN? +¢ ’r?’N*® Stratanovich interpretation

The extraterm underthe Stratanovichinterpretationmeansthat, despitethe density
dependentregulation, explosionto infinite populationsizes can take place. The
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Figure 58. Realisationsof the logistic with random variation in the carrying capacity.
Stratanovichinterpretationobtainedby Euler integrationof [5.40], Ito interpretationusing [5.39].
M = 0.0002,6,, = 0.00009N,, = 5000. (ay = 0.01; (b) = 0.05; (c)r = 0.25.
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modelitself is alsonot without problems. As the rangeof the randomvariableis not
restrictednegativecarryingcapacitiesnay alsoariseon occasionsin which casethe
model becomesan undamped quadratic growth model (Turelli 1977). The
persistencéime resultsthatfollow arethereforeonly likely to be of interestwhenthe
carrying capacity, and its variance, are not too large.

Persistence time

As the transformedvariable, z, is describedby an Ornstein-Uhlenbeckprocess,
resultsfor the persistencdime are againavailablein chapter2. In particular,the
meanpersistencdime of a populationinitially of size N, abovea lower threshold
size,N,, is given by

E(TIN,N,) = [%(W[%(Ni - mﬂ —w[(f—)r(ﬁl - VJD

wherey(x) andy(x) are defined in [2.51].

[5.39]

Again, numerical simulationscan be usedto check the extentto which the Ito
interpretationof the stochasticdifferential equation[5.33] differs from the mean
persistencgime basedon a Stratanovichinterpretation. Realisationsof the model
[5.33] using an Ito interpretationof the Wiener incrementare obtainedby Euler
integration of

C;—':'=rN—rN2M—rNZGMZ(t)ﬁ [5.39]
while Stratanovich realisations are obtained by Euler integration of
%—T:rN—erm +0 r’N°®-rN%,, Z(t)/dt [5.40]
Table5.1 compares meapersistenceéimesfor the logistic with a randomlyvarying
carrying capacity[5.33] given by [5.38] with numerical estimatesusing both the
Stratanovich and Ito interpretations 6f33]. The meanpersistencéime obtainedby
thetransformatiormethodis closeto the numericalestimate®btainedunderbothIto
andStratanovichnterpretations.However,giventhat[5.38] is anexactresultfor the
Stratanovich interpretation, it is noticeable that the correspondingnumerical
estimategroducea slightly longer meanpersistencéime. The explanationfor this
discrepancys associateavith the problemsof numericalsimulation,in particularthe
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Table 5.1. Meanpersistencgéimesgiven by [5.38] comparedwith persistencdimesestimatedunder
Ito (Euler integrationof [5.39]) and Stratanovich(Euler integrationof [5.40]) interpretationsof the

logistic with randomly varying carrying capacity.33].

Expected persistence time

Exact result Numerical estimates

r v/ oy, N, N, [5.38 Ito Stratanovich
(@ 05 0.01 0.002 100 90 5.0186 5.0531 6.6532
() 05 0.01 0.002 100 85 14.055 13.108 17.252
(c) 05 0.010 0.002 100 80 54.028 45.676 64.066
(d 0.9 0.01 0.002 100 85 3.8469 3.6983 4.9285
() 0.5 0.01 0.005 100 85 2.4705 1.9628 3.1210

useof afixed time stepproducinga discreteapproximationto the continuousmodel.
Theseproblemsare discussedurther in the next section(wherelocal linearisation
methodsare usedin the estimationof persistencdime in a discretetime logistic
model). For the presentit should be noted that the main difference betweenthe
Stratanovichandlto interpretationss thatthe meanpersistencéime is generallyless
underthe Ito interpretation,a fact that resultsfrom the diffusion processundera
Stratanovichinterpretationhaving a larger infintesimal meanat smaller population
sizes (Turelli 1977).

Using the result of Nobile, Ricciardi & Sacerdotg1985) (seechapter2 [2.48]) it
shouldbe possible for largetimes,to approximatehe probability densityfunction of
the persistence time distribution as

| ot
g(t|N0,Na)—aWex;{ aTIO—NFJ [5.41]

where E(T|0, Na) is given by [5.38] above. This hasbeendonefor severalof the

numericalpersistenceaime distributionsthat were estimatedn orderto provide the
meanpersistenceéime estimatef Table5.1. The resultsareshownin Fig. 5.9 and
demonstratéhat, for theseexamples[5.41] providesan usefulapproximationto the
distributionof persistenceéimesfor mostof the distribution,with the exceptionof t
small.
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Figure 5.9. Numericalestimatef the persistencdime distribution of the logistic with randomK
underboth Ito and Stratanovichinterpretationgobtainedby Euler integrationof [5.39] and[5.40]
respectively) with lines showinttpe approximatedlistributiongivenby [5.41]. Parametergivenin
Table 5.1 (a to c).

Features of the persistence time distribution

Figs.5.10,5.11 and5.12 investigatethe effect on the expectedpersistencdime of
changesin one of the parametersof the model. Fig. 5.10 demonstrateshat an
increasedpopulationgrowth rate, r, actually leadsto a rapidly declining expected
persistencdime in the logistic with randomcarrying capacity. This is becausea
highergrowthrateleadsto greatervariancein populationsize[5.36] (Fig. 5.8). This
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Figure5.10. Meanpersistencéime for thelogistic with randomlyvarying carryingcapacityasr is

increased.M = 0.002,5,, = 0.00009N,, = 5000,N,, = 3500.

canbe attributedto the highergrowth rate makingthe populationsize morereactive
to changesin the carrying capacity. Goel & Richter-Dyn (1974) give the most
probable(i.e. modal) populationsizeas 1/M -o’r/M*®. Modal populationsizeis
thus reducedby an increasedgrowth rate, a fact which will also contributeto the
decreased expected persistence time.

It is clearfrom [5.36] andthe expressiorgiven abovefor modalpopulationsizethat
the variancein the carrying capacity,c/;, actsin a similar way to the population
growthrate,r. Thereforeincreasedenvironmentalariationin the carrying capacity
reducesthe expectedpersistencdime of the population. This is illustratedin Fig
5.11.

Fig. 5.12demonstratethe differencein expectedoersistenceéime for differentlower
thresholdvalues,given a constantgrowth rate and constantcarrying capacitymean
and variance. For lower thresholds famgarto the meancarryingcapacityexpected
persistenceimes are, of course,short. As lower thresholdsare consideredthe
expected persistence time increases rapidly .
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Figure 5.12. Mean persistencaime for the logistic with randomlyvarying carrying capacityasthe
lower threshold is increased.= 0.5,M = 0.002,0;, = 0.00009N, = 5000.
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Discussion

The model consideredhere, with a randomly fluctuating carrying capacity, is of

rather more interestthan the previous model with fluctuationsintroducedinto r.

However, as mentionedearlier, this model is not without problemsresulting both

from the enforcedStratanovichinterpretationand the easy,but rathernon-rigorous,
methodof producinga stochastidogistic by simply addingnoiseto a parameteiof

the deterministidogistic model. Forinstanceasfound numericallyin Table5.1,an

Ito interpretationof the SDE [5.33] producesa shorterexpectedpersistencdime.

Despitethis, the general,qualitative, featuresof the persistencdime distribution
investigatechereprobablyrepresenthe featuresthat would arisein a wide rangeof

density dependenmodelswhere the populationsize fluctuatesaroundsomemean
value or "equilibrium" size. It is reasonablyintuitive that in such situationsan

exponentialdistribution persistencef persistencdimesshouldarise. This reflects
the fact that particularly poor sequence®f environmentalconditions,causingthe

populationto leavethe 'normal' rangeof sizesand reacha lower threshold,should
arise more or lessrandomlyin time. In addition, the rapid increasein expected
persistencéime assmallerthresholdievelsare considereds consistenivith the fact

thatthe probability thata regulatedoopulationhasanexcursionto alow level should
decreaserapidly as the level consideredbecomesfurther removed from the
populationsnormal range,as given, for instance,by the standarddeviation of the

population distribution.

While an exponentialpersistencdime distribution seemslikely in most situations
where there is some mean or"equilibrium” population size around which the
populationfluctuatesin a moreor lessboundedmanner,it mustbe emphasisedhat
such a situationis not necessarilyan inevitable outcomeof a non-linear (density
dependentjnodel. Thereare,of course manyinstancesvhere(deterministic)non-

linearmodelshavecyclical or chaoticdynamicsratherthana point equilibrium, asis

the casewith the deterministiclogistic model. Introducingstochasticityinto models
otherthanthosewherethe deterministiccasehasa point equilibrium may produce
ratherdifferent persistenceime resultsthanthosepresentedere. If, for instancea

populationexhibits fluctuationsin size largely boundedarounda cyclically varying

mean,the persistencéime distributionis unlikely to be unimodal. Nisbet& Gurney
(1982, p.228khowthe steppedshapeof the curve of probability that extinctionhas
occured, against time, for one such cyclical model.
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Ginzburg,Ferson& Akcakaya(1990)carriedout a simulationstudy of the effect of

densitydependencen persistence.Using a singlefunctionalform, the Ricker stock
recruitmentcurve, the found that weak to moderatedensity dependenceenerally
extendedersistencéime but strongdensitydependencehortenegersistencéimes,
relative to the density independentcase. The reasonfor this is that the weaker
densitydependenc@roducespoint equilibriain the deterministiccase,but stronger
density dependenceproducescyclical behaviour. The additional fluctuations in

populationsize dueto environmentaktochasticitymeansthat modelswith a cyclic

deterministic equilibrium may have a greater probability of reaching some low

thresholdsize than those modelswhere populationgrowth rate is independenbf

population size.

It was suggestegreviouslythat in appliedsituationsthe situation may often arise
where a populationseemsto be fluctuating aroundsomelevel but where, due to
limitations on the dataavailable,it is not possibleto say whetherthe populationis
regulatedor whetherit just hasa very low growth rate. The dataavailablefor the
acornwoodpeckermopulationconsideredat the end of chapter4 in fact provided
fairly clear evidencethat the population was regulatedin a density dependent
manner. The linear model with an upperbarrier suggestedhat in the absenceof
immigration or density dependent reproduction or survivahthstlikely persistence
time of the populationwould be quite short. Stacey& Taper(1992) suggestthat
much of the variation in population size in the woodpeckerpopulation can be
attributed to the annual variation in the production of acorns,the populations
overwinterfood supply. Stacey(1979)describedchow birds may be forcedto leave
the study canyon by a small acorn crop. Safthictuatingresourcdevelis of course
an exampleof a varying carrying capacityso it is of interestto considerthe datain
the light of the model presentechereand comparethe persistencdime distributions
obtainedwith thosesuggestedy the linear model applied previously. It mustbe
emphasisethoweverthat the continuoustime modelconsideredhereis far from the
most appropriatemodel for the acorn woodpeckerpopulation. The woodpeckers
reproduceseasonallyin the springof eachyear)andreproductionis thustemporally
distinct from the main impactsof the fluctuating resourcelevels. In addition the
parameter®f the logistic modelwith a fluctuating carrying capacityare not readily
equatedvith the demographigparametersneasuredy Stacey& Taper. Proceeding
with thesecaveatsn mind the parameter®f [5.33] may be crudelyfitted to the data
of Table 4.1 yielding estimates of 1.0023,M =0.024,c/, = 0.0001. Realisations
of the model with these parameters are shown in Fig. 5.13.
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Figure 5.13. (a, b) Realisationf the logistic with randomlyvarying carrying capacity[5.33] with

parametergstimatedrom Stacey& Taper's(1992)acornwoodpecke(Table4.1)asr = 1.0023,M =
0.024,6,\2,I = 0.0001.(a) Stratanovichinterpretation(from [5.40]), (b) Ito interpretation(from [5.39]).

In both casesan integrationtime stepof 0.01 was used,but the populationsizeis only plotted for
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yearlyintervals. The actualpopulationsizerecordedby Stacey& Taperin the springof eachyearis

shown in (c).

Despite the problems noted above the model, with these parameters produces
realisationswhich are similar in appearancéo the observedseriesof population
sizes. In Fig 5.14 the expected persistence fiamie logistic with varying carrying
capacity (with the parameterditted to Stacey& Taper's(1992) data)is compared
with the expectedoersistenceime for the linear modelwith a hardupperlimit of 52

individuals,and parameter@ncluding the effect of immigration,describedat the end
of chapter4. It is obviousfrom this figure that the density dependenmodel has
much greatermeanpersistencdimes for lower thresholdlevels. For instance the
logistic considerecherehasan expectedoersistenceéime of 1.34E+24yearsabovea
thresholdof 10 individuals, whereasthe linear model with an upper limit of 52

individuals and parametersncorporatingthe effect of immigration hasan expected
persistencdime abovethe samethresholdlevel of only about11 years. Density
dependentegulationthus hasa major effectin prolongingpersistenceimesin this

situation.

60

In[E(T)]

Figure 5.14. Thenaturallogarithmof expectedersistencéime for the logistic with varying carrying
capacity( r = 1.0023,M = 0.024,0',3 = 0.0001,solid line), andthe linear modelwith an upperlimit

(/T =0.955,Var(4) = 0.109,N, = 52, dashedine) for a rangeof lower thresholdvalues. Theinitial

population size is 52 for both models.
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Applying local linearisation in the estimation of persistence time

While the previoussectionshavedemonstratedhat exactsolutionsto someaspects
of the persistence time problem are possibleéotainnon-linearpopulationmodels,
the methodsused are not really very generaland unfortunately are constrained
somewhatby the problem of different interpretationsof stochasticdifferential
equations. A techniquethat has enjoyedgreatsuccessn determiningthe stability
propertiesof deterministic models (Maynard-Smith 1974, May 1974, Nisbet &

Gurney 1982), and estimationof momentsin stochasticmodels(Nisbet & Gurney
1982, ch7, Nisbet, Gurney & Pettiphar 1977), is local linearisation.

Severalauthors(McNeil & Schach1973, Chesson1982, Nisbet & Gurney 1982,
Turelli 1986) have pointed out that many continuoustime stochasticpopulation
modelswhich incorporatedensity dependencaive rise to an Ornstein-Uhlenbeck
(OU) processwhen linearisedaround the mean. Similarly, many discretetime
models give rise to an autoregressiveprocess[Renshaw (1987) discussesthe
connectionbetweenthe OU processand autoregressiv@rocesses].As first passage
time resultsfor the OU processare available(seechapter?) it is worth considering
whether this is a useful route for investigation.

Thefirst questionthatmustbe considereds whetherpersistencéime in the full non-
linear model is adequatelyreflected by that of the locally linear approximation.
Locally linear models specifically consider infinitely small deviations from the
populationmean(or from the equilibriumwhenthe stability of a deterministicnodel
is underinvestigation). While this hasprovedto be a very robusttechniquein some
instances,there is good reasonto supposethat its use in the determinationof

persistencéimesmay be morelimited. Giventhatthelower thresholdfor which the

persistenceime distributionis soughtis generallysomewhatsmallerthat the mean
populationsize,andprobablyoutwith the "normal” rangeof populationsize,thenthe

eventswhich lead to the arrival of a populationtrajectory at the lower threshold
involve deviationsfrom the mean ofsome magnitude,and may thereforenot be

reflected adequately in the locally linear approximation.

A logistic model and a linear approximation

A simple way to discoverwhetherthe persistencdime distribution of the locally
linear modelis an adequateepresentatiomf that of the full modelis, of course,to
simply comparethetwo. Herethe numericallyderivedpassagéime distributionsfor
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a full, non linear, stochasticmodel andits linearisationare compared. The model
considereds a discretetime model, as this is less computationallyintensive. Its
linearisation is therefore an autoregressive, rdtteran OU, process.Nevertheless,
in the first instanceit allows the testingof the conceptof whethera locally linear
model can adequatelyreproducethe persistencdime distribution of the non-linear
modelit approximates. The modelinvestigatedhereis the discretetime stochastic
logistic of Roughgarden (1975).

Roughgarderonsiderghe discretelogistic with constanintrinsic rateof increaser,
and random carrying capacity,

N,., =[r +1—KL Nt]Nt [5.42]

t

Introducingn, andk, asthe deviationfrom the deterministicequilibrium population
size (N) and meancarrying capacity(K) respectively(i.e. k =K, -K, n =N, —N)
and using the identity [1— K /(K + K)] :[k[ /(K +k[)], gives an expressiorfor the

deviation from the deterministic equilibrium in the full model

e :[1_{Kiktﬂr" ”(KEKJK‘ ”(E:Ur‘t 1543

For n, andk, small, K /(K +k ) =1, andthe final termin [5.43] will be negligible.

Thus the full non linear modeb.A43] should be approximated by the linear model
N =(1=r)n +rk [5.44]

Following Roughgardenattentionis restrictedhereto caseswvhere0 <r < 2. This
corresponds to stability in the deterministic model (i.e. wKgreK).

Local approximation of the moments of the population distribution

Roughgarden investigates in particular the case whesa first ordelautoregressive
process:

k =2k +Z, (1< <)) [5.45]

HereZ, is anindependenandidentically distributedrandomvariablewith zeromean
and variances 2. Then the variance in the carrying capaaity, is given by

2
2_ Oy

o-k _1_/12

[5.46]

and the variance in population size in the linear model is then given by

115



- r 1+(1-r)A o2 (5.47)

° 2-r1-(1-r)A

Roughgarden(1975) considers only the case where the equlibrium of the
deterministicmodelis usedto estimatethe meanpopulationsize in the stochastic
model. Thus, the meandeviation,n, is estimatedto be zero. In caseswherethe
variationin the carryingcapacityis seriallyindependenfi.e. A in [5.45] is zero)this

"first approximation”can also be improved using locally linear approximations
(Bartlett1957,Nisbet& Gurney1982,p.189,Ellner 1985). Putting AN,,, = N,,, — N,

andK, =K +k, [5.42] can be written

— _ Nt
AN,,, =N, (1 W] [5.48]

Expanding]/(1+ K/K) in a Taylor series allow$J48] to be written as

2
AN,,, =N, (1—%) + r(%) k. —(other termy [5.49]
SubstitutingN, = N +n, leads to
— 2
~ rn? rk(N+n,)
Al = -0 ——= +? [5.50]
Taking expectationsin [5.50], and noting that E(An) =0, E(f(N)k) =0 (as only

caseswhereA is zeroarebeing considerechere),andc > = E(n ) E(n)’ leadsto a

guadratic expression for the mean deviation:

E(n) = %(af +E(n)?) [5.51]

whereo? can beprovidedby usingthe linearestimatg5.47] above. The appropriate
root of [5.51] is
(-1+1- 202 /KK

E(n) = ; [5.57]

Roughgardemuseda singlerun of 1000 randomnumbersto comparethe non-linear
andfull models. Here,prior to investigatingthe persistencéime distribution,a more
extensivesimulationinvestigationhasbeencarriedout to testthe useof the linear
approximationsin estimatingthe momentsof the full model,asr, A, and o} are
varied. Fig. 5.15demonstratethatthe meanvalueof n, in thefull modelis generally
lessthanzero:when A equalszerothe approximatemeandeviationgiven by [5.52]

improvesuponthe assumptiorthatthe meanpopulationsizein the stochastianodel
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is equal to the deterministicequlibrium. The difference betweenthe numerical
estimateof N and the prediction of the linear model increasesas the variancein
carrying capacity increases, and as increased.
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Figure 5.15. Comparisonof the meandeviationfrom the deterministicequilibrium estimatecby
simulationof the full model[5.43] (points)with the approximatior[5.52] (dashedine). Eachpoint
is the result of 5000 simulations,eachof 1000 time steps. Error bars show 95% confidence
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Lower valuesof A alsoreducethe mean ofn, in the full model. The fact that the
mean ofn, is lower in the full modelthan either of the approximationgo the mean
from thelinearmodelis likely to haveconsequence®r thereliability of estimatef
the persistencdime distribution basedon the linear model. The reductionin the
meandeviation causedby the non-linearitiesgives the full model a "push” in the
direction of the lower threshold that the linear model does not share.

The variancein n, for the full modelis comparedwith that given by [5.47] for the
linearmodelin Fig. 5.16. As the variancein carryingcapacityis increasedhe linear
modelhasa tendencyto underestimatéhe varianceof the full model. Howeverfor
higher values of, thelinearmodeloverestimatethe full modelvariancein n,. For A
in the range—1 to 1 the variancein n, of the full modelis humped(Fig 5.16c)
comparedwith the constantvariancepredictedby the linear model. Howeverthe

deviationsin Var(n,) for thefull modelat differentvaluesof A aresmallcomparedo
the deviationsat highervaluesof r or ¢?. It is thussafeto concludethatfor smaller

valuesof r and ¢ the variancegiven by [5.47] for the linear model is a good

approximation of the variance of the full non linear model.
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Persistence time distributions

Figs.5.17to 5.19 comparethe persistencdime distributionsof Roughgarden'sull
[5.43] andlinear[5.44] modelsfor varioussetsof parametersanddifferentvaluesof
the lower threshold. To incorporatethe linear estimateof the meandeviationfrom
the deterministicequilibriumin Fig. 5.18 (as A is zeroin this case)a secondlinear
model is used :

Ny = (1=1)(n =) +rk +0 [5.53

wheren is given by [5.52]. For shortertimes, the probability of reachingthe lower
threshold at a time t, g(t), is consistentlysmaller for both linear models (the
persistencetime distributions of model [5.53] are slightly nearerthe full model
persistencdime distributionsas it takes someaccountof the fact that the mean
population size in the stochasticmodel is generally less than the deterministic
equlibrium). At longertimesthe distributionstendto crossover giving a higherg(t)

for the linear models. However, while thaluesof the persistencéime distributions
for the full andlinear modelsaredifferent, the shapeof the distributionsare broadly
similar. In particular,the positionof the modeis aboutthe sameand,wherethe full

model tendsto show a bimodal distribution (e.g. Fig. 5.17b), this featureis also
shownby the linear model persistenceime distributions. The differencesbetween
the linear and full model persistencdime distributionsin Figs. 5.17 to 5.19 are
consistentwith the relationshipsof Figs 5.15& 5.16. The linear and full model
distributionsin Fig. 5.17 are closerthanthosein Fig. 5.18 - this is in line with a
slightly decreasednean(,) andslightly increasedvar(n) causedy reducingA from

0.5to 0. The rather poor match betwésafull andlinear passagéime distributions
in Fig. 5.19canlikewise be attributedto the fact thatincreasingo, to 150 meanghat
both linear models significantly overestimatethe mean, and underestimatethe
variance, of the full modelis.

Various statisticscan be calculatedfor the numerically estimatedpersistenceime
distributions. If T is the lasttime for which the distributionwas estimatedthenthe
total proportion of trials reaching the barrier by timé&(T), is given by

G(T)= Y gt (554

t=1

and the mean persistence time, conditional on reaching the threshold, by

E.(D)=Y [ta0)/ &(T)] (555
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Table 5.2 showsthesestatistics,andthe mode,for the distributionsof Figs.5.17 to
5.19. Consideringfirst the probability of reachingthe thresholdby time T, it is
apparenthatasthe lower barrieris movedfurtherfrom the meanpopulationsizethe
differencebetweenG(T) for the full and the linear modelsincreases. G(T) is, in
generallargerfor the full model,andfor lower barrierscanbe severaltimeslarger,
than the linear model&(T). Thisisin line with the observatiorthatg(t) is generally
lower for the linear modelthanthe full modelfor thetimesfor which the persistence
time distributionwas calculated. For thosecasesvherea reasonablewumberof the
trials in the simulation reachedthe threshold the mode of the linear and full
distributionsaresimilar. In the casesvherethe low thresholdresultedin few trials
beingabsorbedi.e. (c) in Figs.5.17to 5.19)the modeis highly variable. Thisis due
to the fact that the distributionsare very noisy andthe position of the modecannot
really be measuredvith any greataccuracy. Comparingthe conditionalmean ofthe
linear andfull, non linear, persistenceime distributionsgives someencouragement
to theidea ofusingthe linear modelto estimatethe persistenceéime distribution. In
generalthe two models give similar conditional means,with the linear model
consistently giving a slightly longer mean.

Table 5.2. Statisticsof the persistencalistributionsplotted in Figs 5.17to 5.19. K = 1000in all
cases. To remove somethé noisein the distributionsandthusfacilitate estimationof the positionof
the modein the numericallyestimatedistributions,the distributionswere smoothedusingsymmetric
nearestneighbour linear least squaressmoothingwith a span of 1% of the data range before
calculating the statisticsgiven. The conditional mean persistencewas also estimatedfrom the

smoothed distribution.

Parameters mode E.(T G(T)

r o A ng ful linear full linear full  linear

Fig.5.17a 0.5 50 0.5 -80 9 10 915839 108.608 0.991 0.985
Fig.5.17b 0.5 50 0.5 -100 18 18 188.91 205.198 0.799 0.696
Fig. 5.17c 0.5 50 0.5 -120 17 14  237.752 243.102 0.305 0.209
Fig.5.18a 0.5 50 0 -60 7 7 45,6402 67.2682 0.994 0.995
Fig. 5.18b 0.5 50 0 -80 9 19 155.55 200.996 0.921 0.716
Fig.5.18c 0.5 50 0 -120 106 69 249.17 252.914 0.051 0.007
Fig.5.19a 0.5 150 0.5 -300 10 15 151461 321.377 0.996 0.907
Fig.5.19b 0.5 150 0.5 -400 19 190 413.366 492.562 0.664 0.126
Fig. 5.19c 0.5 150 0.5 -500 111 231 487.858 495.361 0.160 0.003
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Approximating thelinear model passage time distribution using the OU process

Theresultsof the previoussectiondemonstrat¢hatthe linear modelpersistencéime
distribution,while certainlynot reproducingthe distributionof the full model,canat
leastgive someinsightinto thefull model'sdistribution. In particularthe conditional
meanpersistenceéime of the linearmodelcanbe a reasonablestimateof thatof the
full model.

In this section,therefore,the approximationof the linear model by the Ornstein-
Uhlenbeckprocesqfor which an expressiorfor the meanfirst passagéime is given
in chapter 2) is investigated.

Renshaw(1987)discussesi discretetime analogudor the OU process.Theresultof
interest here is that, for an OU process as given by Uhlenbeck & Ornstein (1930):

mi]—LtJ =—fU +F(t) [5.56]

whereF(t) is white noise, the equivalent discrete scheme is
U =U_@1-9) +e, [5.57]

where ¢ = f/m, and ¢,, = (1/m)F,. For independentnd identically distributed e,
[5.57] is, of course, a first order autoregressive process.

WhenA = 0 in [5.45 (i.e. the fluctuations in the carrying capacity are generatethby
independentjdentically distributed processrather than an autoregressiveprocess)
Roughgarden's linear modé&l44] also yields an autoregressive process of order one:

N =(1-1)n, +10,Z, (5.5

Using Renshaw's'esult above, Cerbone,Ricciardi & Sacerdote'sormula for the
mean first passage time of the OU process, as given in [2.50], can be applied:

-2 62 o a2

r 2r
L 2\"3 2\~
T _ (ro,) o (ro,)
()] o ) |2 ] 5

wheren, represents the threshold level ag{d] andy[Z] are given in [2.51].

[5 59

(S
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To testthis, Table5.3 compareghe expectedoersistencéime calculatedrom [5.59]
with that estimated from numerical distributions usiag3.

Estimating the expectedpersistencetime from simulateddistributions using egn
[5.55] requires that the complete distribution be estimated in order to obialialze
estimate of the expectation. Another approachis however possible. As the
distribution of persistencdimes being considereds believedto be asymptotically
exponentialthen the tail of the distribution should be linear when plotted semi-
logarithmically (In[g(t)] vs. t). From the equationof the line the coefficientof the
exponentialdistribution can then be recovered. This coefficient is the expected
persistencéime from a zeroinitial stateto the lower threshold. Specifically,givena
"one-parameter” exponential distribution (Johnson & Kotz 1970):

Table 5.3. Expectedpersistencdimesfor Roughgarden'inear model[5.44] from [5.59] and from
[5.55 for numericalestimatesof the passagdime distribution. In orderthat[5.55] would yield a
figure suitablefor comparisorwith [5.59] it is necessaryhat the whole passagdime distribution be
calculated.e. the numericallyestimatedpassagdime distribution musthavemaximumtime, T, such

thatg(t) = O for allt > T. The parameters used here are chosen so this criteria can be fulfilled.

Parameters E.(T

r o, N, n, formula  simulation
05 650 O -60 43.989 67.1631

1 50 O -60 6.300 9.698
15 50 O -60 2.575 4.656
05 75 O -60 10.798 18.285
05 100 O -60 5.780 10.958
05 125 O -60 3.916 8.348
05 150 O -60 2.956 7.041
05 6560 5 -80 297.904  396.135

1 50 5 -80 16.641 19.212
15 50 5 -80 5.276 6.301
05 75 5 -80 26.108 41.367
05 100 5 -80 10.557 18.280
05 125 5 -80 6.359 12.052
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1 —t
g(t) = E T exr{ £ (T)) [5.60]

where g(t) is the asymptotic persistencedistribution and E,(T) is the expected
passage time from zero to the threshold then

1 t
In[g(t)]= ln{EO(T)} E.(T) [5.61]

By comparisorwith the equationof a straightline, y = ax+b, E,(T) canbe estimated
from either the intercept of the line In[g(t)] vs. t, E,(T)=-1/a, or its slope,
E,(T)=1/expb). Fig 5.20 showsthat plotting In[g(t)] vs. t for Roughgarden's
linear model does indeed yield a linear relationship. Two lines have been fitied to
points of Fig 5.20, one using normalleastsquaresegressionthe otherusing more
robust(Rousseeuv& Leroy 1987)leastmediansquaresegression.Clearlythe least
mediansquaredine is going to give a betterindication of the slope,and this has
thereforebeenusedwheneverEy(T) hasbeenestimatedrom the simulatedpassage

In[g(t)]

250

time

Figure 5.20. Plotof In[g(t)] vs.t for Roughgarden'Bnearmodel[5.44] withr = 0.5,0, = 75,n, =

0, n, = -60. The lines are fitted by least squaresregression(LS) and least median squares

regression (LMS).
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time distributions.

Table5.4 compareghe valuesof Ey(T) recoveredoy fitting a straightline to In[g(t)]

vs.t, with thevaluegivenby [5.55] for the samesimulateddistributionsasTable5.2,
and the discreteOU approximation[5.59]. The three estimatesof E(T) from the
simulateddistributionsgenerallyagreeto within £5, andare suchthatthe estimation
from the intercept of the straigle is less thathe estimatefrom the slope,whichin

turn is lessthe estimatefrom eqn.[5.59]. All three estimateshoweversharethe
feature,also apparentin Table 5.3, that the discreteOU approximationgenerally

Table 5.4. The expectedoersistencdrom a zeroinitial stateto a lower thresholdfor Roughgarden's
linear model. OU approx. gives the approximatepersistenceime from [5.59]. The remaining
columnsgive estimatedderivedfrom the simulateddistributionsusedin Table5.2. 'estimatetefersto
the estimatefrom [5.55 (and is thereforenot available for simulateddistributionswhere not all
replicatesreachedhe lower thresholdby the last time considered);intercept'and 'slope'refer to the
estimates derived from fitting a straight line taglft]] vs.t. Leastmediansquaresegressiorwasused
and, beforethe regressiorwas carried out, valuesfalling to the left of the mode of the distribution
wereremovedsoregressiorwasonly carriedout on the linear portion of the data(i.e. the exponential

tail of the distributions).

Parameters E,(T
r o, n, OU approx. estimate intercept slope
0.5 50 -60 43.989 67.1631 62.90 65.37

1 50 -60 6.300 9.698 7.18 8.33
1.5 50 -60 2.575 4.656 1.95 3.14
0.5 75 -60 10.798 18.285 15.33 16.84
0.5 100 -60 5.780 10.958 8.64 9.67
05 125 -60 3.916 8.348 6.04 7.08
0.5 150 -60 2.956 7.041 4.87 5.86
0.5 50 -80 298.37 393.66 396.05

1 50 -80 16.81 16.52 17.79
1.5 50 -80 5.37 3.12 4.61
0.5 75 -80 26.43 37.29 39.24
0.5 100 -80 10.80 14.88 16.54
0.5 125 -80 6.55 9.57 10.70
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underestimatethe actualexpectedpersistence.In a few cases(notably thosewith
E,(T) small) the discreteOU approximationyields a value of E,(T) which actually
falls within the estimatedrom the simulatedpassagdime distribution, but overall
the result is rather disappointing.

The explanationfor this appeardo associatedvith using resultsfor the continuous
time OU procesdor adiscretetime model. In chapter3 it wasnotedthatthe Wiener
procesdid notgive an exactfit to persistencdime distributionsfor a discretetime
model,in particularit tendedto producea slight overestimateof the probability of
reachngthe thresholdin the regionof the mode. In that case however,the Wiener
processstill gave reliable estimatesfor the moments of the persistencetime
distribution. The samecannotbe said for the OU processand the discretetime
modelconsideredere. Fig. 5.21demonstratethat simulating[5.58] with time steps
lessthan one producesa steeperrelationshipbetweenthe linear portion of In[g(t)]
andtime. While this steepeningppeargelatively slight, it is apparentfrom [5.61]

In[g(V)]

10
Q7
O
(e]

-11

0 100 200 300 400 500 600 700
time

Figure5.21. Thelog probability of reachingthe thresholdfor thelinearmodel[5.58]. n,=0,n_ =
-60,r = 0.5, 0, = 50. Line c is fitted to the points (by least mediansquaresregression)or a

simulation withAt = 1. Lines a and b are fitted to simulations wth= 0.01 and 0.1 respectively.
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thata smallertime stepresultsin a smallerestimateof meanpersistencéime. Thus,
as At is reducedthe meanfirst passagdime for the OU processprovidesa better
estimate of persistence time for "discrete OU" models.

Exponential approximation of the persistence time distribution

Sofar in this sectionNobile, Ricciardi & Sacerdote'$1985)resultshave beemsed
exclusivelyto estimatethe meanpersistencéime for thelinear model. As discussed
in chapter2, and appliedabove,it is possibleto approximatethe persistencdime

distribution simply as an exponentialdistribution. This is donein Fig 5.22, which

usesthe same simulated persistencetime distributions as Fig 5.18. Two one-

parameteexponentiakurveshave beeraddedto eachplot, onewith the coefficient

estimatedby fitting the tail of the linear model persistencetime distribution as

describedabove,the otherby usingthe meanOU persistencdime from zeroto the

thresholdasthe coefficient. The simpleexponentiadistribution,with the coefficient

obtainedby leastmeansquaregegressioron the distributiontail, givesa very good

approximationof the persistenceime distribution for the linear model with the

exception of very short times.

In Fig. 5.23In[g(t)] vs.t for Roughgarden'tull modelis plotted. The distributions
clearly havea lineartail demonstratinghatthe full non-linearmodelgivesriseto an
asymptoticallyexponentialpersistenceime distribution. Whatis yet to be obtained
is, of courseananalyticalapproximatiorfor the meanpersistencéime that performs
better than the linear approximation considered above.
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Figure 5.22. Comparisorof numericalestimate®f the persistencelistributionsfor Roughgarden's
full (+) and linear () models;y = 0.5,K = 1000,6, = 50,4 = 0.5. n, = 0, k, = 20. Lower barriersat
(a) -80, (b) —100, (c) —120. Exponentialcurvesaddedusing coefficientestimatedrom (A) slope
of aleastmediansquaregegressiorfor the linear portion of In[g(t)] vs. t of the linear model, (B)

mean persistence from zero to threshold as given by OU approxin@aéh [
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Figure5.23. In[g(t)] vs.t for Roughgarden's full model= 0.5,K = 1000,6, = 50,A = 0.5. n, = 0,
k,=20. Lower barriers at (a0, (b)-100, (c)-120.
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Discussion

In this sectiontwo thingshave beernvestigated.Firstly, a numericalcomparisorof
persistencdéimesin a non-linearpopulationmodelanda simpler model obtainedby
local linearisationof the full model,wascarriedout. Secondlythe approximationof
the persistenceime distribution of locally linear model (a first orderautoregressive
process) by the first passage time distribution of the OU process was considered.

It is apparent,from the results obtained above, that there can be quite large
differencesbetweenthe persistencdime distributionsof the full non-linearmodel,
andits linear counterpart. In generalthe full model showsa greaterprobability of
reachinga low thresholdat shortor intermediatdimes,thanthe linearmodel. These
differencesare explained by recourseto the differencesbetweenthe mean and
variancesof the full model[5.43] andthe linear model[5.44] investigatednitially.
In particularthe meanpopulationsize of the non-linearmodelis alwayssmallerthan
that of the linear model. In addition, as the variancein the carrying capacityis
increasedthe variancein populationsizein the non-linearmodelis underestimated
by the variance in the linear model.

Two featureshowever,suggesthat locally linear approximationsmay be of some
usein the estimationof persistencéime in non-linearmodels. Firstly, the shapef
the persistenceime distributions of the linear and non-linear modelstend to be
similar, generallyshowinga commonmode(though,of course no expressiorfor the
modeof the linear modelis actually availableat present). The similarity in shape
leads, however,to the fact that the conditional mean persistenceime in the full
model and linear model are similar. Understandablythe linear model, with its
smaller probability ofeachingthethresholdat smalltimes,hasthelargerconditional
mean. For varioussetsof parameterghe linear and non-linearmodel conditional
meanpersistencéime havea similar, thoughnotidentical,rank order. This suggests
thata linearapproximationrmay be of usein giving a qualitativeidea ofthe effecton
expectedoersistencdime of changingone of the full model parameters.However,
locally linear approximations are unlikely to be of musiein comparingpersistence
times between different models.

The use of the OU process first passage time distribution to approximate the expected

persistencetime of the linear model, which took the form of a first order
autoregressiveprocess,also producedrather equivocal results. In general, the
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expectedpersistencéime suggestedby the OU processapproximationwaslessthan
that from numerical estimatesof the linear model's persistenceime distribution.
This appeargo be dueto the estimationof resultsfor a discretetime modelfrom the
continous time Olprocesswherea continoustime modelis linearisedto producean
OU procesghis difficulty shouldnot arise. The continuousOU processangive an
estimateof persistencdime correctto order of magnitudefor a discretemodel but
cannot be expected to be much more accurate.

Both of the linear modelsconsideredhere ([5.44] and[5.53]), andthe OU process
itself, sharethe feature that the state variable is normally distributed around the
mean. Nisbet& Gurney(1982,p.207-210)demonstratehat a skeweddistribution
may be more appropriate. Using locally linear approximationsto the meanand
variance they show that consideringa negative binomial, rather than a normal,
distribution improves their estimatesof extinction time. Dennis & Patil (1984)
suggesusingthe gammadistributionto approximatethe distribution of a stochastic
model where the corresponding deterministic model has a stable equilibrium.

Onefeaturesharedby persistencdéime distributionsof the full non-linearmodeland
thelocal linearisationis thatthe distributionis exponentiakt all but shorttimes. As
discussedpreviously, this is likely to be a feature of most models where the
populationsize is regulatedaroundsomemeanvalue. Featuresof the persistence
time of the continuoudime logistic consideregreviously,suchasthe rapidincrease
in meanpersistencdime asthe distancebetweenthe meanpopulationsize andthe
lower threshold is increased (Fig. 5.12), will also arise in such situations.
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Persistence time applied in assessing
management of the Islay wintering barnacle
geese

This section presentsthe work that led to my interestin persistencetime in
populationmodels,andin particularits useasa viability measuren the conservation
management of populations.

Chapter6 presentsan overviewof the distributionandbiology of the barnaclegoose.
The situation of the wintering geeseon Islay that hasled to the conflict between
agricultural and conservation interests is considered, and the available data analysed.

In chapter7 persistencdime is usedasthe primary populationviability measuren
the assessmentf controlled shootingas a managemenstrategy,with the aim of
discovering whether this method could lessen agricultural problems without
endangering the goose population.
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Chapter 6

Barnacle geese on Islay: population status
and agricultural conflicts
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The barnacle goose
World distribution

The barnaclegoose Branta leucopsis Bechsteinjs a mediumsizedgoose 58-70cm

in lengthwith a wing spanof 132-145cm(Cramp& Simmons1977). Like many
westernPalearcticgoosespecies(Madsen1991) its populationsize has increased
greatly in the secondhalf of this century. In 1960'sthe world population was

estimatedat 40,000individuals, growing to ¢.80-90,000in 1986 (Owen, Atkinson-

Willes & Salmon 1986).Owen(1990b)suggestshatthe currentworld populationof

barnacle geese stands at over 120,000 individuals.

Traditionally the world population has been separatedinto distinct three sub-
populations(Fig. 6.1) (Owen 1980), breedingin eastGreenland(c.30,000birds in

1976), Svalbard (c.7000 birds in 1976) and western Siberia (c.54,000 birds in

1976/77). However, during the 1980'sa fourth population of ¢.5000 individuals
becameestablishedin Gotland and neighbouringislands of the Swedish Baltic

(Owen 1990b). The largest(Siberianbreeding)group winters in the Netherlands
(Owen, Atkinson-Willes & Salmon 1986), but the Greenland and Svalbard
populationswinter exclusively in British Isles. The Greenlandbreeding group
winters mainly on islands off westernScotlandand Ireland, while the Svalbard
population winters on the Solway Firth. Ringing suggeststhe populationsare
basicallydiscrete,evenin winter whenthe Greenlandand Svalbardpopulationsare
separatedy lessthan 150km (Owen 1990b). A small amountof interchangedoes
occur: Owen (1990b)reportsthat 0.1% of ringed individuals have movedfrom the
Svalbardpopulationto other populations.Percival (1988) found that nine birds,

previously marked in the Svalbard population, had been incorporatedin the

Greenlandpopulationandthat three of thesehad bred successfullyduring the three
year period of his study. Only one ringed goose from the Greenlandbreeding
populationhasbeenrecordedwith the Svalbardbirds, spendingone winter on the

Solway but later moving back to the Greenlandpopulation(Owen 1990b). As a

smallerproportionof the Greenlandoreedingpopulationare ringed comparedo the

Svalbardgroup,immigrationfrom the Greenlandoreedinggroupis lesslikely to be

detected.

Thefact thatsucha large part of the world populationof barnaclegeesewinter in a

relatively small areaof the British Islesappeardo have beera major reasonfor the
speciedgnclusionin Annex 1 of the EEC directive on the conservatiorof wild birds

137



Figure6.1. The breeding, staging and wintering grounds of the tina@eworld populationsof the

barnacle goosdranta leucopsis. From information in Owen, Atkinson-Willes & Salmon (1986)

(EEC, 1979). The Annex 1 speciesareto be the subjectof conservatiormeasures
relatingto their habitat,in orderto ensuretheir "survival and reproductionin their
areaof distribution”. They are also protectedfrom hunting and sale (Haigh 1984).
Britain's compliancewith this EEC directiveis partof the Wildlife and Countryside
Act of 1981 (Haigh 1984).

General ecology

Barnaclegeeseare gregariousthroughoutthe year. They form monogamouslife
long pair bonds,but if a bird's matedies, or is separatedluring migration, it will
form a new pairing (Cramp& Simmons1977; Owen1990b). Outsidethe breeding
seasonflocks include family parties, adults without broods (mostly in pairs) and
secondyear birds, someof which are paired. Barnaclegeesemay live for up to
twenty years (Owen & Black 1989).

Breeding

Barnaclegeesarrive on their arctic breedinggroundsin late May. Theyarereadyto
breedimmediatelybut may be delayedby snow coverfor up to two weeks(Owen
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1980). Nestsare built on rocky cliffs awayfrom Arctic foxes. Cramp& Simmons
(1977) statethat a pair raisesone brood, with a normal clutch size of four to five
eggs. Eggsare laid largely from body reserves(Owen & Black 1989) and are
incubatedby the femalefor 24 to 25 days. This is followed by a fledging period of
40 to 45 days. The young stay with their parentsuntil they return to breeding
groundsin the subsequenyear. The usualageof first breedingis threeyears,but
occasionally two.

Breedingsuccessn barnaclegeeseis highly variable from yearto year. On the
wintering groundsthe three populationshave shown proportionsof first year birds
rangingfrom 7.5to 47.2% (Cramp& Simmons1977). Breedingsuccesslepends
critically on the conditionof the femaleon arrival on breedinggroundsthe greatest
lossof breedingpotentialbeingdueto afailure to nest,or to remainloyal to the nest
(Owen1990b). Lossesof goslingsduring the first weekafter hatchingare high, and
by arrival on the wintering grounds the average brood size has decreased frofn 3.5
to about2 (Owen1990b). Cabotet al. (1984)reportthat 15% of goslingsleavingthe
nestwerelost to predatorgmainly Arctic foxes)while 26% werelost in the boulder
screeat the foot of the cliffs usedfor nesting. In both the Greenlandand Svalbard
breedingpopulationsa high proportionof the geesdail to breedeachyear,suchthat
only a relatively small proportion of the adults on the wintering grounds(up to
€.15%) are part of family groups with young (Cabot & West 1983).

Wintering

Losseson autumnmigrationfrom the breedingto wintering groundsappeaitto be the
main source of year-to-yearmortality in barnaclegeese(Owen 1990b). Owen
(1990b)suggestghat shootingis the main sourceof overwintermortality aswinter
food suppliesare largely unlimited, with the only reportsof winter starvationin
barnacle geese coming from the Outer Hebrides, in severe winters.

On the wintering groundsthe geeseoostin large groups,no further than 5km from
their feeding grounds (Owen, Atkinson-Willes & Salmon 1986). While their
traditionalhabitatis machair(grasslandn shell sand)mostwintering barnaclegeese
now feed on agricultural grasslands. Black, Deerenberg& Owen (1991) studied
barnaclegeeseof the Svalbard population on their staging grounds off western
Norway. In recentyearsan increasinglylarge part of the populationhasmovedto
feeding on agricultural grasslandin preferenceto the traditional roughergrazing.
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Their observationssuggestthat conditionsare more favourableon the agricultural
land with geesefeedingat a higherrate,and spendinglesstime in total on feeding,
than on the traditional grazing siteBheyfound some(nonsignificant)evidencethat
the geese feeding on the agricultural land have higher reproductive success.

The east Greenland breeding population

The eastGreenlandoreedingbarnaclegeesdeavetheir breedinggroundsfrom mid-
Septemberstoppingfor a monthin southernlceland before arriving in the British
Islesin late October. Theyremainon the wintering groundsuntil April, stoppingfor
three weeks in north-westernvalleys of Iceland on their journey back to the
Greenland (Owen, Atkinson-Willes & Salmon 1986) (see Fig. 6.1).

Thewinteringgroundsof the eastGreenlandarnaclegeesearescatteredvidely over
thewestcoastf Scotlandandlreland,mostly onislands(Fig. 6.2). The majority of

I North & West Coasts
‘\ 5.7%

Skye & Outer Hebrides
9.0%

—_— - -

Figure 6.2. The distribution of the eastGreenlandbreedingbarnaclegoosepopulationon its

wintering grounds recorded by the March 1988 aerial surveydfraix1990).

140



the population, however,winters on Islay in the Inner Hebrides. Islay has held
around 60% of the Greenland population since the 1960's.

Counts

No attemptswere madeto censusthe wintering Greenlandbarnaclegeesebefore
1955 dueto the dispersedhatureof the wintering grounds(Boyd 1968). Numbers
prior to this daterely on a mixture of sourcesof varying reliability. Air censusesare
the only way of counting the whole Greenlandpopulation,as a large number of
islandsthat make up the wintering groundsare remote and uninhabited(Ogilvie
1983b). However,the numbersof birdson Islay aresuchthataerialcountswould be
impracticalso the Islay wintering birds havealwaysbeencountedfrom the ground.
Air censuse$iavetakenplaceat five yearintervalsin recentyearsandaregenerally
carried out in late March or early April (Fokat. 1990).

Boyd (1968) reports irregular counts of the Islay wintering portion of the east
Greenland barnacle geese, maganumberof people,goingbackto 1952. Regular
Novemberandspring (March or April) countsof the Islay wintering geesebeganin

the mid-1960's (Ogilvie 1983a). Counting has intensified in recent years with

monthly countsby NatureConservancyCouncil (how ScottishNaturalHeritage)and
Wildfowl and WetlandsTrust personnel(Easterbeest al. 1987; Bignal, Curtis &

Matthews 1988).

First winter barnaclegeeseaetainjuvenile covertsandotherjuvenile featherdCramp
& Simmons1977) enabling the proportion of young in wintering flocks to be
estimated. This hasbeendonefor the Islay wintering birds in conjunctionwith the
annualcounts. Estimatesof the proportionof youngin the Islay wintering barnacle
geesdypically involve countingat least4000birds (Ogilvie 1983b). Therearesome
problemsin the estimationof the proportionof young birds, such as the fact that
young geesetend to be concentratedat the edgesof feedingflocks (Owen 1980).
However, in their work on the Russianbreeding population of barnaclegeese
Ebbinge,vanBiezen& vanderVoet (1991)found no significantdifferencebetween
estimatesof the proportionof youngin a flock from observationsomparedo the
proportion estimated from birds caught for ringing.
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Figure 6.3. The size of the eastGreenlandbreedingbarnaclegoosepopulationcensusedn the
wintering groundsin Scotlandandlreland. Areasotherthanlslay censusedby aerial counts,lslay
and Inishkealslandswintering geesecountedfrom the ground. Datafrom Boyd (1968),Ogilvie &
Boyd (1975), Ogilvie (1983b), Faat al. (1990).

The numberof eastGreenlandbarnaclegeesewintering on the Inishkealslandshas
also beencountedregularly from the ground, and estimatesof the proportion of
young obtained (Cabot & West 1983).

Fig. 6.3 chartsthe changen size of the eastGreenlandoreedingpopulationover the
periodthatair censusesf the wintering groundshavetakenplace. It is evidentthat
the greatincreasesn the total populationsize that took placein the threedecades
from 1960areduemoreor lessentirely to increasesn the Islay wintering portion of
the population. While the Islay wintering groupdominateghe totalstherehavebeen
some variationsin the number of geeseelsewherein the wintering range. The
numberof geesewintering on the Inishkeaislands(the major Irish haunt)remained
reasonablystablein the two decadego 1983, with a meanpopulationaround2300
individuals(Cabot& West1983). However,Fox et al. (1990)point out thatthe total
numberof barnaclegeesewintering in Ireland hasrecentlyincreased. Numbersin
the Inner Hebrides,including islandsnearlslay, have remainedfairly stable,while
there has been a recent decline in the number of barnacle geese wintégra@uter
Hebrides (Foet al. 1990).
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Cabot& West(1983) suggesthat Islay is a rathermore food rich environmentfor

the wintering geesewith greaterprimary productionthanthe Inishkealslands. For

the winters1961/2to 1982/3the meanpercentagef first yearbirds on the Inishkea
Islandswas6% (dataof Cabot& West1983). By contrastthe meanon Islay for that

periodwasover 13% (datafrom Ogilvie 1983b). While lossesalso appearto have
beengreaterfor the Islay population(around10% comparedo 7% for the Inishkeas,
Cabot & West 1983; Ogilvie 1983b), it is this differential breeding success,
combinedwith faithfulnessto siteswithin the wintering range(Percival 1988) that

appeardo be responsiblgor the increasan the numberof geesewintering on Islay

relative to the rest of the wintering range.

Within winter movements

The movementof the eastGreenlandbarnaclegeesebetweendifferent siteson the

west coastsof Scotland and Ireland during the course of a winter, and their

faithfulnessto sitesfrom yearto year,are not knownin any greatdetail. It appears
reasonablyclear that most birds are largely faithful to wintering sitesfrom yearto

year (Cabot & West 198Bercivall988,1991;Newton& Percivall989). Percival's
(1988) study of individually markedbirds on Islay over threewinters suggestghat

the majority of birds spendthe whole winter on the island but a proportion (up to

20%) are mobile to some extent.

Ogilvie (1983b)notedthat the Februaryor March countson Islay tendto be similar
in sizeto, or evenslightly largerthan, countsthe previousNovember. Given that
reasonablyarge numbersof geesewerebeingshoton Islay during the period of the
countsto 1983, Ogilvie thus suggestedhat a move of geeseonto Islay during the
winter must take place. Cabot& West (1983), however,askedwherethesebirds
could comefrom asthey sawlittle evidencefor substantiahumbersof birds moving
from Irish wintering sitesto Islay in the spring. In fact, little evidencein supportof
Ogilvie's hypothesishas been forthcoming in recentyears. Newton & Percival
(1989)found little evidencefor a springmovementof birds from Tiree to Islay and
Percival(1988)detectecaninflux of ringedbirdsin only onewinter (1985/6)during
the three winter period of his study.

In the wintersof 1983/4and1984/5intensivecountsof geesearriving on Islay were
carried out by Easterbeeet al. (1987) who notedthat the numberof geeseon the
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islandtendedto peakfor abouttwo daystowardsthe endof October. In 1984/5they
found a second,slightly smaller, peak in November. Percival's (1988) counts
throughoutthe winters of 1984/5,85/6 and86/7 also suggesthat thereis a peakin

the numberof birds on Islay towardsthe endof October followed by a secondnflux

of birds in mid-November,before numberssettle down somewhatfor the winter.
Percival(1988) concludeshat Islay is particularlyimportantasa stagingsite in the
autumn before geese move to other wintering sites.

Theincreasegroportionof the Greenlandarnaclegoosepopulationthat now bears
individually markedrings, combinedwith visits to other partsof the wintering range
has given some insight into the complex within winter movements. From
observationof geeseon Coll and Tiree, Newton & Percival (1989) found several
patternsof behaviour:somebirds stay the whole winter on Tiree eachyear, others
stoponIslay in theautumnbut moveto Tiree or Coll by mid-winter or spring,while
otherschangetheir wintering site from yearto year. Newton& Percivalalsofound
that a few Islay birds visited Tiree in midwinter.

The pattern that is emerging from studies in the last decade is that the nodjeasy
Greenlandarnaclegeesearefaithful to a singlewinteringareafrom yearto yearand
do not move betweenwintering sitesin the courseof the winter (thoughsomemay
stageon Islay for a shorttime before continuingto their "real” winter destination).
However, asmallportion of the populationmay changewintering sitesfrom oneyear
to the next while other birds move betweensitesin the wintering rangeduring the
courseof a singlewinter. Thesepatternshaveled Fox et al. (1990)to suggesthat
the optimumperiodto assess thdistributionof Greenlandoarnaclegeeseover their
wintering sitesis betweerDecemberandJanuaryasthis patternshouldrepresenthe
distribution for the majority of the winter.

The Islay wintering barnacle geese

Islay hasbeenthe major strongholdof the wintering Greenlandbarnaclegeesesince
at least 1870 (Owen, Atkinson-Willes & Salmon1986) and, as noted above (Fig.
6.3), it is the growth of the Islay wintering barnaclegoosepopulationthat hasbeen
largely responsibldor the growth of the whole eastGreenlandoreedingpopulation.
The birds arrive mainly towardsthe end of Octobereachyear, departingfrom mid-
April throughto May (Ogilvie 1983a). The principal roostsitesare at the headsof
Loch Gruinart and Loch Indaal (Fig. 6.4).
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Figure 6.4. The location of the main barnaclegoosefeeding and roostingsiteson Islay. Also

shown is the 60m contour. Redrawn from Ogilvie (1983a).

The wintering barnaclegeeseeed almostexclusivelyon improvedryegrassasture,
the areaof which hasincreasedyreatly sincethe 1950's(Owen, Atkinson-Willes &
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Salmon 1986). The improvementsof pastureson Islay through fertilisation and

reseedindeadingto extendedandimprovedfeedingopportunitiesfor the wintering

geesehas undoubtedlybeen a major reasonfor the large increasesin the Islay

wintering barnaclegoosepopulationin three decadessince 1960 (Ogilvie 1983a;
Owen, Atkinson-Willes & Salmon1986). While the link hasyet to be established
conclusively,it is likely thatthe higher quality winter feedingon the resownlslay

pasturess largely responsiblefor the differencein breedingsuccesdetweenislay

and Ireland wintering birds discussedpreviously (where the successof birds

wintering on the Inishkeasin Co. Mayo may only be 50% of that of Islay wintering

birds) (Cabot& West1983; Ogilvie 1983b). Similarly, Newton & Percival(1989)

notedthat the proportionof youngin barnaclegooseflocks wintering on Tiree was

oftenlessthanthatobservedn Islay winteringflocks. Anotherfactor,of course that

may influencethesedifferencesin breedingsuccesss continuedsegregatioron the

breedinggroundsof birds that winter in different areas. Cabotet al. (1984)report

that significantdifferencesin breedingsucces®xist betweendifferent nestingareas
in Greenland.

From observationsof individually ringed geese,Percival (1988, 1991) foundthat
birds are not only faithful to Islay as a wintering site but are faithful to restricted
feedingareaswithin Islay both during a winter, andfrom yearto year. Percivalalso
found someevidencethat the breedingsuccesof the different groupswintering on

Islay is different and suggestghat this is not readily explainedby differencesin

winter feedingon the sitesbut may be due to continuedassociatiorthroughoutthe
year of birds from each site.

Howeverthe distribution of wintering geeseacrosslslay is not constantthroughout
the courseof the winter. Easterbeeet al. (1987) suggestthat the birds tend to
concentraten the Loch Gruinartareaon arrival on Islay beforedispersingto other
partsof theisland,andpresumablygiventhe peakin the numberof birdson Islay in
late October to otherpartsof thewinteringrange. Thedistributionof barnaclegeese
over Islay during the winter of 1989/90skownin Fig. 6.5. Eachof thethreecounts
is the mean oftwo countsmadeon consecutivedays (Easterbeest al. 1991). In
addition to the changesthrough the courseof the winter apparentfrom Fig. 6.5,
changesn distributionwerealsorecordedbetweenthe two daysof eachof the three
counts. Weather conditiomgerenot alwaysthe samefor the countsandEasterbeet
al. attribute some of the variation between the counts on consecutive days to this fact.
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Figure 6.5. Thedistributionof barnaclegeeseover differentareasof Islay for the winter 1989/90.
Eachpoint is the meanof two countson consecutivedays (3/4 December1989, 10/11 February
1990,1/2 April 1990)expressedsthe percentag®f barnaclegeeserecordedon the island at that
time. Data from Easterbeeet al. 1991. Mean numberson the island for the two countsin

December, February and April were 24861.5, 23093.5 and 21993 respectively.

Agricultural damage

Giventhatthelargenumbersof barnaclegeesewintering on Islay arefeedingalmost
entirely on agriculturalland, someconflict with agriculturalinterestsis inevitable.
Ogilvie (1992)reportsthat barnaclegeesewere recordedas doing "greatdamageto
grass” as early as the 1890's.

Percival(1988,92) studiedthe effectsof goosegrazingon agriculturalgrasslandsn
Islay. Comparinggrazedand neighbouringungrazedfenced)plots, Percivalfound
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thatat all sitesstudiedin threewinterstherewasa significantreductionin grassland
yield after grazing by geese. He found that newly reseededjrasslandgendedto

attractthe greatesnumberof geeseandthussufferedthe greatesteductionin yield.

Winter goosegrazingalsoreducedthe yield of silagecut in June. However,dueto

the greatvariationin yield of different areas,Percivalwas not able to associatea

given amountof goosegrazing(as measuredy droppingcounts)with a givenyield

loss. Yearto yearvariationin grasslangroductionmeantthatthe areaswith greater
goosegrazingmay havelower yieldsthanareaswith lessgrazingin someyears,but

higheryields in otheryears. Percivalsuggestshat the presenceof grazingbarnacle
geesemay makeup to 80% of early spring grassgrowth unavailableto farm stock.
He alsofoundthat,in additionto the directloss inspringgrassandsilageyields due
to goosegrazing, yield was further reducedby the delaysin the application of

fertiliser causedy the presencef geese. The magnitudeof the yield lossfound by

Percivalwasslightly lessthanthat of a previousstudyon Islay by Patton& Frame
(1981). Patton& Framesuggestthat goosegrazingmay alsoresultin the needto

reseed fields at more frequent intervals.

Percival (1988) demonstratedhat the Islay wintering barnaclegeeseshow a strong
preferenceor feedingon newly reseededields, and that fertiliser applicationmay
alsoincreasegoosegrazing(thoughthis dependedn the original nutrient statusof
thefield). A similar preferencdor improvedpasturewasnotedby Bignal, Curtis &
Matthews (1988). Despitetheir willingnessto move to reseededields, Percival
(1988, 1991) foundthat many individuals tendedto be faithful to a relatively
restricted range of feeding sites on Islay.

Reviewing several studies (including those of Percival (198&yriculturaldamage
resultingfrom grazingby severalgoosespeciesn different areas,Patterson1991)
concludeghatthereis ampleevidenceof significantlossesin both grassandcereal
cropsat awide rangeof goosegrazinglevels,but suggestshatthe wide variability in

lossesmakesit unlikely that lossescould be adequatelypredictedfrom observed
levels of goose grazing.

Brodie (1991) points out that the agriculturaleconomyof Islay is basedentirely on
grassproductionsupportingcattleandsheep. Geesehereforecompetedirectly with
cattlefor early springgrassgrowth. Brodie (1991) suggestghat financial losses,n
additionto the necessityof purchasingextrawinter feed,areincurredby farmersasa
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result of delaysin fertiliser applicationwhich lead to poorer quality fodder, and,
therefore, poorer milk yields and poorer condition of livestock at sale.

Thusthereappeardo be ampleevidencethat, for at leastsomefarmerson Islay, the
agriculturalandfinancial implicationsof the wintering barnaclegeesemay be quite
serious. Brodie (1991) points out that island farmers are already disadvantaged,
relativeto their mainlandcounterpartshy the costsof transportingfeedandfertiliser
to theislandandlivestockto the mainlandmarkets. On a nationalscaleagricultural
damageby wildfowl is negligible. Howeverthe damagetendsto be localisedand
individual farmers may suffer badly. Even within Islay there are considerable
differencesin the degreeto which farmers are affected by grazing of wintering
barnacle geese.

Shooting

Shootingof wintering barnaclegeesewas permittedon Islay during Decemberand
Januaryfrom 1955 (Owen, Atkinson-Willes & Salmon1986). In 1976 the open
seasonwas extendedfrom thesetwo monthsto five (Owen, Atkinson-Willes &
Salmon1986). While increasingagriculturaldamageby the growing barnaclegoose
populationwascited asthe mainreasonfor this change Bignal, Stroud& Easterbee
(1991) report that shootingtowardsthe end of the 1970'swas largely commercial
sportshootingorganisedoy the major Islay estatesand hotels. The annualkill of
barnaclegeesen the late 1970'sand early 1980'shasbeenestimatedat 1500-2000
individuals, up from previous levels of 50000 birds a year (Elliot 1989).

This situationchangedn 1981 with the introductionof the Wildlife andCountryside
Act which bannedsport shooting of barnaclegeese. However, under this act a
licenceto shootgeesean orderto scareflocks from agriculturalland may be issuedif
there is seriousdamageto livestock, foodstuff for livestock, crops or vegetables
(Brodie 1991). Licencesareissuedto farmersafter assessmerity membersof the
agricultural inspectorateand consultationwith local Nature ConservancyCouncil
staff (Brodie 1991).

Management of the conflict between agriculture and conservation

The relationship between agricultural interests concernix fihancialimplications
of the growing number of wintering barnaclegeeseon Islay, and conservation
interestyleasedo seethe populationflourishing, hasoften beenratheracrimonious
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since the introduction of the 1981 act. The conflict has reachedthe national
newspapersn severalwintersin recentyears. The problem,essentially,is how to
implementthe conservatiormanagemendf the wintering barnaclegoosein line with
the requirement®f nationaland Europeariaw (andrecognisingthe birds as part of
the naturalheritage)without putting the farmerson whosefields the geesegrazeat a
significant financial disadvantage.

Since1981the managemenpolicy on Islay hasbeenone of refugeprovision. This
takestheform of Sitesof SpecialScientific Interest(SSSls)declaredbecausef their
importanceto the wintering geese. Thesehave beersupplementedy the Royal
Societyfor the Protectionof Birds' (RSPB) purchaseof the farmlandaroundLoch
Gruinartwhich is the mostimportantareaon the island for the wintering barnacle
geese(Easterbeet al. 1987). Farmerswithin SSSlsreceivecompensatiorfor the
effects of goosegrazingon their land. The main problemwith this management
policy hasbeenthe fact that in someyearsalmosthalf of the wintering geesefeed
outsideSSSland other refuge areasin early spring (Brodie 1991). Brodie (1991)
suggestshatthe proportionof geeseaemainingin refugeareashroughoutthe winter
is higherin winters with bettergrassproduction. The unfortunateconsequencef
thisis thatit is in the harderwinters,in which grassproductionfor livestockis most
limited, that the geesetend to graze more outwith refuge areas,thus producing
heightened conflict.

The management policy on tRSPBreservenasbeento farm thelandin suchaway
asto producepasturef a quality designedo attractthe maximumpossiblenumber
of feeding geese. Owen (1977) suggestedthat the Greenlandbarnacle goose
populationwould becomeimited by factorsactingon the breedinggroundsandthat
arelatively small reserveareacould thus provide sufficient feedingto accommodate
the populationwhen damageo farmlandwas mostlikely. However,as a result of
the faithfulnessto feeding sites shown by the wintering barnaclegeese(Percival
1988,91) the movemenbf geesdo the RSPBreservehasbeenlessthanwashoped.
Attemptshave beemmadeto scarethe geesefrom fields outwith the refuge areas
(Percival,Halpin & Houston1988; Ogilvie 1992) by organisedgroupsas an more
systematicscaringmeasurethan the issuingof licencesto shootgeese. While this
appearesuccessfuinitially (Percival,Halpin & Houston1988)with a movemenbf
birdsontorefugeareassomereversalof this trendmayhaveoccurred(Bignal, Stoud
& Easterbed 991). The succes®f the organisedscaringschemas still a matterof
some doubt (Ogilvie 1992).
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A basicpremiseof the provision of refugesfor the wintering geesemustbe that, at
somestage,densitydependentegulationof the populationwill occur. To dateno
suchregulationof the eastGreenlandbreedingbarnaclegoosepopulationhasbeen
detected(seesectionon population dynamics below) and the generaltrend of the
Islay wintering populationis still oneof increasingnumbergFig. 6.6a). If it is true
that the primary reasonfor the increasein numbersof the Islay wintering barnacle
geesds the availability of improvedpasturedeadingto heightenedreedingsuccess
relativeto the restof the wintering range(Ogilvie 1983a;0wen, Atkinson-Willes &
Salmon 1986), then a "worst case" view of the refuge policy is that it merely serves to
increasdslay's'carrying capacity'for wintering barnaclegeese. Given the observed
faithfulnessof the geeseto feedingsiteson the island (Percival 1988, 91) then the
increasedareaof improved pastureprovidedby the refuge areasmay serveonly to
exacerbatehe problem,leadingto increasechumbersof geesewhich dispersefrom
refugeareasn searchof betterfeedingwhenfood becomesscarce. It is conceivable
that the numbersof wintering geesemay ultimately be limited by the availability of
winter feeding rather than factors on the breeding grounds. Facethesdibparently
continuingupwardtrendin goosenumbersmany lslay residentshavecalledfor the
numbersof wintering barnaclegeeseo be reducedandregulatedBrodie 1991). In
otherpartsof Britain too, farmerspreviouslykeento work with conservatiorbodies
in goosemanagemenhave joined in calls for population control in the face of
continuingincreasesn the size of manygoosepopulations(seediscussionn Owen
& Pienkowski 1991).

As mentionedabove,a major causeof friction betweenconservatiorandagricultural
interestson Islay hasresultedfrom the fact that goosegrazingis not restrictedto the
refuge areasbut compensationpayments(other than paymentsto help provide
scaring)are restrictedto theseareas. Bignal, Stroud& Easterbed1991) point out
that the original Brigend Flats SSSIproposedn 1971 would haveincludedfeeding
areasin the Ballygrant valley (which are the focus of much of the barnaclegoose
grazingthat occursoutwith refugeareas) but was restrictedto the roost areasafter
consultationwith the owners,lslay Estates. In retrospecit would appearthat this
omission,which presumablyresultedfrom movesto protectsportshootingaccessis
responsiblefor much of the "two-tier system"that excludessome farmers from
compensatiompayments. The issueof sportshootingof wintering barnaclegeeseon
Islay, while officially outlawed, has continued to cause friction among
conservationist&nd "agricultural” interests. Indeed,it appearghat somelicences
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issuedfor the purposeof scaringgeesehave actually beenusedto enablesport
shooting,with the resultthat the preventionof agriculturaldamagethroughscaring
has not really occurred (Bignal, Stroud & Easterbee 1991; Haigh 1984).
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Figure 6.6. The basicpopulationdatafor the populationof barnaclegeesewintering on Islay: (a)
the number of wintering geese countedovemberand(b) the proportionof first yearbirdsin the
flocks arriving on Islay. Data from Boyd (1968), Ogilvie (1983,92),and Nature Conservancy

Council counts.
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The issue of realistic compensationfor farmers outwith SSSIs suffering goose
damagehasbeenhinderedby the fact that it has provedimpossibleto associatea
givenlevel of goosegrazingwith a certainlevel of damaggPercival1988;Patterson
1991). Farmersand conservationisthavedisagreedver the problemof perceived
versusactual reductionin the grazing availableto livestock as a result of goose
feeding (Owen 1990a). A possibleway forward may have beerprovided by the
recentScottishNaturalHeritageAct, which empowersScottishNaturalHeritage(the
successoto the Nature ConservancyCouncil for Scotland)to offer management
paymentgo farmerswhoselandis outwith SSSIs(A. J. Kerr, pers.comm.,Ogilvie
1992).

Population dynamics

Fig. 6.6a,bshowsthe times seriesof the "raw data" relating to the population of
barnaclegeesewintering on Islay: the Novembercount data,and the proportionof
first winter birds in the flocks, assesseduringthe Novembercount. The remainder
of this sectioninvestigatingthe populationdynamicsof the Islay wintering portion of
the Greenland barnacle geese will use only this November count datas fohisvo
reasonsthe Novembercountdatais the longestseriesof countsavailable(though
countmethodshave beemdaptedo copewith the largernumbersof winteringgeese
over the courseof the period 1960-91), and the proportionof first year birds year
birds in the flocksis assessedroundthis time. As discussedoreviously,thereis
growing evidencethat Islay as usedas a stagingareain the autumnby more geese
than subsequentlyspend the majority winter on the island. This has led to
suggestionshatthe Novembercountsmay be susceptibléo anomaliesvherecounts
may havecoincidedwith large numbersof stagingbirds being presenton the island
in someyearsandnot others(Easterbeet al. 1987). Howeverthe data ofEasterbee
et al. (1987)andPercival(1988) suggestghat the main peakof stagingbirds will
generally have left the island by the time of the Novembercounts. Fig. 6.7
demonstratethat, for yearsfor which suchdataare available,the Novembercounts
are closely relatedto both the mean and maximum numbersof barnaclegeese
overwintering on Islay.

The proportionof first winter birds in barnaclegooseflocks wintering on Islay is

highly variable (Fig. 6.6b). Ogilvie (1983a)attributedthis wide observedrangein
breeding successto weather in spring and summer in Scotland, Iceland and
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Figure 6.7. Therelationshipbetweemrmeanand maximumnumbersof barnaclegeeseawinteringon
Islay, and Novembercount. Mean overwinteringnumbersfor 1983/4to 1989/90from Bignal,
Stroud & Easterbegq1991, Table 4.1); maximum numbersfor 1985/6to 1989/90from Kirby,
Waters & Prys-Jones (1990).

Greenland. This was investigated by Fox & Gitay (1991) who gathered
meteorologicablatafrom the Hebrides,IcelandandeastGreenlandand carriedout a
multiple regressionnvestigationof the effect of thesemeteorologicalariableson
the breedingsucces®f the Islay wintering barnaclegeese. Fox & Gitay suggesthat
up to 60% of the variancein breedingsuccesganbe attributedto weatherconditions
in Scotlandin spring, in Iceland during staging, and on arrival in Greenland.
However, while Fox & Gitay use a measureof breedingsuccessbasedon the
proportion of young in flocks overwintering on Islay, they only incorporate
meteorologicatatafor Januaryto July in their analysis. It is likely thatthe effectsof
weatheron the autumnmigration from the breedingto the wintering groundswill
alsocontributeto the numbersof first winter birds recordedon the breedinggrounds.
If meteorologicalvariablesfor this part of the year had also beenincludedin the
analysisit is conceivabldhatevenmoreof the variancein breedingsuccessouldbe
attributable to the effects of weather.

The dominant feature of the November count time series (Fig. 6.6a), after the
dominantupwardtrendin numbersdiscussegreviously,is the generaldeclinein the
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Islay wintering populationin the period 1977 to 1983. This declineis generally
attributeddirectly to the increasedoverwinteringmortality causedby the increased
shootingactivity in the late 1970's(Owen, Atkinson-Willes & Salmon1986; Owen
1990b; Foxet al. 1990; Bignal, Stroud & Easterbee 1991).

Someinsight into the causesof the fluctuationsin the size of the population of
barnacle geesewintering on Islay in the period 1961-1991 can be gained by
consideringthe yearto year changesn per capita recruitmentand mortality. The
wintering barnaclegeesein the Novemberof any year, t, can be partitionedinto
juveniles (first winter birds),, and adults (non first winter birds), simply given by

jt :ytNt
a = N(1-y,) [6.1]

whereN, is the numberof birds countedin the Novemberof yeart, andy, is the
proportionof first year birds in the wintering flocks. To estimaterecruitmentand
mortality from thesedatasomeassumptionsnustbe made,the first of which is that
the Islay wintering barnaclegeeserepresenta closedpopulation. While the Islay
birds are, of course,just a part of the east Greenlandbreedingbarnaclegoose
populationthere is, as discussedabove, increasingevidencethat individuals are
faithful to wintering sitesfrom yearto year,andthatsuchsegregatiomay be present
on the breedinggroundsaswell. Giventhis assumptionthe mortality ratefrom the
November count in yedrto the November count in yegrl is given by

&
N [6.2]

m =1-

where a/N,_, is the per capita survival from the Novemberof year t-1 to the
Novemberof yeart. Mortality estimatesarenotindependentrom yearto yearasthe
populationsizein a givenyearappearsn the numeratorof the fractionalpartof egn.
[6.2] in oneyearandthe denominatothe next. Ebbinge vanBiezen& vanderVoet
(1991) suggesthat while individual survival estimatesnay be inaccuratethe mean
will bereasonablyaccurateasthe appearancef a populationcountin the numerator
oneyearand denominatorthe next will leadto a cancellingout of countingerrors.
For the RussianbreedingbarnaclegoosepopulationEbbinge,van Biezen& vander
Voet found that the meansurvival ratesestimatedby the methodconsideredhere
were very close to estimates derived from the resighting of ringed individuals.
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Figure 6.8. Three year running meansof recruitment(calculatedfrom [6.3]) and mortality
(calculatedrom [6.2]) the Novembercountdatafor the Islay wintering barnaclegeese. Datafrom

Boyd (1968), Ogilvie (1983,92), and Nature Conservancy Council counts.

Assumingthatthe ageof first breedingis threeyearsthenthe numberof adult birds,
a, in awinter t representshreegroups:secondwinter birds that will not breedthe
following spring,a,, third winter birdsthatwill breedfor thefirst time the following
spring,a,,, andolderbirds,a,,,. The numberof birdsin the Novemberof yeart that
have the potential to bredlae following yearis thusgivenby a,, = a, —a,,. Making
the further assumptionthat the survival rate is the samefor birds of all agesthe
numberof secondwinter birds canbe is givenby a,, = j,_,5_, wheres_, is the per
capita survival rateg, /N,_,, considered above. The recruitment rate is then given by
—_ Jt+l

b, 2, [6.3]
Fig. 6.8 compareghreeyearrunningmeansof recruitmentandmortality ratesfor the
periodof the availableNovembercountdata. This demonstratethat mortality does
indeedexceedrecruitmentin four of the six yearsduring the period 1976to 1981
when the more liberal shooting regime was in place on Islay. However, while
mortality during this period was aboveaveragean equallyimportantreasonfor the
observed decline in numbers of Islay wintering geese wdewheecruitmentatesin
the late 1970'sand early 1980's. Ogilvie (1983b) recognisesthat poor breeding
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successeaswell asincreasedshootingcontributedto the declinein numbersfrom

1980-1983. Fox et al. (1990) assertthat the poor breedingsucces®bservedn the

late 1970'sand early 80's is probably attributableto geesereachingthe breeding
groundsin poorerconditionasa resultof the increasedlisturbancedueto shooting,
in this period. Fig. 6.8, however,suggestshat breedingsuccessvasin declinefrom

the mid-1970's,before the increasedshootingwas permitted, and that it did not

reattain its pre-1975level until the mid-1980's, some time after shooting was

restricted by the Wildlife and Countryside Actid81. This tendsto suggesthatthe

poor breedingresults during these period are not solely attributableto increased
shootingon the wintering grounds. It would be interestingto examinethe residual
variancesfrom the multiple regressionof breeding successon meteorological
variablescarried out by Fox & Gitay (1991) to seeif lessof the variationin the

proportion of young on the wintering groundsitributableto the weatherduringthe

periodof increasedshootingfrom 1976to 1981. UnfortunatelyFox & Gitay do not

give sufficient detail in their paper to do this without additional information.

Forthe periodsincethe Wildlife andCountrysideAct cameinto force,the numberof

geeseshotunderlicencesissuedto farmerssufferingagriculturaldamagehashadto

be reported (Feare 1991). While some doubts have beenraised regardingthe

reliability with which the numbersshot are reported(Appleby 1991) others(Feare
1991) feel that reportingis reasonablyaccurate. Other than the generalview that
prior to 1976500-600birds wereshotannuallyincreasingo 1500to 2000in the late

1970's(Elliot 1989)the numbersshotunderlicenceprovidethe only publisheddata
on shootinglevels. Using thesedatathe effect of the numbersshoton recruitment
and mortality is investigatedn Fig. 6.9. It is apparentrom Fig. 6.9athat thereis

little relationshipbetweermortality andthe numberreportedshot. This suggestshat
the overwinteringmortality dueto shooting(which Owen (1990b)suggesteds the

main source of overwinter mortality) is less important in determining overall

mortality than deathsat othertimesof the year. Owen& Black (1991) suggesthat
mortality on the autumnmigration is the major sourceof mortality affecting the

Svalbardbreedingbarnaclegoosepopulation. It is likely that migration mortality

also contributessubstantiallyto the annualmortality of the Islay wintering barnacle
geese. Mortality, as calculated frof?], is actually negativen two years. Thereis,

of course ho way of knowingwhetherthese'impossible"valuesaredueto counting
errors ortheinterchangef individualsbetweerdifferentareasof thewinteringrange
from year to year.
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Figure 6.9. The relationshipbetweenreportednumbersof barnaclegeeseshotunderlicenceon
Islay in agivenwinter, t, (1982/3to 1989/90)and(a) mortality (from the Novembercountin winter
t to the countin winter t+1) and (b) recruitment(basedon countsin winter t+1), calculatedfrom

egns. .2] and [6.3] respectively (shooting data from Brodie 1991).
Fig. 6.9balsoshowslittle evidenceof a strongrelationshipbetweerbreedingsuccess

and the number of geesereportedshot the previouswinter. This is not really
surprisingin the light of Fox & Gitay's (1991) suggestiorthat at up to 60% of the
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variance in breeding successmay be attributable to the weather conditions

encountered by the geese in the first half of the year.
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Overallthen,it would appeaithat, despitecommonassertionso the contrary(Owen,
Atkinson-Willes & Salmon1986; Owen 1990b; Fox et al. 1990; Bignal, Stroud &
Easterbeel991), the evidencethat shootingplays a major role in determiningthe
dynamics of the Islay wintering barnacle geese is actually rather weak.

Another aspectof the population dynamicsthat must be consideredis whether
recruitmentand mortality are affectedby populationsize. While the limitation of
populationsizeeitherby lack of feedingon the wintering groundsor competitionfor
nestingsites or food on the breedinggroundswill inevitably limit the Greenland
breeding barnaclegoose population, there is little published evidencethat such
factorshave beeroperatingin recentyears. Fox & Gitay (1991)found no evidence
of density dependenceperatingin breedingsuccessthe numberof successfully
breedingpairswasdirectly relatedto the sizeof the breedingpopulationoverarange
of populationsizes. In fact, thereis little evidencefor densitydependentegulation
of populationgrowthin anyof the British winteringgoosepopulationgOwen1990a;
Summers& Underhill 1991), with the exceptionof the Svalbardbreedingbarnacle
goose population which has recently shown a density dependentdecline in
recruitment(Owen & Black 1989). Figs.6.10to 6.12 investigatepossibledensity
dependence in the November count data.

Fig. 6.10a demonstrateshat there is no relationship betweenthe recruitment
determinedby the proportion of individuals in a given winter, t+1, (measuredoy
[6.3]) and the number of potentiateedersn the previousNovemberga,,. Similarly,
recruitmentshows no relationshipto the total numberof individuals (potentially
breeding adults, and first and second winter birds).

Fig. 6.11 considersthe relationshipbetweensurvival from the Novembercountin
onewinter (t) to the countin the nextwinter (t+1), andthe populationsizein thefirst
winter (t). Theinitial impressionfrom this figure is oneof a decreasén yearto year
survival as populationsize increases.However,it shouldbe notedthat the highest
valuesof survival areall "impossible"values,greaterthanone. Thesevaluesoccur
when populationsize is small, which placesthem nearthe beginningof the time
series(the highestsurvival value, 1.63, occurredfrom 1966/7to 1967/8). It seems
likely, thereforethatpartof the reasorfor thesevery high valuescanbe attributedto
less accuratecensustechniquesin the early yearsof the time series. Restricting
attentionto thosesurvival valueslessthanone (for which populationsizesarein the
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Figure 6.11. The relationshipof survival from one winter to the next and populationsize, in

barnacle geese wintering on Islay.

region 12500to 28000individuals) revealslittle evidenceof a relationshipbetween
survival and population size.

Finally, consider the relationship between population size and the logarithmic
population growth rate:

r,=IN(N.,/N,) [6.4]

This is shownin Fig. 6.12. The growth rateappeargo declinewith populationsize,
but this impressionis againinfluencedgreatly by outlying points, in particularthe
high growth rate recordedfrom the November count in 1966 to the count in
Novemberl967. This correspondso the very high survival ratein Fig. 6.11. For
populationsizesin the range10000to 30000individuals (a rangewhich includesall
but three of the calculatedvaluesof r,) thereis little evidenceof a decreasan
populationgrowth ratewith populationsize. Thus,at currentpopulationsizes,there
is little evidenceof densitydependeneffectsin the dynamicsof the Islay wintering
barnacle geese.

In summary,it would appearthat the populationdynamicsof the Islay wintering
barnaclegeeseare strongly influencedby the apparentlyrandominfluence of the
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Figure 6.12. Therelationshipbetweernpopulationsizein winter t andthe logarithmicgrowth rate,

r, given by eqn.q.4], for the November count data for barnacle geese wintering on Islay.

weather. While shootingon the wintering groundscan be a significant sourceof
mortality, the level oEhootingdoesnot appeato determineoverallannualmortality,
which may be determinedto a large extentby mortality on the autumnmigration.
Thereis little evidenceto link shootingon the wintering groundswith breeding
successwhich alsoappeardo be influencedheavily by weatherconditions(Fox &
Gitay 1991). At currentpopulationsizesthereis little evidenceof densitydependent
regulation. While suchregulationwould undoubtedlybeginto act more obviously
should the population continue to grow, it is possible that any current density
dependenceperatingis being maskedby the stochastidnfluenceof the weatheron
the population growth rate.

Before leaving this discussion of the dynamics of the Islay wintering bageste|
would like to investigateone other possiblefeature. Note howeverthat, given the
data currently available, this amountsto little more than speculation:henceits
position at the end of this chapter. Consideringagainthe time seriesof Fig. 6.8, a
certainamountof symmetryin the 3 year running meansof recruitmentmay be
discernible. It is tempting,if perhapsash,to suggesthatthe low recruitmentrates
in the late 1970's and early 1980's may represent a troagiatewhichis varyingin
acyclic (or at leastquasi-cyclic,sensu Nisbet& Gurney(1982)) manneratherthan
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Figure 6.13. The autocorrelatiorfunction of the 3 yearrunningmean(Fig. 6.8) of recruitmentin
the Islay wintering barnaclegeesecalculated using[6.3], from the Novembercountdata. Lagsin
years. The dotted lines mark approximate95% confidenceintervalsfor the hypothesisthat the
autocorrelatioris not significantly different from zero. Note that the length of the time seriesof
recruitmentratesdoesnot really justify calculatingautocorrelatiorat the longerlagsillustratedhere

and that this figure must therefore be treated with some scepticism.

simply fluctuating aroundsome meanlevel. This can be investigatedfurther by
calculation of the autocorrelation function (Fig. 6.13).

While the shapeof the correlationfunctionis basicallyin line with the ideathatthe
recruitmentrate is somewhatcyclic, it must be emphasisedhat calculating the
autocorrelatiorfor lagsthat are similar in lengthto that of the time serieshaslittle
validity. Giventhatthe periodof the speculativecyclesin recruitments of the order
of 15to 20 years,it will requireconsiderablynoreyearsof datacollectionbeforeit
could be statedwith anyrealjustification thatthe poor breedingsucces®f the Islay
wintering barnacle geese during the late 1970's and earlw&8isdeeddueto some
cyclic variationratherthansimply a run of poor years. However,it is interestingto
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note that the breedingsuccessn 1992, determinedby the proportionof youngin
wintering flocks on Islay, appearsto be low (S.M. Percival, pers.comm.). This
follows the lowest breeding success ever recorded, in 1991 (Ogilvie 1992).

If quasi-cyclicvariationin recruitmentin the Islay wintering barnaclegeeses ever
establishedyhat are possiblecauses? Summers& Underhill (1987) found good
evidence for a three year cycleldreedingsuccessn brentgeesdBranta b. bernicla)
which breed on the Taimyr Peninsula. This appearsto be related to the well
establishedthree year cycle in lemming (Lemmus sibiricus and Dicrostonyx
torguatus) numbersin the area,with a poor breedingyearin the geesefollowing a
yearin which a peakin lemmingnumbersoccurredandgoodgoosebreedingsuccess
when lemming numbersare high. The explanationoffered for this patternis that
predatorssuchasthe arcticfox (Alopex lagopus), areforcedto switchto feedingon
goslingswhenlemmingnumberscrash(Dhondt1987; Summers& Underhill 1987).
Cabot et al. (1984) reported that, in the summer of 1984, arctic foxes were
responsibldor the deathsof asmuch as 43% of barnaclegoosegoslingssurviving
the jump from somenestingcliffs in Greenland. They suggesthat barnaclegoose
breedingsuccessnay be relatedto the abundancef arctic foxes,which in turn may
be relatedto the numbersof lemmingsin the area. However,the cycle periodin
arcticfoxesin Greenlandaveragegour years(Angerbjornet al. 1991,andreferences
therein). It is not immediatelyapparenthow this would relateto cyclesof longer
periodsin barnaclegooserecruitment. Given thatthe existenceof suchcyclesis, at
best, highly speculativeit is, therefore,probably not necessaryo worry too much
about their causes at this time.
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Chapter 7

An assessment of shooting as a tool in
the management of the Islay barnacle geese
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In this chapterthe useof controlledshootingin the managementf the populationof
barnaclegeesewinteringon Islay is investigated. This follows theincreasingcallsin
recentyearsfrom farmerson Islay for a cull to regulatethe continuing trend of
increasinghumbersof geesawinteringon theisland. As the analyse®f the previous
chaptershowed,thereis relatively little information availableon the mechanisms
driving the changesn the numberof wintering birds. This chapterthereforeapplies
the methodologyoutlinedin thefirst sectionof this thesis,with the constructionof a
population model with random inputs, and the analysossibleshootingstrategies
using the distribution of persistence times as a population viability measure.

The datarelatingto the Islay wintering barnaclegeeseconsiststo a large extent,of
the Novembercensusdataand the countsof the proportionof youngin the flocks
(Table 7.1). By contrast, thesmaller Svalbardbreedingbarnaclegoosepopulation
hasbeenextensivelystudiedthroughthe usedof ringing to identify individuals (see,
for instance Owen& Black, 1989,who considerthe lifetime reproductiveoutput of
individualsin the Svalbardpopulation). However,the differencesin dynamicsand
behaviourof thethreemain barnaclegoosepopulationgsomeof which arediscussed
by Percival,1991,andCabot& West,1983)suggesthatit would not be very useful
to attemptto apply resultsof the Svalbardpopulationin the modelling of the east
Greenland breeding population.

A simple model

Attempting tobuild a complexmodelwhich incorporateasmuchdetail asis known,
or supposed,about the dynamics of the Islay wintering barnacle geesewould
inevitably resultin a situationwherethe parameter®f the model could take sucha
wide rangeof valuesthat the resultsobtainedwould probably have minimal value.
Consider instead the simple model

Nt+l = b[ Nt + SNI [71]

whereN, is the numberof femalebarnaclegeesecountedon Islay in the autumnof
yeart, S is the probability that a female survivesand returnsthe following winter,
andb, representshe numberof femaleyoungarriving on Islay in yeart+1 perfemale
presentat the startof the winter of yeart. The parametersd, and § are calculated
from the November count data of Table 7.1 by application of the relations:

b =YuRa/R

7.2
SZRH/R‘Q 7.2
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Table7.1. The November count data for the years ¥®30(fromBoyd 1968,Ogilvie 1983b, 92and
Nature ConservancyCouncil counts) with the number of geeseshot under licence for winters
beginningNovember1982-89, from Brodie (1991). Recruitment,b, and survival, §, from eqns.
[7.2], andgrowthrate,r,, givenby In(P,,,/P,). Meansandvariancesn parenthesigxcludeyearswith

survival rates greater than one.

November count data Number
Year Countf) % young shot b, S r,
1960 4600 9.7 0.13 1.13 0.23
1961 5800 10.7 0.08 0.97 0.05
1962 6100 7.6
1963 30.6
1964 8300 7.5
1965 11.2
1966 8400 13.0 0.34 1.63 0.68
1967 16500 17.1 0.08 0.73 -0.22
1968 13300 9.5 0.22 0.86 0.07
1969 14300 20.0 0.20 0.82 0.01
1970 14500 19.4 0.16 0.99 0.14
1971 16600 13.6 0.13 0.92 0.04
1972 17300 12.1 0.18 0.86 0.05
1973 18100 17.4 0.14 0.93 0.07
1974 19400 13.0 0.14 0.90 0.04
1975 20200 13.9 0.27 0.92 0.17
1976 24000 22.4 0.04 0.78 -0.20
1977 19600 4.9 0.13 0.99 0.12
1978 22000 12.0 0.07 0.72 -0.24
1979 17300 8.3 0.14 1.05 0.17
1980 20500 11.4 0.05 0.67 -0.33
1981 14800 7.3 0.06 0.81 -0.15
1982 12800 6.7 956 0.13 1.14 0.24
1983 16217 9.9 731 0.14 0.92 0.06
1984 17213 13.4 447 0.11 0.93 0.04
1985 17875 10.7 541 0.19 1.04 0.21
1986 21970 15.5 791 0.12 0.87 0.00
1987 21900 12.5 505 0.11 0.82 -0.07
1988 20380 12.0 752 0.22 1.00 0.20
1989 24860 18.1 915 0.27 0.86 0.12
1990 28000 23.7 0.04 0.75 -0.24
1991 22000 4.7

Mean 0.14 (0.134) 0.93 (0.864) 0.05 (-0.012)

Variance 0.01 (0.005) 0.03(0.009) 0.04 (0.022)
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whereP, is the total Novemberpopulationcountin yeart, andy, the proportionof
first winter birds in the flocks.

The model[7.1] is thus easily paramateriseffom the availabledata. The relations
[7.2] requirethe assumptiorof a constantage-independersexratio. Thereis little

availabledatato judgethis assumption. The few catchesof adult geesereportedin

the literature (e.g. Cabotet al. 1984) show no significantdeviationfrom a 1:1 sex
ratio. Studiesof individually markedbirds have showna higher mortality rate in

femalesin the Svalbardbreedingpopulation(Owen & Black 1989) but notin the
Russian breeding population (Ebbinge, van Biezen & van der Voet 1991).

In the remainder of this chapterwill be referredo asrecruitmentand§ assurvival.
Theform of themodel[7.1] essentiallysuggestshatthe barnaclegeesewinteringon
Islay is a closed population. As was discussedin chapter6, however, there is

evidencethat a minority of birds are mobile betweenwintering areas both within a
winter and betweenwinters (Percival1988,1991; Newton& Percival1989). These
factscanbe accommodateth the frameworkof the simplemodel presentedereby
recognisingthat someof the adult birdscountedon Islay in Novembermay, in fact,
have spent the previous winter elsewhere and are, thergtitcdy immigrantsto the
Islay groupratherthansurvivorsfrom the previouswinter, andthatsomeyoungbirds
may be the offspring of femaleswhich did not spendthe previouswinter on Islay.
The parameterstermed "recruitment” and "survival", as calculatedfrom [7.2],

actually incorporate these other factors.

The presencef birds on Islay duringa Novembercountonewinter, thatwinteredin

areas other than Islay in previous years, magrisreasonwhy "impossible"survival
values greater thamneariseon occasiongTable7.1). Anotherreasormay of course
be countingerrors. Ebbinge,van Biezen& vanderVoet (1991) point out thatif an
abnormallylarge proportionof birds are missedin one Novembercount,but notthe
next, the presenceof a given countin the numeratorof the survival estimatesone
year and the denominatorthe next, will lead to an underestimatedurvival rate
followed by an overestimate. They found, however,that the meansurvival value
determinedby estimatesof the proportionof youngin flocks comparedfavourably
with estimates based on resightings of ringed individuals.

Recruitmentasgiven by b, in eqn.[7.2], differs from the definition of recruitment
usedin the previouschapter. Thererecruitmentwas basedon the numberof young
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estimatedo be presenton Islay in onewinter per adult presentthe previouswinter
that could be classifiedasa potentialbreedingbird. It wasassumedhat the ageof

first breeding was three years. To calculate this "age-structured"recruitment
necessitatethe assumptiorthat survivorshipwas constantfor all ages. This delay
beforefirst reproductionis not incorporatedn the modelof [7.1]. This omissionis

not asunfortunateasit may seematfirst. Fig 7.1 demonstratethatthereis, in fact,

an almostlinear relationshipbetweenthe age-structuredecruitmentconsideredn

chapter 6, and recruitment as defined here (éc@) [

The structuredrecruitmentof [6.3] is, of course,slightly largerthanthe per capita
recruitmenthereas|7.2] attributesthe samenumberof youngbirdsto morefemales.
In the absenceof information on differential mortality attributable to age the
relationshipof Fig. 7.1 suggestghat the useof a structuredmodel will be of little
value. The evidencefrom observation®f the numberof pairsthatareaccompanied
by broodson the winteringgrounds(Cabot& West1983;Fox & Gitay 1991),andof
direct observation®f breedingsuccessn GreenlandCabotet al. 1984),is thatthe
young presenton the wintering groundsare actually the offspring of a rathersmall
proportionof the breedingpopulation,with many birds of a breedingage actually
failing to successfully rear any young in a given year.
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Figure 7.1. The relationshipbetweenthe age-structuredecruitmentof chapter6 (egn.[6.3]) and

the unstructured recruitment af.2].
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In commonwith the recruitmentandsurvival estimatesliscussedn chapter6, b, and
S here (Table 7.1) show no obvious relationship with population size.

Persistence timewith current vital rates

The simplemodelconsiderechere,eqn.[7.1], to representhe dynamicsof the Islay
wintering barnaclegeesefrom the Novembercountdatais, of course just a special
caseof thesimplemultiplicative modelof chapter3. Here,the multiplicative growth
rate, A, is equalto b, + S. Thelongrun populationgrowthrate,u, and its variance
0?, are estimatedby the mean and variance of the logarithmic growth rate r,,
calculatedin Table7.1. So u is estimatedas 0.05 and 02 as 0.04. The long run
growth rate thus supportsthe observedupwardstrendin populationsize. Note that
the formulae[3.6], which were usedto approximatehe long run growth rateandits
variancefrom informationon the multiplicative growthratein thefirst sectionof this
thesis, give very acceptable estimateg ahdo? of 0.050 and 0.034 respectively.

However,a ratherdifferentsituationemergesf the few yearswith "impossibly”high
survival ratesare excludedfrom the calculationof the meanand varianceof the
logarithmic growth rate. In this caseu is estimatedas —0.012and ¢? as 0.022;in
otherwords,thereis a slightly negativelong term growthrate. As discussedbove
eithercountingerrorsor immigrationcould haveled to the survivalratesgreaterthan
one,andthe positivegrowthrateobtainedearlieris doubtlesshe mostrepresentative
of the dataseries. What this exercisedemonstratedjowever,is the importanceof a
few "good" yearsin producingthe positive populationgrowth rateover the lastthree
decades. If population limiting mechanisms, suchs®rtageof the betterbreeding
sitesin Greenlandare beginningto take effect thena long run growth rate around
zeromay be in prospect. In much of the following analysistwo situationswill be
considered(a) persistencéime with the 'bestestimatefrom the data ofa growthrate
of 0.05,and(b) persistencgéime whenthe long run growth rateis aroundzero. The
latter situationis includedto give an indication of likely persistencdgimesundera
rather more pessimistic view of likely population growth rates.

Fromthe analyse®f chapter3 it is apparenthat, particularlywherelong run growth
ratesare positive, persistencdime resultsdependon the level at which the lower
thresholdis set. Currentnumbersof femalebarnaclegeeseon Islay arein the region
of 11000individuals(from countsin the winter 1991/2). It is probablyreasonablé¢o
assumehat many conservationistsvould be concernedvere the numberof females
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Figure 7.2. The probability,G(e), of ultimately reachingthe 'critical' lower populationsize,N,, as

this critical size is varied, calculated from [3.8].= 0.05,0%2 = 0.04.

to drop to, say,5000. Fig. 7.2 demonstrateshe changein ultimate probability of
reachingthis level of concern,as the populationsize at which the level is setis
varied. Thus,while the numberof femalebarnaclegeesewintering on Islay is quite
likely to drop to 9000 or 10000individuals, the probability of reachinga level of
5000femalesis 0.139, given the observedpositive growth rate. Of course,should
the population growth rate be nearerzero, reachinga level of 5000 femalesis
virtually certain (egn. [3.13]).

Fig. 7.3 showsthe probability density functions, calculatedfrom eqn. [3.9], for
persistencdime under the two scenariosconsideredabove. The two curvesare
similar in shapg(becausdoth setsof parametergjive riseto fairly similar valuesof
¢, the shapeparameteriscussedn chapter3, eqn.[3.12]) but the areaunderthe
persistencéime distributionfor the positivegrowth rate,which wasthe bestestimate
of the populationgrowthratefrom the data ofTable7.1,is muchsmaller. Thisis, of
course,a featureof the much reducedultimate probability of reachingthe threshold
conferredby the positive growth rate. With a growth rate, u, equalto 0.05 the
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Figure 7.3. Thepersistencéime distributionfor the simplemodel[7.1], calculatedrom eqn.[3.9]

with (- = =) u = 0.05, 0°= 0.04 (bestestimateof populationgrowthratefrom dataof Table7.1: see
text, p.170; (——) u = —-0.012, 0% = 0.022 (populationgrowth rate calculatedwith survival rates
greaterthanoneexcluded). N, = 11000,N, = 5000. Ultimate probability of reachingthe threshold,
G(eo), calculated using [3.13].

greatesprobability of reachinga level of 5000femalesoccursin the nextdecade. If
the populationcontinuesto grow at this rate thenthe probability of droppingto this
small populationsizeis muchreduced. Wherethe growthrateis calculatedwith the
exclusionof the few yearswith high survival rates,reachinga level of 5000females
is ultimately certain. The mostlikely persistencéime is of the orderof 10 years,but
reasonably long persistence times could also arise.

The effects of autocorrelation in the recruitment rate

The analysisof chapter6 suggestshat theremay be a tendencyfor someclustering
of good or bad years in the rate of recruitma@ntivenile birds. The simplemodelof
chapter 3 consideredonly the case of serially independentfluctuations in the
population growth rate. Tuljapurkar & Orzack (1980) suggestthat, while the
ultimate probability of reachinga lower thresholdis not likely to be greatly affected
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by autocorrelationthe actualdistribution of persistencdimesin a linear population
model is likely to be quite sensitive to environmental autocorrelation.

The effectof autocorrelationn the recruitmentrate on persistenceéime in the model
[7.1] can be evaluatedby calculating persistencetimes numerically, with the
recruitment and survival rate given by

b = (1-a)b +ab_, +0,Z,

S =S+ [7.3]

where b and S are mean recruitment and survival rates, o is a measureof
autocorrelationn recruitmentrates,and Z,, Y, are Gaussiarrandomvariableswith
zero mean and unit variance.

a(®
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Figure 7.4. Theeffectof autocorrelationn recruitmentrateon persistenceéime in the model[7.1]
with recruitmentandsurvivalgivenby [7.3]. o =0.8(——), ¢ = 0.2 (-++-- ),a=0(---). Inall
casesthe initial numberof females,N,, is 11000;the lower threshold,N,, is 5000 females,b =
0.134,S = 0.864, 6, = 0.0707, 6. = 0.0949. Persistencetime distributions were estimated
numericallyand smoothedusinga symmetricnearesnheighbourinear leastsquaregprocedurewith

a span of 5 time steps.
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Fig. 7.4 demonstratesthe effect on persistencetime of different levels of

autocorrelationn the recruitmentratewhenthe 'driving' environmentalariance,o,,

is fixed andthe populationis not growing. Suchautocorrelationn generalproduces
a reductionin persistenceime, ratherslight at lower levels of autocorrelationput

more markedas the autocorrelationis increased. Wherethe populationis growing

and autocorrelations introducedinto the birth rate (Fig. 7.5) the major effectis to

increasethe ultimate probability of reachingthe threshold, especially when the

autocorrelatioris strong. In contrastto Fig. 7.4 thereis no tendencyfor the modal
persistence time to be reduced.

The autocorrelatedrate of recruitment, b, as given by [7.3], is a first order
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Figure 7.5. Theeffectof autocorrelationn recruitmentrateon persistenceéime in the model[7.1]
with recruitmentandsurvivalgivenby [7.3]. o =0.8(——), ¢ = 0.2 (-++-- ),a=0(---). Inall
casegheinitial numberof femalesN,, is 11000;the lower threshold N, is 5000femalesp = 0.14,
S=0.93,0, = 0.1, 6. = 0.17. Persistencdime distributionswere estimatednumerically and
smoothedisinga symmetricnearesneighbourinearleastsquaregprocedurewith a spanof 5 time

steps.
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autoregressive process. The variance in growth rate is, thereforebgii(@matfield,
1984, p.45):
op =—% [7.4]
l1-o

Increasing the degree afitocorrelatior{c) thusincreaseshe variancein recruitment
rate. The decrease in persistence time noted irv Figandthe decreaseg@robability
of persistenceof Fig. 7.5, cannot,therefore,be attributedsolely to the effects of
autocorrelation:the increasedvariance in recruitmentrate will also affect the
persistence time distribution.
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Figure 7.6. Theeffectof autocorrelationn recruitmentrateon persistencéime in the model[7.1]
with recruitmentandsurvival given by [7.3] and o chosento give constantvariancein recruitment
rate. ¢ =0.8,0, = 0.0424(—); = 0.2,0, = 0.0693(----- ); a=0,0,= 0.0707(- —-). Inall
casesthe initial numberof females,N,, is 11000;the lower threshold,N,, is 5000 females,b =
0.134,S = 0.864, o, = 0.0949. Persistenceime distributionswere estimatednumerically and
smoothedisinga symmetricnearesneighbourinearleastsquaregprocedurewith a spanof 5 time

steps.
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To investigatethe effectsof autocorrelatioraloneon persistenceéime eqn.[7.4] can
be usedto choosevaluesof o suchthat the variancein recruitmentrate, o2, is
constanfor differentlevelsof autocorrelationdeterminedy o. This hasbeendone
in Fig. 7.6 which demonstrateghat, wherethe populationdoesnot havea positive
long term growth rate, autocorrelationalone still tendsto reducepersistencdime
with the mode of the persistencdime distributionsunder autocorrelationbeing at
shortertimes,anda higherprobability of reachingthe lower threshold thanthe mode
in the persistencetime distribution without autocorrelation. The shift in the
distribution towards shorter persistenceimes is, however, less marked than that
observedn Fig. 7.4 wherethe environmentalvariance,c >, was constantproducing
the confounding effect of increasing variance in recruitment with increasing
autocorrelation.

For agrowing populationthe effectof autocorrelationn the recruitmentrateis again
to increasehe probability of reachinga lower thresholdthoughthe increaseas not as
greatasthat notedin Fig. 7.5 wherethe environmentavariance,c 2, ratherthanthe

variance in recruitment rate, was constant.

The effects of shooting

To considerthe effectsof shootingthe number,H,, of femalebarnaclegeeseshotin
the winter of yeat is incorporated in the modéi.]] to give

N, =B (N, —cH,) +S(N, —H,) [7.5]

Male and female geeseare likely to be equally vulnerableto shooting. The total
number of geese shiot awinteris then2H,. The parametec (which cantakevalues
betweenl and?2) is necessarpecausesomefemaleswill losetheir mateto shooting
andthusfail to breedthe following summer. Birds losing their matein this way are
assumedo havere-pairedno later thanthe secondbreedingseasorafter the loss of
their mate (if they survive).

The only effectof shootingincorporatedn [7.5] is actuallossof birds. As notedin
the previouschapterthereis little evidenceof a direct effectof shootingon breeding
success. In addition no redistributiongafesdo otherpartsof thewinteringrangeas
aresultof shootingis included. Ogilvie (1983b)found no evidenceof geesebeing
driven from Islay by the increased shooting pressure in the late 1970's.
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Different managementegimesfor the regulation of shootingresult in different
functional forms for H,. If shootingis to reduceconflict betweenfarming and
conservationintereststhen controlled shooting must not only curtail population
growth, but must seekto preventthe population becoming endangered. If the
population growth rate were constantfrom year to year (i.e. making [7.1] a
deterministicmodel) then this compromisecould be specifiedby insisting that the
functionalform for H, shouldproducea stableequilibrium sizefor N, in [7.5]. On
this basisshootingcontrolledin a mannerthat doesnot take accountof population
size, such as shootinga constantnumberor proportion of geeseannually,can be
rejectedas a suitablemanagemenstrategy(Nisbet 1989; Middleton, Nisbet& Kerr
1993). Two reasonablysimple strategiesfor controlling shooting which have
functional forms for H, that producea stableequilibrium in a modelwith constant
vital rates are (Nisbet 1989; Middleton, Nisbet & Kerr 1993):

(i) shooting a fixed fractiorg, of the excess of females above some threshold,

g = JANCT]IENST [7.6]
0 otherwise
(ii) as (i) but based on the number of females counted in the previous winter
H, = a[N_, —T] if N,_; >.T (77
0 otherwise

The strategy(ii) hasthe advantagehat shootinglevelsfor a particularwinter could
be decidedon the basis of the population censusin the previouswinter. This
contrasts with strategy (i) which relies on counts of the lairdging at the beginning
of winter to determine shooting levels for that same winter.

The criterion that a shooting strategyshould producea stable equilibrium in the
model [7.5] whenvital ratesare constantenablestotally unsuitablestrategiego be

rejected. However, further analysis, that takes account of the observed fluctumations

therecruitmentandsurvivalrates(Table7.1), is requiredbeforeit canbe concluded
that either of the strategiesaboveare suitablefor the observedsituationwherevital

rates fluctuate a great deal. For this reasonchangesin the persistencetime

distribution under the shooting strategié$] and [7.7] are considered.
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Persistence time under controlled shooting
Analytic insights

The shootingstrategied 7.6] and[7.7] stabilisethe size of the populationdescribed
by [7.5] becausgheyimposea form of densitydependeninortality in a modelwhere
thevital ratesotherwisefluctuateindependentlyf populationsize. Theinclusionof
a thresholdin these strategies,below which no shooting takes place, suggests
comparison with the model of chapter 4, wheraadupperboundto populationsize
wasimposedon a linear (i.e. densityindependentpopulationmodel. In particular,
wherethe proportion,a, of femalesoverthethresholdwhichis shotis one,similarity
to the modelwith a hard upperlimit equivalentto the threshold,T, is likely to be
high. The main difference betweenthe model consideredhere and the model of
chapter4 arisesfrom the fact that the model hereis basedon a Novembercensus
which takesplacebetweerthe summerbreedingandthe winter whenthe thresholdis
enforcedby shooting. The Novembercensusgs the variableon which the persistence
time abovethe lower critical sizeis based. In the modelof chapter4 this variable
could not exceedhe upperthreshold,N,. Here,the thresholdmay be exceededlue
to the temporalseparatiorof breedingand shootingmortality. Thus, evenwith the
proportionshot,a, equalto onethe shootingthreshold,T, differs to someextentfrom
a hard upper bound to population size.

Fig. 7.7 comparesiwumericalestimatef persistencéime understrategy(i) wherea

= 1, with persistencdime distributionscalculatedfrom eqn. [4.3] with the upper
limit, N,, equal to the shooting threshold, The approximatiors tolerablegiventhe
differencesn the modelsdiscussedbove. The modeof the distributionscalculated
from [4.3] coincidewith the modesof the numericallyestimatedistributionsandthe
distributionsare similarly skewed. However both distributions of the persistence
time under shooting show a slightly bimodality which cannot be produced by [4.3].

While the parallels betweenthe model where all females over some threshold
populationsize are shot and the model with a hard upper limit of chapter4 are
interestingandthe approximatiorto the distributionof persistencéimesreasonable,

it is unlikely that such a high value of a would ever occur in a conservation
managementituation. Rather more relevantis comparisonwith the situation
considered in chapter 5 where a population is fluctuating around some mean value.
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For the threshold shooting strategies[7.6] and [7.7] necessaryand sufficient

conditions for a positive equilibrium wittonstantrecruitmentp, andsurvival,S are
(Nisbet 1989; Middleton, Nisbet & Kerr 1993):
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Figure 7.7. Comparisorof (----) numericallyestimatedoersistencéime distributionsfor the goose
modelwith shootingregulatedunderstrategy(i), with the proportionover the thresholdshotequal
to one,and(——) the linear modelwith a hardupperthresholdwherepersistencdime is given by
[4.3]. (a) growingpopulation:b = 0.14,0, = 0.1,S= 0.93,0. = 0.17;(b) no growth:b = 0.134,0,
=0.0707,S= 0.864,6.= 0.0949.N_ = 5000,N, = 11000,T (= N,) = 10000 in both cases.
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b+S>1

a<(b+5-1)/(bc +3) [7.8]

For local stability shooting under.p] requires the condition

a<(1+b +S)/(bc +S) (7.9

in addition to the inequalities[7.8] while strategy[7.7] requiresthe additional
condition

a<1/(bc+S) (7.0

Thus,if recruitmentandsurvivalwere constantat their meanvalues(calculatedrom
thedata ofTable7.1) of 0.14and0.93respectivelyshootingunderstrategy(i) with c
=2, eqn. 7.6], would result in a stable equilibrium for 0.0@&< 1.71whilst strategy
(i), egn.[7.7], requires0.06 < a < 0.83. For the meanratescalculatedwith years

with "impossible"survival ratesexcludeda positive equilibriumwould not ariseasb
+ S< 1.

With fluctuating recruitmentand survival ratesthe populationsize may fluctuate
aroundsomemeanvalue relatedto, but (aswas the casein Roughgarden'snodel
investigated in chapter 5) probably less than, the determiacptiéibrium population
size. Theexistenceof sucha "stochastiequilibrium™is, of course dependenbn the
level of variability in theserates. In particularthe long run growth rate, u, would
require to be positive (replacing the condition fordieéerministiccasethatb +S >1
is necessary). Somenarrowingof the potentialvaluesfor a would also be likely,
thoughthe extentto which this occursdependson what level of fluctuationaround
the mean population size is considered "stable".

The resultsof chapter5 for the persistencdgime of populationsfluctuating around
somemeanvalue suggestthat the persistencdime distribution will be exponential
for all but shorttimes. Unfortunatelya generalmethodfor calculatingthe mean
persistencdéimesin suchsituationswasnot forthcoming. Local linearisationof the
deviation from the mean population size under the threshold shooting strategies
producesan autoregressiv@rocesgappendix2). While suchapproximationsvere
found to produce'ball park’ estimatedor meanpersistencdime for Roughgarden's
(1975) logistic with random carrying capacity, Fig. A2.2 demonstratedhat the
observedrariancein recruitmentandsurvival placesthe Islay barnaclegeeseoutwith
the rangewhere the local linearisationis likely to be useful. The approximation

180



[A2.7] underestimatesthe variance in population size when compared with
simulationsof the full model. In additionthe meanpopulationsizeis found to be
lessthan the deterministicequilibrium when vital ratesare constant. In the next
sectionthe effect of shootingon persistencdime is thereforeinvestigatedwith the
aid of numerically estimated persistence time distributions.

Numerical analysis

Persistencdime distributionsfor the model [7.5] with shootinggiven by [7.6] or
[7.7] can be estimated numerically with recruitment and survival given by
b =b+0,Z

§=S+0yY, 78l
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Figure 7.8. Numericalestimatesf persistencdime distributionsfor the model[7.5] with (- —-)
no shooting; (-« ) shootingunder strategy(i), [7.6], with a = 0.2, T = 10000,c = 2; (—)
shootingunderstrategy(ii), [7.7], with a= 0.2, T = 10000,c = 2. In all casegheinitial numberof
femalesN,, is 11000; the lower threshol,, is 5000femalesb = 0.134,S= 0.864,0, = 0.0707,0
« = 0.0949. Persistencdime distributions were estimatednumerically and smoothedusing a

symmetric nearest neighbour linear least squares procedure with a span of 10 time steps.
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whereZz, andY, areindependentGaussianiandomvariableswith meanzeroandunit
variance.

Figs. 7.8 and7.9 illustratethe effect of shootingregulatedunderstrategie§7.6] and
[7.7] on the distribution of persistencetimes. For a slightly negativelong run
populationgrowth rate (Fig. 7.8) the main effect of shootingundereither strategyis
to raisethe probability of the populationreachingthe lower ‘critical size' of 5000
individuals at shorttimes. Becausethe ultimate probability of reachingthe lower
threshold isonein all threecaseghereis a correspondingeductionin the probability
of reachingthe thresholdat longertimes. The importantpoint, however,is thatthe
mode of the persistencdime is not shifted to a shortertime by the imposition of
shooting.
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Figure 7.9. Numericalestimatef persistencaime distributionsfor the model[7.5] with (——)

no shooting;(------ ) shootingunder strategy(i), [7.6], with a = 0.2, T = 10000,¢c = 2; (- — -)

shootingunderstrategy(ii), [7.7], with a= 0.2, T = 10000,c = 2. In all casegheinitial numberof

females N, is 11000;the lower threshold, N, is 5000femalesb = 0.14,S=0.93,06, = 0.1, 6. =

0.17. Persistencdéime distributionswere estimatedhumericallyand smoothedusing a symmetric

nearest neighbour linear least squares procedure with a span of 5 time steps.
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For a populationgrowth rate equivalentto the "bestestimate'from the data ofTable
7.1thereis a similar increasen probability of reachingthe thresholdat shorttimes
when shooting is imposed (Fig. 7.9), and again the modal persistencetime is
approximatelythe sameasthe no shootingcase. However,the dominantfeatureof
the persistencéime distributionsundershootingis theraiseddistributiontail. In this
case shooting considerablyincreasesthe ultimate probability of the population
reachingthe lower threshold:this is dueto the fact thatthe unconstrainegbopulation
growth that was possiblewith a positive growth rate, and no (naturalor imposed)
regulation,is now prevented. Thetail of the distributionis exponentialjn line with
the analyse®f chapters wherean exponentiapersistencéime distributionarosein
modelswherethe populationwasregulatedaroundsomemeansize. The persistence
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Figure 7.10. Persistencéime distributionsfor the model[7.5] with shootingregulationbasedon

thenumberof femalesin the previouswinter,eqn.[7.7]. ——:a=0.6,T =10000,c = 2; ---+---- a

=0.6,T=10000,c=1;——:a=0.6,T=15000,c=2;---:a=0.2,T=10000,c=2. Inall

cased\, = 11000,N, = 5000,b = 0.14,5S=0.93,0, = 0.1, 6. = 0.17. Persistencéime distributions

wereestimatechumericallyand smoothedusinga symmetricnearesneighbourinear leastsquares

procedure with a span of 5 time steps.
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time distributionsundershootingalso showa bimodality similar to that exhibitedby
Roughgarden's (1975) stochastic logistic, one of the models investigated in chapter 5.

Fig. 7.10 shows persistencetime distributions for different values of a (the
proportionshot), T (the thresholdnumberof females,below whichno shootingis
allowed),andc (the effectof matelosson recruitment). In all casegshe modesof the
distributionsaresimilar to that of the persistenceime distributionwithout shooting.
The main effect of a changein parameterds in the probability of reachingthe
thresholdat a giventime. For athresholdlevel, T, anincreasen the proportionof
femalesover the thresholdshot resultsin an increasedprobability of reachingthe
small population size of interest, N,, at short times (balancedby a decreased
probability at longertimes). Decreasinghe value of c (i.e. assumingthat a greater
proportion of the femaleswhose mates are shot form new pairings before the
summer)resultsin a slightly decreasegbrobability of reachingthe ‘critical’ level at
short times (the first two decadesfrom the imposition of controlled shooting).

30000 40000 50000
T T

20000
. o — =

10000
T

200 300 400 500

time (years)

Figure 7.11. Realisationsof the model[7.5] with N, = 11000,b = 0.14,S=0.93,0, = 0.1, 0. =

0.17. - — - : numberof femaleswith no shooting. —— : numberof females(and-------- numberof

females shot) with shooting regulated bB%7] with a = 0.6,T = 10000¢ = 2.
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Settingthe shootingthresholdat a highernumberof femalesfor a givenvalueof a,
reducesthe probability of droppingto the critical level at shorttimes. In general
increasingthe impact of shooting(by increasinga or lowering T) doesnot greatly
changethe most likely persistencetime, rather it resultsin a narrowing of the
persistence time distribution such that long persistence times become less likely.

Fig. 7.11 shows realisations of the modeb] with and without shootindpr the 'best
estimaterecruitmentand survival ratesof Table 7.1. Without shootingthe positive
long run growth rate of 0.05 meansthat the population,despitefluctuating a great
deal,rapidly growsbeyondthe scaleof the figure. By contrast, thgopulationwith

shooting regulated by strategy [7.7] is preventedfrom growing and remains
fluctuatingarounda moderatdevel. The value of the parametea in the threshold
shootingstrategieg7.6] and [7.6] determinesthe extentto which the number of

females can fluctuate to high levelShootinghasmuchlesseffecton the lower limit

to which the populationfluctuates. Becauseshootingceasesvhen the numberof

femalesfalls below the thresholdlevel the lower limit is largely a productof the
variancein the populationgrowth rate. By restrictingthe upperlimit of population
size,shootingmeansthata poorrun of growth rateswill bring the populationto the
lower limit (whichis also,for the samereasongslightly lower asa resultof shooting)
moreoften. It is this effectwhich resultsin the higherprobability of reachinga low

population size at short times.

The effects of autocorrelation in the recruitment rate

It was demonstratedbovethat autocorrelationin the rate of recruitmenttendedto
increasethe probability of reachingthe lower populationsize of interestat shorter
times. It is important to consider whether this effect is accentuated under shooting, in
particularwheretherearelagsin the regulationimposedby shooting,asin strategy
(i), egn.[7.7]. Fig. 7.12 showsthe effect of shooting,where the numbershotis
basedon the numberof femalesin the previouswinter, eqn.[7.7]) for simulations
with the sameparameterasFig. 7.4. In all caseghe imposition of shootingraises
the probability of reachingthe lower populationsize of interestat shortertimes.
However,thereis little evidencethat the shootinginteractswith the autocorrelated
recruitmentrateto reducepersistencéimesbeyondthat of the independeneffectsof
autocorrelation and shooting.
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Figure 7.12. The effectof autocorrelationn recruitmentrate on persistenceime distributionsfor
themodel[7.5] with shootingregulatedoy [7.7]. o¢=0.8(——), ot = 0.2 (-++++- ), a=0(---). In
all caseghe initial numberof femalesN,, is 11000;the lower threshold,N,, is 5000 females,b =
0.134,S = 0.864, 0, = 0.0707,0. = 0.0949,a = 0.2, T = 10000,c = 2. Persistenceime
distributionswere estimatechumericallyand smoothedusinga symmetricnearesheighbourinear

least squares procedure with a span of 5 time steps.

Discussion

It is apparenfrom the analysisabovethat shooting,controlledundera strategysuch
as [7.6] or [7.7] which imposesa form of density dependentmortality on the
population,could effectively regulatethe numbersof barnaclegeesewintering on
Islay (i.e. preventfuture increasesn populationsize dueeitherto long term positive
growth, or 'chancefluctuationsto largersizesin a populationwith a growthratenear
zero) without reducingthe mostlikely persistencdime abovesomelower ‘critical
populationsize. For the populationgrowth rate of 0.05, estimatedrom the dataof
Table 7.1, theimpositionof shootingcontrolledundera thresholdstrategyresultsin
anincreasdn the ultimate probability of the populationdroppingto the small size of
interest. Thisis dueto the fact that populationsare preventedrom growing without
limit, a situation which the modet [1] admits in the absence of shootingcouldbe
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argued that this possibility is unrealistic and that the increasein the ultimate
probability of reachinga small populationsize when shootingis imposedis thus
overestimated (in other words, the ‘true’ probability of fluctuations to a low dize in
absence of shooting is greater).

An importantquestionthat remainsis to judge whatthe effect of imposingshooting
on a naturally regulatedpopulationwould be. If natural populationregulationis

currentlyactivein thelslay barnaclegoosepopulationbut undetectedy the analyses
of the previouschapteror perhapsvould occurif the populationwereto grow much

more,would the imposition of the thresholdshootingstrategieg7.6] or [7.7] havea

deleteriouseffect on populationpersistencaindetectedy the foregoinganalysis?

The resultsof chapter5 suggestthat if natural density dependencevere to act to

regulatethe populationaroundsomemeansize then the most noticeableeffectson

the persistencdime distribution would probably be at longer times, producing a

distribution with anexponentiatail, rathersimilar to the effectof imposedregulation
demonstrateéh Fig. 7.9. Naturaldensitydependencenayresultin araisedultimate

probability of droppingto a small populationsize relative to the linear model, as

growth to extremely large population sizeswould be prevented. If the form of

natural population regulation was such that population growth was enhancedat

especiallysmall populationsizesthen this could have a major effect on the lower

limit to populationsize, reducingthe probability of reachingthe critical level. The

effect of controlled shootingon a naturally regulatedpopulationis thus likely to

furtherregulatefluctuationsto largerpopulationsizes,but unlikely to haveany effect

on persistencgime otherthana slightly increasedprobability of reachingthe lower

threshold.

While the modelling exercisecarried out in this chapter suggeststhat shooting
regulatedn sucha mannerthatit imposesa form of densitydependentegulationon
the Islay barnaclegoosepopulationmay well be a satisfactorymethodof regulating
population size (thus preventing increased conflict with agricultural intevegteut
greatly affecting the likely persistencdime of the population,this result must be
consideredn thelight of relevantlegislation,public opinion,andpracticality. While
modellingcanassess thaffectsof managementn a populationsdynamicsit cansay
virtually nothingaboutthe moral perspectiveof culling aninternationallyprotected
species !
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Figure 7.13. The relationshipbetweenthe numberof licencesissuedby DAFS for shooting
barnaclegeeseon Islay in the winters 1982/3to 1989/90,and the numberof geesereportedshot.

Data from Brodie (1991).

From a (possibly naive) legal perspectivea strategyof controlled shootingmay be
permissible under the provisions of shooting to prevent agricultural damage.
However the current licencesystem is unlikely to be of much use in its
implementation. Brodie (1991) points out that there is no relationship between
number of licences issued and the number of geese reported sh@t{8jgFurther,
restrictingshootingto thoseissuedwith licencesof the type currentlyissuedwould
restrictshootingto areasoutwith SSSIs. The model[7.5] assumeghat shootingis
spreaduniformly acrossthe population. Given that the Islay wintering barnacle
goosepopulationis knownto be madeup of groupsfaithful to differentfeedingsites
on the island (Percival 1988,91), restricting shooting to part of the wintering
population could have adverseconsequencesot detectedin the analysisof this
chapter.

Administeringthe shootingstrategythroughthe provision of sportshootingwould
not currently be legal under either UK or Europeanlegislation. Owen (1990a)
suggeststhat wildfowlers would not be want to be associatedwith any culling
strategy,a view confirmedby Harradine(1991). Owenalsosuggestshatincreased
shootingwould attractconsiderablgublic outcry. However,it is interestingto note
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that the meannumberof femalegeeseshotin the simulationof Fig. 7.11 wasonly
488. Doubling this gives an estimate of the mean annual kill of both maferaatk
geese.Thisfigure, in theregionof 1000, birdsis not an especiallygreatincreaseon
themeannumbermreportedshotunderlicencein the winters1982/3to 1989/900f 705
(Table 7.1, data from Brodie 1991), though relating the number shot to the
populationsize meansthatin someyearsthe numbershotwill be muchhigherthan
this mean. Shootingis also likely to be more widely acceptableas a population
managemertbol thanotherculling methodssuchastrappingor poisoning(eitheron
thewintering or breedinggrounds) asit is alreadywidely acceptedasa sport(Boere
1990).

It is possiblethat the provisionsof the recentScottishNatural Heritage Act which
removesthe 'two tier' compensatiorsystemon Islay, by allowing for paymentsto
farmers outwith SSSissuffering damageby goosegrazing, will silence calls for
culling of the wintering barnaclegeesein the immediatefuture. However, if the
upwardtrendin populationsize of the last three decadesontinues,suchcalls will

doubtlesde heardagain. Evenif the Islay wintering barnaclegeesebeginto exhibit
natural regulationof populationsize, either by factors operatingon the breeding
groundsin Greenlandor saturationof the wintering grounds,the populationis still

likely to show large fluctuationsin size as a result of the observedvariancein

recruitmentand survival (Table 7.1). In suchcircumstances policy of allowing a
certainamountof shootingover a thresholdlevel, while perhapsnot contributing
greatly to the reduction of agricultural damage,may neverthelessact to defuse
conflict between agricultural and conservation interests.

Someconservationistfrequentlycite the fact thatthe populationof barnaclegeeseas
very small in global terms (Ogilvie 1983b; Owen 1990a;Fox et al. 1990; Fox &
Gitay 1991) implying that continuedincreasesin the population are only to be
welcomed. However, it is a fact that some speciesare naturally much rarer than
others. Much of the recentincreasen barnaclegoosenumberscan be attributedto
theimpactof manon the environmenthroughthe agriculturalimprovementsarried
out on Islay. Some examplesof the problems associatedwith single species
conservatiommeasuresvhich canresultin degradatiorof the wider ecosystenwere
discussedn chapterl. Boere(1990)acknowledgeshatincreasesn the quantity of
wildfowl is not necessarilypositive in a wider ecologicalcontext. Whilst thereis
little evidencethat the large numbersof barnaclegeeseon Islay currently posea
threatto naturallyoccurringspeciesindependentiyof the lossof semi-naturahabitat
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resultingfrom the taking of more land into agriculture,this may not be the caseif
numberscontinueto grow. The effectof increasechumbersof barnaclegeeseon the
stagingand breedinghabitatsshouldalso receivesomeconsideration. Perhapst is
time for the objectiveof conservatiorplansfor the Islay wintering barnaclegooseto
be concernedwith maintenanceof the population(recognisingthat fluctuationsin
numbersarise naturally as a result of the dependencef populationgrowth rate on
weather conditions) rather than its continued growth.

The provision of sanctuary areas hasasdeenthe majormanagemenpolicy for the
conservatiorof the Islay wintering barnaclegeesgBignal, Stroud& Easterbed 990;
Owen 1977,90a). While this has been successfulfrom the point of view of
safeguardinghe geese,it hasnot preventedconflict with agriculture. Indeedby
increasingthe quality of grasslandn an attemptto attractbirds that were actually
faithful areaselsewhereit may only haveservedto increaseboth the populationand
the conflict. A future policy of population maintenanceecognisingthe needto
compensatéarmersoutwith sanctuaryareasfor having geesegrazingon their land,
and possibly allowing shootingat high populationsizes(especiallyif the upwards
trendin populationsize continues) may be more successful. Sucha policy would
preferablybe partof anintegratedconservatiorapproachencompassingtherspecies
and habitats,ratherthan concentratingon a single species. Agricultural surpluses,
andincreasingpotentialfor "natural heritage"to play a partin the economyof the
highlands and islands of Scotland may make for an easier change to such a policy.

The Islay wintering barnaclegeeseare without doubt a nationalassetand must, as
such, be protected. The part that agriculture on Islay playaintainingthis asseis
often, perhapsunderestimatedLike any assetcarefulmanagemenis essentiabnd
in this casepopulationmodellingcanhelp optimisethe useof currentknowledgein
making management decisions.
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Chapter 8

General discussion
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This chapteris designedo give anoverviewof theresultsincludedin this thesisand
to identify areaswith potentialfor further work. Its purposeis not to repeatthe
discussionghat are found at the end of eachchapterbut ratherto presentsome
generalconclusions. Like the thesis,this chapterfalls naturallyinto two sections:a
discussionof persistencan simple populationmodels,and a discussionof issues
relating specifically to the Islay wintering barnacle geese.

Persistence time in simple population models

Thereis no doubt that persistencdime is a useful measureof the behaviourof a
stochastigpopulationmodel. While persistencdime was introducedin this thesis
specifically in the contextof populationmanagementit also relatesto issuesin
generalecologicaltheoryasthe discussiorof persistencenddensitydependencef
chapter3 demonstratedThe survey(chapter?) of first passag¢ime resultsavailable
for simple stochasticprocessesddlemonstratedhat the mathematicsnecessaryfor
investigating the problem of persistencetime is not very well developed,or
especiallyaccessibleat the currenttime. It is thereforevery satisfyingthat, at least
for persistencdime in linear populationmodelswith independenenvironmentsa
fairly completesetof resultsexists,basedon the first passagdime of the Wiener
process. The characteristicof persistenceime in such modelswas extensively
investigatedn chapter3. The mostprominentomissionfrom the currenttheoryfor
persistencetime in density independentmodels is a method for dealing with
autocorrelated stochastic inputs. Tur@®77)suggestshatin manypopulationghe
underlyingprocessewiill in fact be subjectto autocorrelatedhoiseandthatassuming
independenéenvironmentss necessarilyan approximation. Nisbet& Gurney(1982)
suggestthat "coloured” noise, with non-zeroshort term autocorrelationjs a more
usefulway of introducingstochasticityinto populationmodelsthanthe uncorrelated
white noisemoreoftenused. Lande& Orzack(1988)foundthatnumericalestimates
of persistencdime in an age-structureanodelwith densityindependentateswere
approximatedwell by persistencdime estimatesbasedon the Wiener processfirst
passagetime distribution, if they accountedfor the "built-in" autocorrelation
introducedby age structureinto their estimatesof the long run growth rate and its
variance. Numerical persistencdime estimatesfor the model of Islay wintering
barnaclegeeseconsideredn chapter7 suggestedhat autocorrelatedgrowth rates
may have a substantialeffect on persistencetime. It would be interestingto
investigatenow well the persistence¢ime distribution[3.9] approximategersistence
time in an autocorrelate@nvironmentwith appropriateadjustmentsn the meanand
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varianceof thelong run growthrate,despitethe fact thatthe Wienerprocesqwith its
purely random inputs) can no longer be invoked as the limiting model.

In chapter4 it was demonstratedhat one unsatisfactoryfeature of most linear
populationmodels- the potential for unlimited growth resulting in unreasonably
large populationsizes- could be dealtwith by theincorporationof a hardupperlimit
on population size. A biological mechanism giving rise to sughit is competition
for afinite andindivisible resourcesuchasbreedingterritories. Persistencéime in
such casesyherealinearmodeldescribesll changesn populationsizebeneattthis
upperlimit, canbefound by consideringhe Wienerprocesswith an upperreflecting
barrier. The accurateexpressiorfor thefirst passag¢ime of this procesgrovidedin
chapter2 allowedthe thoroughinvestigationof the propertiesof the persistencéime
distributionof this modelin chapte4. Theadvantagef havinganalyticalresultsfor
persistencdime in this model was demonstratedy the applicationto Stacey&
Taper's(1992) Acorn Woodpeckerdatawhich discoveredflaws in their numerical
treatment.

While persistencéime in modelswith densityindependenvital rates,andthe useful
extensiorto modelswith regulationthroughanupperlimit to populationsize,is well
characterisedn chapters3 and 4, persistencdime in populationmodelswherethe
growth rateis densitydependentemainsunresolvedn the generalcase. However
some generalinsights are still possible. Non-linear stochasticpopulation models
wherethe populationfluctuatesaroundsomeconstantmeansize can be expectedo
give rise to an exponential distribution of persistence timeseasonablyongtimes.
For Roughgarden'sliscretelogistic with randomcarrying capacity,and the goose
model of chapter 7 with threshold shooting, there is evidence of a bimodal
distribution of persistencdimes, the secondpeakin the distribution marking the
onsetof the exponentiaportion of the distribution. Chapters did notyield a general
method for the mean persistence time based on this exponential distribution.

Onedifficulty of the two modelsconsideredn the first part of chapter5, whereit
was possible to obtain expressions for the persistencédmeeanpersistencéime)
by transformationto a simpler stochasticprocess,was the problem of differing
interpretationsof the stochastic differential equations. The "Ito-Stratanovich
controversy" dogged stochasticpopulation modelling for severalyears. Turelli
(1977) suggestedthat, if any, the Ito calculus may be most appropriate for
populationswherethe "true" underlyingmodel canbe consideredo be a stochastic
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difference equationwith autocorrelatechoise. However, by its applicationof the
rules of standard calculus, the transformation method of chapter 5 implied

interpretationof the stochastidifferential equationsaccordingto Stratanovichrules.
Despitethe fact that numericalestimatesuggestedhat the two interpretationgmay
leadto similar persistencéime distributionsfor certainparametecombinationsit is

well knownthatin somecasedhe differentinterpretationsnayleadto very different
conclusiongFeldman& Roughgarderi975,Turelli 1977). If amodelis phrasedn

termsof stochastidifferential equationst remainsinherentlyambiguousunlessthe
appropriatecalculusis also specified. It would be useful to find a model where
persistenceime could be investigatedanalytically for both Ito and Stratanovich
interpretations. While this would necessarily be rather mskatific,it may provide
a qualitative feel for the effect of differing interpretations on persistence time.

Chapter5 also investigatedthe use of local linearisationaround a deterministic
steadystateasa meansof approximatingpersistenceime by utilising resultsfor the

Ornstein Uhlenbeck process. Where environmentalvariation is significant, and
wherethe lower thresholdof interestlies outwith the ‘'normal‘rangeof fluctuationsin

population size (as will generally be the case in managementsituations), the

persistencéime distributionof thelocally linear modelmay differ significantly from

the distribution of persistenceimesin the full non-linearmodel. This resultsfrom

the fact that the linear approximationunderestimatethe varianceof the full model
(thoughoverestimatiorns alsopossible g.g.Nisbet,Gurney,& Pettipher(1977))and
alsothatthe actualmeanpopulationsizein the stochastianodelmay be considerably
lessthanthe equilibrium size of the equivalentdeterministicmodel, a featurewhich

is especiallyimportantwhen persistencdimes are of interest. In addition to the

problem of the linear model inadequately representing persistence tinegfuii non

linear model, the resultsof chapterb also showedthat the meanpersistencdime of

the continuoustime OU processgenerallyunderestimatesneanpersistencen the

"corresponding”,discrete time, autoregressiveprocess. While persistencetime

resultsfor the densityindependenmodelswere insensitiveto changesn time step,
this is not the casein the density dependensituationsconsiderechere,a problem
which must be consideredin future investigationsof persistenceime in density
dependent population models.

In summarythen, a great deal of work remainsto be done before insight into

persistencdime in densitydependenpopulationmodelsreachesanywherenearthe
degreeof completenesshat existsfor densityindependenimodels. In addition to
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consideringgeneralmethodsfor persistencdime in modelswith a constantmean
populationsize, the problemof persistencdime in caseswherethe corresponding
deterministicmodel does not yield a stable point equilibrium (such as cyclic or

chaotic models) must be considered.

Oneapproachthat may proveto be usefulis that of Goodman(1987a,b). Goodman
beginswith the expressiorior expectedoersistencéime in a birth anddeathprocess,
thenredefineghe birth anddeathratessuchthat environmentalariation (aswell as
demographicvariation) can be incorporated. This gives an expressionfor mean
persistencéime which, in theory,could allow the incorporationof arbitraryforms of

the dependencef growth rate on populationsize. If sucha processprovesto be
generallyvalid then the resulting expressionfor mean persistencdime, combined
with the observatiorthat populationsfluctuating arounda constantmeansize show

an exponential distribution of persistence times, could lead to more general insight.

The modelsconsideredin this thesishave all considereda spatially homogenous
population affected by a temporally varying environment. An areathat deserves
attention is the affect of spatial (e.g. betweenpatch) variability on population
persistence.In chapter3 it was suggestedhat a populationsubdividedinto local
populationsaffectedby differenttemporalpatternsof environmentalariability could
well have a much longer overall persistencetime than any of its component
subpopulationsif thesewere sufficiently connectedthat recolonisationtook place
after local extinction. A similar mechanismis also a possibleexplanationfor the
long persistencdime observedn the Acorn Woodpeckemopulationconsideredn
chapter4. Persistencdime in both local and metapopulationsvill undoubtedlybe
the subjectof muchinvestigationin the nearfuture asspatially variable populations
arecurrentlyattractinga greatdeal ofinterest. Verboom,Lankester& Metz (1991),
for instance,considera stochasticmetapopulationmodel for the badger (Meles
meles). Theyfind thata simple modelwith patcheseitherin an occupiedor empty
state adequatelydescribesa more complex model with detailed representatiorof
local population processes. Fragmentationof suitable habitat is found to be
especiallyimportantin persistenceof the metapopulationif suitablehabitatis too
widely spacedrecolonisationdoesnot happenfrequentlyenoughto compensatédor
the effects of local extinctions.
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Population dynamics and management of the Islay barnacle geese

As aresultof changesn the law to allow paymentso farmerswhoseland attracts
grazing geesebut doesnot fall in a Site of SpecialScientific Interestthe conflict

between agriculture and barnacle goose conservationon Islay at presentis,

apparently, not as acute as in previous years. However the overall tpoplation
size, despite thpoorbreedingsuccessn the pasttwo years,appearstill to be oneof

increases in size. Unless natyrapulationregulationis seento betakingaffectthen
the conflict with agricultureis likely to continue. The questionof wherepopulation
regulationwill take effectneedsto be considered.If the populationis not currently
limited by factorsoperatingon the breedinggrounds,such as shortageof suitable
nesting areas,then continued agricultural improvementson lIslay, togetherwith

increasedrefuge areas,and combinedwith the faithfulnessof birds to particular
feedingareasarelikely to leadto furtherincreasesn populationsize. If thisis seen
to happenthenconsideratiorof theimpact,not only on agriculture but on thewider
ecosystemmay lead to the conclusionthat some form of population limitation

(possibly controlled shooting) is appropriate. Should this be the casetheniit is

importantthat the shootingshould be regulatedin a mannerthat takesaccountof

populationsize andthat shootingis stopped whenthe populationfalls below some
threshold size.

Understandingf the dynamicsof the eastGreenlandoreedinggeeses fairly limited

at present. The availabledatarelatesmostly to the Islay wintering birds, on which

the models consideredhere were based,and to birds wintering on the Inishkea
islands. Increasedringing and observationof marked birds in other parts of the

wintering rangeis essentialf understanding@f the dynamicsof the whole population
(rather than just the Islay wintering portion) is to be advanced. However,aastar
situation on Islay is concernedthe most important areafor study relatesto the
question of whether natural density dependenceis beginning to act to limit

populationsize. Given the problemsof elucidatingsuchinformation from simple
censusdata, following the successof reasonablylarge numbersof individually

marked birds is likely to be an important technique in this area also.

At the modelling level there is still opportunity for progressbasedon current

knowledgeanddata. Of particularinterestis the questionof alternativemanagement
strategies.Protectedareasratherthancontrolledshooting,remainthe currentpolicy
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on Islay. Owen (1990a)suggestghat a policy which setsup ‘favouredareas'for
geesewithin which farmingis orientedtowardsproviding feedingfor the geeseand
the geeseare protectedfrom disturbancecould be the modelfor protectionof other
geesepopulationswintering in Britain. Outwith theseareasOwen suggestshat
shootingover agriculturalland be permittedso long asthe populationdoesnot fall
below a certain level.

Modelswhich incorporatefavourablehabitatsurroundedoy hostile areashavebeen
usedby biologistsfor sometime (Gurney& Nisbet1975,McMurtie 1978, Nisbet&
Gurney 1982). The primary conclusion from these models is that dispersal
mechanismand size of the favoured areamay be as important as survival and
recruitmentin determiningpopulationviability. Thesemodels,however,generally
considerandommovementetweenareas and simultaneousecruitmentand death.
Evaluating a policy of refuge provision in the caseof the Islay barnaclegeese
necessitatesonsideringseveraldeviationsfrom this simple model. This includes
diurnalmovementf the geesebetweenfeedingandroostsites(which may not both
be in refugeareas)andwithin seasormovementbetweenislay and otherwintering
areasin the Inner Hebridesand Ireland. While, as discussedabove,dataon these
mattersis limited a modelling framework could be put in place and the policy
evaluatedin the light of current understandingof the population dynamics.
Persistence time would be a useful measure of population viability in such efforts.
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Appendix 1

Numerical estimation of
persistence time distributions
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This appendixbriefly outlines the methodsusedin the numerical estimation of
persistencéime distributions. Thesemethodswvereusedbothto confirm the analytic
resultspresentedn this thesis(andwerethusinstrumentalin revealingthe problems
with publishedprobability density functionsfor the Wiener processwith an upper
reflecting and lower absorbingbarriersdiscussedn chapter2) and alsoto estimate
the persistencdgime distribution when the model of interestcould not be castin a
form in which one of the first passageime distributions of chapter2 could be
applied.

Persistencetime distributions were estimatedby the "brute force" method of
repeatedlyteratingthe differenceequationdescribingthe model,from a giveninitial
state,andrecordingthe time stepat which the populationsizereachedpr fell below,
the lower thresholdvalue of interest. The numberof trials reachingthe thresholdat
eachtime wasthendivided by the total numberof trials to give an estimateof the
probability of reachingthe thresholdat thattime. Typically 300,000to 500,000trials
were necessaryto produce a persistencetime distribution without too much
variability in the probability of absorption at a given time (see Fig. A1.1).

The program was written along the same lines as other tools used by the
mathematicalbiology group: the actual model for which the persistencetime
distribution was to be estimatedbeing specifiedin a different file than the main
program. This allowed different modelsto be specified with great ease. The
programwasinitially implementedon a personalcomputerin Borland Turbo Pascal
v.3. Howeverthe necessityof carryingout a greatmanytrials in orderto build up a
clear picture of the persistenceime distribution meantthat this was not a viable
platform, a single distribution taking severaldaysto compute. The programwas
thereforerapidly portedto an Atari ATW transputerworkstation and recodedin
Prosperd®roPascal.This providedthe platformfor computingsimulatedpersistence
time distributionsfor the first yearof the project. The creationof the Departmenof
StatisticsandModelling Sciencewith extensivecomputingfacilities enabledanother
changeof computing environment,to Sun sparcstationsand Sun Pascal. This
enabledpersistenceime distributionsto be computedin 10 to 15% of the time
previously required. Without this computing power estimating persistencetime
distributionsfor continuoustime modelswith eulerintegrationwould not havebeen
possible.
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The correctworking of this programwas testedby numerically estimatingthe first
passagetime distribution for the "Gambler'sruin” problem, for which the exact
distributionis known. This problemconsidersa gambler with initial capital£z, who
losesor gains£1 eachroundwith equalprobability (*2). The questionis how long
the gamecontinuesbeforethe gambleris ruined (i.e. no capitalremaining). This is,
of course equivalentto finding the first passagéime of a simple,symmetricrandom
walk to an absorbingbarrierat zero. The probability at ruin at time (or round)t is
given by (Feller 1968, eqn. 111.7.5)

t
Z_n%(%(Hz)) if (t+2)is even

0 otherwise

g(t) = [AL.1]
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Figure A1.1. The first passagetime for the classical gambler'sruin problem determined
numerically by the methodsdescribedin this appendix,and comparedwith the exact formula
[A1l.1]. (a)3.0E+2trials, (b) 3.0E+3trials, (c) 3.0E+4trials, (d) 3.0E+5trials. Theinitial capital,

z, equals £10 in all cases.
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Fig. Al.1 compareshe distribution given by [Al1.1] with that found numerically.
This figure demonstratedoth that the numericalmethodsuccessfullyestimateghe
first passagéime distribution,andillustratesthe earlierpoint aboutthe largenumber
of trials required to produce a distribution with as little variance as possible.

Euler integration of continuoustime models

The programdescribecherewasconstructedpecificallyto estimatepersistencéime

in discretetime modelsdescribedby differenceequationswith a time stepof one.

Persistencéime for continuougime stochastianodelscould, however,be estimated
by appropriately scaling the results to produce euler integration.

As anexampleconsiderthe Wienerprocesswith drift u,, andvariances . Thefirst

passagéime distributionis estimatedoy eulerintegrationof the generalisedandom
walk

X = X + 2, [A1.2]

where Z, is a Gaussianrandom variable with mean i, and variances?,. To
simulatethe Wiener processwith an integrationtime step of At [Al1.2] is iterated
with

MHrw = Myt

Oy = Oy/AL [A1.3]

The first passage time distribution obtained must then be scaled appropriately:

6, (t) = Orw (1/A1)

A [AL.4]

Becausea smallertime stepis beingconsideredhereare more "opportunities“for a

trial to reachthe thresholdin a given length of time. Thusfor the sameclarity of

estimatedpersistencéime distribution (i.e. similar variancesn estimatedprobability

of reachingthe thresholdat time t) asthe At = 1 casethe numberof trials requiredis

multiplied by 1/At. Euler integrationwith a time step At = 0.1 thus increaseghe

computationeffort by an orderof magnitudeoverthe At = 1 case. As the numberof

trials requiredis large,evenfor the unit time stepcase,this is not a trivial increase
and may requireruns lasting severaldaysevenwith the latest(sun) versionof the

program.
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Random number generation

Uniform random deviateswere producedusing Sun Pascal'sbuilt in random
function which appearedo performaswell asPresset al.'s (1989)r an3 uniform
random deviate generatingfunction, as regardslack of serial correlation and
uniformity of distribution. The built in function was generallypreferredfor reasons
of speed When required Gaussianrandomdeviateswere producedfrom uniform
random deviates by the transformation method (Fatests 1989, functiorgasdev).
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Appendix 2

Local approximation of the goose
model with threshold regulated shooting
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This appendixconsidersanapproximationjn the neighbourhooaf the deterministic
equilibrium, to the goosemodel discussedn chapter7 [7.5] with shootingunder
strategy(i), eqn.[7.6], wherea proportionof the excessof femalesover a threshold
are shot.

Considerfirst the deterministicmodelwith constantrecruitment,b, andsurvival, S.
Substituting [7.6] foH, in [7.5] yields

Ni.y = 6( N, _Ca[ N, _T]+) +§(Nt _a[ N; _T]+) [A2.1]
wherethe shorthandnotation| ], is definedby the rule [x], = x if x > 0 and zero

otherwise.

The map of N,, againstN, is illustrated in Fig. A2.1 with the deterministic
equilibriumN given by

[A2.2]

T N
N

t
Figure A2.1. Map of N,,, againstN, for the goosemodelwith shootinga constantfraction of the

females above a thresholy7.1].
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The modelis linear in the region of the equilibrium: this is obviousif [A2.1] is
written in the form

No, =[b1-ca) +S(L-a)]N, +aT(cb +8) (N >T) o0

To investigatethe effect of fluctuating vital ratesn, v,, and vy, are introducedas
deviationsfrom the meanvaluesof numberof femalegeeserecruitmentandsurvival
respectively such that

N, =N +n,
§ =S+yvg,
b =b+v, [A2.4]

Inserting[A2.4] in [A2.3], expandinganddiscardingtermswhich involve products
of anytwo of n, v, or vy, yields an approximationfor the deviationfrom the mean
population size

N, =on +Z, [A2.5]
where
o =b(1-ca)+S(1-a)
B aT[v,O,t (c-cS+S5)+vg,(1-b +c5)]
- 1-b-S+alch +5)

[A2.6]

The approximationfA2.5] is a first orderautoregressiverocesswith variancegiven
by (Chatfield 1984)

2
2 Oy
n

o, = 5
l-a [A2.7]

Note that a similar approximationprocessfor the model with shootingdefined by
egn.[7.7], wherethe numbershotis basedon the numberof femaleson Islay in the
previous winter, would produce a second order autoregressiveprocess. For
independentecruitmentand survival, with varianceso? and o2 respectively,the

variance ot is given by

a2T2[6b2(c ~cS+3)" +52(1-b +05)2]
o=

[1-b-S+a(ch +5)[

[A2.8]

Fig. A2.2 compareghe variancein n, obtainedfrom simulationsof [A2.1] with that
given by the approximation [A2.7]. As the variance of Z, increases,the
approximation[A2.7] tendsto underestimateahe actual variancein the deviation
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Figure A2.2. Standarddeviation of the departurefrom equilibrium populationsize, o,, as the
environmentaktandarddeviation,o,, increases.Line: approximationof eqn.[A2.7]; points:mean
standarddeviation(with 95% confidenceinterval) for 5000simulations,eachof 1000years,of the

full model [A2.1].

from the deterministic equilibrium population size. The point with the highest
variancesin Fig. A2.2 correspondgo the valuescalculatedfor the Islay wintering
barnacle geese from the data of Table 7.1 (chapter 7).

In additionto underestimatinghe variancein populationsize at higherlevelsof the

input variance,the first order autoregressivepproximationalso overestimateshe

mean population size. While the approximation [A2.5] suggeststhe average
deviation from the deterministicequilibrium [A2.2] will be zero, the simulations
carriedout confirm that,in commonwith Roughgarden'$1975) stochastidogistic,

the meanpopulationsize whenthe vital ratesare varying is generallylessthanthe

deterministicequilibrium. For the variancein recruitmentand survival measured
from the Islay goosedata ofTable 7.1 the meandeviation,n, from the deterministic
equilibrium is -1272.7 (measured over 5000 replicates of 1000 years).
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