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Abstract

By constructing a mathematical model, this thesis aims to infer the feeding behaviour of a

population of fish from variations in stomach contents samples taken at intervals

throughout the day.

I take a population approach to the problem and consider the dynamics of the distribution

of stomach contents of a population.  Assuming that the population is closed and consists

of identical individuals, chapters two and three illustrate the temporal variation in the

stomach contents distribution under particular digestion and feeding behaviour.

The middle section of the thesis explores the possibility of developing a method of

automatic solution of the inverse problem of finding the parameters defining the feeding

behaviour in the model from a given stomach contents distribution.  By comparing the

feeding behaviour inferred from noisy, categorised data with the known feeding

behaviour from which the data was simulated, I can make conclusions about sample size

and sampling frequency requirements in order that the feeding behaviour inferred from

such samples adequately predicts the feeding behaviour of the population from which the

samples were drawn.

In the final section of this thesis, I consider some data recently collected from Loch

Gairloch, Scotland.  By fitting the output of my model to this data I have inferred the

feeding behaviour of the sampled fish species which is then compared to results found in

the literature.  A further application of this model is in a calculation of daily ration of

each species which is then also compared to other results in an attempt to further validate

the model.
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1.0  Introduction

Ecologists have been studying the behaviour of fish for many years in an attempt to

find out how particular species fit into the marine or freshwater ecosystem.  Like all

animals, their behaviour is controlled by the need to survive and can be classified as

feeding, reproduction and time spent avoiding predation.  Without sufficient food the

fish would be unable to grow (Elliott 1975a) or reproduce properly (Karlsen et al.

1995)  or have enough energy to move and would therefore be more susceptible to

predation.  The quest for food is therefore overriding.  If we can establish what and

how much fish eat then we will have a clearer picture of how particular species fit into

a particular ecosystem.  Recent interest in fish feeding habits has been sparked off by

the plummeting stocks of exploited marine fish populations (Daan 1989, Hempel

1978).  Multispecies stock assessment models (which I shall discuss later) constructed

in an attempt to help manage this situation require an understanding of the trophic

interactions between species and a knowledge of mortality of particular fish cohorts

due to predation.  Insights into the requirements of such stock assessment models can

clearly be gained from studies of fish feeding behaviour.

Unfortunately, there are many practical difficulties associated with studying the feeding

behaviour of fish as it is impossible to carry out direct observations of fish in their

natural habitats.  Studying the feeding habits of mammals and birds is in general easier,

most obviously because, in general, the observations do not need to be carried out

underwater, but also due to the fact that after feeding there are often visible remains of

a meal; for example, half eaten carcasses, bones, regurgitated pellets and identifiable

faeces.  Even without tracing the every move of the species we are interested in, it is

therefore possible, in many cases, to draw sensible conclusions about their feeding

habits.  Although fish do regurgitate food remains, associating particular regurgitated

food samples with a particular fish species is also likely to be very difficult.
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An alternative to direct field observations could be to capture fish and hold them in a

tank - recording how much and how often they feed.  This was attempted by Elliott

(1972).  However, it is unlikely that it will be possible to recreate sufficiently the

natural conditions of the species in a laboratory in order to be able to make any definite

conclusions about their feeding activity.  It has been known for many years (Bajkov

1935) that feeding is affected by the temperature of the water, its acidity, turbulence

and the light intensity.  Although it has been shown that relatively few of these external

variables account for the majority of the variation in gastric evacuation rate and

consequently feeding rate (Bromley 1990, Temming and Anderson 1992), it would be

impossible to include, in a tank, the huge choice of prey both live and dead which

would be available in the wild and therefore feeding may not occur as it does in the

wild.  It is also thought that fish caught and held in captivity become stressed and

therefore may not feed as usual (Lockwood 1980, Kster et al. 1990) and consequently

it seems unlikely that results from laboratory feeding experiments will give us any

meaningful information about the feeding habits of fish in the wild.

So, the only option which remains is to catch samples of fish from the wild, remove

their stomachs to see what they have eaten and from this attempt to infer their feeding

behaviour.

1.1  Importance of fish feeding habits

Hundreds of years before ecologists became interested in the interaction between

animal species and began writing papers about food consumption rates and predation

of particular species, the feeding habits of fish were being studied in everyday life.  Fish

have always been a readily available source of food, so early interest in their feeding

habits was motivated by the wish to improve fishing methods.  For example, if we

know when and on what prey species a fish population feeds, catching them is much
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easier as we know what time of the day they will be most active (i.e. when they are

feeding) and with what food to bait them.  These days, however, fishing methods are

so efficient that studies of fish feeding habits are becoming increasingly important in

attempts to regulate fishing.

In the past few decades there has been a noticeable reduction in the exploited fish

populations of the world (Hempel 1978, Daan 1989).  Worries that severely depleted

stocks may never recover have lead to strict limitations on the harvesting of particular

species and attempts at constructing more and more effective stock management

models.  Fish feeding habits have become more useful in the commercial environment

with the realisation that fish stocks may be accurately modelled on a multispecies basis,

rather than considering all species individually.

In many cases, the analysis of fish stocks is based on estimates made from the numbers

caught commercially.  It was Gulland (1965) who first developed a model which could

be used to monitor fish populations in this way.  His model suggested that given a

knowledge of the catch of a species at a particular age (from commercial catch data)

and natural mortality, then the fishing mortality and population of the species at a

particular age can be calculated, by an iterative procedure.  This theory is known as

Virtual Population Analysis (VPA).  Pope (1972) approximated this model by cohort

analysis which simplified the iterative procedure required to solve the difference

equations.  However, in both these methods it is usual to make the assumption that

natural non-fishery mortality is constant for all ages.

Beverton and Holt (1957) realised that the life history parameters of fish must be

affected by the fluctuating populations of other species.  But, for most of the next

twenty years, such interactions were not incorporated into any fish stock management

models.  Questions as to the validity of the single species models began to be asked in

the early 1970's by Daan (1973 and 1975).  He made a detailed analysis of the stomach
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contents of cod and found that they preyed on many different fish species, but the

dominant species were young haddock and whiting.  This lead to the suggestion that

young fish will have a higher natural mortality than old fish and that the constant

mortality rate assumption is wrong.  Major changes to the structure of fish

communities in the late 1960's and early 1970's prompted the work of Andersen and

Ursin (1977).  Knowing that fish species do not exist independently of each other, they

constructed a general, comprehensive model of an exploited marine ecosystem.  The

model which they constructed illustrated the possibility that over fishing of herring and

mackerel in the sixties which lead to stock collapses could have meant that enough

food was available to trigger an increase in the stocks of gadoids which corresponds to

the increases in the catch of these species at this time.  So, although this model was

rather impractical with the estimation of thousands of parameters required, it did lead

other fisheries scientists to realise that a species could not be treated individually.

Returning to the earlier ideas of VPA and utilising catch at age data in attempts to

estimate actual fish stocks (Gulland 1965), Helgason and Gislason (1979) suggested a

multispecies virtual population analysis (MSVPA), based on the Andersen and Ursin

exploited ecosystem model, in which the analysis for several single species was carried

out simultaneously with coupling between them.  Pope (1979) also reformulated his

single species cohort analysis as a multispecies model.  Further developments in the

MSVPA are discussed in later works by Pope (1989, 1991) while other multispecies

models are summarised in Daan and Sissenwine (1991).

Like the single species VPA, the MSVPA requires a knowledge of mortality.  It seems

probable, at least for small fish that the most important component of natural (i.e. non-

fishing) mortality is piscivory, both by individuals of the same species and of other

species.  The predation load on a particular age class of a particular species (cohort) is

therefore likely to change as the fish grow (Daan 1972 and 1975).  Some predators
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will prey on especially small fish, while others will prefer slightly larger ones.  So, in

MSVPA the natural mortality is usually split into two parts - a constant background

mortality and an age and species dependent predation mortality.  Although the constant

background mortality still has to be estimated (or guessed) it is assumed to be very

small in comparison to the total natural mortality when this is significant, i.e. for small

fish and the predation mortality is calculated from studies of fish feeding habits.

Clearly measurements of the predation load on particular cohorts of commercial fish

species are impractical and therefore a less direct route to obtaining such values has to

be taken.  Stomach contents analysis were used by Daan (1972 and 1975) to suggest

that predation mortality was not equal for fish of all ages and therefore from careful

stomach contents analysis, we should be able to get a quantitative breakdown of the

diets of all predator classes involved in the MSVPA.

Such quantitative information must be representative of the total annual population and

therefore places high demands on the spatial and temporal collection of stomach

contents.  Consequently, extensive stomach contents sampling projects were carried

out in only two years  - 1981 and 1991, each known as 'the year of the stomach'.  In

each year the stomachs of samples of five predator species in the North Sea were

dissected and analysed (Anon 1984, Daan 1983, Anon 1994).  The results being

illustrated as weight of each prey species (by age) found in the stomach of each

predator species (by age).  These results can then be used to help estimate the

predation mortality of a particular prey species at a particular age.

The total predation load on a particular prey cohort due to predation (which is

required by the MSVPA) can be expressed as the sum of the numbers of fish eaten by

each predator species of a particular age.  These numbers in turn can be expressed in

terms of the per capita predator ration, the suitability of a particular prey type as a

food item for the predator, the average mass of each prey species and the average
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abundances of the predator and prey populations.  (All variables are age specific).  The

definitions of ration vary from author to author (see Stokes 1992), but it is usually

assumed to be constant between years and can be estimated from feeding studies. If the

abundances of each prey cohort were known, then the suitabilities could be calculated

using the stomach weight matrix.  However, the abundances are not known.  They are

therefore initially guessed and then modified by an iterative procedure until the model

estimates of each predators consumption agrees closely with the stomach contents

data.  A more detailed insight into these calculations can be gained from Magnusson

(1995) and Sparre (1991).

Closely linked to the very commercially driven construction of fisheries management

models are the studies of food webs and ecosystem model.  Knowing how fluctuations

in fish populations affect other aquatic species is an important part of community

ecology.  Food webs have been studied for many years (Ivlev 1945, Steele 1974) and

most people realise that trophic interactions play an important part in structuring

ecological communities.  For example Power (1990) found that the effects of

fluctuations in the population of  roach in a river community were visible through four

trophic levels of the food web, down to the levels of diatoms and bacteria.

Obviously without knowing what fish eat, we do not know what level of the food web

they belong to and therefore how population changes affect the community. This can

easily be decided by a straightforward stomach contents analysis and classification of

prey.  However, a more difficult question to answer is what effect the population as a

whole has on another species.  More recent ecosystem models have been built on the

basis of a closed energy system analysing the transfer of energy per unit biomass

between species.  Estimates of such values can be made from assumptions of energy

requirements for growth and reproduction combined with efficiency estimates. (Pauly

1986).  Alternative calculations of energy requirements can be made  from food
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consumption estimates.  These once again can be made from stomach contents

samples, usually by combining the dynamics of stomach contents samples with

measurements of gut evacuation rates (Elliott and Persson 1978).

With increased attention being paid to the future well-being of the whole ecosystem of

the North Sea and other heavily fished areas, fish quotas have been imposed in an

attempt to preserve the marine food chain.  Fishermen are therefore increasingly

looking elsewhere for employment.  Fish farming is becoming ever more popular in

countries like Scotland and Norway where communities have previously relied quite

heavily on the sea fishing industry.  Clearly a knowledge of what the farmed fish need

to eat to survive and keep them healthy is of paramount importance to the fish farming

industry.  Recent experiments into fish feeding have been coupled to growth studies

with commercial interest concentrating on how to maximise fish growth with minimum

expense to the farmer.  Models relating fish growth to instantaneous food uptake have

been constructed by Majkowski and Waiwood (1981) and Majkowski and Hearn

(1984).  As well as being useful in fish growth studies, such calculations can be used in

calculations of total biomass consumption of a population to be used in food web

models.

In this section I have tried to show that a knowledge of fish feeding behaviour is

important to many marine and freshwater studies.  The discussion actually describes

the complexity of ecological systems and how we cannot really consider the

commercial fishery view without considering the ecosystem interactions, with fish

feeding behaviour being the connection.

1.2  Stomach contents analysis
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The previous section illustrated the variety of information required about the feeding

habits of fish, with in some cases very precise prey identification requirements and in

others, total food ration.  The only practical way of drawing any reliable conclusions

about the feeding habits of fish in the wild is by gut contents analysis which has been

used in various forms for many years.  The type of analysis carried out is dependent on

the questions which are being addressed and whether the study is concentrating on

'what?', 'when?' or 'how much?' fish eat.

The first studies which were carried out mainly concentrated on the analysis of the diet

of different fish species (e.g. Brooks 1886).  The basic studies just consisted of

catching fish and dissecting their stomach so that the main prey sources could be

classified.  Such studies are still being carried out today (Hall et al. 1990) and provide

important evidence concerning between species competition for particular prey.  For

example, more recent prey species analysis have incorporated time dependence

(Magnuson 1969, Knust 1986) or habitat dependence (Gibson and Ezzi 1986).  Then

conclusions can be drawn about whether the food of a particular species changes over

the course of a day or year or whether prey type is dependent on where the population

lives.

Extremely large scale prey species identification studies of certain North Sea fish

species were carried out in the Year of the Stomach in 1981 and 1991.  The samples

consisted of many thousands of fish, each stomach being dissected and categorised for

amount of particular aged prey in a particular aged predators stomach (Daan 1983,

Anon 1994).  The results of such studies are to be used to give measures of the

susceptibility to predation as described in the previous section in co-ordination with

multispecies virtual population analysis.

Although providing very detailed information on the prey of particular predators, such

large scale studies are very time consuming.  There are also problems associated with
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species identification.  If stomach samples are taken infrequently, the remains of some

prey may have digested so much that they become unidentifiable.  To overcome this

problem, many scientists have resorted to simply measuring the total stomach contents

of the individuals in a sample of fish (Gordon 1977, Keast 1970).  This leads to

attempts at modelling the changes in the population average stomach contents and

inferring diel cycles of feeding intensity which when combined with evacuation rate

estimates can be used to make daily ration calculations (Eggers 1977, Thorpe 1977,

Elliott and Persson 1978 and Sainsbury 1986) which can then be utilised by the

MSVPA.

1.3  Overview of the thesis

As I suggested in the previous section most models of fish feeding behaviour have been

based on average stomach contents samples and have not incorporated any of the

between individual variability which clearly must exist unless, of course, every

individual in the population feeds on exactly the same sized prey at the same time.

This, however, is impossible due to the distribution of the prey population available to

the predators and there has been found to be quite a large variability between the

stomach contents of individuals of the same population at the same time (Brodeur and

Pearcy 1987, Jensen and Berg 1993).

In this thesis I shall construct a model which incorporates this stomach contents

variability by describing the variation in the stomach contents distribution of a

population which is undergoing simultaneous feeding and digestion.  The thesis begins

with some detailed discussion about models describing the digestion process and then

constructs a digestion only model incorporating the stomach contents distribution idea.

I have compared this digestion model to other models and actual evacuation data sets
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and only when the correct digestion set-up has been found do I incorporate the prey

size and time dependent feeding process.  The remainder of the first part of this thesis

then goes on to investigate how the dynamics of the population stomach contents

distribution changes under a variety of feeding and digestion regimes.

The whole aim of constructing a model of stomach contents variation is so that we can

infer information about the feeding behaviour of fish from actual stomach contents data

collected from the field.  In the second part of the thesis I shall attempt to construct a

non-linear optimisation method which will solve this 'inverse' problem of fitting the

feeding and digestion model to a given stomach contents data set and outputting the

inferred feeding behaviour.   Obviously, real data sets will be noisy due to sampling

error and may be sampled infrequently and categorised into few stomach contents

categories rather than illustrated as a stomach contents distribution.  So, in chapters

four and five I have simulated some noisy data sets to investigate how closely this

model predicts the feeding behaviour of a complete population of fish by fitting to a

randomly taken sample.  More importantly, we can then conclude from this section

whether there are sampling conditions (i.e. minimum sample size, frequency) which

must be obeyed in order that feeding behaviour inferred from these samples by the

model is an adequate description of the population feeding behaviour.

The final section of this thesis then goes on to consider some real data sets and infers

the feeding behaviour of a number of fish species in a sea loch off the North West

coast of Scotland.  These inferences and consequent daily ration calculations are then

compared to other results in an attempt to confirm the importance and success of this

model as a tool for modelling stomach contents variations.
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Chapter 2

Modelling the digestion process
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2.0 Introduction

In the past twenty years, discussion on the digestion process has increased dramatically

as the importance of such information for understanding marine and freshwater

ecosystem dynamics has been realised. In particular it has become apparent how the

knowledge of food consumption and feeding rates, when coupled with information on

types of prey  found during stomach contents analysis elucidates the role of the species

in the trophic network by giving us an idea of its effect on a prey population.

Most information about the feeding habits of fish has been obtained via the sampling of

stomach contents since direct observations of the behaviour of a population of fish are

impracticable in the field.  Therefore an accurate knowledge of the dynamics of the

digestion process is important, as the relationship between the stomach contents and

the feeding rate is  highly dependent on the digestion rate.  For example, suppose the

measured stomach contents of an individual are Wt  grams at time t hours and Wt+1 at

t+1 hours, then the amount of food consumed in the hour U is related to the stomach

contents by

U = Wt+1 − +W Dt           (2.1)

where  D is the constant digestion rate in grams per hour.  So, a prerequisite to

learning  anything about feeding rates from stomach contents samples is that the

evacuation process is understood and a realistic value for the digestion rate has been

obtained.

2.1 A review of digestion studies

Most theories about the digestion process have been based on an examination of

stomach contents either collected from the field or from experiments conducted in the
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laboratory.  And despite the recent increased interest in this field there is still much

disagreement and confusion over the major factors which determine the rate of

digestion (see Bromley 1994).

The digestion rate is usually defined as the rate at which the stomach is emptied of

food whether it is broken down by enzymes and absorbed through the stomach walls

or whether it just passes into the intestine undigested.  The digestion or evacuation

process as it is sometimes called is said to be complete when the stomach becomes

empty of all measurable remains.

The usual method of monitoring the evacuation process is to take a population of

similarly sized fish and let them acclimatise to life in a closed tank for several weeks.

Before beginning the experiment, the fish are starved for approximately three days and

then fed to satiation.  This is to ensure that all the individuals have, as near as possible,

the same stomach contents at the start of the experiment. Immediately after feeding has

taken place a small number of fish are removed and the contents of their stomachs

extracted, either by using a small stomach pump or by killing and dissecting them.

After their single meal the remainder are left without food.  Bajkov (1935), Jobling and

Spencer Davies (1979) and Elliott (1991) found that water temperature affected

digestion rate, so keeping all external conditions constant, groups of the remaining live

fish are then removed every couple of hours and their stomach contents extracted.

Using such a procedure, the average stomach contents of a given species (under

certain external conditions), at a particular time after feeding can then be calculated by

dividing the total amount of food in the stomachs by the number of individuals.  The

rate of depletion of average gut contents is then defined as the average digestion rate

of the population.

Most evacuation curves as they are commonly known have been observed to follow

one of the two shapes indicated in figure 2.1.
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Figure 2.1 Two commonly observed digestion curves.

Looking at the change in stomach contents with time in a non-feeding population of

fish, most observers have seen that the average gut contents initially decrease quite

rapidly, but as their gut contents decrease, this rate slows down, as seen in figure 2.1a,

suggesting a non-linear relationship (Basimi and Grove 1985 and Bromley 1987).

However, a number of digestion experiments have yielded depletion curves of the type

seen in figure 2.1b (Swenson and Smith 1973 and Grove et al. 1984) where after an

initial delay in which there is no reduction in stomach contents, the curve follows the

same shape as that in figure 2.1a.

There has been little agreement on the length of the 'delay phase',  but it has been

suggested that the reason for this delay is due to the time taken for the acids present in

the stomach to penetrate the food substance and break it down into pieces of size

suitable for passage out of the stomach through the pylorus.  A lag of up to thirteen

hours was reported of turbot fed especially hardened pellets (Grove et al 1985)

whereas Bromley (1987) observed any initial delay to be less than three hours when

the same species were fed on frozen fish, and a paper by Elliott (1991) reported that
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no time lag was apparent when fresh trout fry or sticklebacks were the food source,

indicating a dependence of the delay length on the penetrability of food.  These results

seem to indicate that when fish are feeding on fresh prey, there is little or no delay in

gut contents depletion.  In most digestion experiments, fish are starved before being

fed their single meal.  So on feeding their digestive enzymes may be switched off and a

delay will occur before digestion commences.  In natural conditions it is unlikely that

fish will have their digestion switched off (unless there have been severe food

shortages) and therefore no delay will occur in the digestion process.  So, in this study

I have concentrated on single phase digestion models and not attempted to include the

delay phase.

The majority of authors have assumed a general model for the depletion of stomach

contents to be of the form

dW(t)

dt
KW(t)c= −           (2.2)

where W(t) is the weight (or volume) of stomach contents at time t and c and K are

constants.  The usual procedure is then to try fitting variations of this model to various

data sets and evaluating the goodness of fit by least squares methods.

Despite the many years of digestion studies, there is still much disagreement about the

type of model which the digestion process follows.  As such a wide variety of fish

species have been used in digestion experiments, it is possible that much of this

disagreement is due to actual differences in digestion behaviour between different fish

species.  However, the confusion must also be a consequence of differences in the way

the digestion experiments have been conducted and interpreted by different scientists.

For example rather than allowing the fish population to initially feed freely and so

obtain a range of initial stomach contents, some scientists have unnaturally force fed all

individuals so that they initially have exactly the same amount of food in their stomach.
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In some cases there has been confusion as to whether the evacuation data obtained

from these two experiments is mean stomach contents depletion data or individual

stomach contents depletion and as I will show later, the two are not at all

interchangeable.  Very noisy data may be produced if, for example the fish size range is

very broad, which means the fish will be digesting at quite different rates, or if very

small samples of fish are taken from a population where there is some variation in

initial stomach contents.  In which case it is likely that a variety of models will fit the

data equally well (or badly) and results obtained in such cases cannot be relied on too

greatly.  Consistency between studies has also been hampered by inadequacies in

actually fitting models to the data, with some authors completely ignoring particular

models for no apparent reason.  Consequently, the literature on this subject is rather

confused  (reviewed in Bromley 1994) and so I shall discuss only what I consider to be

the most important steps which have been made towards understanding the dynamics

of the digestion process.

Early attempts  made by Hunt (1960), Daan (1973) and Swenson and Smith (1973) at

fitting this general model for various fish species resulted in a linear depletion model,

i.e. with c equal to zero. While more recently, a number of scientists have argued that a

value of  c equal to one, which gives an exponential evacuation model, has been found

to best describe the observed stomach contents depletion curve (for example Elliott

1972, Cochran and Adelman 1982, MacDonald et al. 1982 and Persson 1986).

An alternative model has been constructed based on the physiology of the digestion

process.  The emptying of the gut is regulated by peristaltic contractions which in turn

are stimulated by the radial gastric distension.  Taking the stomach of a fish to be

approximately cylindrical with a constant length, then the tension is proportional to the

radius of the cylinder which increases with the square root of the volume (or weight)

of stomach contents (Hopkins 1966).  Tyler (1970) and Fange and Grove (1979)
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suggested the constant should be equal to two thirds due to the fact that the food is

broken down by enzymes secreted in the stomach which act on the surface of the food

bolus whose area is proportional to (volume)2/3.   Jobling (1981) compared fractional

values of a half and two thirds for the constant c with the fit of the exponential model

to data from El-Shamy (1976) and showed that the square root option (c equal to a

half) gave the best fit to most of the data sets analysed.

Five years later Persson argued that contrary to Jobling (1981), the exponential model

generally gave a better approximation of the pattern of food evacuation than the square

root model for most fishes studied.  He reassessed twenty two data sets and found that

in ten cases, taking c equal to one produced a better fit than the others, though this is

still not particularly conclusive evidence since he had twelve data sets where one of the

other models was the best.  He also rejected the biological reasoning behind the square

root model.  After making stomach size measurements he argued that the stomach

could not be approximated by a cylinder of constant length since increasing the amount

of food in the stomach increased the length and so the radius will not increase linearly.

It seems possible that since observations of mean stomach contents were not straight

lines Persson felt that a linear depletion model was unlikely to be the best fit to the data

and chose to ignore this possibility.  However, a feasible explanation as to why the

gradient of the mean stomach contents depletion curve decreases at low stomach

contents levels is given in three much more recent papers by Bromley (1987, 1988,

1991) who supports the case for a linear evacuation model.  Even in the type of

digestion experiment described earlier where we are dealing with similarly sized fish

exposed to the same amount of food , there will be some variability in the stomach

contents of the population at the start of the experiment as the individuals will not

consume exactly the same amount of food.  Some fishes stomachs will therefore

contain more than the mean and some will contain less. Supposing that all individuals
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in the population digest food at the same rate, then those starting with less food in

their stomachs will become empty in a much shorter time than those which begin the

experiment with a higher stomach content.   Bromley (1988) pointed out that due to

this initial variation in stomach contents, towards the end of an evacuation experiment

the proportion of a population of fish with empty stomachs increases significantly since

their gut contents cannot fall below zero.  So, the mean stomach contents will decrease

more slowly than expected giving the impression that at lower levels of gut fullness the

evacuation rate is less.  Taking this into consideration Bromley fitted a linear model to

his data using the method of maximum likelihood.  Just how this censoring in the

stomach contents data depends on the variation in the initial stomach contents

distribution of the population will be discussed  later in this chapter.

The following sections of this chapter go on to look at the relationship between

individual and population models and compare the main features of the three plausible

models.  It then goes on to discuss whether or not digestion data can be easily

distinguished as linear, exponential or fractional.

2.2 Digestion models for a non-feeding individual

Section 2.1 highlighted the three main alternative descriptions of the digestion process

of an individual as being the linear, exponential and two thirds model. In this section I

will compare the shapes of the alternative digestion models which can be used to

describe a non-feeding population of fish.

If I first consider the case of linear digestion i.e. c equal to zero in equation 2.2, then

W(t) =
W          if 0 t0 −RST ≤ ≤Kt K W

otherwise0
0/
                          (2.3)
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describes the reduction in stomach contents with time where W0 is the stomach

contents at t equal to zero.  So, while not feeding, the fishes gut weight falls at a

constant rate until it reaches zero at time 
W

K
0  which is where it stays, since negative

stomach contents are impossible.

When digestion follows the fractional relationship

dW t

dt
KW t( ) ( )= −

RS|T|
2
3

0

              w> 0

                        otherwise
,                                            (2.4)

the reduction of the stomach contents of the non-feeding individual can be expressed

as

 W t W
Kt

( )

/
1
3 0

1

3
1 3

3
0

= − ≤ ≤
RS|T|           0 t

3W

K
     otherwise

0

.                (2.5)

until the individual becomes empty, at time 
3 0

1
3W

K
, when it stops digesting and the

stomach contents remain at zero.

When  c is equal to one in equation 2.2, the digestion process follows an exponential

relationship and the depletion of stomach contents for a non-feeding individual can be

written as

W t W e Kt( ) = −
0 .           (2.6)

In contrast to the linear and fractional digestion models, the stomach contents of an

individual following an exponential digestion model will not reach zero in finite time,

which is illustrated in figure 2.2.

Figure 2.2 shows how different the three models representing the depletion of an

individual fishes stomach contents actually are. Suppose I know that a particular fish

which initially has ten grams of food in its gut, empties its stomach of all measurable
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contents in approximately thirty hours, but I do not know what happens in  between.

Any of the three above models could adequately describe the digestion process by

choosing the appropriate value of K,  though the shape of the curves they generate is

completely different.
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Figure 2.2. Stomach contents depletion curves for an individual fish following a) linear digestion

(solid line, K=0.33),  b) two thirds (dotted line, K=0.15) and c) the exponential digestion model

(dashed line, K=0.15).

Since investigations into digestion are not usually constructed around a single non-

feeding fish, but rather a population, I shall show in the next section how population

digestion models can be formed and how the shape of the digestion curves is altered.

2.3 Population digestion models
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2.3.1 The theory of modelling population digestion

Previous attempts at modelling the digestion process have concentrated on models

which consider only the stomach contents of an individual or the average stomach

contents of a population.  As I have already mentioned, there will be some variation in

stomach contents at any one time even in a closed population of similarly sized fish, for

example those kept in the tank for use in the digestion experiments described in section

2.1.  Much of the detail of this variation in the population is lost when considering only

the mean stomach contents, since a particular mean value could result from a variety of

distributions of gut fullness.

Clearly the way to overcome this loss of detail is to employ the use of a distribution

function in the model to represent the variation in the stomach fullness of a closed

population of similarly sized and aged fish.  I define a distribution function f(w,t)  such

that f(w,t)dw represents the proportion of the population who have stomach contents

with weights in the range w-dw to w at time t.  For mathematical convenience I

assume that f(w,t) is defined on the domain w>0 and choose a separate notation,

P t)e( , to represent the proportion of empty stomachs at time t.  The rationale behind

this set-up is that it prevents the build up of a delta function and discontinuities in the

distribution function at w=0.  An obvious constraint here is that since we are dealing

with a closed population, summation of the empties and of f(w,t) over the complete

range of stomach weights will include the entire population

P t) +  f (w, t )dw  1e
0

(
∞

z = .           (2.7)

If I assume that an individual whose stomach contains w grams of prey at time t

eliminates material continuously from the gut at a rate D(w) grams per hour, then since
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we are dealing with a closed, non-feeding population, conservation of numbers implies

that

∂
∂

∂
∂

f (w, t)

t w
D(w)f (w,t))          w> 0= (                      (2.8)

and

dP t

dt
D(0 f (0 t)e + +( )

) ,=           (2.9)

I use the notation 0+  to denote a place infinitesimally on the positive side of zero.

I now need to decide what form the function D(w) should take by comparing the

digestion curves of populations whose individuals follow 1) linear digestion, 2)

fractional digestion and 3) the exponential digestion model.

2.3.2 The linear population digestion model

If I follow Bromleys theory about digestion and assume that the digestion rate of all

individuals in a closed population of similarly sized and aged fish is a constant K grams

per unit time provided that there is food left in the stomach to eliminate, and zero

otherwise.  Then

D(w) = K      w> 0                               (2.10).

So, equations (2.8) and (2.9) simplify to become

∂
∂

∂
∂

f (w, t )

t
K

f (w,t )

w
=         (2.11)

which has an absorbing boundary at w = +0 , and

dP t)

dt
Kf (0 t)e +(

,= .         (2.12)
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The above set of differential equations can then easily be solved given a set of initial

conditions.  Suppose that the population has just been fed a meal and is then prevented

from any further feeding.  If I suppose that the initial stomach contents distribution is

f w0( ) for w>0 and Pe( )0 0=  then equations (2.11) and (2.12) have the solutions

f w t f w Kt( , ) ( )= +0         (2.13)

and

P t f x dxe

Kt

( ) ( )= z 0

0

        (2.14)

which simply corresponds to the initial distribution moving leftwards at a constant rate

K with Pe accumulating all the probability which sweeps out into the absorbing

boundary at zero.

The stationary solutions, Pe
*  and f w* ( ), occur as t tends to infinity.  So,

P P t f x dxe
t

e
* lim ( ) ( )= =

→∞

∞

z 0

0

                   (2.15)

which is equal to one by definition of the stomach contents distribution function.

Substituting this into the conservation condition (2.7) leads us to the solution f w* ( )=0 

"w>0.  So under conditions of no feeding, there is a steady state solution which occurs

when all the fish have empty stomachs, which is as expected.

Supposing that the population has just been fed a meal which leaves them with a

normal stomach contents distribution with mean µ0 and standard deviation σ.  Then

the position of the peak of the distribution decreases as

µ µ( )t Kt= −0         (2.16)
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while the shape of the distribution remains the same (σ is constant) as the distribution

is just moving to the left at a constant rate.

Since we are assuming that the weight of stomach contents of an individual can take

any positive value, then an expression for the mean stomach contents of the population

can be  written as

W t
x

dx
x

( ) =
−FH IK∞

z σ π

µ
σ

2

2

0

e
-
1

2

(t)

.         (2.17)

Letting z =
x - (t)µ

σ
FH IK , the above equation becomes

W t
t

e dz
z

t

( )
( )

( )

=
−

∞

z
σ µ

πµ
σ

z+

2-

a f 1
2

2

        (2.18)

which with some manipulation gives a semi-analytic expression for the depletion in

average stomach contents with time

W t t F
t

t

( ) ( )
( )

( )

=
2

e
-
1

2σ
π

µ µ
σ

µ
σ

−FH IK + − −FH IKFHG IKJ
2

1                    (2.19)

where F is the standardised cumulative normal probability distribution.

It is not obvious from this expression how altering the size of the standard deviation of

the initial distribution affects the shape of the average stomach contents depletion

curve, as increasing the standard deviation increases the first term, but decreases the

second.  However, some simple calculations made using expression (2.19) and

illustrated in figure 2.3 show that for the broader initial distribution the deviation from

the linearity begins earlier than for a narrower distribution which is a straight line until

the last few hours of digestion.
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Figure 2.3 also illustrates the increase in empty stomachs during the digestion process

and shows that in the population which initially has a quite broad initial stomach

contents distribution (standard deviation equal to three), the accumulation of the

population in the empty stomach category begins quite early and is much more gradual

than for the narrow initial distribution case who all become empty over a much shorter

period of time.
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Figure 2.3. The progression of initial stomach contents distributions (i) shown together with

their corresponding mean stomach contents depletion curves (ii) and variation in proportion of

empty stomachs (iii) for a population whose individuals digest linearly at a rate equal to 0.5.

The initial distributions are normal with identical means of ten grams and standard deviations

of a) one and b) three.
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2.3.3 The fractional population digestion model

When the digestion rate of the individuals in a population is proportional to their

stomach contents to the power two thirds, equations (2.8) and (2.9) become

∂
∂

∂
∂

f (w, t)

t
= Kw

f w t

w
2 3/ ( , )

        (2.20)

and

dPe( )
( , )/t

dt
Kw f t= +2 3 0 .         (2.21)

Although an analytic solution cannot be found to this pair of differential equations,

given an initial stomach contents distribution, the progression of the distribution

function can be calculated numerically and is pictured in figure 2.4i.

In the fractional digestion model, as the digestion rate is proportional to the stomach

contents  to the power two thirds, those individuals with large amounts in their

stomachs will digest faster than those with lower stomach contents. So, the shape of

the stomach contents distribution narrows during the digestion process and this is

illustrated in figure 2.4i.  It was shown in section 2.2 though, that individuals digesting

in such a way do become empty and so there will be some censoring observed in the

mean stomach contents curve, as some individuals become empty faster than others

and consequently the mean stomach contents decreases slower than expected.

However, the censoring which takes place in this model is much less obvious than that

which occurs in the linear model, as the distribution function has narrowed

considerably and majority of the population have stomach contents quite tightly packed

around the mean value as they approach zero.  As a consequence, the mean stomach

contents depletion curves generated from two very different initial distributions are

quite similar (figure 2.4ii).
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Figure 2.4.  The progression of two different initial stomach contents distributions (i) together

with their corresponding mean stomach contents curves (ii) and variation in the proportion of

empty stomachs (iii) for a population whose individuals follow a fractional digestion model with

rate constant 0.15.  The initial distributions have mean ten grams and s.d. of a) one and b) three.

The effects of the narrowing stomach contents distribution are also seen in the

variation in the proportion of the population with zero stomach contents.  Initially this

proportion increases quite gradually (figure 2.4bii) as the stomach contents distribution

is quite broad and so there are some individuals with relatively low stomach contents.

By the time the peak of the distribution reaches zero, it has become so narrow that the

remainder of the population become empty over a very short period of time.  So, the

sharp increase in the proportion of fish with empty stomachs is followed by a fairly

sudden halt as all the population have become empty.
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2.3.4 The exponential population digestion model

Looking now at the model in which the individuals of a population follow the

exponential digestion model i.e. D(w)=Kw for all w.  Then equations (2.8) and (2.9)

become

∂
∂

∂
∂

f w t

t
Kw

f w t

w

( , ) ( , )=         (2.22)

and

dP t

dt
Kwf te( )

( , )= +0         (2.23)

which again can only be solved numerically.

As in the fractional digestion model, the digestion rate is dependent on the current

stomach contents of the individual concerned, so the stomach contents distribution will

likewise narrow as the digestion process continues which is shown in figure 2.5i.  In

this case however, an individuals stomach contents never actually reach zero so the

narrowing distribution continues to narrow and builds up as a delta function at w = +0 .

To overcome the problems caused by the delta function at zero, the numerical solution

of the problem is halted before much significant build up occurs.

In the exponential model an individuals stomach contents never actually reach zero,

they only tend to zero as time tends to infinity, so if there are initially zero fish with

empty stomachs, then this is true for all time (figure 2.5iii), and there is no censoring of

the mean stomach contents depletion curve as illustrated in figure 2.5ii.  This is shown

analytically in the following section.
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Figure 2.5.  The progression of two different initial stomach contents distributions (i) together

with their corresponding mean stomach contents curves (ii) and variation in the proportion of

empty stomachs (iii) for a population whose individuals digest exponentially with rate 0.15.  The

initial distributions have mean ten grams and s.d. of a) one and b) three.

Consider a population of N fish each following the individual exponential digestion

model with an identical digestion rate constant (K) and individual stomach contents Wi

(i=1..N)

dW

dt
           i=1..Ni = −KWi         (2.24)

 Then, summing all the individual stomach contents and dividing the total by the

number of fish in the population gives the average gut contents
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W t
N

W ti
i

N

( ) ( )=
=
∑1

1

.         (2.25)

Differentiating this expression for the mean gut contents of the population gives

dW

dt N
=

=
∑1

1

dW

dt
i

i

N

        (2.26)

and substituting  from equation (2.24) we get

dW

dt

K

N
= −

=
∑Wi
i

N

1

        (2.27)

        = −KW.

which shows that in the case of exponential individual stomach contents depletion, the

mean stomach contents follow exactly the same curve as that of an individual whose

initial stomach contents are equal to the population mean i.e.

W t W e Kt( ) = −
0         (2.28)

where W0  is the initial mean stomach contents.

2.3.5 Comparison of models

All the initial distributions observed so far have been normal with mean ten grams and

standard deviations small enough so that the shape of the distribution is not initially

truncated at zero.  However, if the standard deviation is much larger than about three

grams, then the initial mean will be censored for all digestion models.  For example, if

the initial distribution has a standard deviation of eight and a mean of ten grams, then

there will be some individuals who start off with empty stomachs and the calculated

initial mean stomach content will be larger then expected for all three digestion models.
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This initial distribution produces greatly censored linear and fractional digestion curves

since the effects of empty stomachs is already taking effect at  zero time.
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Figure 2.6 Depletion of mean stomach contents with time for populations whose individuals

follow a) a linear digestion model (K=0.5), b) an exponential digestion model (K=0.15) and c) a

fractional digestion model (K=0.15) having a normal initial distribution with mean ten and

standard deviations two (solid), four (dotted), six (dashed) and eight (long-dashed).

However, the effect of this very broad initial stomach contents distribution on the

exponential digestion curve (shown in figure 2.6b) is just to raise the curve by a fixed

proportion at each point without changing its shape, since no more fish become empty

during digestion.  The use of this initial distribution in the case of the exponential

model is unnecessary as I showed analytically in the previous section and these raised

curves could just as easily have been produced by increasing the initial mean stomach

contents in equation (2.28).
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2.4 Uniqueness of digestion curves

The previous section illustrated the great difference in the shapes of the population

digestion curves produced from different digestion models with identical initial

stomach contents distribution and showed the extent of the effect of different initial

stomach contents distributions on a population following a particular digestion model.

The question which now needs to be considered is whether a mean stomach contents

depletion curve obtained from one model and set of parameters, can be replicated

using one of the other models and a different set of parameters (i.e. a different initial

distribution and digestion constant).  I shall approach this problem by generating a set

of digestion data from one of the models and then attempting to fit the other models to

this data by varying the model parameters and minimising the mean of the sum of the

squared errors.  The data set can be generated by sampling the mean stomach contents

at hourly intervals.  As my optimisation routine I have chosen a version of the simplex

method (Nelder and Mead (1965)) which although rather inefficient in the number of

function evaluations required for convergence, works quite quickly when the

computational burden is not too big.  (Chapter 4 describes in more detail the variety of

available optimisation routines.)

Calculations of the mean stomach contents depletion curves for the exponential and

linear models  are fairly straightforward due to the expressions (2.20) and (2.28).  The

expression which generates the linear population digestion curve involves the

calculation of standardised cumulative normal probabilities which are easily

accomplished using the appropriate NAG routine, while expression (2.28) which

describes the depletion of mean stomach contents for a population with exponential

digestion is just a simple negative exponential function.  However, to gain the

corresponding curve from the fractional digestion model is decidedly more time
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consuming as the problem must be solved numerically.  The speed of solution is further

hampered by the need for very fine discretisation in the space dimension which is

required to avoid problems in the numerical solution as the stomach contents

distribution narrows and reaches zero.

Initially, I shall regard the mean stomach contents sampled at hourly intervals from the

fractional model with a particular set of parameters as my set of data.
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Figure 2.7.  Mean stomach contents depletion curve for a population of fish with normal initial

stomach contents distribution (mean 10 grams and standard deviation 5) whose individuals

follow a fractional digestion model with rate constant 0.4 (solid line), with the most closely fitting

linear digestion (dotted) and exponential digestion (dashed) curves.

Keeping the initial stomach contents distributions identical to that used in the fractional

depletion curve data set, I shall initially attempt to fit the exponential and linear models

by varying only the digestion rate constant K.  The initial stomach weight distribution
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is  normal with mean ten and standard deviation five and the population digestion rate

constant is 0.4.  The exponential and linear depletion curves which most closely fit the

fractional digestion model curve are shown in figure 2.7.

Although the linear model produces a curve which is quite similar to that of the

fractional model, it is still easily distinguished as it is much straighter.  The identifying

feature of the exponential model is its very long tail which, combined with the initial

quite fast mean stomach contents depletion, gives a less adequate fit to the data than

the linear model.  The fitted digestion rates of the linear and exponential models are

given in table 2.1 along with their mean squared errors.

       Model     Digestion rate  Mean square error

       Linear           1.37            0.02

      Exponential           0.21            0.04

Table 2.1.  Digestion rates and mean square error values of the best linear and exponential fits

to the data generated by a population with a normal initial stomach contents distribution with µµ

equal to 10 grams and σσ equal to 5 following a fractional digestion model with rate constant 0.4.

An improvement to the fit of the two models could be made by allowing the

parameters defining the shape of the initial stomach contents distribution to vary, in

addition to the digestion rate constant K.  The initial distributions are truncated at zero

and the remaining proportion of individuals are put into the empty stomach category.

So, when fitting the linear model, there are  three fitting parameters - K (digestion rate

constant), µ (position of the peak in the initial stomach contents distribution) and σ

(the initial standard deviation), while for the exponential model there are only two - the

digestion rate constant K and the initial mean stomach contents, W0 .
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The new curves fitted to the same fractional digestion data are illustrated in figure 2.8

and the best fit parameters are shown in table 2.2.  Predictably the fit of both models

has improved.  The nearest fitting mean stomach contents curve produced by the linear

model is very close to being indistinguishable from the fractional data with a mean

squared error of 0.0007.  This implies that we can only distinguish between the two if

the initial distribution of the stomach contents is known.
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Figure 2.8.  The linear digestion (dotted) and exponential digestion (dashed) curves which best

fit the fractional digestion curve (initial mean 10 grams, standard deviation 5 and rate constant

0.4, solid line) when all three parameters are allowed to vary.

In this case, the initial stomach contents distributions are quite different with the linear

initial distribution being much broader and positioned nearer to zero.  The higher

standard deviation produces the early deviation from linear stomach contents depletion

which is required if the fractional shape is to be imitated closely, while the lower value

of µ prevents the initial mean stomach contents from being too high.

The high digestion rate is required as there are many individuals in the population with

very high stomach contents which would otherwise take a very long time to empty

36



their stomachs.  The exponential model once again proves to be a less accurate fit to

the fractionally generated data due mainly to the very long tail.

      Model  Initial conditions            K    Mean sq. error

      Linear  µ=7.88, σ=12.81          2.12         0.0007

     Fractional      µ=10, σ=5            0.4     0 (actual data)

    Exponential       W0 =10.5           0.22           0.03

Table 2.2.  Parameter values for the best fitting linear and exponential models along with those

from which the fractional data was generated.

I have shown that for a particular set of data generated using the fractional digestion

model an almost indistinguishable set can be produced by linear digestion while the

exponential mean stomach contents depletion curve decreases too slowly for very low

stomach contents.  The question which now arises is whether a set of data generated

from a linear digestion model can be fitted as well by the fractional model.

In this example I shall reverse the fitting procedure and take the mean stomach

contents sampled at hourly intervals from an evacuation curve produced by a

population with linear digestion as the data set and attempt to fit the fractional and

exponential models by varying both the digestion rate and initial stomach contents

distribution.  The stomach contents of the population which follows a linear digestion

model with rate 0.25 grams per hour are initially normally distributed with µ equal to

ten grams and the standard deviation five.  This broad initial distribution will produce a

mean stomach contents depletion curve which very early on becomes censored,

deviates away from the straight line and is therefore likely to be quite closely copied by

the other two models.  The best fitting exponential and fractional curves are shown in

figure 2.9.
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It appears from this illustration that most of the error in the exponential model is due

to the height of the tail as the stomach contents approach zero.  Extending the fit to

160 hours in an attempt to pull the exponential tail down towards zero does not

significantly change the shape of the curve as even very small changes to the height of

the tail are associated with very large changes earlier on.  To significantly reduce the

tail would require the exponential to be initially very much steeper which would

provide a worse fit to the first half of the linear digestion curve.
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Figure 2.9.  Stomach contents depletion curve of a population with normal initial gut contents

distribution (mean 10, standard deviation 5) whose individuals follow a linear digestion scheme

with digestion rate 0.25 grams per hour, together with its closest fitting exponential (dotted) and

fractional (dashed) digestion curves.

Predictably, the fractional model most closely fits the linear digestion data, but the

minimum mean squared error value is surprisingly large when compared to that which

occurred when the reverse fitting procedure was carried out in the previous example.

The mean squared deviation of the fractional model from the linear data in this

example is in fact almost thirty times that which resulted when the reverse fitting was

carried out in the previous example (tables 2.2 and 2.3).  This could either be due to
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the particular example which has been chosen or it could be that for some reason we

can get a closer fit to fractional data using the linear model than the other way around.

       Model  Initial conditions            K   Mean sq. error

       Linear     µ=10, σ=5           0.25   0 (actual data)

     Fractional  µ=10.46, σ=0.28          0.07          0.02

    Exponential      W0 11 10= .           0.04          0.19

Table 2.3.  Parameter values of the best fitting fractional and exponential models, together with

linear model parameters from which the data set was generated.

To investigate this possibility, I shall now take the resulting best fit fractional model

parameters to generate a new set of data and refit the linear digestion model to it.  The

resulting fit is a great improvement and the best fit parameters are shown in table 2.4,

together with the minimum mean squared error.

        Model  Initial conditions            K   Mean sq. error

        Linear   µ=7.64, σ=9.83           2.10         0.0014

      Fractional  µ=10.46, σ=0.28          0.07    0 (actual data)

Table 2.4.  Parameter values of the refitted linear digestion model.

When the fractional model was fitted to the linear data, the resulting parameters

indicated that a very narrow initial stomach contents distribution was required to

produce this 'best fit', although the actual data had been generated from a linear

digestion model where the population started with quite a broad initial distribution.

However fitting the other way round indicated that the linear model must have an

extremely broad and truncated initial distribution to fit the fractional data, even when
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this data had been generated by a population whose initial stomach contents

distribution was very narrow.  As the fractional model is fitted to the linear data, it

reduces the initial standard deviation, thereby removing any censoring.  The fractional

curve though, even with a delta function as its initial stomach contents distribution and

therefore no censoring, will always be curved and hence may not be able to get very

close to fitting a linear data set.  On the other hand,  the initial distribution is able to

get broader and broader, so that the censoring in the digestion curve begins as soon as

the digestion process starts and consequently linear digestion curves can be forced to

deviate far from linearity and produce very good fits to data generated from fractional

digestion models.

These results show how similar digestion curves produced by populations following

different digestion schemes can be.  In particular, the fractional and linear digestion

models are sometimes visually indistinguishable and we can only conclude which

model the data came from if we also have some knowledge of the initial stomach

contents distribution of the population.  The exponential model is generally quite easily

recognisable due to the very long tail in the digestion curve as stomach contents get

low.  However, if very accurate methods and instruments are unavailable when

collecting experimental data, this tail in unlikely to be apparent and the digestion data

could possibly be indistinguishable from the fractional or linear model.  Experimental

data is always going to be noisy as the samples of fish used are never going to be very

large.  It is possible therefore, that even with just a small amount of noise in the data all

three models may become indistinguishable, which is what I shall investigate in the

following section.
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2.5 Simulated data

So far the digestion curves have been produced by assuming that the distribution of

fish stomach contents follows a perfect normal distribution.  However, in practice,

digestion curves will not be so exact.  Experimental mean stomach contents depletion

curves are constructed by sampling a particular number of individuals from a non-

feeding population of fish at fixed time intervals.

In an attempt to simulate typical experimental data I have solved the digestion models

numerically, outputting the exact solution at fixed time intervals.  The stomach

contents range is divided into many small equal categories and the proportion of the

population in each interval at each time step is recorded.  The unit interval is then

divided into intervals each of width equal to these proportions.  At each sample point,

a simulated data sample is produced by generating a set of pseudo-random numbers

between zero and one and counting the proportion which fall into each interval.  This

gives the noisy numerical distribution from which the mean stomach contents are

calculated.

Figure 2.10 shows some examples of noisy initial distributions where the sample has

been taken from a population whose initial distribution is normal with m equal to ten

and a standard deviation of three grams.  Although all three distributions appear to be

quite noisy, we can establish just by looking that the mean stomach contents in each

case is not far from ten grams.

Given that the digestion curve is noisy, there will be no exact fit by any set of

parameters and digestion model, even the one from which it was generated.  The

closeness of the fit will depend on the size of the sample i.e. on the number of random

numbers which are generated.  The question that I wish to answer is how easily can we
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distinguish the fit of the 'wrong' model from that of the 'right' digestion model, when

the digestion curve becomes noisy.
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Figure 2.10.  Noisy distribution simulated by taking samples of a) 1000, b) 100, and c) 10

individuals from a normal distribution with µµ equal to ten grams and σσ equal to three.  The

actual mean values are a) 9.92 grams, b) 10.09 grams and c) 10.66 grams.

I have chosen three examples to answer this question, in which both the parameters

defining the populations initial stomach contents distribution and the digestion rate

constant are varied.  The first example is of data sampled from a population whose

initial stomach contents distribution is normal with mean 10 grams and standard

deviation 5 whose individuals follow the linear digestion model with a digestion rate of

0.25 grams per hour.  When the digestion curve is free of noise, obviously the

minimum mean squared error of the fitted linear model is zero.  Predictably, when a

digestion curve is obtained via population samples this mean squared error increases,

but this is true of the error measure of all three models. (Compare table 2.5 to table 2.3

in section 2.4).  For a large sample of 1000 individuals the digestion curve which is

shown in figure 2.11a does not look very noisy.  The minimum mean squared error of
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the fractional model is five times that of the linear and the exponential over twenty

times greater, so the data set is still distinguishable as linear.

 Sample size     Model   Initial conditions      K   Mean sq. error

     Linear   m=9.93, s=4.71    0.24           0.01

      1000    Fractional   m=10.45, s=5.7    0.08           0.05

 Exponential     W0 =11.03    0.04           0.21

     Linear   m=9.93, s=4.31    0.23           0.09

      100    Fractional   m=10.43, s=9.3    0.08           0.12

 Exponential     W0 =11.06    0.04           0.30

    Linear   m=9.62, s=3.94    0.21           0.95

       10   Fractional   m=10.07, s=0.8    0.06           1.00

 Exponential     W0 =10.70    0.04           1.19

Table 2.5.  Fitted parameters and minimum mean squared errors of the three models fitted to

noisy digestion curves generated by taking samples from a population of fish with a normal

initial stomach contents distribution with µµ equal to ten grams and σσ equal to five whose

individuals all digest linearly at a rate of 0.25 grams per hour.

However, as the sample size is decreased, the error measures all become much larger

and it becomes less obvious by which model the data has been produced.  For a sample

size of ten individuals which is comparable to the numbers of fish used in actual

digestion experiments, the digestion curve which is shown in figure 2.11b has become
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quite noisy.  Although the best fitting linear model still gives an error measure which is

slightly lower than the other two models, the  three minimum mean squared errors are

almost equal and the data can only be distinguished as linear or fractional if we know

what the initial stomach contents distribution looked like.  Table 2.5 shows the initial

conditions which are required to produce the best fits for each of the three models.

The fractional model requires an extremely narrow distribution to fit the data, while the

exponential model achieves its best fit to the data by pushing W0  well above its

observed value.  The narrowness of this distribution is perhaps a little unrealistic,

which could be a reason for ruling out the fractional model which leaves the linear

model as a slightly better fit than the exponential model to the data.
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Figure 2.11. Noisy linear data (points) generated by taking samples of size a) 1000 and b) 10

with their closest fitting exact linear (solid), exponential (dotted) and fractional (dashed)

digestion curves .
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My second set of examples are generated using the fractional digestion model.  The

population initially has a normally shaped stomach contents distribution with mean 10

grams and standard deviation 1.5 and the individuals all follow the fractional digestion

model with rate constant 0.2.  In section 2.4 I showed how well the linear model could

be fitted to fractional data and that the two models could only be distinguished if their

initial stomach contents distributions are known.  When the same fitting procedure is

carried out on data which has been simulated by sampling from stomach contents

distributions generated by the fractional model, similar confusion arises.
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Figure 2.12.  Noisy fractional data (points) generated by taking samples of size a) 1000 and b) 10

with their closest fitting exact linear (solid), fractional (dashed) and exponential (dotted)

digestion curves.  ((b) appears less noisy when compared to 2.11b as σσ is much smaller and

therefore the occurrence of extreme values is less likely and consequently the mean more like its

expected value).

45



The resulting parameters and minimum mean squared errors for the three models with

differing sample sizes are shown in table 2.6 and the corresponding digestion curves

are illustrated in figure 2.12.

For all sample sizes, the fitted exponential curve gives a minimum mean squared error

which is much larger than the other two models and therefore even when these

fractional data are quite noisy, it is quite clear that it has not been sampled from a

population which is digesting exponentially.

 Sample size   Model  Initial conditions      K  Mean sq. error

    Linear   m=8.42,s=11.32     1.10          0.002

       1000   Fractional   m=10.04,s=3.11     0.21          0.003

 Exponential     W0 =10.54     0.12          0.080

    Linear   m=7.7, s=12.94     1.20          0.005

       100   Fractional   m=9.95, s=2.28     0.20          0.003

 Exponential     W0 =10.48     0.12          0.075

    Linear   m=8.8, s=8.10     0.87          0.033

       10   Fractional   m=9.53, s=2.35     0.20          0.038

 Exponential     W0 =10.03     0.12          0.122

Table 2.6. Mean squared errors of the three models fitted to noisy digestion curves generated by

taking samples from a population of fish whose initial gut contents distribution is normal with

mean 10 and standard deviation 1.5 whose individuals follow the fractional digestion model with

rate constant 0.2.

46



However, once again the linear and fractional models give very similar least mean

square errors for all sample sizes.  In fact for a sample size of ten, the linear model

gives a slightly better fit to the fractionally generated data than the fractional model

itself.  The only way to distinguish which model the data is generated by, is to consider

how realistic the initial stomach contents distributions are.  For all sample sizes the

initial stomach contents distributions required by the two models are very different

with the linear model requiring a very broad normal distribution.  So, if we know that

the initial distribution is not particularly broad then we could conclude that the data

came from a population whose individuals follow a fractional digestion model.

The final set of digestion curves which are to be studied are those produced by a

population which has a normal initial stomach contents distribution with mean 10

grams and standard deviation 2.5 and whose individuals digestion exponentially with

rate constant 0.15.  Table 2.7 shows the resulting best fit parameters and minimum

mean squared errors.

The fractional model gives a much worse fit to the data than the other two models

even for very small sample sizes, but the linear minimum mean squared errors are of

approximately the same size as those of the exponential model.  Looking at the

parameters resulting from the fitting procedure, our attention is instantly drawn to

those predicted by the linear model.  The initial distribution requires a massive width

and a large negative value for µ, while the digestion rate is also predicted as being

extremely large.  These values are obviously exceedingly unlikely and we can safely

conclude that the data was sampled from a population following the exponential

digestion model.  The 'best fit' curves  for samples of size 1000 and 10 are illustrated in

figure 2.13.
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 Sample size    Model  Initial conditions      K  Mean sq. error

    Linear    µ = − ×3.9 1010,

  σ = ×6.9 109

1 7. ×108         0.003

      1000   Fractional   m=9.46, s=3.45     0.26         0.057

 Exponential      W0 9 98= .     0.15         0.002

    Linear   µ = − ×7 0. 108 ,

  σ = ×1.4 108

3 9. ×106         0.004

      100   Fractional   m=9.63, s=3.50     0.26         0.046

 Exponential      W =10.140     0.15         0.005

    Linear   µ = − ×2.3 106,

  σ = 6.1 106×

1.9 104×         0.041

      10   Fractional   m=8.96, s=3.32     0.24         0.072

 Exponential      W = 9.460     0.14         0.042

Table 2.7.  Fitted parameter and least mean squares of the three models fitted to noisy digestion

curves generated by taking samples from a population of fish with normally distributed initial

stomach contents with µµ equal to ten grams, σσ equal to 2.5 grams, digesting exponentially with a

rate constant of 0.15.

The extremely odd values predicted by the linear model can be explained by

considering how the linear model changes shape to fit the exponential shaped data.

The exponential is far from linear and the linearity in the digestion curve produced by

the linear digestion model decreases as the standard deviation of the initial stomach
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contents distribution increases.  So, obviously a very large standard deviation is

required for a linear digestion curve to look anywhere near exponential.  To maintain

the correct value of the initial mean stomach contents (W0 ), the value of µ must

decrease as the standard deviation increases.  In this case, the standard deviation is so

large that a very large negative value of µ is predicted.  Finally, since there are some

individuals in the sample with extremely high stomach contents, an unfeasibly high

digestion rate is required to obtain the correct gradient for the digestion curve.
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Figure 2.13.  Noisy exponential data (points) generated by taking samples of size a) 1000 and b)

10 with their closest fitting exact linear (solid), fractional (dashed) and exponential (dotted)

digestion curves.

These sets of examples show how digestion curves produced by taking  even very

large samples can often be indistinguishable as being generated from a particular model

and when sample sizes as low as ten are used it is possible that all three models may
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give equally good fits to the data.  Most experimental digestion curves are constructed

by taking samples of around ten fish at each time interval and calculating their mean

stomach contents.   So given the above results it seems unlikely that when considering

experimental data, it will be possible to make definite conclusions about the digestion

model which the population follows.  In this case the only option is to look at the

predicted initial stomach contents distribution and hope that one model gives a more

sensible prediction than the other two.

2.6 A comparison with real data

The previous sections have shown how difficult it can be to distinguish between

digestion curves even when sample sizes are still quite large.  In this section I shall re-

examine some sets of experimental data, which in general are produced by taking quite

small samples, and attempt to decide what digestion model the population is following.

Extensive digestion experiments have been carried out by Elliott (throughout the

1970's), Jobling (during the 1970's and 80's) and Bromley (more recently), so I shall

take some of their data sets for re-examination.  However, the three authors carried

out their experiments differently and the resulting data sets therefore have to be treated

differently.

Elliott (1972) investigated gastric evacuation of brown trout.  In his experiments he

fed exactly twenty prey items (Gammus pulex) of similar size (approximately 9 mm in

length) to all individuals in his initial population of fish, so there would only be a very

slight variation (if any) in initial stomach contents across the population.  By sampling

ten trout every three hours he calculated the mean dried stomach contents and

constructed the digestion curve.  The data appears to be exponential and is illustrated

in figure 2.14.
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Figure 2.14.  Elliotts evacuation data for trout (points) together with the fitted exponential

digestion curve.

I attempted to fit the three models and as expected the exponential was the one to give

the most sensible results.  Both the linear and fractional models required very broad

initial distributions to generate a curve which anywhere fitted the data, contrary to the

actual initial stomach contents distribution which as I have already concluded will be

very narrow.  The digestion curve produced by the exponential model is independent

of the width of the initial distribution and is only regulated by the initial mean stomach

contents and digestion rate constant.  The exponential model in fact provides a very

accurate fit to the data with a minimum mean squared error of 0.26 which is quite

small compared to the magnitude of the data and so there can be no doubt that these

fish are digesting exponentially.

Work on digestion in plaice was carried out by Jobling and Spencer Davies (1979).

Their digestion experiments consisted of force feeding groups of fish with exact

volumes of food and then weighing the dried stomach contents of pairs of fish sampled

from the population at approximately two hourly intervals.  The fish in these

experiments all initially contained the same amount of food as they had been fed

precisely the same amounts via an intra-gastric tube.  In this case it would be foolish to
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attempt to fit curves generated by models in which the initial stomach contents

distribution is allowed to vary, as the initial stomach contents of all fish in the

population is equal and known.  Instead I fitted the individual digestion curves given in

section 2.2 by varying only the digestion rate constant K and holding W0 fixed at the

measured value.  The results of the four experiments in which the initial amount of

food differs, are shown in figure 2.15.
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Figure 2.15.  Joblings evacuation data (points) with its fitted individual linear (solid), fractional

(dashed) and exponential (dotted) digestion curves for meals of approximately a) 315 mg, b) 234

mg, c) 155 mg and d) 77 mg.

Since all the individuals in these experiments initially have equal stomach contents,

then if the individuals in the population were identical, they should all be digesting

identically and the data should lie perfectly on a curve generated by a particular

individual digestion model.  The data from all four experiments though is very noisy.

The most likely explanation for this seems to be the very broad range of fish sizes

being used (15g-33g).  Fishes of different sizes digest at different rates, so since some
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of the fish in this population are twice the size of others, the stomach contents of all

the individuals will not remain identical over the sampling period and so the samples

taken may appear quite noisy.  Fitting the model to the data is also hampered by the

limited number of data points towards the lower end of the evacuation curve.  In none

of the four examples is there a clear indication of whether the stomach contents have

reached zero or whether there is a tail present.  No further stomach samples were

taken later on to confirm what was happening.  The noisiness of the data is reflected in

the large values of the minimum mean squared errors compared to the average dry

stomach contents over the time period and are shown in table 2.8.

        Model             K   Mean sq. error

        Linear           12.3           356

         Set a      Fractional           0.38           201

    Exponential           0.06           368

        Linear           13.4           659

         Set b      Fractional           0.47           425

    Exponential           0.09           390

        Linear           11.7           177

         Set c      Fractional           0.59           56

    Exponential           0.13           80

       Linear           6.5           83

        Set d      Fractional           0.51           75

    Exponential           0.14           79

Table 2.8.   The 'best fit' values of K  and the minimum mean squared errors for the three

individual models fitted to Joblings plaice data.
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This combination of noisy data and scarcity of data points during parts of the

evacuation period implies that any conclusions that have been drawn from this data

may be very unreliable.  For example in data set a, the two-thirds digestion model

seems to best fit the data points, but this is one of the cases in which it would be

helpful to have some later data points.  The fractional model predicts a tail in the

evacuation curve which goes on past the last available data point and since we have no

idea of what is going on here we do not know if this prediction is valid.  If the

sampling had gone on longer and revealed that the stomachs had already all reached

zero, then the fit of the fractional model would worsen and that of the linear would

improve.   The results for set b seem to indicate that the linear model is a much worse

fit to the data than the other two.  This result however may not be correct as once

again it is impossible to decide from the data points what is happening towards the end

of the digestion period.  The last two data samples are taken so far apart that we

cannot tell whether the stomach contents have been zero for long (which would favour

the linear digestion model) or whether they have been gradually tailing off.

Looking at all the data sets together, my results seem to indicate that the fractional

model is on average the best fit to the data.  However, due to the noise and scarcity of

the data points, this conclusion cannot be regarded as particularly reliable.

The final sets of data have been taken from a paper by Bromley (1988) on evacuation

in whiting.  Although Bromley claims that linear digestion model is appropriate for

whiting feeding on meals of frozen sand-eels, he does not consider any of the other

options.  His digestion experiments consisted of batches of similarly sized whiting

freely feeding to satiation, two-thirds satiation and one fifth satiation.  Groups of ten

fish were sampled at intervals after feeding and their mean stomach contents measured.

Since the fish in these experiments have been allowed to feed of their own accord,

some individuals will have managed to consume more prey items than others and
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therefore the population will have an unknown initial stomach contents distribution.

So, the population digestion models are fitted to this data by allowing the initial

conditions and digestion rate to vary.  The resulting parameters are shown in table 2.9

and the data plus best fit curves are illustrated in figure 2.16.

     Model    Initial conditions     K   Mean sq. error

     Linear  µ=23.99, σ=6.72    0.32          0.80

    Satiation    Fractional  µ=24.67, σ=8.14    0.05          1.94

  Exponential      W 25.440 =    0.02          3.04

     Linear  µ=15.61, σ=15.52   0.49          0.05

 2/3 Satiation   Fractional  µ=16.50, σ=0.23    0.07          0.04

  Exponential      W 17.180 =    0.03          0.34

     Linear   µ=5.50, σ=4.53    0.31          0.32

 1/5 Satiation  Fractional   µ=5.58, σ=1.00    0.09          0.36

 Exponential      W 6.110 =    0.07          0.34

Table 2.9. The 'best fit' parameter sets to the Bromley data obtained by the simplex method

together with the minimised mean square error.

Comparing the minimum mean squared errors obtained for the three models indicates

the linear model as a clear best fit to the satiation data which is not too noisy (see

figure 2.16).  In the other two examples, the best model is not so obvious.  In the two-
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thirds satiation case, the fractional model also fits the data very well and all three

models fit the one-fifth satiation data equally well.
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Figure 2.16a. The Bromley digestion data with fitted linear digestion curves and initial stomach

contents distributions for i) satiation, ii) 2/3 satiation and iii) 1/5 satiation.

In the second data set the problem can be overcome by looking at the initial stomach

contents distributions predicted by the two models.  The fractional model predicts an

unreasonably narrow initial stomach contents distribution (see table 2.9 and figure

2.16bii) and therefore I can conclude that the linear digestion model is a more

reasonable fit.  In the final data set, however, the initial conditions required by all three

models seem fairly believable, so in this case I am not able to make a similar

conclusion.  Overall however, these results seem to agree with Bromley that the linear

model is most appropriate in the description of his digestion data.
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Figure 2.16b. The Bromley digestion data with fitted fractional digestion curves and initial

stomach contents distributions for i) satiation, ii) 2/3 satiation and iii) 1/5 satiation
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Figure 2.16c.  The Bromley digestion data with fitted exponential digestion curves.
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In this chapter I have explained the dynamics of the various individual digestion models

and shown how the shape of the digestion curves generated by a population of fish

depend on the initial distribution of stomach contents of that population.   Sections 2.5

and 2.6 have shown how it is often very difficult to distinguish whether evacuation

data has been produced by a population digesting linearly, fractionally or even

exponentially when the data is quite noisy and the initial stomach contents distribution

of the population is unknown.

For the purpose of this thesis I am most interested in the common marine fish species

inhabiting the sea lochs of the west coast of Scotland, two of which are whiting and

plaice.  So, given the quite strong indication that whiting follow a linear digestion

model, for the remainder of this thesis I shall assume a linear digestion process.

However, one of the advantages of the feeding and digestion model which I shall go on

to construct in chapter 3 is that the digestion rule can be quite easily altered by

substituting in a different expression for D(w), the digestion rate and the numerical

solutions can then be carried out in a similar way.
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Chapter 3

A model of feeding and digestion
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3.0 Introduction

In chapter two I considered the mechanics of the digestion process and formulated a

model to describe the variation in the stomach contents distribution of a non-feeding

population of fish after the consumption of a single meal.  I shall now attempt to

extend the model to include feeding and thus form a realistic picture of the daily

variation in stomach contents.  Before deciding how to include feeding into the partial

differential equation model which represents the non-feeding case, I shall highlight

some of the main factors governing their feeding behaviour.

Most of the theories about the feeding behaviour of marine fish have largely been

deduced from calculations based on stomach contents data collected from the field

coupled with laboratory feeding experiments.  This is due to the huge practical

difficulties of observing the fish in their natural habitat.  In the wild, the time fish spend

actually eating will be interrupted by time spent foraging for food and escaping from

predators, but in order to survive a fish must eat enough food to enhance growth and

provide the energy required to avoid predation.  So, feeding will consist of a series of

meals interrupted by the need to find new prey and avoid predators.  This being the

case, then it is unlikely that the fish will be feeding at a constant rate.  Stomach

contents samples taken by Brodeur and Pearcy (1987) and Hall et al. (1995) support

this view.  The paper by Brodeur and Pearcy (1987) also notes that there is a large

variability between individual stomach contents at any one time implying that not all

fish are feeding synchronously.

 The feeding rate itself will be regulated by a number of factors including satiation, the

availability of the desired food and the ability of the individual to catch it. Studies by

Ivlev (1961), Magnuson (1969) and Elliott (1975) found that food acquisition during a

period of feeding decreases as a result of satiation.  Obviously if the population was

exposed to a plentiful supply of food and food consumption was not regulated, then
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the fish would carry on feeding indefinitely and consequently the stomach contents

would go on increasing without limit.  The ability of an animal to catch its chosen prey

also must be considered when discussing fish feeding habits and is regulated by prey

behaviour and the presence of other competing predators.  The concentration and

availability of some prey species varies considerably during the day, with some being

moved by the tides and others migrating through the water column with changes in

light intensity.  Many predators largely rely on sight to find and catch their prey, so

most of their successful feeding activity will take place during the day, with very

sporadic or zero feeding during darkness.  A number of authors have found evidence

to illustrate these variations.  For example, after food consumption calculations made

from stomach contents data, MacDonald and Waiwood (1986) argued that

pleuronectides are solely daytime feeders, while Hall (1987) concluded from his

calculations that dabs were primarily night-time feeders and did not rely on their sight

to capture prey.

A population of identical individuals feeding on a source of identical prey will have a

range of stomach contents when feeding ceases, due to the distribution of the prey

relative to the predator population.  However the exposure of a population of fish to a

single species of similarly sized prey will only occur in laboratory experiments.  In

natural conditions, many prey species of a wide variety of sizes will be available to the

population.  Gut contents sampled from fish in the wild have included the remains of a

wide variety of prey types (Hall et al. 1990) implying that fish are not particularly

selective in what species they will and will not eat.  Therefore, in the wild, a population

of identical fish will be feeding on a range of meal sizes at any one time and will

consequently have a range of stomach contents.
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To build a model which could incorporate a detailed description of all the variations

mentioned above would prove very difficult, so before going any further some

simplifying assumptions are required.

3.1 Some assumptions about the feeding process

Previous feeding models have considered, like those for digestion, only individual

stomach contents or the average stomach contents of a population of fish and have not

considered the between fish variability in stomach contents.  In fact most feeding

models have just been based on the digestion models described in chapter one, but with

the addition of an extra term, R(t),  to represent the food consumption rate

dW(t)

dt
R(t) - KW(t)c= .           (3.1)

This model was used by Pennington (1985) in its most general form and by Elliott and

Persson (1978), with c equal to one, to make estimates of the daily consumption of

fish.  Both these studies recognised that there was likely to be some variation in the gut

weights even amongst individuals from a population of similarly sized and aged fish

due to the variety of available meal sizes and in which case used mean feeding rates

and mean stomach contents values in their calculations.

Equation (3.1) could quite adequately be used to describe the variation in the stomach

contents of a feeding individual or the variation in average stomach contents of a

population whose individuals are feeding identically and therefore all contain the same

amount of food.  However a population of fish in the wild will not have identical

stomach contents and an alternative model needs to be formulated.  In chapter two, I

constructed a model which describes the time variation of the stomach contents
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distribution for a non-feeding population of fish.  In this section I shall explain how this

model can be extended to include the feeding process.

I will begin my discussion of the feeding process by considering what happens to the

gut contents of a fish when it consumes a single meal.  I shall assume that on ingestion

of a meal of weight m, the stomach contents of an individual fish are increased from w

to w+m grams i.e. the complete weight of the meal reaches the stomach.  Since a meal

consists of a rapid ingestion of food, it is not irrational to suppose that this increase in

stomach contents takes place approximately instantaneously.  This implies that unlike

digestion, feeding is a discontinuous process as on consumption of a meal, the stomach

contents jump immediately from w to w+m without passing through any of the values

in between.

If I now return to the description of stomach contents distribution used in the digestion

model, I can say that the proportion of fish with gut weights in the range w-dw to w at

time t (f(w,t)dw) can only be changed by digestion or feeding.  Considering for the

moment only the effects of feeding, then an increase in this proportion is produced by

feeding activity among individuals with lower gut weights or empty guts who manage

to ingest a meal of exactly the right size to take their gut contents into the range w-dw

to w, while ingestion of a meal of any size by fish already in this category will reduce

this proportion as individuals are moved to a higher gut weight.

I have already mentioned that many fish species have a very varied diet.  However, a

model which included information about the consumption of particular prey species

would be extremely complicated to formulate and would have to include a great many

parameters.  Instead I shall consider all prey species together and assume that a meal

taken by a fish at a particular time is the instantaneous ingestion of a single prey item.
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As I discussed earlier, even a population of similarly sized fish feeding from an

identical supply of prey will take various sized meals.  Assuming that the same

distribution of meals is available to the whole population, I will introduce a distribution

function Φ( , , )w m t  such that Φ( , , )w m t dmdt  represents the probability that between

time t and t+dt, an individual with current stomach contents w ingests a meal weighing

between m and m+dm grams.

Using this definition, I can now write expressions for the rate at which fish leave and

enter a particular stomach contents weight due to feeding.  The rate at which

individuals arrive at a gut weight of w from one of w-m is dependent on the rate at

which they consume meals of size m.  Since the rate of increase in category w to

w+dw is due to the feeding activity in all lower classes, the total rate of entry from

non-empty stomachs is

F(w,t) (w,m,t)f (w - m,t)dm
0

w

≡ z Φ          (3.2).

Fish can also arrive at a gut weight of w from the empty stomach state when they eat a

meal of  exactly w grams in weight.

The fish population is feeding continuously, so that one meal is followed by another

and a fish which has just gained a stomach contents of w will immediately move into a

higher stomach weight category as another meal  of any size is taken.  So I can write

U(w,t) (w,m,t)dm
0

≡
∞

z Φ                      (3.3)
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as the average rate at which an individual with current gut weight w at time t ingests

meals of any size, which is equivalent to the per capita rate at which individuals leave

this weight due to feeding and move to a higher one.

These feeding terms can now be added to the digestion model (equation 2.11) to give a

partial differential equation which describes the variation in the stomach contents

distribution of a population of simultaneously feeding and digesting fish.

∂
∂

∂
∂

f (w, t)

t

f (w, t)
        w> 0= − + +K

w
U w t f w t w w t P t F w te( , ) ( , ) ( , , ) ( ) ( , )Φ

          (3.4)

The first term in the equation is due to the digestion process and describes the

continuous constant depletion of the stomach contents of all individuals.  The second

term is the per capita rate at which individuals leave the stomach weight of w due to

feeding multiplied by the proportion of individuals with this weight to give the total

decrease in the proportion of the population with stomach weight w due to feeding.

The last two terms in equation in the equation represent the rate of entry to stomach

weight w due to feeding from lower stomach weights.  F(w,t) is defined in equation

(3.2) and the third term describes the rate at which individuals with empty stomachs

eat meals of size w and so arrive at a stomach weight of w grams.

The feeding process only affects the empty category by removing individuals at a rate

U(0,t).  So, the rate of change of the proportion of the population with empty

stomachs is given by

dPe( )
( , ) ( , ) ( )

t

dt
Kf t U t P te= −+0 0 .           (3.5)

In its present form the definition of U(w,t) (equation 3.3) is quite general and does not

explain the specific dependence on the initial stomach contents.  Obviously feeding is
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reduced  by satiation, which is controlled by stomach fullness (Hamilton 1965) and the

dietary energy content of the food items consumed (Fletcher 1984).  So, the model

should include some limitations to the amount of food that can be eaten and the size of

prey which the population is able to consume.  The simplest way to include a fullness

control is to say that an individual fish will refuse any meal which will take its stomach

contents above a particular value wF which represents the maximum stomach contents

of all individuals in the population which is being considered.  This assumption then

implies that fish with empty stomachs will be able to eat meals with a wide variety of

weights while fish which are almost full will only be able to eat small meals or will not

eat at all.  The meal size function can now be written as

Φ(w,m,t) =
A(m,t)           < m w

0                      otherwise 
F0 ≤ −RST w

          (3.6)

and the functions (3.2) and (3.3) can be simplified to

F w t A m t f w m t dm
w

( , ) ( , ) ( , )≡ −z
0

.           (3.7)

and

U w t A m t dm
w wF

( , ) ( , )≡
−

z
0

         (3.8).

3.2 The constant feeding rate model

If I consider again the equations defining the model dynamics, it looks unlikely that it

will be possible to find an analytic solution to the equations in their present form.  A

simplification can be made by supposing that the meal size distribution (A(m,t)) is a
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time independent function and can be written as RM(m) where R is a constant uptake

rate and M(m) is a distribution function dependent on meal weight only.  Although this

supposition is made to simplify the mathematics of the problem, it is not a completely

irrational assumption to make about the feeding behaviour of some fish species.  For

example, a population of non-visual feeders whose prey  is permanently available i.e.

unaffected by the tides or light intensity and who are not prone to predation by other

animals may feed for long periods of time at a constant very low rate.  The functions

F(w,t) and U(w,) can then be rewritten as

F w t R M m f w m t dm
w

( , ) ( ) ( , )= −z
0

,           (3.9)

and

U w M m dm
w

( ) ( )= R
0

w F −

z         (3.10)

and the model equations become

∂
∂

∂
∂

f (w, t)

t
K

f (w,t)

w
U(w)f (w,t ) RM(w)P t) + F(w,t)e= − + (     (3.11)

and

dP

dt
Kf (0 t) - RP t)e +

e= , ( .         (3.12)

Clearly if the constant feeding rate R is equal to zero, then these equations reduce to

those defining the variation in stomach contents of non-feeding population of fish

(equations 2.11 and 2.12).

In chapter two I explained how, after an initial transient, the digestion only equations

reach a stationary solution in which the entire population have empty stomachs.  A

steady state solution will occur in this case when the proportion of fish leaving each of
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the categories due to feeding and digestion is balanced by the proportion entering them

by digestion from above and feeding from below.  If the stationary solutions of the

above equation are denoted as previously, then clearly equation (3.12) implies that

P
Kf

Re
*

*
=

+( )0
         (3.13)

and equation (3.11) becomes

df (w)

dw

1

K
U(w)f (w) - RM(w)P F (w)

*
*

e
* *= −         (3.14)

On substituting the expression for Pe
*  into equation (3.14), we observe that f w)* (  must

satisfy the following differential equation

df w)

dw

1

K
U(w)f w) -

Kf 0 )

R
RM(w) - F w) ;

                f

*
*

* +
*

*

(
(

(
(

( )

=
FHG IKJLNMM OQPP

=0 0f

        (3.15)

and the condition

Pe
* + =

∞

z f w dw* ( )
0

1         (3.16)

where

F w) = R M(w - m)f m)dm* *

0

w

( (z         (3.17)

= zR M(m)f w - m)dm*
w

(
0

.

This problem cannot be solved, however, without knowing the value of the initial

condition, f * ( )0+ .  Suppose I divide through equation (3.15) by f * ( )0+  to give
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d

dw

f w)

f 0)

1

K
U(w)

f w)

f 0)
- KM (w) -

F w)

f 0)

*

*

*

*

*

*
(

(

(

(

(

(

FHG IKJ =
FHG IKJL

NMM
O
QPP                    (3.18)

and introduce a new function

g w
f w

f
*

*

*( )
( )

( )
=

0
,           (3.19)

then we obtain the differential equation

dg

dw

1

K
U(w) (w) - KM (w) -   g

*
* * *( )

( ) ; ( )
w

g G w= =0 1               (3.20)

where

G w R M m g w m dm
w

* *( ) ( ) ( )= −z
0

,         (3.21)

which can be solved for g w* ( ) with no dependence on the value of f * ( )0+ .  If the

solution of equation (3.20) is g wo( ) then the solution of (3.15), f w* ( ), is just a

multiple of this, f g wo
* ( ) ( )0+ .  However, the solution of equation (3.15) must also

satisfy condition (3.16).  Substituting the expressions for f w* ( ) and Pe
*  into (3.16)

gives

Kf

R
f g w dwo

*
*( )
( ) ( )

0
0 1

0

+
+

∞
+ =z         (3.22)

which on rearranging gives

f
K
R

g w dwo

* ( )

( )

0
1

0

+
∞=

+ z

.         (3.23)

The stomach contents distribution function can then be written as
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f w
K
R

g w dw

g w

o

o
* ( )

( )

( )=

+

F

H
GGGGG

I

K
JJJJJ∞

z

1

0

         (3.33)

and the proportion of the population with empty stomachs in the stationary state is

P
R
K

g w

e

o

*

( )

=

+
∞

z

1

1
0

        (3.34)

where g wo( ) is the solution of equation (3.20).

Although the steady state equation (3.14) (or equation 3.20) is much simplified in

comparison to the time dependent case, it is still a relatively complicated differential

equation due to the term F w)* (  and cannot readily be solved analytically.  However,

given a particular meal size distribution, the functions U(w) and F w)* (  can easily be

calculated using a numerical integration scheme, for example the trapezium or

rectangular rule.  The ordinary differential equation can then be solved using a fourth

order Runge-Kutta method provided that values for the feeding rate, R, the digestion

rate and the 'initial' condition f (0* + ) have been supplied, and Pe
*  can be calculated

from (3.12).  This method is implemented in a standard software package SOLVER

(Gurney et al 1992) with adaptive step-size and accuracy control. Initially I have

assumed that the meal size distribution is shaped like a normal distribution (truncated

at zero and renormalised if necessary), with mean equal to 1 gram, standard deviation

0.5 and feeding rate 0.1 meals per hour.  The solutions of equation (3.15) produced by

choosing different initial conditions are illustrated in figure 3.1, which confirms that

f (0* + ) in equation (3.15) is just a scaling factor in the solution before normalisation.

Hence the solution can be calculated by solving equation 3.15 with any chosen value of

f0  and renormalising the numerical solution.
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Figure 3.1 Stationary state distributions produced by initial conditions of a) 1.0, b) 0.5 and c)
0.25.

3.3 Variations in stationary state distributions

To help understand how the stomach weight distribution is affected by meal size

distribution, I have initially concentrated my efforts on the numerical solution of the

stationary state equation and will proceed later to consider the time varying case and

the transient stage which is passed through to reach this solution.

Since one of the aims of this work is to help understand the interaction of fish and their

prey  we would like to be able to obtain information on the meal size distribution of a

species of fish from its stomach contents distribution.  In order to make specific

conclusions from stomach contents distribution observations it is necessary to ascertain

that the relationship between the gut weight distribution and meal size function is one

to one and that a particular solution cannot be generated by many different feeding

regimes.  This cannot be proved analytically due to the impossibility of finding an
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analytic solution, so the only way to proceed is by a series of numerical experiments

and trial and error.

In chapter two, I discussed the differences between digestion models, but did not

consider how these affected the stomach contents distribution of feeding population of

fish.  So, before beginning the investigation into how changes in the rate of feeding and

mean meal size affect the shape of the stationary state stomach contents distribution, I

shall show how important it is that the digestion rate is known.  As in the previous

section I have initially assumed that the meal size distribution M(m) takes the form of a

normal distribution which has been truncated at zero and normalised over the range of

the stomach weights.
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Figure 3.2.  Stomach contents distributions for a population feeding a normal meal size

distribution with mean one gram, standard deviation 0.1 and at a rate 0.1 meal per hour with

digestion rates of a) 0.05, b) 0.1, c) 0.2 and d) 0.5.
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Figure 3.2 shows that quite small changes in the linear digestion rate can considerably

affect the stationary state stomach contents distribution of a population of fish.  The

stationary state stomach contents distribution shown in figure 3.2a is that of a

population whose individuals are digesting at a very low rate when compared to their

feeding rate.  This low rate cannot stop the majority of the population from building up

in a peak at the top of the stomach contents range.  Doubling the digestion rate

produces the very level stomach contents distribution illustrated in figure 3.2b while

increasing the digestion rate by ten times produces the gut weight distribution shown in

figure 3.2d in which most fish have empty stomachs and the remaining few have very

low stomach contents.

These results highlight the importance of a known digestion rate and so throughout the

feeding experiments in the rest of this chapter I shall keep the digestion rate fixed at a

rate of 0.15 grams per hour.  This is typical of the values for the digestion rate of

marine fish of the size and species whose feeding behaviour will be studied later in this

thesis (Robb 1990).

In the first set of experiments I shall hold the meal size function as a constant normal

distribution and investigate how the shape of the gut contents distribution changes as

the rate of feeding is increased.  The maximum gut contents wF is equal to 8 grams

throughout. I have already found an analytic solution to the case when the feeding rate,

R, is equal to zero - all the stomachs are empty.  As the feeding rate is increased, the

proportion of empty stomachs drops and a distribution of non-empty stomachs begins

to appear.  For low feeding rates there is a peak in the distribution around the mean

meal size stomach contents and very few individuals have much food in their stomachs.

However, as the feeding rate is increased further, the proportion of fish with high

stomach weights increases,  as the digestion rate is not high enough to keep this

proportion down, reducing the fraction of the population with low stomach contents
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so that when the population is feeding at a rate equal to 0.35, the stomach contents

distribution appears much flatter, as illustrated in figure 3.3d.
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Figure 3.3. Stomach contents distributions of populations feeding on normally shaped meal size

distribution with mean meal size 0.4 grams , standard deviation 0.2 and feeding rates a) 0.05, b)

0.2, c) 0.3, d) 0.35, e) 0.37 and f) 0.4.  The maximum stomach weight of the individuals is 8

grams.

Further increases in the feeding rate lead to a build up of the population towards the

higher end of the stomach contents range.  The assumption made about the stomach

capacity is that a meal is rejected if by consuming it the stomach contents would have

gone over their upper limit, which in this case is 8 grams.  Since the mean meal size is

quite small (0.4 grams), individuals can go on feeding even when they have fairly large

quantities of food in their stomachs.  So, this fullness peak builds up quite close to the

stomach contents upper limit.
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Figure 3.4. Stomach contents distributions for a population feeding at a rate 0.1 grams per hour

on a normally shaped meal size distribution with standard deviation 0.1 and mean a) 0.25,  b)

0.5, c) 1.0, d) 2.0, e) 4.0, f) 5.0.

Holding the feeding rate and the standard deviation at 0.1, I shall now investigate the

effect of changing the mean meal size.  The digestion rate and the maximum stomach

contents are fixed as before.  With a very low mean meal size, the stomach contents

distribution is extremely skewed to the lower end of the range with many empty

stomachs and a large proportion of the population with gut contents around the mean

meal size (figure 3.4a-c).  As the mean meal size increases, the peak moves towards

the right as expected, but the proportion  of fish with large stomach contents also

increases as they eat several consecutive meals.  The meal size distribution which

generates the stomach contents distribution shown in figure 3.4d has a mean of two

grams, which accounts for the large proportion of fish with high stomach contents.  In

this case the proportion of fish with a particular gut content increases with gut weight
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until a peak at around six grams is reached.  Since the meal size distribution is very

narrow, most available meals are very close to two grams in weight, so few fish with

gut contents above six grams will be able to feed due to the upper stomach contents

limit and so the stomach contents distribution drops at this point.  This peak occurs at

lower gut weights as the mean meal size is increased as shown in figures 3.4e and 3.4f.

In fact the mean meal size is so large (5 grams) compared to the maximum stomach

contents (8 grams) in figure 3.4f, that one meal pretty much fills the stomach.
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Figure 3.5. Stomach contents distributions of a population feeding at a rate 0.1 on meals whose

sizes are normally distributed (truncated at zero and eight grams) with mean one and standard

deviations a) 0.01, b) 0.05, c) 0.1, d) 0.2, e) 0.5 and f) 1.0.

The consequences of altering the parameters which have so far been considered have

been significant and clearly visible.  I now wish to consider the effects of changing the

variability of the meal size distribution.  Figure 3.5a shows the stomach contents
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distribution which occurs when the meal size distribution is very narrow (the standard

deviation is equal to 0.01), implying a prey population with very little size variation.

The narrowness of the meal size distribution is reflected in the stomach contents

distribution by very definite peaks at the mean meal size and twice the mean meal size,

as empty fish consume two consecutive meals.  As the size of the meals becomes more

varied i.e. the standard deviation is increased, then the peak at two grams (twice the

mean meal size) disappears, the peak at one gram becomes less pronounced and a

growing proportion of fish have large stomach contents as larger meals become

increasingly available.

So far I have found little evidence to suggest that a particular stomach contents

distribution will result from the solution of equation (3.14) with condition (3.16) for

more than one set of parameters.  However, the meal size distribution which so far has

been used has been relatively simple, consisting of only a single normal distribution.

The distribution of meal sizes is likely to be more complicated than just one normal

distribution, in fact it may have many peaks depending on the variation in size and

species of the available prey.  For example a population of fish may have two sources

of food, one of extremely  small but very abundant prey and the other of much rarer,

but very large prey.  The meal size function will then be made up of two separate

normal distributions representing the distribution of meals from each source.  The

question which needs to be answered here is can the stomach contents distribution

from a single peaked normal distribution be reproduced by feeding on more than one

food source.  Figures 3.6 and 3.7 show some more complicated feeding functions with

their corresponding stomach contents distributions.
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Figure 3.6.   Meal size functions (i) with their associated stomach contents distributions (ii),

where the meal size functions are as follows: a) single normal distribution with mean 1.5, and

feeding rate 0.1;   b) two normal distributions with means 1 and 2, and feeding rate 0.05 and    c)

four normal distributions with means 0.75, 1.25, 1.75 and 2.25, and feeding rate 0.025.  All

standard deviations are 0.05.

In consecutive distribution functions, the number of food sources doubles, the

individual functions having means on either side of the peak in the previous example

and feeding rates at half the previous value.  In figure 3.6, the meal size distributions

are all very narrow and this is reflected in the very clear peaks in the stomach contents

distribution.  The different gut weight distributions, although as a whole are quite

similar in shape, due to their identical overall mean meal size (1.5 grams),  are easily

distinguished from each other by looking at the details of the distribution.  There are a

number of small peaks present in each stomach contents distribution, corresponding to
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the number of separate normal distributions which make up the meal size distribution

function.
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Figure 3.7.    Stomach contents distributions (a) with their associated meal size functions as

follows: i) single normal distribution with mean 1.5 and rate 0.2 (solid line stomach contents

distribution);  ii) two normal distributions with means 1 and 2 and feeding rate 0.1 (dotted line)

and    iii) four normal distributions with mean 0.75, 1.25, 1.75 and 2.25 and feeding rate 0.05

(dashed line).  All the standard deviations are equal to 0.2.

The examples in figure 3.7 are identical to 3.6 except for the standard deviations of the

meal size distribution which are four times bigger than those shown in figure 3.6.  The

three stomach contents distributions have quite similar overall shapes and no particular

distinguishing features (unlike those in figure 3.6), although the feeding functions are

quite different.  However, if the three distributions are superimposed on top of one

another as in figure 3.7a, they are quite clearly different.
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The four normal distributions which make up the feeding function shown in figure

3.7iii have become almost indistinguishable due to the very wide standard deviation of

each individual distribution.  The shape of this function can be matched quite closely by

a single normal distribution of equal mean and much larger standard deviation, as

shown in figure 3.8a.  The resulting stomach contents are easily distinguished when

illustrated on the same set of axes, though we would not be able to guess, seeing the

distributions individually, that one had been produced by a population feeding on four

prey sources and the other by a meal size distribution consisting of a single much

broader normal distribution.
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Figure 3.8  Meal size distributions (a) consisting of (solid) four normal distributions with means

0.75, 1.25, 1.75 and 2.25, standard deviation 0.2 and feeding rate 0.05 and (dotted) a single

normal distribution with mean 1.5, standard deviation 0.5 and feeding rate 0.17, together with

their associated stomach contents distributions (b).
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I shall now consider the effect of using an alternatively shaped distribution function.

The main features of a normal distribution with a mean of one gram and standard

deviation of 0.24 can be reproduced by replacing it with a triangular shaped

distribution, centred at one and whose base is of width 1.2.  This is illustrated in figure

3.9ai.  The corresponding stomach contents distributions are almost identical and

virtually impossible to tell apart.  However, since the two feeding functions which

generate these stomach contents distributions are very similar anyway, it seems

unlikely that it will ever be necessary to distinguish between the two.
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Figure 3.9.  Normally distributed meal size functions (solid line) compared to their closest fitting

triangular distribution (dotted line (a)) and gamma distribution (dotted line (b)), with their

associated stomach contents distributions.
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The shape of a feeding function made up of a normal distribution which is very skewed

towards zero (mean 0.1) with a larger standard deviation (0.5) and feeding rate 0.14 is

similar to that of the gamma distribution

Ω w

x
e

o

n w
xo

FHG IKJ −
FHG IKJ         (3.35)

with n equal to 0.35, W equal to 0.142 and xo 0.38.  The resulting gut weight

distributions are illustrated in figure 3.9bii.

The stomach contents distribution generated by the normal feeding function is much

more skewed towards the lower end of the stomach fullness range than that produced

when feeding on meals which follow the gamma distribution.  Although the illustrated

gamma and normal distributions are quite similar at low meal sizes (figure 3.9bi), the

gamma distribution tales off much slower, so that when a population of fish are feeding

on meals whose sizes have a gamma distribution, there will be more larger meals

available and consequently a larger proportion of the population will have larger

amounts of food in their stomachs.

By looking at these examples of stomach contents distributions generated from a

population feeding at a particular rate and on meals with a particular distribution, I

have tried to show that the relationship between gut weight distribution and feeding

function is one to one.  None of the examples have produced identical stomach

contents distributions, although some have been quite difficult to distinguish without

comparisons made by illustrating all distributions on the same axes.  These difficulties

arose only when steady state stomach contents distributions were generated by meal

size distributions made up of differing numbers of prey sources.  So, I can conclude

from this section that once a digestion rate has been established, it should be possible,

in theory, given a stationary stomach contents distribution and a fixed number of prey
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sources, to find the unique set of parameters defining the meal size distribution and

feeding rate.  The parameters are not considered unique in a strict analytic sense, but in

the sense that meal size distributions which produce numerically identical stomach

contents distributions are themselves numerically indistinguishable.  I shall return to the

question of uniqueness for differing numbers of prey sources later in the thesis, when I

shall also investigate the effect of noisy or incomplete data.

3.4 The time dependent feeding rate problem

Although the previous section gives a good indication of the stomach contents

distributions, this has limited value when considering the feeding dynamics of most fish

species.  As I discussed in section 3.0, the feeding rate has frequently been found to be

dependent on light intensity and the tidal cycle, so it is not unreasonable to assume that

the consumption rate varies periodically.  Returning to the formulation of the model, I

shall now rewrite the feeding function as R(t)M(m) where M(m) is a distribution

function dependent only on meal weight and R(t) is a cyclic function.  The partial

differential equation model defining the stomach contents distribution variation can

now be written as

   
∂

∂
∂

∂
f (w, t)

t
K

f (w,t)

w
U(w,t)f (w, t) + R(t)M(w)P + F(w,t)e= − ( )t             (3.36)

and 

dP t

dt
Kf t R t P te

e

( )
( , ) ( ) ( )= −+0         (3.37)

where  U w t R t M m dm
w wF

( , ) ( ) ( )=
−

z
0

        (3.38)

83



and F w t R t M m f w m t dm
w

( , ) ( ) ( ) ( , )= −z
0

.         (3.39)

It was seen in the previous section that even an analytic solution to the general

constant feeding rate problem was an impossibility, so an expression for the variation

of the stomach contents distribution in the more realistic varying feeding rate model is

likely to be even less feasible.  However, there are many reliable numerical difference

schemes which can be used to solve partial differential equations of this type.  Suppose

that I discretise the system in the weight dimension so that f f i wi = ( )∆  for i
w

w
F=1..

∆

and use a central differencing scheme to approximate the derivatives everywhere

except at the edges where one sided differences are used. The partial differential

equation then becomes a system of coupled ordinary differential equations which can

be solved using the fourth order Runge-Kutta method.  (The functions U(w,t) and

F(w,t) are obviously dealt with in the same way as they were in the constant feeding

rate model).  The system of differential equations is shown in appendix A.

This method of solution of a partial differential equation is probably not the method of

choice for most numerical analysts as there are many standard numerical methods

available for the solution of such equations, for example  the Crank-Nicolson and Lax-

Wendroff schemes.  However, such methods, known as the 'method of lines', have

been suggested by Verwer and Dekker (1983).  The central differencing scheme

produces a stiff system of ordinary differential equations, the solution of which by

Runge-Kutta methods is stable (Dekker and Verwer 1984).  Before this method can be

relied upon completely though, the solution must be tested further to check that the

peculiarities at the end points in the discretisation of the weight dimension do not

significantly affect the solution.  The simplest way of doing this is to set R(t) equal to a

constant and let the model run until the stomach contents distribution function remains

stationary, at which stage it should be identical to that predicted by the stationary state
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equation described in the earlier part of this chapter.  I shall compare the solutions of

these two methods in the next section and at the same time I can consider how the

steady state is reached.

3.5 Constant feeding rate dynamics

Before investigating the dynamics of the transient solution in much detail, I shall first

check the solution of the time dependent set of equations (3.36 and 3.37), by setting

R(t) equal to a constant and comparing the solution to that of the stationary state

equation.  Figure 3.10 shows the progression of the stomach contents distribution of a

population of fish from a normal initial stomach contents distribution with mean 2

grams and standard deviation 0.5, to their stationary state.
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Figure 3.10.  Stomach contents distributions of a population of fish with normal initial

distribution (a) with mean 2 grams and standard deviation 0.5, at b) 10 hours c) 25 hours and d)

stationary state (100 hours), feeding on a meal size distribution with mean 0.4 grams, standard

deviation 0.2 and at a rate of 0.2 meals per hour.
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When the stationary distribution is compared to that produced by the stationary state

equation (see figure 3.3b), the two look the same and numerically, are virtually

identical with a difference of less than 0.5%.  The small inaccuracies are due to the

different numerical methods used for each solution.

Although, information is lost about the stomach contents distribution by considering

only the mean stomach contents, this is a much more convenient way of considering

how the solution progress with time and does not require the many illustrations of

stomach contents distributions.  However in certain feeding situations, the dynamics

become quite complicated and in which case, a few select illustrations of stomach

contents distribution functions will be of help.  In this section I aim to show how the

progression of an initial stomach contents distribution to its stationary state is affected

by changes in the distribution of available meals and the rate of feeding.  In all of the

following examples the population concerned has a digestion rate of 0.15 grams per

hour, an upper stomach contents limit of eight grams and an initial stomach contents

distribution which is normal with mean 2 grams and standard deviation 0.5 grams.

Most of the equilibrium stomach contents distributions have already been illustrated in

section 3.3 when the variation in stationary state distributions was investigated.

In my first set of examples, illustrated in figure 3.11, I have shown the variation in the

mean stomach contents with time for a range of feeding rates.  When the population

has a very low feeding rate of 0.05 meals per hour, the mean stomach contents drop

very quickly from two grams and the low stationary state is reached within

approximately 25 hours.  In this case the feeding rate is so low that very few fish can

reach high stomach contents unlike a population feeding at a rate of 0.4 grams per

hour.  This eight fold increase in the feeding rate causes an increase of over one

hundred times in the final stationary mean stomach contents which are not reached

until nearer 800 hours. 
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Figure 3.11.  Progression to equilibrium for a population of fish with a normal initial stomach

contents distribution with mean two grams and standard deviation 0.5 feeding on a meal size

distribution with mean 0.4 grams, standard deviation 0.2 and constant rates 0.05 (solid line), 0.2

(dotted line), 0.3 (short dashed), 0.35 (dashed), 0.37 (long dashed) and 0.4 meals per hour (dot-

dashed).

Figure 3.12 shows the variation in mean stomach contents for the same initial

population when the width of their meal size distribution is varied.  The distribution is

centred at one gram and the members of the population feed at a rate of 0.1 meals per

hour.  Clearly for low meal size distribution standard deviations, for example 0.01 and

0.2, very few fish will have high stomach contents, so the mean stomach contents will

be quite low - approximately one gram and fall directly to their steady state from the

initial condition.

However, when the population feeds on a meal size distribution with standard

deviation one gram, the mean stomach contents initially decrease, before increasing to

their stationary state value.  The stomach contents are initially normally distributed

with a mean of two grams and a standard deviation of 0.5, so only a very tiny

proportion of the population have high stomach contents to begin with.  As the feeding
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and digestion process begins, this normal distribution starts to move to the left ( due to

the digestion process) and some individuals become empty, while at the same time the

population is feeding at a low rate on a wide variety of meal sizes, so a very small

proportion of the population will have a large amount of food in their stomach.

Initially, the number of fish with large stomach contents is so small that it does not

significantly affect the mean stomach contents which decrease due to the digestion

process.  However, since these fish have eaten quite large meals, it takes a very long

time for them to digest the food and become empty again, and all the while, more fish

are eating large meals and the proportion of the population with high stomach contents

is increasing.  Hence, the mean stomach contents increases until it reaches its

stationary state.
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Figure 3.12.  Time history of the mean stomach contents of a population whose initial stomach

contents distribution is normal with mean two and standard deviation 0.5, feeding at a constant

rate of 0.1 meals per hour on normally distributed meals with mean one gram and standard

deviations 0.01 (solid line), 0.2 (dotted), 0.5 (short dashed), 0.75 (dashed), 1 (long dashed) and 2

(alternate dot dashed).
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The immediate increase in the mean stomach contents curve when the population

begins feeding on a meal size distribution with standard deviation 2 grams is due to the

availability of extremely large meals.  The consumption of very large meals by even

just a few individuals, who consequently become very full, is enough to override the

initial reduction in mean stomach contents due to the digestion process.

An even more interesting transient to consider is that which occurs in figure 3.13.  This

illustration shows how the steady state is reached for a population feeding on meal size

distributions with different means.

Our attention is quickly drawn, to figures 3.13e and 3.13f which show oscillations in

the mean stomach contents before it settles down to its steady state.  The mean

stomach contents variation illustrated in figure 3.13f was generated by allowing the

population to feed on very large meals (mean five grams), but with very little size

variation (standard deviation 0.1).

As the fish initially begin to feed, a peak in the stomach contents distribution begins to

build up at around the seven gram stomach weight which is where a five gram meal

will take them from an original stomach contents of around two grams, so the mean

stomach contents initially increases.  Once they have taken one meal, of such a size,

though, these fish are unable to feed much further as there are very few small meals

available and the consumption of a meal of around five grams in weight would take

their stomach contents above their upper limit.  Therefore these fish will be digesting

only.  After some time there are very few fish left with low stomach contents and

therefore few are able to take a meal (due to their large sizes), so the majority of the

population are digesting and hence the mean stomach contents are decreasing.  This

decrease continues until a substantial amount of the population have digested enough

so that their stomach contents are low enough to take another large meal and so the

population begin to move to high gut  weight levels again and thus the mean stomach
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contents increase.  As this process continues, the population slowly begins to spread

out over the gut range due to fish with a broader range of gut contents feeding on

meals with a range of sizes.  The movement of the population peaks becomes less and

less obvious and eventually the equilibrium is reached as the proportion of fish gaining

a stomach contents weight due to ingestion from below or digestion from above is

balanced out by those leaving this weight due to feeding or digestion.
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Figure 3.13.  Temporal development of the mean stomach contents of a population whose initial

gut weight distribution is normal with mean two grams and standard deviation 0.5, feeding at a

constant rate of 0.1 meals per hour on a normally distributed meal size distribution with a

standard deviation of 0.1 and mean a) 0.5 grams, b) one gram, c) two grams, d) 2.2 grams, e)

three grams and f) five grams.

Figures 3.13a-e show that the stationary mean stomach contents increases as the mean

meal size increases.  However, there is a decrease in the equilibrium average gut

weight when the mean meal size increases from three grams to five grams, illustrated in
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figures 3.13e and 3.13f.  This is due to the combined effects of the  very large meals

and the upper limit to the gut contents.  Only fish in the lower end of the gut contents

range are able to feed and most other fish will be rejecting food and digesting only,

therefore the mean stomach contents will be lower than in those cases where the mean

meal size is somewhat smaller and less food is being refused.  These equilibrium mean

stomach contents show that for such a population feeding at quite a low rate (0.1

meals per hour), they are better off feeding on a meal size distribution with a mean of

less than half their stomach contents, rather than trying to feed on very large meals.

In this section I have tried to show that the existence of the equilibrium is dependent

on a complicated combination of digestion and unrestricted feeding at low gut weights,

together with consumption rate restrictions enforced by the upper stomach contents

limit.

3.6 Variable feeding rate dynamics

I shall return my attention now to the case when a population is feeding at a rate which

varies throughout the day.  It has been suggested that some fish species feed mainly

during the day and are much less active during the hours of darkness and vice-versa for

other species, in which case it would be sensible to begin by choosing a sinusoidal

curve with period twenty four hours to represent the feeding rate function.  So, I shall

write

R t R R
t

R R
t

otherwise
( ) sin sin= +RS|T| ≤ +1 2 1 212

0
12

π π
         when 0                    (3.40)

which is a constant background feeding rate R1 with the addition of a sinusoid to give

the variation. The function is clipped as zero so as to cut out negative feeding rates

which would be absurd.  I shall refer to the constant R1 as the underlying feeding rate
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and the constant R2 as the feeding rate amplitude.  Figure 3.14a shows that for a

population feeding at a sinusoidally varying rate, the variation in mean stomach

contents reaches a repetitive ‘limit cycle’ with period twenty four hours. The variations

in gut weight distribution which are produced by this particular feeding rate

fluctuation, are illustrated in figure 3.14b.   Although these dynamics are driven by the

variations in the feeding rate function, for convenience, I shall call  them ‘limit cycles’

as they are stable, independent of the initial stomach contents distribution, and cycle

(with period twenty four hours) between an upper and lower limit
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Figure 3.14.  a) Progression of mean gut contents of a population of fish feeding on a normal

meal size distribution with mean 0.5 and standard deviation 0.2 with a sinusoidal rate function

with R1  equal to 0.2 and R2 to a limit cycle from two different initial stomach contents

distributions.  The stomach contents distribution at the trough of the limit cycle is shown in b)

and c) illustrates the distribution at the peak of the mean stomach weight cycle.
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In the next section I shall attempt to explain the dynamics of the time dependent

feeding rate problem in the same way as I did the constant feeding rate problem, by

solving the problem for a number of  sets of feeding parameters (µ,σ,R1 and R2) and

looking at how the variation of a particular parameter affects the solution.

Since I have already looked at how the actual meal size distribution affects the stomach

contents distribution function I shall initially concentrate on the effects of changes to

R1 and R2 .  In the first set of examples, illustrated in figure 3.15, I have kept the

amplitude of the feeding rate oscillations constant at 0.2, but chosen different values of

R1.  The corresponding feeding rate functions are illustrate in figure 3.16.
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Figure 3.15.  Variation in the mean stomach contents of a population whose initial gut contents

distribution is normal with mean two grams and standard deviation 0.5, feeding on a meal size

distribution with mean two grams, standard deviation 0.2, with a sinusoidal rate function with

amplitude 0.2 and R1 equal to a) 0.5, b) 0.3, c) 0.2, d) 0.1, e) 0 and f) -0.1.
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In figure 3.15a, the constant underlying feeding rate of the population is very high at

0.5 meals per hour.  Since most of the population have very high stomach contents,

even at the trough of the sinusoid, the increase in feeding rate due to the sinusoidal

part of the function will have little affect since only a small proportion of the

population will be able to feed anyway, due to the upper stomach contents limit.  As

the underlying rate decreases, a slightly lower proportion of the population have very

large stomach contents, more fish will be able to increase their feeding rate as the rate

function increases and hence the amplitude of the mean stomach contents oscillations

will be greater.
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Figure 3.16.  Feeding rate functions with amplitude equal to 0.2 and R1  equal to a) 0.5, b) 0.3,

c) 0.2, d) 0.1, e) 0 and f) −−0.1, corresponding to the mean stomach contents variations shown in

figure 3.15.
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I have defined the feeding rate function as a clipped sinusoidal function and

consequently if the underlying feeding rate R1 is less than 0.2 (the amplitude of the rate

function), there will be periods of time when the overall feeding rate is zero (see

figures 3.16d-f) i.e. the individuals are digesting only.  So, due to the complete

cessation of feeding during some part of the day,  the mean stomach contents of the

population will drop more rapidly, causing an even greater amplitude in the mean

stomach contents oscillations.  By giving R1 a negative value (figure 3.16d), the

feeding rate function has been translated down so far, that most of it has been cut off

at zero and hence the population is digesting for most of the time and only has a peak

feeding rate of 0.1 grams per hour.  Following this feeding  regime,  only a very small

proportion of the population will gain very high stomach contents and therefore the

mean stomach contents will never reach very large values.  The shape of the limit cycle

appears to be deforming with the mean stomach contents decreasing for longer than

they are increasing, though they never reach zero as those few individuals whose

stomach contents do reach quite high weights will not be able to digest down to zero

stomach contents before feeding recommences.

Figure 3.17 compares the mean stomach contents variation curves of populations

whose feeding regimes are identical except for the amplitude of the variations.  As

expected, the amplitude of the oscillations observed in the mean stomach contents

curve increase as the amplitude of the feeding rate function oscillations increases.

This illustration also shows that the amplitude of feeding rate oscillation affects the

position about which the oscillations occur.  As the amplitude decreases, the mid point

of the mean stomach contents oscillation increases.
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Figure 3.17.  Progression with time of the mean stomach contents of a population feeding on

meals with mean size two grams and standard deviation 0.2 grams at an underlying feeding rate

of 0.2 and a feeding rate amplitude of  i) zero (solid line), ii) 0.1 (dotted line) iii) 0.2 (short

dashed line) and iv) 0.5 (dashed line).

The limit cycles are also affected by the parameters defining the meal size distribution

itself.  The mean stomach contents of a population of fish with a meal source which is

distributed normally with mean 1 gram and standard deviation 0.2 grams oscillate

around a fairly low point (approximately 1 gram) as shown in figure 3.18a.  As the

mean meal size increases, the mid-point of the oscillations increases until the upper

limit to the stomach contents begins to come into affect.  When the mean meal size

gets very large, there will be virtually no small meals available, as the standard

deviation of the meal size distribution is very narrow, so many individuals will be

unable to feed.  The effects of this restriction become more obvious as the mean meal

size gets larger and the position about which the mean stomach contents oscillates

drops.
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Figure 3.18. Variation in mean stomach contents for a population feeding at a sinusoidally

varying rate with R  and R1 2  both equal to 0.1, on a meal size distribution with standard

deviation 0.2 and mean a) 1 gram, b) 2 grams, c) 4 grams and d) 6 grams.

So far, I have considered only very simple feeding behaviour, that the population feeds

on only one meal size distribution and at a rate which has one peak and one trough per

day.  However, it has been suggested that some fish species have two daily feeding

peaks, possibly at dawn and dusk.  This behaviour could be simulated by doubling the

frequency of the sinusoid and translating it in the time direction so that the feeding

peaks occur at the right times.  It is quite likely though that these feeding peaks may be

of different amplitudes with fish populations feeding at a higher rate at dawn than at

dusk, due to possible greater energy needs during the day when they may be more

susceptible to predation.  As such a feeding rate function cannot easily be formed using

a sinusoidal curve, the most obvious way to simulate such behaviour seems to be via
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an ordinary step function.  The effect of substituting a step function for a sinusoidal

feeding rate function is shown in figure 3.19.
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Figure 3.19.  Variation in mean stomach contents of two identical populations feeding on normal

meal size distributions with mean 2 grams and standard deviation 0.2, with i) a sinusoidal rate

function with R  and R1 2  equal to 0.1 and period 24 hours (solid line) and ii) with a rate

function which takes the form of a step function with the value 0.2 for the first half of the day

and zero otherwise.

As the step function feeding rate switches between two distinct values discontinuously,

the variations in the mean stomach contents curve are much sharper than those

observed for a population whose feeding rate varies continuously.  Apart from this

difference, the two feeding regimes generate very similar mean stomach contents

variation curves.

The feeding behaviour of a population of fish could be even more complicated than

that described above as the population may be feeding on multiple meal sources each

of whose availability varies during the day.
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Figure 3.20.  Time history of the mean stomach contents distribution of a population of fish

feeding on two normally distributed meal sources, one with mean two grams and standard

deviation 0.1 at a rate of 0.4 meals per hour between 4am and 8am and 0.05 meals per hour

during the rest of the day and the other with mean 0.5 grams and standard deviation 0.1 at a

rate 0.2 meals per hour between 4pm and 8pm and zero for the rest of the day.

Figure 3.20 shows the variation in mean stomach contents  for a population of fish

which has two meal sources, one with a large mean which is most readily available

between the hours of four and eight in the morning (around dawn) and the other

source which has a lower mean and becomes accessible during the late afternoon and

early evening between four and eight.  The feeding rate is fairly low at all other times.

A consequence of this more complicated feeding regime is that the limit cycle becomes

double peaked.  The large peak being due to the early morning feeding on mainly quite

large meals and the smaller peak due to the evening feeding on a low mean meal size

distribution.
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3.7 Summary

The previous sections have shown just how complicated the dynamics of both the

stationary state solution and time dependent solution can be.  In section 3.3 I tried to

illustrate the uniqueness of the stationary state solution through a series of examples.  I

found no evidence to indicate that identical equilibrium stomach contents distributions

could occur in identical populations feeding on the same number of prey sources but

with different means and standard deviations and at different rates.  So in this case we

can say that the relationship between feeding parameters and stomach contents

distribution is one to one and the inverse problem can, in principle, be solved.

However, some stomach contents distributions generated with different numbers of

prey sources appeared quite similar.  So, at this stage the possibility that more than one

feeding regime can generate a particular distribution cannot be ruled out when the

numbers of prey sources is not fixed. Even if such solutions are unique, the stomach

contents distributions may be so similar that given only a small amount noise in the

data, they may become indistinguishable.   In the following chapter I shall attempt to

find a suitable method for solving the inverse problem and then go on to investigate

how easy it is to infer the feeding behaviour when the stomach contents data are noisy

or categorised into stomach weight intervals.

With the introduction of time dependence, the problem becomes much more

complicated, with many different feeding regimes being quite feasible and some mean

stomach contents oscillations appearing quite similar.  However, given the previous

result about distinguishability of stationary state stomach contents distributions, given

a fixed number of prey sources, it seems likely that development of the time dependent

stomach contents distribution of a population feeding in a particular fashion will also

be unique.  So, if we consider the variation in stomach contents distribution with time

instead of the mean stomach contents, and have a complete picture of how the stomach
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contents distribution of a population varies over a day, then we should be able to find

the unique set of parameters and rate function which define its feeding behaviour.

Once again however, if the stomach contents data have been sampled from the field

they will be quite noisy and are likely to consist of proportions of the population whose

stomach contents lie in quite broad gut weight categories.  Furthermore the samples

will not have been collected at very fine time intervals.  Given such data, it will become

more difficult to infer the feeding behaviour of a population and it may be impossible

to tell from the stomach contents data whether a population is, for example, feeding

with a sinusoidally varying rate or a step function.

The next section of this thesis deals with the solution of these inverse problems.  I will

attempt to show how well these problems can be solved when a complete description

of the time dependent stomach contents distribution is available, and how the

information which we can obtain about the feeding behaviour of the population

deteriorates due to sampling of the population at infrequent time intervals and

categorisation of stomach contents.
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Chapter 4

The constant feeding rate

inverse problem
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     4.0 Introduction

In section 3.4, I explained how the stationary state equation could be solved

numerically given a particular meal size distribution and feeding rate.  I illustrated how

variation in the parameters affects the shape of the stationary state distribution and

attempted to show that the relationship between the parameters and stomach contents

distribution is one to one.  Although we have not managed to prove complete

uniqueness, the results clearly indicate the likelihood that given that we know the

number of prey sources involved in the meal size distribution, then only one

biologically sensible set of parameters which generate the stationary state stomach

contents distribution can be found.  Obviously, given a particular steady state

distribution, an attempt can be made to find the appropriate set of parameters by trial

and error provided the feeding function type is known.  This, however, would be

tedious and time consuming. So, it would be more sensible to try to find a suitable

automatic method of solution for this inverse problem of finding the feeding

parameters from the stationary stomach contents distribution.

The aim of this chapter is to first decide on a suitable method of solution of the inverse

problem and to monitor its performance over a variety of problems, looking at whether

the results it produces, given data with known feeding functions (generated from the

solution of 3.15), are always the expected ones. Our eventual goal is to be able to

successfully infer the feeding behaviour of a population of fish from their stationary

stomach contents distribution without any prior knowledge of their meal size

distribution or feeding rate.  However, stomach contents data collected in the field will

never take the form of a perfect numerical distribution which is a particular solution of

the stationary state equation (3.15).  So the rest of this chapter goes on to consider the

effect on the results of the automatic fitting procedure, of more realistic simulated data

incorporating noise and data which have been categorised into intervals.
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     4.1 Optimisation techniques

There is no standard method of solution of differential equation inverse problems, the

technique used depends greatly on the type of problem and its complexity i.e. on the

number of dimensions, whether the parameters exist linearly or non-linearly in the

solution and whether derivatives or second derivatives of the solution can be

calculated.  When an analytic solution can be found to the ordinary differential

equation, the inverse problem is just a case of fitting a curve to a set of data points and

finding the parameters which give the best fit.  This can be done using the general

linear least squares method  or one of the standard non-linear least squares versions

which involve the use of function derivatives or second derivatives.

Unfortunately, in this case we have no explicit form for the function which we wish to

fit to our observed stomach contents data.  The solution of the stationary state

differential equation (equation 3.15) has to be calculated numerically, so any non-linear

optimisation method which involves the use of analytic derivatives must be ruled out

here, making the task slightly more difficult.  However, there are still a number of

alternative procedures, the most popular being the downhill simplex method and the

derivative-free Gauss-Newton algorithm.

Both of these methods can be used to solve the problem of finding the parameter

vector P = (P1, )P ...,P2 N  which minimises a suitable error measure Q(P) between the

observed data points and the components of a vector valued function f P( ).

The simplex or polytope algorithm was suggested by Spendley, Hext and Himsworth

(1962) and modified by Nelder and Mead (1965).  As the name implies, the method

involves the use of a simplex - an N-dimensional figure consisting of N+1 vertices and

all their interconnecting line segments and faces.  Suppose the problem is N-

dimensional (i.e. the problem has N unknown parameters) and the chosen starting
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point is the N-dimensional vector P0 , then the other N vertices required to define the

initial simplex are generated using

P P ei 0 i= + λ           (4.1)

where the e i ' s are N unit vectors and λ is a constant of magnitude relative to the

problems characteristic scale length.  At each stage of the process, the point giving the

highest value of the error measure is replaced by a new point at which the function has

a more desirable value.  This new point is obtained by a series of reflections,

expansions and contractions of the worst point about the centroid of the N best points.

At a minimum, whether global or local, the simplex contracts itself around its best

point pulling in from all directions.  (See appendix B for details).

Box (1966) and Bard (1970) conducted numerical studies which showed that when a

sum of squares function was to be minimised, algorithms using the Gauss-Newton

approach were generally faster than those that do not.  In the Gauss-Newton method

f P( ) is approximated by a first order Taylor series about the current value of the

parameter vector P, giving a linear least squares problem which is then solved to give a

new value of P.  This method, however, requires the function derivatives to be known

and so is not suitable for our problem.

Ralston and Jennrich (1978) considered a derivative-free Gauss-Newton algorithm

called DUD (doesn't use derivatives) which under normal operations requires one

function evaluation for each iteration except for extra evaluations needed to get

started.  The N-dimensional initial vector must again be chosen by the user and the

routine then computes the other N vectors which are required to start by replacing the

i'th component (for i=1,...N) by a non-zero number hi .  The suggested value for hi  is

0.1 multiplied by the corresponding component of the initial vector.  This alternative

method, instead of using a Taylor expansion, now approximates f (P) at each step by a
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linear function which matches f (P) at the N+1 previous values of the parameter

vector.  This also leads to a linear least squares problem which can be solved to obtain

a new value of P which replaces the parameter vector giving the largest value of the

error function.  The new set of parameter vectors are then used in the next iteration

and this process continues until a suitable convergence criteria has been met.  (See

appendix B for details).

The only problem now is to choose which algorithm to use.  In the next section I shall

conduct a series of trials of the two non-linear optimisation methods described above

in order to decide which is most suitable for this problem.

     4.2 Difficulties with the optimisation technique

Before attempting implementation of either of these non-linear optimisation

techniques, a suitable error measure and convergence criteria had to be decided upon.

The most popular error measure is the mean squared deviation, so I initially decided to

use this, and  Q(P) is defined by

Q( f iP P) = (y ))i
2

i=1

m

−∑ (                                  (4.2)

where the y i  are the m observed data points and the f Pi ( ) are the components of a

vector  valued function f P( ).  In our case the Pi  are the parameters defining the meal

size distribution and feeding rate, the y i  are the observed numerical stomach contents

data and the f Pi ( ) are the numerical solution of the stationary state differential

equation with feeding governed by the parameter vector P.

A more important point of discussion is that of convergence and how to get the

routines to stop.  The routines should end when the error measure has attained its
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minimum value and an acceptable solution has been reached.  It may also be desirable

to terminate the routine if progress becomes unreasonably slow, if a particular number

of function evaluations has been exceeded or if the iterative procedure is cycling

between values.

As the simplex method converges to a minimum, the simplex pulls itself in around its

best point and consequently it becomes smaller and smaller.  So, the convergence

criteria which is usually used here is that the difference between the function

evaluations at the points of the simplex are less than a particular small value.

Convergence of the DUD routine can be found by comparing values of the least mean

squared error  on successive iterations.  At the minimum the difference should be zero,

so we can say that the optimum has been reached when this difference is less than a

particular value.

There are however, problems with these convergence rules resulting in false

convergence i.e. converging at the wrong point.  The procedure may for some reason

be taking very small steps.  For example, in the simplex method, the simplex may have

become very small without actually reaching its minimum and therefore successive

function evaluations may be very close to each other, though not necessarily small.

Another problem is that the algorithms will converge at the first minimum which they

come across, whether global or local.  So, for a very complicated error surface, like the

sketched example shown in figure 4.1, this criterion could end up producing very

wrong answers.

This problem can be eased by the additional constraint that the error measure itself

must also be less than a particular small value at the convergence point.  However, this

still does not solve all the problems as the value which is chosen may be greater than

two minima or it may be lower than all of them, in which case an adequate solution will

never be found.  In this section, however, I shall be dealing with problems which I
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know have a minimum least squares value of zero, so I can choose a very small error

measure as an extra convergence criteria in this case.  One final requirement is that

after a certain number of iterations, the routines terminate, whether or not a solution

has been found, to prevent them heading off in completely the wrong direction

indefinitely.
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Figure 4.1.  An example of a very complicated variation in error with a single parameter.

The rest of this section contains an analysis of how the performance of the two

techniques compare over a series of typical problems.  In all of the trials I have chosen

a set of parameters which define the constant feeding behaviour of a population of fish

and calculated the numerical stationary stomach contents distribution.  Initially, the

solution was calculated at 400 points along the stomach weight interval, to give a

numerical density function which is then converted into proportion.  The observed data

is then a set of values describing the proportion of fish in each of the very small

intervals.  Since I have calculated this numerical solution from the steady state
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differential equation (equation 3.15) with known parameter values, I can check that the

non-linear least squares procedures are converging to the correct parameter values.

I began my comparison of the two optimisation methods by considering the numerical

stationary stomach contents distribution of a population of fish feeding at a relatively

low rate on a very narrow truncated normal prey distribution with a low mean. This

gives a distribution which is skewed very much to the left with a large proportion of

stomachs remaining empty and is illustrated in figure 4.2.  The population in this

example consists of individuals whose maximum stomach contents are seven grams

and digestion rate is 0.13 grams per hour, which are typical values for some of the fish

populations which will be studied later in this thesis.
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Figure 4.2. Stationary stomach contents distribution of a population of fish feeding at a  constant

rate of 0.1 meals per hour on a normally shaped meal size distribution with mean 0.5 grams and

standard deviation 0.05 grams.  The upper limit to the stomach contents is seven grams and the

digestion rate is 0.13 grams per hour.
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It seems quite obvious that this stomach contents distribution occurs for a population

feeding at quite a low rate on relatively small prey with a narrow size distribution since

there are hardly any individuals with much food in their stomachs and   therefore we

would expect that an optimisation routine should converge quite quickly to the

solution parameter set.  However, as the next section explains, even this relatively easy

problem causes some difficulties.

Both algorithms require a 3-dimensional initial vector from which to generate their

starting points and in addition the simplex method requires the user to supply the

values of the λ i , which I have initially assumed to be equal to half of the i'th

component of the initial vector.  The question is how to decide where the routines

should be started from.  An initial point randomly chosen from a particular domain

would be the ideal starting point as this could then be used regardless of whether

anything about the meal size distribution function was known. Unfortunately, when

this method was used, both methods repeatedly failed to converge to the expected

solution, sometimes cycling between values or exceeding the maximum number of

iterations without making any progress in the right direction.  This failure to converge

to any point could be due to the distance of the initial starting point from the actual

solution, a very complicated error surface, on the value of the λ i  in the simplex

method, or these failures could be due to other inadequacies in the optimisation

routines.

It is difficult to get a good idea of how the error measure varies, as in this case it is a

four dimensional surface.  However, the three cross-sections illustrated in figure 4.3

show a relatively simple error surface and suggest that once the trial parameter vectors

lie within the vicinity of the minimum, convergence should be quite rapid, except

perhaps for the standard deviation.  In this case, the minimum of the mean squared
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error is very broad indicating that quite a range of standard deviations give mean

squared errors almost as low as the minimum value.
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Figure 4.3.  Variation in mean squared error between a stomach contents distribution describing

the proportion of fish with a particular weight generated by a normal feeding function with

mean 0.5, standard deviation 0.05 and feeding rate 0.1 and the solutions of the stationary state

differential equation for varying a) mean, b) standard deviation and c) rate.

Figure 4.3 also suggests that convergence from far away initial parameters will be very

slow due to the flatness of the error surface in this region.  In fact, beginning with the

value of the mean of the meal size distribution very far from its optimum may cause the

routine to diverge away from the optimum as the mean squared deviation decreases

with increasing mean at large distances from the optimum.

The two routines were both altered so that the starting values could be varied and

comparisons made of how each procedure converged from particular starting points.  I
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began by starting two of the parameters at their known values and varying the third,

noting if the procedure converged and how many iterations (function evaluations) it

required for correct convergence.  If either routine exceeded 2000 iterations, I chose

to halt it anyway, in order to prevent the algorithms running indefinitely without

reaching a solution.  Even with two of the three parameters being given their known

correct values at the beginning of the optimisation process, the procedures still did not

always converge.  The results of the optimisation procedures for those trials when the

initial value of the mean was varied are shown in table 4.1.

        Simplexmethod                  DU  D

   Initial mean   Converges   Iterations   Converges   Iterations

        0.1      YES       245      YES      286

        0.4      YES       209      YES      223

        0.5      YES       116      YES        4

        0.6      YES       144      YES      213

        1.0      YES       190      YES      268

        1.5      YES       261      YES      302

        2.0      YES       277       NO      cycles

        2.5      YES       578       NO      cycles

        3.0      YES      1096      YES      230

        4.0       NO    too many      YES      204

        5.0       NO    too many      YES        5

        6.0       NO    too many      YES      147

        7.0       NO    too many      YES       230

Table 4.1.  Success of the simplex and DUD non-linear optimisation techniques when attempting

to fit the solution of the stationary state equation to a stomach contents distribution generated

from a meal size of 0.5, standard deviation 0.05, feeding at a rate of 0.1 meals per hour while

varying the starting point of the mean meal size.
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Similar results occurred for the case when the initial feeding rate of the population was

varied, with a few cases where the optimisation routine did not converge to the

expected values.  However, both processes converged for all the various starting

values of the standard deviation.  The results indicate that neither algorithm performs

consistently worse than the other, though the simplex method seems more likely to

make no progress towards an optimum value for the parameters within a reasonable

time, while DUD fails more often than not due to a continual cycling of parameter

values, which I shall discuss later in this section.

For a moment I shall leave the problem of deciding between the two non-linear least

squares processes and look at some ways of improving each method.  I first considered

the affect of changing the value of the λ i  i.e. the size and shape of the initial simplex.

    Start                 µ=1                 σ=0.2             rate=0.2

       λ i  Converges  Iterations Converges  Iterations Converges  Iterations

 0.001 x Pi
0      YES       656       YES       250       YES      325

  0.01 x Pi
0      YES       437       YES       242       YES      237

   0.1 x Pi
0      YES       329       YES       225       YES      190

  0.25 x Pi
0      YES       258       YES       201       YES      165

  0.5 x Pi
0      YES       181       YES       183       YES      155

  0.75 x Pi
0      YES       297       YES       245       YES       204

  1.0 x Pi
0       NO   too many        NO   too many        NO   too many

  2.0 x Pi
0       NO   too many        NO   too many        NO   too many

Table 4.2.  Success of convergence of simplex method to expected parameters (µµ=0.5, σσ=0.05 and

rate=0.1) when the size of the initial simplex is changed, when the initial parameters are

changed only one at a time.
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The results shown in table 4.2 indicate that provided the values of the λ i  are not too

large compared to the actual initial parameter values, the routine will converge to the

expected parameter sets from an initial parameter vector in which the three

components have been individually perturbed a short distance away from their

optimum.  The speed of convergence, however, does appear to depend on the size of

the initial simplex.  Initial simplexes which are too small make convergence very slow

as it is unlikely that the optimum lies within, or near to the initial parameter vector and

therefore many small steps have to be taken before the minimum is reached.  A very

large initial simplex is likely to enclose the optimum parameter set, but the routine

requires many more iterations before the simplex becomes small enough around its

minimum point to satisfy the convergence criteria.

Looking at the examples I have chosen, it seems that taking the values of the λ i  to be

half of the i'th component of the initial parameter vector usually gives the fastest

convergence, which is the value I had already guessed at and therefore is used in all

further experiments.

If we reconsider the results of the DUD trials shown in table 4.1, we notice

immediately that as the initial mean value is increased away from the optimum,

convergence gets slower and then fails by going into cycles.  However, as the initial

mean is increased even further the speed of convergence begins to increase, before

once again decreasing.  A simple explanation for this can be found if we consider how

the convergence routine works.  Once the initial parameter vector has been chosen,

three other vectors are required to start the process, each of which is generated by

replacing the i'th vector component by a non-zero number.  In this case this non-zero

number is 0.1 multiplied by the corresponding component of the initial vector.  So, in

the trials conducted here, when the initial parameter vector is (5,0.05,0.1), one of the

vectors generated to start the routine will be the optimum and therefore only one more
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iteration will be required for convergence than when the routine was initiated with the

actual optimum vector (see table 4.1).

The problem which occasionally occurs when the DUD optimisation technique is used,

is a cycling between parameter values and the routine basically comes to a halt and no

further progress is made.  The simplest case of this occurs when the new parameter

vector which is generated by one step of the optimisation procedure is no better than

the four parameter sets which have just been tested and is in fact identical to the worst

fitting parameter set.  This new parameter vector then replaces the worst one which

was used in the previous step (to which it is identical), but since this does not alter any

of the vectors, the minimum mean squared error is identical to that which occurred in

the previous step.  Hence, the difference between consecutive least mean squared

errors is zero, although the actual value of the minimum mean squared error will not

have reached its required minimum.  Consequently, the routine repeats this step over

and over again and no progress is made.  More complicated cycling problems can

occur when the procedure returns to the same set of four parameter vectors after a

number of iterations.  These problem can be helped by restarting the procedure at a

small distance away from the best fitting parameter values when the cycling begins.

The routine then usually converges within a couple of restarts.  If it does not, then the

routine will as usual be stopped when the total number of iterations exceeds the

maximum allowable number.

I also experimented with several different values of the difference between consecutive

minimum mean squared errors required for convergence.  I eventually decided that

1 10 14× −  was a suitable value for this difference and the minimum mean squared error

itself had to be less than 1 10 12× − .  The root mean squared error is therefore 1 10 6× − ,

which, compared to the mean proportion of the population per stomach weight
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category, 2 5 10 3. × − , is quite small and gives the parameter values correct to four

decimal places.

Returning to the comparison between methods, I increased the complexity of the

problem by using a meal size distribution function made up of two normal

distributions, which gives a 6-dimensional problem.  One of the prey sources is very

small while the other has quite a large mean weight and is consumed at a quarter of the

rate of the small prey.  Once again the values of the maximum stomach contents and

digestion rate were typical of some of the marine fish species which will be studied

later in this thesis.  The resulting stomach contents distribution is shown in figure 4.4.
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Figure 4.4.  a) Meal size distribution made up of two prey sources, one with mean 0.2 grams and

standard deviation 0.05, being consumed at a rate of 0.2 meals per hour and the other with mean

1.7 grams, standard deviation 0.5 and being consumed at 0.05 meals per hour., with b) the

resulting stationary state distribution of the feeding population whose digestion rate is 0.13

grams per hour and maximum stomach contents are 7 grams.

116



Once again then, I attempted to fit the model to the data using both methods, assuming

that the maximum stomach contents are seven grams and the digestion rate is 0.13

grams per hour.  The success of the two routines was again compared by checking

over what parameter range and how quickly the two methods converged to the

expected parameter set.

         (a)           Simplexmethod                     DU D

   Initial rate1    Converges     Iterations     Converges    Iterations

        0.05         NO     too many        YES        244

        0.10        YES        1119        YES        227

        0.25        YES        1186        YES        207

        1.0        YES         995        YES        267

         (b)           Simplexmethod                     DU D

  Initial mean2   Converges     Iterations     Converges    Iterations

        0.5        NO     too many          NO     too many

        1.0       YES        1584         YES         255

        1.5       YES         818         YES         197

        2.0       YES         712         YES         207

        2.5        NO      too many         YES         204

        3.0        NO      too many         YES         179

Table 4.3.  Success of the two routines when attempting to fit the solution of the stationary state

equation to a stomach contents distribution generated from the two prey source meal size

distribution illustrated in figure 4.4a, when the starting point of the consumption rate of the

small prey is varied (a) and (b) when the initial value of the mean of the large prey is varied,

while all the other parameter are started at their known values.
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In this problem of increased dimensions, the simplex method performed far worse than

DUD, taking far longer to converge and quite frequently not converging at all within

the maximum number of iterations.  Table 4.3 shows the convergence results for two

of the six parameters.

On the basis of the results of these experiments I decided to use DUD as my non-linear

least squares optimisation technique as it has proved to have a slightly wider range of

convergence than the simplex technique and also requires much fewer iterations to

converge, particularly for higher dimension problems (though each iteration takes

slightly longer due to the matrix inversion involved in the calculation).

      4.3  Distinction of solutions

In chapter three, I provided clear evidence that a stationary stomach contents

distribution of a population feeding on a fixed number of prey sources is generated by

the solution of the stationary state equation with a single set of biologically reasonable

feeding parameters.  However, it was more difficult to decide if this uniqueness holds

for the stomach contents distributions of fish populations feeding on differing numbers

of prey sources, or whether in fact identical stationary stomach contents distributions

can be produced by a population feeding on four prey sources and one prey source, for

example.  I have endeavoured to verify this by fitting solutions of the steady state

equation generated by feeding functions made up of the wrong number of prey sources

or the wrong type of distribution, to a stationary stomach contents distribution with a

known set of feeding parameters.

I began by taking a stationary gut contents distribution generated by a single normal

meal size distribution as my initial data set.  The first question which has to be

answered is whether a feeding function which is a combination of two or more prey
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sources can produce an identical distribution.  I have chosen two very different

stationary stomach contents distributions as examples - one with many low stomach

content individuals and the other very skewed towards the upper end of the stomach

contents range.

The first example is illustrated in figure 4.2 (p109) and is generated by a population

feeding on a very narrow meal size distribution function centred about a low mean at a

rate which is low compared to the digestion rate.  In an attempt to fit a solution

generated by a bimodal meal size distribution, I began the six dimensional optimisation

routine with a variety of parameter vectors defining two narrow food sources,

positioned near to the known solution.  In all cases, I found that the routine converged

to a set of parameters defining the expected feeding function.

When the routine was initialised with two prey source distributions whose means are

both quite close to 0.5, then the final set of parameters describes two distributions,

identical to the expected meal size distribution, whose feeding rates add up to 0.1, the

required feeding rate.  But, if the two initial prey source distributions are further apart,

then three of the final parameters describe the expected feeding function, while the

feeding rate of the second distribution converges to zero and therefore the values of its

mean and standard deviation are irrelevant.  Table 4.4 shows some typical sets of initial

and final parameter values.

Similar results to those explained above occurred when attempts were made to fit a

solution generated by a meal size distribution with three or four prey sources.

The fact that this stomach contents distribution cannot be reproduced with multiple

prey source meal size distributions could be due to the shape of this particular

example.  The very definite peak and its narrowness indicate that the population is

feeding on a very narrow meal size range which would not occur if there were many
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prey sources, unless they were all extremely narrow.  The lack of individuals with high

stomach weights emphasises that there are no large meals available and that the feeding

rate is fairly low compared to the digestion rate.

     µ1      σ1   Rate1      µ2      σ2    Rate2

  Initial param.    0.4     0.02     0.13    0.45     0.05     0.05

  Final param.  0.5000 0.0502   0.0789 0.4999   0.0499  0.0210

  Initial param.    0.3    0.03     0.05      0.6     0.1    0.08

  Final param.  0.5166 0.0987  0.00001  0.5001 0.0500   0.0998

Table 4.4.  Typical initial and final parameter sets which occur when attempting to fit a stomach

contents distribution generated by a double prey source meal size distribution to one which is

generated by a population feeding on a distribution with mean 0.5 grams and standard deviation

0.05, at a rate of 0.1 meals per hour.

As an alternative distribution, for use as my next example, I returned to the gut

contents distribution illustrated in figure 3.7 (p79).  All three distributions illustrated

here, although not identical  have quite similar overall shapes, with the majority of the

population having high stomach contents, so it seems possible that they might not be

produced by unique feeding functions. I began with the single prey source stomach

contents distribution.  Once again, for all sets of initial parameters, the optimisation

routine converged to a set of parameter values which describe a feeding function

identical to the expected one.

I also attempted to fit the distribution generated by a bimodal meal size distribution

and illustrated in figure 3.7, with solutions generated by a feeding function which has
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more than two prey sources.  Likewise, the routine always converged to the expected

parameter values, giving  two normal distributions positioned at one and two grams

with standard deviations 0.2 and feeding rates of 0.1 meals per hour.

I shall now consider the reverse question, of whether a stomach contents distribution

can be underfitted i.e. whether an identical solution can be found which is generated by

a meal size distribution with less prey sources.

As my first example, I have reconsidered the distribution function illustrated in figure

4.4 (p116).  I chose a variety of starting parameter vectors and attempted to fit the gut

contents distribution using the three dimensional optimisation routine.  From all initial

sets of parameters the routine failed to find a minimum and halted after too many

function evaluations at a point nowhere near to a possible minimum.  This is likely to

be due to the very peculiar shape of the stomach contents distribution which has quite

a definite narrow peak at low stomach contents, but is also quite spread out at higher

gut weights.  The narrow peak implies a very narrow meal size distribution with a low

mean size while the broadness of the upper part of the distribution indicates that there

must be some larger meals available, which suggests that a double prey source

distribution is likely.  Therefore the optimisation routine is unlikely to find a minimum

for a single normal meal size distribution.

I next returned to those examples of figure 3.7 which had a large proportion of

individuals with high stomach contents and no outstanding features which make them

obviously generated by a meal size distribution with a particular number of prey

sources.  I first attempted to fit the numerical gut contents distribution of a population

feeding on a double prey source meal size distribution function with a solution

generated by a single normal meal size distribution.  An exact solution was still not

found.  In this case the algorithm does get to a minimum value for the least mean

121



squared error, but does not halt as the fitted solution is not an exact fit and therefore

this minimum is not low enough to satisfy the convergence criteria.

Although the optimisation procedure does not find a set of parameters that identically

reproduces the solution generated by a double food source meal size distribution, this

minimum does occur where we would expect it.  The parameter values describe a

normal meal size distribution situated approximately midway between the two normal

distributions which appear in the actual meal size distribution.  The standard deviation

has quite a large value so that a wide range of meal sizes are consumed and the feeding

rate is approximately equal to the sum of the two rates of the actual feeding function.

Figure 4.5 compares the actual and fitted feeding distributions and the associated

stomach contents distributions.
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Figure 4.5.  (a) Stomach contents distribution (solid) generated by a double prey source meal size

function together with the closest fitting stomach contents distribution generated from a single

prey source meal size function (dotted).  The double prey source distribution is illustrated in i)

with means at 1 and 2 grams, standard deviation 0.2 and feeding rate 0.1.  The single meal size

distribution with mean 1.39 grams, standard deviation 0.77 and feeding rate 0.22 is shown in ii).
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I next attempted to 'underfit' a stomach contents distribution generated by a four prey

source meal size distribution, similar results occur.  The mean squared error did reach

a minimum, except not a low enough one for us to accept that an identical fit to the

data set has been made.  However, if the convergence criterion for the magnitude of

the mean squared error was less strict, for example 1 10 8× −  instead of 1 10 12× − , then

the routine would have converged and we would wrongly conclude that the

distribution had been reproduced identically.

These results emphasise that even when differing numbers of prey sources are allowed

in the meal size distributions, a particular noise free numerical stomach contents

distribution can only be generated by a unique feeding regime and the routine

converges as expected.

So far this analysis of the inverse problem has been concerned with stomach contents

distributions generated by a known type of feeding function (in this case the normal

distribution) and I have shown that the optimisation routine does not converge to

'wrong' answers provided that the convergence criteria are very strict.  I shall now

investigate whether the stomach contents distribution of a population feeding on  an

alternatively shaped meal size function can be identically reproduced by solutions

generated by a normal distribution.

As my first example I have reconsidered the stomach contents distribution generated

by the triangular meal size distribution illustrated in figure 3.9.  The numerical stomach

contents distribution is almost impossible to tell apart from that generated by a normal

feeding function, so it would not be surprising if in this case the three dimensional

optimisation routine converged and we concluded that the stomach contents

distribution had been identically reproduced.  Once again however, the strictness of the

convergence criteria prevented the routine from ending as the mean squared error is

not quite low enough.  The minimum value it reaches is 1 5 10 10. × −  while our aim is for
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it to be less than 1 10 12× − .  When attempting to fit a normal feeding distribution to a

stomach contents distribution generated by a gamma distribution (see figure 3.9), the

optimisation routine again failed to converge, but this time did not make any headway

towards a sensible answer and by the time the routine is halted, the value of the mean

being a large negative number and the standard deviation also being very large.  The

algorithm has obviously gone in such a direction in an attempt to reproduce the effects

of the long tail of the gamma function, but has not reached a minimum.

The results of this section show that particular numerical stomach contents

distributions are generated by a unique feeding function and provided the convergence

criteria used in the optimisation method are severe enough, the method will converge

to the correct answer, if there is one.  For less strict convergence criteria though, the

optimisation technique may converge to give an alternative set of parameters that

generate a solution which is not exactly identical to the data we are attempting to fit it

to.  This error in some cases however can be very small, an average of 0.1 per cent.

Real stomach contents data will never be in the form of an exact stomach contents

distribution, it will in general be noisy due to sampling.  Therefore, the optimisation

routine will never be able to find a set of parameters which generates a solution that

identically matches the data set and so different feeding regimes will produce equally

good fits to a single set of noisy data.  In the next section I shall investigate whether

we can still clearly conclude the values of the population feeding parameters when the

data is sampled and categorised.

      4.4 Some experiments with simulated data

The preceding sections of this chapter have dealt with finding sets of parameters which

generated a particular known population stomach contents distribution.  However, real
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stomach contents data which are provided for analysis will never be in such an ideal

form.  In fact the data may be quite noisy depending on the size of the samples which

have been taken.  A large sample will provide the most clear distribution shape, i.e. it

will be less noisy than a small one and more like the population distribution from which

it was sampled.  But, dissecting the stomachs of many thousands of fish is

impracticable, so in general sample sizes are usually of hundreds of fish, rather than

thousands.  During stomach contents analysis, the gut weight range is divided into

intervals and the individual measurements categorised accordingly.  The data then

consists of the proportion of the sample in each stomach weight category.  So, a

detailed and accurate description of the stomach contents distribution will be provided

when the range is split into very small intervals, but much of this detail will be lost as

the intervals become broader.  The question which needs to be answered is how well

can we infer the feeding behaviour of the actual population of fish from such samples.

So, in this section of the chapter I shall investigate the relationship between sample

size, interval width and the value of the feeding parameters obtained and compare them

to those of the actual population.

To begin this investigation I have simulated some data sets with the same combination

of feeding parameters, but different numbers of stomach contents categories and

various sample sizes, using a similar method to that used to generate the digestion data

in chapter two.  First a noise-free distribution, generated by a known feeding function

is divided into m categories with the empty stomachs as category m+1.  The unit

interval is then split into subintervals each of width equal to the proportion of the

population held in each of the m+1 distribution categories.  A set of r random numbers

between 0 and 1 is generated and the proportion falling into each interval is noted.

This fraction then represents the proportion of the population contained in each

category of the distribution.  This method of random sampling is known as the

sequential search method (Dagpunar 1988).
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Figure 4.6.  Stationary stomach contents distributions illustrating proportions of the sample in

401 stomach categories generated from a feeding function with mean 0.5, standard deviation

0.05 and feeding rate 0.1 for sample sizes of a) 10000, b) 1000, c) 100  and d) 25.  The maximum

stomach contents is 7 grams and the individuals all digest at 0.13 grams per hour.
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Figure 4.7. Stationary stomach contents distributions illustrating the proportions of a sample of

size 500 taken from a population feeding on a meal size distribution with mean 0.5 and standard

deviation 0.05 grams at a rate of 0.1 grams per hour when the data is categorised into a) 401, b)

101, c) 26 and d) 5 intervals.
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Obviously, if a larger sample of random numbers is taken, then the distribution

becomes less noisy and more recognisable as the exact distribution from which it was

generated and small samples become more noisy, as is illustrated in the examples

shown in figure 4.6.

Decreasing the number of categories, i.e. making each category wider (except for the

empties) also causes the noisieness to decrease, but this also reduces the detail seen in

the distribution, illustrated in figure 4.7.

As I have already shown in section 4.1, the optimisation algorithms will not converge

when the chosen starting value is very far from the actual solution, so there seems little

hope of this happening when the distribution is not an exact solution of the differential

equation.  In this case though, the noisy data which I am using has been generated

from known distributions, so there is an obvious parameter vector from which to start

the optimisation process.  The set of parameters giving the best fit to the noisy

distribution should not be too far from those which generated the corresponding exact

stomach contents distribution, so the optimisation process should converge quite

easily.

At present, the optimisation procedure requires a very low minimum mean squared

error value for convergence as previously we had been dealing with stomach contents

distributions which had been generated exactly from a particular set of feeding

parameters and therefore had a minimum mean squared error of zero.  However, now

we are dealing with noisy data and the best fit of the model to the data will not give a

minimum mean squared error of zero.  As a consequence, it is probable that the

optimisation routine will not converge with the strict convergence criteria used in the

previous sections, even when the minimum has been reached.  To rectify this situation I

shall discard the restriction that the minimum mean squared error has to be less than

1 10 12× −  for convergence and for us to be able to conclude that the global minimum
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has been reached.  Since data sets are simulated by random number generation, we

have no idea of what size the error measure is going to be at its minimum and therefore

cannot place any convergence restrictions on it.  However, as the optimisation routine

is started from near the expected to be the global minimum, it is unlikely to converge

to a local minimum and the convergence restrictions placed on the difference between

consecutive error measures should be adequate.
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Figure 4.8.  Variations in fitted mean of the meal size distribution obtained from the

optimisation routine for different random number sets, for a) samples of size 1000 and 101

categories, b) samples of size 100 and 101 categories, c) samples of size 1000 and 5 categories

and d) samples of size 100 and 5 categories.  The population stomach contents distribution was

generated using a feeding function with mean 0.5 grams, standard deviation 0.05 and feeding

rate 0.1 meals per hour.

Since the noisy distributions are simulated using sets of random numbers, no two

stomach contents distributions will be identical.  Therefore, data sets distributions

simulated using identical generating parameters and equally sized intervals, but

different samples will not give the same fitted parameter values.  An example of the
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variation observed in the fitted values of the mean of the meal size distribution is

illustrated in figure 4.8 for a variety of sample sizes and numbers of stomach weight

categories.

These illustrations show that the variations between the fitted parameter values

depend on the size of the sample and number of stomach contents categories.  So, in

order to come to a decision about how reliable the results of this inverse problem are

when dealing with such data, I shall repeat the optimisation process one hundred times

with different samples of the same size for each number of stomach categories and then

calculate the appropriate summary statistics.  The experiments were conducted for less

than twenty-six stomach contents categories and sample sizes of 1000 and below, as

these seemed comparable to values used in real stomach contents analysis (e.g. Hall et

al. 1995 and De Groot 1964).  Once again I have used a very narrow single prey

source meal size function with a relatively low feeding rate compared to the digestion

rate to generate the population stomach contents distributions from which the noisy

and categorised data are simulated.

The variation in the expectation and coefficient of variation over a range of sample

sizes and number of categories of each of the three parameters defining the feeding

behaviour is illustrated in figures 4.9 to 4.11.  The experiments were carried out at

twenty points over the category-sample size plane and then interpolated using cubic

spline functions to give points on a finer grid over the whole plane.

The first set of illustrations shows the variation in the average of the fitted mean meal

size and its coefficient of variation.  Although the variation in the expectation appears

to be a rather uneven surface with many peaks and troughs, this mean value is never

very far away from the population value of 0.5.  However, for small sample sizes (less

than 50) and more than about ten stomach weight categories, the mean value appears

to be increasing away from the population value.  The combination of small sample

129



sizes together with quite a number of stomach weight categories will inevitably

produce extremely noisy data sets with the average number of individuals per category

being very low or less than one.  As a consequence the results obtained from fitting a

population stomach contents distribution to such data are unlikely to be very reliable.
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Figure 4.9.  Variation in a) the mean and b) the coefficient of variation of the fitted mean of the

meal size distribution with sample size and number of categories.  The population meal size

mean is 0.5.

The coefficient of variation is quite low (less than 0.1) over a large part of the sample

size-weight category range and only begins to increase much as samples get down to
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below 200 in size.  And in fact does not increase above 0.2 until sample sizes contain

less than about 75 individuals when the coefficient of variation begins to rise quite

rapidly, especially for low numbers of stomach weight categories, which is as we

would expect.
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Figure 4.10.  Variation in a) the mean and b) the coefficient of variation of the fitted standard

deviation of the meal size distribution with sample size and number of categories.  The

population meal size standard deviation is 0.05.

Moving on now to the average standard deviation of the fitted meal size distribution

which is illustrated in figure 4.10a.  We can once again see that for large sample sizes
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the average value is close to the actual population value of 0.05.  Over the major part

of the range of the variables, the surface of the expectation of the standard deviation

remains quite flat and close to 0.05.  However, once the sample sizes fall below 100

individuals, the mean standard deviation begins to increase, first quite slowly, but then

more rapidly, particularly for low numbers of stomach weight categories.  For small

samples of 25 individuals, the averages of the fitted standard deviations lie between

two and three times that of the population from which the samples were drawn.  The

most noticeable increase in the expected value of the standard deviation as sample sizes

get smaller occurs when the stomach weight range is divided into very few categories.

This is most likely to be due to the increasing width of the categories.  Since the actual

fish population stomach contents distribution is quite narrow and very skewed to the

left hand end of the stomach weight range, all of the sampled individuals may have

stomach contents contained in the first of four very broad stomach weight categories,

except for the empties who are included in a fifth category.  We therefore do not know

how the individuals are distributed within that interval.  They may be as expected or

they could be in a much flatter, broader distribution and therefore the standard

deviation may be larger.

The coefficient of variation of the standard deviation is relatively high for a large part

of the category-sample size range indicating that there is a lot of variation in the values

of the fitted standard deviations at each point, even for large samples.  This implies that

the value of the fitted standard deviation is quite sensitive to the changes in the detail

of the distribution produced by taking different random samples.  At low standard

deviations, the position and overall shape of the stomach contents distribution are

affected most by the mean of the feeding function and the feeding rate, while the meal

size standard deviation mainly affects the detail of the distribution (reconsider figure

3.5a-d).  Since the overall shape and height of the distribution does not change much

between samples, only the fine detail, there will be less variation in the fitted values of
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the mean and feeding rate than there is in the standard deviation.  Therefore the

coefficient of variation of the standard deviation will be much greater than that of the

other two parameters at all sample sizes and numbers of categories.

5

10

15

20
stomach weight categories

200

400

600

800

1000

sample size

0.
09

0.
09

5
0.

1
0.

10
5

0.
11

0.
11

5
0.

12
ex

pe
ct

at
io

n

5

10

15

20

25

stomach weight categories

200

400

600

800

1000

sample size

 0
0.

1
0.

2
0.

3
0.

4
co

ef
fic

ie
nt

 o
f v

ar
ia

tio
n

Figure 4.11.  Variation in a) the mean and b) the coefficient of variation of the fitted feeding rate

with sample size and number of categories.  The population feeding rate is 0.1.

For large sample sizes, the average value found for the feeding rate over the hundred

samples is quite close to that of the population from which the samples were drawn

(0.1).  It is not until the sample sizes fall below 200 that this average begins to increase

and to a significantly higher value when there are fewer categories.  Due to the fewer
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stomach weight categories, the width of each becomes wider and therefore samples

taken from fish populations feeding at slightly higher rates may have the same

proportion of fish per interval and the routine converges to a higher rate.  However,

this increase in mean feeding rate is by less than twenty per cent and is therefore

incomparable to the huge increases of 200 and 300 per cent seen in the standard

deviation values.  As the sample sizes become smaller, the distributions become more

noisy and so the variability in the fitted feeding rates increases which is seen in the

illustration of the coefficient of variation.

From these sets of experiments, I wish to find a combination of sample size and

stomach weight categories which gives a reliable description of the feeding behaviour

of the population from which it was drawn.  Such combinations will have an average of

the parameter value being considered close to the population value and will have a low

coefficient of variation.  In such a case we can be confident that if one such sample is

drawn from the population and categorised, then the fitted values obtained from the

optimisation technique will adequately describe the feeding behaviour of the whole

population.

If I now reconsider figures 4.9-4.11, we can see that the lowest coefficient of variation

and expectation nearest the population parameter value occur for very large samples

(1000) and a lot of stomach weight categories.  However the processing of such data

would be very time consuming, so we are really aiming for a lower number of

individuals per sample.  Taking samples of approximately one hundred individuals

categorised into between five and ten stomach weight intervals still gives quite

promising results.  The coefficient of variation at this point is still quite low (below

0.2) except for the standard deviation where it is about one and the means of all three

parameters are close to the population values.  Consequently I can conclude from this

section that this combination of sample size and stomach categories is a good choice
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for use in stomach contents analysis, combining practicality with relatively reliable

results.

      4.5 Conclusion

The aim of this chapter was to find an automatic method of solution of the stationary

state inverse problem.  In the early sections of the chapter I discussed the suitability of

various optimisation methods and eventually decided to use a modified derivative-free

Gauss Newton method.

The method worked relatively well for noise free stomach contents distributions which

had been generated exactly from a known feeding function and provided the starting

parameters were quite close to the actual minimum, the routine did not take too long

to converge to the expected parameters.  The results did however show that without

very strict convergence criteria, if completely wrong meal size distribution shapes are

used, the optimisation routine may converge to wrong parameter sets for certain

stomach contents distributions.  For noisy data the strict convergence criteria have to

be relaxed in order for the routine to converge at all, since we will never be able to find

a population stomach contents distribution which exactly reproduces the distribution of

a sample of individuals.  So, in this case convergence with the wrong number of prey

sources is quite likely to occur.  However, if we assume that the actual number and

type of prey sources is known, then this problem should not arise.

In the experiments with simulated noisy and categorised data, I have tried to show how

reliable this automatic method  is for inferring the stationary feeding behaviour from

real data sets.  Since we will never have a complete description of the stomach

contents distribution of a population of fish, we need to know how accurately the

feeding behaviour which is inferred from the stomach contents data of samples of the
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population, describes that of its parent population.  The results indicate that provided

the sample which has been taken is not too small (approximately 100) and the number

of stomach contents categories is between five and ten, then the feeding behaviour

inferred from this sample should reasonably describe the feeding behaviour of the

population from which it came.

The example I have used is relatively simple with just a single prey source stomach

contents distribution.  However, considering the results of sections 4.2 and 4.3, this

method should be applicable to higher dimension problems provided that we do

actually know how many prey sources the population itself is feeding on.

Since it is unlikely though that a population of fish will be feeding at a permanent

constant rate, a more interesting problem is that of time dependent feeding.  In the next

chapter, I shall investigate how well we can infer the time dependent feeding behaviour

of a population with varying stomach contents.
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Chapter 5

The time-dependent feeding

rate inverse problem
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      5.0 Introduction

Chapter four made an attempt at solving the inverse problem for the stationary state

differential equation.  A global optimisation method which converged in a reasonable

length of time could not be found due to the laborious calculations required during the

numerical solution of the ordinary differential equation.  This does not bode well for

dealing with the even more complicated and computationally intensive time dependent

inverse problem.

The numerical experiments in chapter three demonstrated that the time dependent

model required approximately four to five days to reach its stationary cycle, which

using the numerical methods described in chapter three takes about 15-20 minutes

computing time.  All non-linear optimisation techniques require repeated calculations

of the solution, so obviously a routine which incorporates this method of calculation of

the time varying stomach contents distribution will be extremely time consuming and

possibly hardly worth the effort.  So, if we wish to find an automatic method of

solution of the time dependent inverse problem and carry out any experiments on the

effect of noisy and sampled data, we need to be able to calculate the solution

considerably faster.

One option is increasing the width of the intervals at which the gut contents

distribution is calculated, as is increasing the integration time step.  However, as well

as increasing the speed of the calculation, the accuracy of the solution is reduced, with

some very large errors occurring.  So, since there appear to be no quicker methods of

solving the partial differential equation which describes the time variation of the

stomach contents distribution, another modelling approach must be used.  In this

chapter I shall reformulate the model using a discrete approach, in the hope of

speeding up calculations.  Once such calculations have been incorporated into an

automatic optimisation procedure, I should then be able to perform experiments similar
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to those of chapter four to test the reliability of population feeding behaviour results

inferred from sampled data, but this time incorporating sampling frequency as we are

dealing with a time varying distribution.

      5.1 The finite difference approach

A method often used in the modelling of ecological systems is the difference equation

approach.  It is most often used when modelling populations with age structure which

have distinct age classes.  In this chapter I shall form a set of difference equations by

discretising the stomach contents range and constructing a map which relates the

variables at time t to those at time t+1.  So, in this case, instead of distinct age classes,

we shall be considering distinct stomach contents classes.

I shall consider the stomach contents range [ , ]0 wF , to be divided into an array of N

boxes, each of width ∆w, such that at time t, ni t,  is the number of stomachs with

weight between (i-1)∆w and i∆w and n t0,  is the number of empty stomachs.  The

number ni t,  obviously depends on how many stomachs came into the interval during

the previous time step due to digestion and how many entered this category by eating.

This in turn depends on the length of one time interval.  For simplicity I shall suppose

that during one time step, individuals can either eat a single meal of a particular size or

they can digest from category i to category i-1.  This assumption about digestion leads

to the constraint that

∆ ∆
t

w

K
=                                 (5.1)

where K is the digestion rate.  The meal ingested during this time interval can be of any

size provided that it does not take the individuals into a category which would be out
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of the stomach contents range, which is the same satiation rule that was used in the

continuous feeding and digestion model.

I shall next define the expression U i t,  as the rate at which weight class i individuals eat

meals at time t.  Then we can write

dn

dt
U ni t

i t i t
,

, ,= −           (5.2)

as the rate of change of the number of individuals in weight class i due to feeding.

The proportion of weight class i who do not eat a meal in time t to t+∆t, Si t, , can then

be approximated by

S U ti t i t, ,exp≈ − ∆m r.           (5.3)

These individuals of weight class i who do not eat a meal within the time interval,

therefore must digest, according to the rule stated earlier, unless they are already

empty, in which case they remain so.  Consequently, this proportion, Si t, , of category i

individuals will have digested into weight class i-1 by time t+∆t.  The digestion part of

the difference equations can therefore be written as

n S n S nt t t t t t t t t0 0 0 1 1, , , , ,= +− − − −∆ ∆ ∆ ∆           (5.4)

and for i>0

n S ni t i t t i t t, , ,= + − + −1 1∆ ∆           (5.5)

which basically states that those fish in category i+1 at time t-∆t who do not eat, digest

into category i by time t.  The difference equation representing the empty fish (5.4)

obviously has an extra term representing those individuals already empty which do not

eat in the interval t-∆t to t.
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Moving on now to the definition of feeding.  I shall first define Pi n,  as the probability

that a meal eaten by a weight class i individual weighs between (n-1)∆w and n∆w.

However, weight class i individuals will not feed on meals which take them into a

category above the upper stomach contents limit, in this case category N, so the

probabilities must obey the constraint

Pj n
n

N j

, = ∀
=

−

∑ 1
1

          j ,           (5.6)

i.e. for each weight class j, the sum of the probabilities of all possible meals is equal to

one.

As I described in chapter two, the number of individuals moving into a weight class

category i, is due to individuals in lower weight classes consuming meals of exactly the

right size to take them into this category.  I shall first consider the transfer of

individuals from weight class j to a higher weight class i, due to feeding.  I have

already defined Sj t,  to be the proportion of individuals in weight class j who do not

feed at time t, so therefore the number who do eat a meal can be written as

1−S nj t j t, ,c h          (5.7).

For the consumption of this meal to take the individuals into weight class i, it must be

of the correct size.  The probability that this meal consumed by class j individuals is of

weight between (i-j-1)∆w and (i-j)∆w is of course equal to Pj i j, −  and therefore the

number of j class individual transferring to class i during the interval t to t+∆t due to

feeding can be written as

1− −S n Pj t j t j i j, , ,c h .           (5.8)
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All individuals however, are exposed to food and so may be feeding.  Therefore, the

number of individuals entering weight class i  at time t due to feeding from lower

weight classes is clearly

I S n Pi t j t j t j i j
j

i

, , , ,= − −
=

−

∑ 1
0

1 c h .           (5.9)

The complete feeding and digestion dynamics can then be defined by the following set

of difference equations

n S n S no t o t t o t t t t t t, , , , ,= +− − − −∆ ∆ ∆ ∆1 1         (5.10)

n S n Ii t i t t i t t i t t, , , ,= ++ − + − −1 1∆ ∆ ∆               for 0 < i < N         (5.11)

n IN t N t t, ,= −∆ .         (5.12)

Obviously there is no 'I' term in the equation defining the number of empty individuals

at time t, as a fish which takes a meal will not become empty.  Similarly there is no 'S'

term in the equation for the highest weight class as there is no category above N down

from which the individuals can digest.

      5.2 Solution of finite difference equations

Once we have been provided with a set of initial conditions, i.e. values for ni ,0  for all i,

then it is easy to solve the set of finite difference equations (5.10-5.12).  The numbers

of fish contained in a particular stomach contents category at time step t can be

calculated by a simple map from those at time t-∆t.  The solution, however, must be

compared to that of the continuous model to verify that the two approaches to

modelling this feeding and digestion system do not give radically different answers.
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In order to make these comparisons, I calculated the numerical stomach contents

distribution with a number of feeding regimes (stationary state solutions as well as

varying contents of stomach weight categories) and using a variety of different

discretisation widths.
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Figure 5.1.  Stationary state solution of the continuous model (dotted), compared to that of the

discrete formulation (solid), with N equal to a) 400, b) 200, c) 100 and d) 50.  The population has

digestion rate 0.13 grams per hour and stomach contents limit 7 grams and is feeding on a

truncated normal meal size distribution with mean 0.5 grams, standard deviation 0.05 grams at

a rate of 0.1 meals per hour.

Figures 5.1 and 5.2 compare the stationary solutions of the two models for populations

with very different feeding rate functions.   The solutions of the two models show very

close agreement for a large number of boxes (figures 5.1a and 5.2a) and are visually
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almost indistinguishable.  However, as the number of sub-intervals decreases the

steady state solutions match less well.
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Figure 5.2.  Stationary state solution of the continuous model (dotted) compared with that of the

discrete model (solid), when N equals a) 400, b) 200, c) 100 and d) 50.  The population has a

digestion rate of 0.13 grams per hour , a maximum stomach contents of seven grams and is

feeding on a meal size distribution with mean one gram, standard deviation 0.2 grams and at a

rate of 0.2 meals per hour.

It appears that as the grid becomes less fine the discrete solution begins to

overestimate the proportion of the population with high stomach contents, which also

seems to be the case when the feeding rate varies with time.  The variation of the

proportion of fish in a number of stomach weight categories is illustrated in figure 5.3,

with 5.3a showing the empty category and 5.3f, the highest weight category.
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Figure 5.3.  Comparison of the solution of the continuous model (solid) with that of the discrete

model over a series of stomach weight categories: a) empty, b) 0-1.5 grams, c) 1.5-3 grams, d) 3-

4.5 grams, e) 4.5-6 grams and f) 6-7.5 grams, for a population feeding on normally distributed

meal size distribution, truncated at zero, with mean 1 gram, standard deviation 0.2 grams and

R and R1 2   equal to 0.1.  In each of the illustrations the solution of the continuous model is solid

line, the discrete solutions are broken lines with N equal to 400 shown as long-dashed, 200 as

dashed, 100 as short-dashed and 50 as dotted.  The digestion rate is 0.13 grams per hour.

Since the whole point of this reformulation of the model is to increase the speed of

computation of the varying stomach contents distribution, I must now choose a

discretisation which combines a reasonable amount of accuracy with speed.

Obviously, considering these illustrations, it would be preferable to calculate the

solution of the discrete model with a very fine discretisation.  However, the

computation time of the discrete solution illustrated here, with 400 sub-intervals, is

actually much longer than that of the solution of the continuous problem.
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If I half the number of boxes, this halves the computation time for one time step as half

the number of variables are involved and therefore the number of calculations is

halved.  The length of the time interval though, expressed in equation 5.1, is also

affected by the stomach weight grid.  In fact, halving the number of intervals doubles

the length of the time step and therefore the number of time steps required to reach he

stationary cycle is also halved.  So, the computing time required to reach the stationary

cycle is actually proportional to the square of the number of sub-intervals in the

stomach weight range.

The computation of the discrete solution with N equal to 200 is still relatively slow and

any optimisation technique incorporating such a solution would still be unthinkable.

However, when the difference map formulation contains only 100 or 50 difference

equations, the stationary stomach contents cycle can be calculated in a matter of

seconds rather than minutes.  Although some systematic errors are beginning to occur

when the number of sub-intervals is reduced, the discrete solution still retains the

overall shape of the continuous solution and in general the mean error seems to be less

than five per cent.  The solutions of the discrete model with 50 boxes are beginning to

look quite different from the continuous solution, so the solution with 100 sub-

intervals appears to give the best combination of speed and accuracy and therefore I

shall use this in all further calculations.

      5.3  Some comments on the fitting procedure

This method of calculating the time varying stomach contents distribution can now be

incorporated into a non-linear optimisation method.  The time dependent inverse

problem is a higher dimensional problem than the constant feeding rate problem and

therefore it seems safe to say that DUD will be once again be the most suitable
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optimisation routine as it performed significantly better than the simplex method for

high dimension problems.  In this section, I shall consider some of the difficulties

associated with the time dependent inverse problem in particular.

In all the fitting experiments which were carried out, the data to which the model was

fitted consisted of the stationary cycle of the time dependent stomach contents

distribution at intervals over the period of twenty four hours.  In chapter three I

showed that the stationary cycle was reached within approximately five days and

therefore the model was allowed to reach this cycle before its output was used in the

fitting procedure.  The mean squared error is then calculated by summing over all data

points at all sample times.  I decided to retain the values of the convergence criteria

used in chapter four as these once again gave fitted parameters within one per cent of

the actual expected values.

In chapter four I found that the optimisation routine does not converge to unexpected

parameter sets when dealing with population stomach contents distributions, provided

that the convergence criteria are very strict.  I shall next discuss whether this applies to

the much more complicated time dependent case.

So far in this thesis, when dealing with the time dependent feeding problem, I have

used four parameters to define the sinusoidally varying feeding behaviour of a

population feeding on a single source meal size distribution - the mean meal size, the

standard deviation of the distribution, the underlying feeding rate and the amplitude of

the feeding rate oscillations (see equation 3.40).  In chapter three, we did not consider

the fact that the timing and frequency of the feeding rate oscillations may also affect

the resulting time dependent stomach contents distribution.  In fact I just assumed that

the feeding cycle lasted twenty four hours and the sinusoidally varying rate was not

displaced from zero hours.  However, for a population feeding on a single prey source,
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a further two parameters are required for a complete definition of the feeding

behaviour as the feeding rate function now takes the form

R t R R
n t d

( ) sin
( )= + −

1 2 12

π
.         (5.13)

when R(t) is positive and zero otherwise.  The parameter n represents the frequency of

the oscillations and d is the position of the sinusoidal feeding rate function over the

day, i.e. it defines when the increases in feeding rate begin.

The fitting procedure is now a six dimensional problem which is obviously going to be

more difficult to solve than the three dimensional problems of the previous chapter.

However, when a detailed description of the stomach contents distribution is available

at hourly time intervals, there is sufficient data to solve the inverse problem and the

optimisation routine still accurately converges to the six expected parameters provided

that their starting values are quite near the optimum.

In this chapter, I again attempted to fit solutions of the feeding and digestion model to

data sets using feeding functions made up of the wrong number of meal sources.  I

generated a data set using a meal size distribution made up of two meal sources, one

with a large mean and one small, whose feeding rate oscillations both occur in twenty-

four hour cycles and are half a cycle out of phase.  Attempting to fit the resulting data

using a single peaked meal source distribution proved impossible even when the

frequency and timing parameters were allowed to vary.  Too many iterations occurred

without the optimisation procedure getting anywhere near what appeared to be even a

local minimum.  The routine appeared to be heading towards a meal size distribution

oscillating at twice the rate of the two single ones from which the data was generated,

possibly in an attempt to reproduce the timing of the alternate oscillations.  However,

the changes in the stomach contents distributions which are generated by the two very
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different meal source distributions could not be reproduced by a single peaked meal

source distribution and therefore the routine failed to converge.

Even when the two meal sources which generate the data had much closer means, the

optimisation algorithm still did not converge.  It did get to a minimum value for the

least mean squared error, but did not halt as the fitted solution is not an exact fit to the

data and therefore this minimum is not low enough to satisfy the very strict

convergence criteria which I have been using.

Similar results occurred when I attempted to overfit the time varying stomach contents

data using a feeding function made up of more meal sources than were used to

generate the actual data.  I generated a data set using a single medium sized prey

source distribution.  If the frequency and timing of the two fitting prey sources were

forced to be equal in the fitting procedures, then the parameters converged to a set

which describe the feeding behaviour as feeding on a single meal source at a rate

oscillating between the correct values at the expected frequency and timing, provided

that none of the parameter values were initially too far away from the optimum.

Depending on the positions of the two initially chosen meal source distributions, the

optimisation procedure either converged to give two identical distributions whose

underlying feeding rates summed to the required value or four of the parameters

described the expected feeding behaviour while the feeding rate parameters of the

second distribution converged to zero.

When the two sets of timing and frequency parameters were allowed to vary

independently of each other in this fitting procedure and they were not initialised with

values very close to the optimum, then the procedure failed to converge.  In the first

instant, the frequency and timing parameters tended to move away from the actual

values and then the parameters describing the shape of the meal size distributions

began to move away from their optimum values pulling the parameter set even further
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from its optimum.  As a consequence the optimum was not reached within the limit on

the number of iterations.

I showed in chapter four that stomach contents distributions generated using

differently shaped meal source distributions could not be confused provided that the

very strict convergence criteria are adhered to.  In this next section I shall show that

the wrong shaped feeding rate functions cannot be fitted to a particular data set

provided that the minimum value required for the least mean squared error is low

enough.

I generated a set stomach contents data using a narrow truncated normal meal size

distribution with a fairly large mean.  The feeding rate of the population was varied

sinusoidally with equal underlying feeding rate and amplitude (0.1) so the truncation at

zero has no effect and the function retained its sinusoidal shape.  I attempted to fit a

single prey source distribution with a step function feeding rate assuming that the

timing and number of the discontinuities in the step function are known.  The least

mean squared error once again reached a minimum value, but the routine failed to halt

as the optimum fit did not exactly match the data set and therefore this minimum value

was still too high.  The parameters at this minimum described the expected meal source

distribution, but with alternate twelve hour high feeding (0.2 meals per hour) and

twelve hour zero feeding periods.

The reverse experiment of fitting data produced by a sinusoidally varying feeding rate

function to data actually produced by a step function gives similar results in that the

routine does not halt as the minimum mean squared error is higher than the value

required for convergence of our optimisation routine.

All these experiments show that, similarly to the time independent problem, the

automatic optimisation method does not converge to unexpected answers provided
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that the convergence criteria are very strict.  Relaxing the convergence criterion for the

minimum mean squared error would allow the prediction of wrong parameter sets.

However, these predictions would not produce feeding behaviour vastly different to

the actual behaviour and therefore the feeding behaviour inferred by the model is still

quite an accurate description of the actual behaviour. In the next section the

convergence criterion for the minimum mean squared error is relaxed completely as the

experiments are concerned with simulated noisy data and whether the population

feeding behaviour can be inferred using noisy, categorised samples.

      5.4  Simulated time dependent data

Like the approach of chapter four, I shall now go on to discuss the effect of noise,

categorisation and sampling frequency on the results of the optimisation process.  The

results of chapter four indicated that the feeding behaviour inferred from stomach

contents samples most reliably predicted that of the population from which they were

drawn when samples were large and categorised into many stomach weight intervals,

although the results did not deteriorate badly until the samples were much smaller than

one hundred individuals and categorised into about five gut weight categories.  We

would expect similar results to arise from experiments involving a time dependent

feeding rate, but we must also now consider that the accuracy of the results may be

affected by the frequency at which the samples are taken.

As I showed in the previous section the fitting procedure can become very complicated

in the time dependent case with a very large number of parameters which slows down

the optimisation routine.  So, in this section, as I just wish to compare the accuracy of

feeding behaviour inferred from random samples with that of the actual population, I

have assumed a relatively simple single meal source feeding regime.  However, even

this leaves us with the possibility of six unknown parameters.
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As the first step in this investigation I have simulated some data sets using the same

parameter sets to describe the feeding process, but with differing sample sizes and

number of stomach weight categories.  The example illustrated in figure 5.4 shows that

even when the data is very noisy, by considering the variations in proportion of fish in

each stomach weight category, we can infer by observations the approximate

frequency and timing of the feeding rate function.  There is only one cycle in the

dynamics of the stomach weight category contents over the twenty four hour period

and therefore we can conclude that only one cycle of the feeding rate function occurs

during the day.  The contents of the empty stomach category drop over the first half of

the day implying that feeding is highest during this period and that the feeding rate

function is an undisplaced sinusoid function.  This reduces the inverse problem to a

four dimensional problem rather than six which speeds up the optimisation method

considerably.
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Figure 5.4.  Variation in the proportion of a sample in six stomach weight categories a) empty

stomachs, b) 0-1.5 grams, c) 1.5-3 grams, d) 3-4.5 grams, e) 4.5-6 grams and f) 6-7.5 grams, for

samples of size 50 drawn from a population feeding on a normal meal size distribution,

truncated at zero with mean one gram, standard deviation 0.2 grams and R  and R1 2  equal to

0.1.
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As in chapter four, when attempting to fit the model to the noisy sampled data, I began

the optimisation routine at the known population parameters from which the data were

simulated.  The severe convergence criterion for the mean squared error was once

again discarded as there will be no exact fit to these noisy data sets.  The experiments

were carried out in a similar pattern to those in chapter four, except that for each

combination of sample size and number of stomach weight categories a number of

experiments had to be conducted for data sets sampled at different time intervals.  The

optimisation routine was carried out for one hundred different random samples of each

combination of sample size, sampling frequency and number of categories and then the

appropriate summary statistics were calculated.  The variation in mean value and

absolute coefficient of variation for each of the four parameters are illustrated for a

fixed sample size with varying numbers of stomach weight categories and sampling

frequency.

The first illustration shows the variation in the average fitted mean meal size and its

absolute coefficient of variation for samples of 500 individuals.  The value of the

average appears to remain relatively constant and close to the population value of 0.5

for all sampling intervals and stomach weight category widths until the number of

stomach weight categories is less than about twelve.  At this point, for very infrequent

sampling, the average value decreases away from the population value.  As the number

of stomach weight categories is reduced, the decrease in the mean value becomes

greater and is apparent even in more frequently taken samples.  The deviation of the

expected value of the mean meal size away from the population value appears to be

quite systematic, with the prediction getting much smaller for very infrequently taken

samples categorised into a small number of stomach weight categories.

The coefficient of variation, for all combinations of stomach weight categories and

sampling interval is quite small.  However, as the sampling interval increases, the
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reliability of the prediction decreases, i.e. the coefficient of variation increases,

particularly at low numbers of stomach weight categories.
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Figure 5.5.  Variation in the average (a) of the fitted mean meal size and its coefficient of

variation (b) with number of stomach weight intervals and sampling frequency for samples of

500 individuals.  The population mean meal size is 0.5.

The corresponding illustrations of the variations in average standard deviation of the

meal size distribution and its coefficient of variation are shown in figure 5.6.  Once

again for most of the range, the average standard deviation surface is quite flat and

close to the population value of 0.05, but for large sample intervals and a small number
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of stomach weight categories, the average value increases by approximately eight

times.  There is also a corresponding increase in the coefficient of variation, although

this is quite high over the whole range when compared to that of the mean of the meal

size distribution.
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Figure 5.6.  Variation in a) average and b) coefficient of variation of the standard deviation of

the meal size distribution with number of stomach weight categories and sampling interval for

samples of size 500.  The population meal size distribution standard deviation is 0.05.
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Figure 5.7.  Variation with sampling interval and number of stomach weight categories in a)

average and b) coefficient of variation of the underlying feeding rate of samples of size 500.  The

population value is 0.1.

Both illustrations of the variation in the average values of R1 and R2  (the parameters

defining the feeding rate function), show that the sample predictions are closest to the

population values for a large number of stomach weight categories and very frequent

sampling and worst for infrequent sampling and a small number of stomach contents

intervals.  The total deviation from the population values over the whole range,
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however, are quite small (10%) when compared with the change in the other two

parameters (40% for the mean and 600% for the standard deviation) at their worst

points.  Correspondingly, the coefficient of variation is very low for most combinations

of sampling interval and number of stomach weight categories, but does increase

towards the large sampling interval/small number of stomach weight categories corner.
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Figure 5.8.  Variation in a) the average and b) the coefficient of variation of the amplitude of the

feeding rate oscillations with sampling interval and number of stomach weight categories for 100

samples of 500 individuals.  The population value is 0.1.

In my next set of illustrations, I shall illustrate the results of the same experiments, but

with samples of 100 individuals instead of 500.  I can then analyse the consequences of
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changing the sample size as well as the sampling interval and number of stomach

weight categories in this time dependent problem.
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Figure 5.9.  Variation in a) the average and b) the coefficient of variation of the mean of the

meal size distribution with sampling interval and stomach weight categories for samples of 100

individuals.  The population value is 0.5 grams.

The average of the mean meal size, illustrated in figure 5.9a, most closely matches the

population value for large numbers of stomach weight categories and this accuracy

remains for all sampling intervals.  However, as the number of stomach weight

categories begins to decrease, at large sampling intervals, the average value begins to
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fall quite rapidly.  For more frequent sampling, there is only a slight decrease in the

average of the mean meal size.

For all very frequent sampling the coefficient of variation is very low and only

increases slightly for less frequent sampling at high numbers of stomach weight

categories.  However, for small numbers of stomach weight categories, infrequent

sampling produces a very high coefficient of variation indicating very great variability

in the mean of the meal size distribution predicted by the sample.
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Figure 5.10.  Variation in a) the mean and b) the coefficient of variation of the fitted standard

deviation of the meal size distribution for samples of size 100.  The population value is 0.05.
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Once again, the mean of the fitted standard deviations is closest to the known

population value for large numbers of stomach weight categories and very frequent

sampling and increases to approximately ten times the population value for data which

is infrequently sampled and categorised into a small number of intervals.  Likewise the

coefficient of variation shows a large increase for a small number of stomach weight

categories at large sample intervals.
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Figure 5.11.  Variation in a) the mean and b) the coefficient of variation of the underlying

feeding rate with sampling frequency and number of stomach weight categories for samples of

100 individuals.  The population value is 0.1.
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The two illustrations of the variation in the average value of the feeding rate

parameters show quite a lot of peculiar peaks and troughs.  However, the magnitude of

these variations is extremely small compared to those of previous examples and the

overall trend appears to show that the mean value is closest to the population value for

frequent samples with larger deviations for infrequent samples and low numbers of

stomach weight categories.
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Figure 5.12.  Variation in a) the average and b) the coefficient of variation of the amplitude of

the feeding rate oscillations for samples of size 100.  The known population parameter value is

0.1.
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The coefficient of variation of the underlying feeding rate (figure 5.11b) increases

considerably as the sampling interval increases, particularly for small numbers of

stomach weight categories.  Although the surface of the coefficient of variation of the

amplitude of the feeding rate (figure 5.12b) appears to be a much more complicated

shape, the overall variation is much less and the general trend is still to a higher

coefficient of variation for infrequent sampling.

A brief initial comparison between the results of the experiments with large and small

sample sizes shows similar trends in the overall shapes of the summary statistic

surfaces.  However, the deviations away from the population values and the value of

the coefficient of variation for the smaller sample size tend to be larger and over a

wider range of sampling frequency and number of stomach contents categories, which

is as we would expect from the results of chapter four.

For both sets of sample sizes, we can see that the most outstanding feature of the

illustrations is that the average of the fitted mean decrease and that of the standard

deviation increases by quite large amounts as the number of stomach weight categories

decreases, particularly at low sampling frequencies.

When the samples are categorised into a small number of categories, each category is

much broader.  In this case the population is feeding at a relatively low rate compared

to its digestion rate and on a small meal source and therefore for much of the day the

population is concentrated in the low stomach weight categories.  So, by looking at the

data, we can tell that the meal size distribution must have a relatively low mean and

low feeding rate.  However, we do not know the exact details of the stomach contents

distribution, only the proportion in some very broad categories.  So, it is possible that

the data could be fitted as adequately using a normal distribution, (truncated and

renormalised at zero) with a larger standard deviation and a peak at a much lower

point than the population meal size distribution.  It is not possible that the fitted meal
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size distribution could be centred much higher than the population distribution, as even

with a small standard deviation, this feeding behaviour would predict too many

individuals with high stomach weights as the digestion rate remains the same.

Therefore, the average fitted mean decreases and the average fitted standard deviation

increases as the number of stomach contents categories decreases.

This effect really only becomes important when we are dealing with less frequently

taken samples.  Obviously the temporal variations of the proportions of fish in each

category which are accurately described when sampling is very frequent, indirectly give

information on the stomach contents distribution at the previous time step.  For

example, the number of fish which are in a particular category at time t+1 depends on a

combination of feeding behaviour during that time interval and also the distribution of

stomach contents at time t.  For infrequent sampling, for example twice a day, a

number of different routes (combinations of feeding behaviour and stomach contents

distributions) could be taken from one stomach sample to the other, while for more

frequent sampling there will be less room for variation.  Therefore, it seems that very

infrequent data sampling and small numbers of stomach weight categories are a bad

idea for attempting to infer population feeding behaviour.

Although the surfaces which describe the variations in the fitted underlying feeding rate

and feeding rate amplitude both appear to be fairly noisy, there is in fact very little

overall variation for either large or small sample sizes, compared to that of the other

two parameters.  The position and shape of the stomach contents distribution although

dependent on the mean and standard deviation of the meal size distribution, the two

feeding rate parameters are even more important.  Quite small changes in their values

will produce noticeable changes in the stomach contents distribution, even for small

numbers of stomach weight categories with either increases or decreases in the

proportion of the sample with high stomach weight categories.  The only possible
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trend which appears in the illustrations is that predictions, once again, become less

accurate and reliable for infrequent sampling and few stomach weight categories.

The aim of the experiments carried out in this section is to be able to conclude on a

combination of sample size, number of stomach contents categories and sampling

interval  which is practical for use in actual data collection and will give reliable

information about the feeding behaviour of the population from which the samples are

drawn.  This means we wish to find the combination which best predicts the population

parameters, but also has a low coefficient of variation implying that we can be quite

confident that if one such sample is taken from the population then its fitted parameters

will quite accurately describe the feeding behaviour of the population.

Since the predictions of the underlying feeding rate and feeding rate amplitude appear

to be relatively accurate for all sample sizes and combinations of sampling frequency

and number of stomach weight categories, I shall concentrate on the results of the meal

size parameters.  From the previous discussion of the parameters describing the meal

size distribution we can see that for large samples of size five hundred, predictions

remain quite accurate and the coefficient of variation remains quite low for all stomach

weight categories provided that sampling is at least every four hours.  On the other

hand if we wish to use smaller samples (size one hundred), samples must be taken

quite frequently (hourly) or categorise into a large number of stomach weight

categories.  So, I shall conclude that provided the digestion rate and upper stomach

limit are known and that the feeding timing and frequency can be assumed, then the

feeding behaviour a population is adequately predicted by the behaviour inferred from

either relatively small but frequent samples or larger less frequent samples.
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      5.5  Conclusion

In this chapter I have devised an alternative way of modelling the feeding and digestion

process which involves the solution of finite difference equations.  Quite broad

discretisation speeds up the solution of the problem immensely and still gives solutions

which adequately reproduce those of the partial differential equation approach.  It is

therefore possible to use this process in the solution of the time dependent inverse

problem.

I have shown that the time varying feeding behaviour of a population can be inferred

from the hourly outputs of its time dependent stomach contents distribution, provided

that the number of meal sources is known and that the initial parameters are not too far

from the optimum.  In fact we can even infer the frequency and timing of the

oscillations in the feeding rate.

As in chapter four though, we have to use very strict convergence criteria to prevent

any confusion which may arise when attempting to fit the wrong number of meal

sources or wrong feeding rate functions.  However, when dealing with noisy data, this

very low value of the least mean squared error required for convergence must be

dropped as no predicted stomach contents distribution will give a perfect fit to the

data.  So, in this case convergence to the wrong feeding function may possibly occur,

although this predicted behaviour is likely to be quite similar to that which the data was

generated with.  For example, a step function feeding rate function may be confused

with a sinusoidal function oscillating in phase with the same frequency and amplitude.

However, in all of the parameter fitting experiments involving noisy and categorised

data I have assumed that the actual number, type of prey source and feeding rate

function are known and therefore this problem does not arise.
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I have tried to show in the experiments with simulated noisy and categorised data, how

accurately feeding behaviour inferred from regularly sampled data describes that of the

parent population from which it was drawn.  The results indicate that if we want to

sample a relatively small number of individuals (approximately 100), then they must be

sampled very frequently (hourly) and categorised into no less than between five and ten

stomach weight categories, to predict feeding behaviour which adequately describes

that of the population from which it came.  However, we have also shown that an

alternative to such time intensive sampling is to take larger samples (500 individuals),

as infrequently as every six hours and categorise their stomachs into at least about

fifteen intervals.

All these experiments with simulated and noisy data have been conducted with a very

simple example and as few parameters as possible.  Earlier sections, however, have

shown that the automatic fitting procedure can be used to solve the inverse problem in

higher dimensions, so there appears to be no reason why these results should not be

applicable to such multiple prey source, alternative feeding rate function problems.  I

shall therefore conclude that given an adequate set of data and that the optimisation

routine is not started too far from the optimum, then we can infer the feeding

behaviour of the population from which the data was drawn.
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Chapter 6

Data collection and analysis
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      6.0 Introduction

So far, this thesis has concentrated on the construction of a continuous feeding and

digestion model.  The model has been tested for uniqueness and a semi-automatic

method has been found for inferring the feeding behaviour from the variation in the gut

contents distribution.  Further experiments were carried out to check how well the

feeding behaviour inferred from randomly chosen samples described that of the

population from which they were taken.  The results showed that the reliability of

sample predictions does not deteriorate too much provided the samples are of at least

100 individuals, taken very frequently and categorised into a reasonable number of

stomach weight categories (not many fewer than ten).  All these experiments, however

were carried out with samples taken from a population with known feeding behaviour,

simulated by the model which has been formulated in this thesis.  So, in the next

section of this thesis, I shall attempt to infer the feeding behaviour of some real fish

populations, with unknown feeding behaviour, from diel stomach contents samples.

This chapter serves as an introduction to this next section. It describes the details of

the data collection and then goes on to discuss what analysis is carried out to justify

using this data in comparison to the output of the previously constructed feeding and

digestion model.

      6.1 Data Collection

The data which has been used in this study was collected by Hall et al. (1995).  The

location at which the sampling was carried out in July and August 1989, was the north

coast of Loch Gairloch, a sea loch on the north west coast of Scotland.
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Fishing was carried out using a standard light trawl (cod end mesh 80 mm), fitted with

250 mm bobbin ground gear.  Each trawl consisted of towing the net for

approximately 15 minutes at 2.5 knots, in order to cover an average distance of 1 km.

By combining measurements of the net size with the length of the tow, the mean area

and volume covered by each tow were calculated to be 6820 462 2  m m±  (standard

error) and 27033 228 m  m3 3±  respectively.

These short, but frequent samples provided large enough numbers of fish, but also kept

seabed disturbance at a minimum. However, even taking such short samples repeatedly

over a long period of time may affect the resident communities.  For example, seabed

disturbance may cause an increase in the availability of food.  In which case stomach

contents samples would not reflect those of the natural conditions and the whole

structure of the local community may be altered by the influx of more predators.  To

combat this problem, three separate but similar sites were used for sampling, being

trawled in rotation.  Each area was therefore trawled only once in every three hours.  It

was shown in an earlier paper by Hall, Rafaelli and Thrush (1994) that disturbance only

lasts for about an hour, after which fish populations return to their normal size.

Disturbance of the sites was also minimised by fishing for only eight consecutive hours

per day.

The sampling was carried out over a period of eight days between 27th  July 1989 and

7th  August 1989.  The pattern of sampling used guaranteed that each hour was

sampled at least twice so that stomach contents distributions and average size could be

compared between days and sites.

After each catch the total number of fish was recorded and a maximum of fifty

individuals from each of the predominant fish species were kept to use in the stomach

contents analysis.  The four main species caught during the trawls were the dab

[Limanda limanda (L.)], plaice [Pleuronectes platessa (L.)}], haddock
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[Melanogrammus aeglefinus (L.)] and whiting [Merlangius merlangus (L.)].

Immediately following capture, the body lengths of all fish were recorded.  The

stomachs of the whiting and haddock were removed and placed in formaldehyde

solution, while the dab and plaice had formaldehyde solution injected into their

stomachs for removal later in the laboratory.

Once in the laboratory, the stomach contents of each fish were removed and weighed

before being freeze dried and re weighed to find the dry weight.  Although it was not

the intention of this study to go into a detailed analysis of diet composition by species,

a brief examination of the stomach contents revealed that the diets appeared to be no

different to those found in previous studies.  The dab and plaice, along with the smaller

haddock showed a preference for mainly benthic crustacea and polychaetes, while

whiting and the larger haddock had mainly piscivorous diets which largely consisted of

sandeels.  These results are supported by Hall et al. (1990), Gibson and Ezzi (1986)

and Gordon (1977) who have all conducted detailed diet analyses of the fish species

populating the inshore waters of the west coast of Scotland.

Before the collected data could be used in any meaningful stomach contents analysis, in

comparison with the model constructed in chapters two and three, some further checks

were required to establish whether the data had been sampled from a closed population

of similarly sized fish.

      6.2 Data Analysis

Since the sampling was done over a period of days using different sites, several tests

were carried out by Hall et al. to establish whether there are any significant trends in

fish sizes with sample which may affect the patterns seen in the data.
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Trends in the average body size of the species over the day, the sampling period and

sampling areas were also investigated with non-parametric analysis of variance

showing significant differences in body length between samples. For example, the

average length of dabs sampled appears to be low at the start of the day (for all dates

combined), then rises to a peak in mid afternoon, but then falls again later in the

evening.  In contrast the average length of sampled haddock shows no particular trend

over the day, but appears to reach a minimum in the middle of the sampling period

with highs at the beginning and end.  These variations in mean size, however, occur

over a very small range, 8-13% above or below the mean length of the species in

question.
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Figure 6.1.  Length frequency distributions for all samples pooled for a) dab, b) plaice, c)

whiting and d) haddock.
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Due to the presence of only very small variations in the mean length coupled with the

relatively narrow length distribution, shown in figure 6.1, it was argued that such

samples could be used in a stomach contents analysis dealing with single populations of

similarly sized fish.  The bi-modal appearance of the frequency distribution of haddock

suggest that two populations are present, which are likely to have different feeding

behaviour, so in this case separate analyses was carried out for fish above and below

29 cm in length.

This, however, does not rule out the possibility that the population undergoes

substantial immigration or emigration to and from the area of study as fish become

sated or hungry.  For example, it is quite possible that fish come to an inshore area to

feed and them return offshore when sated.  This would lead to a very unbalanced

distribution of stomach contents in our area of study (inshore) and consequently very

biased feeding behaviour.  Unfortunately though there appears to be no practical way

of monitoring this behaviour and since there are no significant changes in fish size, I

shall assume that we are dealing with closed populations of fish.

        Category       Lower bound       Upper bound

             Fo                 0                 0

             F1                 0               0.25

             F2               0.25               0.50

             F3               0.50               2.50

             F4               2.50                 5

             F5                 5                10

             F6                10                20

Table 6.1.  Gut fullness boundaries for all of the species.
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Once this has been concluded, the wet weight of the gut contents of each individual is

standardised to its body weight using the gut fullness index, defined by

GFI
wet

total
= × weight of gut content (g)

 wet body weight (g)
100          (6.1).

For each species the GFIs were categorised into six gut fullness intervals, F Fo − 5 ,

(seven in the case of whiting), shown in table 6.1.

Initially the categorisation was done separately for each combination of time, date and

tow, so that gut fullness index comparisons could be made between different samples.

None of the species exhibited any differences in gut fullness between days, so it is

concluded that combining samples taken at the same time but on different days is

justifiable.  So, we now have a diel picture of the variation in proportion of fish in

particular gut fullness index categories.

      6.3 Gut contents variations

Most studies of fish feeding behaviour conducted using stomach contents data have

been carried out using a very wide range of fish sizes.  So, by using the GFI and

standardising all measurements to percentage body weight it is then possible to make a

sensible comparison between stomach measurements taken from fish of very different

sizes.

However, the analysis of fish lengths described in the previous section concludes that

the variation in fish length over each of the species is relatively small when compared

to the actual size of the fish (approximately ±10% of the mean length).  I shall

therefore assume that the stomach contents samples have been drawn from a

population of identically sized fish.  The data can therefore be transformed back to

actual stomach weights using the average weight of each separate population.  The
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data is now in the more straightforward form of daily variation in proportions of the

population contained in particular stomach contents categories, the width of which are

also scaled from the gut fullness index values.  These variations in stomach contents

categories are illustrated in figure 6.2 and the actual stomach weight category

boundaries are given in table 6.2. and attempt to fit the feeding and digestion model to

the actual raw gut weight data.

     Dab     Plaice   Whiting  Small haddockLarge haddock

      P0        0        0        0            0            0

      P1     0.175     0.325     0.250         0.375         0.825

      P2     0.350     0.650     0.500         0.750         1.650

      P3     1.750     3.250     2.500         3.750         8.250

      P4     3.500     6.500     5.000         7.500         16.50

      P5     7.000     13.00     10.00         15.00         33.00

      P6      NA       NA     20.00           NA           NA

Table 6.2.  Upper boundaries for the seven (where applicable) stomach contents categories for

each of the five fish cohorts.

Although the error bars give an indication of the great variability between fish stomach

contents samples at the same time, some patterns in the data are still visible.  For

example, the dab and plaice both show decreases in the proportion of empties in the

early morning, which corresponds to increases in the contents of P1, suggesting an

increase in feeding at this point.  In the case of the dab, however, this fluctuation does

not extend to fullness category three which has relatively high stomach contents

throughout the day with a small increase in the evening.
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Other variations which are difficult to explain are observed for the whiting samples

(fig. 6.2c) which show a decreasing number of empty stomach early in the morning

which corresponds to increases in the upper stomach weight categories only.

We can also see at first glance that the stomach weight category variations for the

small and large haddock show very similar patterns, which is quite reassuring.

Although the haddock has been split into two groups, we would not expect particularly

different feeding patterns to occur as a result of changes in size as the physiology of

the two groups will be the same.
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b) plaice
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d) small haddock
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e) large haddock
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Figure 6.2.  Daily variations in the proportion of the population in each stomach weight category

for a) dab, b) plaice, c) whiting, d) small haddock and e) large haddock.
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It is impossible to explain the dynamics of these stomach weight categories simply by

considering the data alone.  So, correctly categorised output from the feeding and

digestion model can be compared to these stomach weight category variations in order

to gain a more accurate insight into the feeding behaviour of these fish.
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Chapter 7

Inferring feeding patterns
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      7.0 Introduction

In this section of the thesis I shall explain how  the stomach contents data is used to

establish the feeding behaviour of the population from which it was sampled.  Chapters

four and five explained a method for inferring the exact feeding behaviour, but the

fitting procedures used, were required to start relatively near the optimum in order for

convergence to occur.  This is fine when we know the actual feeding behaviour of the

population and are only trying to deduce the feeding behaviour of a simulated random

sub-sample of individuals.  However, when we are dealing with samples of real data,

we have no previous knowledge of where the approximate optimum is.  We have no

way of knowing how many prey sources the population is feeding on or how the

digestion rate is varying.  Blindly attempting to use the semi-automatic optimisation

method devised in chapters four and five, with a particular number of food sources and

a fixed feeding rate function is therefore likely to lead to problems.  So, in this chapter

I shall use the simple alternative approach of varying the feeding parameters and

comparing the output from the model to the stomach contents data until an optimum is

reached.  Although we cannot check that this optimum is global, it can be verified that

a local optimum has been reached.

However, as well as the set of parameters defining the feeding behaviour of the

population, the model requires a digestion rate and upper stomach contents limit.  In

previous chapters we have assumed that the values of these parameters are already

known for the population in question.

It is possible to choose a sensible value for the maximum stomach contents of each

species by considering the sampled stomach contents data.  The upper limit of stomach

fullness should be a value that is not exceeded by any of the stomach contents data, so

I shall take this value to be equal to the upper limit of the upper stomach content

category defined in table 6.2.  So, for example the maximum possible stomach contents
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for the dab is assumed to be seven grams.  Although we have no way of knowing the

precise maximum stomach contents, it seems unlikely that it will make much difference

to the model as most of the population in all five fish cohorts, have relatively low

stomach contents and there are few fish in any of the upper stomach weight categories

(refer to figure 6.2) close to this upper limit.

A value for the digestion rate constant, however, cannot be found by simple

observations of the raw data.  One option of dealing with the unknown digestion rate is

to leave it as a free parameter in the feeding and digestion model, to be fitted along

with the feeding parameters.  This, however, could lead to grave errors in feeding

behaviour inferences as even slight differences in the value of the digestion rate can

produce massively different stomach contents distributions, as illustrated in figure 3.2.

So, it is more sensible, in order to obtain meaningful results about the feeding

behaviour of each species, to acquire values of the digestion rates from an independent

source which I shall proceed to do in the next section.

      7.1 Estimation of the digestion rate

Before it is possible to attempt inferring the feeding behaviour of the fish population

from which the samples have been drawn, we need to know the digestion rate of the

population.  Figure 3.2 illustrated how even quite small changes in the digestion rate

can affect the state of the stationary stomach contents distribution.  So, an accurate

value of the digestion rate is required in order to obtain any reliable results about the

feeding habits of the population.

As we have a model representing the change in stomach contents distribution for a

non-feeding population of fish, the members of which all follow a linear digestion

model with digestion rate K, it would appear to be a straightforward task of fitting our
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model to evacuation data for the appropriate species.  Most digestion studies however

do not present their digestion data and just give a relationship defining the reduction in

stomach contents with time which has been fitted to data derived from a number of

digestion experiments.  Instead data must be produced from these relationships by

assuming an initial mean stomach contents and then calculating the mean stomach

contents at hourly intervals.  Our model can then be fitted to such a data set using the

same method as chapter two and the digestion rate which gives the best fit can then be

used in all future work on fitting the feeding and digestion model to the stomach

contents data.

It seems unlikely that all fish species will have identical rates of gut evacuation, partly

due to differences in size, as well as differences in species physiology, so here I shall

explain these variations in gut contents depletion relationships.  Many digestion

experiments carried out by Jobling and Spencer Davies (1979), Jobling, Gwyther and

Grove (1977) and Jones (1974) support these views, although they do not all agree

that digestion is a linear process.    In all fish species it was found that the evacuation

rate increased with fish weight or length, obeying  the power law relationship (Fletcher

et al. 1984, Basimi and Grove 1985 and Jones 1974)

K M a∝                      (7.1)

or

K Lb∝                      (7.2)

where K is the digestion rate constant, M is the fish weight in grams, L is the length of

the fish in centimetres and a and b are constants, which appear to be species

dependent.
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It has been known for many years that the digestion rate is also highly dependent on

external conditions such as water temperature (Bajkov 1935).  Elliott (1972) during his

studies of brown trout found that the relationship was an exponential one

K cT∝ expa f                      (7.3)

where T is the water temperature in  oC and c is a species dependent constant.  This

theory was supported by Fletcher et al. (1984), Basimi and Grove (1985) and Grove et

al. (1985).

I now need to find specific digestion rate-temperature-weight relationships for each of

the four species from which the stomach contents data was sampled.   A series of

similar experiments conducted on the gastric evacuation of plaice (Basimi and Grove

1985) and dab (Fletcher et al. 1984), have found the average stomach contents of the

population to obey

W t W T M t( ) ( ) ( , )θ θ τ= −0              (7.4)

where S(t) are the average stomach contents at time t, τ(T,M) is a function which

include the temperature (T) and weight (M) dependence and θ is a constant.  The

function τ(T,M) has been shown to take the form

τ( , )T M BM ea cT=              (7.5)

where B,a and c are constants dependent on the species and are shown in table 7.1.

       Species          θ          B          a          c

         Dab        0.75      0.0068        0.43      0.041

        Plaice        0.49       0.025       0.068      0.086

Table 7.1.  Values of the average stomach contents depletion curve constants for the dab

(Fletcher et al. 1984) and plaice (Basimi and Grove 1986).
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A similar, but more complicated relationship is given for haddock by Jones(1974)

W t W
Q

L
t

T Tc

( ) ( )
.. .

. ( )

.
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0 035

1 4
0
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0
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−                      (7.6)

where Tc  is the water temperature of the study, T0  is 12o C , L is the fish length (cm)

and Q is the rate of elimination of 1 gram of food from a fish 40 centimetres in length.
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Figure 7.1.  Mean stomach contents depletion curves generated by relations 7.4 and 7.5 for a)

dabs (5.25g), b) plaice (9.75g), c) small haddock (11.25g) and d) large haddock (24.75g).  The

bracketed figures are the mean satiated stomach contents.

For each of these three species, I can now construct average stomach contents

depletion curves.  The average lengths and weights are calculated (see table 7.2) and a

temperature of 13 2. o C which is typical of the summer water temperature of Scottish

west coast sea lochs, is used in equations 7.4 and 7.6 to generate the mean stomach

contents depletion curves.  The value of Q is taken to be 0.223, which is the value

suggested by Hall (1987) as the mean of all known values.  The depletion curves with

initially satiated fish populations are illustrated in figure 7.1.  I assumed that at
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satiation, the population stomach contents are distributed normally about the mid-point

of the highest stomach contents category as defined in table 6.2.

Comparing figures 7.1a and 7.1b, we notice immediately that plaice must have a much

higher digestion rate than dab, as they manage to completely evacuate their stomachs

of a much larger meal in almost half the time.  Also comparing the two haddock

stomach contents depletion curves, we see that the time for complete evacuation is

almost the same, even though the large haddock have an initial mean stomach contents

of twice the size, implying that their digestion rate is approximately twice that of the

small haddock.

I can now fit the linear digestion model to points taken at hourly intervals from the

curves illustrated in figure 7.1.  I shall assume that the initial mean stomach contents of

the population is known and equal to that of the data to which we are attempting to fit

the linear digestion model.  I showed in chapter two that the shape of the population

average stomach contents depletion curve is dependent to a certain extent on the initial

distribution of stomach contents, so in the fitting procedure I shall allow both the

digestion rate and initial standard deviation to vary.  The best fit parameters are given

in table 7.2 and the best fit curves are illustrated in figure 7.2.

    Weight(g)    Length(cm)      St. dev.  Dig. rate(g/h)

         Dab         70        18.72         1.34        0.13

       Plaice        130        21.96         3.36        0.55

  Small Haddock        150        23.90         2.44        0.29

  Large Haddock        330        32.11         3.87        0.62

       Whiting        100        22.59          NA        0.15

Table 7.2.  Mean weight and length and fitted digestion model parameters of the fish species

used in the stomach contents analysis.
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Although the standard deviation of the initial stomach contents distribution is

unknown, its value does not actually affect the digestion rate by too much, which can

be illustrated by fitting the digestion model with fixed initial standard deviation.  In fact

the digestion rate is relatively robust to changes in the standard deviation, with changes

of 50 percent in the initial standard deviation producing deviations of less than five

percent in the best  fit digestion rate for all four fish cohorts.
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Figure 7.2. Mean stomach contents depletion data (points), together with the best fitting linear

digestion curves for a) dabs, b) plaice, c) small haddock and d) large haddock.

No such expression for the depletion of the average stomach contents of whiting is

available and therefore another method of calculating the linear digestion rate must be

found.  The studies of Bromley (1988) were based on experiments conducted on

whiting and give a value for the linear digestion rate which can be corrected for body

size and water temperature.  This adjusted value of 0.15g/h agrees with an

instantaneous digestion rate measured by Robb (1990).
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Now that values for the linear digestion rate have been established, I can begin to

consider how to attempt to fit the feeding and digestion model to these stomach

contents data sets.

      7.2 Methodology

Chapters four and five showed a semi-automatic way of inferring the feeding habits of

a population from samples which had been taken at particular time intervals.  It could

not be completely automated however, as we had to know the basic structure of the

meal size distribution i.e. how many prey sources there were and what type of

distribution they followed.  Also, when the data were very noisy, the fitting procedures

had to be started with initial parameters quite close to the optimum fit, otherwise the

computations required to reach the minimum took an inordinate length of time.

In this case we have no prior knowledge of the feeding behaviour of the fish

populations under consideration and the only way to decide how many meal sources

there are and how the feeding rate varies is by contemplating the variations in the

stomach contents categories.  This will give us an idea of when the feeding rate

increases and decreases, but will not help decide on the number of prey sources.

I decided that the most practical approach would be to assume a maximum number of

meal sources (three) and that the feeding rate of each meal source could switch

between fixed values at particular times (maximum of four times) during the day and

then attempt to find the optimum parameters by comparing by hand the model

predictions and observed data.  Considering the variation in the proportion of the

population in each stomach contents category in chapter five (figure 5.4), gave us a

good idea of how the feeding rate was varying i.e. at what times the rate was

increasing or decreasing.  However, the real data sets which we are considering here
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are much noisier than those simulated data sets which were used as examples in

chapter five and so it is quiet difficult to decide whether an increase in the proportion

of empty stomachs is due to a reduction in feeding rate or whether it is just noise.  This

problem can be alleviated slightly by taking a three-point running average of the data

which smoothes the stomach contents data and the observed variations can now more

confidently be attributed to changes in feeding behaviour rather than sampling error.

These variations in smoothed data are shown in the next section in figures 7.3-7.7.

Initial attempts at fitting the model to the data were made by comparing the model

predictions to the data by illustrations of the two data sets superimposed.  This method

probably being the most effective way of finding an approximate optimum.  As the fit

of the model becomes closer, however, small parameter changes which improve the fit

of one of the stomach contents categories may reduce the fit of others.  Eye-ball

techniques are unlikely to be able to decide which parameter set gives a better overall

fit and therefore an error measure must be used.  Instead of using the usual mean

squared error measure, used in previous sections, I decided that a more appropriate

goodness of fit statistic was the normalised mean absolute error (Thiel 1966) defined

by

E
P x O x

O x
abs

i i
i

N

i
i

N=
−

=

=

∑

∑

( ) ( )

( )

1

1

                                 (7.7)

where P xi ( ) is the ith predicted value of the quantity x, and O xi ( ) is the equivalent

observed value.

The data sets which we are attempting to fit in this section appears to be quite noisy

even after smoothing and even a few extreme outlying observed data points will give a

small number of very large errors, causing a massive increase in the error measure.  In
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such conditions, it is possible that the fitting procedure will be biased towards these

outliers, with a reduction in fit of the many more representative observed data points.

Using the mean squared error measure is likely to exacerbate this bias due to the

squaring of the individual deviations between observed and predicted points.  So I have

chosen to use the normalised mean absolute deviation in this section, rather than the

mean squared error, because of its decreased sensitivity to small numbers of outliers

present in the observed data.  The mean squared error was adequate for use in

previous sections as the data, although noisy did not contain any extreme outliers.

The normalised mean absolute deviation is calculated for each stomach-weight

category and then an overall score for the model is calculated.  Since the measurements

which are made for stomach-weight categories containing low average proportions of

the population are relatively more affected by the noise than those containing high

proportions, the overall model score is compiled by weighting each category score in

proportion to the time averaged population of that category.

      7.3 Results

The best predictions of the model superimposed on the observed three-point running

averaged data together with an illustration explaining the inferred feeding regime for

each of the five fish cohorts, are shown in figures 7.3-7.7.  The fit of the model for the

dab and plaice is very good, predicting most of the details of the variations in the

stomach weight categories.  The predicted stomach contents variations for the gadoids

are less accurate than those for the flatfish (i.e. they give higher average values of Eabs)

and do not predict some of the finer details.  However, the basic features and average

proportions over time are adequately predicted and the model continues to be quite

visually and statistically convincing with relatively low error measure values.
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Figure 7.3.  a) Model predictions (solid) for the proportion of guts in a series of weight categories

compared with the observed data (dotted) for dabs, with the corresponding diel variation in

meal size distribution (b).  The illustration shows i) the meal size distribution in each period and

ii) the variation in total feeding rate.
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The model requires the maximum number of three meal sources to obtain a good fit to

the dab data and has quite a complex feeding pattern.  The population has one very

large (mean 1.7g) meal source which is permanently available, but feeding occurs only

at an extremely low rate - so low that it is almost impossible to see on the illustration

of meal size distributions.  An intermediate sized prey is fed on for a short period in the

evening only, between the hours of 17.00 and 20.00 and finally there is a third quite

small prey source which is available all the time but is consumed at a higher rate during

the morning.  These results imply the dab feeds throughout the day, with many meals

being taken during the morning and a lower peak in the evening, but with a very low

overnight feeding rate.

I shall now consider the feeding behaviour inferred from the stomach contents samples

taken from a population of plaice.  The predicted and observed variations in stomach

contents categories are illustrated in figure 7.4.  The observed patterns in the variations

of the stomach contents categories of plaice are quite similar to those of the dab which

seems sensible since we are dealing with similar types of fish.  However, the feeding

behaviour is much simpler as shown in figure 7.4b.

Plaice appear to feed on a very small meal source, but at quite a high rate in

comparison to the feeding rate of dabs.  Overnight the feeding rate is very low, but

increases to almost three times during the morning and then in the evening between the

hours of 18.00 and 21.00.  So, although the feeding behaviour of the dab is more

complicated the change in feeding intensity predicted by the model follows the same

basic pattern for both species of flatfish, with high points during the morning and

evening, which is quite reassuring.
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Figure 7.4. a) Observed (dotted) and predicted (solid) variation in the proportion of the

population of plaice in each of a series of gut weight categories, with b)i) the meal size

distribution during the four periods and ii) the variation in total feeding rate.
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Figure 7.5.  Observed (dotted) and predicted (solid) variation in the proportion to the population

of whiting in each of a series of gut weight categories with b)i) the meal size distribution and ii)

the variation in total feeding rate.
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All three gadoid fish cohorts required a single meal source meal size distribution to

reach the optimum fit, with the two sizes of haddock having very similar feeding

behaviour.  There are however, clearly discernible differences between the feeding

behaviour of the whiting and haddock.  This could be assumed just by comparing the

observed stomach contents data sets, without even attempting to fit the model to the

data.  The proportion of the whiting population with empty stomachs is quite high

overnight, but falls during the day, corresponding with an increase in the proportion of

fish in categories  P3, P4  and P5 (the high stomach weight categories).  The variations

in the stomach contents of the haddock appear to be roughly the opposite of those of

the whiting and therefore we can surmise that the feeding behaviour is quite contrary.

The predicted and observed variations in the whiting stomach contents data are

illustrated in figure 7.5a.  The optimum feeding behaviour is shown in figure 7.5b and

amounts to feeding solely during the early morning on a relatively large, broadly

distributed prey source.

In contrast, figures 7.6 and 7.7 show that the haddock feed at a low rate throughout

the day except for a short period around midnight when their feeding rate becomes

very high.

The validity of the model is increased as we see that the optimum set of parameters of

the small and large haddock describe relatively similar feeding behaviour and that the

large haddock feed on slightly larger meals than the smaller ones.

The credibility and accuracy of the model can be checked further by comparing the

inferred feeding patterns to the results of other studies which have been carried out.
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Figure 7.6.  a) Model predictions (solid) for the proportion of guts in a series of weight categories

compared with the observed data (dotted) for small haddock, with the corresponding diel

variation in feeding (b).  The meal size distribution in each period is shown in i), while ii)

illustrates the variation in total feeding rate.
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Figure 7.7.  Observed (dotted) and predicted (solid) variation in the proportion of the population

of large haddock in each of a series of gut weight categories, with b)i) showing the changing

meal size distribution and ii) the variation in total feeding rate.
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     7.4  Checking the optimum

Since the model has been fitted to each of the data sets using a hand optimisation

technique rather than an automated method, it is particularly important that we make

certain that the feeding behaviour which has been inferred is actually an optimum.

There is no way of checking that this optimum is global, but we can at least check that

a local minimum has been obtained, by perturbing each of the parameters in turn and

checking that the normalised absolute deviation is at a minimum.  From such sensitivity

analysis we can conclude that the values of the feeding parameters describing the meal

source distributions and feeding rates do in fact give an optimum.  However, we must

further check the biological set-up of the model i.e. whether the number and type of

meal source distributions has been chosen correctly and whether the changes in feeding

are occurring at the most appropriate times.  Rather than tediously varying the

positions of the feeding switches and the numbers of meal source distributions in turn a

more sensible approach is to consider some more biologically significant tests.

I shall first consider the number of meal sources on which each species feeds.  Our

results conclude that the dab feeds on three meal sources while all the other fish

cohorts appear to feed on only one prey size distribution.  As the rate of consumption

of the very large meals  by the dab is so low, it seems surprising that this meal source is

necessary to obtain a good fit to the data.  It is in fact very important to the accuracy

of the fit, with the average Eabs increasing from 0.13 (minimum) to 0.49 when the large

prey are not included.  The consumption of extremely large meals, even at a very low

rate means that some individuals will have quite large stomach contents and so

omitting this meal source produces a quite marked worsening of the fit of the high

stomach content categories.  The medium sized prey source which appears during the

evening is required to produce the observed reduction in empties which begins around
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17.00h and also the corresponding increases in the proportion of the population in

categories P  and P2 3 .

Looking at the variations in the stomach weight categories of the plaice, it seems likely

that the same sort of feeding behaviour should be observed with the appearance of a

medium sized prey in the evening.  This however, produces too large a peak in

categories P  and P2 3  during the evening and too low a peak in stomach weight

category P1.  So, the addition of an extra meal source fails to provide a better fit to the

data.

Both the dab, plaice and whiting feed on some very small prey whose size distribution

functions are very skewed to the left due to the truncation at zero.  The effect of

substituting a gamma distribution for a truncated normal was investigated in chapter

four and we concluded that for noisy data, the fit of the two was indistinguishable.  In

this case, the gamma distribution provides a slightly worse fit to the data for the flatfish

and a slightly better fit for whiting.  However, in all cases the change in the total

normalised mean absolute deviation is less than five percent and we once again can

conclude that the type of distribution makes very little difference to the overall fit.

The final sensitivity test which I shall carry out is based on the timing of the feeding

switches.  By preserving the shape of the variation in feeding rate, but displacing its

actual position throughout the day, I can show that we have found an optimum.

Figure 7.8 illustrates the variation in the weighted mean absolute error with the timing

of the first feeding switch compared to the assumed optimum timing.

The position of the minimum at zero hours, for all fish cohorts indicates that our

method of hand fitting the model to the data has found an optimum.  The minima

observed for the gadoids are all very broad indicating a little uncertainty in the timing

of the feeding switches.  However in all cases this will be less than two hours.  The
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more complicated feeding regimes of the flatfish, which have more than one high

intensity feeding period, show another minimum in this sensitivity analysis,

approximately twelve hours displaced from our model fit.  For both species though the

global minimum is at zero hours displacement and therefore we can safely conclude

that our method has found the optimum timing.
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Figure 7.8.  Variation in weighted mean absolute errors with time at which the feeding rate first

switches compared to the optimum time for a) dabs, b) plaice, c) whiting, d) small haddock and

e) large haddock.

Although our method of finding the optimum feeding behaviour was not particularly

sophisticated, the combination of these simple sensitivity tests has proved that the

parameters sets found do indeed describe an optimum feeding behaviour for the fish

cohorts in question.
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     7.5  Discussion

Once we have established that our fitting procedure has produced an optimum fit to

the stomach contents data, we must discuss how accurately this inferred feeding

behaviour describes that of the population from which it was drawn.  The results from

chapter four indicated that samples taken from a population needed to contain

approximately 100 individuals and should be categorised into no less than about five

stomach weight categories in order to infer a reliable description of the stationary

feeding behaviour of the complete population.  Chapter five, though, which introduced

time dependence into the parameter fitting problem, implied that even with samples of

size 100, large errors in the estimates of population parameters could arise unless

samples were taken very frequently.  The real samples to which our model has been

fitted in this section, although relatively small (maximum size of fifty individuals), are

taken at hourly intervals and so quite a detailed description of the diel cycle is

observed.  I shall therefore assume that the feeding behaviour inferred from these

samples adequately describes that of the populations from which they were drawn.

As well as possible difficulties due to the size of the samples, another worry must be

that our samples are not being taken from a closed population.  It is possible that the

population undergoes regular immigration or emigration of individuals from other

populations with different stomach contents distributions.  For example, fish may come

inshore to feed and then move offshore when full.  Such a scenario would severely bias

our conclusions about the feeding behaviour of the population as we are sampling only

from an inshore area.  In the construction of our model, we have also assumed that

identical meal sources are available to the whole population which could be false if

samples are taken over a wide area.  In this case however, samples are taken over quite

a small region and it seems unlikely that prey availability is likely to vary much over

this area.
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Further checks that the model has been formulated in a sensible way and can be used to

give a satisfactory description of the variation in the stomach contents of a

simultaneously feeding and digesting population of fish can be made by comparing the

results of this section to those of other stomach contents studies.

I shall first consider the inferred feeding behaviour of the two flatfish species.  Many

studies have been carried out on the feeding patterns of flatfish, some of which support

our results, while others do not.  Gwyther and Grove (1981) carried out experiments in

which dabs were fed using a demand system and concluded that the fish usually fed

during the daytime, which is supported by De Groot (1971).  More specific

conclusions about the feeding behaviour of the dab were drawn by Knust (1986) who

analysed fish stomach contents samples.  He claimed that feeding occurred largely

during the morning, though a lower second peak in the feeding rate was observed for

samples taken in certain places, giving further support to our results.

The conclusion that plaice are mainly daytime feeders is supported by the studies of De

Groot (1964) and Edwards and Steele (1968) who observed that the average gut

contents generally rise during the day and fall during the night indicating an increased

feeding rate during the day.  Although Basimi and Grove (1985) found some evidence

of feeding during the night (which does not in fact contradict our results as we do infer

low overnight feeding), their sampled average gut contents are in general higher during

daylight hours, which seems to imply that more feeding occurs during the day.  The

studies of Bregnballe (1961) give support to our variations in the feeding rate

throughout the day, by suggesting peaks of feeding intensity at dawn and dusk.

The predictions made by the model that flatfish feed mainly during the day with peaks

of feeding during the morning and evening are well supported by a large amount of the

previous literature on the feeding patterns of flatfish.  Some evidence, however, was

found in laboratory experiments conducted by Hall (1987), that dabs feed mainly
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during the hours of darkness.  These experiments, though, also indicated a great

variation in the feeding behaviour of the dab with some of the individuals consuming

most of their food during the daytime.  So, I shall conclude, that since there is not a

large amount of substantial evidence to contradict the results of our model, the flatfish

are primarily daytime feeders relying on sight to catch their prey, with only low

sporadic feeding during darkness.

The complicated composition of the meal size distribution of the dab predicted by our

model is supported again to a certain extent by Knust (1986) who found that different

organisms were consumed at different times of the day, with  a larger prey source in

the late evening.  This agrees with our prediction of the appearance of the medium

sized meal source between the hours of 17.00 and 20.00.  Evidence for a similar

variation in the prey composition of the diet of the plaice was found by Ansell and

Gibson (1990) who claim that the diet changes with the tidal cycle.  This contradicts

our conclusion that plaice feed on a single meal source which is available at all times of

the day.

Fewer studies have been carried out on the feeding behaviour of gadoids and therefore

there is relatively little literature with which to compare our results.  Our feeding

pattern for whiting is supported by Gordon (1977) who concluded that whiting preying

on other fish fed mainly during the early  part of the morning.  His stomach contents

samples also agreed with our own, showing a peak in the proportion of empty stomach

contents during the middle of the night.  Experimental observations made by Hall

(1987) suggested that there may be a high peak in feeding intensity during the very

early morning, but that the same results could be observed from lower overnight

feeding which is concordant with the predictions of our model.

Overall, the model performs quite well in the prediction of the observed stomach

contents data.  Most of the feeding behaviour which is forecast shows good agreement
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with studies conducted by other scientists and therefore provided we are able to make

an independent calculation of the all important digestion rate, I can conclude that this

model can be used to make some useful inferences about the feeding behaviour of a

population of fish from frequently taken stomach contents samples.
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Chapter 8

Daily consumption rate

calculations
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      8.0 Introduction

The value of the results of chapter seven only become fully recognised when they are

coupled with total food consumption rate calculations, which are useful to many

ecological studies.  Growth and reproduction in individuals is influenced by their

energy intake which in turn is dependent on the type and amount of food consumed.

Such energy calculations are necessary for studies of enery flows in marine food webs.

A knowledge of total population food uptake rates is required when considering the

dynamics of complex animal communities, in order to determine the effect of a

particular species on its prey and also on other competing populations.

Food consumption rates are intrinsically linked to digestion rates and therefore are

dependent on a large number of external factors.  Here, however, I shall not go into

the entailing complex arguements and the discussion will concentrate on the methods

of calculation of food consumption.

The most obvious way of finding out how much fish eat is by watching.  Field

observations, however, are impossible, so all studies are carried out in the laboratory.

Elliott(1975) attempted to reproduce the natural environment of the trout in the

laboratory and calculated the daily consumption rate by counting the number of prey

items of a particular size which are consumed within a twenty four hour period.  An

alternative method which is used by Jones (1978), Majkowski and Waiwood (1981)

and Majkowski and Hearn (1984) is the energy requirement technique.  By making

estimates of the growth rate in the wild and the amount of energy required for

reproduction, the amount of energy and therefore the daily food ration required for

survival can be calculated.  The final technique is the analysis of stomach contents

samples (Eggers1977, Elliott and Persson 1978, Pennington 1985).  Once the digestion

rate is known, calculations of the daily ration are usually made by comparing
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successive stomach contents samples, making an hourly calculation and then summing

this over the whole day.

All three of these methods have their particular advantages and disadvantages.  From

laboratory experiments quite accurate measurements and observations can be made.

However, laboratory conditions can never fully reproduce those of the natural

environment, where the fish can move freely and have a wide range of prey items to

choose from.  Estimations made using energy methods, although useful in food web

studies, have a prerequisite of many energy requirement calculations which could all

lead to errors in the final calculation.  One of the advantages of the stomach contents

analysis technique is that the samples may be taken of fish feeding in their natural

habitat, though an independent method of calculating the digestion rate parameter is

still required.

In this case we have managed to infer the daily feeding pattern of the populations in

question by fitting a feeding and digestion model to the stomach contents data.  So, a

more elegant way of calculating the daily consumption rate would be to utilise the

feeding rate definitions made in the construction of the model and compare the results

with those of some of the more established daily ration calculation methods.

      8.1  A daily ration calculation

Before making any calculations of daily food ration from the results of chapter seven,

some further definitions are required.  The feeding function R(t)M(m)dm was defined

as the rate in meals per hour at which an individual ingests meals between sizes m and

m+dm provided the meal does not overfill its gut.  From this definition we can express

the consumption rate of an individual in grams per hour as
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Ψ( , ) ( ) ( )w t R t mM m dm
w wF
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z
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                      (8.1)

and the instantaneous population average food uptake rate at time t as

C t f w t w t dw
wF

( ) ( , ) ( , )= z Ψ
0

.           (8.2)

The parameters defining the feeding function which were inferred from the stomach

contents in chapter seven can now be used in the calculation of C(t).  The variation in

the population food uptake rate for each of the five fish cohorts is illustrated in figure

8.1.
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Figure 8.1.  Variation in the food consumption rates of a) dabs, b) plaice, c) whiting, d) small

haddock and e) large haddock  inferred from the stomach contents data.
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The total daily rations can then be calculated by integrating over the period of twenty

four hours and are shown in table 8.1.

              DailyUptake

          Species        grams    % body wt

           Dab         1.2         1.7

          Plaice         5.9         4.5

         Whiting         1.7         1.7

      Small haddock         6.2         4.1

      Large haddock        12.2         3.7

Table 8.1.  Daily uptake rates calculated using the optimum parameter sets.

      8.2  A review of other daily ration estimation methods

Further checks on the validity of this feeding and digestion model can be made by

comparing the results of the daily uptake calculations to the findings of other stomach

contents based studies.

The first important suggestions about the calculation of daily ration from stomach

contents measurements were made by Bajkov (1935), who proposed that the total

amount of food eaten over a twenty four hour period C24, could be expressed as

C A
n24

24= FH IK           (8.3)

where A  is the average stomach contents and n is the number of hours required for

complete gut evacuation.  Recent calculations have been more sophisticated and

generally based on the individual feeding and digestion model

dW t

dt
R t KW t c( )

( ) ( )= − .           (8.4)
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Eggers (1977) assumed an exponential gut evacuation rate (c=1) and that the feeding

rate R(t) is a constant or linearly increasing over certain periods of the day.  From such

a model he calculated the diel trajectories and daily ration of fish feeding under

particular feeding regimes, but the work was purely theoretical and no comparisons

with real daily variations in stomach contents data were made.

Consumption rate studies which incorporate comparisons with stomach contents data

tend either to be based on the solution of the above equation when possible or on the

concept that the amount of food consumed over a period of time by an individual must

be equal to the change in its stomach contents plus the amount of food which has been

evacuated (equation 2.1).  Elliott and Persson (1978) assumed an exponential digestion

rate and a constant feeding rate over a short period of time.  Solving  equation 8.4

under such conditions gives

W W e
R

K
et o

Kt Kt= + −− −1c h           (8.5)

where Wo is the initial amount of food in the stomach.  This formula can then be

rearrange to give an expression for the hourly food consumption rate

R
W W e K

e
t o

Kt

Kt
=

−
−

−

−

c h
1

          (8.6)

from which the actual food consumption over a particular time period can be

calculated.  Elliott and Persson (1978) found a reasonable amount of accuracy when

comparing this method to actual individual measures of food consumption.  However,

this method is only applicable to cases of exponential digestion which we rejected in

chapter two.

Since it is impossible, in general to monitor the stomach contents of individual fish at

intervals over the period of a day, sequential stomach contents samples will

incorporate many fish with a range of stomach contents.  Therefore, it is usual to
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calculate the population average uptake rate over a particular time period, U t , using

the expression

U W W Dt t t= − ++1            (8.7)

where Wt  and Wt+1  are the average stomach contents of the population at the

beginning and end of the period and D  is the average amount of food evacuated over

the period.

As I described in chapter two, though there is much disagreement about the type of

curve which gastric evacuation follows.  The evacuation rate, D(t), of an individual is

usually described by

D t KW t c( ) ( )= ,           (8.8)

which implies that the stomach contents of a non-feeding individual obey

W
W

        
c 1,  W(t) > 0

W(t) = 0
( )

( )
t

K c tc
c

1 0
1 1

0
−

−

=
− −RST ≠

                           (8.9)

and

W W        c=1( )t e Kt= −
0 .                                                               (8.10)

However, as I showed in chapter two, the shape of the population digestion curves can

vary enormously due to the variations in the stomach contents across the population.

The most important question which therefore must be answered before population

average consumption rates can be calculated is how to determine the population

average digestion rate over the period in question.  Some studies claim that a form of

equation 8.9 describes the depletion of average stomach contents of a population,

sometimes the same as that assumed for the individual stomach contents depletion,
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while others calculate individual digestion rates and then average them over the

population.  Clearly these methods will have a significant affect on the calculations of

the average consumption rate.

Two methods described by Basimi and Grove (1985) just treat the average digestion

rate like the individual digestion rate by applying equation 8.8 to the average stomach

contents of the population.  Their first method assumes that none of the prey ingested

during the time interval in question can be digested and therefore the digestion rate is

based on the stomach contents at the start of the interval, giving the expression

U K c tt t

c c

= − − −− −
W W0

1 1

1( )         (8.11)

for the food intake of the population during the time period zero to t.  Their second

method supposes that all the food ingested is taken halfway through the period and

then digestion of this newly ingested food can also occur, implying

U
K c t K c t

t t

c c c c
= + −LNM OQP − − −LNM OQP− − − −

W W
1

1

1

0

1

1

11

2

1

2

( ) ( )
                     (8.12)

Pennington (1985) illustrates a method of individual food consumption, similar to that

of Elliott and Persson, but more general in that it can be used with digestion models

other than the exponential relationship.  Starting from equation 8.4 he produced an

expression for the average amount of food consumed per hour over a particular time

interval, UT .  By definition,

U
T

R t dtT

T

= z
1

0

( ) ,         (8.13)

which on substitution from equation 8.4 becomes
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where avg signifies the average value over the time interval.  This measure can be

converted to average population uptake by substituting population average stomach

contents for individual stomach contents.  Pennington also suggests that a more

accurate estimate of D  can be made by calculating the digestion rate of each of the N

individuals at the start of the feeding period and then averaging these across the

population.  His expression for average consumption per fish per hour, UT , is then

U K avg t N T N N T

t T T

T i
c

i

N

i i
i
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i
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    (8.15)

where Wi t( ) is the stomach contents of fish i at time t and

W Wc i
c

i

N

t t N( ) ( ) /=
=
∑

1

.         (8.16)

All of the methods described here, when used with actual stomach contents data, make

use of regular samples taken at relatively short time intervals.  An alternative approach

however, is carried out by Sainsbury (1986), who uses a similar idea to the work done

in this thesis.  He suggests fitting a model incorporating parameters which describe the

feeding rate and length and time of feeding period to data for the full twenty four hour

cycle.  A non-linear least squares fit to the data would then provide estimates of the

feeding parameters including the hourly food uptake rate.  Results found using this

model appeared to agree quite well with those of Elliott and Persson except when

some feeding occurs throughout the day  which violates the assumption made here that

there is a distinct feeding period.  The assumption made by Sainsbury, that digestion is
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an exponential process, implies that an analytic expression for the variation of the

stomach contents during one feeding cycle can be found with relative ease, and that the

model can be used with individual and average population stomach contents.  So,

although Sainsbury has made consumption rate estimates using the same basic method

as this thesis, his particular model appears to be too specialised and not applicable to

all types of feeding behaviour.

Of all the methods described here, the second of Penningtons methods would appear to

be the most convincing for dealing with populations of fish. However, in the next

section, I shall use several of the above methods to calculate the average population

daily uptake from the stomach contents data which was analysed in chapter seven.  The

results can then be compared to those of the previous section.

      8.3  Uptake estimation using alternative methods

In this section I shall compare the daily consumption rates calculated using the Basimi

and Grove methods with those from Penningtons method and that derived in this

thesis.  Before calculations can begin, we require values for the parameters c and K,

for each fish cohort.  In chapter seven it was shown that the population digestion curve

produced from the linear digestion model (Bromley 1988) with a particular linear

digestion rate was almost identical to the evacuation curve produced by equation 8.8

with certain predefined species dependent values of c and K.  The appropriate values

are given in table 8.2.

As I explained in chapter seven, no such evacuation curve for whiting could be found

and therefore a linear digestion model was assumed due to work by Bromley (1988)

and Robb (1990).
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            Species            c           K            Origin

             Dab         0.25        0.096     Fletcher et al. 1984

            Plaice         0.51        0.221  Basimi & Grove 1985

           Whiting           0        0.15           Robb 1990

       Small haddock         0.46        0.119          Jones 1974

       Large haddock         0.46        0.191          Jones 1974

Table 8.2.  The evacuation curve parameters for each cohort of fish.

Since our data consists of hourly measurements of the proportion of each population in

a particular gut weight category, I decided to evaluate hourly consumption rates and

then sum these over the 24 hours in order to obtain the daily uptake rate.  So, for all

four methods we require the average stomach contents of the population at each

sample point and the value of Wc t( ) .  Since these values have to be calculated from

our available data, which consists of varying proportions of fish in a number of

stomach contents categories, I shall assume that the average stomach contents of the

population at time t can be calculated by

W( )t p mi i
i

M

=
=
∑

1

        (8.17)

where pi  is the proportion of the population in category i, mi  is the mid point of

category i and M is the number of categories.

Similarly I shall suppose that Wc t( )  (used in 8.15 and 8.16) can be determined by

Wc i i
c

i

M

t p m( ) =
=
∑

1

.         (8.18)

The total daily uptake rates calculated by these three methods are given in table 8.3.

All three methods of calculation give some very peculiar negative values of the hourly

uptake rate.  These occcur when the average stomach contents at consecutive sample
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times fall by an amount which is larger than the hourly digestion rate and were also

apparent in calculations made by Sainsbury (1986), who ignores them and appears to

set them to zero.

        Species      Thesis Basimi & Grove  Pennington 1  Pennington 2

         Dab        1.2       1.6 (3.7)      1.9 (3.8)      0.8 (3.2)

        Plaice        5.9       1.4 (1.8)      2.0 (2.4)      1.9 (2.3)

       Whiting        1.7       3.6 (14.5)      3.6 (14.5)      3.6 (14.5)

  Small haddock       6.2       3.3 (6.9)      4.5 (7.7)      3.6 (7.1)

 Large haddock      12.2       3.3 (11.4)      5.8 (12.0)      2.0 (9.7)

Table 8.3.  Daily uptake rate (grams) estimated from the hourly gut contents data by three

established methods compared to the method derived in this thesis.  The brackets denote

estimates in which negative hourly uptake values were set to zero.

Two sets of calculations are made of the total daily uptake, the first including the

actual negative values and the second with the negatives set at zero.  A comparison

between the two values (the second is given in parenthesis in table 8.3) shows what a

significant effect the inclusion of these 'negative consumption rates' has on the results.

The estimates made using the second of the Basimi and Grove methods are not shown

as they are almost identical to those of Penningtons first method.  By considering

equation 8.12, we can see that it reduces to Penningtons first method (8.14), for small

sampling intervals.

Since the fish showed no evidence of regurgitation during sampling, these negative

values must be due to either weaknesses in the methods of calculation or the noisieness

of the data.  The main stumbling block in all the calculations was how to determine the

population average digestion rate over a particular time interval.  The methods

employed by Basimi and Grove and Penningtons first method both simply substitute
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population average stomach contents values into digestion equations which were

formulated to describe the gut evacuation rate of an individual fish.  Chapter two

showed that the depletion of the population average stomach contents is unlikely to be

identical to that of an individual who initially had stomach contents equal to the

population average, due to the censoring of the digestion curve as some individuals

become empty.  These methods are therefore likely to give errors due to

miscalculations of the average digestion rate.  However, the many negative hourly

consumption rate values cannot be attributed to these inaccurate calculations as these

appear in all three methods of food intake calculation, including Penningtons second

method which adopts a more legitimate method of average digestion rate calculation.

Another possibility as to the source of these negative values is the formulation of the

digestion models.  However, this seems unlikely as the values appear for all species

So, it seem then that the problems must be attributed to the noisy data.

Our method calculated the daily uptake rate by fitting a feeding model to the data over

the total twenty four hour period and found a small set of parameters which could be

used to define the complete feeding behaviour over the day.  The other three methods

rely on calculations using successive hourly stomach contents samples which are very

noisy due to totally random samples being taken from the complete population.  Our

method is therefore much less sensitive to the noise in the data and no negative

consumption rates are apparent.

      8.4 Discussion

A comparison of our calculated daily uptake values to those calculated by the other

methods show some quite large differences for some of the species.  The values

calculate here for dab and haddock give reasonable agreement to those calculated by
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the other methods, lying approximately between the highest and lowest alternatives.

However, the value calculated here for plaice is significantly higher than all other

estimates, while this daily food uptake of whiting is  noticeably lower.

Possible reasons for these infelicities can be seen by considering the shape of the

population digestion curves assumed in all methods of calculation (reconsider figure

7.1).  The population digestion curve assumed for plaice is much more curved than

that of either the dab or haddock, while I have assumed a linear population evacuation

curve for the evacuation of whiting.  In the formulation of the feeding and digestion

model explained in this thesis, I have assumed that the individuals in a population

follow a linear digestion model, which is supported by Bromley (1988) and Robb

(1990).  The appearance of a curved population evacuation relationship is due to the

increasing proportion of empty fish which can undergo no further reduction in stomach

contents.  The analysis used in the other methods assumes that the population digestion

curve and individual digestion curve are the same.  So, to match our population

digestion model to those of plaice and whiting (the most extreme) will respectively

require particularly high and low individual digestion rates.  Our calculated daily

consumption rates are consequently much higher  for the plaice and much lower for the

whiting.  The use of the linear individual digestion model used in this calculation,

though  is strongly supported by the work of Bromley (1988) and Robb (1990).

In the hope of validating either view of the individual digestion process, further

analysis of the results of the feeding and digestion model daily uptake calculations can

be made by considering the growth rates inferred from the determined food

consumption rates and making a comparison of these with the results of other studies.

Jones (1978) derived an expression, from a series of laboratory experiments carried out

by Jones and Hislop (1972) relating food consumption and growth in non-spawning

haddock and whiting.  He found that
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F = 0 0. exp( .008M 081T) +1.27GM0.8 0.15                    (8.19)

where F is the rate of food consumption in kilocalories per day, M is the body weight

in grams, G is the growth rate in grams per day and T is the temperature in oC.  From

this equation we can therefore calculate the appropriate value of the growth rate for

three of the fish cohorts in question, provided that we can convert our measures of

daily uptake in grams to energy uptake in kilocalories per day.  Jones (1978) states that

the mean calorific value of the food of haddock is 0.6kcal/g of wet weight food

ingested, while it appears from Bromley (1988) that the food of whiting provides about

2.4kJ of energy per gram of wet food which is equal to approximately 0.57

kilocalories.

The results of uptake rate calculations made from the model described in this thesis

give a daily rate of approximately 4% of the body weight which leads to a growth rate

of about 0.6% body weight per day.  The same calculations made using the results

from the other food consumption rate estimates appear to be rather lower, -0.12 to

0.12% body weight for large haddock and 0.16 to 0.34% for small haddock. The

calculation was then repeated for whiting and showed that the growth rate implied by

the work of this thesis is almost zero, while the other estimates gives 0.44%.

All the growth estimates for haddock appear to lie within the range of values given by

Jones (1978).  The value calculated using the continuous digestion models seems to be

towards the higher end of observed rates while the values determined from the other

methods are much lower.  Both estimates of the growth rate of whiting also seem quite

sensible. Hence it is not possible to use this method of comparison to validate either

opinions of the digestion process.

As there is strong support for the view that the digestion of an individual is linear and

the differences in the results of calculations made from our model and those of others
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can be explained by the alternative opinions of digestion, and not a serious error in the

formulation of the model, I shall conclude that the model gives a fairly reliable method

of calculation of the daily food consumption rate of the species in question.  Should we

however, believe that individual digestion does not follow a linear model, then the

calculations made in this thesis can easily be repeated by substituting the required

individual digestion model into the original formulation of the model and recalculating

the feeding parameters.  Aswell as incorporating versatility, this model is also a great

improvement to previously accepted consumption rate calculation techniques as it is

affected much less by the noisieness of the consecutive stomach contents samples and

calculates food intake by considering the variation in stomach contents over the whole

day.
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Chapter 9

Conclusions
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      9.1  Summary

The aim of this thesis was to gain an understanding of the mechanisms behind the

observed dynamics of fish stomach contents samples.  The strategy was to construct a

model which incorporated a description of between fish stomach contents variability at a

particular time and some simple assumptions about the feeding and digestion processes.

The resulting model adequately predicts the main dynamic features observed in the data

which was introduced in chapter six.

Using simple step functions at switches between feeding rates and continuous prey size

distributions I have established the feeding patterns of four main fish species (dab, plaice,

whiting and haddock) found in Loch Gairloch on the west coast of Scotland.  The

conclusions that the two flatfish species feed largely during the day with peaks of feeding

at dawn and dusk agree with the results of many other studies of the feeding patterns of

flatfish.  In contrast I conclude that the whiting feed heavily during the early morning

while haddock consume most of their food during the night.  Reassuringly there is little

difference between the feeding behaviour inferred for the two size groups of haddock

although there are few other studies with which these results can be compared.  In chapter

eight I concluded that the total daily ration calculations made from these results were also

quite convincing and any infelicities which occurred were due to the choice of digestion

model rather than any serious faults in the model.  This method of calculation also

appeared to be less sensitive to noisy sampled data than others.

As the most feasible way of learning anything about the feeding behaviour of fish is by

studying stomach contents samples, chapters four and five concentrate on the question of

the reliability of results inferred from relatively small samples.  The most interesting results

come from chapter five which considers the time dependent feeding rate case.  I conclude
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here that if the number of stomachs sampled at each time interval is to be small (less than

100), then the samples must be taken very frequently (hourly) in order that the feeding

behaviour inferred from such samples adequately predicts that of the population.

However, if larger samples of fish are taken (greater than 500 individuals), then it is

feasible to sample as infrequently as every six hours provided that the stomachs are

categorised into at least fifteen stomach weight categories.  These results show that we

can quite accurately infer the feeding behaviour of a population of fish from samples

collected at intervals throughout the day provided that the above sampling requirements

are met.

     9.2 Discussion

The first section of this study deals with the construction and dynamics of the feeding and

digestion model.  Chapter three clearly illustrates the mechanisms for changes in the

structure of the stomach contents distribution of a population of fish which would not be

evident if only the mean stomach contents of a population was considered.

The construction of the model, however, does involve a number of assumptions which

may be questionable when the output of the model is compared with any real data.

Chapter two initially constructs a model to describe the variation of the stomach contents

distribution of non-feeding population of fish.  I have assumed that the digestion behaviour

of all individuals is the same which implies that the population is one of identical

individuals.  The length analysis of the fish in the sample with which this model is

compared later in the thesis shows only a very small variation in fish size and therefore it

appears that in this case this supposition should not give misleading results.

222



At this stage in the developement of the model I was also required to assume that we are

dealing with a closed population of fish which is not subject to any significant immigration

or emigration from another population with a different stomach contents distribution.  The

data which are considered in the latter part of the thesis were sampled from inshore waters

off the west coast of Scotland.  It is possible that there is movement of fish into and out of

this area of study which may be connected to their feeding habits.  For example, fish may

move inshore to feed and then when satiated may return to offshore waters.  In such a

case, our samples would be of fish from different populations which have moved inshore

to feed and therefore cannot be compared to the output from the model which describes

the daily fluctuations in the stomach contents of a closed population of fish.  Although

analysis of the lengths of fish in the samples indicates no significant change in the size of

the fish during the day, it does not prove that fish are not moving between two or more

sites.

Obviously even if the population is a single well-mixed entity not subject to outside

interference it is possible that all individuals may not be subject to the same prey

distribution.  If this was the case our model would again be inaccurate as it makes the

assumption that all individuals are exposed to an identical prey distribution and so have

equal likelihood of consuming a particular prey.

However, despite these possible flaws in the construction of the model, the conclusions

drawn about the feeding habits of the fish species sampled from Loch Gairloch largely

agree with those of other authors which suggests that we are justified in making these

simplifying assumptions or at least that they are not too significant to the results obtained.

The whole of this thesis was initiated by the Loch Gairloch data provided by the Marine

Laboratory, Aberdeen and described in chapter six.  Consequently the attempts at inferring
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the feeding patterns and processes made in chapter seven were carried out before the work

described in chapters four and five.  Therefore the fitting of the model to the stomach

contents data was carried out using eye-balling methods combined with a measure of

goodness of fit rather than the semi-automatic method of finding the optimum fit described

in the middle section of this thesis.  Such manual methods require further numerical

experiments to verify that the method has at least found a local minimum.

The numerical experiments of chapters four and five also give requirements as to the size

and frequency of sampling in order that the feeding behaviour inferred from such samples

adequately predicts that of the population from which it was sampled.  Ideally we would

have liked the sampled data considered in chapters six to eight to consist of samples of at

least 100 individuals sampled relatively frequently (every hour or two).  However, since

the sampling was carried out several years before the work of this thesis I could make no

demands on the specifications of the samples.  The sampling consisted of retaining a

maximum of fifty individuals of each species for stomach contents analysis, which is

slightly smaller than ideal.  However, samples were taken hourly and therefore the

accuracy of the results of chapters seven and eight can be relied on with a fair degree of

certainty.

      9.3 Further work

It appears that there are several obvious directions in which the work begun in this thesis

could proceed.  There appears to be no reason why this model should not be applicable to

freshwater fish as well as marine animals and therefore if appropriate data sets are

available the model could be used to infer the feeding behaviour of a wide range of other

fish species.  However, stomach contents data alone are not sufficient as we require an
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independent method of calculation of the digestion rate of the individuals of the

population.  Obviously if the independent digestion data suggested an alternative digestion

model (for example exponential in the case of Elliotts trout data), then the appropriate

alterations can be made to the complete feeding and digestion model.  One further

requirement would also be a repeat of the length analysis of chapter six to verify that the

population under consideration consists of identical fish which therefore have the same

digestion rate.

Following the work of chapter five it seems reasonable to assume that the modelling of

any further stomach contents samples should be conducted using the discrete map

approach which gives a much quicker solution than the differential equation method.  The

condition 5.1 was chosen only for convenience, but other maps could be constructed in

which fish can digest across two boxes in the space of one time interval.  This would lead

to further discrete map options, possibly with increased speed and accuracy.

At present the assumptions made by the model about the feeding process are very

straightforward and perhaps questionable.  For example, is it reasonable to assume that

fish will eat provided that the prey will fit into their stomach?  So, following this

reasoning, an extremely full fish will go on consuming very tiny prey.  Obviously at the

same time its stomach contents will be decreasing due to digestion and therefore it will

soon be able to consume larger prey again.  However, a more realistic assumption may be

that as an individuals stomach contents get higher the feeding rate decreases.  The feeding

rate of a population may also decrease due to a decrease in the availability of prey due to

predation.  Further refinements could therefore be made to the model by including a

reduction in the feeding rate during an intense feeding period.

225



The most obvious direction which any continuation of this work would take would be on

the optimisation methods and the quesion of automatic fitting.  I did not attempt to use the

semi-automatic fitting method on the Gairloch data in chapter seven, partly because this

work was done previous to that of chapters four and five and also because the data is very

noisy and the fitting method failed when started far from the optimum.  Using the discrete

method of solution of the partial differential equation  established in chapter five, it may be

possible to completely automate the fitting procedure.  The solutions are obtained much

faster using this method and therefore it may not be unreasonable to consider including a

relatively fine search over a particular parameter space in order to locate an initial

minimum.  The position of this minimum could then be used to provide the initial

parameter vector required to start the previously used optimisation procedure.  Given a

fairly fine search grid and an error surface which does not include any extremely narrow,

steep minima which may be missed by an initial search, it seems possible that such an

extension could provide a fully automated optimisation technique.
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Appendix A.  Numerical solution of the feeding and digestion equation

The partial differential equation model of feeding and digestion is discretised in the

weight dimension and then the derivatives are approximated using central differences

everywhere except at the edges where on sided differences are used.  The result is the

system of ordinary differential equations shown below which is then solved using the

fourth order Runge-Kutta method.
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If the weight dimension is discretised into N intervals each of width ∆w, the variables

f1 to fN  represent the proportion of the population in each of these N intervals and

∆w
w

N
F=  where wF is the maximum stomach contents of an individual.
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Appendix B.  Optimisation Routines

A number of optimisation routines are used extensively throughout this thesis, so here I

shall include a more formal explanation of the mechanism by which each method

proceeds.

1. The simplex method

Suppose P P P0 1 n, ,..,  are the n+1 vertices of the initial simplex and that Q is the function

we are attempting to minimise.  I shall further define Qi  as the value of the function Q at

Pi and let

Q Q QH
i

i( ) max( )PH = =                      (B.1.1)

and Q Q QL
i

i( ) min( )PL = = .                      (B.1.2)

At each stage of the procedure the parameter vector which gives the highest value of the

function Q, PH , is replaced by a new point which is defined using three operations -

reflection, contraction and expansion about the centroid of the simplex which is defined

as PC.

The first step is to reflect PH  about the centroid using

P P PR C H= + −( )1 α α           (B.1.3)

where α is a positive constant, the reflection coefficient.

If Q QL( )PR <  then expand the parameter vector PR  using

P P PE R C= + −γ γ( )1           (B.1.4)
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where γ is the expansion coefficient, greater than unity.  If Q QL( )PE <  then PH  is

replaced by PE  and the process is restarted, while if Q QL( )PE >  then the expansion step

has failed and PH  is replaced by PR  before restarting.

If Q( )PR  lies between QL  and QH then PH  is replaced by PR  and the routine is restarted

with a new simplex, unless Q( )PR  is a new maximum, in which case we define the new

PH  to be either the old PH  or PR , whichever has the lowest Q value, and then make a

contraction using

P P PS H C= + −β β( )1                      (B.1.5)

where β is the contraction coefficient, lying between 0 and 1.  PS is then accepted as the

new parameters vector and the routine is restarted with the new simplex, unless

Q Q QH( ) min( , ( ))P PS R> , in which case all the Pi 's are replace by ( )P Pi L+ 2.

This process is repeated until the required convergence criteria have been met.  The

constants α, β and γ give the factor by which the volume of the simplex is changed by the

operations of reflection, contraction and expansion respectively.

2. DUD

Suppose that P P P0
(k)

1
(k)

n
(k), ,..,  are the n+1 parameter vectors used in the kth iteration of

the DUD optimisation routine.  The parameter vectors are re-ordered so that

Q Q Q( ) ( ) ( )P P P0 1 n≥ ≥ ≥L , where Q is the error function between the data points y and

the fitting function f, which we are attempting to minimise.  (The superscripts have been

dropped for convenience).  The routine approximates f(P) by a linear function l(P) which

is equal to f(P) at these n+1 points.  The worst previous parameter, P0 , is then replaced

with the parameter vector PNEW  (or a point on the line between PNEW  and Pn) which

229



minimises the distance between l(P) and y, to give the new set of parameter vectors to be

used in the next iteration.

The linear approximation is written as a function of the vector αα  where

P = P Pn + ∆∆ αα                      (B.2.1)

where the ith column of the matrix ∆∆P is given by

∆∆P P P         i i n= − = −i n0 1 1, ,.. .           (B.2.2)

The linear approximation of the fitting function is given by

l(P) = f(P Fn ) + ∆∆ αα           (B.2.3)

where the ith column of ∆∆F is given by

∆∆F f(P f(P         i i n= − = −) ) , ,..i n0 1 1.           (B.2.4)

If the error measure which is being used is the sum of squared errors, then one iteration

of this procedure consists of minimising

Q T( ) ( ) ( )αα αα αα= y - l( ) y - l( ) .           (B.2.5)

Substituting equation (A.2.3) into (A.2.5) and differentiating and rearranging this

expression gives

αα = −( ) ( )∆∆ ∆∆ ∆∆F F F y - f(P )T T
n

1                      (B.2.6)

which can be used in equation (A.2.1) to calculate a new value of P, PNEW , and the next

iteration begins.
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