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Abstract

By constructing a mathematical model, thisthesis aimsto infer the feeding behaviour of a
population of fish from variations in stomach contents samples taken at intervals

throughout the day.

| take a population approach to the problem and consider the dynamics of the distribution
of stomach contents of a population. Assuming that the population is closed and consists
of identical individuals, chapters two and three illustrate the temporal variation in the

stomach contents distribution under particular digestion and feeding behaviour.

The middle section of the thesis explores the possibility of developing a method of
automatic solution of the inverse problem of finding the parameters defining the feeding
behaviour in the model from a given stomach contents distribution. By comparing the
feeding behaviour inferred from noisy, categorised data with the known feeding
behaviour from which the data was simulated, | can make conclusions about sample size
and sampling frequency requirements in order that the feeding behaviour inferred from
such samples adequately predicts the feeding behaviour of the population from which the

samples were drawn.

In the find section of this thesis, | consider some data recently collected from Loch
Gairloch, Scotland. By fitting the output of my model to this data | have inferred the
feeding behaviour of the sampled fish species which is then compared to results found in
the literature. A further application of this model is in a calculation of daily ration of
each species which is then also compared to other results in an attempt to further validate

the model.
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Chapter 1
| ntroduction and

motivation




1.0 Introduction

Ecologistshave beerstudyingthe behaviourof fish for manyyearsin an attemptto
find out how particularspeciedit into the marineor freshwaterecosystem. Like all
animals,their behaviouris controlledby the needto survive and can be classifiedas
feeding,reproductionandtime spentavoiding predation. Without sufficientfood the
fish would be unableto grow (Elliott 1975a)or reproduceproperly (Karlsenet al.
1995) or haveenoughenergyto move and would thereforebe more susceptibleo
predation. The questfor food is thereforeoverriding. If we can establishwhat and
how muchfish eatthenwe will havea clearerpictureof how particularspeciedit into
a particularecosystem.Recentinterestin fish feedinghabitshasbeensparkedoff by
the plummeting stocks of exploited marine fish populations(Daan 1989, Hempel
1978). Multispeciesstockassessmemhodels(which | shalldiscusdater) constructed
in an attemptto help managethis situation require an understandingf the trophic
interactionsbetweenspeciesand a knowledgeof mortality of particularfish cohorts
dueto predation. Insightsinto the requirement®f suchstockassessmemhodelscan

clearly be gained from studies of fish feeding behaviour.

Unfortunately, there are many practical difficulteessociateavith studyingthe feeding
behaviourof fish asit is impossibleto carry out direct observationsof fish in their
naturalhabitats. Studyingthe feedinghabitsof mammalsandbirdsis in generaleasier,
most obviously becausejn general,the observationsdo not needto be carried out
underwater, but alsdueto the fact thatafter feedingthereare oftenvisible remainsof
a meal; for example,half eatencarcassedyones,regurgitatedpelletsand identifiable
faeces. Evenwithout tracingthe everymove of the specieswve areinterestedn, it is
thereforepossible,in many casesto draw sensibleconclusionsabout their feeding
habits. Although fish do regurgitatefood remains,associatingoarticularregurgitated

food samples with a particular fish species is also likely to be very difficult.



An alternativeto directfield observationgould be to capturefish and hold themin a
tank - recordinghow muchandhow often they feed. This was attemptedby Elliott
(1972). However,it is unlikely that it will be possibleto recreatesufficiently the
natural conditions of the species in a laboratory in order to be atvlakieany definite
conclusionsabouttheir feedingactivity. It hasbeenknown for many years(Bajkov
1935)that feedingis affectedby the temperatureof the water,its acidity, turbulence
and the light intensity. Although it has bestrownthatrelatively few of theseexternal
variablesaccountfor the majority of the variation in gastric evacuationrate and
consequentlyeedingrate (Bromley 1990, Temmingand Anderson1992),it would be
impossibleto include, in a tank, the huge choice of prey both live and deadwhich
would be availablein the wild andthereforefeedingmay not occurasit doesin the
wild. It is alsothoughtthat fish caughtand held in captivity becomestressedand
thereforemaynot feedasusual(Lockwood1980,Ksteret al. 1990)andconsequently
it seemsunlikely that resultsfrom laboratoryfeeding experimentswill give us any

meaningful information about the feeding habits of fish in the wild.

So, the only option which remainsis to catchsamplesof fish from the wild, remove
their stomachdo seewhatthey haveeatenandfrom this attemptto infer their feeding

behaviour.

1.1 Importance of fish feeding habits

Hundredsof years before ecologistsbecameinterestedin the interaction between
animal speciesand beganwriting papersaboutfood consumptiorratesand predation
of particular species, the feeding habits of fish were being studied in everyddyidlie.
havealwaysbeena readily availablesourceof food, so early interestin their feeding
habitswas motivatedby the wish to improve fishing methods. For example,if we

know whenandon what prey speciesa fish populationfeeds,catchingthemis much



easieraswe know what time of the day they will be mostactive (i.e. whenthey are
feeding)andwith whatfood to bait them. Thesedays,however fishing methodsare
so efficient that studiesof fish feedinghabitsare becomingincreasinglyimportantin

attempts to regulate fishing.

In the pastfew decadeghere hasbeena noticeablereductionin the exploited fish
populationsof the world (Hempel1978,Daan1989). Worriesthat severelydepleted
stocksmay neverrecoverhaveleadto strict limitations on the harvestingof particular
speciesand attemptsat constructingmore and more effective stock management
models. Fish feedinghabitshavebecomemore usefulin the commercialenvironment
with the realisation that fish stocks may be accuratelgelledon a multispeciedasis,

rather than considering all species individually.

In manycasesthe analysisof fish stocksis basedon estimatesnadefrom the numbers
caughtcommercially. It wasGulland(1965)who first developeda modelwhich could
be usedto monitor fish populationsin this way. His model suggestedhat given a
knowledgeof the catchof a speciesat a particularage (from commercialcatchdata)
and natural mortality, then the fishing mortality and populationof the speciesat a
particularagecan be calculated by an iterative procedure. This theoryis known as
Virtual PopulationAnalysis (VPA). Pope(1972)approximatedhis model by cohort
analysiswhich simplified the iterative procedurerequired to solve the difference
equations. However,in both thesemethodsit is usualto makethe assumptiorthat

natural non-fishery mortality is constant for all ages.

Bevertonand Holt (1957) realisedthat the life history parametersf fish must be
affectedby the fluctuating populationsof other species. But, for most of the next
twenty years,suchinteractionsvere not incorporatednto any fish stockmanagement
models. Questionsasto the validity of the singlespeciesnodelsbeganto be askedin

the early 1970's by Daan (1973 and 1973 madea detailedanalysisof the stomach



contentsof cod and found that they preyedon many different fish species,but the
dominantspecieswvere young haddockandwhiting. This leadto the suggestiorthat
young fish will have a higher natural mortality than old fish and that the constant
mortality rate assumptionis wrong. Major changesto the structure of fish
communitiesin the late 1960'sand early 1970'spromptedthe work of Andersenand
Ursin (1977). Knowing thdtsh specieslo not existindependenthof eachother,they
constructeda general,comprehensivenodel of an exploitedmarineecosystem. The
modelwhich they constructedllustratedthe possibility that overfishing of herringand
mackerelin the sixties which lead to stock collapsescould have meantthat enough
food was available to trigger amcreaséan the stocksof gadoidswhich correspondso
the increasesn the catchof thesespeciesat this time. So, althoughthis modelwas
ratherimpracticalwith the estimationof thousand®f parametersequired,it did lead

other fisheries scientists to realise that a species could not be treated individually.

Returningto the earlierideasof VPA and utilising catchat agedatain attemptsto
estimateactualfish stocks(Gulland1965), Helgasonand Gislason(1979) suggestec
multispeciesvirtual populationanalysis(MSVPA), basedon the Andersenand Ursin
exploitedecosystenmodel,in which the analysisfor severalsinglespeciesvascarried
out simultaneouslywith coupling betweenthem. Pope(1979) also reformulatedhis
single speciescohort analysisas a multispeciesmodel. Furtherdevelopmentsn the
MSVPA are discussedn later works by Pope(1989,1991)while other multispecies

models are summarised in Daan and Sissenwine (1991).

Like thessinglespecies/PA, the MSVPA requiresa knowledgeof mortality. It seems
probable, ateastfor smallfish thatthe mostimportantcomponenof natural(i.e. non-
fishing) mortality is piscivory, both by individuals of the samespeciesand of other
species.The predationload on a particularageclassof a particularspecieqcohort)is

thereforelikely to changeasthe fish grow (Daan1972and 1975). Somepredators



will prey on especiallysmall fish, while otherswill preferslightly largerones. So, in
MSVPA the naturalmortality is usually split into two parts- a constantbackground
mortality and an age and species dependent predation mortality. Although the constant
backgroundmortality still hasto be estimated(or guessedjt is assumedo be very

smallin comparisorto thetotal naturalmortality whenthis is significant,i.e. for small

fish and the predation mortality is calculated from studies of fish feeding habits.

Clearly measurementsf the predationload on particularcohortsof commercialfish
speciesareimpracticalandthereforea lessdirectrouteto obtainingsuchvalueshasto
be taken. Stomachcontentsanalysiswere usedby Daan(1972and1975)to suggest
that predationmortality was not equalfor fish of all agesand thereforefrom careful
stomachcontentsanalysis,we shouldbe ableto get a quantitativebreakdownof the

diets of all predator classes involved in the MSVPA.

Such quantitative information must be representative of the total grouahktionand
therefore placeshigh demandson the spatial and temporal collection of stomach
contents. Consequentlyextensivestomachcontentssamplingprojectswere carried
outin only two years - 1981and 1991, eachknown as'the yearof the stomach'. In
eachyear the stomachsof samplesof five predatorspeciesin the North Seawere
dissectedand analysed(Anon 1984, Daan 1983, Anon 1994). The results being
illustrated as weight of each prey species(by age) found in the stomachof each
predator species(by age). Theseresults can then be usedto help estimatethe

predation mortality of a particular prey species at a particular age.

The total predationload on a particular prey cohort due to predation (which is
requiredby the MSVPA) canbe expresse@sthe sumof the numbersof fish eatenby
eachpredatorspecief a particularage. Thesenumbersin turn canbe expressedh
termsof the per capitapredatorration, the suitability of a particularprey type asa

food item for the predator,the averagemassof eachprey speciesand the average



abundances of the predatordprey populations. (All variablesareagespecific). The
definitions of ration vary from authorto author(seeStokes1992), but it is usually
assumed to be constant between years and can be estimated from feeding dhulies. If
abundancesf eachprey cohortwereknown, thenthe suitabilities could be calculated
usingthe stomachweightmatrix. However,the abundancearenot known. Theyare
thereforeinitially guesseandthenmodified by an iterative procedureuntil the model
estimatesof each predatorsconsumptionagreesclosely with the stomachcontents
data. A moredetailedinsightinto thesecalculationscan be gainedfrom Magnusson

(1995) and Sparre (1991).

Closelylinked to the very commerciallydriven constructionof fisheriesmanagement
modelsarethe studiesof food websandecosystenmodel. Knowing how fluctuations
in fish populationsaffect other aquatic speciesis an important part of community
ecology. Foodwebshave beerstudiedfor manyyears(lvlev 1945, Steele1974)and
most people realise that trophic interactionsplay an important part in structuring
ecological communities. For example Power (1990) found that the effects of
fluctuationsin the populationof roachin ariver communitywerevisible throughfour

trophic levels of the food web, down to the levels of diatoms and bacteria.

Obviouslywithout knowing whatfish eat,we do not know whatlevel of the food web
they belongto andthereforehow populationchangesaffect the community. This can
easilybe decidedby a straightforwardstomachcontentsanalysisand classificationof
prey. However,a moredifficult questionto answeris what effectthe populationasa
whole hason anotherspecies. More recentecosystenmmodelshave beerbuilt on the
basisof a closedenergy systemanalysingthe transfer of energy per unit biomass
betweenspecies. Estimatesof suchvaluescan be madefrom assumption®f energy
requirementgor growth andreproductioncombinedwith efficiency estimates(Pauly

1986). Alternative calculationsof energy requirementscan be made from food



consumptionestimates. These once again can be made from stomach contents
samples,usually by combining the dynamics of stomach contents sampleswith

measurements of gut evacuation rates (Elliott and Persson 1978).

With increasedhttentionbeingpaidto the future well-beingof the whole ecosystenof

the North Seaand other heavily fished areas,fish quotashave beenmposedin an
attemptto preservethe marine food chain. Fishermenare thereforeincreasingly
looking elsewhergor employment. Fish farming is becomingever more popularin

countrieslike Scotlandand Norway where communitieshave previouslyrelied quite
heavily on the seafishing industry. Clearly a knowledgeof whatthe farmedfish need
to eatto surviveandkeepthemhealthyis of paramountmportanceto the fish farming
industry. Recentexperimentdnto fish feedinghave beercoupledto growth studies
with commerciainterestconcentratingpn how to maximisefish growth with minimum
expensdo the farmer. Modelsrelatingfish growth to instantaneoutod uptakehave
been constructedby Majkowski and Waiwood (1981) and Majkowski and Hearn
(1984). As well as beingsefulin fish growth studies suchcalculationscanbe usedin

calculationsof total biomassconsumptionof a populationto be usedin food web

models.

In this sectionl havetried to show that a knowledgeof fish feeding behaviouris
importantto many marineand freshwaterstudies. The discussionactually describes
the complexity of ecological systemsand how we cannot really consider the
commercialfishery view without consideringthe ecosysteminteractions,with fish

feeding behaviour being the connection.

1.2 Stomach contents analysis



The previoussectionillustratedthe variety of informationrequiredaboutthe feeding
habitsof fish, with in somecasesvery preciseprey identification requirementsand in
others,total food ration. The only practicalway of drawing any reliable conclusions
aboutthe feedinghabitsof fish in the wild is by gut contentsanalysiswhich hasbeen
used in various formr manyyears. Thetype of analysiscarriedout is dependenbn
the questionswhich are being addressednd whetherthe study is concentratingon

'what?', 'when?' or 'how much?' fish eat.

The firststudieswhich werecarriedout mainly concentrate@n the analysisof the diet
of different fish species(e.g. Brooks 1886). The basic studiesjust consistedof
catchingfish and dissectingtheir stomachso that the main prey sourcescould be
classified. Suchstudiesarestill beingcarriedout today (Hall et al. 1990)and provide
importantevidenceconcerningbetweenspeciescompetitionfor particularprey. For
example, more recent prey speciesanalysis have incorporatedtime dependence
(Magnusonl969,Knust 1986)or habitatdependencéGibsonand Ezzi 1986). Then
conclusionanbe drawnaboutwhetherthe food of a particularspecieschangesover
the courseof adayor yearor whetherpreytypeis dependenbn wherethe population

lives.

Extremely large scale prey speciesidentification studiesof certain North Seafish
speciesverecarriedout in the Year of the Stomachin 1981and1991. The samples
consistef manythousand®f fish, eachstomachbeingdissectedand categorisedor
amountof particularagedprey in a particularagedpredatorsstomach(Daan 1983,
Anon 1994). The resultsof such studiesare to be usedto give measuref the
susceptibilityto predationas describedn the previoussectionin co-ordinationwith

multispecies virtual population analysis.

Although providing very detailedinformationon the prey of particularpredatorssuch

large scalestudiesare very time consuming. Thereare also problemsassociatedvith



speciedgdentification. If stomachsamplesaretakeninfrequently,the remainsof some
prey may havedigestedso muchthat they becomeunidentifiable. To overcomethis

problem,manyscientistshaveresortedo simply measuringhe total stomachcontents
of the individualsin a sampleof fish (Gordon 1977, Keast 1970). This leadsto

attemptsat modelling the changesin the populationaveragestomachcontentsand
inferring diel cyclesof feeding intensity which when combinedwith evacuationrate
estimatescan be usedto makedaily ration calculations(Eggers1977, Thorpe 1977,
Elliott and Persson1978 and Sainsbury1986) which can then be utilised by the

MSVPA.

1.3 Overview of thethesis

As | suggested in the previous section most models of fish feeding behaviour have been
basedon averagestomachcontentssamplesand have not incorporatedany of the
betweenindividual variability which clearly must exist unless, of course, every
individual in the populationfeedson exactly the samesized prey at the sametime.
This, however ,is impossibledueto the distributionof the prey populationavailableto
the predatorsand there has beenfound to be quite a large variability betweenthe
stomachcontentsof individualsof the samepopulationat the sametime (Brodeurand

Pearcy 1987, Jensen and Berg 1993).

In this thesis| shall constructa model which incorporatesthis stomachcontents
variability by describing the variation in the stomach contents distribution of a
populationwhich is undergoingsimultaneoudeedinganddigestion. The thesisbegins
with somedetaileddiscussioraboutmodelsdescribingthe digestionprocessandthen
constructs a digestiaonly modelincorporatingthe stomachcontentdistributionidea.

| havecomparedhis digestionmodelto othermodelsandactualevacuatiordatasets

10



andonly whenthe correctdigestionset-uphasbeenfound do | incorporatethe prey
sizeandtime dependenteedingprocess. The remainderof the first part of this thesis
then goeson to investigatehow the dynamicsof the populationstomachcontents

distribution changes under a variety of feeding and digestion regimes.

The whole aim otonstructinga modelof stomachcontentsvariationis sothatwe can
infer information about the feeding behaviour of fish from actual stomach codsgats
collectedfrom thefield. In the secondpartof thethesisl shallattemptto constructa
non-linearoptimisationmethodwhich will solve this ‘'inverse'problem of fitting the
feedinganddigestionmodelto a given stomachcontentsdatasetand outputtingthe
inferred feedingbehaviour. Obviously, real datasetswill be noisy dueto sampling
error and may be sampledinfrequently and categorisednto few stomachcontents
categoriegatherthanillustrated as a stomachcontentsdistribution. So, in chapters
four and five | have simulatedsomenoisy data setsto investigatehow closely this
model predictsthe feedingbehaviourof a completepopulationof fish by fitting to a
randomlytaken sample. More importantly, we canthen concludefrom this section
whetherthere are samplingconditions(i.e. minimum samplesize, frequency)which
must be obeyedin order that feeding behaviourinferred from thesesamplesby the

model is an adequate description of the population feeding behaviour.

The final sectionof this thesisthengoeson to considersomereal datasetsandinfers
the feedingbehaviourof a numberof fish speciesin a sealoch off the North West
coastof Scotland. Theseinferencesand consequentlaily ration calculationsare then
comparedo otherresultsin anattemptto confirm the importanceand succes®f this

model as a tool for modelling stomach contents variations.
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Chapter 2
Modelling the digestion process
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2.0 Introduction

In the past twenty years, discussion ondigestionprocesshasincreasediramatically
as the importanceof such information for understandingmarine and freshwater
ecosystendynamicshasbeenrealised.In particularit hasbecomeapparenthow the
knowledgeof food consumptiorandfeedingrates,whencoupledwith informationon
types of preyfound during stomachcontentsanalysiselucidategherole of the species

in the trophic network by giving us an idea of its effect on a prey population.

Most information about the feeding habits of fish hasnobtainedvia the samplingof
stomachcontentssincedirectobservation®f the behaviourof a populationof fish are
impracticablein the field. Thereforean accurateknowledgeof the dynamicsof the
digestionprocesss important,asthe relationshipbetweenthe stomachcontentsand
the feedingrateis highly dependenbn the digestionrate. For example ,supposehe
measuredtomachcontentsof anindividual are W, gramsat time t hoursand W,,, at
t+1 hours,thenthe amountof food consumedn the hour U is relatedto the stomach

contents by

where D is the constantdigestionrate in gramsper hour. So, a prerequisiteto
learning anything about feeding rates from stomachcontentssamplesis that the
evacuatiorprocesss understoodand a realistic value for the digestionrate hasbeen

obtained.

2.1 A review of digestion studies

Most theoriesabout the digestion processhave beerbasedon an examinationof

stomachcontentseithercollectedfrom the field or from experimentsonductedn the

13



laboratory. And despitethe recentincreasednterestin this field thereis still much
disagreemenind confusion over the major factors which determinethe rate of

digestion (see Bromley 1994).

The digestionrate is usually definedas the rate at which the stomachis emptiedof
food whetherit is brokendown by enzymesand absorbedhroughthe stomachwalls
or whetherit just passesnto the intestineundigested. The digestionor evacuation
processasit is sometimescalled is saidto be completewhen the stomachbecomes

empty of all measurable remains.

The usual method of monitoring the evacuationprocessis to take a populationof
similarly sizedfish andlet themacclimatiseto life in a closedtank for severalweeks.
Beforebeginningthe experimentthefish arestarvedfor approximatelythreedaysand
then fed tosatiation. Thisis to ensurethatall the individualshave,asnearaspossible,
the same stomach contents at the start of the experiment. Immediatelyeafiteghas
taken placea small numberof fish are removedand the contentsof their stomachs
extracted,either by using a small stomachpump or by killing and dissectingthem.
After their single meal the remainder are left without food. Ba{lk®35),Joblingand
SpencerDavies (1979) and Elliott (1991) found that water temperatureaffected
digestionrate,so keepingall externalconditionsconstantgroupsof the remaininglive
fish are then removedevery couple of hours and their stomachcontentsextracted.
Using such a procedure,the averagestomachcontentsof a given species(under
certainexternalconditions),at a particulartime after feedingcanthenbe calculatedby
dividing the total amountof food in the stomachdy the numberof individuals. The
rate of depletionof averagegut contentss thendefinedasthe averagedigestionrate

of the population.

Most evacuationcurvesasthey are commonlyknown have beerobservedo follow

one of the two shapes indicated in figure 2.1.

14
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Figure 2.1 Two commonly observed digestion curves.

Looking at the changein stomachcontentswith time in a non-feedingpopulationof
fish, most observershave seenthat the averagegut contentsinitially decreasejuite
rapidly, but astheir gut contentsdecreasethis rateslowsdown,asseenin figure 2.1a,
suggestinga non-linear relationship (Basimi and Grove 1985 and Bromley 1987).
However,a numberof digestionexperiment$aveyieldeddepletioncurvesof the type
seenin figure 2.1b (Swensomand Smith 1973 and Grove et al. 1984) whereafter an
initial delayin which thereis no reductionin stomachcontentsthe curvefollows the

same shape as that in figure 2.1a.

There hasbeenlittle agreemenbn the length of the ‘delay phase’, but it hasbeen
suggested that threasorfor this delayis dueto thetime takenfor the acidspresenin
the stomachto penetratethe food substanceand breakit down into piecesof size
suitablefor passageut of the stomachthroughthe pylorus. A lag of up to thirteen
hours was reported of turbot fed especially hardenedpellets (Grove et al 1985)
whereasBromley (1987) observedany initial delayto be lessthanthreehourswhen

the samespeciesverefed on frozenfish, anda paperby Elliott (1991) reportedthat

15



no time lag was apparentwhenfreshtrout fry or sticklebackswere the food source,
indicatinga dependencef the delaylengthon the penetrabilityof food. Theseresults
seemto indicatethat whenfish arefeedingon freshprey, thereis little or no delayin

gut contentsdepletion. In mostdigestionexperimentsfish are starvedbefore being
fed their singlaneal. So on feedingtheir digestiveenzymesnay be switchedoff anda
delaywill occurbeforedigestioncommences.In naturalconditionsit is unlikely that
fish will have their digestion switched off (unlessthere have beenseverefood

shortagesandthereforeno delaywill occurin the digestionprocess.So, in this study
| haveconcentrate@n singlephasedigestionmodelsandnot attemptedo includethe

delay phase.

The majority of authorshaveassumed generalmodelfor the depletionof stomach
contents to be of the form

dw(t) _

o Tkwa 2.2)

whereW(t) is the weight (or volume) of stomachcontentsattimet andc andK are
constants. Thasualproceduras thento try fitting variationsof this modelto various

data sets and evaluating the goodness of fit by least squares methods.

Despitethe manyyearsof digestionstudiesthereis still muchdisagreemenaboutthe
type of modelwhich the digestionprocessfollows. As sucha wide variety of fish
specieshave beerusedin digestion experiments,it is possiblethat much of this
disagreemenis dueto actualdifferencesn digestionbehaviourbetweendifferent fish
species.However,the confusionmustalsobe a consequencef differencesn the way
the digestionexperimentdave beerctonductedandinterpretedby different scientists.
For examplerather than allowing the fish populationto initially feed freely and so
obtain a range of initial stomach contents, some sciehastsunnaturallyforcefed all

individuals so that they initially have exactlye sameamountof food in their stomach.

16



In somecasesthere hasbeenconfusionasto whetherthe evacuationdata obtained
from thesetwo experimentss meanstomachcontentsdepletiondata or individual
stomach contents depletion and as | will show later, the two are not at all
interchangeable. Very noisy data may be produced if, for example tlszBsangeis
very broad,which meansthe fish will be digestingat quite different rates,or if very
small samplesof fish are takenfrom a populationwherethereis somevariation in
initial stomachcontents. In which caseit is likely thata variety of modelswill fit the
dataequallywell (or badly) andresultsobtainedin suchcasesannotbe relied on too
greatly. Consistencybetweenstudieshas also been hamperedby inadequaciesn
actuallyfitting modelsto the data,with someauthorscompletelyignoring particular
modelsfor no apparenteason. Consequentlythe literatureon this subjectis rather
confused (reviewed in Bromley 1994) and shalldiscussonly whatl considerto be
the mostimportantstepswhich have beemrmadetowardsunderstandinghe dynamics

of the digestion process.

Early attempts madeby Hunt (1960),Daan(1973)and Swensorand Smith (1973)at
fitting this generalmodelfor variousfish speciesesultedin a linear depletionmodel,
i.e. with ¢ equal to zero. While more recently, a number of scientists have argueed that
valueof c equalto one,which givesanexponentiakvacuatiormodel,hasbeenfound
to bestdescribethe observedstomachcontentsdepletioncurve (for exampleElliott

1972, Cochran and Adelman 1982, MacDonald et al. 1982 and Persson 1986).

An alternativemodel hasbeenconstructedoasedon the physiology of the digestion
process.The emptyingof the gut is regulatedby peristalticcontractionswvhichin turn
are stimulatedby the radial gastric distension. Taking the stomachof a fish to be
approximately cylindrical witta constantength,thenthetensionis proportionalto the
radiusof the cylinderwhich increasesvith the squareroot of the volume (or weight)

of stomachcontents(Hopkins 1966). Tyler (1970) and Fangeand Grove (1979)
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suggestedhe constantshouldbe equalto two thirds dueto the fact that the food is
brokendown by enzymessecretedn the stomachwhich acton the surfaceof the food
bolus whose area is proportional(tmlume)Z/ 3 Jobling(1981)comparedractional
valuesof a half andtwo thirds for the constantc with the fit of the exponentiaimodel
to datafrom El-Shamy(1976) and showedthat the squareroot option (c equalto a

half) gave the best fit to most of the data sets analysed.

Five yearslater Perssorarguedthat contraryto Jobling(1981),the exponentiaimodel
generally gave a better approximation of the pattern of food evacuation than the square
root model for most fishes studiedlie reassesseventy two datasetsandfoundthat

in ten casestaking ¢ equalto oneproduceda betterfit thanthe others,thoughthis is

still not particularly conclusive evidence since he tvaelve datasetswhereoneof the

other models was tHeest. He alsorejectedthe biologicalreasoningbehindthe square

root model. After making stomachsize measurementle arguedthat the stomach

could not be approximated by a cylinder of constant lesigtteincreasinghe amount

of food in the stomach increased the length and so the radius will not increase linearly.

It seemspossiblethat sinceobservation®f meanstomachcontentswere not straight
lines Persson felt that a linear depletion model was unlikely to be the best fititdhe
and choseto ignore this possibility. However,a feasibleexplanationasto why the
gradientof the meanstomachcontentsdepletion curve decreasest low stomach
contentslevelsis given in three much more recentpapersby Bromley (1987, 1988,
1991) who supportsthe casefor a linear evacuationmodel. Evenin the type of
digestionexperimentdescribedearlier wherewe are dealingwith similarly sizedfish
exposedo the sameamountof food , therewill be somevariability in the stomach
contentsof the populationat the start of the experimentas the individuals will not
consumeexactly the sameamountof food. Some fishes stomachswill therefore

containmorethanthe meanandsomeuwill containless.Supposinghatall individuals
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in the populationdigestfood at the samerate, then thosestartingwith lessfood in
their stomachswill becomeemptyin a muchshortertime thanthosewhich beginthe
experimentwith a higherstomachcontent. Bromley (1988) pointedout that dueto
thisinitial variationin stomachcontentstowardsthe endof an evacuatiorexperiment
the proportion of a population of fistith emptystomachsncreasesignificantly since
their gut contents cannot fall below zero. So, the nsé@machcontentswill decrease
more slowly than expected giving the impresdiuat at lower levelsof gut fullnessthe
evacuatiorrateis less. Takingthis into consideratiorBromleyfitted a linear modelto
his data using the methodof maximum likelihood. Justhow this censoringin the
stomach contents data dependson the variation in the initial stomach contents

distribution of the population will be discussed later in this chapter.

The following sectionsof this chaptergo on to look at the relationshipbetween
individual andpopulationmodelsandcomparethe mainfeaturesof the threeplausible
models. It then goeson to discusswhetheror not digestion data can be easily

distinguished as linear, exponential or fractional.

2.2 Digestion models for a non-feeding individual

Section2.1 highlightedthe threemain alternativedescriptionf the digestionprocess
of anindividual asbeingthe linear, exponentiandtwo thirds model.In this sectionl
will comparethe shapesof the alternativedigestion modelswhich can be usedto

describe a non-feeding population of fish.

If I first consider the case of linear digestion i.e. ¢ equal to zero in equation 2.2, then

W, — Kt ifO<t<K/W,

2.3
0 otherwise (2.3)

W(t) :{
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describesthe reductionin stomachcontentswith time where W, is the stomach

contentsat t equalto zero. So, while not feeding,the fishes gut weight falls at a
constantrate until it reacheszeroat time ?O which is whereit stays,sincenegative

stomach contents are impossible.
When digestion follows the fractional relationship

2
dW(t) _ ] —kw ()3 w0 (2.4)
dt 0 otherwise

the reductionof the stomachcontentsof the non-feedingindividual can be expressed

as

1 1 Kt 3wy
W(t)§= Wos—? O<t< 0 .

0 otherwise
1
3
0

(2.5)

until the individual becomesempty, at time 3 , When it stopsdigestingand the

stomach contents remain at zero.

When c is equalto onein equation2.2, the digestionprocesdollows an exponential
relationshipandthe depletionof stomachcontentsfor a non-feedingndividual canbe

written as
W(t) =W,e™. (2.6)
In contrastto the linear and fractional digestionmodels,the stomachcontentsof an

individual following an exponentialdigestionmodelwill not reachzeroin finite time,

which is illustrated in figure 2.2.

Figure 2.2 showshow different the three modelsrepresentinghe depletionof an
individual fishesstomachcontentsactually are. Supposd know that a particularfish

which initially hasten gramsof food in its gut, emptiesits stomachof all measurable
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contentsin approximatelythirty hours,but | do not know what happensn between.
Any of the three above modelscould adequatelydescribethe digestionprocesshy
choosingthe appropriatevalueof K, thoughthe shapeof the curvesthey generateas

completely different.

10 12

8

stomach contents(Q)
4 6

2

40 50

time(hours)

Figure 2.2. Stomachcontentsdepletion curvesfor an individual fish following a) linear digestion
(solid line, K=0.33), b) two thirds (dotted line, K=0.15) and c) the exponential digestion model
(dashed line, K=0.15).

Since investigationsinto digestionare not usually constructedarounda single non-
feedingfish, but rathera population,I shallshowin the next sectionhow population

digestion models can be formed and how the shape of the digestion curves is altered.

2.3 Population digestion models
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2.3.1 The theory of modelling population digestion

Previousattemptsat modelling the digestion processhave concentratecon models
which consideronly the stomachcontentsof an individual or the averagestomach
contentsof a population. As | havealreadymentionedtherewill be somevariationin
stomach contents at any one time even in a closed population of sisidadyish, for
example those kept in the tank for use in the digestxperimentslescribedn section
2.1. Much of the detail of this variation in the populai®lost whenconsideringonly
the mean stomach contents, since a particular mean value couldrossaltvariety of

distributions of gut fullness.

Clearly the way to overcomethis loss of detail is to employthe useof a distribution
function in the modelto representhe variationin the stomachfullnessof a closed
populationof similarly sizedandagedfish. | defineadistributionfunctionf(w,t) such
that f(w,t)dw representshe proportionof the populationwho havestomachcontents
with weightsin the rangew-dw to w at time t. For mathematicalconvenience

assumethat f(w,t) is defined on the domainw>0 and choosea separatenotation,
P,(t), to representhe proportionof empty stomachsat time t. The rationalebehind
this set-upis thatit preventsthe build up of a deltafunction anddiscontinuitiesn the
distributionfunction at w=0. An obviousconstrainthereis that sincewe are dealing
with a closedpopulation,summationof the emptiesand of f(w,t) over the complete

range of stomach weights will include the entire population

Pe(t) + [f(w,t)dw = 1. (2.7)
0

If 1 assumethat an individual whose stomachcontainsw gramsof prey at time t

eliminates material continuously from the gut at a rate D(w) gperisour,thensince
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we aredealingwith a closed,non-feedingoopulation,conservatiorof numberamplies

that
of(w,it) 9
e aW(D(W)f(W,t)) w> 0 (2.8)
and
% =D(0")f(0",1) (2.9)

| use the notatiof” to denote a place infinitesimally on the positive side of zero.

| now needto decidewhat form the function D(w) should take by comparingthe
digestion curves of populationswhose individuals follow 1) linear digestion, 2)

fractional digestion and 3) the exponential digestion model.

2.3.2 The linear population digestion model

If 1 follow Bromleystheory aboutdigestionand assumehat the digestionrate of all
individuals in a closed population similarly sizedandagedfish is a constanK grams
per unit time providedthat thereis food left in the stomachto eliminate,and zero

otherwise. Then
Dw)=K w>0 (2.10).

So, equations (2.8) and (2.9) simplify to become
of (w,t) _ K of (w,t)

2.11
ot ow ( )

which has an absorbing boundaryat 0", and
% = Kf (07 ,1). (2.12)
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The abovesetof differential equationscanthen easily be solvedgiven a setof initial
conditions. Suppose that the populati@sjust beenfed a mealandis thenprevented

from any further feeding. If 1 supposdhattheinitial stomachcontentsdistributionis

f,(w) for w>0 andP,(0) = O then equations (2.11) and (2.12) have the solutions
f(w,t) =f,(w+Kt) (2.13)

and

P(t) = Tfo (x)dx (2.14)

which simply correspondso theinitial distributionmovingleftwardsat a constantrate

K with P, accumulatingall the probability which sweepsout into the absorbing

boundary at zero.

The stationary solution$, andf’ (w), occur as t tends to infinity. So,

P =l R(1) = [f,(x)dx (2.15)

which is equalto one by definition of the stomachcontentsdistribution function.

Substituting this into the conservation condition (2.7) leads us to the sdiuti)+0
'w>0. Sounderconditionsof no feeding,thereis a steadystatesolutionwhich occurs

when all the fish have empty stomachs, which is as expected.

Supposingthat the population has just beenfed a meal which leavesthem with a

normal stomachcontentsdistributionwith meanp, and standarddeviationo. Then

the position of the peak of the distribution decreases as

H(t) = o —Kt (2.16)
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while the shapeof the distributionremainsthe same(o is constantjasthe distribution

is just moving to the left at a constant rate.

Sincewe are assuminghat the weight of stomachcontentsof an individual cantake
any positive value, then an expresdionthe meanstomachcontentsof the population

can be written as

© _E(X—p(t))z

W(t)zj0 —e’ ° dx. (2.17)
0

Letting z= (x_u(t)) the above equation becomes

o

o ( (oz+p(t) 57

W)= | ——=——e? dz (2.18)
O V2m

°|

which with somemanipulationgives a semi-analyticexpressiorfor the depletionin

average stomach contents with time

(-umy? _
W(t):%ez( +) +u(t)(1—F(¥D (2.19)

where F is the standardised cumulative normal probability distribution.

It is not obvious fronthis expressiorhow alteringthe sizeof the standardleviationof
the initial distribution affects the shapeof the averagestomachcontentsdepletion
curve, asincreasingthe standarddeviationincreaseghe first term, but decreaseshe
second. However, some simple calculations made using expression(2.19) and
illustratedin figure 2.3 showthatfor the broaderinitial distributionthe deviationfrom
the linearity beginsearlierthanfor a narrowerdistributionwhich is a straightline until

the last few hours of digestion.
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Figure2.3 alsoillustratesthe increasdan empty stomachgluring the digestionprocess
and showsthat in the populationwhich initially has a quite broad initial stomach
contentsdistribution (standarddeviation equal to three), the accumulationof the
population inthe emptystomachcategorybeginsquite earlyandis muchmoregradual
thanfor the narrowinitial distributioncasewho all becomeemptyovera muchshorter

period of time.
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Figure 2.3. The progression of initial stomach contents distributions (i) shown together with
their corresponding mean stomach contentsdepletion curves (i) and variation in proportion of
empty stomachs(iii) for a population whoseindividuals digest linearly at a rate equal to 0.5.
The initial distributions are normal with identical meansof ten grams and standard deviations

of a) one and b) three.
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2.3.3 The fractional population digestion model

When the digestionrate of the individualsin a populationis proportionalto their

stomach contents to the power two thirds, equations (2.8) and (2.9) become

of (w,t) = Kw23 of (w, ) (2.20)
ot ow |
and
AR _ w2 (071 (2.21)

Although an analytic solution cannotbe found to this pair of differential equations,
given an initial stomachcontentsdistribution, the progressionof the distribution

function can be calculated numerically and is pictured in figure 2.4i.

In the fractional digestionmodel, asthe digestionrateis proportionalto the stomach
contents to the power two thirds, those individuals with large amountsin their
stomachswill digestfasterthanthosewith lower stomachcontents.So, the shapeof
the stomachcontentsdistribution narrows during the digestion processand this is
illustratedin figure 2.4i. It wasshownin section2.2 though,thatindividualsdigesting
in sucha way do becomeemptyandso therewill be somecensoringobservedn the
meanstomachcontentscurve, as someindividuals becomeempty fasterthan others
and consequentlythe mean stomach contents decreasesslower than expected.
However the censoringvhich takesplacein this modelis muchlessobviousthanthat
which occurs in the linear model, as the distribution function has narrowed
considerably and majority of the population have stomach contents quite tightly packed
aroundthe meanvalue asthey approactzero. As a consequencdhe meanstomach
contentsdepletioncurvesgeneratedrom two very different initial distributionsare

quite similar (figure 2.4ii).
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Figure 2.4. The progressionof two different initial stomach contentsdistributions (i) together
with their corresponding mean stomach contentscurves (i) and variation in the proportion of
empty stomachs(iii) for a population whoseindividuals follow a fractional digestion model with

rate constant 0.15. The initial distributions have mean ten grams and s.d. of a) one and b) three.

The effects of the narrowing stomach contentsdistribution are also seenin the
variationin the proportionof the populationwith zerostomachcontents. Initially this

proportion increases quite gradually (figure 2.4&s)he stomachcontentsdistribution
is quite broadandso thereare someindividualswith relatively low stomachcontents.
By thetime the peakof the distributionreacheszero, it hasbecomeso narrowthatthe
remainderof the populationbecomeempty over a very shortperiod of time. So, the
sharpincreasein the proportionof fish with empty stomachss followed by a fairly

sudden halt as all the population have become empty.
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2.3.4 The exponential population digestion model

Looking now at the model in which the individuals of a population follow the

exponentialdigestionmodeli.e. D(w)=Kw for all w. Thenequationg2.8) and(2.9)

become
W) _ gy, O W) (2.22)
ot ow
and
El =t 07,1 (2.23)

which again can only be solved numerically.

As in the fractional digestionmodel, the digestionrate is dependenbn the current
stomach contents of the individuancernedso the stomachcontentdistributionwill
likewise narrow asthe digestionprocesscontinueswhich is shownin figure 2.5i. In
this casehowever,an individuals stomachcontentsneveractually reachzero so the
narrowing distribution continues to narrow dndldsup asa deltafunctionatw =0".
To overcomehe problemscausedy the deltafunctionat zero,the numericalsolution

of the problem is halted before much significant build up occurs.

In the exponentialmodel an individuals stomachcontentsnever actually reachzero,
they only tendto zero astime tendsto infinity, soif thereareinitially zerofish with
empty stomachs, then this is true for all time (figure 2.5iii), and thereaemsmringof
the meanstomachcontentsdepletioncurveasillustratedin figure 2.5ii. Thisis shown

analytically in the following section.
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Figure 2.5. The progressionof two different initial stomach contentsdistributions (i) together
with their corresponding mean stomach contentscurves (i) and variation in the proportion of
empty stomachs(iii) for a population whoseindividuals digestexponentially with rate 0.15. The

initial distributions have mean ten grams and s.d. of a) one and b) three.

Considera populationof N fish eachfollowing the individual exponentialdigestion

model with an identical digestion rate constant (K) and individual stoo@uentsw.

(i=1..N)

AW _kw i=1.N (2.24)

Then, summingall the individual stomachcontentsand dividing the total by the

number of fish in the population gives the average gut contents
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WM =—S W.(1). (2.25)

1 N
N|=1

Differentiating this expression for the mean gut contents of the population gives

\N/ N

d_W = i ﬂ (2_26)
dt N& dt

and substituting from equation (2.24) we get

\N/ N

W_ KSw, (2.27)
dt N =1

=-KW.

which showsthatin the caseof exponentiaindividual stomachcontentsdepletion,the
meanstomachcontentsfollow exactly the samecurve asthat of an individual whose

initial stomach contents are equal to the population mean i.e.
W(t) =W,e™ (2.28)

whereW, is the initial mean stomach contents.

2.3.5 Comparison of models

All theinitial distributionsobservedso far have beemormalwith meanten gramsand
standarddeviationssmall enoughso that the shapeof the distribution is not initially
truncatedat zero. However,if the standarddeviationis muchlargerthanaboutthree
grams,thentheinitial meanwill be censoredor all digestionmodels. For examplef
theinitial distributionhasa standarddeviationof eightanda meanof ten grams,then
therewill be someindividualswho start off with empty stomachsand the calculated

initial mean stomach content will be larger then expected for all three digesitteis.
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This initial distributionproducegreatlycensoredinearandfractionaldigestioncurves

since the effects of empty stomachs is already taking effect at zero time.

6 8 10 12
o

mean stomach contents(g)

2
L
/

0

(o] 10 20

time(hours)

mean stomach contents(g)
6 8 10 12

2

0

o 10 20

time(hours)

40

8 10 12

6

mean stomach contents(g)
4

o] 10 20

time(hours)

40

50

Figure 2.6 Depletion of mean stomach contents with time for populations whose individuals

follow a) a linear digestion model (K=0.5), b) an exponential digestion model (K=0.15) and c) a

fractional digestion model (K=0.15) having a normal initial distribution with mean ten and

standard deviations two (solid), four (dotted), six (dashed) and eight (long-dashed).

However, the effect of this very broad initial stomachcontentsdistribution on the

exponentiaddigestioncurve (shownin figure 2.6b)is just to raisethe curveby a fixed

proportionat eachpoint without changingits shape sinceno morefish becomeempty

during digestion. The use of this initial distributionin the caseof the exponential

modelis unnecessargs| showedanalyticallyin the previoussectionandtheseraised

curvescould just aseasilyhave beemproducedby increasingthe initial meanstomach

contents in equation (2.28).
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2.4 Uniqueness of digestion curves

The previoussectionillustratedthe greatdifferencein the shapesof the population
digestion curves produced from different digestion models with identical initial
stomachcontentsdistribution and showedthe extentof the effect of different initial
stomachcontentddistributionson a populationfollowing a particulardigestionmodel.
The questionwhich now needsto be considereds whethera meanstomachcontents
depletioncurve obtainedfrom one model and set of parametersgcan be replicated
usingone of the othermodelsand a different setof parametergi.e. a differentinitial
distributionanddigestionconstant). | shallapproachhis problemby generatinga set
of digestion data from one of the modatsdthenattemptingto fit the othermodelsto
this databy varying the model parametergnd minimising the meanof the sumof the
squarecerrors. Thedatasetcanbe generatedby samplingthe meanstomachcontents
at hourly intervals. As my optimisationroutinel havechosena versionof the simplex
method(Nelderand Mead (1965)) which althoughratherinefficient in the numberof
function evaluations required for convergence,works quite quickly when the
computational burden isottoo big. (Chapter4 describesn moredetailthe variety of

available optimisation routines.)

Calculationsof the meanstomachcontentsdepletioncurvesfor the exponentialand
linearmodels arefairly straightforwarddueto the expressiong2.20)and(2.28). The
expressionwhich generatesthe linear population digestion curve involves the
calculation of standardisedcumulative normal probabilities which are easily
accomplishedusing the appropriateNAG routine, while expression(2.28) which
describeghe depletionof meanstomachcontentsfor a populationwith exponential
digestionis just a simple negative exponentialfunction. However, to gain the

correspondingcurve from the fractional digestion model is decidedly more time
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consuming as the problem must be solved numerically. The speed of sglturmer
hamperedby the needfor very fine discretisationin the spacedimensionwhich is
required to avoid problemsin the numerical solution as the stomach contents

distribution narrows and reaches zero.

Initially, | shallregardthe meanstomachcontentssampledat hourly intervalsfrom the

fractional model with a particular set of parameters as my set of data.
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Figure 2.7. Mean stomachcontentsdepletion curve for a population of fish with normal initial
stomach contents distribution (mean 10 grams and standard deviation 5) whose individuals
follow a fractional digestion model with rate constant 0.4 (solid line), with the mostoselyfitting

linear digestion (dotted) and exponential digestion (dashed) curves.

Keeping the initial stomach contents distributions identical tousedin the fractional
depletion curve data set, | shall initialijtemptto fit the exponentiabndlinearmodels

by varying only the digestionrate constant<. The initial stomachweightdistribution
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is normalwith meanten andstandarddeviationfive andthe populationdigestionrate
constanis 0.4. The exponentiabndlineardepletioncurveswhich mostcloselyfit the

fractional digestion model curve are shown in figure 2.7.

Although the linear model producesa curve which is quite similar to that of the
fractionalmodel,it is still easilydistinguishedasit is muchstraighter. The identifying
featureof the exponentiaimodelis its very long tail which, combinedwith the initial
guite fast meanstomachcontentsdepletion,gives a lessadequatdit to the datathan
the linear model. The fitted digestionratesof the linear and exponentialmodelsare

given in table 2.1 along with their mean squared errors.

Model Digestion rate Mean square error|
Linear 1.37 0.02
Exponential 0.21 0.04

Table 2.1. Digestionrates and mean square error valuesof the bestlinear and exponential fits
to the data generatedby a population with a normal initial stomachcontentsdistribution with p
equal to 10 grams ands equal to 5 following a fractional digestion model with rate constant 0.4.
An improvementto the fit of the two models could be made by allowing the
parameterslefining the shapeof the initial stomachcontentsdistributionto vary, in
addition to the digestiorateconstanK. Theinitial distributionsaretruncatedat zero
andthe remainingproportionof individualsare put into the empty stomachcategory.
So,whenfitting the linearmodel,thereare threefitting parameters K (digestionrate
constant),u (positionof the peakin the initial stomachcontentsdistribution) and o

(the initial standard deviation), while for the exponential model thererdyéwo - the

digestion rate constant K and the initial mean stomach conwpts,
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The new curvesfitted to the samefractionaldigestiondataareillustratedin figure 2.8
andthe bestfit parametersre shownin table2.2. Predictablythe fit of both models
has improved. The nearest fittingeanstomachcontentscurveproducedoy thelinear
modelis very closeto being indistinguishablefrom the fractional datawith a mean
squarecerrorof 0.0007. Thisimpliesthatwe canonly distinguishbetweenthe two if

the initial distribution of the stomach contents is known.
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Figure 2.8. The linear digestion (dotted) and exponential digestion (dashed)curves which best
fit the fractional digestioncurve (initial mean 10 grams, standard deviation 5 and rate constant

0.4, solid line) when all three parameters are allowed to vary.

In this case theinitial stomachcontentsdistributionsare quite differentwith the linear
initial distribution being much broaderand positionednearerto zero. The higher
standarddeviationproduceshe early deviationfrom linear stomachcontentsdepletion
whichis requiredif the fractionalshapes to be imitatedclosely,while the lower value

of i prevents the initial mean stomach contents from being too high.

The high digestionrateis requiredastherearemanyindividualsin the populationwith

very high stomachcontentswhich would otherwisetake a very long time to empty

36



their stomachs. The exponentiaimodelonceagainprovesto be a lessaccuratefit to

the fractionally generated data due mainly to the very long tail.

Model Initial conditions K Mean sq. erro
Linear pn=7.88,0=12.81 2.12 0.0007
Fractional pn=10,0=5 0.4 0 (actual datq
Exponential W,=10.5 0.22 0.03

Table 2.2. Parameter valuesfor the bestfitting linear and exponential modelsalong with those

from which the fractional data was generated.

| haveshownthat for a particularsetof datageneratedisingthe fractional digestion
model an almostindistinguishableset can be producedby linear digestionwhile the
exponentiaineanstomachcontentsdepletioncurvedecreasetoo slowly for very low
stomachcontents. The questionwhich now arisesis whethera setof datagenerated

from a linear digestion model can be fitted as well by the fractional model.

In this examplel shall reversethe fitting procedureand take the mean stomach
contents sampled at hourly intervals from an evacuationcurve producedby a
populationwith linear digestionas the dataset and attemptto fit the fractional and
exponentialmodelsby varying both the digestionrate and initial stomachcontents
distribution. The stomachcontentsof the populationwhich follows a linear digestion
modelwith rate0.25 gramsper hour areinitially normally distributedwith p equalto
ten grams and the standard deviation fivéis broadinitial distributionwill producea
mean stomach contents depletion curve which very early on becomescensored,
deviates away from the straight line and is therefkety to be quite closelycopiedby
the othertwo models. The bestfitting exponentiakndfractionalcurvesare shownin

figure 2.9.
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It appeardrom this illustration that mostof the error in the exponentiaimodelis due
to the heightof the tail asthe stomachcontentsapproachzero. Extendingthe fit to
160 hoursin an attemptto pull the exponentialtail down towards zero does not
significantly changethe shapeof the curveasevenvery smallchangego the heightof
the tail are associatedvith very large changesearlieron. To significantly reducethe
tail would require the exponentialto be initially very much steeperwhich would

provide a worse fit to the first half of the linear digestion curve.
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Figure 2.9. Stomachcontentsdepletion curve of a population with normal initial gut contents
distribution (mean 10, standard deviation 5) whoseindividuals follow a linear digestion scheme
with digestion rate 0.25grams per hour, togetherwith its closestfitting exponential (dotted) and

fractional (dashed) digestion curves.

Predictably,the fractional model most closely fits the linear digestiondata, but the
minimum meansquarecerror valueis surprisinglylargewhencomparedo thatwhich

occurred when the reverse fitting procedure was carried out in the previous example.

The mean squareddeviation of the fractional model from the linear data in this
exampleis in fact almost thirtytimesthat which resultedwhenthe reversefitting was

carriedout in the previousexample(tables2.2 and 2.3). This could eitherbe dueto
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the particularexamplewhich hasbeenchosenor it could be that for somereasonwe

can get a closer fit to fractional data using the linear model than the other way around.

Model Initial conditions K Mean sq. error

Linear pn=10,0=5 0.25 0 (actual data)
Fractional |p=10.46,0=0.2§ 0.07 0.02
Exponential W, =1110 0.04 0.19

Table 2.3. Parameter valuesof the bestfitting fractional and exponential models,together with

linear model parameters from which the data set was generated.

To investigatethis possibility, | shall now take the resultingbestfit fractional model
parameters to generat@mew setof dataandrefit the lineardigestionmodelto it. The
resultingfit is a greatimprovemeni@andthe bestfit parametersre shownin table2.4,

together with the minimum mean squared error.

Model Initial conditions K Mean sq. error
Linear U=7.64,0=9.83 2.10 0.0014
Fractional |p=10.46,0=0.2§ 0.07 0 (actual data

Table 2.4. Parameter values of the refitted linear digestion model.

When the fractional model was fitted to the linear data, the resulting parameters
indicated that a very narrow initial stomachcontentsdistribution was requiredto
producethis 'bestfit', althoughthe actual data had been generatedfrom a linear
digestionmodel where the populationstartedwith quite a broadinitial distribution.
Howeverfitting the other way round indicatedthat the linear model must have an

extremelybroadandtruncatedinitial distributionto fit the fractionaldata,evenwhen
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this data had been generatedby a population whose initial stomach contents
distribution was very narrow. As the fractional modelis fitted to the linear data, it
reducegheinitial standarddeviation,therebyremovingany censoring. The fractional
curvethough,evenwith a deltafunctionasits initial stomachcontentdistributionand
thereforeno censoringwill alwaysbe curvedandhencemay not be ableto get very
closeto fitting a linear dataset. On the otherhand, the initial distributionis ableto
getbroaderandbroader sothatthe censoringn the digestioncurve beginsassoonas
the digestionprocessstartsand consequentlyinear digestioncurvescan be forcedto
deviatefar from linearity and producevery goodfits to datageneratedrom fractional

digestion models.

Theseresultsshow how similar digestioncurvesproducedby populationsfollowing
different digestionschemescan be. In particular,the fractional and linear digestion
models are sometimesvisually indistinguishableand we can only conclude which
model the datacamefrom if we also have someknowledgeof the initial stomach
contents distribution of the populatioithe exponentiainodelis generallyquite easily
recognisabledue to the very long tail in the digestioncurve as stomachcontentsget
low. However, if very accuratemethodsand instrumentsare unavailable when
collectingexperimentablata, this tail in unlikely to be apparentandthe digestiondata
could possiblybe indistinguishablgrom the fractional or linear model. Experimental
datais alwaysgoingto be noisy asthe samplesof fish usedare nevergoingto be very
large. It is possible therefore, that even with just a small amount of noise in the data all
three modelsmay becomeindistinguishablewhich is what | shall investigatein the

following section.
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2.5 Simulated data

So far the digestioncurveshave beerproducedby assuminghat the distribution of
fish stomachcontentsfollows a perfect normal distribution. However,in practice,
digestioncurveswill not be so exact. Experimentaimeanstomachcontentsdepletion
curvesare constructedby samplinga particular numberof individuals from a non-

feeding population of fish at fixed time intervals.

In anattemptto simulatetypical experimentablatal havesolvedthe digestionmodels
numerically, outputting the exact solution at fixed time intervals. The stomach
contentsrangeis divided into many small equalcategoriesand the proportionof the
populationin eachinterval at eachtime stepis recorded. The unit interval is then
dividedinto intervalseachof width equalto theseproportions. At eachsamplepoint,
a simulateddatasampleis producedby generatinga setof pseudo-randonmumbers
betweenzeroandone andcountingthe proportionwhich fall into eachinterval. This
gives the noisy numerical distribution from which the mean stomachcontentsare

calculated.

Figure 2.10 showssomeexamplesof noisy initial distributionswherethe samplehas
beentakenfrom a populationwhoseinitial distributionis normalwith m equalto ten
anda standarddeviationof threegrams. Althoughall threedistributionsappearto be
quite noisy, we can establishjust by looking that the meanstomachcontentsin each

case is not far from ten grams.

Given that the digestion curve is noisy, there will be no exact fit by any set of
parametersand digestion model, eventhe one from which it was generated. The
closenessf thefit will dependon the sizeof the samplei.e. on the numberof random

numbers which are generated. The question that | wish to aisdvesy easilycanwe
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distinguishthe fit of the ‘wrong' modelfrom that of the 'right' digestionmodel, when

the digestion curve becomes noisy.
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Figure 2.10. Noisy distribution simulated by taking samplesof a) 1000, b) 100, and c) 10
individuals from a normal distribution with p equal to ten grams and ¢ equal to three. The

actual mean values are a) 9.92 grams, b) 10.09 grams and c¢) 10.66 grams.

| havechosenthree examplesto answerthis question,in which both the parameters
defining the populationsinitial stomachcontentsdistribution and the digestionrate
constantare varied. The first exampleis of datasampledfrom a populationwhose
initial stomachcontentsdistribution is normal with mean 10 grams and standard
deviation 5 whose individuafsllow the lineardigestionmodelwith a digestionrate of
0.25 grams per hour. When the digestion curve is free of noise, obviously the
minimum meansquarederror of the fitted linear modelis zero. Predictably,whena
digestioncurveis obtainedvia populationsampleshis meansquarederror increases,
but this is true of the error measure of all three models. (Compare tabbet@te?2.3
in section2.4). For a large sampleof 1000 individuals the digestioncurve which is

shownin figure 2.11adoesnot look very noisy. The minimum meansquarecerror of
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the fractional modelis five timesthat of the linear and the exponentialover twenty

times greater, so the data set is still distinguishable as linear.

Sample siz¢ Model Initial conditions| K Mean sq. error

Linear | m=9.93,5=4.71 | 0.24 0.01

1000 Fractional| m=10.45,s=5.7 | 0.08 0.05
Exponentia] W, =1103 0.04 0.21

Linear | m=9.93,5=4.31 | 0.23 0.09

100 Fractional| m=10.43,s=9.3 | 0.08 0.12
Exponentia] W, =1106 0.04 0.30

Linear mM=9.62,5=3.94 | 0.21 0.95

10 Fractional | m=10.07,5s=0.8 | 0.06 1.00
Exponentia] W, =10.70 0.04 1.19

Table 2.5. Fitted parameters and minimum mean squared errors of the three modelsfitted to
noisy digestion curves generated by taking samplesfrom a population of fish with a normal
initial stomach contents distribution with g equal to ten grams and ¢ equal to five whose

individuals all digest linearly at a rate of 0.25 grams per hour.

However,asthe samplesizeis decreasedhe error measuresll becomemuchlarger
and it becomes less obvious by which model the datbdeproduced. For a sample
size of ten individuals which is comparableto the numbersof fish usedin actual

digestionexperimentsthe digestioncurvewhich is shownin figure 2.11bhasbecome
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guite noisy. Althoughthe bestfitting linearmodelstill givesanerrormeasuravhichis
slightly lower thanthe othertwo modelsthe threeminimummeansquarecerrorsare
almostequalandthe datacanonly be distinguishedaslinear or fractionalif we know
whatthe initial stomachcontentsdistributionlookedlike. Table 2.5 showsthe initial
conditionswhich are requiredto producethe bestfits for eachof the three models.
The fractional model requires an extremely narrow distribution to fit the data, while the
exponentialmodel achievesits bestfit to the data by pushingW, well aboveits
observedvalue. The narrownessof this distribution is perhapsa little unrealistic,
which could be a reasonfor ruling out the fractional model which leavesthe linear

model as a slightly better fit than the exponential model to the data.
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Figure 2.11. Noisy linear data (points) generatedby taking samplesof size a) 1000 and b) 10
with their closest fitting exact linear (solid), exponential (dotted) and fractional (dashed)

digestion curves .
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My secondset of examplesare generatedusing the fractional digestionmodel. The
populationinitially hasa normally shapedstomachcontentsdistributionwith mean10
gramsandstandarddeviation1.5 andtheindividualsall follow the fractionaldigestion
model with rate constant 0.2n section2.41 showedhow well thelinearmodelcould
befitted to fractionaldataandthatthe two modelscould only be distinguishedf their
initial stomachcontentsdistributionsare known. Whenthe samefitting procedures
carried out on datawhich has beensimulatedby samplingfrom stomachcontents

distributions generated by the fractional model, similar confusion arises.
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Figure 2.12. Noisy fractional data (points) generated by takingamplesof sizea) 1000and b) 10
with their closest fitting exact linear (solid), fractional (dashed) and exponential (dotted)
digestion curves. ((b) appears lessnoisy when comparedto 2.11b as ¢ is much smaller and
therefore the occurrenceof extremevaluesis lesslikely and consequentlythe meanmore like its

expected value).
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The resultingparametersind minimum meansquarecerrorsfor the threemodelswith
differing samplesizesare shownin table 2.6 and the correspondingligestioncurves

are illustrated in figure 2.12.

For all samplesizes,the fitted exponentiaturve givesa minimum meansquarecderror
which is much larger than the other two models and therefore even when these
fractional dataare quite noisy, it is quite clear that it hasnot beensampledfrom a

population which is digesting exponentially.

Sample siz¢ Model Initial conditions K | Mean sqg. error

Linear m=8.42s=11.32| 1.10 0.002

1000 | Fractional | m=10.04s=3.11| 0.21 0.003
Exponentia| W, =10.54 0.12 0.080

Linear m=7.7,5=12.94 | 1.20 0.005

100 Fractional | m=9.95,s=2.28 | 0.20 0.003
Exponentia] W, =10.48 0.12 0.075

Linear mM=8.8,5=8.10 0.87 0.033

10 Fractional | m=9.53,5=2.35 | 0.20 0.038
Exponentia] W, =10.03 0.12 0.122

Table 2.6. Meansquarederrors of the three modelsfitted to noisy digestioncurves generatedby
taking samplesfrom a population of fish whoseinitial gut contentsdistribution is normal with
mean 10 and standard deviation 1.5whoseindividuals follow the fractional digestion modelwith

rate constant 0.2.
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However, once againthe linear and fractional models give very similar least mean
squareerrorsfor all samplesizes. In fact for a samplesize of ten, the linear model
gives a slightly betterfit to the fractionally generatedlatathan the fractional model
itself. The only way to distinguish whichodelthe datais generatedby, is to consider
how realistic the initial stomachcontentsdistributionsare. For all samplesizesthe
initial stomachcontentsdistributionsrequiredby the two modelsare very different
with the linear modelrequiringa very broadnormaldistribution. So, if we know that
the initial distributionis not particularly broadthen we could concludethat the data

came from a population whose individuals follow a fractional digestion model.

The final set of digestioncurveswhich are to be studiedare those producedby a
populationwhich has a normal initial stomachcontentsdistribution with mean 10
gramsand standarddeviation2.5 and whoseindividuals digestionexponentiallywith
rate constant0.15. Table 2.7 showsthe resultingbestfit parametersand minimum

mean squared errors.

The fractional model gives a muchworsefit to the datathan the othertwo models
evenfor very small samplesizes,but the linear minimum meansquarederrorsare of
approximatelythe same sizeas those of the exponentialmodel. Looking at the
parametergesulting from the fitting procedure,our attentionis instantly drawn to
thosepredictedby the linear model. The initial distribution requiresa massivewidth
and a large negativevalue for p, while the digestionrate is also predictedas being
extremelylarge. Thesevaluesare obviously exceedinglyunlikely and we can safely
concludethat the data was sampledfrom a population following the exponential
digestion model. The 'best fit' curves for samples of Ki®and10 areillustratedin

figure 2.13.
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Sample siz¢ Model Initial conditions K | Mean sqg. error

Linear H=-3.9x10°, |L7x10° 0.003

0=6.9x10°
1000 Fractional | m=9.46,5=3.45 0.26 0.057
Exponentia| W, =9.98 0.15 0.002

Linear H=-7.0x10°, |3.9x10° 0.004

100 Fractional | m=9.63,5=3.50 | 0.26 0.046

Exponentia| W, =1014 0.15 0.005

Linear u=-2.3x10°, |19x10"* 0.041

0=6.1x10°
10 Fractional | m=8.96,5=3.32 0.24 0.072
Exponentia| W, =9.46 0.14 0.042

Table 2.7. Fitted parameter and leastmeansquaresof the three modelsfitted to noisy digestion
curves generatedby taking samplesfrom a population of fish with normally distributed initial
stomach contents withu equalto ten grams, o equalto 2.5 grams, digesting exponentially with a

rate constant of 0.15.

The extremely odd values predicted by the linear model can be explained by
consideringhow the linear model changesshapeto fit the exponentialshapeddata.
The exponentialis far from linear andthe linearity in the digestioncurve producedby

the linear digestionmodel decreasess the standarddeviation of the initial stomach
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contentsdistribution increases. So, obviously a very large standarddeviation is
requiredfor a lineardigestioncurveto look anywherenearexponential. To maintain
the correct value of the initial meanstomachcontents(W, ), the value of u must
decreas@sthe standarddeviationincreases.In this case the standarddeviationis so
largethat a very large negativevalue of u is predicted. Finally, sincethereare some
individuals in the samplewith extremelyhigh stomachcontents,an unfeasibly high

digestion rate is required to obtain the correct gradient for the digestion curve.
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Figure 2.13. Noisy exponential data (points) generatedby taking samplesof sizea) 1000and b)
10 with their closestfitting exact linear (solid), fractional (dashed)and exponential (dotted)

digestion curves.

Thesesetsof examplesshow how digestioncurvesproducedby taking evenvery
large samples can often be indistinguishablee#isggeneratedrom a particularmodel

andwhensamplesizesaslow asten are usedit is possiblethat all threemodelsmay
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give equallygoodfits to the data. Most experimentatigestioncurvesare constructed
by taking samplesof aroundten fish at eachtime interval and calculatingtheir mean
stomachcontents. Sogiventhe aboveresultsit seemaunlikely thatwhenconsidering
experimentatata,it will be possibleto makedefinite conclusionsaboutthe digestion
model which the populationfollows. In this casethe only option is to look at the
predictedinitial stomachcontentsdistributionand hopethat one modelgivesa more

sensible prediction than the other two.

2.6 A comparison with real data

The previous sectionshave shown how difficult it can be to distinguish between
digestioncurvesevenwhensamplesizesarestill quite large. In this sectionl shallre-

examine someetsof experimentatlata,which in generalareproducedby taking quite
small samples, and attemptdecidewhatdigestionmodelthe populationis following.

Extensive digestion experimentshave beencarried out by Elliott (throughoutthe
1970's),Jobling (during the 1970'sand 80's) and Bromley (more recently),so | shall
take someof their datasetsfor re-examination. However,the three authorscarried
out their experiments differently and the resulting datatketeforehaveto betreated

differently.

Elliott (1972) investigatedgastricevacuationof brown trout. In his experimentshe
fed exactlytwenty prey items(Gammus pulex) of similar size (approximately9 mmin
length)to all individualsin his initial populationof fish, so therewould only be a very
slight variation (if any)in initial stomachcontentsacrosshe population. By sampling
ten trout every three hours he calculatedthe mean dried stomach contentsand
constructedhe digestioncurve. The dataappearso be exponentiakndis illustrated

in figure 2.14.
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Figure 2.14. Elliotts evacuation data for trout (points) together with the fitted exponential

digestion curve.

| attempted to fit the three modeladasexpectedhe exponentialvasthe oneto give
the mostsensibleresults. Both the linear and fractional modelsrequiredvery broad
initial distributionsto generatea curvewhich anywherefitted the data,contraryto the
actualinitial stomachcontentsdistributionwhich as| havealreadyconcludedwill be
very narrow. The digestioncurve producedby the exponentiaimodelis independent
of thewidth of theinitial distributionandis only regulatedby the initial meanstomach
contentsand digestionrate constant. The exponentialmodelin fact providesa very
accuratefit to the datawith a minimum meansquarederror of 0.26 which is quite
small comparedo the magnitudeof the dataand so therecanbe no doubtthat these

fish are digesting exponentially.

Work on digestionin plaice was carriedout by Jobling and SpencerDavies (1979).
Their digestion experimentsconsistedof force feeding groups of fish with exact
volumes of food anthenweighingthe dried stomachcontentsof pairsof fish sampled
from the population at approximatelytwo hourly intervals. The fish in these
experimentsall initially containedthe sameamountof food as they had beenfed

precisely the same amounts via an intra-gastric tiiéhis caseit would befoolishto
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attemptto fit curves generatedoy modelsin which the initial stomachcontents
distribution is allowed to vary, as the initial stomachcontentsof all fish in the
population is equal and knowmnstead fitted the individual digestioncurvesgivenin
section2.2 by varying only the digestionrate constantk andholding W, fixed at the
measuredralue. The resultsof the four experimentsn which the initial amountof

food differs, are shown in figure 2.15.
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Figure 2.15. Joblings evacuationdata (points) with its fitted individual linear (solid), fractional
(dashed)and exponential (dotted) digestion curvesfor mealsof approximately a) 315mg, b) 234

mg, ¢) 155 mg and d) 77 mg.

Sinceall the individuals in theseexperimentsnitially have equal stomachcontents,
thenif the individualsin the populationwere identical, they should all be digesting
identically and the data should lie perfectly on a curve generatedby a particular
individual digestionmodel. The datafrom all four experimentghoughis very noisy.
The mostlikely explanationfor this seemsto be the very broadrangeof fish sizes

beingused(15g-33q). Fishesof differentsizesdigestat different rates,so sincesome
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of the fish in this populationare twice the size of others,the stomachcontentsof all
the individualswill not remainidentical over the samplingperiod and so the samples
takenmay appearquite noisy. Fitting the modelto the datais also hamperecy the
limited numberof datapointstowardsthe lower endof the evacuatiorcurve. In none
of the four examplegs therea clearindication of whetherthe stomachcontentshave
reachedzero or whetherthereis a tail present. No further stomachsampleswere
taken later on taonfirm whatwashappening.The noisinesf the datais reflectedin
the large valuesof the minimum meansquarederrors comparedto the averagedry

stomach contents over the time period and are shown in table 2.8.

Model K Mean sq. error
Linear 12.3 356
Seta Fractional 0.38 201
Exponential 0.06 368
Linear 13.4 659
Setb Fractional 0.47 425
Exponential 0.09 390
Linear 11.7 177
Setc Fractional 0.59 56
Exponential 0.13 80
Linear 6.5 83
Setd Fractional 0.51 75
Exponential 0.14 79

Table 2.8. The 'best fit' valuesof K and the minimum mean squared errors for the three

individual models fitted to Joblings plaice data.
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This combination of noisy data and scarcity of data points during parts of the
evacuationperiod implies that any conclusionsthat have beerdrawn from this data
may be very unreliable. For examplein dataset a, the two-thirds digestionmodel
seemsto bestfit the datapoints, but this is one of the casesin which it would be
helpful to have somelater data points. The fractional model predictsa tail in the
evacuation curve whichoeson pastthe lastavailabledatapoint andsincewe haveno
idea of what is going on herewe do not know if this predictionis valid. If the
samplinghad goneon longerandrevealedthat the stomachshad alreadyall reached
zero,thenthefit of the fractional model would worsenand that of the linear would
improve. Theresultsfor setb seemto indicatethatthe linear modelis a muchworse
fit to the datathanthe othertwo. This resulthowevermay not be correctas once
again it is impossible tdecidefrom the datapointswhatis happeningowardsthe end
of the digestionperiod. The lasttwo datasamplesare taken so far apartthat we
cannot tell whether thetomachcontentshave beezerofor long (which would favour

the linear digestion model) or whether they have been gradually tailing off.

Looking at all the datasetstogether,my resultsseemto indicate that the fractional
modelis on averagdhe bestfit to the data. However,dueto the noiseandscarcityof

the data points, this conclusion cannot be regarded as particularly reliable.

Thefinal setsof datahave beertakenfrom a paperby Bromley (1988)on evacuation
in whiting. Although Bromley claims that linear digestionmodel is appropriatefor
whiting feedingon mealsof frozen sand-eelshe doesnot considerany of the other
options. His digestionexperimentsconsistedof batchesof similarly sized whiting
freely feedingto satiation,two-thirds satiationand onefifth satiation. Groupsof ten
fish were sampled at intervals after feeding ir@ir meanstomachcontentsmeasured.
Sincethe fish in theseexperimentshave beerallowedto feed of their own accord,

someindividuals will have managedto consumemore prey items than othersand
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thereforethe populationwill havean unknowninitial stomachcontentsdistribution.
So, the population digestion models are fitted to this data by allowing the initial
conditionsanddigestionrateto vary. Theresultingparametersre shownin table2.9

and the data plus best fit curves are illustrated in figure 2.16.

Model Initial conditiong K Mean sq. error
Linear |p=23.99,0=6.72 | 0.32 0.80
Satiation | Fractional| u=24.67,0=8.14 | 0.05 1.94
Exponentiy W, =25.44 0.02 3.04
Linear |p=15.61,0=15.52 0.49 0.05
2/3 Satiatio| Fractional|p=16.50,0=0.23 | 0.07 0.04
Exponentid W, =17.18 | 0.03 0.34
Linear pn=5.50,0=4.53 | 0.31 0.32
1/5 Satiatio| Fractional | p=5.58,0=1.00 | 0.09 0.36
Exponentia] W, =6.11 0.07 0.34

Table 2.9. The 'best fit' parameter setsto the Bromley data obtained by the simplex method

together with the minimised mean square error.

Comparingthe minimum meansquarecderrorsobtainedfor the threemodelsindicates
the linear model as a clear bestfit to the satiationdatawhich is not too noisy (see

figure 2.16). In thethertwo examplesthe bestmodelis not so obvious. In the two-
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thirds satiationcase,the fractional model also fits the data very well and all three

models fit the one-fifth satiation data equally well.

w0 @)

Py do
A2 ] O satiation
2Q = O  2/3 satiation
] A 1/5 satiation
5
o
<
o
©
€
o
@
c
I
[}
1S

0 20 40 60 80 100

time(hours)

=

iii)

Pe=0.16 Pe=0.11

density(/g)

0.0 0.02 0.04 0.06 0.08 0.10
density(/g)

0.0 0.02 0.04 0.06 0.08 0.10
density(/g)

0.0 0.02 0.04 0.06 0.08 0.10

o

0 20 40 60 80 20 40 60 80 20 40 60 80
stomach weight(g) stomach weight(g) stomach weight(g)

o

Figure 2.16a.The Bromley digestiondata with fitted linear digestion curvesand initial stomach

contents distributions for i) satiation, ii) 2/3 satiation and iii) 1/5 satiation.

In the seconddatasetthe problemcanbe overcomeby looking at the initial stomach
contentsdistributionspredictedby the two models. The fractionalmodel predictsan
unreasonablynarrow initial stomachcontentsdistribution (seetable 2.9 and figure
2.16bii) and thereforel can concludethat the linear digestion model is a more
reasonable fitIn thefinal dataset,however theinitial conditionsrequiredby all three
models seemfairly believable,so in this casel am not able to make a similar
conclusion. Overallhowever theseresultsseemto agreewith Bromleythatthe linear

model is most appropriate in the description of his digestion data.
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Figure 2.16c. The Bromley digestion data with fitted exponential digestion curves.
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In this chapter | have explained the dynamics of the various individual digestion models
and shownhow the shapeof the digestioncurvesgeneratedoy a populationof fish
depend ortheinitial distributionof stomachcontentsof thatpopulation. Sections2.5

and 2.6 haveshownhow it is often very difficult to distinguishwhetherevacuation

data has been producedby a population digesting linearly, fractionally or even
exponentiallywhenthe datais quite noisy andtheinitial stomachcontentsdistribution

of the population is unknown.

For the purposeof this thesisl am mostinterestedn the commonmarinefish species
inhabiting the sea lochs of the west coast of Scotland, fwelach are whiting and
plaice. So, given the quite strong indication that whiting follow a linear digestion
model, for the remainderof this thesis| shall assumea linear digestion process.
However, one of the advantages of the feeding and digestion model which | shall go on
to constructin chapter3 is that the digestionrule can be quite easily altered by
substitutingin a different expressiorfor D(w), the digestionrate and the numerical

solutions can then be carried out in a similar way.
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Chapter 3
A model of feeding and digestion
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3.0 Introduction

In chaptertwo | consideredhe mechanicof the digestionprocessand formulateda
modelto describethe variationin the stomachcontentsdistribution of a non-feeding
populationof fish after the consumptionof a single meal. | shall now attemptto
extendthe model to include feeding and thus form a realistic picture of the daily
variationin stomachcontents. Beforedecidinghow to includefeedinginto the partial
differential equationmodel which representghe non-feedingcase,l shall highlight

some of the main factors governing their feeding behaviour.

Most of the theoriesaboutthe feeding behaviourof marine fish have largely been
deducedfrom calculationsbasedon stomachcontentsdata collectedfrom the field
coupled with laboratory feeding experiments. This is due to the huge practical
difficulties of observing the fish in their natutabitat. In thewild, thetime fish spend
actually eatingwill be interruptedby time spentforagingfor food and escapingrom
predatorsputin orderto survivea fish musteatenoughfood to enhancegrowth and
providethe energyrequiredto avoid predation. So, feedingwill consistof a seriesof
mealsinterruptedby the needto find new prey and avoid predators. This beingthe
case,thenit is unlikely that the fish will be feedingat a constantrate. Stomach
contentssampledakenby Brodeurand Pearcy(1987)and Hall et al. (1995) support
this view. The paperby Brodeurand Pearcy(1987) also notesthat thereis a large
variability betweenindividual stomachcontentsat any one time implying that not all

fish are feeding synchronously.

Thefeedingrateitself will be regulatedoy a numberof factorsincluding satiation,the
availability of the desiredfood andthe ability of the individual to catchit. Studiesby
Ivlev (1961), Magnusofi1969)andElliott (1975)foundthatfood acquisitionduringa
period of feedingdecreasess a resultof satiation. Obviouslyif the populationwas

exposedo a plentiful supply of food and food consumptiorwas not regulated then
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the fish would carry on feeding indefinitely and consequentlythe stomachcontents
would goonincreasingwithout limit. Theability of ananimalto catchits choserprey
also mustbe consideredvhendiscussingish feedinghabitsand is regulatedby prey
behaviourand the presenceof other competingpredators. The concentrationand
availability of someprey speciesvariesconsiderablyduring the day, with somebeing
movedby the tides and othersmigrating through the water columnwith changesn

light intensity. Many predatordargely rely on sight to find and catchtheir prey, so
most of their successfulfeeding activity will take place during the day, with very
sporadicor zerofeedingduring darkness. A numberof authorshavefound evidence
to illustratethesevariations. For example after food consumptioncalculationsmade
from stomach contents data, MacDonald and Waiwood (1986) argued that
pleuronectidesare solely daytime feeders,while Hall (1987) concludedfrom his

calculationghat dabswere primarily night-timefeedersanddid not rely on their sight

to capture prey.

A populationof identicalindividualsfeedingon a sourceof identical prey will havea
rangeof stomachcontentswhen feeding ceasesdue to the distribution of the prey
relativeto the predatompopulation. Howeverthe exposureof a populationof fish to a
single speciesof similarly sized prey will only occur in laboratoryexperiments. In
naturalconditions,manyprey specief a wide variety of sizeswill be availableto the
population. Gut contentssampledrom fish in the wild haveincludedthe remainsof a
wide variety of prey types (Hall et al. 1990) implying that fish are not particularly
selective in what species they will and will not eat. Thereforéhamwild, a population
of identical fish will be feedingon a range of meal sizesat any one time and will

consequently have a range of stomach contents.
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To build a modelwhich could incorporatea detaileddescriptionof all the variations
mentioned above would prove very difficult, so before going any further some

simplifying assumptions are required.

3.1 Some assumptions about the feeding process

Previousfeeding models have considered like thosefor digestion,only individual
stomach contents dhe averagestomachcontentsof a populationof fish andhavenot
consideredthe betweenfish variability in stomachcontents. In fact most feeding
models have just been based on the digestion models described in chapterwitie, but
the addition of an extra term, R(t), to represent the food consumption rate

% = R(t)- KW (t)°. (3.1)
This modelwasusedby Penningtor{1985)in its mostgenerafform andby Elliott and
Persson1978),with ¢ equalto one,to makeestimatesof the daily consumptionof
fish. Both these studies recognised that there was likely to be some variatiegumn
weightsevenamongstindividuals from a populationof similarly sized and agedfish
dueto the variety of availablemeal sizesandin which caseusedmeanfeedingrates

and mean stomach contents values in their calculations.

Equation(3.1) could quite adequatelype usedto describethe variationin the stomach
contentsof a feedingindividual or the variation in averagestomachcontentsof a
populationwhoseindividualsarefeedingidentically andthereforeall containthe same
amountof food. Howevera populationof fish in the wild will not have identical
stomachcontentsand an alternativemodelneedsto be formulated. In chaptertwo, |

constructeda model which describesthe time variation of the stomachcontents
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distribution for a non-feeding population of fish. In this section | ghgllainhow this

model can be extended to include the feeding process.

| will beginmy discussiorof the feedingprocessby consideringwhat happengo the
gut contentsof a fish whenit consumes singlemeal. | shallassumehaton ingestion
of a mealof weightm, the stomachcontentsof anindividual fish areincreasedrom w
to w+m gramsi.e. the completeweight of the mealreacheghe stomach. Sincea meal
consistf arapidingestionof food, it is notirrationalto supposehatthis increasen
stomachcontentstakesplaceapproximatelyinstantaneously.This implies that unlike
digestion, feeding is a discontinuous process as on consuroptigneal,the stomach
contentgump immediatelyfrom w to w+m without passinghroughany of the values

in between.

If I now return to the description of stomach contetigsributionusedin the digestion
model, | can say that the proportionfish with gut weightsin therangew-dw to w at
time t (f(w,t)dw) canonly be changedby digestionor feeding. Consideringfor the
momentonly the effectsof feeding,thenanincreasen this proportionis producedby
feedingactivity amongindividualswith lower gut weightsor emptygutswho manage
to ingesta mealof exactlytheright sizeto taketheir gut contentsanto the rangew-dw
to w, while ingestionof a mealof any sizeby fish alreadyin this categorywill reduce

this proportion as individuals are moved to a higher gut weight.

| havealreadymentionedthat manyfish specieshavea very varieddiet. However,a
model which includedinformation aboutthe consumptionof particular prey species
would be extremelycomplicatedo formulateandwould haveto includea greatmany
parameters.Insteadl shall considerall prey speciedogetherand assumehat a meal

taken by a fish at a particular time is the instantaneous ingestion of a single prey item.
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As | discussedearlier, even a population of similarly sized fish feeding from an
identical supply of prey will take various sized meals. Assuming that the same
distribution of meals is available to tidole population,| will introducea distribution
function ®(w, m,t) suchthat ®(w, m,t)dmdt representshe probability that between
time tandt+dt, anindividual with currentstomachcontentsw ingestsa mealweighing

between m and m+dm grams.

Using this definition, | cannow write expressiongor the rate at which fish leaveand
enter a particular stomach contentsweight due to feeding. The rate at which
individuals arrive at a gut weight of w from one of w-m is dependenbn the rate at
which they consumemealsof sizem. Sincethe rate of increasein categoryw to
w+dw is due to the feedingactivity in all lower classesthe total rate of entry from

non-empty stomachs is

W
F(w,t) = [®(w,m,t)f (w-m,t)dm (3.2).
0

Fish can also arrive at a gut weiglitw from the emptystomachstatewhenthey eata

meal of exactly w grams in weight.

The fish populationis feedingcontinuously,so that one mealis followed by another
anda fish which hasjust gaineda stomachcontentsof w will immediatelymoveinto a

higher stomach weight category as another meal of any size is taken. So | can write

U(w,t) = Tqb(w,m,t)dm (3.3)
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asthe averageate at which an individual with currentgut weightw at time t ingests
mealsof any size,which is equivalentto the per capitarate at which individualsleave

this weight due to feeding and move to a higher one.

These feeding terms can now be added to the digestion model (equation 2.11) to give a
partial differential equationwhich describesthe variation in the stomachcontents

distribution of a population of simultaneously feeding and digesting fish.

of (w, t) _K of (w, t)
ow

ot _U(W!t)f (W,t) +cD(W,W,t)Pe(t) +F(W’t) w>0

(3.4)

The first term in the equationis due to the digestion processand describesthe
continuousconstantdepletionof the stomachcontentsof all individuals. The second
termis the per capitarate at which individuals leavethe stomachweight of w dueto
feedingmultiplied by the proportionof individuals with this weightto give the total
decreasen the proportionof the populationwith stomachweight w dueto feeding.
The lasttwo termsin equationin the equationrepresenthe rate of entryto stomach
weightw dueto feedingfrom lower stomachweights. F(w,t) is definedin equation
(3.2) andthe third term describeghe rate at which individuals with empty stomachs

eat meals of size w and so arrive at a stomach weight of w grams.

Thefeedingprocessonly affectsthe empty categoryby removingindividualsat a rate
U(0,t). So, the rate of changeof the proportion of the population with empty
stomachs is given by

dr,(t)

<o =KH(0" ) -UODP(). (3.5)

In its presenform the definition of U(w,t) (equation3.3)is quite generalanddoesnot

explainthe specificdependencen the initial stomachcontents. Obviouslyfeedingis
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reduced by satiation,which is controlledby stomachuliness(Hamilton 1965)andthe
dietary energycontentof the food items consumedFletcher1984). So, the model
should include some limitations the amountof food thatcanbe eatenandthe sizeof
prey which the populationis ableto consume. The simplestway to includea fullness
controlis to saythatanindividual fish will refuseany mealwhich will takeits stomach
contentsabovea particularvaluew . which representshe maximumstomachcontents
of all individualsin the populationwhich is being considered. This assumptiorthen
implies that fish with empty stomachswill be ableto eatmealswith a wide variety of
weightswhile fish which arealmostfull will only be ableto eatsmallmealsor will not

eat at all. The meal size function can now be written as

A(m,t) O<msw.-w
d(w,m,t) = ) (3.6)
0 otherwise
and the functions (3.2) and (3.3) can be simplified to
w
F(w,t) = [A(m,)f (w —m,t)dm. (3.7)
0
and
W, -w
U(w,t) = jA(m,t)dm (3.8).
0

3.2 The constant feeding rate model

If 1 consideragainthe equationgdefining the modeldynamics,t looks unlikely that it
will be possibleto find an analyticsolutionto the equationsn their presentform. A

simplification can be madeby supposingthat the meal size distribution (A(m,t)) is a
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time independentunctionandcanbe written asRM(m) whereR is a constantuptake
rate and M(m) is a distributidiunctiondependenbn mealweightonly. Althoughthis
suppositions madeto simplify the mathematic®f the problem.,it is not a completely
irrational assumptiorto makeaboutthe feedingbehaviourof somefish species. For
example,a populationof non-visualfeederswhoseprey is permanentlyavailablei.e.
unaffectedby the tidesor light intensityandwho are not proneto predationby other
animalsmay feedfor long periodsof time at a constantvery low rate. The functions

F(w,t) and U(w,) can then be rewritten as

'
F(w,t) = R[M(m)f (w —m,t)dm, (3.9)
0
and
W, —W
Uw)=R [M(m)dm (3.10)
0

and the model equations become

of (w,t) _ f (w,1)
W

ot —U(w)f(w,t) +RM(W)Pe(t) + F(w,t)  (3.11)

and

ddite = Kf (07, 1) - RPy(t). (3.12)

Clearlyif the constantfeedingrateR is equalto zero,thentheseequationseduceto
those defining the variation in stomachcontentsof non-feedingpopulationof fish

(equations 2.11 and 2.12).

In chaptertwo | explainedhow, after aninitial transientthe digestiononly equations
reacha stationarysolutionin which the entire populationhave empty stomachs. A

steadystatesolutionwill occurin this casewhenthe proportionof fish leavingeachof
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the categories due to feeding and digestion is baldmctt proportionenteringthem
by digestionfrom aboveand feedingfrom below. If the stationarysolutionsof the

above equation are denoted as previously, then clearly equation (3.12) implies that

« KfT (0"
P =_é ) (3.13)
and equation (3.11) becomes
df " (w) _ 1 \ N
d—W—E[U(W)f (w)- RM(W)P, —F ()] (3.14)

On substituting the expression iléer into equation (3.14), we observe thiagw) must

satisfy the following differential equation

df;\(NW) :%{U(W)f*(w)_[Kf *é0+))RM(W)- o (W)} s
t(0)=f,
and the condition
P +Tf*(W)dW=1 (3.16)
0
where
F'(w) = RVjVM(w- m)f" (m)dm (3.17)
0

=R[M(m)f” (w-m)dm.
0

This problem cannotbe solved, however,without knowing the value of the initial

condition,f” (0%). Suppose | divide through equation (3.15¥b§0") to give
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£ (w) £ (w) F (w)
dw[f (O)J K[ (W )[f (O)J KM (w) —f*(o)] (3.18)
and introduce a new function

£ (w)
g (w )——f 0 (3.19)

then we obtain the differential equation

9909 - L1y wg (w)-kM(w)-G (W 6 (0)=1 (3.20)
dw K
where
G'(w) =R[M(m)g’ (w-m)dm, (3.21)
0

which can be solvedfor g* (w) with no dependencen the value of f*(0+). If the
solution of equation(3.20) is go(w) then the solution of (3.15), f*(w), is just a
multiple of this, f* (07)go(w). However,the solution of equation(3.15) must also

satisfy condition (3.16). Substitutingthe expressiongor f*(w) and P; into (3.16)

gives

%qf*(o*)go(w)dw:l (3.22)

which on rearranging gives

1

f(0%) = (3.23)

00

” .
Rt { 9o (W)dw

The stomach contents distribution function can then be written as
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) o — Go(W) (3.33)

K
= *Jgo(wyaw
0

and the proportion of the population with empty stomachs in the stationary state
Mo L (339

R 00
L+ {) 9o(W)

whereg,(w) is the solution of equation (3.20).

Although the steadystate equation(3.14) (or equation3.20) is much simplified in

comparisorto the time dependentase,it is still a relatively complicateddifferential
equationdueto theterm F (w) andcannotreadily be solvedanalytically. However,
given a particularmealsize distribution, the functionsU(w) and F (w) caneasilybe
calculated using a numerical integration scheme,for example the trapezium or

rectangularule. The ordinarydifferential equationcanthen be solvedusinga fourth

order Runge-Kuttamethodprovidedthat valuesfor the feedingrate, R, the digestion
rate and the 'initial' condition f*(0+) have beersupplied,and P; can be calculated
from (3.12). This methodis implementedn a standardsoftwarepackageSOLVER
(Gurney et al 1992) with adaptive step-sizeand accuracycontrol. Initially 1 have
assumedhat the mealsizedistributionis shapedike a normaldistribution (truncated
at zeroandrenormalisedf necessary)with meanequalto 1 gram,standarddeviation
0.5 and feedingate 0.1 mealsperhour. The solutionsof equation(3.15) producedby
choosingdifferent initial conditionsare illustratedin figure 3.1, which confirms that
f* (0%) in equation(3.15)is just a scalingfactor in the solution beforenormalisation.

Hence the solution can be calculated by solving equation 3.15 with any cahseof

fy and renormalising the numerical solution.
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Figure 3.1 Stationary state distributions produced by initial conditions of a) 1.0, b) 0.5 and ¢)
0.25.

3.3 Variationsin stationary state distributions

To help understanchow the stomachweight distribution is affected by meal size
distribution, | haveinitially concentratedny efforts on the numericalsolution of the
stationarystateequationandwill proceedaterto considerthe time varying caseand

the transient stage which is passed through to reach this solution.

Since one of the aims of this work is to help understanahtbeactionof fish andtheir
prey we would like to be ableto obtaininformationon the mealsizedistributionof a
speciesof fish from its stomachcontentsdistribution. In order to make specific
conclusions from stomach contents distribution observations it is necassaoertain
thatthe relationshipbetweenthe gut weight distributionand mealsize functionis one
to one andthat a particular solution cannotbe generatedy many different feeding

regimes. This cannotbe proved analytically due to the impossibility of finding an
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analytic solution, so the only way to proceedis by a seriesof numericalexperiments

and trial and error.

In chaptertwo, | discussedhe differencesbetweendigestion models, but did not
considertow theseaffectedthe stomachcontentsdistributionof feedingpopulationof
fish. So, before beginning the investigation into how changes in thef fetedingand
meanmealsize affectthe shapeof the stationarystatestomachcontentsdistribution, |

shall show how importantit is that the digestionrate is known. As in the previous
section | have initially assumed that the meal size distribution Mkesthe form of a
normaldistributionwhich hasbeentruncatedat zeroandnormalisedover the rangeof

the stomach weights.
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Figure 3.2. Stomach contents distributions for a population feeding a normal meal size
distribution with mean one gram, standard deviation 0.1 and at a rate 0.1 meal per hour with
digestion rates of a) 0.05, b) 0.1, ¢) 0.2 and d) 0.5.
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Figure 3.2 showsthat quite smallchangesn the linear digestionrate canconsiderably

affect the stationarystatestomachcontentsdistribution of a populationof fish. The
stationary state stomach contentsdistribution shown in figure 3.2a is that of a
populationwhoseindividualsare digestingat a very low ratewhencomparedo their
feeding rate. This low rate cannot stop the majority opthulationfrom building up

in a peak at the top of the stomachcontentsrange. Doubling the digestionrate
producesthe very level stomachcontentsdistributionillustratedin figure 3.2b while
increasing the digestion rate by ten times produces the gut weight distribution shown in
figure 3.2din which mostfish haveempty stomachsandthe remainingfew havevery

low stomach contents.

These results highlight the importance of a known digestitgandso throughouthe
feedingexperimentsn the restof this chapterl shallkeepthe digestionratefixed at a
rate of 0.15 gramsper hour. This is typical of the valuesfor the digestionrate of
marinefish of the sizeandspeciesvhosefeedingbehavioumwill be studiedlaterin this

thesis (Robb 1990).

In thefirst setof experimentd shallhold the mealsizefunction asa constantormal
distributionandinvestigatehow the shapeof the gut contentsdistribution changesas
the rate of feedingis increased. The maximumgut contentsw_ is equalto 8 grams
throughout. | have already found an analytic solution to the case when the fegejng
R, is equalto zero- all the stomachsaareempty. As the feedingrateis increasedthe
proportionof empty stomachsiropsanda distributionof non-emptystomachsegins
to appear. For low feedingratesthereis a peakin the distribution aroundthe mean
meal size stomach contents and very few individuals have faadin their stomachs.
However, as the feedingrate is increasedfurther, the proportion of fish with high
stomachweights increases, as the digestionrate is not high enoughto keep this

proportiondown, reducingthe fraction of the populationwith low stomachcontents
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so that whenthe populationis feedingat a rate equalto 0.35, the stomachcontents

distribution appears much flatter, as illustrated in figure 3.3d.
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Figure 3.3. Stomach contents distributions of populations feeding on normally shaped meal size
distribution with mean meal size 0.4 grams, standard deviation 0.2 and feeding rates a) 0.05, b)
0.2, ¢) 0.3, d) 0.35, €) 0.37 and f) 0.4. The maximum stomach weight of the individuals is 8

grams.

Furtherincreasesn the feedingrateleadto a build up of the populationtowardsthe
higherend of the stomachcontentsrange. The assumptiormadeaboutthe stomach
capacityis thata mealis rejectedif by consumingt the stomachcontentswould have
goneovertheir upperlimit, which in this caseis 8 grams. Sincethe meanmealsizeis
quite small (0.4 grams),individualscango on feedingevenwhenthey havefairly large
guantitiesof food in their stomachs.So, this fullnesspeakbuilds up quite closeto the

stomach contents upper limit.
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Figure 3.4. Stomach contents distributions for a population feeding at a rate 0.1 grams per hour
on a normally shaped meal size distribution with standard deviation 0.1 and mean a) 0.25, b)
0.5, ¢) 1.0, d) 2.0, €) 4.0, f) 5.0.

Holding the feedingrate andthe standarddeviationat 0.1, | shall now investigatethe
effectof changingthe meanmealsize. The digestionrate andthe maximumstomach
contentsarefixed asbefore. With a very low meanmealsize,the stomachcontents
distribution is extremely skewedto the lower end of the range with many empty
stomachsanda largeproportionof the populationwith gut contentsaroundthe mean
meal size (figure 3.4a-c). As the meanmealsize increasesthe peakmovestowards
the right as expectedbut the proportion of fish with large stomachcontentsalso
increasesas they eat severalconsecutivemeals. The meal size distribution which
generateghe stomachcontentsdistribution shownin figure 3.4d hasa meanof two
grams,which accountdor the largeproportionof fish with high stomachcontents. In

this casethe proportionof fish with a particulargut contentincreasesvith gut weight
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until a peakat aroundsix gramsis reached. Sincethe mealsize distributionis very
narrow, mostavailablemealsarevery closeto two gramsin weight, so few fish with
gut contentsabovesix gramswill be ableto feeddueto the upperstomachcontents
limit andso the stomachcontentdistributiondropsat this point. This peakoccursat
lower gut weights as thmeanmealsizeis increasedsshownin figures3.4eand 3.4f.
In fact the meanmealsizeis so large (5 grams)comparedo the maximumstomach

contents (8 grams) in figure 3.4f, that one meal pretty much fills the stomach.
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Figure 3.5. Stomach contents distributions of a population feeding at a rate 0.1 on meals whose
sizes are normally distributed (truncated at zero and eight grams) with mean one and standard
deviations a) 0.01, b) 0.05, ¢) 0.1, d) 0.2, €) 0.5 and f) 1.0.

The consequencesf alteringthe parametersvhich haveso far beenconsiderechave
beensignificantandclearlyvisible. | now wish to considerthe effectsof changingthe

variability of the meal size distribution. Figure 3.5a shows the stomachcontents
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distributionwhich occurswhenthe mealsizedistributionis very narrow (the standard
deviationis equalto 0.01),implying a prey populationwith very little size variation.
The narrownessof the meal size distribution is reflectedin the stomachcontents
distributionby very definite peaksat the meanmealsizeandtwice the meanmealsize,
as emptyfish consumdawo consecutivaneals. As the sizeof the mealsbecomesgnore
variedi.e. the standarddeviationis increasedthenthe peakat two grams(twice the
meanmeal size) disappearsthe peak at one gram becomedess pronouncedand a
growing proportion of fish have large stomachcontentsas larger meals become

increasingly available.

So far | have found little evidenceto suggestthat a particular stomachcontents
distributionwill resultfrom the solution of equation(3.14) with condition (3.16) for
morethanonesetof parameters However,the mealsizedistributionwhich sofar has
beenusedhasbeenrelatively simple, consistingof only a single normal distribution.
The distribution of meal sizesis likely to be more complicatedthan just one normal
distribution, in fact it may have many peaksdependingon the variationin size and
speciesof the availableprey. For examplea populationof fish may havetwo sources
of food, one of extremely smallbut very abundanprey andthe otherof muchrarer,
but very large prey. The meal size function will then be madeup of two separate
normal distributionsrepresentinghe distribution of mealsfrom eachsource. The
guestionwhich needsto be answerechereis canthe stomachcontentsdistribution
from a single peakednormaldistribution be reproducedy feedingon morethanone
food source. Figures3.6 and3.7 showsomemore complicatedeedingfunctionswith

their corresponding stomach contents distributions.
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Figure 3.6. Meal size functions (i) with their associated stomach contents distributions (ii),
where the meal size functions are as follows: a) single normal distribution with mean 1.5, and
feedingrate 0.1; b) two normal distributionswith means1 and 2, and feeding rate0.05and c¢)
four normal distributions with means 0.75, 1.25, 1.75 and 2.25, and feeding rate 0.025. All

standard deviations are 0.05.

In consecutivedistribution functions, the number of food sourcesdoubles, the
individual functionshaving meanson either side of the peakin the previousexample
andfeedingratesat half the previousvalue. In figure 3.6, the meal size distributions
areall very narrowandthis is reflectedin the very clearpeaksin the stomachcontents
distribution. The different gut weight distributions, althoughas a whole are quite
similar in shapedueto their identicaloverall meanmealsize (1.5 grams), are easily
distinguishedrom eachotherby looking at the detailsof the distribution. Therearea

numberof smallpeakspresenin eachstomachcontentsdistribution,correspondingo
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the numberof separatenormaldistributionswhich makeup the mealsize distribution

function.
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Figure 3.7.  Stomach contents distributions (a) with their associated meal size functions as
follows: i) single normal distribution with mean 1.5 and rate 0.2 (solid line stomach contents
distribution); ii) two normal distributions with means 1 and 2 and feeding rate 0.1 (dotted line)
and iii) four normal distributions with mean 0.75, 1.25, 1.75 and 2.25 and feeding rate 0.05
(dashed line). All the standard deviations are equal to 0.2.

The examples in figure 3.7 are identicaBt6 exceptfor the standardleviationsof the
mealsizedistributionwhich arefour timesbiggerthanthoseshownin figure 3.6. The
threestomachcontentdistributionshavequite similar overall shapesandno particular
distinguishingfeatures(unlike thosein figure 3.6), althoughthe feedingfunctionsare
quite different. However,if the threedistributionsare superimposean top of one

another as in figure 3.7a, they are quite clearly different.
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The four normal distributionswhich make up the feeding function shownin figure
3.7iii havebecomealmostindistinguishabledueto the very wide standarddeviationof
each individual distribution. The shape of this function can be matched quite closely by
a single normal distribution of equal meanand much larger standarddeviation, as
shownin figure 3.8a. The resultingstomachcontentsare easily distinguishedwhen
illustratedon the samesetof axes,thoughwe would not be ableto guess seeingthe
distributionsindividually, that one hadbeenproducedby a populationfeedingon four
prey sourcesand the other by a meal size distribution consistingof a single much

broader normal distribution.
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Figure 3.8 Meal size distributions (a) consisting of (solid) four normal distributions with means
0.75, 1.25, 1.75 and 2.25, standard deviation 0.2 and feeding rate 0.05 and (dotted) a single
normal distribution with mean 1.5, standard deviation 0.5 and feeding rate 0.17, together with

their associated stomach contents distributions (b).
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| shallnow considerthe effect of usingan alternativelyshapeddistribution function.
The main featuresof a normal distribution with a meanof one gram and standard
deviation of 0.24 can be reproducedby replacing it with a triangular shaped
distribution,centredat oneandwhosebaseis of width 1.2. Thisis illustratedin figure
3.9ai. The correspondingstomachcontentsdistributions are almost identical and
virtually impossibleto tell apart. However, sincethe two feeding functions which
generatethese stomach contents distributions are very similar anyway, it seems

unlikely that it will ever be necessary to distinguish between the two.
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Figure 3.9. Normally distributed meal size functions (solid line) compared to their closest fitting
triangular distribution (dotted line (a)) and gamma distribution (dotted line (b)), with their

associated stomach contentsdistributions.

81



The shape of a feeding function madeofip normaldistributionwhichis very skewed
towardszero(mean0.1) with a largerstandarddeviation(0.5) andfeedingrate0.14is
similar to that of the gamma distribution

Q[ﬂ) e[) (3.35)

X

(o]

with n equalto 0.35, W equalto 0.142 and x, 0.38. The resulting gut weight

distributions are illustrated in figure 3.9bii.

The stomachcontentsdistribution generatedy the normal feedingfunction is much
more skewedtowardsthe lower endof the stomachfullnessrangethanthat produced
whenfeedingon mealswhich follow the gammadistribution. Althoughthe illustrated
gammaand normal distributionsare quite similar at low mealsizes(figure 3.9bi), the
gamma distribution tales off much slower, so that when a population @afréébeding
on mealswhose sizeshave a gammadistribution, there will be more larger meals
available and consequentlya larger proportion of the populationwill have larger

amounts of food in their stomachs.

By looking at theseexamplesof stomachcontentsdistributions generatedfrom a
populationfeedingat a particularrate and on mealswith a particular distribution, |

havetried to showthat the relationshipbetweengut weight distribution and feeding
function is one to one. None of the exampleshave producedidentical stomach
contentsdistributions,althoughsomehave beermuite difficult to distinguishwithout
comparisonsnadeby illustrating all distributionson the sameaxes. Thesedifficulties

aroseonly when steadystatestomachcontentsdistributionswere generatedy meal
size distributionsmadeup of differing numbersof prey sources. So, | canconclude
from this sectionthat oncea digestionrate hasbeenestablishedit shouldbe possible,

in theory, given a stationarystomachcontentsdistributionanda fixed numberof prey
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sourcesto find the unique set of parameterglefining the meal size distribution and
feeding rate. The parameters are not considered unique in arsatigicsenseputin
the sensethat meal size distributions which produce numerically identical stomach
contents distributions are themselves numerically indistinguishable. | shall retien to
guestionof uniqueness$or differing numbersof preysourcedaterin the thesis,whenl

shall also investigate the effect of noisy or incomplete data.

3.4 The time dependent feeding rate problem

Although the previous section gives a good indication of the stomach contents
distributions, this has limitedaluewhenconsideringhe feedingdynamicsof mostfish
species.As | discussedh section3.0, the feedingrate hasfrequentlybeenfoundto be
dependent on light intensity and the tidal cycleit $dnot unreasonabléo assumehat
the consumptiorrate variesperiodically. Returningto the formulationof the model, |
shall now rewrite the feeding function as R(t)M(m) where M(m) is a distribution
function dependenbnly on meal weight and R(t) is a cyclic function. The partial
differential equationmodel defining the stomachcontentsdistribution variation can

now be written as

of (w,1) —K of (w,t) U (w, t)f (w, t) + R(t)M (W) Pa(t) + F(w, 1) (3.36)
ot ow
and
% = Kf (0%,1) —R(t)P, (1) (3.37)
W, —w
where Uw,t) =R(t) [M(m)dm (3.38)
0
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and F(w,t) = R(t)\‘l[VM (m)f (w —m,t)dm. (3.39)
0

It was seenin the previous sectionthat even an analytic solution to the general

constantfeedingrate problemwas an impossibility, so an expressiorfor the variation

of the stomachcontentdistributionin the morerealisticvarying feedingrate modelis

likely to be evenlessfeasible. However,thereare manyreliable numericaldifference

schemes which can be usedtdve partial differential equationf thistype. Suppose
that! discretisethe systemin the weightdimensionso that f, = (iAw) for i :l'ZV_F
w

and use a central differencing schemeto approximatethe derivatives everywhere
exceptat the edgeswhere one sided differencesare used. The partial differential
equationthen becomesa systemof coupledordinary differential equationswhich can
be solved using the fourth order Runge-Kuttamethod. (The functions U(w,t) and
F(w,t) are obviouslydealtwith in the sameway asthey werein the constantfeeding

rate model). The system of differential equations is shown in appendix A.

This methodof solutionof a partial differential equationis probablynot the methodof
choice for most numericalanalystsas there are many standardnumerical methods
availablefor the solutionof suchequationsfor example the Crank-NicolsorandLax-
Wendroff schemes. However, such methods,known as the 'methodof lines', have
been suggestedby Verwer and Dekker (1983). The central differencing scheme
producesa stiff systemof ordinary differential equations,the solution of which by
Runge-Kutta methods is stable (Dekker and Verd@&4). Beforethis methodcanbe
relied upon completelythough, the solution must be testedfurther to checkthat the
peculiaritiesat the end points in the discretisationof the weight dimensiondo not
significantly affect the solution. The simplest way of doing ithis setR(t) equalto a
constantndlet the modelrun until the stomachcontentsdistributionfunction remains

stationary at which stageit shouldbeidenticalto that predictedby the stationarystate
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equationdescribedn the earlierpart of this chapter. | shallcomparethe solutionsof
thesetwo methodsin the next sectionand at the sametime | can considerhow the

steady state is reached.

3.5 Constant feeding rate dynamics

Beforeinvestigatingthe dynamicsof the transientsolutionin muchdetail, | shall first
checkthe solution of the time dependensetof equationg3.36 and 3.37), by setting
R(t) equalto a constantand comparingthe solution to that of the stationarystate
equation. Figure3.10showsthe progressiorof the stomachcontentdistributionof a
populationof fish from a normalinitial stomachcontentsdistribution with mean 2

grams and standard deviation 0.5, to their stationary state.
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Figure 3.10. Stomach contents distributions of a population of fish with normal initial
distribution (a) with mean 2 grams and standard deviation 0.5, at b) 10 hoursc) 25 hoursand d)
stationary state (100 hours), feeding on a meal size distribution with mean 0.4 grams, standard

deviation 0.2 and at arate of 0.2 meals per hour.
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Whenthe stationarydistributionis comparedo that producedby the stationarystate
equation (see figure 3.3b), the two look the sameand numerically, are virtually
identical with a differenceof lessthan0.5%. The smallinaccuraciesare due to the

different numerical methods used for each solution.

Although, informationis lost aboutthe stomachcontentsdistribution by considering
only the meanstomachcontents this is a much more convenientway of considering
how the solution progresswith time and doesnot require the many illustrations of

stomachcontentsdistributions. Howeverin certainfeedingsituations,the dynamics
becomequite complicatedand in which case,a few selectillustrations of stomach
contentsdistributionfunctionswill be of help. In this sectionl aim to showhow the
progressiorof aninitial stomachcontentddistributionto its stationarystateis affected
by changesn the distributionof availablemealsandthe rate of feeding. In all of the

following exampleghe populationconcernechasa digestionrate of 0.15 gramsper
hour, an upperstomachcontentslimit of eight gramsand an initial stomachcontents
distribution which is normal with mean2 gramsand standarddeviation 0.5 grams.
Most of the equilibrium stomachcontentddistributionshavealreadybeenillustratedin

section 3.3 when the variation in stationary state distributions was investigated.

In my first setof examplesillustratedin figure 3.11,1 haveshownthe variationin the
meanstomachcontentswith time for a rangeof feedingrates. Whenthe population
hasa very low feedingrate of 0.05 mealsper hour, the meanstomachcontentsdrop
very quickly from two grams and the low stationary state is reached within

approximately25 hours. In this casethe feedingrateis solow thatvery few fish can
reachhigh stomachcontentsunlike a populationfeedingat a rate of 0.4 gramsper
hour. This eight fold increasein the feeding rate causesan increaseof over one
hundredtimes in the final stationarymeanstomachcontentswhich are not reached

until nearer 800 hours.
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Figure 3.11. Progression to equilibrium for a population of fish with a normal initial stomach
contents distribution with mean two grams and standard deviation 0.5 feeding on a meal size
distribution with mean 0.4 grams, standard deviation 0.2 and constant rates 0.05 (solid line), 0.2
(dotted line), 0.3 (short dashed), 0.35 (dashed), 0.37 (long dashed) and 0.4 meals per hour (dot-
dashed).

Figure 3.12 shows the variation in mean stomach contents for the same initial
populationwhenthe width of their mealsizedistributionis varied. The distributionis
centredat onegramandthe memberf the populationfeedat a rate of 0.1 mealsper
hour. Clearlyfor low mealsizedistributionstandarddeviationsfor example0.01and
0.2, very few fish will havehigh stomachcontents so the meanstomachcontentswill

be quite low - approximatelyone gramandfall directly to their steadystatefrom the

initial condition.

However, when the population feeds on a meal size distribution with standard
deviationonegram,the meanstomachcontentsnitially decreasebeforeincreasingo
their stationarystatevalue. The stomachcontentsare initially normally distributed
with a meanof two gramsand a standarddeviation of 0.5, so only a very tiny

proportion of the population have high stomach contents to begin Agtkhe feeding

87



and digestion process begins, this normal distribution stan®veto theleft ( dueto
the digestionprocessandsomeindividualsbecomeempty,while at the sametime the
populationis feedingat a low rate on a wide variety of meal sizes,so a very small
proportion of the populationwill have a large amountof food in their stomach.
Initially, the numberof fish with large stomachcontentsis so small that it doesnot
significantly affect the meanstomachcontentswhich decreasedue to the digestion
process. However,sincethesefish haveeatenquite large meals,it takesa very long
time for themto digestthe food andbecomeemptyagain,andall the while, morefish
are eating large meals and the proportbthe populationwith high stomachcontents
is increasing. Hence, the mean stomach contentsincreasesuntil it reachesits

stationary state.

mean stomach contents(g)
2

0 100 200 300 400

time(hours)

Figure 3.12. Time history of the mean stomach contents of a population whose initial ssomach
contents distribution is normal with mean two and standard deviation 0.5, feeding at a constant
rate of 0.1 meals per hour on normally distributed meals with mean one gram and standard
deviations 0.01 (solid line), 0.2 (dotted), 0.5 (short dashed), 0.75 (dashed), 1 (long dashed) and 2
(alternate dot dashed).
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The immediateincreasein the mean stomachcontentscurve when the population
begins feeding on a meal sidistributionwith standarddeviation2 gramsis dueto the
availability of extremelylarge meals. The consumptionof very large mealsby even
just a few individuals,who consequentlyoecomevery full, is enoughto overridethe

initial reduction in mean stomach contents due to the digestion process.

An even more interesting transient to consider is that which occurs in figureThis3.
illustration shows how the steady state is rea¢bed populationfeedingon mealsize

distributions with different means.

Our attentionis quickly drawn,to figures 3.13eand 3.13f which show oscillationsin
the mean stomachcontentsbefore it settlesdown to its steadystate. The mean
stomachcontentsvariationillustratedin figure 3.13f was generatedoy allowing the
populationto feed on very large meals(meanfive grams),but with very little size

variation (standard deviation 0.1).

As thefish initially beginto feed,a peakin the stomachcontentsdistributionbeginsto

build up at aroundthe sevengram stomachweight which is wherea five gram meal
will take themfrom an original stomachcontentsof aroundtwo grams,so the mean
stomachcontentsinitially increases.Oncethey havetakenone meal, of sucha size,
though,thesefish are unableto feed muchfurther asthereare very few small meals
availableandthe consumptionof a meal of aroundfive gramsin weight would take
their stomachcontentsabovetheir upperlimit. Thereforethesefish will be digesting
only. After sometime there are very few fish left with low stomachcontentsand
thereforefew areableto takea meal(dueto their large sizes),so the majority of the
populationare digestingand hencethe meanstomachcontentsare decreasing. This

decreaseontinuesuntil a substantiabmountof the populationhavedigestedenough
so that their stomachcontentsarelow enoughto take anotherlarge mealand so the

populationbeginto moveto high gut weightlevelsagainandthusthe meanstomach
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contentsincrease. As this processcontinuesthe populationslowly beginsto spread
out over the gut rangedue to fish with a broaderrangeof gut contentsfeedingon
mealswith a rangeof sizes. The movemenbf the populationpeaksbecomedessand
lessobviousandeventuallythe equilibriumis reachedasthe proportionof fish gaining
a stomachcontentsweight due to ingestionfrom below or digestionfrom aboveis

balanced out by those leaving this weight due to feeding or digestion.
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Figure 3.13. Temporal development of the mean stomach contents of a population whose initial
gut weight distribution is normal with mean two grams and standard deviation 0.5, feeding at a
constant rate of 0.1 meals per hour on a normally distributed meal size distribution with a
standard deviation of 0.1 and mean a) 0.5 grams, b) one gram, c) two grams, d) 2.2 grams, €)

three grams and f) five grams.

Figures3.13a-eshowthatthe stationarymeanstomachcontentsncreasessthe mean
meal size increases. However, there is a decreasen the equilibrium averagegut

weight when the mean meal size increases from three grams to five grams, illirstrated
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figures3.13eand3.13f. Thisis dueto the combinedeffectsof the very large meals
andthe upperlimit to the gut contents. Only fishin the lower endof the gut contents
rangeare able to feed and most other fish will be rejectingfood and digestingonly,
thereforethe meanstomachcontentswill be lower thanin thosecasesvherethe mean
mealsizeis somewhasmallerandlessfood is beingrefused. Theseequilibrium mean
stomachcontentsshow that for sucha populationfeeding at quite a low rate (0.1

mealsper hour), they arebetteroff feedingon a mealsizedistributionwith a meanof

less than half their stomach contents, rather than trying to feed on very large meals.

In this sectionl havetried to showthatthe existenceof the equilibriumis dependent
on a complicated combination of digestion and unrestricted featliogy gut weights,
togetherwith consumptionrate restrictionsenforcedby the upper stomachcontents

limit.

3.6 Variablefeeding rate dynamics

| shall return my attention now to the case when a populatieedingat a ratewhich
variesthroughoutthe day. It hasbeensuggestedhat somefish speciesfeed mainly
during the day and are much less active during the hours of dagathgse-versaor
other speciesjn which caseit would be sensibleto begin by choosinga sinusoidal
curvewith periodtwenty four hoursto representhe feedingratefunction. So,| shall

write

. Tt LTt
R(t) = R, +R, S'”E whenO< R, +.R2 S'”E (3.40)
otherwise

which is a constantbackgroundeedingrate R, with the additionof a sinusoidto give

the variation. The function s clipped as zero so asto cut out negativefeedingrates

which would be absurd. | shallreferto the constantR, asthe underlyingfeedingrate
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and the constantR, as the feedingrate amplitude. Figure 3.14ashowsthat for a
population feeding at a sinusoidally varying rate, the variation in mean stomach
contents reaches a repetitive ‘limit cycle’ with period tweoty hours.The variations
in gut weight distribution which are produced by this particular feeding rate
fluctuation,areillustratedin figure 3.14b. Althoughthesedynamicsaredrivenby the
variationsin the feedingratefunction, for conveniencel shallcall them’limit cycles’
asthey are stable,independentf the initial stomachcontentsdistribution,and cycle

(with period twenty four hours) between an upper and lower limit
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Figure 3.14. a) Progression of mean gut contents of a population of fish feeding on a normal

meal size distribution with mean 0.5 and standard deviation 0.2 with a sinusoidal rate function
with R1 equal to 0.2 and Rg to a limit cycle from two different initial stomach contents

distributions. The stomach contents distribution at the trough of the limit cycle is shown in b)

and c) illustratesthe distribution at the peak of the mean stomach weight cycle.
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In the next section| shall attemptto explain the dynamicsof the time dependent
feedingrate problemin the sameway as| did the constantfeedingrate problem, by

solving the problemfor a numberof setsof feedingparameter¢y,o,R, and R) and

looking at how the variation of a particular parameter affects the solution.

Since | have already looked at how the actual meal size distribution affects the stomach

contentsdistributionfunction | shall initially concentrateon the effectsof changedo

R, and R. In the first set of examplesillustratedin figure 3.15, | have kept the

amplitude of the feeding ratescillationsconstantat 0.2, but choserdifferentvaluesof

R,. The corresponding feeding rate functions are illustrate in figure 3.16.
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Figure 3.15. Variation in the mean stomach contents of a population whose initial gut contents
distribution is normal with mean two grams and standard deviation 0.5, feeding on a meal size

distribution with mean two grams, standard deviation 0.2, with a sinusoidal rate function with
amplitude 0.2 and R, equal to a) 0.5, b) 0.3, ¢) 0.2, d) 0.1, €) O and f) -0.1.
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In figure 3.15a,the constantunderlyingfeedingrate of the populationis very high at
0.5 mealsper hour. Sincemostof the populationhavevery high stomachcontents,
evenat the trough of the sinusoid,the increasein feedingrate due to the sinusoidal
part of the function will have little affect since only a small proportion of the
populationwill be ableto feedanyway,dueto the upperstomachcontentsimit. As
the underlyingrate decreasesa slightly lower proportionof the populationhavevery
large stomachcontentsmorefish will be ableto increaseheir feedingrateasthe rate
functionincreasesand hencethe amplitudeof the meanstomachcontentsoscillations

will be greater.
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Figure 3.16. Feeding rate functions with amplitude equal to 0.2 and R equal to a) 0.5, b) 0.3,
¢) 0.2,d) 0.1, e) 0 and f) —0.1, corresponding to the mean stomach contents variations shown in

figure 3.15.

94



| have defined the feeding rate function as a clipped sinusoidal function and
consequently if the underlying feeding ré&eis less than 0.2 (the amplitudetbé rate
function), there will be periodsof time when the overall feeding rate is zero (see
figures 3.16d-f) i.e. the individuals are digestingonly. So, due to the complete
cessatiorof feedingduring somepart of the day, the meanstomachcontentsof the
populationwill drop more rapidly, causingan even greateramplitudein the mean
stomachcontentsoscillations. By giving R; a negativevalue (figure 3.16d), the
feedingrate function hasbeentranslateddown so far, that mostof it hasbeencut off

at zeroandhencethe populationis digestingfor mostof the time andonly hasa peak
feedingrateof 0.1 gramsper hour. Following this feeding regime, only a very small
proportionof the populationwill gain very high stomachcontentsand thereforethe
mean stomach contents will never reach Vargevalues. The shapeof thelimit cycle
appeargo be deformingwith the meanstomachcontentsdecreasingor longer than
they are increasing,though they never reach zero as those few individuals whose
stomachcontentsdo reachquite high weightswill not be ableto digestdownto zero

stomach contents before feeding recommences.

Figure 3.17 comparesthe mean stomachcontentsvariation curves of populations
whosefeedingregimesare identical exceptfor the amplitudeof the variations. As
expectedthe amplitude of the oscillationsobservedin the meanstomachcontents

curve increase as the amplitude of the feeding rate function oscillations increases.

This illustration also showsthat the amplitudeof feedingrate oscillation affectsthe
positionaboutwhich the oscillationsoccur. As the amplitudedecreaseshe mid point

of the mean stomach contents oscillation increases.
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Figure 3.17. Progression with time of the mean stomach contents of a population feeding on
meals with mean size two grams and standard deviation 0.2 grams at an underlying feeding rate
of 0.2 and a feeding rate amplitude of i) zero (solid line), ii) 0.1 (dotted line) iii) 0.2 (short
dashed line) and iv) 0.5 (dashed line).

Thelimit cyclesarealsoaffectedby the parameterslefining the mealsize distribution
itself. The meanstomachcontentsof a populationof fish with a mealsourcewhich s

distributed normally with mean1 gram and standarddeviation 0.2 grams oscillate
arounda fairly low point (approximatelyl gram)as shownin figure 3.18a. As the

meanmeal size increasesthe mid-point of the oscillationsincreasesuntil the upper
limit to the stomachcontentsbeginsto comeinto affect. Whenthe meanmeal size
gets very large, there will be virtually no small meals available, as the standard
deviation of the meal size distribution is very narrow, so many individuals will be

unableto feed. The effectsof this restrictionbecomemore obviousasthe meanmeal
size gets larger and the position about which the meanstomachcontentsoscillates

drops.
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Figure 3.18. Variation in mean stomach contents for a population feeding at a sinusoidally
varying rate with R, and R, both equal to 0.1, on a meal size distribution with standard

deviation 0.2 and mean a) 1 gram, b) 2 grams, c) 4 gramsand d) 6 grams.

Sofar, | haveconsiderednly very simplefeedingbehaviourthatthe populationfeeds
on only one medaizedistributionandat a ratewhich hasonepeakandonetroughper
day. However,it hasbeensuggestedhat somefish specieshavetwo daily feeding
peaks possiblyat dawnanddusk. This behaviourcould be simulatedby doublingthe
frequencyof the sinusoidand translatingit in the time direction so that the feeding
peaks occur at the right times. It is quite likely though that teesingpeaksmaybe
of differentamplitudeswith fish populationsfeedingat a higherrate at dawnthan at
dusk, dueto possiblegreaterenergyneedsduring the day when they may be more
susceptible to predation. As such a feeding rate function cannotlessilynedusing

a sinusoidalcurve, the mostobviousway to simulatesuchbehaviourseemso be via
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an ordinary stepfunction. The effect of substitutinga stepfunction for a sinusoidal

feeding rate function is shown in figure 3.19.
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Figure 3.19. Variation in mean stomach contents of two identical populations feeding on normal

meal size distributions with mean 2 grams and standard deviation 0.2, with i) a sinusoidal rate
function with R, and R, equal to 0.1 and period 24 hours (solid line) and ii) with a rate

function which takes the form of a step function with the value 0.2 for the first half of the day

and zero otherwise.

As the step function feeding rateitchesbetweentwo distinctvaluesdiscontinuously,
the variationsin the mean stomachcontentscurve are much sharperthan those
observedfor a populationwhosefeeding rate varies continuously. Apart from this
difference, the two feeding regimesgeneratevery similar mean stomachcontents

variation curves.

The feedingbehaviourof a populationof fish could be evenmore complicatedthan
that describedaboveasthe populationmay be feedingon multiple mealsourceseach

of whose availability varies during the day.
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mean stomach contents(g)
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Figure 3.20. Time history of the mean stomach contents distribution of a population of fish
feeding on two normally distributed meal sources, one with mean two grams and standard
deviation 0.1 at a rate of 0.4 meals per hour between 4am and 8am and 0.05 meals per hour
during the rest of the day and the other with mean 0.5 grams and standard deviation 0.1 at a

rate 0.2 meals per hour between 4pm and 8pm and zero for therest of the day.

Figure 3.20 showsthe variation in meanstomachcontents for a populationof fish
which hastwo meal sources,one with a large meanwhich is most readily available
betweenthe hours of four and eight in the morning (around dawn) and the other
sourcewhich hasa lower meanand becomesaccessiblaluring the late afternoonand
early eveningbetweerfour andeight. The feedingrateis fairly low at all othertimes.
A consequence dhis morecomplicatedeedingregimeis thatthe limit cycle becomes
double peaked. THargepeakbeingdueto the earlymorningfeedingon mainly quite
large mealsandthe smallerpeakdueto the eveningfeedingon a low meanmealsize

distribution.
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3.7 Summary

The previoussectionshave shown just how complicatedthe dynamicsof both the
stationarystatesolutionandtime dependensolutioncanbe. In section3.31 tried to
illustrate the uniqueness of the stationary state solthi@mugha seriesof examples.|
found no evidenceto indicatethat identical equilibrium stomachcontentsdistributions
could occurin identical populationsfeedingon the samenumberof prey sourcesbut
with differentmeansandstandardieviationsandat differentrates. Soin this casewe
can say that the relationship betweenfeeding parametersand stomach contents

distribution is one to one and the inverse problem can, in principle, be solved.

However, somestomachcontentsdistributionsgeneratedwith different numbersof
prey sources appeared quite similar. So, at this stage the possibilityotiedhanone
feedingregime can generatea particular distribution cannotbe ruled out when the
numbersof prey sourcess not fixed. Evenif suchsolutionsare unique,the stomach
contentsdistributionsmay be so similar that given only a small amountnoisein the
data,they may becomeindistinguishable. In the following chapterl shall attemptto
find a suitablemethodfor solving the inverseproblemandthengo on to investigate
how easyit is to infer the feedingbehaviourwhenthe stomachcontentsdataare noisy

or categorised into stomach weight intervals.

With the introduction of time dependencethe problem becomesmuch more
complicatedwith manydifferent feedingregimesbeing quite feasibleand somemean
stomachcontentsoscillationsappearingquite similar. However, given the previous
resultaboutdistinguishabilityof stationarystatestomachcontentsdistributions,given
a fixed numberof preysourcesijt seemdikely thatdevelopmenof thetime dependent
stomachcontentsdistributionof a populationfeedingin a particularfashionwill also
be unique. So,if we considerthe variationin stomachcontentsdistributionwith time

instead of the mean stomach contents, and have a complete picture of how the stomach
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contentdistributionof a populationvariesover a day, thenwe shouldbe ableto find

the unique set of parameters and rate function which define its feeding behaviour.

Onceagainhowever,if the stomachcontentsdatahave beersampledfrom the field

they will be quite noisy and are likely to consist of proportions of the population whose
stomachcontentslie in quite broad gut weight categories. Furthermorethe samples

will not have been collected at very fine time intervals. Given dath,it will become
moredifficult to infer the feedingbehaviourof a populationandit may be impossible

to tell from the stomachcontentsdatawhethera populationis, for example,feeding

with a sinusoidally varying rate or a step function.

The nextsectionof this thesisdealswith the solutionof theseinverseproblems. | will

attemptto showhow well theseproblemscan be solvedwhena completedescription
of the time dependentstomach contents distribution is available, and how the
information which we can obtain about the feeding behaviour of the population
deterioratesdue to sampling of the population at infrequent time intervals and

categorisation of stomach contents.
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Chapter 4
The constant feeding rate

Inverse problem
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4.0 Introduction

In section 3.4, | explained how the stationary state equation could be solved
numericallygivena particularmealsizedistributionandfeedingrate. | illustratedhow
variation in the parametersaffectsthe shapeof the stationarystatedistribution and
attemptedo showthatthe relationshipbetweenthe parameterand stomachcontents
distribution is one to one. Although we have not managedto prove complete
uniguenessthe results clearly indicate the likelihood that given that we know the
number of prey sourcesinvolved in the meal size distribution, then only one
biologically sensibleset of parametersvhich generatethe stationarystate stomach
contents distribution can be found. Obviously, given a particular steady state
distribution,an attemptcanbe madeto find the appropriatesetof parameterdy trial
and error provided the feeding function type is known. This, however,would be
tediousandtime consuming.So, it would be more sensibleto try to find a suitable
automatic method of solution for this inverse problem of finding the feeding

parameters from the stationary stomach contents distribution.

The aim of this chapter i first decideon a suitablemethodof solutionof the inverse
problem and to monitor its performance ovemdety of problemsJooking at whether
the resultsit producesgiven datawith known feedingfunctions(generatedrom the
solution of 3.15), are alwaysthe expectedones.Our eventualgoal is to be ableto

successfullyinfer the feeding behaviourof a populationof fish from their stationary
stomach contents distribution without any prior knowledge of their meal size
distributionor feedingrate. However,stomachcontentsdatacollectedin the field will

nevertaketheform of a perfectnumericaldistributionwhich is a particularsolution of

the stationary state equation (3.1 therestof this chaptergoeson to considerthe
effect ontheresultsof the automatidfitting procedurepf morerealisticsimulateddata

incorporating noise and data which have been categorised into intervals.
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4.1 Optimisation techniques

Thereis no standardnethodof solutionof differential equationinverseproblems.the
technigueuseddependgreatly on the type of problemandits complexityi.e. on the
numberof dimensionswhetherthe parametersexist linearly or non-linearly in the
solution and whether derivatives or second derivatives of the solution can be
calculated. When an analytic solution can be found to the ordinary differential
eqguation, the inverse problem is jastaseof fitting a curveto a setof datapointsand
finding the parameteravhich give the bestfit. This can be done using the general
linear leastsquaresmethod or one of the standardnon-linearleastsquaresversions

which involve the use of function derivatives or second derivatives.

Unfortunately,in this casewe haveno explicit form for the function which we wish to
fit to our observedstomachcontentsdata. The solution of the stationary state
differential equation (equation 3.15) has tocch&ulatechumerically,so any non-linear
optimisationmethodwhich involvesthe useof analytic derivativesmustbe ruled out
here, making the task slightly more difficult. However,there are still a number of
alternativeproceduresthe most popularbeing the downhill simplex methodand the

derivative-free Gauss-Newton algorithm.

Both of thesemethodscan be usedto solve the problem of finding the parameter

vectorP = (P, P;...,Py) which minimisesa suitableerror measureQ(P) betweerthe

observed data points and the components of a vector valued fui@ipn

The simplexor polytopealgorithmwas suggestedy Spendley Hext and Himsworth
(1962) and modified by Nelderand Mead (1965). As the nameimplies, the method
involvesthe useof a simplex- an N-dimensionafigure consistingof N+1 verticesand
all their interconnectingline segmentsand faces. Supposethe problem is N-

dimensional(i.e. the problem has N unknown parametersiand the chosenstarting
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point is the N-dimensionalvector Py, thenthe otherN verticesrequiredto definethe

initial simplex are generated using
Pi = PO + )\ei (41)

wherethe e;'s are N unit vectorsand A is a constantof magnituderelative to the

problemscharacteristiscalelength. At eachstageof the processthe point giving the
highestvalueof the error measuras replacedoy a new point at which the function has
a more desirablevalue. This new point is obtained by a series of reflections,
expansions and contractiookthe worst point aboutthe centroidof the N bestpoints.
At a minimum, whetherglobal or local, the simplex contractsitself aroundits best

point pulling in from all directions. (See appendix B for details).

Box (1966)and Bard (1970) conductechumericalstudieswhich showedthat whena
sum of squaresfunction was to be minimised, algorithmsusing the Gauss-Newton
approachwere generallyfasterthanthosethat do not. In the Gauss-Newtormethod
f(P) is approximatedby a first order Taylor seriesaboutthe currentvalue of the
parameter vectdp, giving a linear least squares problem whicthensolvedto give a
newvalueof P. This method,however requiresthe functionderivativesto be known

and so is not suitable for our problem.

Ralston and Jennrich (1978) considereda derivative-free Gauss-Newtoralgorithm
called DUD (doesn'tuse derivatives)which under normal operationsrequiresone
function evaluationfor each iteration exceptfor extra evaluationsneededto get
started. The N-dimensionalinitial vector mustagainbe chosenby the userandthe
routinethencomputeghe otherN vectorswhich arerequiredto startby replacingthe
i'th componen(for i=1,...N) by a non-zeronumberh;. The suggestedaluefor h; is
0.1 multiplied by the correspondingcomponenif the initial vector. This alternative

method, instead of using a TayExpansionnow approximated (P) at eachstepby a
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linear function which matchesf(P) at the N+1 previousvalues of the parameter
vector. This alsoleadsto a linearleastsquaregproblemwhich canbe solvedto obtain
a new value of P which replaceshe parametenector giving the largestvalue of the
error function. The new setof parametenvectorsarethenusedin the next iteration
and this processcontinuesuntil a suitableconvergencecriteria hasbeenmet. (See

appendix B for details).

Theonly problemnow is to choosewhich algorithmto use. In the nextsectionl shall
conducta seriesof trials of the two non-linearoptimisationmethodsdescribedabove

in order to decide which is most suitable for this problem.

4.2 Difficulties with the optimisation technique

Before attempting implementation of either of these non-linear optimisation
techniguesa suitableerror measureand convergenceriteriahadto be decidedupon.
The mostpopularerrormeasuras the meansquaredieviation,sol initially decidedto

use this, and @) is defined by

QAP =Y (v, ~,(P))? (4.2

wherethe y; arethe m observeddatapointsandthe f;(P) arethe componentof a
vector valuedfunction f(P). In our casethe R arethe parameterslefiningthe meal
sizedistributionandfeedingrate,the y; arethe observedhumericalstomachcontents

data and the fj(P) are the numerical solution of the stationary state differential

equation with feeding governed by the parameter vé&ctor

A more important point of discussionis that of convergenceand how to get the

routinesto stop. The routinesshould end when the error measurehas attainedits

106



minimumvalueandan acceptablesolutionhasbeenreached. It may alsobe desirable
to terminatethe routineif progresecomesinreasonablglow, if a particularnumber
of function evaluationshas been exceededor if the iterative procedureis cycling

between values.

As the simplexmethodconvergego a minimum, the simplex pulls itself in aroundits
best point and consequentlyit becomessmaller and smaller. So, the convergence
criteria which is usually used here is that the difference betweenthe function
evaluationsat the points of the simplex are less than a particular small value.
Convergencef the DUD routinecanbe found by comparingvaluesof the leastmean
squared erroron successivéerations. At the minimumthe differenceshouldbe zero,
So we cansaythat the optimum hasbeenreachedwhenthis differenceis lessthana

particular value.

There are however, problems with these convergencerules resulting in false
convergencee. convergingat the wrong point. The proceduremay for somereason
betaking very smallsteps. For example,jn the simplexmethod,the simplexmay have
becomevery small without actually reachingits minimum and thereforesuccessive
function evaluationsmay be very closeto eachother, though not necessarilysmall.
Anotherproblemis that the algorithmswill convergeat the first minimum which they
come across, whether global or local. So, for a very complicated error surfateg like
sketchedexampleshownin figure 4.1, this criterion could end up producingvery

wrong answers.

This problem can be easedby the additional constraintthat the error measureitself
must also be less tharparticularsmallvalueat the convergenceoint. However,this
still doesnot solveall the problemsasthe value which is chosenmay be greaterthan
two minima or it may be lower than all of them, in which case an adequate swatilition

neverbe found. In this section,however,| shall be dealingwith problemswhich |
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know havea minimumleastsquaresvalue of zero,so| canchoosea very small error
measureas an extra convergenceriteria in this case. One final requirements that
after a certainnumberof iterations,the routinesterminate,whetheror not a solution
has been found, to preventthem heading off in completely the wrong direction

indefinitely.

mean squared deviation
0.02 0.04 0.06 0.08 0.10 0.12

0.0

0 1 2 3 4 5 6 7
parameter value

Figure4.1. An example of avery complicated variation in error with a single parameter.

The rest of this section containsan analysisof how the performanceof the two
techniguexompareover a seriesof typical problems. In all of the trials | havechosen
a setof parametersvhich definethe constanfeedingbehaviourof a populationof fish
and calculatedthe numerical stationarystomachcontentsdistribution. Initially, the
solution was calculatedat 400 points along the stomachweight interval, to give a
numerical density function which is then converted primportion. The observediata
is then a set of valuesdescribingthe proportion of fish in eachof the very small

intervals. Since | have calculatedthis numerical solution from the steady state
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differential equation (equation 3.15) with known parameter values,drezskthatthe

non-linear least squares procedures are converging to the correct parameter values.

| beganmy comparisorof the two optimisationmethodsby consideringthe numerical
stationarystomachcontentsdistribution of a populationof fish feedingat a relatively
low rate on a very narrow truncatednormal prey distributionwith a low mean.This
givesa distributionwhich is skewedvery muchto the left with a large proportionof
stomachsremainingempty and is illustrated in figure 4.2. The populationin this
exampleconsistsof individuals whose maximum stomachcontentsare sevengrams
anddigestionrateis 0.13gramsper hour,which aretypical valuesfor someof the fish

populations which will be studied later in this thesis.

Pe=0.6026

proportion of population
0.0 0.002 0.004 0.006 0.008 0.010 0.012

0 100 200 300 400
stomach contents category

Figure 4.2. Stationary stomach contents distribution of a population of fish feeding at a constant
rate of 0.1 meals per hour on a normally shaped meal size distribution with mean 0.5 grams and
standard deviation 0.05 grams. The upper limit to the stomach contentsis seven grams and the

digestion rateis 0.13 grams per hour.
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It seemgyuite obviousthat this stomachcontentsdistribution occursfor a population
feeding at quite &ow rateon relatively smallpreywith a narrowsizedistributionsince
thereare hardly any individualswith muchfood in their stomachsand thereforewe
would expect that an optimisation routine should converge quite quickly to the
solution parameter setiowever,asthe nextsectionexplains,eventhis relatively easy

problem causes some difficulties.

Both algorithmsrequire a 3-dimensionalinitial vector from which to generatetheir

starting points and in addition the simplex method requiresthe userto supply the
values of the A;, which | have initially assumedto be equal to half of the i'th

componentof the initial vector. The questionis how to decidewherethe routines
shouldbe startedfrom. An initial point randomly chosenfrom a particulardomain
would be the ideal starting point as this could then be usedregardlessof whether
anything aboutthe meal size distribution function was known. Unfortunately,when
this methodwas used,both methodsrepeatedlyfailed to convergeto the expected
solution, sometimescycling betweenvaluesor exceedingthe maximum number of

iterationswithout makingany progressn the right direction. This failure to converge
to any point could be dueto the distanceof the initial startingpoint from the actual
solution, a very complicatederror surface,on the value of the A; in the simplex
method, or thesefailures could be due to other inadequaciesn the optimisation

routines.

It is difficult to geta goodideaof how the error measurevaries,asin this caseit is a
four dimensionalsurface. However,the three cross-sectiondlustratedin figure 4.3
show arelatively simpleerror surfaceandsuggesthatoncethetrial parametewectors
lie within the vicinity of the minimum, convergenceshould be quite rapid, except

perhapsfor the standarddeviation. In this case,the minimum of the meansquared
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error is very broad indicating that quite a range of standarddeviationsgive mean

squared errors almost as low as the minimum value.
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Figure4.3. Variation in mean squared error between a stomach contents distribution describing
the proportion of fish with a particular weight generated by a normal feeding function with
mean 0.5, standard deviation 0.05 and feeding rate 0.1 and the solutions of the stationary state

differential equation for varying a) mean, b) standard deviation and c) rate.

Figure4.3 alsosuggestshatconvergencdérom far awayinitial parametersvill be very
slow dueto the flatnessof the error surfacein this region. In fact, beginningwith the
value of the mean of the meal size distribution very far fromgtsnummay causethe
routineto divergeaway from the optimum as the meansquareddeviationdecreases

with increasing mean at large distances from the optimum.

The two routineswere both alteredso that the starting valuescould be varied and

comparisons madaf how eachprocedureconvergedrom particularstartingpoints. |
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beganby startingtwo of the parameterst their known valuesand varying the third,

noting if the procedureconvergedand how many iterations(function evaluations)it

requiredfor correctconvergence.If eitherroutine exceeded®000 iterations,l chose
to halt it anyway, in order to preventthe algorithms running indefinitely without
reachinga solution. Evenwith two of the three parameterdeing giventheir known
correctvaluesat the beginningof the optimisationprocessthe procedurestill did not
alwaysconverge. Theresultsof the optimisationproceduregor thosetrials whenthe

initial value of the mean was varied are shown in table 4.1.

Simpleimethod CU D
Initial mean| Converges Iterations | Converges Iterations

0.1 YES 245 YES 286
0.4 YES 209 YES 223
0.5 YES 116 YES 4
0.6 YES 144 YES 213
1.0 YES 190 YES 268
1.5 YES 261 YES 302
2.0 YES 277 NO cycles
2.5 YES 578 NO cycles
3.0 YES 1096 YES 230
4.0 NO too many YES 204
5.0 NO too many YES 5
6.0 NO too many YES 147
7.0 NO too many YES 230

Table 4.1. Success of the simplex and DUD non-linear optimisation techniques when attempting
to fit the solution of the stationary state equation to a ssomach contents distribution generated
from a meal size of 0.5, standard deviation 0.05, feeding at a rate of 0.1 meals per hour while

varying the starting point of the mean meal size.
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Similar results occurrefbr the casewhentheinitial feedingrate of the populationwas
varied, with a few caseswhere the optimisation routine did not convergeto the
expectedvalues. However, both processesconvergedfor all the various starting
valuesof the standarddeviation. The resultsindicatethat neitheralgorithm performs
consistentlyworse than the other, thoughthe simplex methodseemsmore likely to
makeno progresstowardsan optimum value for the parametersvithin a reasonable
time, while DUD fails more often than not due to a continual cycling of parameter

values, which | shall discuss later in this section.

For a momentl shall leavethe problemof decidingbetweenthe two non-linearleast

squares processes and look at some ways of improving each metiistdconsidered

the affect of changing the value of thei.e. the size and shape of the initial simplex.

Start p=1 0=0.2 rat=0.2
A, Convergey Iterations| Convergey lterations| Convergey Iterations
0.001 xPy| YES 656 YES 250 YES 325
0.01xPy | YES 437 YES 242 YES 237
0.1xP | YES 329 YES 225 YES 190
0.25xPy | YES 258 YES 201 YES 165
0.5 xP, YES 181 YES 183 YES 155
0.75xP, | YES 297 YES 245 YES 204
1.0 xP, NO too many NO | too many NO | too many
2.0 xP} NO too many NO | too many NO | too many

Table4.2. Success of conver gence of simplex method to expected parameters (u=0.5, 0=0.05 and
rate=0.1) when the size of the initial simplex is changed, when the initial parameters are

changed only one at atime.
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Theresultsshownin table4.2 indicatethat providedthe valuesof the A; arenot too

largecomparedo the actualinitial parametewalues,the routinewill convergeto the
expected parameter sets from an initial parametervector in which the three
componentshave beenindividually perturbeda short distance away from their
optimum. The speedof convergencehowever,doesappearto dependon the size of
the initial simplex. Initial simplexeswvhich aretoo small makeconvergenceery slow
asit is unlikely thatthe optimumlies within, or nearto theinitial parameterectorand
thereforemany small stepshaveto be takenbeforethe minimumis reached. A very
large initial simplexis likely to enclosethe optimum parameterset, but the routine
requiresmany more iterationsbefore the simplex becomessmall enougharoundits

minimum point to satisfy the convergence criteria.

Looking atthe exampled havechosenjt seemshattakingthe valuesof the A; to be

half of the i'th componentof the initial parametervector usually gives the fastest
convergencewhich is the value |l hadalreadyguessedat andthereforeis usedin all

further experiments.

If we reconsiderthe results of the DUD trials shown in table 4.1, we notice
immediately that as the initial mean value is increasedaway from the optimum,
convergencegetsslowerandthenfails by goinginto cycles. However,as the initial

meanis increasedevenfurther the speedof convergencebeginsto increase before
onceagaindecreasing.A simpleexplanatiorfor this canbe foundif we considerhow
the convergenceoutine works. Oncethe initial parametewector hasbeenchosen,
three other vectorsare requiredto startthe processgeachof which is generatedoy
replacingthei'th vectorcomponenby a non-zeronumber. In this casethis non-zero
numberis 0.1 multiplied by the correspondinggomponenbf theinitial vector. So, in

the trials conductechere,whenthe initial parametewectoris (5,0.05,0.1).0ne of the

vectors generatet startthe routinewill bethe optimumandthereforeonly onemore
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iterationwill berequiredfor convergencéhanwhenthe routinewasinitiated with the

actual optimum vector (see table 4.1).

The problemwhich occasionallyoccurswhenthe DUD optimisationtechniques used,
is a cycling betweernparameteraluesandthe routine basicallycomesto a haltandno
further progresss made. The simplestcaseof this occurswhenthe new parameter
vectorwhich is generatedy one stepof the optimisationprocedures no betterthan
thefour parametesetswhich havejust beentestedandis in fact identicalto the worst
fitting parametesset. This new parametewector then replacesthe worst one which
wasusedin the previousstep(to whichit is identical),but sincethis doesnot alterany
of the vectors,the minimum meansquarederror is identicalto that which occurredin
the previousstep. Hence,the difference betweenconsecutiveleast mean squared
errorsis zero, althoughthe actualvalue of the minimum meansquarederror will not
havereachedts requiredminimum. Consequentlythe routine repeatshis stepover
and over againand no progressis made. More complicatedcycling problemscan
occurwhenthe procedurereturnsto the sameset of four parametewvectorsafter a
numberof iterations. Theseproblemcan be helpedby restartingthe procedureat a
small distanceaway from the bestfitting parametewalueswhen the cycling begins.
Theroutinethenusuallyconvergeswithin a coupleof restarts. If it doesnot, thenthe
routine will as usual be stoppedwhen the total number of iterations exceedsthe

maximum allowable number.

| alsoexperimentedavith severaldifferentvaluesof the differencebetweenconsecutive
minimum meansquarederrorsrequiredfor convergence.| eventuallydecidedthat
1x10™ wasa suitablevaluefor this differenceandthe minimum meansquarederror
itself hadto belessthan1x10™. Theroot meansquarecerror is thereforel1x107°,

which, comparedto the mean proportion of the population per stomachweight
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category,2.5x107, is quite small and gives the parametervalues correctto four

decimal places.

Returningto the comparisonbetweenmethods,| increasedthe complexity of the
problem by using a meal size distribution function made up of two normal
distributions,which gives a 6-dimensionalproblem. One of the prey sourcess very
small while the other has quite a large mean weighis consumedat a quarterof the
rate of the smallprey. Onceagainthe valuesof the maximumstomachcontentsand
digestionrate were typical of someof the marinefish specieswhich will be studied

later in this thesis. The resulting stomach contents distribution is shown in figure 4.4.

Pe=0.1385
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Figure4.4. a) Meal size distribution made up of two prey sour ces, one with mean 0.2 grams and
standard deviation 0.05, being consumed at a rate of 0.2 meals per hour and the other with mean
1.7 grams, standard deviation 0.5 and being consumed at 0.05 meals per hour., with b) the
resulting stationary state distribution of the feeding population whose digestion rate is 0.13

grams per hour and maximum stomach contentsare 7 grams.
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Once again then, | attempted to fit the model to the uktmboth methodsassuming
that the maximumstomachcontentsare sevengramsand the digestionrate is 0.13
gramsper hour. The succes®f the two routineswas againcomparedby checking
over what parameterrange and how quickly the two methodsconvergedto the

expected parameter set.

(a) Simpleimethod lUD

Initial ratel| Converges| Iterations Converges| lIterations
0.05 NO too many YES 244
0.10 YES 1119 YES 227
0.25 YES 1186 YES 207
1.0 YES 995 YES 267
(b) Simpleimethod lUD

Initial meanZ Converges| Iterations | Converges Iterations
0.5 NO too many NO too many
1.0 YES 1584 YES 255
1.5 YES 818 YES 197
2.0 YES 712 YES 207
2.5 NO too many YES 204
3.0 NO too many YES 179

Table 4.3. Success of the two routines when attempting to fit the solution of the stationary state
equation to a stomach contents distribution generated from the two prey source meal size
distribution illustrated in figure 4.4a, when the starting point of the consumption rate of the
small prey isvaried (a) and (b) when the initial value of the mean of the large prey is varied,

while all the other parameter are started at their known values.
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In this problemof increasedlimensionsthe simplexmethodperformedfar worsethan
DUD, taking far longerto convergeand quite frequentlynot convergingat all within
the maximumnumberof iterations. Table 4.3 showsthe convergenceesultsfor two

of the six parameters.

On the basis of the results of these experimetégidedto useDUD asmy non-linear
leastsquareoptimisationtechniqueasit hasprovedto havea slightly wider rangeof
convergencehan the simplex techniqueand also requiresmuch fewer iterationsto
converge,particularly for higher dimension problems (though each iteration takes

slightly longer due to the matrix inversion involved in the calculation).

4.3 Distinction of solutions

In chapter three, | provided clear evidencethat a stationary stomach contents
distributionof a populationfeedingon a fixed numberof prey sourcess generatedy
the solutionof the stationarystateequationwith a singlesetof biologically reasonable
feedingparameters.However,it wasmoredifficult to decideif this uniqguenes$olds
for the stomachcontentddistributionsof fish populationgeedingon differing numbers
of prey sourcespr whetherin fact identical stationarystomachcontentsdistributions
can be produced by a population feeding on fisay sourcesandoneprey source for
example. | haveendeavouredo verify this by fitting solutionsof the steadystate
eguation generated by feedifumctionsmadeup of thewrongnumberof prey sources
or the wrong type of distribution,to a stationarystomachcontentsdistributionwith a

known set of feeding parameters.

| beganby taking a stationarygut contentsdistribution generatedy a single normal
meal size distribution as my initial data set. The first questionwhich hasto be

answereds whethera feedingfunction which is a combinationof two or more prey
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sourcescan produce an identical distribution. | have chosentwo very different
stationarystomachcontentsdistributionsas examples- one with many low stomach
contentindividualsandthe othervery skewedtowardsthe upperend of the stomach

contents range.

The first exampleis illustratedin figure 4.2 (p109) andis generateddy a population
feedingon a very narrowmealsizedistributionfunction centredabouta low meanat a
rate which is low comparedto the digestionrate. In an attemptto fit a solution
generatedby a bimodalmealsizedistribution,| beganthe six dimensionabptimisation
routine with a variety of parametervectors defining two narrow food sources,
positionednearto the known solution. In all cases| foundthattheroutineconverged

to a set of parameters defining the expected feeding function.

Whenthe routine wasinitialised with two prey sourcedistributionswhosemeansare
both quite closeto 0.5, thenthe final setof parameterslescribeswo distributions,
identicalto the expectedmealsizedistribution,whosefeedingratesaddup to 0.1, the
requiredfeedingrate. But, if thetwo initial preysourcedistributionsarefurtherapart,
then three of the final parameterslescribethe expectedfeeding function, while the
feeding rate of the secomnlistributionconvergego zeroandthereforethe valuesof its
mean and standard deviation are irrelevant. Table 4.4 shows somedgfsoalinitial

and final parameter values.

Similar resultsto thoseexplainedaboveoccurredwhen attemptswere madeto fit a

solution generated by a meal size distribution with three or four prey sources.

The fact that this stomachcontentsdistribution cannotbe reproducedwith multiple
prey source meal size distributions could be due to the shapeof this particular
example. The very definite peak and its narrownessndicate that the populationis

feedingon a very narrow meal size rangewhich would not occurif therewere many
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preysourcesunlesstheywereall extremelynarrow. The lack of individualswith high
stomach weights emphasises that there are no large meals available andebdirthe

rate is fairly low compared to the digestion rate.

1 ol | Ratel| p2 02 Rate2

Initial param| 0.4 0.02| 0.13| 0.45 0.05| 0.05

Final param, 0.5000 0.0502| 0.0789 0.4999| 0.0499 0.0210

Initial param| 0.3 0.03 0.05 0.6 0.1 0.08

Final param, 0.5166 0.0987|0.0000] 0.5001 0.0500| 0.0998

Table4.4. Typical initial and final parameter setswhich occur when attempting to fit a sscomach
contents distribution generated by a double prey source meal size distribution to one which is
generated by a population feeding on a distribution with mean 0.5 grams and standard deviation

0.05, at arate of 0.1 meals per hour.

As an alternativedistribution, for use as my next example,l returnedto the gut
contentsdistributionillustratedin figure 3.7 (p79). All threedistributionsillustrated
here,althoughnotidentical havequite similar overall shapeswith the majority of the
populationhaving high stomachcontents so it seemspossiblethat they might not be
producedby unique feedingfunctions.l beganwith the single prey sourcestomach
contentsdistribution. Onceagain,for all setsof initial parametersthe optimisation
routine convergedto a set of parametervalueswhich describea feeding function

identical to the expected one.

| alsoattemptedto fit the distribution generatedy a bimodal meal size distribution

andillustratedin figure 3.7, with solutionsgeneratedy a feedingfunction which has
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morethantwo prey sources. Likewise, the routine alwaysconvergedo the expected
parametewvalues,giving two normaldistributionspositionedat one and two grams

with standard deviations 0.2 and feeding rates of 0.1 meals per hour.

| shallnow considerthe reversequestion,of whethera stomachcontentsdistribution
can be underfitted i.e. whether an identsm@utioncanbefoundwhichis generatedby

a meal size distribution with less prey sources.

As my first example,| havereconsideredhe distributionfunctionillustratedin figure
4.4 (p116).1 chosea variety of startingparameterectorsandattemptedo fit the gut
contentsdistributionusingthe threedimensionabptimisationroutine. Fromall initial

setsof parameterghe routine failed to find a minimum and halted after too many
function evaluationsat a point nowherenearto a possibleminimum. Thisis likely to

be dueto the very peculiarshapeof the stomachcontentsdistributionwhich hasquite
a definite narrow peakat low stomachcontentsput is alsoquite spreadout at higher
gutweights. The narrowpeakimplies a very narrowmealsizedistributionwith a low

meansizewhile the broadnes®f the upperpart of the distributionindicatesthat there
must be some larger meals available, which suggeststhat a double prey source
distributionis likely. Thereforethe optimisationroutineis unlikely to find a minimum

for a single normal meal size distribution.

| next returnedto those examplesof figure 3.7 which had a large proportion of
individualswith high stomachcontentsand no outstandingeatureswhich makethem
obviously generatedoy a meal size distribution with a particular number of prey
sources.| first attemptedo fit the numericalgut contentsdistributionof a population
feeding on a double prey source meal size distribution function with a solution
generatedy a single normal meal size distribution. An exactsolution was still not

found. In this casethe algorithm doesget to a minimum value for the leastmean
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squarecerror, but doesnot halt asthe fitted solutionis not an exactfit andtherefore

this minimum is not low enough to satisfy the convergence criteria.

Althoughthe optimisationproceduredoesnot find a setof parametershatidentically
reproduceghe solutiongeneratedy a doublefood sourcemealsize distribution, this
minimum does occur where we would expectit. The parametevaluesdescribea
normalmealsizedistribution situatedapproximatelymidway betweenthe two normal
distributionswhich appeaiin the actualmealsizedistribution. The standarddeviation
has quite a large value so that a wide rangeed#lsizesareconsumedindthe feeding
rateis approximatelyequalto the sumof the two ratesof the actualfeedingfunction.
Figure 4.5 comparesthe actual and fitted feeding distributions and the associated

stomach contents distributions.

a)
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Pe(ii)=0.0005

density(/g)
00 0.1 02 03 04 05 06

0 2 4 6 8
gut weight(g)
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03 04 05
03 04 05
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meals per hour per gram
0.2

00 0.1
meals per hour per gram

00 0.1

0 1 2 3 4 0 1 2 3 4
Figure4.5. (a) Stomach contentsdistribution (solid) generated by a double prey source meal size
function together with the closest fitting stomach contents distribution generated from a single
prey source meal size function (dotted). The double prey source distribution is illustrated in i)
with means at 1 and 2 grams, standard deviation 0.2 and feeding rate 0.1. The single meal size

distribution with mean 1.39 grams, standard deviation 0.77 and feeding rate 0.22 is shown in ii).
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| nextattemptedo 'underfit'a stomachcontentsdistributiongeneratedy a four prey
sourcemealsizedistribution,similar resultsoccur. The meansquarecerror did reach
a minimum, exceptnot a low enoughone for us to acceptthat an identicalfit to the
datasethasbeenmade. However,if the convergenceriterion for the magnitudeof
the meansquarederror was lessstrict, for examplelx107® insteadof 1x107*, then
the routine would have converged and we would wrongly conclude that the

distribution had been reproduced identically.

Theseresultsemphasis¢hat evenwhendiffering numbersof prey sourcesareallowed
in the meal size distributions, a particular noise free numerical stomachcontents
distribution can only be generatedby a unique feeding regime and the routine

converges as expected.

Sofar this analysisof the inverseproblemhasbeenconcernedvith stomachcontents
distributionsgeneratedy a known type of feedingfunction (in this casethe normal
distribution) and I have shown that the optimisationroutine doesnot convergeto
‘wrong' answersprovided that the convergencecriteria are very strict. | shall now
investigatewhetherthe stomachcontentsdistribution of a populationfeedingon an
alternatively shapedmeal size function can be identically reproducedby solutions

generated by a normal distribution.

As my first examplel havereconsideredhe stomachcontentsdistribution generated
by the triangular meaizedistributionillustratedin figure 3.9. The numericalstomach
contentdistributionis almostimpossibleto tell apartfrom that generatedy a normal
feedingfunction, so it would not be surprisingif in this casethe three dimensional
optimisation routine converged and we concluded that the stomach contents
distribution had been identically reproduced. Oagainhowever the strictnesof the
convergenceriteria preventedhe routine from endingas the meansquarederror is

not quite low enough. The minimumvalueit reachess 1. 5x10*° while our aimis for
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it to belessthan1x10™. Whenattemptingto fit a normalfeedingdistributionto a
stomachcontentsdistribution generatedy a gammadistribution (seefigure 3.9), the
optimisationroutineagainfailed to converge put this time did not makeany headway
towardsa sensibleanswerandby the time the routineis halted,the value of the mean
beinga large negativenumberandthe standarddeviationalso beingvery large. The
algorithmhasobviouslygonein sucha directionin anattemptto reproducethe effects

of the long tail of the gamma function, but has not reached a minimum.

The results of this section show that particular numerical stomach contents
distributionsaregeneratedy a uniquefeedingfunction andprovidedthe convergence
criteriausedin the optimisationmethodare severeenough,the methodwill converge
to the correctanswer f thereis one. For lessstrict convergenceriteriathough,the
optimisationtechniquemay convergeto give an alternativeset of parameterghat
generate solutionwhich is not exactlyidenticalto the datawe are attemptingto fit it

to. This error in some cases however can be very small, an average of 0.1 per cent.

Real stomachcontentsdatawill neverbe in the form of an exactstomachcontents
distribution, it will in generalbe noisy dueto sampling. Therefore,the optimisation
routinewill neverbe ableto find a setof parametersvhich generates solutionthat
identically matcheshe datasetand so different feedingregimeswill produceequally
goodfits to a singlesetof noisy data. In the next sectionl shallinvestigatewhether
we canstill clearly concludethe valuesof the populationfeedingparametersvhenthe

data is sampled and categorised.

4.4 Some experimentswith simulated data

The preceding sections thfis chaptermavedealtwith finding setsof parametersvhich

generated garticularknown populationstomachcontentdistribution. However,real
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stomachcontentsdatawhich are providedfor analysiswill neverbe in suchan ideal
form. In factthe datamay be quite noisy dependingon the size of the sampleswvhich
have beenaken. A largesamplewill providethe mostcleardistributionshapej.e. it
will be less noisy than a small one and more titespopulationdistributionfrom which
it was sampled. But, dissectingthe stomachsof many thousandsof fish is
impracticable so in generalsamplesizesare usually of hundredsof fish, ratherthan
thousands. During stomachcontentsanalysis,the gut weight rangeis divided into
intervals and the individual measurementsategorisedaccordingly. The data then
consistsof the proportion of the samplein each stomachweight category. So, a
detailedandaccuratedescriptionof the stomachcontentsdistributionwill be provided
whenthe rangeis split into very smallintervals,but muchof this detail will be lost as
the intervalsbecomebroader. The questionwhich needsto be answereds how well
canwe infer the feedingbehaviourof the actualpopulationof fish from suchsamples.
So, in this sectionof the chapterl shall investigatethe relationshipbetweensample
size, interval width and the value of the feeding parameters obtained@padrethem

to those of the actual population.

To beginthis investigationl havesimulatedsomedatasetswith the samecombination
of feeding parametersput different numbersof stomachcontentscategoriesand
various sample sizes, usingiailar methodto thatusedto generateahe digestiondata
in chaptertwo. First a noise-freedistribution,generatedy a known feedingfunction
is divided into m categorieswith the empty stomachsas categorym+1. The unit
interval is then split into subintervalseachof width equalto the proportion of the
population heldn eachof the m+1 distributioncategories.A setof r randomnumbers
between0 and 1 is generatedand the proportionfalling into eachinterval is noted.
This fraction then representsthe proportion of the population containedin each
categoryof the distribution. This method of random samplingis known as the

sequential search method (Dagpunar 1988).
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Figure 4.6. Stationary stomach contents distributions illustrating proportions of the sample in
401 stomach categories generated from a feeding function with mean 0.5, standard deviation
0.05 and feeding rate 0.1 for sample sizes of a) 10000, b) 1000, c) 100 and d) 25. The maximum

stomach contentsis 7 grams and the individuals all digest at 0.13 grams per hour.
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Obviously, if a larger sample of random numbersis taken, then the distribution
becomedessnoisy and morerecognisableasthe exactdistributionfrom which it was
generatedand small samplesbecomemore noisy, as is illustrated in the examples

shown in figure 4.6.

Decreasinghe numberof categoriesi.e. making eachcategorywider (exceptfor the
empties)alsocauseghe noisienesso decreasehut this alsoreduceghe detail seenin

the distribution, illustrated in figure 4.7.

As | havealreadyshownin section4.1, the optimisationalgorithmswill not converge
when the chosen starting value is viayfrom the actualsolution,sothereseemdittle
hopeof this happeningvhenthe distributionis not an exactsolutionof the differential
equation. In this casethough,the noisy datawhich | am using hasbeengenerated
from known distributions,so thereis an obviousparametewectorfrom which to start
the optimisation process. The set of parameterggiving the bestfit to the noisy
distributionshouldnot be too far from thosewhich generatedhe correspondingexact
stomachcontentsdistribution, so the optimisation processshould converge quite

easily.

At present,the optimisationprocedurerequiresa very low minimum meansquared
errorvaluefor convergenceaspreviouslywe hadbeendealingwith stomachcontents
distributions which had been generatedexactly from a particular set of feeding
parameteraindthereforehada minimum meansquarederror of zero. However,now
we aredealingwith noisy dataandthe bestfit of the modelto the datawill not give a
minimum mean squarederror of zero. As a consequenceit is probablethat the
optimisationroutinewill not convergewith the strict convergenceriteria usedin the
previous sections, even when the minimum has been reached. To rectify this situation |
shall discardthe restrictionthat the minimum meansquarederror hasto be lessthan

1x10™ for convergencendfor usto be ableto concludethat the global minimum
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hasbeenreached. Since datasetsare simulatedby randomnumbergenerationwe
have no idea of what size the error measure is going to be at its mirinaliherefore
cannotplaceany convergenceestrictionsonit. However,asthe optimisationroutine
is startedfrom nearthe expectedo be the global minimum, it is unlikely to converge
to alocal minimumandthe convergenceestrictionsplacedon the differencebetween

consecutive error measures should be adequate.
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Figure 4.8. Variations in fitted mean of the meal size distribution obtained from the
optimisation routine for different random number sets, for a) samples of size 1000 and 101
categories, b) samples of size 100 and 101 categories, c) samples of size 1000 and 5 categories
and d) samples of size 100 and 5 categories. The population stomach contents distribution was
generated using a feeding function with mean 0.5 grams, standard deviation 0.05 and feeding

rate 0.1 mealsper hour.

Since the noisy distributionsare simulatedusing sets of random numbers,no two
stomachcontentsdistributionswill be identical. Therefore,data sets distributions
simulated using identical generatingparametersand equally sized intervals, but

different sampleswill not give the samefitted parametewvalues. An exampleof the
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variation observedin the fitted valuesof the meanof the meal size distribution is
illustratedin figure 4.8 for a variety of samplesizesand numbersof stomachweight

categories.

These illustrations show that the variations betweenthe fitted parametervalues
dependon the size of the sampleand numberof stomachcontentscategories. So, in
orderto cometo a decisionabouthow reliablethe resultsof this inverseproblemare
whendealingwith suchdata,l shallrepeathe optimisationprocessone hundredtimes
with different samples of the same size for each number of stomach categottenand
calculatethe appropriatesummarystatistics. The experimentsvereconductedor less
than twenty-six stomachcontentscategoriesand samplesizesof 1000 and below, as
theseseemedcomparablgo valuesusedin real stomachcontentsanalysis(e.g.Hall et
al. 1995 and De Groot 1964). Onceagainl have useda very narrow single prey
sourcemealsizefunctionwith a relatively low feedingrate comparedo the digestion
rate to generatethe populationstomachcontentsdistributionsfrom which the noisy

and categorised data are simulated.

The variationin the expectationand coefficient of variation over a range of sample
sizesand numberof categoriesof eachof the three parameterglefining the feeding
behaviouris illustratedin figures4.9 to 4.11. The experimentsvere carriedout at
twenty points over the category-samplaize plane and then interpolatedusing cubic

spline functions to give points on a finer grid over the whole plane.

Thefirst setof illustrationsshowsthe variationin the averageof the fitted meanmeal
sizeandits coefficientof variation. Althoughthe variationin the expectatiorappears
to be a ratherunevensurfacewith many peaksandtroughs,this meanvalueis never
very far awayfrom the populationvalueof 0.5. However,for smallsamplesizes(less
than50) andmorethanaboutten stomachweight categoriesthe meanvalue appears

to be increasingaway from the populationvalue. The combinationof small sample
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sizes together with quite a number of stomachweight categorieswill inevitably
produceextremelynoisy datasetswith the averagenumberof individualsper category
beingvery low or lessthanone. As a consequencihe resultsobtainedfrom fitting a

population stomach contents distribution to such data are unlikely to be very reliable
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Figure 4.9. Variation in a) the mean and b) the coefficient of variation of the fitted mean of the

meal size distribution with sample size and number of categories. The population meal size
mean is 0.5.

The coefficientof variationis quite low (lessthan0.1) over a large part of the sample

size-weightcategoryrangeand only beginsto increasemuchas samplegget down to
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below 200in size. And in fact doesnot increaseabove0.2 until samplesizescontain
lessthan about 75 individuals when the coefficient of variation beginsto rise quite

rapidly, especiallyfor low numbersof stomachweight categorieswhich is as we
would expect.
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Figure 4.10. Variation in a) the mean and b) the coefficient of variation of the fitted standard

deviation of the meal size distribution with sample size and number of categories. The
population meal size standard deviation is 0.05.

Moving on now to the averagestandarddeviationof the fitted meal size distribution

whichis illustratedin figure 4.10a. We canonceagainseethatfor large samplesizes
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the averagevalueis closeto the actualpopulationvalueof 0.05. Overthe major part
of the rangeof the variables,the surfaceof the expectationof the standarddeviation
remainsquite flat andcloseto 0.05. However,oncethe samplesizesfall below 100
individuals,the meanstandarddeviationbeginsto increasefirst quite slowly, but then
more rapidly, particularly for low numbersof stomachweight categories. For small
samplesof 25 individuals, the averageof the fitted standarddeviationslie between
two andthreetimesthat of the populationfrom which the samplesveredrawn. The
most noticeable increase in the expected value of the standard deviation as sample sizes
getsmalleroccurswhenthe stomachweightrangeis dividedinto very few categories.
This is most likelyto be dueto the increasingwidth of the categories.Sincethe actual
fish populationstomachcontentsdistributionis quite narrow and very skewedto the
left handend of the stomachweight range,all of the sampledindividuals may have
stomachcontentscontainedn the first of four very broadstomachweight categories,
except for the empties who are includeaiifth category. We thereforedo not know
how the individuals are distributedwithin that interval. They may be as expectedor
they could be in a much flatter, broader distribution and therefore the standard

deviation may be larger.

The coefficientof variationof the standarddeviationis relatively high for a large part

of the category-sample sizangeindicatingthatthereis a lot of variationin the values

of the fitted standard deviations at each point, even for large samples. This implies that
the value of the fitted standarddeviationis quite sensitiveto the changesn the detalil

of the distribution producedby taking different randomsamples. At low standard
deviations,the position and overall shapeof the stomachcontentsdistribution are
affectedmostby the meanof the feedingfunction andthe feedingrate, while the meal

size standarddeviationmainly affectsthe detail of the distribution (reconsiderfigure
3.5a-d). Sincethe overall shapeand heightof the distribution doesnot changemuch

betweernsamplespnly the fine detail, therewill belessvariationin thefitted valuesof
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the meanand feeding rate than there is in the standarddeviation. Thereforethe
coefficientof variationof the standarddeviationwill be muchgreaterthanthat of the

other two parameters at all sample sizes and numbers of categories.
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Figure4.11. Variation in a) the mean and b) the coefficient of variation of the fitted feeding rate
with sample size and number of categories. The population feeding rateis0.1.

For large samplesizes,the averagevalue found for the feedingrate over the hundred
sampless quite closeto that of the populationfrom which the sampleswere drawn
(0.1). Itis not until the sample siziedl below200thatthis averagebeginsto increase

andto a significantly highervaluewhenthereare fewer categories.Due to the fewer
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stomachweight categoriesthe width of eachbecomeswider and thereforesamples
taken from fish populationsfeeding at slightly higher rates may have the same
proportionof fish perinterval andthe routine convergedo a higherrate. However,
this increasein meanfeedingrate is by lessthan twenty per cent and is therefore
incomparableto the huge increasesof 200 and 300 per cent seenin the standard
deviationvalues. As the samplesizesbecomesmaller,the distributionsbecomemore
noisy and so the variability in the fitted feedingratesincreasesvhich is seenin the

illustration of the coefficient of variation.

From thesesets of experiments,| wish to find a combinationof samplesize and
stomachweight categoriesvhich givesa reliable descriptionof the feedingbehaviour

of the population from which it was drawn. Such combinations will have an awarage
the parameter valugeingconsideredloseto the populationvalueandwill havea low
coefficientof variation. In sucha casewe canbe confidentthatif one suchsampleis
drawnfrom the populationand categorisedthen the fitted valuesobtainedfrom the
optimisationtechniquewill adequatelydescribethe feeding behaviourof the whole

population.

If I now reconsidefigures4.9-4.11 we canseethatthelowestcoefficientof variation
and expectatiomearesthe populationparametewvalue occur for very large samples
(1000)anda lot of stomachweight categories.Howeverthe processingf suchdata
would be very time consuming,so we are really aiming for a lower number of

individuals per sample. Taking samplesof approximatelyone hundredindividuals
categorisedinto betweenfive and ten stomachweight intervals still gives quite
promisingresults. The coefficient of variation at this point is still quite low (below
0.2) exceptfor the standarddeviationwhereit is aboutoneandthe meansof all three
parametersire closeto the populationvalues. Consequently canconcludefrom this

sectionthat this combinationof samplesize and stomachcategoriess a good choice
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for usein stomachcontentsanalysis,combining practicality with relatively reliable

results.

45 Conclusion

The aim of this chapterwasto find an automaticmethodof solutionof the stationary
stateinverseproblem. In the early sectionsof the chapten discussedhe suitability of
variousoptimisationmethodsand eventuallydecidedto usea modified derivative-free

Gauss Newton method.

The methodworkedrelativelywell for noisefree stomachcontentsdistributionswhich
had beengeneratedexactly from a known feedingfunction and providedthe starting
parametersvere quite closeto the actualminimum, the routine did not taketoo long
to convergeto the expectedoarameters.The resultsdid howevershow that without
very strict convergenceriteria, if completelywrong mealsizedistributionshapesare
used, the optimisation routine may convergeto wrong parametersets for certain
stomachcontentsdistributions. For noisy datathe strict convergenceriteria haveto
be relaxed in order for the routine to converge at all, since we will hexaeto find
a population stomach contents distribution which exactly reprodbeeésstributionof
a sampleof individuals. So, in this caseconvergenceavith the wrong numberof prey
sourcess quite likely to occur. However,if we assumehat the actualnumberand

type of prey sources is known, then this problem should not arise.

In the experiments with simulated noisy and categorised data, | have tried tb@kow
reliable this automaticmethod is for inferring the stationaryfeedingbehaviourfrom
real data sets. Since we will never have a complete descriptionof the stomach
contentsdistribution of a populationof fish, we needto know how accuratelythe

feedingbehaviourwhich is inferredfrom the stomachcontentsdataof samplesof the
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population,describeghat of its parentpopulation. The resultsindicatethat provided
the samplewhich hasbeentakenis not too small (approximatelyl00) andthe number
of stomachcontentscategoriess betweenfive and ten, then the feeding behaviour
inferred from this sampleshould reasonablydescribethe feeding behaviourof the

population from which it came.

The examplel haveusedis relatively simple with just a single prey sourcestomach
contentsdistribution. However,consideringthe resultsof sections4.2 and 4.3, this
method should be applicableto higher dimension problems provided that we do

actually know how many prey sources the population itself is feeding on.

Sinceit is unlikely thoughthat a populationof fish will be feedingat a permanent
constant rate, a more interesting problem is that of time dependent fekdihgnext
chapter, | shall investigate how welk caninfer the time dependenteedingbehaviour

of a population with varying stomach contents.
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Chapter 5
The time-dependent feeding

rate inverse problem
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5.0 Introduction

Chapterfour madean attemptat solving the inverseproblemfor the stationarystate
differential equation. A global optimisationmethodwhich convergedn a reasonable
lengthof time could not be found dueto the laboriouscalculationsrequiredduring the
numericalsolution of the ordinary differential equation. This doesnot bodewell for
dealingwith the evenmore complicatedand computationallyintensivetime dependent

inverse problem.

The numerical experimentsin chapterthree demonstratedhat the time dependent
model requiredapproximatelyfour to five daysto reachits stationarycycle, which
using the numericalmethodsdescribedin chapterthree takesabout 15-20 minutes
computingtime. All non-linearoptimisationtechniquegequirerepeatedcalculations
of the solution, so obviouslyrautinewhich incorporateshis methodof calculationof
the time varying stomachcontentsdistributionwill be extremelytime consumingand
possibly hardly worth the effort. So, if we wish to find an automaticmethod of
solutionof the time dependeninverseproblemand carry out any experimenton the
effect of noisy and sampleddata, we needto be able to calculate the solution

considerably faster.

One option is increasingthe width of the intervals at which the gut contents
distributionis calculatedasis increasingthe integrationtime step. However,aswell
asincreasinghe speedf the calculation the accuracyof the solutionis reducedwith
somevery largeerrorsoccurring. So, sincethereappearto be no quickermethodsof
solving the partial differential equationwhich describesthe time variation of the
stomachcontentsdistribution, anothermodelling approachmust be used. In this
chapter! shall reformulatethe model using a discrete approach,in the hope of
speedingup calculations. Once such calculationshave beenncorporatedinto an

automatic optimisation procedure, | should then be alperiormexperimentsimilar
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to thoseof chapterfour to testthe reliability of populationfeedingbehaviourresults
inferredfrom sampleddata,but this time incorporatingsamplingfrequencyaswe are

dealing with a time varying distribution.

5.1 Thefinite difference approach

A methodoften usedin the modellingof ecologicalsystemss the differenceequation
approach.It is mostoften usedwhenmodellingpopulationswith agestructurewhich
havedistinctageclasses.In this chapterl shallform a setof differenceequationshy
discretisingthe stomachcontentsrange and constructinga map which relatesthe
variablesattimet to thoseattimet+1. So,in this casejnsteadof distinctageclasses,

we shall be considering distinct stomach contents classes.

| shall considerthe stomachcontentsrange[0,w_.], to be divided into an array of N
boxes,eachof width Aw, suchthat at time t, n,, is the numberof stomachswith
weight between(i-1)Aw and iAw and n,, is the numberof empty stomachs. The

numbern,, obviously dependson how many stomachscameinto the interval during

the previoustime stepdueto digestionandhow manyenteredhis categoryby eating.
This in turn dependson the lengthof onetime interval. For simplicity | shallsuppose
thatduringonetime step,individualscaneithereata singlemealof a particularsizeor
they candigestfrom categoryi to categoryi-1. This assumptioraboutdigestionleads
to the constraint that

Aw
At=— 51
< (5.1)

where K is the digestion rate. The meal ingested during this time interval oaariye

sizeprovidedthatit doesnot takethe individualsinto a categorywhich would be out
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of the stomachcontentsrange,which is the samesatiationrule that was usedin the

continuous feeding and digestion model.

| shallnextdefinethe expressiorlJ,, astherateatwhich weightclassi individualseat

meals at time t. Then we can write

dn,
dt’t =-U;n;, (52)

as the rate of change of the number of individuals in weight class i due to feeding.

The proportionof weightclassi who do not eata mealin timet to t+At, S ,, canthen

1t

be approximated by

S = exp{_Ui,tAt}' (5.3)

Theseindividuals of weight classi who do not eat a meal within the time interval,
thereforemust digest, accordingto the rule statedearlier, unlessthey are already

empty,in which casetheyremainso. Consequentlythis proportion,S

1t

of categoryi
individualswill havedigestednto weightclassi-1 by time t+At. The digestionpart of

the difference equations can therefore be written as

nO,t = SO,t—AtnO,t—At +Slt—Atnlt—At (54)
and for i>0

My = Sipea Mg -a (5.5)

which basically states that those fish in category i+1 atttfktevho do not eat,digest
into categoryi by time t. The differenceequationrepresentinghe empty fish (5.4)
obviouslyhasan extraterm representinghoseindividualsalreadyemptywhich do not

eat in the interval it to t.
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Moving on now to the definition of feeding. | shallfirst define P asthe probability
that a meal eatenby a weight classi individual weighs between(n-1)Aw and nAw.
However, weight classi individuals will not feed on mealswhich take theminto a
categoryabovethe upper stomachcontentslimit, in this casecategoryN, so the

probabilities must obey the constraint

P =1 0j, (5.6)

i.e. for eachweightclassj, the sumof the probabilitiesof all possiblemealsis equalto

one.

As | describedn chaptertwo, the numberof individuals moving into a weight class
category i, is due to individuais lower weight classexonsumingmealsof exactlythe
right size to take them into this category. | shall first considerthe transfer of

individuals from weight classj to a higher weight classi, due to feeding. | have

alreadydefinedS;; to be the proportionof individualsin weight classj who do not

feed at time t, so therefore the number who do eat a meal can be written as

(1-s,)n, (5.7).

For the consumptiorof this mealto takethe individualsinto weightclassi, it mustbe

of the correctsize. The probability that this mealconsumedy classj individualsis of

weight between(i-]-1)Aw and (i-))Aw is of courseequalto PB;_; and thereforethe

numberof j classindividual transferringto classi duringthe intervalt to t+At dueto

feeding can be written as

(1—8”)!’]“3- i (5.8)

[
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All individualshowever,are exposedo food and so may be feeding. Therefore the
numberof individuals enteringweight classi at time t due to feedingfrom lower

weight classes is clearly

=Y (2-S,)n,P, . (5.9)

The completefeedinganddigestiondynamicscanthenbe definedby the following set

of difference equations

Mot = Syt-atMog-ar T Ste-aNis-at (5.10)
Mie = SiseaMoag-a Tl fo0<i<N (5.11)
nN,t = IN,I—AI' (512)

Obviouslythereis no'l' termin the equationdefining the numberof emptyindividuals
attime t, asa fish which takesa mealwill not becomeempty. Similarly thereis no'S’
termin the equationfor the highestweightclassasthereis no categoryaboveN down

from which the individuals can digest.

5.2 Solution of finite difference equations

Once we have been provided wétlsetof initial conditions,i.e. valuesfor n, , for all i,
thenit is easyto solvethe setof finite differenceequationg5.10-5.12). The numbers
of fish containedin a particular stomachcontentscategoryat time stept can be
calculatedby a simple mapfrom thoseat time t-At. The solution,however,mustbe
comparedto that of the continuousmodel to verify that the two approachego

modelling this feeding and digestion system do not give radically different answers.
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In order to make thesecomparisons] calculatedthe numerical stomachcontents
distribution with a numberof feeding regimes(stationarystate solutionsas well as
varying contentsof stomachweight categories)and using a variety of different

discretisation widths.
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Figure 5.1. Stationary state solution of the continuous model (dotted), compared to that of the
discrete formulation (solid), with N equal to @) 400, b) 200, c) 100 and d) 50. The population has
digestion rate 0.13 grams per hour and stomach contents limit 7 grams and is feeding on a
truncated normal meal size distribution with mean 0.5 grams, standard deviation 0.05 grams at

arateof 0.1 meals per hour.

Figures 5.1 and 5.2 compare the stationary solutions of themtwlelsfor populations
with very differentfeedingratefunctions. The solutionsof thetwo modelsshowvery

closeagreementor a large numberof boxes(figures5.1aand5.2a)and are visually
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almost indistinguishable. However, as the number of sub-intervalsdecreaseshe

steady state solutions match less well.
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Figure5.2. Stationary state solution of the continuous model (dotted) compared with that of the
discrete modd (solid), when N equals a) 400, b) 200, c) 100 and d) 50. The population has a
digestion rate of 0.13 grams per hour , a maximum stomach contents of seven grams and is
feeding on a meal size distribution with mean one gram, standard deviation 0.2 grams and at a

rate of 0.2 meals per hour.

It appearsthat as the grid becomesless fine the discrete solution begins to
overestimatehe proportionof the populationwith high stomachcontentswhich also
seemsto be the casewhen the feedingrate varieswith time. The variation of the
proportionof fish in a numberof stomachweight categoriess illustratedin figure 5.3,

with 5.3a showing the empty category and 5.3f, the highest weight category.

144



5
2
5
=
0.30

3.0

0.25

04
0.4

0.20

0.3
0.3

0.15

proportion

0,2
proportion

0.2
proportion

0.10

0.1
0.1
0.05

(=] (=} (=]
<0 5 10 15 20 <0 5 10 15 20 <0 5 10 15 20
time(hours) time(hours) time(hours)
4 28 2.0
[} (=] o
10 0 0
o ¢ oL
o [S] o
o o o
. N N
=} (<] =}
c c c
8 kel 8
=aTe} €0 f=a"s}
S < S - QS -+
s° e° g°
a Q a
o (=} o
= = =
o (=] e =)
0 [Te] R T T =< n
S = - — T~ S e
o [=] 7_,»/;//\<\\\\\\ o o
= — PPN
o o o| se==" TSR
<0 5 10 15 20 <0 5 10 15 20 <0 5 10 15 20

time(hours) time(hours) time(hours)

Figure 5.3. Comparison of the solution of the continuous model (solid) with that of the discrete
model over a series of ssomach weight categories: a) empty, b) 0-1.5 grams, c) 1.5-3 grams, d) 3-
4.5 grams, €) 4.5-6 grams and f) 6-7.5 grams, for a population feeding on normally distributed

meal size distribution, truncated at zero, with mean 1 gram, standard deviation 0.2 grams and
R, and R, equal to 0.1. In each of theillustrations the solution of the continuous model is solid

line, the discrete solutions are broken lines with N equal to 400 shown as long-dashed, 200 as
dashed, 100 as short-dashed and 50 as dotted. The digestion rateis0.13 grams per hour.

Sincethe whole point of this reformulationof the modelis to increasethe speedof
computationof the varying stomachcontentsdistribution, I must now choosea
discretisation which combines a reasonableamount of accuracy with speed.
Obviously, consideringthese illustrations, it would be preferableto calculate the
solution of the discrete model with a very fine discretisation. However, the
computationtime of the discretesolution illustrated here, with 400 sub-intervals,is

actually much longer than that of the solution of the continuous problem.
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If I half the number of boxes, this halves ttmamputatiortime for onetime stepashalf
the number of variablesare involved and thereforethe number of calculationsis
halved. The length of the time interval though, expressedn equation5.1, is also
affectedby the stomachweightgrid. In fact, halving the numberof intervalsdoubles
thelengthof thetime stepandthereforethe numberof time stepsrequiredto reachhe
stationary cycle is also halved. So, the compuiimg requiredto reachthe stationary
cycle is actually proportionalto the squareof the numberof sub-intervalsin the

stomach weight range.

The computation of the discrete solution with N equal to 200 isedalively slow and
any optimisationtechniqueincorporatingsucha solution would still be unthinkable.
However, when the difference map formulation containsonly 100 or 50 difference
equations,the stationary stomachcontentscycle can be calculatedin a matter of
secondsatherthanminutes. Although somesystematierrorsare beginningto occur
when the numberof sub-intervalsis reduced,the discretesolution still retainsthe
overallshapeof the continuoussolutionandin generathe meanerrorseemdo beless
thanfive percent. The solutionsof the discretemodelwith 50 boxesare beginningto
look quite different from the continuoussolution, so the solution with 100 sub-
intervalsappeargo give the bestcombinationof speedand accuracyandthereforel

shall use this in all further calculations.

5.3 Some comments on thefitting procedure

This methodof calculatingthe time varying stomachcontentsdistributioncannow be
incorporatedinto a non-linear optimisation method. The time dependentinverse
problemis a higher dimensionalproblemthan the constantfeedingrate problemand

thereforeit seemssafe to say that DUD will be once again be the most suitable
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optimisationroutine asit performedsignificantly betterthan the simplex methodfor
high dimensionproblems. In this section,| shall considersome of the difficulties

associated with the time dependent inverse problem in particular.

In all thefitting experimentsvhich were carriedout, the datato which the modelwas
fitted consistedof the stationary cycle of the time dependentstomach contents
distribution at intervals over the period of twenty four hours. In chapterthree |

showedthat the stationarycycle was reachedwithin approximatelyfive days and
thereforethe modelwasallowedto reachthis cycle beforeits outputwas usedin the
fitting procedure.The meansquarecerroris thencalculatedoy summingover all data
pointsat all sampletimes. | decidedto retainthe valuesof the convergenceriteria
usedin chapterfour astheseonceagaingavefitted parametersvithin one per centof

the actual expected values.

In chapterfour | foundthatthe optimisationroutinedoesnot convergeto unexpected
parametesetswhendealingwith populationstomachcontentsdistributions,provided
that the convergence criteria are very stricthallnextdiscusswvhetherthis appliesto

the much more complicated time dependent case.

So far in this thesis,when dealingwith the time dependenfeedingproblem,| have
used four parametersto define the sinusoidally varying feeding behaviour of a

populationfeedingon a single sourcemeal size distribution- the meanmealsize,the
standarddeviationof the distribution,the underlyingfeedingrate andthe amplitudeof

thefeedingrateoscillations(seeequation3.40). In chapterthree,we did not consider
the fact that the timing and frequencyof the feedingrate oscillationsmay also affect
theresultingtime dependenstomachcontentdistribution. In factl just assumedhat
the feedingcycle lastedtwenty four hoursand the sinusoidallyvarying rate was not

displaced from zero hours. However, &populationfeedingon a singlepreysource,
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a further two parametersare required for a complete definition of the feeding
behaviour as the feeding rate function now takes the form

nr(t —d)

R(t) =R, + R, sin (5.13)

when R(t) is positivendzerootherwise. The parameten representshe frequencyof
the oscillationsandd is the position of the sinusoidalfeedingrate function over the

day, i.e. it defines when the increases in feeding rate begin.

Thefitting procedurds now a six dimensionaproblemwhich is obviouslygoingto be
more difficult to solve thanthe three dimensionalproblemsof the previouschapter.
However,whena detaileddescriptionof the stomachcontentsdistributionis available
at hourly time intervals,thereis sufficient datato solve the inverseproblemandthe
optimisationroutinestill accuratelyconvergego the six expectedparameterprovided

that their starting values are quite near the optimum.

In this chapter] againattemptedo fit solutionsof the feedinganddigestionmodelto
datasetsusing feedingfunctionsmadeup of the wrong numberof meal sources. |
generatedh datasetusinga mealsize distributionmadeup of two mealsourcespne
with alargemeanandonesmall,whosefeedingrate oscillationsboth occurin twenty-
four hour cyclesandare half a cycle out of phase. Attemptingto fit the resultingdata
using a single peakedmeal source distribution proved impossible even when the
frequencyandtiming parametersvereallowedto vary. Too manyiterationsoccurred
without the optimisationproceduregettinganywherenearwhatappearedo be evena
local minimum. The routine appearedo be headingtowardsa meal size distribution
oscillatingat twice the rate of the two singleonesfrom which the datawasgenerated,
possiblyin an attemptto reproducethe timing of the alternateoscillations. However,

the changesn the stomachcontentdistributionswhich aregeneratedy the two very
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different meal sourcedistributionscould not be reproducedoy a single peakedmeal

source distribution and therefore the routine failed to converge.

Evenwhenthe two mealsourceswvhich generatehe datahad muchclosermeansthe
optimisationalgorithmstill did not converge. It did getto a minimum value for the
least mean squared error, oiid not halt asthefitted solutionis not anexactfit to the
data and therefore this minimum is not low enoughto satisfy the very strict

convergence criteria which | have been using.

Similar results occurredthenl attemptedo overfit the time varying stomachcontents
data using a feeding function made up of more meal sourcesthan were usedto
generatethe actualdata. | generateda data set using a single medium sized prey
sourcedistribution. If the frequencyandtiming of the two fitting prey sourceswere
forcedto be equalin the fitting proceduresthenthe parametersonvergedto a set
which describethe feeding behaviouras feeding on a single meal sourceat a rate
oscillatingbetweenthe correctvaluesat the expectedrequencyandtiming, provided
that none of the parametervalueswere initially too far away from the optimum.
Dependingon the positionsof the two initially chosenmeal sourcedistributions,the
optimisation procedureeither convergedto give two identical distributions whose
underlying feeding rates summedto the required value or four of the parameters
describedthe expectedfeeding behaviourwhile the feeding rate parametersof the

second distribution converged to zero.

When the two sets of timing and frequency parameterswere allowed to vary
independentlyof eachotherin this fitting procedureandthey werenot initialised with
valuesvery closeto the optimum,thenthe procedurefailed to converge. In the first
instant, the frequencyand timing parametergendedto move away from the actual
valuesand then the parameterdescribingthe shapeof the meal size distributions

beganto moveawayfrom their optimumvaluespulling the parametesetevenfurther
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from its optimum. As a consequencthe optimumwasnot reachedwithin the limit on

the number of iterations.

| showed in chapter four that stomach contents distributions generatedusing
differently shapedmeal sourcedistributionscould not be confusedprovidedthat the
very strict convergenceriteria are adheredo. In this next sectionl shall showthat
the wrong shapedfeeding rate functions cannotbe fitted to a particular data set
provided that the minimum value requiredfor the least meansquarederror is low

enough.

| generatedh set stomachcontentsdata using a narrow truncatednormal meal size
distribution with a fairly large mean. The feedingrate of the populationwas varied
sinusoidallywith equalunderlyingfeedingrateandamplitude(0.1) sothetruncationat
zerohasno effect andthe function retainedits sinusoidalshape. | attemptedo fit a
single prey sourcedistribution with a step function feeding rate assumingthat the
timing and numberof the discontinuitiesin the step function are known. The least
meansquarecerror onceagainreacheda minimumvalue,but the routinefailed to halt
asthe optimumfit did not exactlymatchthe datasetandthereforethis minimumvalue
was still too high. The parameters at this minimum described the expected meal source
distribution, but with alternatetwelve hour high feeding (0.2 mealsper hour) and

twelve hour zero feeding periods.

The reverseexperimenibf fitting dataproducedby a sinusoidallyvarying feedingrate
functionto dataactually producedby a stepfunction gives similar resultsin that the
routine doesnot halt as the minimum meansquarederror is higher than the value

required for convergence of our optimisation routine.

All these experimentsshow that, similarly to the time independentproblem, the

automaticoptimisationmethod doesnot convergeto unexpectedanswersprovided

150



that the convergence criteria are very strict. Relaxingahgergenceriterionfor the
minimum meansquarederror would allow the prediction of wrong parametersets.
However,thesepredictionswould not producefeeding behaviourvastly different to
the actualbehaviourandthereforethe feedingbehaviourinferred by the modelis still
guite an accurate description of the actual behaviour. In the next section the
convergence criterion for the minimum mean squared error is relaxed comatstedy
experimentsare concernedwith simulated noisy data and whether the population

feeding behaviour can be inferred using noisy, categorised samples.
5.4 Simulated time dependent data

Like the approachof chapterfour, | shallnow go on to discussthe effect of noise,
categorisatiorand samplingfrequencyon the resultsof the optimisationprocess. The
resultsof chapterfour indicatedthat the feeding behaviourinferred from stomach
contentssamplesmostreliably predictedthat of the populationfrom which they were
drawnwhensampleswvere large and categorisednto many stomachweight intervals,
althoughthe resultsdid not deterioratebadly until the samplesveremuchsmallerthan
one hundredindividuals and categorisednto aboutfive gut weight categories. We
would expectsimilar resultsto arise from experimentsinvolving a time dependent
feedingrate, but we mustalso now considerthat the accuracyof the resultsmay be

affected by the frequency at which the samples are taken.

As | showed in the previous section the fitting procedargbecomevery complicated
in the time dependentasewith a very largenumberof parametersvhich slowsdown
the optimisationroutine. So,in this section,as! just wish to comparethe accuracyof
feedingbehaviourinferred from randomsampleswith that of the actualpopulation,l
haveassumed relatively simple single meal sourcefeedingregime. However,even

this leaves us with the possibility of six unknown parameters.
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As the first stepin this investigationl havesimulatedsomedatasetsusingthe same
parametersetsto describethe feeding process,but with differing samplesizesand
number of stomach weight categories. The example illustirafeplire 5.4 showsthat
evenwhenthe datais very noisy, by consideringhe variationsin proportionof fish in

each stomach weight category, we can infer by observationsthe approximate
frequencyand timing of the feedingrate function. Thereis only one cycle in the
dynamicsof the stomachweight categorycontentsover the twenty four hour period
andthereforewe canconcludethat only onecycle of the feedingrate function occurs
during the day. The contentstbe emptystomachcategorydrop overthefirst half of

the day implying that feedingis highestduring this period and that the feeding rate
function is an undisplacedsinusoidfunction. This reducesthe inverseproblemto a

four dimensionalproblem ratherthan six which speedsup the optimisation method

considerably.
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Figure 5.4. Variation in the proportion of a sample in six stomach weight categories a) empty
stomachs, b) 0-1.5 grams, ¢) 1.5-3 grams, d) 3-4.5 grams, €) 4.5-6 grams and f) 6-7.5 grams, for

samples of size 50 drawn from a population feeding on a normal meal size distribution,
truncated at zero with mean one gram, standard deviation 0.2 grams and R, and R, equal to

0.1.
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As in chapter four, when attempting to fit the modethtnoisy sampleddata,l began
the optimisation routine d@he known populationparameterérom which the datawere
simulated. The severeconvergenceriterion for the meansquarederror was once
againdiscardedastherewill be no exactfit to thesenoisy datasets. The experiments
were carriedout in a similar patternto thosein chapterfour, exceptthat for each
combinationof samplesize and numberof stomachweight categoriesa number of
experimentdadto be conductedor datasetssamplecat differenttime intervals. The
optimisation routinevascarriedout for onehundreddifferentrandomsamplesf each
combinationof samplesize,samplingfrequencyandnumberof categorieandthenthe
appropriatesummary statisticswere calculated. The variation in mean value and
absolutecoefficient of variation for eachof the four parametersare illustratedfor a
fixed samplesize with varying numbersof stomachweight categoriesand sampling

frequency.

The first illustration showsthe variationin the averagefitted meanmeal size and its
absolutecoefficient of variation for samplesof 500 individuals. The value of the
averageappeargo remainrelatively constantandcloseto the populationvalue of 0.5
for all samplingintervals and stomachweight categorywidths until the number of
stomachweightcategoriess lessthanabouttwelve. At this point, for very infrequent
sampling, the average value decreasegyfrom the populationvalue. As the number
of stomachweight categoriesis reduced,the decreasan the meanvalue becomes
greaterandis apparentvenin more frequentlytakensamples. The deviationof the
expectedvalue of the meanmealsize away from the populationvalue appeargo be
guite systematicwith the predictiongettingmuchsmallerfor very infrequentlytaken

samples categorised into a small number of stomach weight categories.

The coefficient of variation, for all combinationsof stomachweight categoriesand

samplinginterval is quite small. However, as the samplinginterval increasesthe
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reliability of the prediction decreasesj.e. the coefficient of variation increases,

particularly at low numbers of stomach weight categories.
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Figure 5.5. Variation in the average (a) of the fitted mean meal size and its coefficient of

variation (b) with number of stomach weight intervals and sampling frequency for samples of
500 individuals. The population mean meal sizeis0.5.

The correspondingllustrationsof the variationsin averagestandarddeviationof the
meal size distribution and its coefficient of variation are shownin figure 5.6. Once
againfor mostof the range,the averagestandarddeviation surfaceis quite flat and

close to the population value of 0.05, but for large samptevalsanda smallnumber
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of stomachweight categoriesthe averagevalue increasesby approximatelyeight
times. Thereis alsoa correspondingncreasan the coefficientof variation,although

thisis quite high overthe wholerangewhencomparedo thatof the meanof the meal
size distribution.
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Figure 5.6. Variation in a) average and b) coefficient of variation of the standard deviation of
the meal size distribution with number of stomach weight categories and sampling interval for
samples of size 500. The population meal size distribution standard deviation is 0.05.
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Figure 5.7. Variation with sampling interval and number of stomach weight categories in a)

aver age and b) coefficient of variation of the underlying feeding rate of samples of size 500. The
population valueis0.1.

Both illustrationsof the variationin the averagevaluesof R, and R (the parameters
defining the feedingratefunction), showthat the samplepredictionsare closestto the
populationvaluesfor a large numberof stomachweight categoriesand very frequent
samplingand worst for infrequentsamplingand a small numberof stomachcontents

intervals. The total deviation from the population values over the whole range,
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however,are quite small (10%) when comparedwith the changein the other two
parameterg40% for the meanand 600% for the standarddeviation) at their worst
points. Correspondingly, the coefficient of variationesy low for mostcombinations
of samplinginterval and number of stomachweight categories,but doesincrease

towards the large sampling interval/small number of stomach weight categories corner.
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Figure5.8. Variation in a) the average and b) the coefficient of variation of the amplitude of the
feeding rate oscillations with sampling interval and number of stomach weight categoriesfor 100
samples of 500 individuals. The population valueis0.1.

In my nextsetof illustrations,| shallillustratethe resultsof the sameexperimentsbut

with samples of 100 individuals instead of 50Gcanthenanalysehe consequencest
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changingthe samplesize as well as the samplinginterval and number of stomach

weight categories in this time dependent problem.
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Figure 5.9. Variation in a) the average and b) the coefficient of variation of the mean of the

meal size distribution with sampling interval and stomach weight categories for samples of 100
individuals. The population valueis 0.5 grams.

The averageof the meanmealsize, illustratedin figure 5.9a,mostcloselymatcheghe
populationvalue for large numbersof stomachweight categoriesand this accuracy
remainsfor all sampling intervals. However, as the number of stomachweight

categoriedeginsto decreaseat large samplingintervals,the averagevalue beginsto
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fall quite rapidly. For more frequentsampling,thereis only a slight decreasen the

average of the mean meal size.

For all very frequent sampling the coefficient of variation is very low and only
increasesslightly for less frequent sampling at high numbersof stomachweight
categories. However, for small numbersof stomachweight categories,nfrequent
samplingproducesa very high coefficientof variationindicatingvery greatvariability

in the mean of the meal size distribution predicted by the sample.

0.6

S
\‘Q‘\\““‘ :
e
“ AN TS
SO oS

2
=

4

mean

@01 02 03 0

A

‘{“\“

tion
coefft of varial 09

05 06 07 08

A

Figure 5.10. Variation in a) the mean and b) the coefficient of variation of the fitted standard

deviation of the meal size distribution for samples of size 100. The population value is0.05.
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Once again, the mean of the fitted standarddeviationsis closestto the known
populationvalue for large numbersof stomachweight categoriesand very frequent
samplingandincreaseso approximatelytentimesthe populationvaluefor datawhich
is infrequentlysampledand categorisednto a smallnumberof intervals. Likewisethe

coefficientof variation showsa large increasefor a small numberof stomachweight
categories at large sample intervals.
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Figure 5.11. Variation in a) the mean and b) the coefficient of variation of the underlying

feeding rate with sampling frequency and number of stomach weight categories for samples of
100 individuals. The population valueis0.1.
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The two llustrations of the variation in the averagevalue of the feeding rate
parameters show quite a lot of peculiar peaks and troughs. However, the magnitude of
thesevariationsis extremelysmall comparedto thoseof previousexamplesandthe

overall trend appears to show that theanvalueis closestto the populationvaluefor

frequentsampleswith larger deviationsfor infrequentsamplesand low numbersof
stomach weight categories.
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Figure 5.12. Variation in a) the average and b) the coefficient of variation of the amplitude of

the feeding rate oscillations for samples of size 100. The known population parameter value is
0.1.
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The coefficient of variation of the underlying feeding rate (figure 5.11b) increases
considerablyas the sampling interval increases particularly for small numbers of
stomachweight categories.Althoughthe surfaceof the coefficientof variationof the
amplitudeof the feedingrate (figure 5.12b)appeardo be a much more complicated
shape,the overall variation is much less and the generaltrend is still to a higher

coefficient of variation for infrequent sampling.

A brief initial comparisorbetweenthe resultsof the experimentswith large and small
sample sizes shows similar trends in the overall shapesof the summary statistic
surfaces. However,the deviationsaway from the populationvaluesandthe value of
the coefficient of variation for the smallersamplesize tendto be larger and over a
wider rangeof samplingfrequencyandnumberof stomachcontentscategoriesyvhich

is as we would expect from the results of chapter four.

For both setsof samplesizes,we can seethat the most outstandingfeatureof the
illustrationsis that the averageof the fitted meandecreaseand that of the standard
deviation increases by quite larggountsasthe numberof stomachweightcategories

decreases, particularly at low sampling frequencies.

Whenthe samplesare categorisednto a smallnumberof categorieseachcategoryis
muchbroader. In this casethe populationis feedingat a relatively low rate compared
to its digestionrateandon a small mealsourceandthereforefor muchof the daythe
population is concentrated in the low stomach weight categories. So, by labkieg
data,we cantell that the meal size distribution must havea relatively low meanand
low feedingrate. However,we do not know the exactdetailsof the stomachcontents
distribution,only the proportionin somevery broadcategories.So, it is possiblethat
the data could be fitted as adequatelyusing a normal distribution, (truncatedand
renormalisedat zero) with a larger standarddeviationand a peak at a much lower

point thanthe populationmealsizedistribution. It is not possiblethat the fitted meal
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size distribution could be centreauchhigherthanthe populationdistribution,aseven
with a small standarddeviation, this feeding behaviourwould predict too many
individuals with high stomachweights as the digestion rate remains the same.
Therefore the averagditted meandecreaseandthe averagditted standarddeviation

increases as the number of stomach contents categories decreases.

This effect really only becomesmportantwhen we are dealingwith lessfrequently
takensamples. Obviously the temporalvariationsof the proportionsof fish in each
category which are accurately described when sampling is very freoainetstly give
information on the stomachcontentsdistribution at the previoustime step. For
example, the number of fish which are in a particular category at time t+1 depemds on
combinationof feedingbehaviourduring that time interval and alsothe distribution of
stomachcontentsat time t. For infrequentsampling, for exampletwice a day, a
numberof different routes(combinationsof feedingbehaviourand stomachcontents
distributions)could be takenfrom one stomachsampleto the other, while for more
frequentsamplingtherewill belessroomfor variation. Therefore,it seemghat very
infrequentdata samplingand small numbersof stomachweight categoriesare a bad

idea for attempting to infer population feeding behaviour.

Although the surfaces which describe the variations in the fitted underlying feeding rate
and feeding rate amplitudeboth appearto be fairly noisy, thereis in fact very little

overall variationfor eitherlarge or small samplesizes,comparedo that of the other

two parameters.The positionandshapeof the stomachcontentddistributionalthough
dependenbn the meanand standarddeviationof the meal size distribution, the two
feedingrate parametersre evenmoreimportant. Quite smallchangesn their values

will producenoticeablechangesn the stomachcontentsdistribution, evenfor small
numbersof stomachweight categorieswith either increasesor decreasesn the

proportion of the samplewith high stomachweight categories. The only possible
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trend which appearsn the illustrationsis that predictions,once again, becomeless

accurate and reliable for infrequent sampling and few stomach weight categories.

The aim of the experimentarriedout in this sectionis to be ableto concludeon a
combinationof samplesize, numberof stomachcontentscategoriesand sampling
interval which is practical for use in actual data collection and will give reliable
informationaboutthe feedingbehaviourof the populationfrom which the samplesare
drawn. This means we wish to find the combination which best préaégiepulation
parametersbhut also hasa low coefficientof variationimplying that we can be quite
confident that if one such sample is taken from the population then itspitacheters

will quite accurately describe the feeding behaviour of the population.

Sincethe predictionsof the underlyingfeedingrate andfeedingrate amplitudeappear
to berelatively accuratefor all samplesizesand combinationsof samplingfrequency
and number of stomach weight categories, | shall concentrate on the resultmedlthe
size parameters.From the previousdiscussiorof the parameterslescribingthe meal
size distribution we can seethat for large samplesof size five hundred,predictions
remain quiteaccurateandthe coefficientof variationremainsquite low for all stomach
weight categoriegprovidedthat samplingis at leasteveryfour hours. On the other
handif we wish to use smaller samples(size one hundred),samplesmust be taken
quite frequently (hourly) or categoriseinto a large number of stomach weight
categories. So, | shall concludethat providedthe digestionrate and upperstomach
limit are known andthat the feedingtiming and frequencycan be assumedthenthe
feedingbehavioura populationis adequatelypredictedby the behaviourinferredfrom

either relatively small but frequent samples or larger less frequent samples.
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5.5 Conclusion

In this chapter | have devised an alternative wayadellingthe feedinganddigestion
processwhich involves the solution of finite difference equations. Quite broad
discretisatiorspeedsaup the solutionof the problemimmenselyandstill givessolutions
which adequatelyreproducethoseof the partial differential equationapproach. It is
thereforepossibleto usethis processin the solution of the time dependeninverse

problem.

| haveshownthat the time varying feedingbehaviourof a populationcanbe inferred
from the hourly outputsof its time dependenstomachcontentsdistribution, provided
that the number of meal sources is known and that the initial parametact too far
from the optimum. In fact we can even infer the frequencyand timing of the

oscillations in the feeding rate.

As in chapterfour though,we haveto usevery strict convergenceriteriato prevent
any confusionwhich may arise when attemptingto fit the wrong numberof meal
sourcesr wrong feedingrate functions. However,whendealingwith noisy data,this
very low value of the least meansquarederror requiredfor convergencanust be
droppedas no predictedstomachcontentsdistribution will give a perfectfit to the
data. So,in this caseconvergencéo the wrong feedingfunction may possiblyoccur,
although this predicted behaviour is likely to be quite similar to that which the data was
generatedvith. For example,a stepfunction feedingrate function may be confused
with a sinusoidalfunction oscillatingin phasewith the samefrequencyandamplitude.
However,in all of the parametefitting experimentsnvolving noisy and categorised
datal haveassumedhat the actual number,type of prey sourceand feeding rate

function are known and therefore this problem does not arise.
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| have tried to show in the experiments with simulatedy andcategorisediata,how
accuratelyfeedingbehaviourinferredfrom regularlysampleddatadescribeghat of the
parentpopulationfrom which it wasdrawn. The resultsindicatethat if we wantto
samplea relatively smallnumberof individuals(approximatelyl00),thenthey mustbe
sampled very frequently (hourly) and categorised into no less than between five and ten
stomachweight categoriesto predict feeding behaviourwhich adequatelydescribes

that of the populationfrom which it came. However,we have also shownthat an
alternativeto suchtime intensivesamplingis to takelarger sampleq500 individuals),

as infrequently as every six hours and categorisetheir stomachsnto at leastabout

fifteen intervals.

All theseexperimentswith simulatedandnoisy datahave beerctonductedwith a very
simple exampleand as few parameterss possible. Earlier sections,however,have
shownthatthe automaticfitting procedurecanbe usedto solvethe inverseproblemin

higher dimensionsso thereappeardo be no reasonwhy theseresultsshouldnot be
applicableto suchmultiple prey source alternativefeedingrate function problems. |

shall thereforeconcludethat given an adequateset of dataand that the optimisation
routine is not startedtoo far from the optimum, then we can infer the feeding

behaviour of the population from which the data was drawn.
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Chapter 6

Data collection and analysis
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6.0 Introduction

So far, this thesis has concentrated on the construction of a continuous feeding and
digestion model. The model has been tested for uniqueness and a semi-automatic
method has been found for inferring the feeding behaviour from the variation in the gut
contents distribution. Further experiments were carried out to check how well the
feeding behaviour inferred from randomly chosen samples described that of the
population from which they were taken. The results showed that the reliability of
sample predictions does not deteriorate too much provided the samples are of at least
100 individuals, taken very frequently and categorised into a reasonable number of
stomach weight categories (not many fewer than ten). All these experiments, however
were carried out with samples taken from a population with known feeding behaviour,
simulated by the model which has been formulated in this thesis. So, in the next
section of this thesis, | shal attempt to infer the feeding behaviour of some rea fish

populations, with unknown feeding behaviour, from diel stomach contents samples.

This chapter serves as an introduction to this next section. It describes the details of
the data collection and then goes on to discuss what analysis is carried out to justify
using this data in comparison to the output of the previously constructed feeding and

digestion model.

6.1 Data Collection

The data which has been used in this study was collected by Hall et al. (1995). The
location at which the sampling was carried out in July and August 1989, was the north

coast of Loch Gairloch, a sealoch on the north west coast of Scotland.
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Fishing was carried out using a standard light trawl (cod end mesh 80 mm), fitted with
250 mm bobbin ground gear. Each trawl consisted of towing the net for
approximately 15 minutes at 2.5 knots, in order to cover an average distance of 1 km.
By combining measurements of the net size with the length of the tow, the mean area
and volume covered by each tow were calculated to be 6820 m? + 46 m? (standard

error) and 27033 m® + 228 m*® respectively.

These short, but frequent samples provided large enough numbers of fish, but also kept
seabed disturbance at a minimum. However, even taking such short samples repeatedly
over along period of time may affect the resident communities. For example, seabed
disturbance may cause an increase in the availability of food. In which case stomach
contents samples would not reflect those of the natural conditions and the whole
structure of the loca community may be altered by the influx of more predators. To
combat this problem, three separate but smilar sites were used for sampling, being
trawled in rotation. Each areawas therefore trawled only once in every three hours. 1t
was shown in an earlier paper by Hall, Rafaelli and Thrush (1994) that disturbance only
lasts for about an hour, after which fish populations return to their normal size.

Disturbance of the sites was also minimised by fishing for only eight consecutive hours

per day.

The sampling was carried out over a period of eight days between 27" July 1989 and
7™ August 1989. The pattern of sampling used guaranteed that each hour was
sampled at least twice so that stomach contents distributions and average size could be

compared between days and sites.

After each catch the total number of fish was recorded and a maximum of fifty
individuals from each of the predominant fish species were kept to use in the stomach
contents analysis. The four main species caught during the trawls were the dab

[Limanda limanda (L.)], place [Pleuronectes platessa (L.)}], haddock

169



[Melanogrammus aeglefinus (L.)] and whiting [Merlangius merlangus (L.)].
Immediately following capture, the body lengths of al fish were recorded. The
stomachs of the whiting and haddock were removed and placed in formaldehyde
solution, while the dab and plaice had formaldehyde solution injected into their

stomachs for removal later in the laboratory.

Once in the laboratory, the stomach contents of each fish were removed and weighed
before being freeze dried and re weighed to find the dry weight. Although it was not
the intention of this study to go into a detailed analysis of diet composition by species,
a brief examination of the stomach contents revealed that the diets appeared to be no
different to those found in previous studies. The dab and plaice, aong with the smaller
haddock showed a preference for mainly benthic crustacea and polychaetes, while
whiting and the larger haddock had mainly piscivorous diets which largely consisted of
sandeels. These results are supported by Hall et al. (1990), Gibson and Ezzi (1986)
and Gordon (1977) who have al conducted detailed diet analyses of the fish species

populating the inshore waters of the west coast of Scotland.

Before the collected data could be used in any meaningful stomach contents analysis, in
comparison with the model constructed in chapters two and three, some further checks
were required to establish whether the data had been sampled from a closed population

of similarly sized fish.

6.2 Data Analysis

Since the sampling was done over a period of days using different sites, severa tests
were carried out by Hall et al. to establish whether there are any significant trends in

fish sizes with sample which may affect the patterns seen in the data.
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Trends in the average body size of the species over the day, the sampling period and
sampling areas were aso investigated with non-parametric anaysis of variance
showing significant differences in body length between samples. For example, the
average length of dabs sampled appears to be low at the start of the day (for al dates
combined), then rises to a peak in mid afternoon, but then fdls again later in the
evening. In contrast the average length of sampled haddock shows no particular trend
over the day, but appears to reach a minimum in the middle of the sampling period
with highs at the beginning and end. These variations in mean size, however, occur
over a very smal range, 8-13% above or below the mean length of the species in

guestion.
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Figure 6.1. Length frequency distributions for all samples pooled for a) dab, b) plaice, ¢)
whiting and d) haddock.
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Due to the presence of only very small variations in the mean length coupled with the
relatively narrow length distribution, shown in figure 6.1, it was argued that such
samples could be used in a stomach contents analysis dealing with single populations of
amilarly sized fish. The bi-modal appearance of the frequency distribution of haddock
suggest that two populations are present, which are likely to have different feeding
behaviour, so in this case separate analyses was carried out for fish above and below

29 cmin length.

This, however, does not rule out the possbility that the population undergoes
substantial immigration or emigration to and from the area of study as fish become
sated or hungry. For example, it is quite possible that fish come to an inshore area to
feed and them return offshore when sated. This would lead to a very unbalanced
distribution of stomach contents in our area of study (inshore) and consequently very
biased feeding behaviour. Unfortunately though there appears to be no practical way
of monitoring this behaviour and since there are no significant changes in fish size, |

shall assume that we are dealing with closed populations of fish.

Category Lower bound Upper bound
5 0 0
R 0 0.25
F, 0.25 0.50
Fs 0.50 2.50
F, 2.50 5
F 5 10
Fs 10 20

Table 6.1. Gut fullnessboundariesfor all of the species.
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Once this has been concluded, the wet weight of the gut contents of each individud is
standardised to its body weight using the gut fullnessindex, defined by

GFl = wet weight of gut content (g)
total wet body weight (g)

x100 (6.1).

For each species the GFIs were categorised into six gut fullness intervals, F, - F;,

(seven in the case of whiting), shownin table 6.1.

Initially the categorisation was done separately for each combination of time, date and
tow, so that gut fullness index comparisons could be made between different samples.
None of the species exhibited any differences in gut fullness between days, so it is
concluded that combining samples taken at the same time but on different days is
judtifiable.  So, we now have a diel picture of the variation in proportion of fish in

particular gut fullness index categories.

6.3 Gut contentsvariations

Most studies of fish feeding behaviour conducted using stomach contents data have
been carried out using a very wide range of fish sizes. So, by using the GFI and
standardising all measurements to percentage body weight it is then possible to make a
sensible comparison between stomach measurements taken from fish of very different

Szes.

However, the analysis of fish lengths described in the previous section concludes that
the variation in fish length over each of the speciesis relatively smal when compared
to the actual size of the fish (approximately £10% of the mean length). | shal
therefore assume that the stomach contents samples have been drawn from a
population of identically sized fish. The data can therefore be transformed back to

actual stomach weights using the average weight of each separate population. The
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data is now in the more straightforward form of daily variation in proportions of the
population contained in particular stomach contents categories, the width of which are
also scaled from the gut fullness index values. These variations in stomach contents
categories are illustrated in figure 6.2 and the actual stomach weight category
boundaries are given in table 6.2. and attempt to fit the feeding and digestion model to

the actual raw gut weight data.

Dab Paice | Whiting | Small haddock|L arge haddock

P 0 0 0 0 0

P, 0.175 | 0.325 | 0.250 0.375 0.825

P, 0.350 | 0.650 | 0.500 0.750 1.650

P 1.750 | 3.250 | 2500 3.750 8.250

P, 3500 | 6.500 | 5.000 7.500 16.50

3 7.000 | 13.00 | 10.00 15.00 33.00

P NA NA 20.00 NA NA

Table 6.2. Upper boundaries for the seven (where applicable) ssomach contents categories for

each of the five fish cohorts.

Although the error bars give an indication of the great variability between fish stomach
contents samples at the same time, some patterns in the data are still visble. For
example, the dab and plaice both show decreases in the proportion of empties in the
early morning, which corresponds to increases in the contents of P, suggesting an
increase in feeding at this point. In the case of the dab, however, this fluctuation does
not extend to fullness category three which has relatively high stomach contents

throughout the day with a small increase in the evening.
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Other variations which are difficult to explain are observed for the whiting samples
(fig. 6.2c) which show a decreasing number of empty stomach early in the morning

which corresponds to increases in the upper stomach weight categories only.

We can aso see at first glance that the stomach weight category variations for the
sndl and large haddock show very smilar patterns, which is quite reassuring.
Although the haddock has been split into two groups, we would not expect particularly
different feeding patterns to occur as a result of changes in size as the physiology of

the two groups will be the same.
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b) plaice
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d) small haddock
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Figure6.2. Daily variationsin the proportion of the population in each stomach weight category

for a) dab, b) plaice, c) whiting, d) small haddock and €) lar ge haddock.
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It isimpossible to explain the dynamics of these stomach weight categories smply by
considering the data alone. So, correctly categorised output from the feeding and
digestion model can be compared to these stomach weight category variations in order

to gain amore accurate insight into the feeding behaviour of these fish.
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Chapter 7
Inferring feeding patterns
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7.0 Introduction

In this section of the thesis | shal explain how the stomach contents data is used to
establish the feeding behaviour of the population from which it was sampled. Chapters
four and five explained a method for inferring the exact feeding behaviour, but the
fitting procedures used, were required to start relatively near the optimum in order for
convergence to occur. Thisis fine when we know the actual feeding behaviour of the
population and are only trying to deduce the feeding behaviour of a smulated random
sub-sample of individuals. However, when we are dealing with samples of real data,
we have no previous knowledge of where the approximate optimum is. We have no
way of knowing how many prey sources the population is feeding on or how the
digestion rate is varying. Blindly attempting to use the semi-automatic optimisation
method devised in chapters four and five, with a particular number of food sources and
a fixed feeding rate function is therefore likely to lead to problems. So, in this chapter
| shal use the smple aternative approach of varying the feeding parameters and
comparing the output from the model to the stomach contents data until an optimum is
reached. Although we cannot check that this optimum is global, it can be verified that

alocal optimum has been reached.

However, as well as the set of parameters defining the feeding behaviour of the
population, the model requires a digestion rate and upper stomach contents limit. In
previous chapters we have assumed that the values of these parameters are aready

known for the population in question.

It is possible to choose a sensible value for the maximum stomach contents of each
species by considering the sampled stomach contents data. The upper limit of stomach
fullness should be a value that is not exceeded by any of the stomach contents data, so
| shall take this value to be equa to the upper limit of the upper stomach content

category defined in table 6.2. So, for example the maximum possible stomach contents
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for the dab is assumed to be seven grams. Although we have no way of knowing the
precise maximum stomach contents, it seems unlikely that it will make much difference
to the model as most of the population in al five fish cohorts, have relatively low
stomach contents and there are few fish in any of the upper stomach weight categories

(refer to figure 6.2) close to this upper limit.

A vaue for the digestion rate constant, however, cannot be found by smple
observations of the raw data. One option of dealing with the unknown digestion rateis
to leave it as a free parameter in the feeding and digestion model, to be fitted along
with the feeding parameters. This, however, could lead to grave errors in feeding
behaviour inferences as even dight differences in the value of the digestion rate can
produce massively different stomach contents distributions, as illustrated in figure 3.2.
So, it is more sensible, in order to obtain meaningful results about the feeding
behaviour of each species, to acquire values of the digestion rates from an independent

source which | shall proceed to do in the next section.

7.1 Estimation of the digestion rate

Before it is possible to attempt inferring the feeding behaviour of the fish population
from which the samples have been drawn, we need to know the digestion rate of the
population. Figure 3.2 illustrated how even quite smal changes in the digestion rate
can affect the state of the stationary stomach contents distribution. So, an accurate
value of the digestion rate is required in order to obtain any reliable results about the
feeding habits of the population.

As we have a modd representing the change in stomach contents distribution for a
non-feeding population of fish, the members of which al follow a linear digestion

model with digestion rate K, it would appear to be a straightforward task of fitting our
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model to evacuation data for the appropriate species. Most digestion studies however
do not present their digestion data and just give a relationship defining the reduction in
stomach contents with time which has been fitted to data derived from a number of
digestion experiments. Instead data must be produced from these relationships by
assuming an initiad mean stomach contents and then calculating the mean stomach
contents at hourly intervals. Our model can then be fitted to such a data set using the
same method as chapter two and the digestion rate which gives the best fit can then be
used in dl future work on fitting the feeding and digestion model to the stomach

contents data.

It seems unlikely that al fish species will have identical rates of gut evacuation, partly
due to differences in size, as well as differences in species physiology, so here | shdl
explain these variations in gut contents depletion relationships. Many digestion
experiments carried out by Jobling and Spencer Davies (1979), Jobling, Gwyther and
Grove (1977) and Jones (1974) support these views, although they do not al agree
that digestion isalinear process. In al fish species it was found that the evacuation
rate increased with fish weight or length, obeying the power law relationship (Fletcher
et a. 1984, Basimi and Grove 1985 and Jones 1974)

K OM?® (7.1)
or
KOLP (7.2)

where K is the digestion rate constant, M is the fish weight in grams, L isthe length of
the fish in centimetres and a and b are constants, which appear to be species

dependent.
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It has been known for many years that the digestion rate is also highly dependent on
external conditions such as water temperature (Bajkov 1935). Elliott (1972) during his

studies of brown trout found that the relationship was an exponential one

K Oexp(cT) (7.3)

where T is the water temperature in °C and c is a species dependent constant. This
theory was supported by Fletcher et al. (1984), Basmi and Grove (1985) and Grove et
al. (1985).

| now need to find specific digestion rate-temperature-weight relationships for each of
the four species from which the stomach contents data was sampled. A series of
smilar experiments conducted on the gastric evacuation of plaice (Basmi and Grove
1985) and dab (Fletcher et a. 1984), have found the average stomach contents of the

population to obey

W(t)® =W(0)° —1(T, M)t (7.4)
where S(t) are the average stomach contents at time t, 1(T,M) is a function which
include the temperature (T) and weight (M) dependence and 0 is a constant. The

function t(T,M) has been shown to take the form

(T, M) = BM%” (7.5)

where B,aand c are constants dependent on the species and are shown in table 7.1.

Species 0 B a c
Dab 0.75 0.0068 0.43 0.041
Plaice 0.49 0.025 0.068 0.086
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Table 7.1. Values of the average stomach contents depletion curve constants for the dab
(Fletcher et al. 1984) and plaice (Basimi and Grove 1986).




A similar, but more complicated relationship is given for haddock by Jones(1974)

O. 54Q100.035(TC -To)
1757

W(t)0.54 = W(O)O.SA (76)

where T, is the water temperature of the study, T, is 12°C, L is the fish length (cm)

and Q istherate of elimination of 1 gram of food from afish 40 centimetresin length.
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Figure 7.1. Mean stomach contents depletion curves generated by relations 7.4 and 7.5 for a)
dabs (5.250g), b) plaice (9.75g), ¢) small haddock (11.25g) and d) large haddock (24.75g). The

bracketed figures are the mean satiated stomach contents.

For each of these three species, | can now construct average stomach contents
depletion curves. The average lengths and weights are calculated (see table 7.2) and a
temperature of 13.2°C which is typical of the summer water temperature of Scottish
west coast sea lochs, is used in equations 7.4 and 7.6 to generate the mean stomach
contents depletion curves. The vaue of Q is taken to be 0.223, which is the value
suggested by Hall (1987) as the mean of al known values. The depletion curves with
initially satiated fish populations are illustrated in figure 7.1. | assumed that at
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satiation, the population stomach contents are distributed normally about the mid-point

of the highest stomach contents category as defined in table 6.2.

Comparing figures 7.1a and 7.1b, we notice immediately that plaice must have a much
higher digestion rate than dab, as they manage to completely evacuate their scomachs
of a much larger meal in amost half the time. Also comparing the two haddock
stomach contents depletion curves, we see that the time for complete evacuation is
almost the same, even though the large haddock have an initial mean stomach contents
of twice the size, implying that their digestion rate is approximately twice that of the
small haddock.

| can now fit the linear digestion model to points taken at hourly intervals from the
curvesillustrated in figure 7.1. | shall assume that the initiad mean stomach contents of
the population is known and equal to that of the data to which we are attempting to fit
the linear digestion model. | showed in chapter two that the shape of the population
average stomach contents depletion curve is dependent to a certain extent on the initial
distribution of stomach contents, so in the fitting procedure | shal alow both the
digestion rate and initid standard deviation to vary. The best fit parameters are given

in table 7.2 and the best fit curves are illustrated in figure 7.2.

Weight(g) | Length(cm) St. dev. Dig. rate(g/h)
Dab 70 18.72 1.34 0.13
Plaice 130 21.96 3.36 0.55
Small Haddock 150 23.90 2.44 0.29
Large Haddock 330 32.11 3.87 0.62
Whiting 100 22.59 NA 0.15

Table 7.2. Mean weight and length and fitted digestion model parameters of the fish species

used in the stomach contents analysis.
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Although the standard deviation of the initid stomach contents distribution is
unknown, its value does not actually affect the digestion rate by too much, which can
beillustrated by fitting the digestion model with fixed initid standard deviation. In fact
the digestion rate is relatively robust to changes in the standard deviation, with changes
of 50 percent in the initid standard deviation producing deviations of less than five

percent in the best fit digestion rate for al four fish cohorts.
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Figure 7.2. Mean stomach contents depletion data (points), together with the best fitting linear
digestion curvesfor a) dabs, b) plaice, ¢) small haddock and d) large haddock.

No such expression for the depletion of the average stomach contents of whiting is
available and therefore another method of calculating the linear digestion rate must be
found. The studies of Bromley (1988) were based on experiments conducted on
whiting and give a value for the linear digestion rate which can be corrected for body
Sze and water temperature. This adjusted value of 0.15g/h agrees with an

instantaneous digestion rate measured by Robb (1990).
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Now that values for the linear digestion rate have been established, |1 can begin to
consider how to attempt to fit the feeding and digestion model to these stomach

contents data sets.

7.2 Methodology

Chapters four and five showed a semi-automatic way of inferring the feeding habits of
a population from samples which had been taken at particular time intervals. It could
not be completely automated however, as we had to know the basic structure of the
mea size distribution i.e. how many prey sources there were and what type of
distribution they followed. Also, when the data were very noisy, the fitting procedures
had to be started with initial parameters quite close to the optimum fit, otherwise the

computations required to reach the minimum took an inordinate length of time.

In this case we have no prior knowledge of the feeding behaviour of the fish
populations under consideration and the only way to decide how many mea sources
there are and how the feeding rate varies is by contemplating the variations in the
stomach contents categories. This will give us an idea of when the feeding rate

increases and decreases, but will not help decide on the number of prey sources.

| decided that the most practical approach would be to assume a maximum number of
meal sources (three) and that the feeding rate of each mea source could switch
between fixed values at particular times (maximum of four times) during the day and
then attempt to find the optimum parameters by comparing by hand the model
predictions and observed data. Considering the variation in the proportion of the
population in each stomach contents category in chapter five (figure 5.4), gave us a
good idea of how the feeding rate was varying i.e. a what times the rate was

increasing or decreasing. However, the real data sets which we are considering here
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are much noisier than those smulated data sets which were used as examples in
chapter five and so it is quiet difficult to decide whether an increase in the proportion
of empty stomachsis due to areduction in feeding rate or whether it isjust noise. This
problem can be alleviated dightly by taking a three-point running average of the data
which smoothes the stomach contents data and the observed variations can now more
confidently be attributed to changes in feeding behaviour rather than sampling error.

These variations in smoothed data are shown in the next section in figures 7.3-7.7.

Initial attempts at fitting the model to the data were made by comparing the model
predictions to the data by illustrations of the two data sets superimposed. This method
probably being the most effective way of finding an approximate optimum. As the fit
of the model becomes closer, however, smal parameter changes which improve the fit
of one of the stomach contents categories may reduce the fit of others. Eye-ball
techniques are unlikely to be able to decide which parameter set gives a better overall
fit and therefore an error measure must be used. Instead of using the usua mean
squared error measure, used in previous sections, | decided that a more appropriate

goodness of fit statistic was the normalised mean absolute error (Thiel 1966) defined
by

[P (x) = O, (x)]
Eab — 1=1

S

S (7.7
3 0,(x)

1=1

where P (x) is the ith predicted value of the quantity x, and O.(x) is the equivalent

observed value.

The data sets which we are attempting to fit in this section appears to be quite noisy
even after smoothing and even a few extreme outlying observed data points will give a

smdl number of very large errors, causing a massive increase in the error measure. In
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such conditions, it is possible that the fitting procedure will be biased towards these
outliers, with a reduction in fit of the many more representative observed data points.
Using the mean squared error measure is likely to exacerbate this bias due to the
sguaring of theindividual deviations between observed and predicted points. So | have
chosen to use the normalised mean absolute deviation in this section, rather than the
mean squared error, because of its decreased senditivity to small numbers of outliers
present in the observed data. The mean squared error was adequate for use in

previous sections as the data, although noisy did not contain any extreme outliers.

The normalised mean absolute deviation is calculated for each stomach-weight
category and then an overall score for the model is calculated. Since the measurements
which are made for stomach-weight categories containing low average proportions of
the population are relatively more affected by the noise than those containing high
proportions, the overall model score is compiled by weighting each category score in

proportion to the time averaged population of that category.

7.3 Results

The best predictions of the model superimposed on the observed three-point running
averaged data together with an illustration explaining the inferred feeding regime for
each of the five fish cohorts, are shown in figures 7.3-7.7. The fit of the model for the
dab and plaice is very good, predicting most of the details of the variations in the
stomach weight categories. The predicted stomach contents variations for the gadoids
are less accurate than those for the flatfish (i.e. they give higher average valuesof E,,)
and do not predict some of the finer details. However, the basic features and average
proportions over time are adequately predicted and the model continues to be quite

visually and statistically convincing with relatively low error measure values.
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The modd requires the maximum number of three meal sources to obtain a good fit to
the dab data and has quite a complex feeding pattern. The population has one very
large (mean 1.7g) meal source which is permanently available, but feeding occurs only
at an extremely low rate - so low that it is amost impossible to see on the illustration
of meal sizedistributions. An intermediate sized prey isfed on for a short period in the
evening only, between the hours of 17.00 and 20.00 and findly there is a third quite
small prey source which is available all the time but is consumed at a higher rate during
the morning. These results imply the dab feeds throughout the day, with many meals
being taken during the morning and a lower peak in the evening, but with a very low

overnight feeding rate.

| shal now consider the feeding behaviour inferred from the stomach contents samples
taken from a population of plaice. The predicted and observed variations in stomach
contents categories areillustrated in figure 7.4. The observed patterns in the variations
of the stomach contents categories of plaice are quite smilar to those of the dab which
seems sensible since we are dealing with similar types of fish. However, the feeding

behaviour is much ssmpler as shown in figure 7.4b.

Plaice appear to feed on a very smadl mea source, but at quite a high rate in
comparison to the feeding rate of dabs. Overnight the feeding rate is very low, but
increases to almost three times during the morning and then in the evening between the
hours of 18.00 and 21.00. So, although the feeding behaviour of the dab is more
complicated the change in feeding intensity predicted by the model follows the same
basic pattern for both species of flatfish, with high points during the morning and

evening, which is quite reassuring.
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All three gadoid fish cohorts required a single meal source mea size distribution to
reach the optimum fit, with the two sizes of haddock having very smilar feeding
behaviour. There are however, clearly discernible differences between the feeding
behaviour of the whiting and haddock. This could be assumed just by comparing the
observed stomach contents data sets, without even attempting to fit the model to the
data. The proportion of the whiting population with empty stomachs is quite high
overnight, but fals during the day, corresponding with an increase in the proportion of
fishin categories P, P, and P, (the high stomach weight categories). The variations
in the stomach contents of the haddock appear to be roughly the opposite of those of

the whiting and therefore we can surmise that the feeding behaviour is quite contrary.

The predicted and observed variations in the whiting stomach contents data are
illustrated in figure 7.5a. The optimum feeding behaviour is shown in figure 7.5b and
amounts to feeding solely during the early morning on a relatively large, broadly

distributed prey source.

In contrast, figures 7.6 and 7.7 show that the haddock feed at a low rate throughout

the day except for a short period around midnight when their feeding rate becomes

very high.

The vaidity of the model is increased as we see that the optimum set of parameters of
the smal and large haddock describe relatively similar feeding behaviour and that the

large haddock feed on dightly larger meals than the smaller ones.

The credibility and accuracy of the model can be checked further by comparing the

inferred feeding patterns to the results of other studies which have been carried out.
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7.4 Checking the optimum

Since the model has been fitted to each of the data sets using a hand optimisation
technique rather than an automated method, it is particularly important that we make
certain that the feeding behaviour which has been inferred is actually an optimum.
There is no way of checking that this optimum is global, but we can at least check that
a local minimum has been obtained, by perturbing each of the parameters in turn and
checking that the normalised absolute deviation is at a minimum. From such sensitivity
analysis we can conclude that the values of the feeding parameters describing the medl
source distributions and feeding rates do in fact give an optimum. However, we must
further check the biological set-up of the model i.e. whether the number and type of
meal source distributions has been chosen correctly and whether the changes in feeding
are occurring at the most appropriate times. Rather than tedioudy varying the
positions of the feeding switches and the numbers of meal source distributionsin turn a

more sensible approach isto consider some more biologically significant tests.

| shal first consider the number of mea sources on which each species feeds. Our
results conclude that the dab feeds on three mea sources while al the other fish
cohorts appear to feed on only one prey size distribution. As the rate of consumption
of the very large meals by the dab is so low, it seems surprising that this meal source is
necessary to obtain a good fit to the data. It isin fact very important to the accuracy
of the fit, with the average E_, increasing from 0.13 (minimum) to 0.49 when the large
prey are not included. The consumption of extremely large meals, even at a very low
rate means that some individuals will have quite large stomach contents and so
omitting this meal source produces a quite marked worsening of the fit of the high
stomach content categories. The medium sized prey source which appears during the

evening is required to produce the observed reduction in empties which begins around
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17.00h and also the corresponding increases in the proportion of the population in

categories P, and P;.

Looking at the variations in the stomach weight categories of the plaice, it seems likely
that the same sort of feeding behaviour should be observed with the appearance of a

medium sized prey in the evening. This however, produces too large a peak in

categories P, and P, during the evening and too low a peak in stomach weight
category F,. So, the addition of an extra med source failsto provide a better fit to the

data

Both the dab, plaice and whiting feed on some very smal prey whose size distribution
functions are very skewed to the left due to the truncation at zero. The effect of
substituting a gamma distribution for a truncated normal was investigated in chapter
four and we concluded that for noisy data, the fit of the two was indistinguishable. In
this case, the gamma distribution provides a dlightly worsefit to the data for the flatfish
and a dightly better fit for whiting. However, in al cases the change in the total
normalised mean absolute deviation is less than five percent and we once again can

conclude that the type of distribution makes very little difference to the overall fit.

The final sengtivity test which | shal carry out is based on the timing of the feeding
switches. By preserving the shape of the variation in feeding rate, but displacing its
actual position throughout the day, | can show that we have found an optimum.
Figure 7.8 illustrates the variation in the weighted mean absolute error with the timing

of thefirst feeding switch compared to the assumed optimum timing.

The position of the minimum at zero hours, for al fish cohorts indicates that our
method of hand fitting the model to the data has found an optimum. The minima
observed for the gadoids are al very broad indicating a little uncertainty in the timing

of the feeding switches. However in al cases this will be less than two hours. The

198



more complicated feeding regimes of the flatfish, which have more than one high
intensity feeding period, show another minimum in this sendtivity analyss,
approximately twelve hours displaced from our model fit. For both species though the
global minimum is at zero hours displacement and therefore we can safely conclude

that our method has found the optimum timing.
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Figure 7.8. Variation in weighted mean absolute errorswith time at which the feeding rate first
switches compared to the optimum time for a) dabs, b) plaice, c) whiting, d) small haddock and

€) large haddock.

Although our method of finding the optimum feeding behaviour was not particularly
sophisticated, the combination of these smple senditivity tests has proved that the
parameters sets found do indeed describe an optimum feeding behaviour for the fish

cohorts in question.
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7.5 Discussion

Once we have established that our fitting procedure has produced an optimum fit to
the stomach contents data, we must discuss how accurately this inferred feeding
behaviour describes that of the population from which it was drawn. The results from
chapter four indicated that samples taken from a population needed to contain
approximately 100 individuas and should be categorised into no less than about five
stomach weight categories in order to infer a reliable description of the stationary
feeding behaviour of the complete population. Chapter five, though, which introduced
time dependence into the parameter fitting problem, implied that even with samples of
size 100, large errors in the estimates of population parameters could arise unless
samples were taken very frequently. The rea samples to which our model has been
fitted in this section, although relatively small (maximum size of fifty individuals), are
taken at hourly intervals and so quite a detailed description of the diel cycle is
observed. | shal therefore assume that the feeding behaviour inferred from these

samples adequately describes that of the populations from which they were drawn.

As well as possible difficulties due to the size of the samples, another worry must be
that our samples are not being taken from a closed population. It is possible that the
population undergoes regular immigration or emigration of individuas from other
populations with different stomach contents distributions. For example, fish may come
inshore to feed and then move offshore when full. Such a scenario would severely bias
our conclusions about the feeding behaviour of the population as we are sampling only
from an inshore area. In the construction of our model, we have also assumed that
identical med sources are available to the whole population which could be false if
samples are taken over awide area. In this case however, samples are taken over quite
a small region and it seems unlikely that prey availability is likely to vary much over

this area.
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Further checks that the model has been formulated in a sensible way and can be used to
give a satisfactory description of the variation in the stomach contents of a
simultaneoudly feeding and digesting population of fish can be made by comparing the

results of this section to those of other stomach contents studies.

| shall first consider the inferred feeding behaviour of the two flatfish species. Many
studies have been carried out on the feeding patterns of flatfish, some of which support
our results, while others do not. Gwyther and Grove (1981) carried out experiments in
which dabs were fed using a demand system and concluded that the fish usualy fed
during the daytime, which is supported by De Groot (1971). More specific
conclusions about the feeding behaviour of the dab were drawn by Knust (1986) who
analysed fish stomach contents samples. He clamed that feeding occurred largely
during the morning, though a lower second peak in the feeding rate was observed for

samples taken in certain places, giving further support to our results.

The conclusion that plaice are mainly daytime feeders is supported by the studies of De
Groot (1964) and Edwards and Steele (1968) who observed that the average gut
contents generaly rise during the day and fal during the night indicating an increased
feeding rate during the day. Although Basmi and Grove (1985) found some evidence
of feeding during the night (which does not in fact contradict our results as we do infer
low overnight feeding), their sampled average gut contents are in general higher during
daylight hours, which seems to imply that more feeding occurs during the day. The
studies of Bregnballe (1961) give support to our variations in the feeding rate
throughout the day, by suggesting peaks of feeding intensity at dawn and dusk.

The predictions made by the model that flatfish feed mainly during the day with peaks
of feeding during the morning and evening are well supported by a large amount of the
previous literature on the feeding patterns of flatfish. Some evidence, however, was

found in laboratory experiments conducted by Hall (1987), that dabs feed mainly
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during the hours of darkness. These experiments, though, also indicated a great
variation in the feeding behaviour of the dab with some of the individuals consuming
most of their food during the daytime. So, | shal conclude, that since there is not a
large amount of substantial evidence to contradict the results of our model, the flatfish
are primarily daytime feeders relying on sight to catch their prey, with only low
sporadic feeding during darkness.

The complicated composition of the meal size distribution of the dab predicted by our
model is supported again to a certain extent by Knust (1986) who found that different
organisms were consumed at different times of the day, with a larger prey source in
the late evening. This agrees with our prediction of the appearance of the medium
sized meal source between the hours of 17.00 and 20.00. Evidence for a smilar
variation in the prey composition of the diet of the plaice was found by Ansdl and
Gibson (1990) who claim that the diet changes with the tidal cycle. This contradicts
our conclusion that plaice feed on a single meal source which is available at al times of

the day.

Fewer studies have been carried out on the feeding behaviour of gadoids and therefore
there is relatively little literature with which to compare our results. Our feeding
pattern for whiting is supported by Gordon (1977) who concluded that whiting preying
on other fish fed mainly during the early part of the morning. His stomach contents
samples a so agreed with our own, showing a peak in the proportion of empty stomach
contents during the middle of the night. Experimental observations made by Hal
(1987) suggested that there may be a high peak in feeding intensity during the very
early morning, but that the same results could be observed from lower overnight

feeding which is concordant with the predictions of our model.

Overdl, the model performs quite well in the prediction of the observed stomach

contents data. Most of the feeding behaviour which is forecast shows good agreement
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with studies conducted by other scientists and therefore provided we are able to make
an independent calculation of the al important digestion rate, | can conclude that this
model can be used to make some useful inferences about the feeding behaviour of a

population of fish from frequently taken stomach contents samples.

203



Chapter 8
Daily consumption rate

calculations
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8.0 Introduction

The valueof the resultsof chaptersevenonly becomefully recognisedvhenthey are
coupled with total food consumptionrate calculations,which are useful to many
ecological studies. Growth and reproductionin individuals is influenced by their
energyintakewhich in turn is dependenbn the type and amountof food consumed.
Suchenergycalculationsarenecessaryor studiesof eneryflows in marinefood webs.
A knowledgeof total populationfood uptakeratesis requiredwhen consideringthe
dynamicsof complex animal communities,in order to determinethe effect of a

particular species on its prey and also on other competing populations.

Food consumptionratesare intrinsically linked to digestionratesand thereforeare
dependenbn a large numberof externalfactors. Here, however,|l shall not go into
the entailingcomplexarguementsndthe discussiorwill concentrateon the methods

of calculation of food consumption.

The most obvious way of finding out how much fish eat is by watching. Field
observationshowever,areimpossible so all studiesare carriedout in the laboratory.
Elliott(1975) attemptedto reproducethe natural environmentof the trout in the
laboratoryand calculatedthe daily consumptiorrate by countingthe numberof prey
itemsof a particularsize which are consumedwithin a twenty four hour period. An
alternativemethodwhich is usedby Jones(1978), Majkowski and Waiwood (1981)
and Majkowski and Hearn (1984) is the energyrequirementtechnique. By making
estimatesof the growth rate in the wild and the amount of energy required for
reproduction the amountof energyand thereforethe daily food ration requiredfor
survival can be calculated. The final techniqueis the analysisof stomachcontents
samples (Eggers1977, Elliott and Persson 1978, Pennington 1985)th@©dicgestion

rate is known, calculationsof the daily ration are usually made by comparing
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successivstomachcontentssamplesmakingan hourly calculationandthensumming

this over the whole day.

All threeof thesemethodshavetheir particularadvantagesand disadvantagesFrom
laboratoryexperimentgjuite accuratemeasurementand observationsan be made.
However, laboratory conditions can never fully reproducethose of the natural
environmentwherethe fish can move freely and havea wide rangeof prey itemsto
choosefrom. Estimationsmadeusing energymethods,althoughusefulin food web
studies,havea prerequisiteof many energyrequirementalculationswhich could all
leadto errorsin thefinal calculation. Oneof the advantage®f the stomachcontents
analysistechniqueis that the samplesmay be taken of fish feedingin their natural
habitat,thoughan independenmethodof calculatingthe digestionrate parameteiis

still required.

In this casewe havemanagedo infer the daily feedingpatternof the populationsin

guestionby fitting a feedinganddigestionmodelto the stomachcontentsdata. So, a
more elegantway of calculatingthe daily consumptionrate would be to utilise the
feedingrate definitionsmadein the constructionof the modeland comparethe results

with those of some of the more established daily ration calculation methods.

8.1 A daily ration calculation

Before makingany calculationsof daily food ration from the resultsof chapterseven,
somefurther definitionsarerequired. The feedingfunction R(t)M(m)dm was defined
astheratein mealsper hour at which anindividual ingestsmealsbetweersizesm and
m-+dm providedthe mealdoesnot overfill its gut. From this definition we canexpress

the consumption rate of an individual in grams per hour as
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WE-W

W(w,t) = R(t) [mM(m)dm (8.1)

and the instantaneous population average food uptake rate at time t as

C(t) = Wff(w, W (w, t)dw. (8.2)

The parameterglefining the feeding function which were inferred from the stomach
contentsin chaptersevencannow be usedin the calculationof C(t). The variationin
the populationfood uptakeratefor eachof the five fish cohortsis illustratedin figure

8.1.
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Figure 8.1. Variation in the food consumption rates of a) dabs, b) plaice, ¢) whiting, d) small

haddock and e) large haddock inferred from the stomach contents data.
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The total daily rationscanthenbe calculatedby integratingover the period of twenty

four hours and are shown in table 8.1.

DailyUptake
Species grams % body wt
Dab 1.2 1.7
Plaice 5.9 4.5
Whiting 1.7 1.7
Small haddock 6.2 4.1
Large haddock 12.2 3.7

Table 8.1. Daily uptake rates calculated using the optimum parameter sets.

8.2 A review of other daily ration estimation methods

Further checkson the validity of this feeding and digestionmodel can be made by
comparingthe resultsof the daily uptakecalculationgo the findings of otherstomach

contents based studies.

The first important suggestionsabout the calculationof daily ration from stomach
contentsmeasurementsere made by Bajkov (1935), who proposedthat the total

amount of food eaten over a twenty four hour pefggd could be expressed as

C, = K(%) (8.3)

where A is the averagestomachcontentsandn is the numberof hoursrequiredfor
complete gut evacuation. Recentcalculationshave beenmore sophisticatedand
generally based on the individual feeding and digestion model

W~ Rety - ke~ (8.4)

208



Eggers(1977)assumedn exponentialgut evacuatiorrate (c=1) andthat the feeding
rate R(t) is a constant or linearly increasing amastainperiodsof theday. Fromsuch
a model he calculatedthe diel trajectoriesand daily ration of fish feeding under
particularfeedingregimes,but the work was purely theoreticaland no comparisons

with real daily variations in stomach contents data were made.

Consumptiorrate studieswhich incorporatecomparisongvith stomachcontentsdata
tendeitherto be basedon the solution of the aboveequationwhen possibleor on the
concept thathe amountof food consumeavera periodof time by anindividual must
be equalto the changein its stomachcontentslusthe amountof food which hasbeen
evacuated (equation 2.1). Elliott and Persson (1978) assunexg@mentiadigestion
rate and a constantfeedingrate over a short period of time. Solving equation8.4

under such conditions gives

W =We™ +E(1—e"<‘) (8.5)

where W, is the initial amountof food in the stomach. This formula can then be

rearrange to give an expression for the hourly food consumption rate

R= (W ;Neem K (8.6)

from which the actual food consumptionover a particular time period can be
calculated. Elliott and Persson(1978) found a reasonablemountof accuracywhen
comparingthis methodto actualindividual measure®f food consumption. However,
this methodis only applicableto casesof exponentialdigestionwhich we rejectedin

chapter two.

Sinceit is impossiblejn generalto monitor the stomachcontentsof individual fish at
intervals over the period of a day, sequential stomach contents samples will

incorporatemany fish with a range of stomachcontents. Therefore,it is usualto
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calculatethe populationaverageuptakerate over a particulartime period, U, , using

the expression
U =W, -W+D (8.7)

where W andW,,, are the averagestomach contentsof the population at the

beginningand endbf the periodand D is the averageamountof food evacuateaver

the period.

As | describedn chaptertwo, thoughthereis much disagreemenaboutthe type of
curvewhich gastricevacuatiorfollows. The evacuatiorrate, D(t), of anindividual is

usually described by
D(t) = KW(t)°, (8.8)

which implies that the stomach contents of a non-feeding individual obey

e _ JWG=K(1-o)t czl W(t)>0
W(t)" = { 0 WD) =0 (8.9)
and
W(t) =W,e™ c=1 (8.10)

However, as | showed in chapter two, the shafibe populationdigestioncurvescan
vary enormouslydueto the variationsin the stomachcontentsacrossthe population.
The most important questionwhich thereforemust be answeredbefore population
averageconsumptionrates can be calculatedis how to determinethe population
averagaligestionrate over the periodin question. Somestudiesclaim that a form of
equation8.9 describesthe depletionof averagestomachcontentsof a population,

sometimeghe sameas that assumedor the individual stomachcontentsdepletion,
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while others calculate individual digestion rates and then averagethem over the
population. Clearly thesemethodswill havea significantaffect on the calculationsof

the average consumption rate.

Two methodsdescribedoy Basimiand Grove (1985) just treatthe averagedigestion
ratelike the individual digestionrate by applyingequation8.8 to the averagestomach
contentsof the population. Their first methodassumeshat noneof the prey ingested
during the time interval in questioncanbe digestedandthereforethe digestionrate is

based on the stomach contents at the start of the interval, giving the expression

U =W, —[W01‘° ~K(L —c)t]l_c (8.11)

for the food intake of the populationduring the time periodzeroto t. Their second
methodsupposedhat all the food ingestedis taken halfway throughthe period and
then digestion of this newly ingested food can also occur, implying
1 1
U_t — [th—c + K(l_C)t:|1—C _|:W01—c _ K(l_C)t:|1—C (812)
2 2

Pennington(1985)illustratesa methodof individual food consumptionsimilar to that
of Elliott andPerssonput more generalin thatit canbe usedwith digestionmodels

other than the exponentialrelationship. Startingfrom equation8.4 he producedan

expressiorfor the averageamountof food consumedoer hour over a particulartime

interval, U,. By definition,

_1p
Ur == ! R(t)dt, (8.13)

which on substitution from equation 8.4 becomes
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U, =

=[x

;[W(t)cdt +%idW(t)
(8.14)
= Kavg W(t)°]+[W(T) -W(0)]/T

where avg signifies the averagevalue over the time interval. This measurecan be
convertedto averagepopulationuptakeby substitutingpopulationaveragestomach
contentsfor individual stomachcontents. Penningtonalso suggeststhat a more
accurateestimateof D canbe madeby calculatingthe digestionrate of eachof the N

individuals at the start of the feeding period and then averagingtheseacrossthe

population. His expression for average consumption per fish perlpuis then

U_=KNang(t)°/N+ NW(T)/N—NW(O)/N /T
T Z [ i ] {Z i Z i }

(8.15)
= Kavg W, ()] +[W(T) -W(0)]/ T
whereW. (t) is the stomach contents of fish i at time t and
N
W._(t) = zvvi(t)C/ N. (8.16)
1=1

All of the methodglescribechere,whenusedwith actualstomachcontentsdata,make
useof regularsamplegakenat relatively shorttime intervals. An alternativeapproach
however s carriedout by Sainsbury(1986),who usesa similar ideato the work done
in this thesis. He suggestditting a modelincorporatingparametersvhich describethe
feedingrateandlengthandtime of feedingperiodto datafor the full twenty four hour
cycle. A non-linearleastsquaredit to the datawould then provide estimatesof the
feeding parametersncluding the hourly food uptakerate. Resultsfound using this
model appearedo agreequite well with thoseof Elliott and Perssonexceptwhen
some feeding occurs throughout the dalyich violatesthe assumptiormadeherethat

thereis a distinctfeedingperiod. Theassumptiormadeby Sainsburythat digestionis
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an exponentialprocess,implies that an analytic expressionfor the variation of the
stomach contents during one feeding cycle can be found with relativeedtd®tthe
model can be usedwith individual and averagepopulationstomachcontents. So,
althoughSainsburyhasmadeconsumptiorrate estimatesisingthe samebasicmethod
asthis thesis,his particularmodelappeargo be too specialisecand not applicableto

all types of feeding behaviour.

Of all the methods described here, the second of Penningtons methods wouldappear
be the most convincing for dealingwith populationsof fish. However, in the next
section,| shall useseveralof the abovemethodsto calculatethe averagepopulation

daily uptake from the stomach contents data which was analysed in chaptereven.

results can then be compared to those of the previous section.

8.3 Uptake estimation using alter native methods

In this sectionl shallcomparethe daily consumptiorratescalculatedusingthe Basimi
and Grove methodswith thosefrom Penningtonsmethod and that derived in this
thesis. Before calculationscan begin, we requirevaluesfor the parameterg andK,

for each fish cohort. In chapter seven it was showntiiegiopulationdigestioncurve
producedfrom the linear digestionmodel (Bromley 1988) with a particular linear
digestionrate was almostidenticalto the evacuationcurve producedby equation8.8
with certainpredefinedspeciesdependentaluesof ¢ andK. The appropriatevalues

are given in table 8.2.

As | explainedin chaptersevenno suchevacuatiorcurvefor whiting could be found
andthereforea linear digestionmodelwas assumediue to work by Bromley (1988)

and Robb (1990).
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Species c K Origin
Dab 0.25 0.096 Fletcher et al. 1984
Plaice 0.51 0.221 |Basimi & Grove 1985
Whiting 0 0.15 Robb 1990
Small haddock 0.46 0.119 Jones 1974
Large haddock 0.46 0.191 Jones 1974

Table 8.2. The evacuation curve parametersfor each cohort of fish.

Since our data consists of hourly measurements of the proport@acigiopulationin
a particulargut weight category,l decidedto evaluatehourly consumptiorratesand
thensumtheseover the 24 hoursin orderto obtainthe daily uptakerate. So, for all

four methodswe require the averagestomachcontentsof the populationat each

samplepoint and the value of W,(t). Sincethesevalueshaveto be calculatedfrom

our available data, which consistsof varying proportionsof fish in a number of
stomachcontentscategories| shallassumehat the averagestomachcontentsof the

population at time t can be calculated by

=> pm (8.17)

where p, is the proportionof the populationin categoryi, m, is the mid point of

category i and M is the number of categories.

Similarly I shall suppose tha&¥_(t) (used in 8.15 and 8.16) can be determined by

M

W)=Y pny. (8.18)

1=1
The total daily uptake rates calculated by these three methods are given in table 8.3.

All threemethodsof calculationgive somevery peculiarnegativevaluesof the hourly

uptakerate. Theseocccurwhenthe averagestomachcontentsat consecutivesample
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timesfall by an amountwhich is largerthanthe hourly digestionrate and were also
apparenin calculationsmadeby Sainsbury(1986),who ignoresthemand appeardo

set them to zero.

Species Thesis  |Basimi & Grovg Pennington | Pennington
Dab 1.2 1.6 (3.7) 1.9 (3.8) 0.8 (3.2)
Plaice 5.9 1.4 (1.8) 2.0 (2.4) 1.9 (2.3)

Whiting 1.7 3.6 (14.5)| 3.6 (14.5)| 3.6 (14.5)
Small haddoc 6.2 3.3(6.9) 4.5 (7.7) 3.6 (7.1)
Large haddoc 12.2 3.3(11.4) 5.8 (12.0)] 2.0(9.7)

Table 8.3. Daily uptake rate (grams) estimated from the hourly gut contents data by three
established methods compared to the method derived in this thesis. The brackets denote

estimates in which negative hourly uptake values wer e set to zero.

Two setsof calculationsare madeof the total daily uptake,the first including the
actualnegativevaluesandthe secondwith the negativessetat zero. A comparison
betweerthe two values(the seconds givenin parenthesien table 8.3) showswhata
significanteffectthe inclusionof these'negativeconsumptiorrates’hason the results.
The estimatesnadeusingthe secondof the Basimiand Grove methodsare not shown
as they are almostidentical to those of Penningtondirst method. By considering
equation8.12,we canseethatit reducego Penningtongirst method(8.14),for small

sampling intervals.

Sincethe fish showedno evidenceof regurgitationduring sampling,thesenegative
values must be due to either weaknesses in the mathodkulationor the noisieness
of the data.The mainstumblingblockin all the calculationsvashow to determinghe

population averagedigestion rate over a particular time interval. The methods

employedby Basimi and Grove and Penningtondirst methodboth simply substitute
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population averagestomachcontentsvaluesinto digestion equationswhich were
formulatedto describethe gut evacuationrate of an individual fish. Chaptertwo
showedthatthe depletionof the populationaveragestomachcontentss unlikely to be
identical to that of an individual who initially had stomachcontentsequal to the
populationaveragedue to the censoringof the digestioncurve as someindividuals
become empty. These methods are therefore likely to give errors due to
miscalculationsof the averagedigestionrate. However, the many negativehourly
consumptiorrate valuescannotbe attributedto theseinaccuratecalculationsasthese
appearin all threemethodsof food intake calculation,including Penningtonsecond

method which adopts a more legitimate method of average digestion rate calculation.

Anotherpossibility asto the sourceof thesenegativevaluesis the formulation of the
digestionmodels. However,this seemsunlikely as the valuesappearfor all species

So, it seem then that the problems must be attributed to the noisy data.

Our methodcalculatedthe daily uptakerateby fitting a feedingmodelto the dataover
the total twenty four hour periodandfound a small setof parametersvhich could be
usedto definethe completefeedingbehaviouroverthe day. The otherthreemethods
rely on calculationsusing successivéourly stomachcontentssampleswhich are very
noisy dueto totally randomsampleseingtakenfrom the completepopulation. Our
methodis therefore much less sensitiveto the noise in the data and no negative

consumption rates are apparent.

8.4 Discussion

A comparisonof our calculateddaily uptakevaluesto thosecalculatedby the other
methodsshow some quite large differencesfor some of the species. The values

calculateherefor dab andhaddockgive reasonablegreemento thosecalculatedby
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the other methods,lying approximatelybetweenthe highestand lowest alternatives.
However, the value calculatedhere for plaice is significantly higher than all other

estimates, while this daily food uptake of whiting is noticeably lower.

Possiblereasonsfor theseinfelicities can be seenby consideringthe shapeof the
populationdigestioncurvesassumedn all methodsof calculation(reconsiderfigure
7.1). The populationdigestioncurve assumedor plaice is much more curvedthan
thatof eitherthe dabor haddockwhile | haveassumed linear populationevacuation
curve for the evacuationof whiting. In the formulation of the feedingand digestion
model explainedin this thesis,| have assumedhat the individuals in a population
follow a linear digestionmodel, which is supportedby Bromley (1988) and Robb
(1990). The appearancef a curvedpopulationevacuatiorrelationshipis dueto the
increasing proportion of empty fish which camdergono furtherreductionin stomach
contents. The analysis used in the other methods assumes that the population digestion
curve and individual digestion curve are the same. So, to match our population
digestionmodelto thoseof plaice and whiting (the most extreme)will respectively
require particularly high and low individual digestionrates. Our calculateddaily
consumption rates are consequently much higher for the plaice and mucfolothier
whiting. The use of the linear individual digestionmodel usedin this calculation,

though is strongly supported by the work of Bromley (1988) and Robb (1990).

In the hope of validating either view of the individual digestion process,further
analysisof the resultsof the feedinganddigestionmodeldaily uptakecalculationscan

be made by considering the growth rates inferred from the determined food
consumptiorratesand makinga comparisorof thesewith the resultsof otherstudies.

Jones (1978) derived an expression, from a series of laboratory experiments carried out
by Jonesand Hislop (1972) relating food consumptionand growth in non-spawning

haddock and whiting. He found that
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F = 0.008M1°2 exp(0.081T) + 1 27GM°*® (8.19)

whereF is the rate of food consumptionn kilocaloriesper day, M is the body weight
in grams,G is thegrowthratein gramsperdayandT is thetemperaturen °C. From
this equationwe canthereforecalculatethe appropriatevalue of the growth rate for
threeof the fish cohortsin question,providedthat we can convertour measureof
daily uptake in grams to energy uptake in kilocalories per day. Jones §i8&3)hat
the mean calorific value of the food of haddockis 0.6kcal/g of wet weight food
ingested, while it appears from Bromley (1988) that the food of whiting proalutast
2.4kJ of energy per gram of wet food which is equal to approximately 0.57

kilocalories.

The resultsof uptakerate calculationsmadefrom the model describedin this thesis
give a daily rate of approximately4% of the body weightwhich leadsto a growthrate
of about0.6% body weight per day. The samecalculationsmadeusing the results
from the otherfood consumptionrate estimatesappearto be ratherlower, -0.12 to
0.12% body weight for large haddockand 0.16 to 0.34% for small haddock.The
calculationwasthenrepeatedor whiting and showedthat the growth rateimplied by

the work of this thesis is almost zero, while the other estimates gives 0.44%.

All the growth estimatedgor haddockappeatrto lie within the rangeof valuesgiven by
Joneq1978). Thevaluecalculatedusingthe continuousdigestionmodelsseemgo be
towardsthe higherend of observedateswhile the valuesdeterminedrom the other
methods are much lower. Both estimates of the growth rathitihg alsoseemquite
sensible Henceit is not possibleto usethis methodof comparisonto validateeither

opinions of the digestion process.

As thereis strongsupportfor the view thatthe digestionof anindividual is linear and

the differencesn the resultsof calculationsmadefrom our modelandthoseof others

218



canbe explainedby the alternativeopinionsof digestion,andnot a seriouserrorin the
formulationof the model,| shallconcludethatthe modelgivesa fairly reliablemethod
of calculation of the daily food consumption rate of the specigaestion. Shouldwe
however,believe that individual digestiondoesnot follow a linear model, then the
calculationsmadein this thesis can easily be repeatedby substitutingthe required
individual digestionmodelinto the original formulation of the modelandrecalculating
the feedingparameters.Aswell asincorporatingversatility, this modelis alsoa great
improvementto previouslyacceptedconsumptionrate calculationtechniquesasit is

affectedmuchlessby the noisienes®f the consecutivestomachcontentssamplesand
calculatedood intake by consideringhe variationin stomachcontentsoverthe whole

day.
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Chapter 9

Conclusions
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9.1 Summary

The am of this thesis was to gain an understanding of the mechanisms behind the
observed dynamics of fish stomach contents samples. The strategy was to construct a
model which incorporated a description of between fish stomach contents variability at a
particular time and some smple assumptions about the feeding and digestion processes.
The resulting model adequately predicts the main dynamic features observed in the data

which was introduced in chapter six.

Using simple step functions at switches between feeding rates and continuous prey size
distributions | have established the feeding patterns of four main fish species (dab, plaice,
whiting and haddock) found in Loch Gairloch on the west coast of Scotland. The
conclusions that the two flatfish species feed largely during the day with peaks of feeding
at dawn and dusk agree with the results of many other studies of the feeding patterns of
flatfish. In contrast | conclude that the whiting feed heavily during the early morning
while haddock consume most of their food during the night. Reassuringly there is little
difference between the feeding behaviour inferred for the two size groups of haddock
although there are few other studies with which these results can be compared. In chapter
eight | concluded that the total daily ration calculations made from these results were aso
quite convincing and any infelicities which occurred were due to the choice of digestion
model rather than any serious faults in the model. This method of calculation also

appeared to be less sensitive to noisy sampled data than others.

As the most feasible way of learning anything about the feeding behaviour of fish is by
studying stomach contents samples, chapters four and five concentrate on the question of
thereliability of resultsinferred from relatively small samples. The most interesting results

come from chapter five which considers the time dependent feeding rate case. | conclude
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here that if the number of stomachs sampled at each time interval is to be smal (less than
100), then the samples must be taken very frequently (hourly) in order that the feeding
behaviour inferred from such samples adequately predicts that of the population.
However, if larger samples of fish are taken (greater than 500 individuas), then it is
feasble to sample as infrequently as every six hours provided that the stomachs are
categorised into at least fifteen stomach weight categories. These results show that we
can quite accurately infer the feeding behaviour of a population of fish from samples
collected at intervals throughout the day provided that the above sampling requirements

are met.

9.2 Discussion

The first section of this study deals with the construction and dynamics of the feeding and
digestion model. Chapter three clearly illustrates the mechanisms for changes in the
structure of the stomach contents distribution of a population of fish which would not be

evident if only the mean stomach contents of a population was considered.

The construction of the model, however, does involve a number of assumptions which
may be questionable when the output of the model is compared with any real data.
Chapter two initiadly constructs a model to describe the variation of the stomach contents
distribution of non-feeding population of fish. | have assumed that the digestion behaviour
of al individuals is the same which implies that the population is one of identical
individuals. The length analysis of the fish in the sample with which this modd is
compared later in the thesis shows only a very small variation in fish size and therefore it

appearsthat in this case this supposition should not give misleading results.
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At this stage in the developement of the model | was also required to assume that we are
dealing with a closed population of fish which is not subject to any significant immigration
or emigration from another population with a different stomach contents distribution. The
data which are considered in the latter part of the thesis were sampled from inshore waters
off the west coast of Scotland. It is possible that there is movement of fish into and out of
this area of study which may be connected to their feeding habits. For example, fish may
move inshore to feed and then when satiated may return to offshore waters. In such a
case, our samples would be of fish from different populations which have moved inshore
to feed and therefore cannot be compared to the output from the model which describes
the daily fluctuations in the stomach contents of a closed population of fish. Although
analysis of the lengths of fish in the samples indicates no significant change in the size of
the fish during the day, it does not prove that fish are not moving between two or more

Sites.

Obvioudy even if the population is a single well-mixed entity not subject to outside
interference it is possible that dl individuals may not be subject to the same prey
distribution. If this was the case our model would again be inaccurate as it makes the
assumption that dl individuals are exposed to an identical prey distribution and so have

equal likelihood of consuming a particular prey.

However, despite these possible flaws in the construction of the model, the conclusions
drawn about the feeding habits of the fish species sampled from Loch Gairloch largely
agree with those of other authors which suggests that we are justified in making these

simplifying assumptions or at least that they are not too significant to the results obtained.

The whole of this thesis was initiated by the Loch Gairloch data provided by the Marine
Laboratory, Aberdeen and described in chapter six. Consequently the attempts at inferring
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the feeding patterns and processes made in chapter seven were carried out before the work
described in chapters four and five. Therefore the fitting of the model to the stomach
contents data was carried out using eye-balling methods combined with a measure of
goodness of fit rather than the semi-automatic method of finding the optimum fit described
in the middle section of this thesis. Such manua methods require further numerical

experiments to verify that the method has at |least found aloca minimum.

The numerical experiments of chapters four and five also give requirements as to the sze
and frequency of sampling in order that the feeding behaviour inferred from such samples
adequately predicts that of the population from which it was sampled. Ideally we would
have liked the sampled data considered in chapters six to eight to consist of samples of at
least 100 individuals sampled relatively frequently (every hour or two). However, since
the sampling was carried out several years before the work of this thesis | could make no
demands on the specifications of the samples. The sampling consisted of retaining a
maximum of fifty individuals of each species for stomach contents analysis, which is
dightly smaller than ideal. However, samples were taken hourly and therefore the
accuracy of the results of chapters seven and eight can be relied on with a fair degree of

certainty.

9.3 Further work

It appears that there are severa obvious directions in which the work begun in this thesis
could proceed. There appears to be no reason why this model should not be applicable to
freshwater fish as well as marine animals and therefore if appropriate data sets are
available the model could be used to infer the feeding behaviour of a wide range of other

fish species. However, stomach contents data alone are not sufficient as we require an
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independent method of caculation of the digestion rate of the individuas of the
population. Obvioudly if the independent digestion data suggested an alternative digestion
model (for example exponentia in the case of Elliotts trout data), then the appropriate
aterations can be made to the complete feeding and digestion model. One further
requirement would also be a repeat of the length analysis of chapter six to verify that the
population under consideration consists of identical fish which therefore have the same

digestion rate.

Following the work of chapter five it seems reasonable to assume that the modelling of
any further stomach contents samples should be conducted using the discrete map
approach which gives a much quicker solution than the differential equation method. The
condition 5.1 was chosen only for convenience, but other maps could be constructed in
which fish can digest across two boxes in the space of one time interval. This would lead

to further discrete map options, possibly with increased speed and accuracy.

At present the assumptions made by the model about the feeding process are very
straightforward and perhaps questionable. For example, is it reasonable to assume that
fish will eat provided that the prey will fit into their stomach? So, following this
reasoning, an extremely full fish will go on consuming very tiny prey. Obvioudy at the
same time its stomach contents will be decreasing due to digestion and therefore it will
soon be able to consume larger prey again. However, a more realistic assumption may be
that as an individuas stomach contents get higher the feeding rate decreases. The feeding
rate of a population may aso decrease due to a decrease in the availability of prey due to
predation. Further refinements could therefore be made to the model by including a

reduction in the feeding rate during an intense feeding period.
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The most obvious direction which any continuation of this work would take would be on
the optimisation methods and the quesion of automatic fitting. | did not attempt to use the
semi-automatic fitting method on the Gairloch data in chapter seven, partly because this
work was done previous to that of chapters four and five and also because the datais very
noisy and the fitting method failed when started far from the optimum. Using the discrete
method of solution of the partial differential equation established in chapter five, it may be
possible to completely automate the fitting procedure. The solutions are obtained much
faster using this method and therefore it may not be unreasonable to consider including a
relatively fine search over a particular parameter space in order to locate an initial
minimum. The position of this minimum could then be used to provide the initial
parameter vector required to start the previousy used optimisation procedure. Given a
fairly fine search grid and an error surface which does not include any extremely narrow,
steep minima which may be missed by an initia search, it seems possible that such an

extension could provide a fully automated optimisation technique.
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Appendix A. Numerical solution of the feeding and digestion equation

The partial differential equationmodel of feeding and digestionis discretisedin the
weight dimensionand then the derivativesare approximatedusing central differences
everywhereexceptat the edgeswhereon sideddifferencesare used. The resultis the
systemof ordinary differential equationsshown below which is then solved using the

fourth order Runge-Kutta method.

dP K(3fl—f2)

at ~ROR, (A.1)
df, _ (f,-f)

gt Ky YO0 +ROMAW)P, (A2)
% =K (f;A—Jvl) - U(Aw, t)f, + R(t)M(2Aw)P, + F 2Aw,t) (A.3)

di_l _ (fN _fN—Z) _ _ _
it =K AW U([N ZI.]AW,'[)fN_l +R(t)|\/|([N ZI]AW)Pe (A.4)

+F([N -1 Aw, 1)
df, _ . (fy+f)

s K +R()M(NAW)P, + R NAw, t) (A.5)

If the weight dimensionis discretisednto N intervalseachof width Aw, the variables
f, to f, representthe proportion of the populationin eachof theseN intervals and

W : : o
Aw = WF wherew_ is the maximum stomach contents of an individual.
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Appendix B. Optimisation Routines

A numberof optimisationroutinesare usedextensivelythroughoutthis thesis,so herel
shall include a more formal explanationof the mechanismby which each method

proceeds.

1. The ssimplex method

SupposeP,,P,,..,P, arethen+1 verticesof the initial simplexandthatQ is the function

we areattemptingto minimise. | shallfurtherdefine Q, asthe valueof the functionQ at

P. and let
Q(R,) = Qy =maxQ) (B.1.1)

and QPP )=Q, = miin(Q,). (B.1.2)

At eachstageof the procedurdhe parameterectorwhich givesthe highestvalueof the

function Q, P,, is replacedby a new point which is defined using three operations-

reflection, contractionand expansioraboutthe centroidof the simplexwhich is defined

asP..
The first step is to refled?, about the centroid using
P, =(1+a)P. —aP, (B.1.3)
wherea is a positive constant, the reflection coefficient.
If Q(P;) < Q, then expand the parameter vedrusing

PE :yPR +(1_V)Pc (B-1-4)
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wherey is the expansioncoefficient, greaterthan unity. If Q(P:)<Q, then P, is
replacedby P. andthe processs restartedwhile if Q(P;) > Q, thenthe expansiorstep

has failed andP, is replaced byP, before restarting.

If Q(Py) liesbetweenQ, andQ,, thenP, is replacedby P, andtheroutineis restarted
with a new simplex,unlessQ(P;) is a new maximum,in which casewe definethe new
P, to beeitherthe old P, or P, whicheverhasthe lowestQ value,and then makea

contraction using
Ps =BR, +(1-B)F, (B.1.5)

where is the contractioncoefficient,lying betweer0 and1. Py isthenacceptedisthe

new parametersvector and the routine is restartedwith the new simplex, unless

Q(Ps) > min(Q,, Q(Pg)), in which case all th®'s are replace b{P, + P, )/2.

This processis repeateduntil the required convergencecriteria have beemmet. The
constantst, 3 andy give the factor by which the volume of thienplexis changedy the

operations of reflection, contraction and expansion respectively.
2.DUD

Supposehat P, P® .. PY arethe n+1 parameterectorsusedin the kth iteration of

the DUD optimisation routine. The parametervectors are re-ordered so that
Q(R,) =2 Q(P,) =---= (P,), whereQ is the error function betweerthe datapointsy and
thefitting functionf, which we areattemptingto minimise. (The superscripthavebeen

dropped forconvenience).Theroutineapproximate$(P) by a linearfunction|(P) which

is equalto f(P) at thesen+1 points. The worst previousparameterp,, is thenreplaced

with the parametewector P, (or a point on the line betweenP,, and P,) which
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minimises the distance betwed¢R) andy, to givethe newsetof parameterectorsto be

used in the next iteration.
The linear approximation is written as a function of the vaxtahere

P=P +APa (B.2.1)
where the ith column of the maty® is given by

AP =P -P,  i=01.n-1 (B.2.2)
The linear approximation of the fitting function is given by

[(P)=f(P,) + AFa (B.2.3)
where the ith column diF is given by

AF =f(P)-f(P)) i =0,2,..n-1 (B.2.4)

If the error measurewhich is beingusedis the sumof squarecerrors,thenoneiteration

of this procedure consists of minimising
Q@) =(y-l@))"(y-la)). (B.2.5)

Substituting equation (A.2.3) into (A.2.5) and differentiating and rearrangingthis

expression gives

a =(AFTAF) AR (y-f(P,)) (B.2.6)
which canbe usedin equation(A.2.1) to calculatea newvalueof P, P, , andthe next

iteration begins.
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