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Abstract

The systems of interest in this study are the spread of epidemics and invasions

from a small propagule introduced into an arena that was initially devoid of the

given species or stage of illness.

In reaction-diffusion models, populations are continuous. Populations at low

densities have the same growth functions as populations at high densities. In

nature, such low densities would signify extinction of a population or of a disease.

This property can be removed from reaction-diffusion models by small changes in

the formulation so that small populations become extinct. This can be achieved

by the use of a threshold density or an Allee effect, so there is negative growth at

low densities. Both these alterations were made to the Fisher model, a predator-

prey model and a two stage and a three stage epidemic model.

A semi-numerical method, termed the Shooting method, was developed to predict

the shapes and velocities of these wave fronts. This was found to correctly predict

the velocity, the peak density of the invading stage or species and the width of

the wave front.

It was found that in oscillatory cases of the multi species models, a high thresh-

old can remove the wave train or wake which would normally follow the wave

front, so the wave becomes a soliton. The next step is to investigate probable

causes of persistence behind the initial wavefront. To do this, discrete time and

space versions of the models were formulated so that experiments investigating

persistence can be carried out in a two dimensional arena with less computational

effort. The formulations were chosen so that at reasonable time and space steps

the discrete models show no behaviour different to that of the reaction diffusion

model, and so that the Shooting method could also be used to make predictions

about these wavefronts.

Three mechanisms of persistence are investigated; environmental heterogeneity,

long range dispersal and self organised patterns.
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Chapter 1

Introduction

1.1 Modelling Spatial Processes

1.1.1 Ecological Applications

The modelling of spatial processes is of interest in an ecological sense as a way of

representing the spatial spread of many species and of diseases, spreading from

a small propagule of a new species or of a stage of an illness not already in the

spatial arena of interest.

The spread of a species can be thought of in 2 different ways. The species may be

exotic to that region, such as a species introduced into an area for exploitation

for man. An example of this is the introduction of the musk rat into Bohemia at

the start of this century for sporting purposes . The spread of the muskrat has

been modelled by van den Bosch et al. (1992). The species may be re-released

into an area in which it has gone extinct. Californian sea otters were hunted to

near extinction in the 1900s. A small population was discovered in 1914 (Bryant

1915), and due to protection laws the population has increased in number and

spatial range (Peterson and Odemar 1969). Lubina and Levin (1988) have used

the data collected concerning this range expansion to parameterise an invasion

model.

The spread of epidemics is also an interesting and important area of study. Eco-
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logical epidemics are important in human health terms, as in rabies epidemics

(Murray 1987) and economically, such as the spread of bovine tuberculosis by

badgers (White and Harris 1995b) (White and Harris 1995a). The importance

of modelling in the field of epidemiology is as a method of assessing disease con-

trol strategies. White and Harris (1995b) and White and Harris (1995a) both

vaccination regimes and culling are investigated as control strategies for bovine

tuberculosis in badgers by using model simulations.

1.1.2 Modelling Approaches

There are a number of approaches to ecological modelling. There are random

effects in ecological systems due to variation in the environment and in individ-

uals. Such randomness is taken into account in stochastic models. In stochastic

models, the population is treated as integer individuals. At a given time, these

individuals are attributed a probability of being in a given state. A stochastic

simulation results in a realization of the model. Realizations are different due to

random effects. Deterministic models do not include random effects, and so only

provide information about the trend in the system. In a deterministic model,

the state of the system at any future time can be predicted by the state of the

system at the present time. Populations are treated as continuous, real densi-

ties. Frequently the mean of many stochastic realisations is very similar to the

trend predicted by the deterministic model (Renshaw 1991), so in this thesis it

is assumed that deterministic models provide adequate means for representing

ecological systems.

There are also many approaches to modelling spatial processes. Assuming that

the system is homogeneously mixed over its extent allows the model to be de-

scribed by ordinary differential equations or difference equations, the mean field

approach. The spatial component is important if mixing is not homogeneous

(Levin 1974), as in the case of an epidemic starting from a point innoculum.

Space can be split into one or more colonies, with transfer rates or probabil-

ities between them, the meta-population approach. Reaction-diffusion models
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assume that individuals within a population move in a random manner. If this

random motion results in a macroscopic regular motion of the whole population,

the motion can be described as a diffusion process (Skellam 1951). In reaction-

diffusion models, partial differential equations are used to model the growth and

behaviour of the population density. Discrete space and time analogues of the

continuous reaction-diffusion models can be formulated. These discrete models

use update rules to predict the outcome of continuous time models after a finite

time increment.

Reaction-diffusion models are used in this thesis as the species which are modelled

are thought to move in any direction and any distance i.e. diffusively (Skellam

1951).

Interestingly enough, in deterministic reaction-diffusion models, the population

density is a continuous variable; individuals are not considered as discrete entities.

This makes it impossible for the population density to ever reach zero. Normally,

in reaction-diffusion models, low density populations have exactly the same dy-

namics as high density populations. Mollison (1991) showed that the 3 stage

rabies model, a rabid population of 1 individual per quintillion square kilometres

was large enough to re-infect susceptible populations and keep the epidemic go-

ing. At very low densities, stochastic effects become much more important, so

the deterministic assumptions fail (Rand and Wilson 1991). So reaction-diffusion

models need to be modified so that regrowth does not occur from low densities.

Allee (1938) described population decline in low density populations associated

with a lack of reproductive opportunity. An Allee effect in the growth function

can be used to remove the low density populations from the dynamics of a model

(Lewis and Karieva 1993) (Kot et al. 1996). A threshold formulation where any

population of less than the threshold density dies out can be used (Kessler and

Levine 1998) (Brunet and Derrida 1997). In the case of their models a cutoff was

used, where all populations of less than a given density instantaneously become

extinct. This formulation does not work in a continuous model.
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1.2 Invasion Models

In (1937), Fisher formulated a reaction-diffusion model for describing the spread

of an advantageous gene. The population described by the model grows logisti-

cally and disperses diffusively. He also devised a calculation for the velocity of the

wave front (see chapter 2 for details). If an Allee effect or a threshold is added to

the growth function of the Fisher model, the velocity of the wave front decreases

and the wave front shortens (Brunet and Derrida 1997). Brunet and Derrida

(1997) touched upon another important concept, that these models cannot be

predicted with Fisher’s calculation as it assumes that low density populations

grow in the same way as high density populations. Brunet and Derrida (1997)

approximated a calculation for the velocity of the Fisher wave with their cutoff.

This threshold formulation will not work for continuous time models. Lewis and

Karieva (1993) calculated the velocity of a wave front of a system with Allee

dynamics, created by a cubic term in the growth function. The cubic term in

the growth function cannot easily be attributed to a biological mechanism and

the calculation cannot be modified to fit the growth functions with Allee effects

formulated in this thesis. A more general calculation for the velocity of a wave

with no regrowth from low densities is needed. In Chapter 2, a semi-numerical

method for predicting the wave shape and the velocity of the Fisher wave with

no regrowth from low densities is devised (Cruickshank et al. 1998). The accu-

racy of this new method, termed the Shooting method, is tested against three

formulations of the Fisher model with no regrowth from low population densi-

ties, one being the addition of a threshold and the other two different Allee effect

formulations.

The methods of removing regrowth from low population densities are then ap-

plied to a 2 component system, a predator-prey model, formulated by Rosenzweig

(1971) from principles developed by Rosenzweig and MacArthur (1963). This

predator-prey model is unstable at high carrying capacities (Rosenzweig 1971)

(Gilpin 1972). The model is made spatially explicit by having diffusively dispers-

ing predators and immobile prey (Gurney et al. 1998) (Cruickshank et al. 1998)
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(Gurney and Veitch 1998). The velocity of the predator wave front has been cal-

culated for a predator-prey model Dunbar (1983); Dunbar (1984). In chapter 3,

the reaction-diffusion, predator-prey model is modified to remove regrowth from

low densities of predators, by use of a threshold (Gurney et al. 1998) and an

Allee effect (Cruickshank et al. 1998). Two methods of predicting the wave char-

acteristics of the models are considered, the method devised by (Gurney et al.

1998) for the threshold formulation and the Shooting method (Cruickshank et al.

1998), are compared and tested.

1.3 Epidemic Models

The epidemic models considered in this thesis were both developed to model the

rabies epidemic in European foxes. Rabies is currently sweeping through Europe,

having appeared in Poland in the late 1930s (Anderson et al. 1981) (Murray

1987). Control mechanisms for the epidemic can be investigated by the use of

mathematical models.

A non-spatial model was formulated by Anderson et al. (1981). This model has

two staged of infection; susceptible and infective. Källén et al. (1985) formulated

a reaction-diffusion model for the rabies epidemic. This model assumes that

adult susceptibles remain within the same territory after recruitment to the adult

population, so the susceptibles are considered immobile. Infectives either contract

the paralytic form of the disease and die without reinfecting or run in a random

manner, infecting any susceptible contacted, described by the model as diffusion.

The velocity of the wave front can be calculated from Dunbar’s work on a two

component model. The velocity this model predicts for a rabies epidemic is always

much higher than the velocity of the epidemic front travelling through Europe.

The two stage epidemic model ignores an important factor in the course of the

rabies infection. Once infected, there is an incubation period when the fox is

asymptomatic and not infective. Murray et al. (1986) added this third stage

of infection to Källén et al.’s model. The incubating foxes are assumed to be
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immobile, as the susceptibles are. Murray et al. (1986) and Murray (1989)

describe a calculation for the velocity of the wave front in this 3 stage epidemic

system.

Mollison (1991)’s description of an atto-fox is based on the dynamics of rabies

models. To reduce the impact of the low density populations on the rabies models,

the infectivity of low density population is reduced, both by use of a threshold

and by a more continuous formulation (Cruickshank et al. 1998) are used. The

Shooting method is altered to make predictions about the velocity and shape of

the wave front in the epidemic systems with these formulations.

In chapter 6 there is a case study of the European fox rabies epidemic. Suitable

threshold densities are calculated, based on the likelihood of a fox being infected

at the given density (Cruickshank et al. 1998). van den Bosch et al. (1992)’s idea

that fox territory size depends on population density is also investigated. This

has implications for the diffusion rate and the threshold density of the system.

1.4 Discrete Models

When the dynamics of the predator-prey model are unstable, and the first trough

behind the wave front dips to a density near the threshold density, the invasion

of predators dies out behind the wave front forming a soliton wave (Gurney

et al. 1998) (Cruickshank et al. 1998). The epidemic models with regrowth from

low densities have complicated wakes behind the epidemic wave front (Mollison

1991). If the trough behind the initial wave front falls to a density near that

of the threshold, the epidemic dies out behind the wave front forming a soliton

wave. This raises the question of persistence of the epidemic or invasion behind

the wave front in these systems.

Mechanisms which may allow the establishment of an invading predator or the

epidemic to reach an endemic state within the system are reviewed in chapter

10 and investigated in the following 3 chapters. The continuous models, which

have been used up to this point of the thesis, are very computationally intensive.
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Some of the mechanisms considered are only realizable in 2 dimensions (Gurney

et al. 1998) (Hassell et al. 1994), and 2 dimensional simulations of reaction-

diffusion models take long times to run to completion. As 4 mechanisms are to

be investigated, in 3 different systems, it is essential that simulations run quickly.

Discrete time and space analogues of the continuous invasion (Gurney et al. 1998)

and epidemic models (Gurney and Nisbet 1998) are formulated in chapters 7 and

8. Discrete simulations are more computationally efficient and have much shorter

run times than continuous simulations. It is important that the discrete models

do not demonstrate dynamics unseen in the continuous models and that as the

time and space steps increase the solutions of the discrete models diverge slowly

from those of the continuous models.

van den Bosch et al. (1990) extended the work of Fisher Kolmogorov et al. to

calculate the velocity for integrodifference equations to a general invasion so that

advective dispersal may be taken into account. Again, this velocity calculation

is founded on the exponential shape of the toe of the wave front. Kot, Lewis,

and van den Dreissche (1996) considered the velocity of a discrete model with

an Allee effect. The calculation of the velocity was developed for a piecewise

continuous analogue of an Allee effect and, although the calculation successfully

predict the velocity of the wave front of the model it was developed for, it does not

extend well to other models, as shown in chapter 7. The Shooting method can,

however, be used to predict the velocity and shape of the wavefronts of all the

discrete systems as long as the space and time steps are small, as demonstrated

by chapters 7 and 8.

The discrete time and space models are then extended to 2 spatial dimensions

in chapter 9. Circular waves are generated (Gurney et al. 1998) where the wave

spreads out in all directions at the same rate (Skellam 1951). Spiral waves are

known to form in chemical systems in excitable media (Winfree 1972) (Keener

and Tyson 1986) (Kessler and Levine 1989). Models of these systems can be

understood in terms of their geometry and the kinetics of the excitable medium

(Keener and Tyson 1986). The models formulated in this thesis describe systems

7



with excitable media; there is reduced predation or infection below a threshold

density. Spiral waves can be generated in the 2 dimensional arenas when the

wave front is a soliton wave (Gurney et al. 1998). The circular waves are similar

enough in cross section to the the waves generated in the 1 dimensional model,

so the Shooting method is used to make predictions about the velocity and shape

of the wave front. Spiral waves are not as easy to make predictions about, and

the Shooting method can only be used to predict the scale of the velocity and the

shape of the wave front as opposed to predicting exact values for these quantities.
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Part I

Reaction-Diffusion Models of
Invasions and Epidemics
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Chapter 2

Single Species Continuous
Models

Reaction-diffusion models permit populations at very low densities to exist and

grow, a situation which is biologically unrealistic. If the growth of these small

populations is removed from these models, this situation is improved. In this

chapter three formulations which create this effect are examined. The Fisher

model (Fisher 1937) is adapted so that there is no reproduction under a threshold.

This is implemented both by a critical threshold for reproduction and an Allee

Effect (Allee 1938) growth term. A method for analysing the wave front properties

of invasions of organisms with no growth at low densities is then developed.

2.1 Introduction

2.1.1 The Logistic Model

The logistic model describes the density dependent growth of a single population,

N , at time T . To achieve logistic growth, the birth process, B(N), must decrease

and the death process, D(N), must increase as N increases (Renshaw 1991), so

B(N) = (a1 − b1N)N and D(N) = (a2 + b2N)N , (2.1.1)
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where a1, a2, b1 and b2 are positive constants. The logistic equation is therefore

dN

dT
= B(N)−D(N) = N [(a1 − a2)− (b1 + b2)N ] . (2.1.2)

In a biological context this equation is usually rewritten in the form

dN

dT
= RN

(
1− N

K

)
(2.1.3)

where R ≡ (a1 − a2) is the intrinsic rate of natural increase for growth and

K ≡ (a1−a2)/(b1 +b2) is the density of the carrying capacity of the environment,

so
dN

dT
→ 0 as N → K or N → 0 (2.1.4)

and

N → K as t→∞ . (2.1.5)

2.1.2 The Fisher Model

Now a logistically growing population which disperses in one dimension is consid-

ered, the Fisher model. It was originally intended to describe the invasion of an

advantageous gene into a gene pool, but now it is commonly used to describe an

invasion wave of an exotic or re-invading species (Skellam 1951). The population

disperses diffusively, representing the spread of organisms with low intelligence

or no tropisms. The population at time T and position X, N(X,T ) diffuses with

diffusion coefficient Ψ. The Fisher model is

∂N

∂T
= RN

(
1− N

K

)
+ Ψ

∂2N

∂X2
(2.1.6)

To simplify the algebra and increase the speed of computations, the equations

are reduced to a dimensionless or scaled form (Nisbet and Gurney 1982). This

process may also lead to biological insight into controlling groups of parameters.

The scaling process involves multiplying or dividing the model by one or more

parameters, producing dimensionless variables and parameter groups. In this case

there are 6 quantities: the population, the carrying capacity, space, the diffusion

coefficient, the per capita intrinsic growth rate and time. The carrying capacity,
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K, has the dimension of the population. Therefore K can be used as the scale

of N , so the scale of population, N0, is N0 ≡ K. This scaling produces the

dimensionless variable n ≡ N/N0. The per capita intrinsic growth rate, R, has

the dimension of one over time. Therefore, 1/R can be used as the scale of time,

so T0 ≡ R−1. This scaling produces the dimensionless variable t ≡ T/T0. The

diffusion coefficient has the dimension of the diffusion length, so X0 ≡
√

Ψ/R

can be used as the scale of space. This results in the dimensionless variable

x ≡ X
√
R/Ψ. This choice of scaling produces the dimensionless model

∂n

∂t
= n(1− n) +

∂2n

∂x2
. (2.1.7)

One method used to predict the velocity and the shape of the wave front of this

model was suggested by Fisher (1937) and Kolmogorov et al. (1937) and later

extensively ratified by Hadeler and Rothe (1975) and Mollison (1977). To see the

relationship between front velocity and model parameters the leading edge of the

front where n << 1 was investigated. In this case the n2 term can be ignored in

comparison with the n term. This linearises equation (2.1.7) to

∂n

∂t
= n+

∂2n

∂x2
. (2.1.8)

A solution is sought in the form n(x) = Ae−λ(x−vt), where v is the velocity of the

wave front, λ is the exponential lapse rate of the front, λ > 0 and A > 0 and

is arbitrary. Substituting this form of solution for n(x) into the linear equation

gives the relationship between the velocity of the wave front, v, and λ,

v =
1

λ
+ λ. (2.1.9)

This suggests that any value of v is possible with λ chosen to suit, as long as v

is larger than a minimum velocity, v0, which occurs when λ = 1. For the scaled

Fisher model,

v0 = 2. (2.1.10)

v0 is the velocity of the wave front as long as the initial condition of the population

has compact support (Fisher 1937) (Kolmogorov et al. 1937).
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The derivation of this velocity calculation exploits the fact that the population

grows in the same way at low densities as at high densities. If the model is changed

so that there is no in-situ regrowth of non-biological populations, another method

will have to be found to predict the velocity of the invasion wave front.

2.2 Invasions of Populations with no Reproduc-

tion at Low Densities

A situation is considered in the Fisher model that when a population falls beneath

a threshold density, nP , there is no reproduction. This removes the problem of

regrowth from low densities from this reaction-diffusion model.

A method to calculate the velocity of a single component reaction-diffusion model

with an Allee effect in the growth function has been devised by Lewis and Karieva

(1993). Their growth function is given by a cubic. No obvious biological mecha-

nism produces such a growth function, so in this chapter Allee effects are achieved

by more biologically realistic mechanisms. Their velocity calculation is specific to

the cubic growth function, so is not applicable to the formulations of the Fisher

model with no regrowth as described below. A new method of analysing the

properties of an invasion wave of with these growth functions is devised.

2.2.1 General Case

A generalisation of the Fisher model is considered, where g(n) is the scaled local

net population growth function, giving

∂n

∂t
= g(n) +

∂2n

∂x2
. (2.2.1)

In this section the scaled carrying capacity is referred to as k, so in the scaled

Fisher model, since the carrying capacity is 1, k = 1. The restrictions on g(n)

are that

g(0) = g(nP ) = g(k) = 0 , (2.2.2)

g(n) < 0 if 0 < n < nP or n > k (2.2.3)
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and

g(n) > 0 if nP < n < k . (2.2.4)

These restrictions cause the velocity of the wave to decrease from that of the

original Fisher model, so v < v0 (Brunet and Derrida 1997).

It is assumed that a travelling wave solution exists and that the wave is moving

from right to left in a 1 dimensional arena. The model is transformed into a

moving frame of reference which moves from right to left with velocity −vR. This

allows n to depend only on one parameter z, where z ≡ x+vRt. Equation (2.2.1)

can then be written as a second order ODE,

d2n

dz2
− vR

dn

dz
+ g(n) = 0 . (2.2.5)

If φ ≡ dn/dz, the transformed model can be rewritten as a pair of first order

ODEs, where
dn

dz
= φ and

dφ

dz
= vRφ− g(n) . (2.2.6)

The solution sought requires n→ 0 as z → −∞. z = 0 is placed at a point where

n = n0 << nP so that for z ≤ 0, equations (2.2.6) can be approximated by

dn

dz
= φ and

dφ

dz
= vRφ− g′(0)n where g′(0) ≡

[
dg

dn

]
n=0

. (2.2.7)

Equation (2.2.7) has the solution n = n0e
λz, where n→ 0 as z → −∞, provided

that λ > 0. Since g′(0) < 0,

λ =
1

2

(
vR +

√
v2
R − 4g′(0)

)
, (2.2.8)

so for z ≥ 0, equations (2.2.6) are solved with the initial conditions

n(0) = n0 and φ(0) = λn0 . (2.2.9)

An inspection of equations (2.2.6) shows that for n to increase with z, φ > 0 and

for φ to increase with z,

φ >
g(n)

vR
. (2.2.10)
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Figure 2.1: Generic behaviour of growth with an Allee effect, with the specific
equation for g(n) given by equation (2.2.40) with a = 1.5 and nP = 0.3. (a) net
growth function. (b) typical invasion front generated from a simulation of the
model described by equation (2.2.40) with ∆x = 1, the time step varying between
∆t = 0.001 → 0.1 and a numerical integration tolerance of 0.0001. (c) phase
plane analysis with vR = 0.47: solid line shows separatrix implied by inequality
(2.2.10). (d) group of solutions for z > 0 in a moving frame of reference with vR
for each run marked.

These conditions can lead to an understanding of the characteristics of the result-

ing solutions in the phase plane. These equations are solved using an adaptive
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step RK4 numerical integration algorithm. ∆z varies between 1 × 10−5 and

1× 10−3 and the integration tolerance is 1× 10−5. The implications of the char-

acteristics of the solutions are illustrated in figure 2.1(c).

If n0 is kept constant and λ increases from zero, the initial condition moves in

a vertical line in the positive quadrant at n = n0. Above φ = 0, n increases, so

the movement is from left to right. Below φ = 0, n decreases, so the movement

is from right to left. When the φ = 0 line is crossed the trajectories must move

vertically. The bold line in the figure depicts the curve obtained for φ = g(n)/vR.

Above this line, φ increases so the movement is from bottom to top, and below

the line g decreases, so the movement is from top to bottom. Trajectories must

move horizontally while crossing this curve as dφ/dz = 0.

The initial conditions for a set of trajectories, given in equation(2.2.35), with

varying λ would lie on a vertical line which would cross the x axis at n = n(0)

and increasing as a function of vR. If the initial conditions lie above the bold

curve then the trajectory initially moves towards the top right. There are 4

possibilities for the direction of movement of the trajectories:

1. The trajectory misses the curve and n→∞ monotonically.

2. The trajectory intersects the bold line twice while φ > 0 and re-enters the

region where vφ > g(n) and n→∞ monotonically.

3. The trajectory hits the point (k, 0), where it stops as this is a steady state.

4. The trajectory intersects the bold line while φ > 0 but curves down into the

region where φ < 0, intersects the bold line again, then falls back below nP .

Eventually, perhaps after some oscillations, it falls into the region where

n < 0.

The first 2 possibilities correspond to vR being greater than the wave front ve-

locity, v. The third possibility corresponds to vR = v and the fourth possibility

corresponds to vR < v. So there is only one trajectory that leads to the (k, 0)
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steady state. This has been proved by Cruickshank et al. (1998) (see Appendix

A).

If there is only one trajectory which leads to (k, 0), if nP is held constant, and

vR is varied, a bisection search can be used to find where vR = v, the velocity

of the wave. A bracket which is known to contain v is chosen; in the case of the

modified Fisher models, this bracket is chosen to be (0 → 2). The centre point

is used as vR and equation (2.2.6) is solved with the initial conditions described

by equation (2.2.9), and ∆z and integration tolerance as used previously. When

n > 2 or n < 0 then dφ
dz

= 0 or dn
dz

= 0, so the simulation terminates either at

n > 2 or n < 0. This end result can be used as the criterion for the bisection

search. If n > 2 then the mid-point of the bracket becomes the new high end of

the bracketing pair. If n < 0 then the centre of the bracket becomes the low end

of the bracketing pair. Figure 2.1 (d) shows that when close to v, the trajectories

of the upper and lower bounds of vR run together until k is nearly attained, then

the trajectories diverge. Therefore the criterion for the completion of the search

is that the upper and lower bounds have identical trajectories to the asymptote

of the wave, where n ≈ k, φ ≈ 0 and dφ/dz ≈ 0.

This method of calculating the velocity of an invading wave in an excitable

medium has been coined the Shooting method.

The models dependent on time and space are numerically simulated to provide

observed results with which to compare the Shooting method.

ρ(x) =
∂2n

∂x2
(2.2.11)

is substituted by the finite difference representation

ρ(x) =
n(x+ ∆x)− 2n(x) + n(x−∆x)

∆x2
, (2.2.12)

where ∆x is the space step. The model is then solved by a RK4 numerical

integration method with an adaptive time step, ∆t.

In all simulations of models to which the Shooting method is applied in this

thesis, quadratic interpolation is used to find the width of wave fronts to a higher
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accuracy than the space step length. The exact times of the passage of the wave

at various positions of the arena, needed for the observed velocity calculations,

are also obtained at higher accuracy than the time step length by quadratic

interpolation.

2.2.2 Invasions with Thresholds

One method to stop reproduction at low population densities is to use a threshold.

The Fisher model is modified so that if a population falls below a density NP ,

the individuals in the population stop reproducing, so that when

∂N

∂T
= G(N) + Ψ

∂2N

∂X2
(2.2.13)

where

G(N) =

{
−DN N < NP

RN(1−N/K) otherwise
(2.2.14)

and D is the per capita mortality rate.

This is scaled in the same way as the original Fisher model, so T0 = R−1 and

T0 = K. NP has the dimension of population, so the dimensionless threshold

nP ≡ NP/N0. D has the dimension of time, so the dimensionless per capita

mortality rate is d ≡ D/T0. The model then becomes

∂n

∂t
= g(n) +

∂2n

∂x2
(2.2.15)

where

g(n) =

{
−dn n < nP
n(1− n) otherwise

. (2.2.16)

Brunet and Derrida (1997) devised an approximate calculation for the velocity

of the wave front of a Fisher model with a small cutoff. The cutoff in this

case is imposed by setting all population below the cutoff density to zero. The

calculation is based on the fact that in their formulation there is a relationship

between the size of the cutoff and the reduction in velocity from v0, so

v ' v0 −
π2

(lnnP )2
. (2.2.17)
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d nP Observed v Predicted v
0.1 1× 10−5 1.923 1.926
0.1 1× 10−3 1.802 1.793
0.1 1× 10−2 1.639 1.535
0.1 1× 10−1 1.220 0.1385

Table 2.1: Comparisons between wave velocities calculated from equation (2.2.17)
and those observed from simulations of the continuous Fisher model with a thresh-
old. In the simulations, d = 0.1, ∆x = 1, the time step varying between
∆t = 0.001..0.1 and a numerical integration tolerance of 0.0001.

Equation (2.2.17) is used to calculate the velocity of the wave front in the Fisher

model with a threshold. This calculation only works for small thresholds (Brunet

and Derrida 1997), as is clearly demonstrated in table 2.1. Because of the form

of the cutoff used by Brunet and Derrida, the per capita mortality rate below

the threshold is not taken into account in the calculation. Their model can only

be simulated in discrete time due to the “setting to zero” nature of their cutoff.

Therefore this calculation cannot be used to predict the velocity of wave fronts

generated by the continuous time Fisher model with a threshold.

The Shooting method can be used to calculate the velocity in this model.As in the

general case, the wave is originally travelling from left to right in a 1 dimensional

arena. The model is transformed into a moving frame of reference with velocity

−vR, with the n dependent only on z ≡ x + vRt, with the wave travelling from

right to left.

Within the moving frame of reference, z = 0 is set where n(0) = n0 = nP so that

the dynamics of the model where z ≤ 0 are then described by

d2n

dz2
− vR

dn

dz
− dn = 0. (2.2.18)

With z ≤ 0, a solution is sought in the form n(z) = nP e
λz, so the exponential

lapse rate, λ, must be the solution of

λ2 − vRλ− d = 0. (2.2.19)

As λ > 0,

λ =
1

2

(
vR +

√
v2
R + 4d

)
. (2.2.20)
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Figure 2.2: (a)Fisher wave with a threshold travelling from left to right with
velocity v = 0.56, ∆x = 0.5, the time step varying between ∆t = 0.001 → 0.1
and a numerical integration tolerance of 0.0001. (b)Trajectories of simulations
in a moving frame of reference with d = 0.00001 and nP = 0.5. The velocity of
the frame of reference, vR, is as marked. When vR ≈ 0.56, the trajectories run
concurrently until the (1,0) point is nearly reached, then diverge.

This implies that any value of vR is possible if λ is chosen appropriately. The

solution is required (by conservation theory) to be continuous in slope and value
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at z = 0, so the slope of the solution is related to nP and v by

n′(0) = λnP . (2.2.21)

For z > 0, n is the solution of the coupled first order equivalent of the transformed

model,
dn

dz
= φ and

dφ

dz
= vφ− n(1− n) , (2.2.22)

subject to the initial conditions

n(0) = nP and φ(0) = nPλ . (2.2.23)

The Shooting method then uses the bisection search algorithm described in sub-

section 2.2.1, where equation (2.2.22) is solved with the initial conditions de-

scribed in equation (2.2.23).

A series of numerical simulations of the Fisher wave with a threshold were carried

out to check the accuracy of the Shooting method’s predictions.

d nP Predicted Values Observed Values
v wf v wf

0.1 1× 10−5 1.921 8.5 1.923 8.5
0.1 1× 10−3 1.803 8.0 1.802 8.1
0.1 1× 10−2 1.638 7.3 1.639 7.3
0.1 1× 10−1 1.223 5.7 1.220 5.7
0.1 2× 10−1 0.9777 4.4 0.9780 5.0
0.1 4× 10−1 0.6078 2.9 0.6051 5.0
0.1 5× 10−1 0.4417 2.3 0.4386 5.0
1 1× 10−5 1.913 8.5 1.914 8.5
1 1× 10−3 1.773 7.9 1.778 7.9
1 1× 10−2 1.575 7.1 1.579 7.1
1 1× 10−1 1.042 5.1 1.039 5.1
1 2× 10−1 0.7016 3.7 0.6969 4.2
1 4× 10−1 0.1231 2.1 0.1018 3.5

Table 2.2: Comparisons between wave properties predicted by the Shooting method
and those observed from simulations of the continuous Fisher model with a thresh-
old. ∆x = 1, the time step varying between ∆t = 0.001..0.1 and an integration
tolerance of 0.0001. v is the wave front velocity and wf is the width of the wave-
front measured from n = 0.1 to n = 0.9.
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The width of the wave front can also be estimated from this analysis. Figure

2.2 (b) shows that at the end of the bisection search the trajectories of the

upper and lower brackets of vR are identical until n ≈ 1. Until this divergence

occurs, the trajectories are following the trajectory of vR = v (Brunet and Derrida

1997) (Kessler and Levine 1998).The width of this region of the solution in the z

transformed model is the same as the width of the wavefront.

Table 2.2 shows that when the threshold is high the observed velocities and

widths of the fronts of the simulations are not exactly predicted by the Shooting

method. The cause of this is believed to be the presence of the discontinuity in

the growth function which renders the numerical simulation of the untransformed

model inaccurate. The simulations involve numerical integration with variable

time steps. It is possible for these steps to overshoot the exact time when the

population in a given space increment increases or decreases across the threshold.

At low thresholds this effect is reduced due to the low impact of small thresholds

on the properties of the wave front.

2.2.3 Spreading Populations with a Continuous Allee Growth
Function

A growth function with an Allee effect is negative at high and low population

densities and positive for intermediate population densities, as typified by figure

2.1(a), where there is negative growth where the population n is larger than the

carrying capacity, 1, and where n < nP , the threshold value.

One way of achieving such a growth function is to use a model with the per capita

birth rate function showing a Michaelis–Menten type dependency on population

density, with Nh as the half saturation coefficient and F is the maximum repro-

ductive rate, while the per capita death rate, D(N), is linearly dependent on

population density, so

D(N) = N(D1 −D2N) . (2.2.24)
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This results in the equation for population growth,

G(N) =
[

FN

N +Nh

−D1 −D2N
]
N . (2.2.25)

It is now assumed that the population, N , disperses diffusively, with the diffusion

coefficient, Ψ, so the spatial model is,

∂N

∂T
= G(N) + Ψ

∂2N

∂X2
. (2.2.26)

In equation (2.2.26) B, D1 and D2 have the dimension of time, T . The scale of

time, T0, is chosen as T0 ≡ 1/(F − D1). The half saturation constant, Nh, has

the dimension of population, N . The scale of population, N0, is chosen to be

N0 ≡ (F −D1)/D2. The diffusion coefficient, Ψ, has the dimensions of space, X,

and time. X0 ≡
√

ΨT0 is taken to be the natural scale of space. Then the model

is scaled, producing the scaled variables, t ≡ T/T0, n ≡ N/N0 and x ≡ X/X0,

and the parameter groups, nh ≡ Nh/N0 and δ ≡ D1/(F −D1), transforming the

model into
∂n

∂t
= g(n) +

∂2n

∂x2
, (2.2.27)

which is the same as equation (2.2.1), where

g(n) =
[
(1 + δ)

n

n+ nh
− δ − n

]
n . (2.2.28)

This has the exterior steady state,

n = 0 , (2.2.29)

and an interior steady state, n∗.

n∗ =
1

2

[
(1− nh) +

√
(1− nh)2 − 4δnh

]
. (2.2.30)

n∗ is the carrying capacity of the system and is equivalent to k in equations

(2.2.2) and (2.2.4), The system can only exist if

nh < 1 and δ <
1 + n2

h

2nh
− 1

2
. (2.2.31)

The steady state, n∗, is always locally stable, as is the steady state where but

n = 0.
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This model has negative growth when n < nP , with

nP =
1

2

[
(1− nh)−

√
(1− nh)2 − 4δnh

]
. (2.2.32)

The model is transformed into a moving frame of reference with velocity −vR,

moving from left to right, as in the Fisher model with a threshold. This gives the

second order ODE,

d2n

dz2
− vdn

dz
+
[
(1 + δ)

n

n+ nh
− δ − n

]
n = 0. (2.2.33)

If dn/dz = φ, this can be rewritten as a coupled first order ODE,

dn

dz
= φ and

dφ

dz
= vφ−

[
(1 + δ)

n

n+ nh
− δ − n

]
n . (2.2.34)

For z > 0, n is the solution of equation (2.2.34) subject to

n(0) << nP and φ(0) =
n(0)

2

(
vR +

√
v2
R + 4δ

)
(2.2.35)

The Shooting method is then used to predict the velocity and width of the re-

sulting wave front, solving equation (2.2.34) with the initial conditions n0 =

min(0.001, nP/100) and φ as described in equation (2.2.35) in the bisection search

algorithm described in 2.2.1.

A series of simulations of the Fisher wave with an Allee effect were carried out

to check the accuracy of the shooting method’s predictions.

The width of the wave front between 10% and 90% of n∗ can be estimated from

this analysis in the same manner as in the threshold formulation.

Table 2.3 shows that the Shooting method correctly predicts the wave front ve-

locities and widths of the simulations to up to 4 decimal places. The excellent

comparison of the wave front widths and velocities of the simulations and those

predicted by the Shooting method holds throughout this set of runs, supporting

the argument in the previous section that the disagreement between the simula-

tions and the Shooting method predictions is caused by numerical inaccuracies

in the simulations of the Fisher model with a threshold and not by an inaccuracy

in the Shooting method.
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d nh Predicted Values Observed Values
v wf v wf

0.1 1× 10−5 1.900 8.4 1.899 8.5
0.1 1× 10−4 1.844 8.2 1.844 8.2
0.1 1× 10−2 1.515 7.1 1.515 7.3
0.1 5× 10−2 1.211 6.6 1.211 6.6
0.1 1× 10−1 1.101 6.7 1.101 6.7
0.1 1.3× 10−1 0.9170 6.9 0.9171 6.9
0.1 1.4× 10−1 0.8888 6.9 0.8887 6.9
1 1× 10−5 1.885 8.4 1.885 8.3
1 1× 10−4 1.814 8.1 1.814 8.0
1 1× 10−2 1.361 6.6 1.362 6.7
1 5× 10−2 0.8709 6.0 0.8709 6.1
1 1× 10−1 0.4615 6.1 0.4614 6.3
1 1.3× 10−1 0.2115 6.3 0.2115 6.4
1 1.4× 10−1 0.1172 6.5 0.1172 6.4

Table 2.3: Comparisons between calculated wave properties and those measured
from numerical simulations of the Fisher model with a continuous growth function
with an Allee effect. ∆x = 1, the time step varies between ∆t = 0.001..0.1 and a
numerical integration tolerance of 0.0001. v is the wavefront velocity and wf is
the width of the wavefront measured from n = 0.1 to n = 0.9.

As nh is increased, the width of the wave front initially decreases with velocity,

which is expected, as demonstrated in figure 2.4. However, when the velocity

starts to decrease very rapidly, the wave front width increases again. Figure 2.3

shows that decreasing nh has the effect of decreasing n∗ and the rate of growth,

and increasing nP . Decreasing the rate of growth has the effect of making the

front less steep. At large nh this is the effect which governs the width of the front.

There are no similar dynamics in the original Fisher model. This formulation is

not a good approximation of the Fisher model with regrowth from low densities

removed. Another Allee model, which has the dynamics of the Fisher model at

high densities should be sought.
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Figure 2.3: Shape of the continuous Allee growth function with δ = 0.1.

2.2.4 Spreading Populations with an Allee Growth Func-
tion which is Continuous in Value but not Slope

A Fisher wave with an Allee effect is sought with growth dynamics similar to those

of the Fisher model at high densities but with no regrowth from low population

densities. The formulation should also minimise errors in numerical simulations

due to discontinuities in the growth function. One compromise that could be

considered is a growth function with an Allee effect which is continuous in value,

but not in slope. This example of a Fisher wave with an Allee effect considers

a population, N , with a linearly density dependent per capita death rate M ,

and a per capita fecundity rate B which is a constant, B0, at high densities but

increases linearly with slope B1 at low densities, giving

M = M0 +M1N (2.2.36)
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and

B =

{
B0 N ≥ (B0/B1)
B1N otherwise

. (2.2.37)

If R ≡ B0−M0 and K = R/M1 then these assumptions imply that the unscaled

net growth function G(N) is

G(N) =

{
RN(1−N/K) N ≥ (B0/B1)
−M0N + (B1 −M1)N2 otherwise

. (2.2.38)

Adopting the same scaling for time and space as in the thresholded version of

the model, and defining the parameter groups a ≡ M0/(B0 − M0) and nP ≡
aM1/(B1 −M1), the scaled equivalent is

∂n

∂t
= g(n) +

∂2n

∂x2
, (2.2.39)

which is the same as the general model. In this formulation,

g(n) =

{
an[(n/nP )− 1] n < nc
n(1− n) otherwise

(2.2.40)

where

nc ≡
1 + a

1 + (a/nP )
. (2.2.41)

nP represents the scaled threshold value and−a is the slope of the growth function

at n = 0.

As in the previous examples, this model is transformed into a moving frame of

reference moving with velocity, vR. The model is then rewritten as a coupled

ODE. z = 0 is placed where n = n0 << nP , so that g(n0) ≈ −a.

The initial population for equation (2.2.6) is chosen to be n0 = min(0.001, nP/100)

and equation (2.2.8) is used to relate λ to vR. A bisection search is then con-

ducted in exactly the same manner and using the same criteria as in the previous

example.

Table 2.4 shows that there is a good agreement between predicted velocities,

widths and peak heights of the wavefront and those measured from simulations

in this model. The small difference arises from the discontinuity in the slope of the

growth function. This discontinuity creates an error in the numerical simulations.
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a nP Predicted Values Observed Values
v wf v wf

1.5 2× 10−4 1.844 8.20 1.844 8.20
1.5 5× 10−2 1.264 5.89 1.264 5.89
1.5 3× 10−1 0.4699 3.84 0.4696 3.80
15 2× 10−4 1.809 8.05 1.803 8.05
15 2× 10−2 1.288 5.97 1.287 5.97
15 1× 10−1 0.6699 3.99 0.6690 3.99
150 1× 10−4 1.782 7.94 1.781 7.94
150 6× 10−3 1.288 5.98 1.288 5.98
150 4× 10−2 0.5389 3.66 0.5374 3.66

Table 2.4: Comparisons between calculated wave properties and those observed
from numerical simulations of the Fisher model with an Allee effect which is con-
tinuous in slope only. ∆x = 0.1, the time step varies between ∆t = 0.00001..0.001
and the numerical integration tolerance is 0.00001. v is the wave front velocity
and wf is the width of the wavefront, measured from n = 0.1 to n = 0.9.

The dynamics of high density populations are still those of the Fisher model, so

this model can be compared with the original Fisher model, whilst low density

populations become extinct.

2.3 Discussion

The Fisher model was altered so that populations with very low densities did not

reproduce, ensuring that biologically unrealistic populations did not contribute

to the dynamics of the model. This alteration reduces the velocity of wave front

of the Fisher model (Brunet and Derrida 1997). As nP → 0, v → v0, as shown

by figure 2.4.

Three formulations of the Fisher model with no or reduced population growth

at low densities were considered. The threshold formulation was discontinuous

in slope and value. Above the threshold the dynamics were exactly that of the

Fisher model. The first example of an Allee effect was completely continuous but

did not have the same dynamics as the system described by the Fisher model.

The second example of an Allee effect was discontinuous in slope but not in

value. Above a critical density, nc, the dynamics of the model were the same as
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the original Fisher model.

Brunet and Derrida (1997)’s calculation for the velocity of a Fisher wave with a

cutoff cannot be applied to the system with a threshold formulated in this chapter.

The calculation can predict the velocity of the wave front at low thresholds, but

does not work for high thresholds. The model formulation the calculation was

developed for is very different from this formulation and the below threshold per

capita mortality rate is not included in the calculation.

A semi-numerical method of predicting the velocity and the width of the wave

front was developed. This was termed the Shooting method. The models were

transformed into a moving frame of reference and a bisection search was used

to seek the frame of reference velocity so that it was equal to the velocity of

the wave, therefore predicting the velocity of the wave. Although the frame

of reference velocity equal to the wave velocity cannot be found, the Shooting

method can predict the wave velocity to within 1% of the observed values.

The Shooting method was then used to predict the velocities and wave front

widths of the three model formulations described above. It was able to do this

for the completely continuous formulation to 4 decimal places. In the thresh-

old formulation, the discontinuity in the growth function could not be correctly

solved by the numerical continuous time simulations used as comparisons for the

Shooting predictions. This discrepancy between the predictions and the contin-

uous time and space simulation velocities and front widths increased with the

threshold density. In the Allee formulation with the discontinuity in slope, this

also occurred, but to a lesser extent as the density was continuous.

Figure 2.4 shows that the predictions can be used to further our understanding of

the dynamics of the wave fronts. The velocities are near v0 ≡ 2 when the threshold

is very small. The Fisher wave can have a negative velocity at high thresholds,

which corresponds to the wave retreating. The wave front widths only are affected

by the threshold when the the thresholds are very high and the continuous Allee

effect model wave front gets wider at high thresholds, showing that the dynamics

of this model are very different to those of the other 2 formulations.
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Although the Shooting method predictions are best for the continuous Allee for-

mulation model, the dynamics of the model are very different from those of the

original Fisher model, demonstrated by figure 2.4. This model with a continuous

growth function was used to show that the inaccuracy of the Shooting method

is due to errors in the numerical simulations rather than errors in the method.

This formulation will not be applied to other models looked at in later chapters.

The Fisher model was used in this chapter as a simple model to be used to develop

a method for predicting the velocity and shape of a wavefront in a reaction-

diffusion model where there was no growth from low densities. Now more complex

models should be treated in the same manner.
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Chapter 3

The Predator-Prey Model

Regrowth from unbiologically low population densities has been removed from a

single species reaction-diffusion model. A method, coined the Shooting method,

has been developed, so characteristics of invasion waves in this model can be pre-

dicted. To assess whether the same treatment works for a more complex model,

now a two species predator-prey model is considered. The prey are immobile and

the predators disperse. The growth rate of the predator population is reduced at

low densities, by both addition to the model of a threshold density below which

the population decreases, and use of an Allee effect. The biological correctness

of these formulations is assessed. Then the Shooting method is adapted from the

previous chapter and applied to these models, and the accuracy of the predictions

made about the characteristics of the resultant wave fronts is determined.

3.1 Introduction

3.1.1 The Paradox of Enrichment

The predator-prey model to be considered was formulated by Rosenzweig (1971)

from ideas discussed by Rosenzweig and MacArthur (1963). In this model there

is one predator species, C(T ), and one prey species, F (T ), at time T . The prey

grow logistically with intrinsic growth rate, R, to their carrying capacity, K. The

predators have a Holling type II functional response with half saturation at H,
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so the term for the uptake of prey by predators, U(F ), is

U(F ) =
UmF

F +H
. (3.1.1)

The prey dynamics are described by

∂F

∂T
= RF

(
1− F

K

)
− U(F )C . (3.1.2)

The predators die with the per capita mortality rate D. Ingested prey are con-

verted to predator offspring with efficiency ε. This results in the equation for

predator dynamics,
∂C

∂T
= εU(F )C −DC . (3.1.3)

The model has exterior steady states at (K, 0), where there are no predators

present and the prey are at carrying capacity and (0, 0), where there are neither

predators nor prey present, and an interior steady state when

F ∗ =
DH

εUm −D
, C∗ = r

(
F ∗ +H

Um

)(
1− F ∗

K

)
(3.1.4)

The interior steady state can only exist if

K >
DH

εUm −D
. (3.1.5)

If prey are present and this inequality is not fulfilled, the system will eventually

reach the ((K, 0) steady state. For a locally stable interior stable state to exist,

K

H
<
[
εUm +D

εUm −D

]
. (3.1.6)

If this condition is satisfied then the system reaches the interior steady state after

a series of damped oscillations. If this condition is not satisfied then the predator

and prey populations display stable limit cycles. This behaviour was termed the

“Paradox of Enrichment” by Rosenzweig (1971). By enriching the environment

for the prey species, the system becomes unstable and limit cycles result. The

troughs of the limit cycles reaching very low densities would mean catastrophe

for a real population.
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3.1.2 Invasions of Predators in the Predator-Prey Model

It is then assumed that the predators disperse in a one dimensional arena with

diffusion coefficient Φ, and that the prey are immobile. This gives a prey species

F (X,T ) and a predator species C(X,T ) at time T and at position X. These

assumptions result in the model

∂F

∂T
= RF

(
1− F

K

)
− U(F )C (3.1.7)

and
∂C

∂T
= εU(F )C −DC + Ψ

∂2C

∂X2
. (3.1.8)

As in the single species model in the previous chapter, the model is then scaled. It

is important that both equations in the model have the same scales of space and

time. The scale of time is chosen to be 1/R, so T0 = R−1, the scale of population

is chosen to be H, so F0 = H, and the scale of space is chosen to be
√

Ψ/R,

so X0 =
√

Ψ/R. This gives the dimensionless variables t ≡ T/T0, f ≡ F/F0,

c ≡ C/F0 and x ≡ X
√
R/Ψ, and the parameter groups um ≡ Um/T0, d = D/T0

and k ≡ K/F0. This produces the dimensionless uptake term

u(f) =
umf

f + 1
, (3.1.9)

and the dimensionless model

∂f

∂t
= f

(
1− f

k

)
− u(f)c (3.1.10)

and
∂c

∂t
= εu(f)c− dc+

∂2c

∂x2
. (3.1.11)

Assuming spatial homogeneity, the exterior steady states are (0, 0) and (k, 0) and

the scaled interior steady state is

f ∗ =
d

εum − d
, c∗ =

(
f ∗ + 1

um

)(
1− f ∗

k

)
, (3.1.12)

which is equivalent to the steady state of the scaled version of the steady state

of the non-spatial unscaled model. The scaled criterion for both populations to

be real and positive is

k >
d

εum − d
(3.1.13)
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and for the scaled system to be able to achieve the internal steady state and

non-oscillatory,

k <

[
εum + d

εum − d

]
. (3.1.14)

If this condition is satisfied and a travelling wave solution exists, a complicated

wake structure follows a peak at the wave front which eventually reaches the

(f, c) steady state, else a series of regular oscillations follow the wave front.

Dunbar (1983) has already developed a method to predict the velocity and ex-

ponential lapse rate of the front of the predator-prey model. To do this the

wave is transformed to a moving frame of reference, where it is dependent only

on z ≡ x + vRt with frame of reference velocity, −vR. Equations (3.1.10) and

(3.1.11) then become

d2c

dz
+ vR

dc

dz
+ (εu(f)− d) c = 0, (3.1.15)

vR
df

dz
+ f

(
1− f

k

)
− u(f)c = 0. (3.1.16)

If the leading edge of the front is close to the (k, 0) steady state, then the equations

decouple, with predator dynamics being described by

d2c

dz
+ vR

dc

dz
+ (εu(k)− d) c = 0. (3.1.17)

A solution is sought in form c(z) = c0e
−λz, which must be non-negative as z →∞,

so that the exponential increase rate, λ, is real. Such a solution is possible if λ is

related to the velocity, vR, by

vR = λ+
εu(k)− d

λ
. (3.1.18)

There are an infinite number of solutions for vR, if λ chosen correspondingly. The

solution excited depends in the initial conditions. If εu(k)− d > 0, there is min-

imum velocity, v0 = 2
√
εu(k)− d, which occurs when λ =

√
εu(k)− d. Compact

initial conditions excite the minimum velocity solution (Dunbar 1983)(Dunbar

1984). Therefore the velocity and the exponential lapse rate can be calculated

for this system.
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3.2 Increased Mortality of Predators at Densi-

ties beneath a Threshold

If the system displays limit cycles, the troughs may dip to very low densities.

The dynamics following behind the first trough can be entirely dependent on

regrowth from a very low density in a reaction-diffusion model. To stop this

happening, the growth function of the predator population is altered so that at

low densities there is negative growth. If reproduction is sexual, a low population

density may lead to asexual reproduction, self fertilisation or inbreeding, reducing

the genetic variability of the population and chromosomal breakage, leading to a

reduction in fitness of the population. To model this, under a threshold density,

CP , the predators have an increased mortality rate, DB, which is less than the

above threshold rate, D0. These values are scaled in the same way as the original

predator-prey model, so the scaled threshold is cP = CP/F0, the scaled mortality

rate above the threshold is d0 = D0/F0 and the scaled mortality rate below the

the threshold is dB = DB/F0. So in equations (3.1.10) and (3.1.11), d becomes,

d =

{
d0 c ≥ cP
dB otherwise

(3.2.1)

where

dB > dBm ≡ u(k) , (3.2.2)

so below the threshold, growth is negative.

When a threshold is applied to an oscillatory system one of two things can happen

behind the front. If the threshold is low, the invasion persists and a wave train

follows the initial invasion wave, as shown in Figure 3.1 (a). If the threshold is

high enough, the low density populations in the first trough of the wave train

become extinct, so there is only a single wave of predators from the point of

introduction, a soliton wave, as shown in Figure 3.1 (c). Once the wave has

passed through the arena there are no predators within the arena and the prey

return to carrying capacity.

Addition of a threshold to the predator growth function reduces the velocity of

the wave. As dB → ∞ the invasion halts altogether and as dB → 0, v → v0 as
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shown by figure 3.3.

The development of methods to estimate the properties of waves with small

thresholds has already been carried out (Gurney et al. 1998). dB can be chosen to

be very slightly larger than dBm, halting in situ regrowth while keeping velocity

reduction to a minimum, so the method used for estimating the velocity of the

non-thresholded case can still be used to describe these waves.

Predictions about the shape of the wave can also be made. The leading edge of

the front can still be treated as in the non threshold case. At the trailing edge of

predator band, the prey density is zero. The predator dynamics can therefore be

described as in the non threshold model with εu(k) − d replaced with −d. The

solution sought is of the form eλ
′z. The front velocity, v, and the exponential

growth rate λ′ are related by

v =
d

λ′
− λ′, (3.2.3)

implying that this part of the wave can travel at any speed as long as λ′ is chosen

accordingly. It must travel at the same velocity as the leading edge of the wave,

so the exponential growth rate in the tail of the wave, λt, must be the positive

solution of

λ2
t + vλt − d = 0, (3.2.4)

which is

λt =
√
εu(k)−

√
εu(k)− d. (3.2.5)

It is now assumed that these equations apply right to the peak of the predator

outbreak. z = 0 where c(z) = cm the maximum of the peak, so there is a solution

of the form

c(z) '
{
cme

−λcz z ≥ 0
cme

λtz otherwise
. (3.2.6)

This allows estimation of the characteristic spatial scale of the predator outbreak.

wc is the distance over which c exceeds 10% of cm, so

wc ' ln(10)
(

1

λc
+

1

λt

)
. (3.2.7)

This gives an approximate relationship between the total consumer population,
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Tc, and cm,

Tc =

∞∫
−∞

c(z)dz ' cm

(
1

λc
+

1

λt

)
. (3.2.8)

To find cm, Tc is assumed to be constant over time, possible only if the totals of

reproduction and mortality balance, that is dTc = εut, where ut represents the

total rate of prey uptake by the predator population. As ahead of the predator

outbreak the prey is at carrying capacity and behind the predator outbreak the

prey are at zero density, a lower bound can be put on ut by assuming that it

corresponds to the rate the predators engulf unexploited territory multiplied by

the prey density on the territory, so ut ≈ kvR.

The prey are then assumed to increase linearly with z, starting from zero at z = 0

and reaching k at the point where c = 0.05cm, which can be approximated as

z = 3/λc. Integrating net prey production from z = 0 to 3/λc shows that the

total prey reproduction in the region is k/(2λc). Hence ut ≈ kvc+k/(2λc), which

implies

dTc = εk
(
vR +

1

2λc

)
(3.2.9)

Using equation (3.2.8) and substituting for λt, λc and vR gives

cm ≈ 2εk

(
1−

√
1− d

εu(k)

)(
εu(k)

d
− 1 +

1

4d

)
. (3.2.10)

To calculate the width of the region of prey depletion, the transformed dynamic

equation (3.1.15) must be reconsidered. When predators are at their peak density,

the prey have already been depleted to densities below their carrying capacity and

half saturation level. Hence the scaled production of new prey is approximately

f and scaled uptake function of the predators is approximately umf . Putting

these back into the transformed equation and remembering that in the region of

interest c(z) ' cme
λtz,

1

f

df

dz
= − 1

vR
+
um
vc
cme

λtz. (3.2.11)

This can be integrated to give an approximate closed form solution for f(z) which

can be used to calculate the distance between the predator peak and the point

where the prey population returns to k, wf . It is assumed that f(0) = k, so wf
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is a solution of

wf
wfm

= 1− exp

(
−(umc)

wf
wfm

)
, wfm ≡

umcm
λt

. (3.2.12)

Provided that umcm > 3, the solution of the equation is well approximated by

wf = wfm, as shown by Gurney et al. (1998), so

wf =
umcm
λt

. (3.2.13)

ε cP Predicted Values Observed Values
v cm wc wf v cm wc wf

0.05 1× 10−2 0.42 3.7 35 76 0.39 3.17 40 61
0.075 1× 10−2 0.61 4.0 39 109 0.56 3.78 41 98
0.1 2× 10−3 0.75 4.4 43 142 0.74 4.40 46 145
0.15 3× 10−5 0.97 5.3 52 216 0.95 5.61 51 229
0.2 3× 10−6 1.15 6.3 59 300 1.14 6.75 61 323
0.3 3× 10−7 1.44 8.3 71 489 1.45 8.97 74 532
0.5 3× 10−7 1.89 12.2 91 938 1.93 13.29 94 1032

If dB >> dBm then the above methodology does not work because the assumption

that the wave is minimally affected by the threshold no longer applies. An exten-

sion of the Shooting method, developed in chapter 2, can be used to predict the

characteristics of the waves in this case. The model is transformed into a moving

frame of reference, moving from left to right with velocity −vR, in the same way

as the non-thresholded model in equations (3.1.15) and (3.1.2), so again f and c

are only dependent on z ≡ x+ vRt.

If z = 0 placed at some point, c0, in the front where c << cP and f ≈ k, then

for all populations to the left of z = 0,

d2c

dz2
− vR

dc

dz
− dec = 0, where de ≡ dB − εu(k) > 0. (3.2.14)

This implies that for z ≤ 0, a solution for c(z) is sought in the form c(z) =

c(0)eλBz, where the exponential decay rate, λB is

λB =
1

2

[
vR +

√
v2
R + 4de

]
. (3.2.15)
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To the right of z = 0,

d2c

dz2
− vR

dc

dz
− (εu(f)− d0)c = 0 . (3.2.16)

If dc/dz ≡ φ, the transformed model can be rewritten as a triplet of coupled

first-order ODEs

dc

dz
= φ,

dφ

dz
= vRφ− (εu(f)− d0)c and

df

dz
=

1

vR
(p(f)− u(f)c) , (3.2.17)

Equations (3.2.17) are solved, subject to the initial conditions

c(0) = c0, c′(0) = λBc0 and f(0) = k. (3.2.18)

Figure 3.1 (b) and (d) shows that within the moving frame of reference the

trajectories of c head monotonically to infinity if vR exceeds the velocity of the

wave front, v, but if vR < v then the trajectory initially dips below zero, as was

proved for the Fisher model in the previous chapter. A bisection search similar

to the one described in subsection 2.2.1 can then be used to find v. In this case

the starting bracket for vR is chosen as (0 → v0). If n dips below zero or rises

above 100 then φ = 0, the resulting value of n at the end of the simulation is

used as the criterion for the bisection search. The bisection search is terminated

when the high and low ends of the bracket for vR produce identical solutions up

to the peak of the wave front.

The Shooting method can also find the peak predator density and therefore the

width of the front. Figure 3.1 (b) and (d) shows that, as in the single species

model in Chapter 2, as vR ≈ v, the trajectories of the solutions follow the shape of

the wavefront, so measurement of the region where φ > 0 can be used to predict

the width of the wavefront. The correct velocity of the wave front, v, can be

substituted into equation (3.2.5), for λt, instead of v0, so an improved estimate

of the shape of the back of the wave front can be made. The new estimate of λt

can then be substituted into the calculations for the peak height and the width

of the soliton wave. The new estimates for the peak height and λt can then be

used in the calculation for the prey recovery width.

Table 3.1 shows that the velocities of the simulations are all predicted to within

1% by the Shooting method. Substitution of the values of v, cm and wf predicted
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Figure 3.1: Predator-prey model with a threshold, k = 20, um = 2, d = 0.05
and ε = 0.1. (a) A wave train travelling from right to left with v = 0.72 at
time 350. cP = 10−4. (c) A soliton travelling from right to left with velocity
v = 0.67 at time 350. cP = 10−2. In both these simulations, ∆x = 0.5, the time
increment varies between ∆t = 0.001→ 0.1 and a numerical integration tolerance
of 0.00001. (b) and (d) show equivalent solutions in frames of reference moving
at different velocities as marked. To obtain these, equation (3.2.17) was solved
with the initial conditions in equation (3.2.18) and using RK4 with allowed error
of 10−6.

by the Shooting method, into the calculations developed by Gurney et al. (1998),
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cP Predicted Values Observed Values
v cm wc wf v cm wc wf

0.05 0.59 2.21 38 59 0.58 2.21 40 72
0.1 0.55 2.17 36 55 0.54 2.17 37 59
0.2 0.48 2.09 33 47 0.47 2.08 31 48
0.3 0.42 2.02 30 42 0.40 2.00 22 40
0.4 0.36 1.93 27 36 0.33 1.90 17 35
0.5 0.29 1.84 25 30 0.28 1.81 14 32

Table 3.1: Comparisons between wave characteristics predicted by the Shooting
method and those observed from simulations of the predator-prey model with a
threshold. ∆x = 0.1, the numerical integration tolerance is 0.000001, the time
step varies between ∆t = 0.00001..0.001, k = 10, um = 2, ε = 0.1, d = 0.05
and dB = 0.5. v is the velocity of the wavefront, cm is the maximum density of
predators at the peak of the wavefront, wc is the width of the wave front, measured
from c = cm to c = cm/10, and wf is the recovery time of the prey.

increases the accuracy of the predictions of the wave front characteristics when

the solution of the system is a soliton.

The Shooting method predictions should be correct to arbitrary accuracy. The

discrepancy is due to the discontinuity in both value and slope in the threshold

formulation of the growth function. This discontinuity causes problems with

the numerical simulations of the model which are used to produce the observed

wave characteristics. As it was shown in Chapter 2 that using an Allee effect

formulation for the Fisher model reduced this error, a formulation of the predator-

prey model where regrowth from low densities is stopped by an Allee effect is now

considered.

3.3 Decreased Prey Conversion Efficiency in Preda-

tors due to an Allee Effect

Now a model where the negative growth of populations with low densities is

achieved by an Allee effect is considered, to reduce the error in the numerical

simulations. Whereas previously the efficiency of conversion of prey into new

predators was a constant, ε, in this formulation, the conversion efficiency, E, is
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dependent on the density of predators. If predators never become scarce then

E = E0 (Cruickshank et al. 1998). If reproduction is sexual then at low densities

mating is rare, so the conversion efficiency is reduced. To represent this in the

model, E is proportional to of C up to a maximum, E0, hence the dynamics of

this system are described by

∂F

∂T
= RF

(
1− F

K

)
− U(F )C and

∂C

∂T
= (EU(F )−D)C + Ψ

∂2C

∂X2
, (3.3.1)

where

E =

{
E0 C ≥ CP (E0Um/D)
DC/(UmCP ) otherwise

. (3.3.2)

The steady states are identical to those of the original predator-prey model (with

ε set to E), described in equation (3.1.4) if

CP ≤
RHD(DK +DH −KE0Um)

KUm(−E0Um +D)2
. (3.3.3)

R−1,
√

Ψ/R, H and E0H are identified as the natural scales of time, space, prey

population and predator population respectively. The model is re-expressed in

terms of dimensionless variables t ≡ RT , x ≡ X
√
R/Ψ, f ≡ F/H, c ≡ c/(E0H)

and the parameter groups k ≡ K/H, um ≡ Um/R and CP ≡ cP/(E0H), giving

∂f

∂t
= f

(
1− f

k

)
− u(f)c (3.3.4)

and
∂c

∂t
= (eu(f)− d)c+

∂2c

∂x2
(3.3.5)

where

u(f) =
umf

f + 1
(3.3.6)

and

e =

{
1 c ≥ cPum/d
dc/(umcP ) otherwise

. (3.3.7)

This model’s spatially homogeneous external steady state is identical to that of

the non threshold model, and the internal steady state is

f ∗ =
d

um − d
, c∗ =

(
f ∗ + 1

um

)(
1− f ∗

k

)
, (3.3.8)
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only if

cP ≤
d

um − d

(
1− d

k(um − d)

)
. (3.3.9)

As in the threshold formulation model, if the dynamics are non-oscillatory or the

threshold density is low, eventually the predator and prey populations reach the

stable coexistence state throughout the whole arena. If the threshold is large and

the local dynamics are oscillatory or show weakly damped oscillations, then the

wave form is a soliton.

As in the previous section, the model is transformed into a frame of reference

travelling from right to left with velocity −vR, so that c and f depend only on

z ≡ x + vRt. If φ ≡ dc(z)/dz, equations (3.3.4) and (3.3.5) can be re-expressed

as
dφ

dz
= vRg − (eu− d)c,

dc

dz
= φ (3.3.10)

and
df

dz
=

1

vR
[f(1− f/k)− uc] . (3.3.11)

If z = 0 is placed to the left of the front, where c(z) = c0 << cP , then for all

z < 0, f(z) ' k and hence c(z) = c0e
λz, where

λ =
1

2

[
vR +

√
v2
R + 4d

]
. (3.3.12)

Hence for z > 0 , equations (3.3.11) and (3.3.10) can be solved subject to the

initial conditions

c(0) = c0, f(0) = k and φ(0) = c0λ. (3.3.13)

Figure 3.2 shows that as in the thresholded formulation in the transformed

predator-prey model with an Allee effect, if vR is greater than the wave front

velocity, v, c(z)→∞ as z increases. If vR < v then c(z) < 0 at some value of z.

Figure 3.2 shows, when vR ' v, and there is a travelling wave solution, the shape

found must be the shape of the wave front, so estimates of the height of the peak

and the width of the front can also be attained from the Shooting method.
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Figure 3.2: Solutions in frames of reference moving at different velocities as
marked and k = 20, um = 0.2, d = 0.05, (a) a wave train with cP = 10−4 (b)
a soliton with cP = 10−2. To obtain these, equations (3.3.11) and (3.3.10) were
solved numerically with initial conditions as in equation (3.3.13) with an allowed
error of 10−6.

c0 = min(0.0001, cP/10000) is chosen as the starting population for the predator

population and f(0) = k is chosen as the starting population for the prey popu-

lation for the bisection search, with φ(0) calculated from equation (3.3.12). v is

then determined by a bisection search. The bracket for vR is initially chosen to
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be the same as in the threshold predator-prey model, as is the criterion for the

end of the search.

k cP Predicted Values Observed Values
v cm wf v cm wf

2.5 0.05 0.5180 7.45 13.8 0.5196 7.45 13.8
2.5 0.675 0.3653 7.10 10.7 0.3651 7.10 10.5
2.5 1.622 0.1828 6.62 12.0 0.1826 6.51 12.0
5.0 0.11 0.5826 12.4 11.1 0.5836 12.4 11.1
5.0 1.34 0.4099 11.5 8.77 0.4101 11.5 8.75
5.0 2.86 0.2047 9.92 11.2 0.2040 9.43 11.2
10.0 0.064 0.6535 22.7 10.7 0.6556 22.7 10.7
10.0 2.645 0.4357 20.4 7.73 0.4358 20.4 8.0
10.0 5.29 0.2178 16.9 10.7 0.2184 17.1 10.4
20.0 0.14 0.6744 43.1 9.463 0.6767 43.7 10.1
20.0 5.25 0.4494 38.3 7.324 0.4497 38.3 7.7
20.0 10.14 0.2249 31.0 10.5 0.2197 29.3 10.4

Table 3.2: Comparisons between wave properties predicted by the Shooting method
and those observed from simulations of the predator-prey model with an Allee
effect. ∆x = 0.05, the time step varying between ∆t = 0.0000001..0.0001, the
numerical integration tolerance is 0.0000001, um = 0.2 and d = 0.05. v is the
velocity of the wavefront, cm is the maximum density of predators at the peak
of the wavefront, wc is the width of the wave front, measured from c = cm to
c = cm/10, and wf is the recovery time of the prey.

Table 3.2 shows that for the predator-prey model with an Allee effect the Shooting

method is very good at estimating the velocity, peak height and width of wave

fronts. It can also be seen that at high thresholds the wave front widens. This

is because at these thresholds, the criterion described by equation (3.3.9) is not

fulfilled, so the system is no longer oscillatory and a state of coexistence is reached,

as shown by figure 3.3.

3.4 Discussion

Both an Allee effect and a threshold have been used to reduce the regrowth of

predator populations from very low densities. They successfully removed this

effect while maintaining the dynamics of the unthresholded model at higher den-

sities. In the threshold formulation the predators died with an increased mortality
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rate, which describes inbreeding depression in real small populations (Kot et al.

1996) and in the Allee formulation the conversion efficiency of prey into new

predators was decreased, describing problems of finding mates in small popula-

tions of sexually breeding organisms (Gurney et al. 1998).

These modifications to the original predator-prey model can make a large change

to the wave form generated. If the system is oscillatory and the density of preda-

tors in the first trough behind the front is low enough in relation to the threshold,

the predator population in the trough starts to die with the increased mortality

rate or becomes less efficient at converting prey to new predators and goes ex-

tinct. There is no continuation of the wake after this trough, and the invasion

wave becomes a soliton. Once the soliton has passed through the arena the arena

returns to a state where there are no predators and the prey are at carrying

capacity.

The Shooting method successfully predicts the characteristics of an invasion wave

of predators which have negative growth at low densities in a two species predator-

prey model. As discussed in Chapter 2, the method is more successful for the

Allee formulation than the threshold formulation due to the discontinuities of the

growth function.

Figure 3.3 shows that the Shooting method can be used to investigate the dy-

namics of the 2 formulations of the predator-prey model. v0 = 0.6095, and as the

threshold tends to zero the velocity nears v0. As the threshold increases the wave

front stops forming. There cannot be a negative velocity in these models as the

wave is narrow. The peak height predictions show that the predator peak is only

affected when the threshold is very high and the wave is close to non existence,

which is to be expected as only low densities are affected by the threshold. In the

Allee formulation, the wave front gets wider at high thresholds. This is because

the steady state is changed as inequality (3.3.9) is no longer satisfied and the

wave has become non-oscillatory.

Threshold and Allee effect growth function formulations removing regrowth from

low densities populations for models describing the invasion of an exotic species.
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The Shooting method has been shown to work for these altered models. Maybe

other models with spreading waves, for instance, epidemic models, should be

considered for this treatment.
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Figure 3.3: Wave characteristics as predicted by the Shooting method of both the
Allee and the threshold formulations of the predator-prey model. (a) shows the
velocities, (b) shows the peak heights and (c) shows the front widths. The threshold
results have been rescaled to the same scaling as the Allee effect formulation. In
the Allee effect formulation model, k = 2.5, um = 0.2, d = 0.05 and in the
threshold formulation model, k = 2.5, um = 0.2, d0 = 0.05 and dB = 2. For these
parameters, v0 = 0.6095.
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Chapter 4

The Two Stage Epidemic Model

Having looked at two forms of models where there is an invasion of a species into

new regions, now a two stage epidemic model is considered. A threshold removing

reinfection at low densities and a reduction in infectivity at low densities are

applied to the epidemic model. If this is the case, the Shooting method can then

be used to predict characteristics of the wave front in the resultant model.

4.1 Introduction

4.1.1 The Two Stage Epidemic Model

The 2 stage epidemic model was developed to describe the transmission of rabies

in European foxes (Anderson et al. 1981). At a given time, T , there are two

possible stages of infection; the susceptible stage, S(T ), in which an individual is

healthy and can be infected, and the infective stage, I(T ), in which an individual

is rabid. Susceptibles grow logistically with per capita rate of growth, R, to

a carrying capacity, K. Infectives infect all susceptibles they contact with per

capita contact rate B. Once infected, the individual goes on to infect susceptibles,

and then dies with per capita mortality D. This produces the model

∂S

∂T
= RS

(
1− S

K

)
−BIS (4.1.1)

49



and
∂I

∂T
= BIS −DI. (4.1.2)

This model has exterior steady states at (0, 0), (K, 0) and an interior steady state

at (S∗, I∗) where

S∗ =
D

B
and I∗ =

R

B

(
1− S∗

K

)
. (4.1.3)

For both the infective and susceptible populations to be real and positive,

K >
D

B
. (4.1.4)

4.1.2 The Spread of Rabies

As foxes have territories, and as after recruitment to the adult population they do

not disperse, susceptibles are assumed to be immobile. This obviously inaccurate

assumption can made because in terms of the spread of rabies, it is not the

dispersal rate of foxes that is important, but the rate of contact between rabid

and susceptible foxes which causes the spread of the disease. The infectives

who do not contract the paralytic form of the disease wander aimlessly, and

so disperse with diffusion coefficient Ψ (Källén et al. 1985). The population

of susceptibles at position X, is S(X,T ), and the local density of infectives is

I(X,T ). As the susceptible equation contains no spatial component, the equation

for the susceptible population remains as in equation ( 4.1.1) and equation (4.1.2)

becomes
∂I

∂T
= BIS −DI + Ψ

∂2I

∂X2
. (4.1.5)

This model is scaled by using R−1 as the natural scale of time, T0, K as the

natural scale of population, S0, and
√

Ψ/R as the natural scale of space, X0.

This process results in the scaled variables s ≡ S/S0, i ≡ I/S0, x ≡ X
√
R/Ψ

and the parameter groups b ≡ BK/T0 and d ≡ D/T0, giving the equations

∂s

∂t
= s(1− s)− bis (4.1.6)

and
∂i

∂t
= bis− ds+

∂2i

∂x2
. (4.1.7)
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The exterior steady states of this model are (0, 0), (1, 0) and the interior steady

state is (s∗, i∗), where

s∗ =
d

b
and i∗ =

b− d
b2

(4.1.8)

which is positive and locally stable as long as b > d. If

b− d < d

b
(4.1.9)

the front has at most one overshoot before settling to the steady state. If not,

there is a trail of damped oscillations behind the front (Källén et al. 1985).

The same method described in Chapter 3, developed from (Dunbar 1983), allows

the calculation of the velocity of the wave front, where the introduction of a

small propagule of infected individuals into an universe previously inhabited by

susceptible individuals will eventually result in a wave travelling with velocity,

v0,

v0 = 2
√
b− d. (4.1.10)

With the rabies parameters suggested by Källén et al. (1985), this model always

has a velocity greater than 242 km yr−1. In nature a rabies epidemic has an

observed velocity of around 30 to 60 km yr−1. This suggests that this model

does not accurately describe a rabies epidemic. This idea is explored in the next

chapter. The wake behind the initial invasion wave can dip to very low densi-

ties of infectives, densities which are not biologically realistic, and persistence of

the epidemic behind the wave front could be caused by in situ growth of these

low density populations rather than through re-invasion of these areas (Mollison

1991), known as the “Atto-Fox” effect. The model is altered so that at very low

densities of infectives, the individuals do not infect susceptibles locally. This in

itself will reduce the velocity of the wavefront of this system. Two methods of

removing reinfection by low density populations from this model are investigated.
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4.2 Removal of Infection of Susceptibles by In-

fectives below a Threshold Density

The model can be altered so that densities of infectives below a threshold, IP ,

are no longer infective, so the contact rate becomes a function, B(I), the above

threshold contact rate is B0 and below the threshold B = 0. These parameters

have the dimension of population and are scaled, so iP = IP/S0 and b0 = B0/S0,

and the scaled function is termed b. So the model described in equations (4.1.6)

and (4.1.7) is modified so that when the density of infectives falls below iP , the

contact rate of infectives with susceptibles is zero, so in equations (4.1.6) and

(4.1.7),

b =

{
b0 i > iP
0 otherwise

. (4.2.1)

This model has the same internal stationary state as the non thresholded model

in equation (4.1.8) as long as i∗ > iP .

If the threshold density is low, the wake of the epidemic front is the same as in

the non thresholded version of the model, and eventually there is persistence of

the epidemic behind the front and the interior steady state is reached, as shown

in figure 4.1 (a). If the threshold is increased, low densities of infectives in the

wake behind the front do not infect susceptibles, there is no persistence of the

epidemic and the epidemic wave becomes a soliton as shown by figure 4.1 (c) .

So the persistence of rabies epidemics in this model is created by re-infection of

susceptibles in areas with an unbiologically low density of infectives.

In the previous chapter, a method was developed to predict the shape of a whole

soliton of a predator-prey model; the shape of the leading and trailing edges,

the time it took for the prey to recover and the maximum density of predators

in the peak. This method cannot be applied to the 2 stage epidemic model as

the method relies on the assumption that the prey density falls to f ≈ 0. In

an epidemic, the susceptible density rarely falls to zero; this would cause the

extinction of the infection. Therefore only the Shooting method can be used to

make predictions about the characteristics of the wave front.
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The Shooting method is altered so as to make predictions about the wave front

characteristics of the 2 stage epidemic model. The model is transformed into

a frame of reference travelling from left to right with velocity −vR and s and i

depending only on z ≡ x+ vRt. This results in the transformed model

d2i

dz2
− vR

di

dz
+ g(i) and

ds

dz
=

1

vR
[s(1− s)− bsi] (4.2.2)

where

g(i) =

{
b0si− di i > iP
−di otherwise

. (4.2.3)

If φ ≡ di/dz then equations (4.1.6) and (4.1.7) can be re-expressed as

dφ

dz
= vRφ− g(i),

di

dz
= φ and

ds

dz
=

1

vR
[s(1− s)− bsi] , (4.2.4)

If z = 0 is placed where i(z) = iP , for all z < 0, s(z) ≈ 1 and i(z) = iP e
λz where

λ =
1

2

[
vR +

√
v2
R + 4d

]
. (4.2.5)

Hence, for z > 0, equation (4.2.4) can be solved subject to the initial conditions,

s(0) = 1, i(0) = iP and φ(0) = iPλ . (4.2.6)

Figure 4.1 shows that the trajectories of the solutions in the moving frame of

reference are similar to those of the predator-prey model, so the Shooting Method

bisection search can be used with the same criteria as used for the predator-prey

model and equation (4.2.4) solved with initial conditions as set in equation (4.2.6).

There is again the problem of a discontinuity in the growth function in the sim-

ulation of the untransformed model, but there is no longer a discontinuity in

the simulations of the z transformed model, as the simulations are initiated at

the threshold. The predictions of the Shooting method are more accurate than

in the predator-prey model formulated with a threshold. To reduce the affect

of the discontinuity in the simulation, a formulation in which the value of the

population is continuous is used instead of a threshold.

53



iP Predicted Values Observed Values
v im wf vf im wf

1× 10−8 23.717 0.1531 0.5545 23.349 0.1531 0.5512
1× 10−7 23.563 0.1530 0.5460 23.349 0.1530 0.5429
1× 10−6 23.323 0.1530 0.5460 23.237 0.1530 0.5795
1× 10−5 22.918 0.1529 0.5295 22.906 0.1529 0.5380
1× 10−4 22.174 0.1526 0.5050 22.171 0.1527 0.5130
1× 10−3 20.645 0.1519 0.4635 20.655 0.1519 0.4635
1× 10−2 16.819 0.1464 0.3640 16.780 0.1464 0.3560

Table 4.1: Comparisons between wave characteristics calculated by the Shooting
method and those observed from simulations of the 2 stage epidemic model with
a threshold. ∆x = 0.1, the time step varies between ∆t = 0.00001 · · · 0.001, the
numerical integration tolerance is 0.00001, b = 292 and d = 146. v is the velocity
of the wavefront, wf is the width of the wavefront and im is the maximum density
of rabid individuals in the wavefront peak.

4.3 Reduced Infection of Susceptibles by Low

Densities of Infectives

As there is a small difference between the Shooting method predictions and the

observed wave front characteristics from simulations for the 2 stage epidemic

model with a threshold, a growth function is formulated as an alternate to the

threshold formulation of the 2 stage epidemic model. The growth function is

continuous in value but not in slope.

At high densities of infectives the force of infection is constant, B0, while at low

densities the force of infection rises linearly with infective densities (Cruickshank

et al. 1998). So in equations (4.1.1) and (4.1.5),

B =

{
B0 I ≥ IP (B0K/D)
(D/K)(I/IP ) otherwise

. (4.3.1)

IP is the infective density below which the infective population cannot reinfect.

The steady state values for this model are the same as those of the original

unmodified model as described in equation (4.1.3), as long as

IP ≤
RD(B0K −D)

B3
0K

2
. (4.3.2)

Defining scaled variables s ≡ S/K, i ≡ I/K, t ≡ RT , x ≡
√
R/Ψ and parameter
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groups b0 ≡ B0K/R, d ≡ D/R and iP ≡ IP/K allows re-expression of the model

as
∂s

∂t
= s(1− s)− bsi and

∂i

∂t
= (bs− d)i+

∂2i

∂x2
(4.3.3)

where

b =

{
b0 i ≥ (b0iP/d)
di/iP otherwise

. (4.3.4)

There are 4 stationary states, (0, 0), (1, 0), high s∗ and low i∗, low s∗ and high

i∗. Provided

iP ≤ (d/b2
0)(1− d/b0) , (4.3.5)

the high i∗ steady state is identical to that of the equivalent un-thresholded model,

s∗ =
d

b0

and i∗ =
b0 − d)

b2
0

. (4.3.6)

As long as i∗ is positive it is locally stable.

When local dynamics are non-oscillatory, or iP is small, the behaviour of the

modified model is unchanged except for a reduction in velocity. If iP is larger

than the infective density in the first trough behind the initial epidemic in the “no

threshold” model, then the infective population does not recover from the trough

but declines asymptotically to zero. The susceptible population then recovers

to carrying capacity. So in addition to reducing the velocity of the front, the

post-epidemic state of the system is also changed.

The behaviour of this system is investigated in a frame of reference moving with

velocity −vR. Looking for a constant shape solution, assuming that s and i

depend only on z ≡ x + vRt and defining φ(z) ≡ di(z)/dz, equation (4.3.3) is

re-expressed as
di

dz
= φ,

dφ

dz
= vRφ− (bs− d)i (4.3.7)

and
ds

dz
= v−1

R [s(1− s)− bsi] , (4.3.8)

where b is defined as in equation (4.3.1). If z = 0 is placed to the left of the front

where i(z) = i0 << iP , then for all z < 0, s ≈ 1 and hence i(z) = i0e
λz where

λ =
1

2

[
vR +

√
v2
R + 4d

]
. (4.3.9)
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So for z > 0 equations (4.3.7) and (4.3.8) can be solved subject to the initial

conditions

s(0) = 1 , i(0) = i0 and φ(0) = λi0 . (4.3.10)

In figure 4.2 the solutions produced are reminiscent of those in the threshold

formulation of the model. They follow the true shape of the wavefront for a

distance, depending on how close the frame of reference velocity is to the velocity

of the wavefront. If the frame of reference velocity is less than that of the front

velocity then the trajectory eventually dips below zero whereas if the frame of

reference velocity is greater than that of the wave front the infective density

diverges to ∞.

This allows a bisection search for the wave front velocity. i0 = min(0.0001, iP/10000)

is chosen as the starting population for the infective population and s(0) = 1 is

chosen as the starting population for the susceptible population for each run,

with φ(0) calculated from equation (4.3.10) and solving equations (4.3.7) and

(4.3.8). The bisection search criteria are again identical to those used for the

predator-prey model.

b0 iP Predicted Values Observed Values
v wf im v wf im

4.5 6.7× 10−5 1.2020 9.82 0.02484 1.1925 9.8 0.02484
4.5 1.5× 10−3 0.8156 7.18 0.02469 0.8156 7.2 0.02470
5 4× 10−5 1.8041 6.32 0.04689 1.80 6.3 0.04689
5 4× 10−3 1.1808 3.97 0.04399 1.18 3.95 0.04399
12 4× 10−4 5.0831 2.15 0.3317 5.08 2.15 0.3316
12 0.033 3.3754 1.35 0.3066 3.38 1.35 0.3068
40 1.3× 10−3 10.209 1.06 0.6821 10.204 1.06 0.6822
40 0.0355 6.60 0.72 0.6542 6.605 0.72 0.6543

Table 4.2: Comparisons between wave characteristics predicted by the Shooting
method and those observed from simulations of the 2 stage epidemic model with the
contact rate varying with slope at low densities. ∆x = 0.05, the time step varies
between ∆t = 0.000001..0.0001, the numerical integration tolerance is 0.0000001
and d = 4 in all runs. v is the velocity of the wavefront, wf is the width of
the wavefront and im is the maximum density of infectives in the peak of the
wavefront.
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There is a good agreement between the Shooting method and the values observed

from simulations. There is a difference, which is again due to difficulties of simu-

lating a model with a discontinuity in the growth function. The effect is reduced,

as there is only a discontinuity in slope but not in value in this formulation. The

use of a formulation which is continuous in value to remove infection of suscepti-

bles from unbiological densities of rabid individuals has not changed the dynamics

of the system above the threshold and it has improved the agreement between

the Shooting method predictions and observations from simulations. Oscillatory

behaviour is reduced by large thresholds.

4.4 Discussion

Figure 4.3 shows that when the threshold is low the velocity tends to v0. When

the threshold is high the wave becomes a soliton. Because of the soliton shape

of the wave, it cannot retreat, as this would be equivalent to there being no

travelling wave solution, so the velocity cannot be negative at high thresholds

as in the Fisher model. The peak height is only affected by the threshold when

the threshold is nearly high enough so stop the formation of the wave. The

width of the wave decreases as the velocity decreases. There is a slight upturn

in the Allee wave front width just before the wave stops forming as the steady

state becomes dependent on the threshold density, iP , as predicted by inequality

(4.3.5). Otherwise the wave characteristics of the 2 models are very similar.

The Shooting method accurately predicts the velocities, wave heights and widths

of the wave front observed from simulations. There is less of a discrepancy for the

formulation which is continuous in value than in the formulation with a threshold.

Again this is attributed to the discontinuity in the in both value and slope in the

threshold formulation growth function, which cannot accurately be modelled in

the numerical simulations of the model.

The effective removal of low density populations of infectives from the dynam-

ics of the model may provide the reduction in velocity necessary for the model
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to correctly predict the correct velocity of an epidemic wave of rabies in Euro-

pean foxes, but another improvement on the model may also provide this. This

improvement is based on the life history of the diseased animals and shall be

discussed in the next chapter.
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Figure 4.1: Epidemic waves in the 2 stage epidemic model with a threshold. b0 =
30 and d = 20. (a) shows a wave followed by a wake travelling from right to
left with v = 6.24 and iP = 1 × 10−10, ∆x = 1, the time step varying between
∆t = 0.001 → 0.1 and a numerical integration tolerance of 0.0001. (c) shows a
soliton travelling from right to left with v = 3.04 and iP = 0.01 and ∆x = 0.1,
the time step varies between ∆t = 0.00001 → 0.001 and a numerical integration
tolerance of 0.00001. Frames (b) and (d) show solutions in frames of reference
moving with the marked velocities for iP = 1× 10−10 and iP = 10−6 respectively,
attained by solving equation (4.2.4)with the initial conditions in equation (4.2.6).
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Chapter 5

The Three Stage Epidemic Model

In the previous chapter, a 2 stage model for a rabies epidemic was considered.

However, when a fox catches rabies there is an initial latent period when the

infected individual shows no symptoms and does not infect others. A model

hoping to describe the dynamics of the disease should include this latent period.

A 3 stage epidemic model was devised by Murray et al. (1986). The model to be

considered is very similar to this.

The growth function of the infectives is altered so that a threshold and a formula-

tion which is continuous in value but not slope are used to reduce the infectivity

of the infectives. The Shooting method is then altered so it can be used for

this model, and the ability of this method to make predictions about the epi-

demic wave front of a 3 stage rabies model with no reinfection at low densities is

assessed.

5.1 Introduction

5.1.1 The 3 Stage Epidemic Model

At time T , the dynamics of susceptible foxes, S(T ), remains unchanged from

the 2 stage model, but Q is used as the per capita growth rate parameter. All

susceptible foxes contacted with rate B becomes latently infected and are asymp-
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tomatic carriers of the disease. Individuals in the incubating population, I(T ),

have a probability per unit time, L, of becoming rabid. During this latent period

the mortality rate of incubating individuals is unaffected by the progress of the

disease and have the die with the per capita mortality rate , M . In the infective

population, R(T ), a fox either contracts the paralytic form of the disease or goes

on to infect susceptibles. The infectives then die with per capita mortality rate

D. This produces a model where

∂S

∂T
= QS

(
1− S

K

)
−BSR , (5.1.1)

∂I

∂T
= BSR− (L+M)I (5.1.2)

and
∂R

∂T
= LI −DR. (5.1.3)

The model has two external steady states at (0, 0, 0) and (K, 0, 0), and has a

single internal steady state, at (S∗, I∗, R∗), where

S∗ =
D

B

(
L+M

L

)
, I∗ =

D

L
and R∗ =

Q

B

(
1− S∗

K

)
. (5.1.4)

For the internal steady state to exist,

K >
D

B

(
L+M

L

)
. (5.1.5)

If this inequality is not fulfilled the model returns to the state where there are no

rabid or incubating individuals and the susceptible foxes are at carrying capacity.

5.1.2 The Spread of Rabies

Susceptible and incubating foxes reside in territories after recruitment to the

adult population, and these territories are assumed to always be filled, so it is

assumed there is no net movement of non rabid foxes. Once rabid, the fox is

assumed to run erratically. This is described as diffusion in this model (Murray

et al. 1986) (Skellam 1951), spreading the disease with diffusion constant Ψ , so

equation (5.1.3) becomes

∂R

∂T
= LI −DR + Ψ

∂2R

∂X2
. (5.1.6)
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K is chosen as the natural scale of population, S0, Q−1 as the natural scale of

time, T0, and
√

Ψ/Q as the natural scale of distance, X0, giving dimensionless

variables s ≡ S/S0, i ≡ I/S0, r ≡ R/S0, t ≡ T/T0, x ≡ X/X0 and the parameter

groups l ≡ L/T0, d ≡ D/T0, m ≡ M/T0 and b ≡ BK/T0. This scaling process

results in the equations
∂s

∂t
= s(1− s)− bsr, (5.1.7)

∂i

∂t
= bsr − (l +m)i (5.1.8)

and
∂r

∂t
= li− dr +

∂2r

∂x2
. (5.1.9)

The scaled spatial model has external steady states at (0, 0, 0) and (1, 0, 0) and

an internal steady state at (s∗, i∗, r∗) where

s∗ =
d

b

(
l +m

l

)
, i∗ =

d

l
and r∗ =

1

b
(1− s∗) . (5.1.10)

The scaled criterion for the system to reach the internal steady state is,

b

d
>

(
l +m

l

)
. (5.1.11)

The method for determining the velocity of the epidemic wave, v0, in this model

has been devised by Murray et al. (1986) Murray (1989). The resulting calcula-

tion for this model is not described here due to mathematical complexity.

As in the 2 stage epidemic model, there is a wake behind the initial invasion front

where the population of infectives reaches low densities in the troughs. These

populations can be too small to be biologically realistic. Dynamics of the wave

are thought to depend on reinfection of susceptibles by these small populations

(Mollison 1991). To remove reinfection from low densities of infectives in the 3

stage epidemic model, a threshold density is chosen, beneath which rabid indi-

viduals are unable to infect susceptibles in the next section, and then the contact

rate is varied with slope at low densities in the third section of this chapter.
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5.2 Removal of Infection of Susceptibles by In-

fectives below a Threshold Density

The contact rate, B, becomes a function of population, so that below a threshold

density, RP , B ≈ 0, so there is no infection of susceptibles locally. Above the

threshold, B = B0, B0 being constant. Below the threshold the rabid population

decreases exponentially with per capita mortality rate D after recruitment from

the incubating population stops. These new parameters have the dimension of

population, and are scaled to S0, so b = B/S0, rP = RP/S0 and b0 = B0/S0. In

this situation, in equations (5.1.7) and (5.1.9),

b =

{
b0 r ≥ rP
0 otherwise

. (5.2.1)

As in the 2 stage epidemic model, there are two outcomes of using a threshold

formulation in the 3 stage epidemic model. At low threshold densities, as demon-

strated in figure 5.1 (a), the wake is not affected by the threshold and the rabies

epidemic persists behind the epidemic front. If the threshold is increased, as in

figure 5.1 (c), the rabies epidemic dies out in the first trough following the front,

forming a soliton wave.

The approximations developed by Gurney et al. (1998) for calculating character-

istics of a soliton wave for a 2 species predator prey model cannot be applied to

the 3 stage epidemic model as there is an extra stage in the system and the calcu-

lations depend on the assumption that the prey/susceptibles are approximately

zero behind the initial invasion front. The Shooting method is the only tool that

can be used to make predictions about the characteristics of the epidemic front.

As in previous chapters, the equations are transformed into a moving frame of

reference, moving from right to left with velocity−vR, where z ≡ x+vRt, resulting

in the set of equations

ds

dz
=

1

vR
(s(1− s)− bsr) , (5.2.2)

di

dz
=

1

vR
(bsr − (l +m)i) (5.2.3)
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and
d2r

dz2
− vR

dr

dz
+ (li− dr) = 0 , (5.2.4)

which can be decoupled into

φ =
dr

dz
and

dφ

dz
= vRφ− (li− dr) . (5.2.5)

z = 0 is positioned so that z(0) = rP , so for z < 0, s ≈ 1, i ≈ 0 and

d2r

dz2
− vR

dr

dz
− dr = 0. (5.2.6)

This has a solution r(z) = rP e
λz, with r(z) → 0 as z → −∞ provided λ > 0.

This requires that

λ =
1

2

(
vR +

√
v2
R + 4d

)
. (5.2.7)

For z > 0 equations (5.2.2), (5.2.3) and (5.2.5) are solved subject to the initial

conditions

s = 1, i = 0, r = rP and φ = λrP . (5.2.8)

Figure 5.1 (b) and (d) shows that if vR is greater than the wave front velocity, v,

then the r(z)→∞ and if vR < v then the population dips below zero, as in the

2 stage model. This means that the same bisection search algorithm can be used

to find v. Also, the closer vR is to v the further the trajectory follows the shape

of the wave front, so the peak height and wave front width can be estimated.

v is then determined by the same bisection search as described for the predator-

prey model, with equations (5.2.2), (5.2.3) and (5.2.5) solved with the initial

conditions as set in equation (5.2.8).

The Shooting method can be used to predict the velocity, peak height and width

of wave front. There is, however a discrepancy between the predicted and the

observed results. As the threshold density is increased, the accuracy of the pre-

diction of the width of the wave front decreases. From experiments in Chapter 2

it is known that this is due to the discontinuity in growth function causing inac-

curacies in the simulations. This discrepancy can be reduced by using a growth

function in which the contact rate is a function of slope at low densities, as it is

continuous in value if not in slope.
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b0 rP Predicted Values Ob served Values
v wf rm v wf rm

240 2× 10−5 2.885 0.782 0.01219 2.893 0.786 0.01220
240 9× 10−4 1.743 0.409 0.01073 1.628 0.428 0.01049
320 1× 10−4 4.055 0.630 0.02559 4.066 0.632 0.02556
320 2× 10−3 2.610 0.360 0.02318 2.461 0.376 0.02277
480 1.5× 10−4 6.069 0.556 0.04618 6.119 0.561 0.04627
480 4× 10−3 3.846 0.315 0.04221 3.791 0.354 0.04207
640 1× 10−3 6.662 0.447 0.05897 6.632 0.448 0.05886
640 6× 10−3 4.649 0.279 0.05460 4.573 0.328 0.05430

Table 5.1: Comparisons between wave properties predicted by the Shooting method
and those observed from simulations of the 3 stage epidemic model with a thresh-
old. ∆x = 0.1, the time steps vary between ∆t = 0.00001..0.001, the numerical
integration tolerance is 0.00001, d = 146, l = 26 and m = 1 in all runs. v is the
velocity of the wavefront, wf is the width of the wavefront and rm is the maximum
density of rabid individuals in the peak of the front.

5.3 Contact Rate varying with Slope at Low

Densities

Now the contact rate is varied to reduce reinfection from unbiological populations

(Cruickshank et al. 1998). As in the threshold formulation, the contact rate is

altered so that there is little infection of susceptibles in the locality of very low

densities of rabid animals. The force of infection B0 is assumed to be constant

at high densities but at low densities it rises linearly with small rabid densities.

∂S

∂T
= QS

(
1− S

K

)
−BSR, ∂I

∂T
= BSR− (L+M)I , (5.3.1)

∂R

∂T
= LI −DR + Φ

∂2R

∂X2
. (5.3.2)

where

B =

{
B0 R ≥ KB0RPL/(D(L+M))
(L+M)DR/(LKRP ) otherwise

; . (5.3.3)

If

R∗ ≥ KB0RPL/(D(L+M)) , (5.3.4)

then the steady states of the model are the same as those of the unmodified

model, as described by equation (5.1.4).
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This as scaled in the same manner as the original unmodified 3 stage epidemic

model, so that in equations (5.1.7), (5.1.8) and (5.1.9),

b =

{
b0 r ≥ b0rP l/d(l +m)
dr/rP (1−m/l) otherwise

. (5.3.5)

When r∗ is greater than the density at which the contact rate changes, ie

r∗ ≥ b0rP l/d(l +m) , (5.3.6)

the stationary states are as those of the unmodified scaled model, as described

by equation (5.1.10).

Again, the Shooting method can be used to make predictions about characteristics

of the epidemic wave front.

Assuming the wave is originally moving from right to left, the model is trans-

formed into a moving frame of reference travelling from right to left with velocity

−vR, giving equations (5.2.2), (5.2.3) and (5.2.5), with b as described by equation

(5.3.5).

z = 0 is placed to the left of the wave front, where r(z) = r0 << rP , so that for

all z < 0, s(z) ≈ 1, i ≈ 0 and

d2r

dz2
− vR

dr

dz
− dr = 0 (5.3.7)

and hence r(z) = r0e
λz in the tail of the wave front, where λ is as in the previous

section. The equations (5.2.2), (5.2.3) and (5.2.5) are then solved subject to the

initial conditions

s = 1, i = 0, r0 << rP and φ = r0λ . (5.3.8)

Figure 5.2 shows that the trajectories in this formulation show the same relation-

ship between v and vR as in threshold case, so a bisection search can be used to

find the velocity of the wavefront, the peak height and the width of the wavefront.

r0 = min(0.0001, rP/10000) is chosen as the starting population for the predator

population. determined by a bisection search, with equations (5.2.2), (5.2.3) and

(5.2.5) solved with the initial conditions as set in equation (5.3.8).
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K RP Predicted Values observed Values
V Wf Rm V Wf Rm

1.2 1.2× 10−7 20.35 23.20 0.004957 20.39 23.24 0.004958
1.2 2.28× 10−5 17.61 19.02 0.004873 17.60 19.03 0.004873
1.2 5.16× 10−4 10.44 10.87 0.004113 10.37 10.81 0.004104
4 4× 10−6 85.98 11.92 0.2426 86.14 11.95 0.2427
4 2.84× 10−4 76.94 10.5 0.2401 77.26 10.56 0.2398
4 1.396× 10−2 44.25 6.70 0.2141 43.81 6.66 0.2127

Table 5.2: Comparison between predictions made by the Shooting method and
observations from simulations of the 3 stage epidemic model with varying contact
rate, with B0 = 80, L = 13, M = 0.5, Q = 0.5, D = 73. In the simulations, ∆x =
0.05, the time step varies between ∆t = 0.000001 → 0.0001 and the numerical
integration tolerance is 0.000001.

Table 5.2 shows that the Shooting method accurately predicts the velocity and

shape of wave fronts formed by the 3 stage epidemic model with a varying contact

rate.

5.4 Discussion

In this chapter, both threshold and varying contact rate formulations have been

used to remove unbiological reinfection of susceptible individuals by tiny fractions

of rabid individuals in a 3 stage rabies epidemic model. This was achieved by

decreasing the contact rate between susceptible and rabid individuals below a

threshold or critical level. Both formulations successfully removed the reinfection.

When rP increases, the epidemic dies out and if rP → 0, v → v0.

The Shooting method can be used to predict velocity, peak height and wave front

width of a 3 stage epidemic model where there is no regrowth from low densities of

infectives. There is a lesser discrepancy between the Shooting method predictions

and the observed characteristics from the varying contact rate formulation than

for the threshold formulation, probably due to the discontinuity only being in

slope instead of in value when the contact rate varies, so creating a smaller error

in the numerical solutions than in the threshold formulation model.

Figure 5.3 shows that the threshold and varying contact rate formulations have
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almost exactly the same dynamics. The velocity at low thresholds tends to V0

and at high thresholds the wave is stopped as a soliton cannot retreat. The width

of the wave decreases with velocity. The peak height is largely unaffected by the

threshold until the wave is close to non existence.

Next, this model is to be applied to the rabies epidemic in European foxes. The

predictions that the varying contact rate formulation model makes about the

epidemic are compared with the velocities and wave forms known to exist in the

epidemic.
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Chapter 6

Overview of Reaction-Diffusion
Models of Epidemics and
Invasions

6.1 The Shooting Method

The Shooting method can be used to predict the velocity, the width of the wave

front and where applicable the peak height of invasion and epidemic waves where

the dispersing individuals cannot grow from low densities.

A single species invasion model, a predator-prey model with invasion of preda-

tors, a two stage epidemic model and a three stage epidemic model have been

considered. Each model has been altered so there is no population growth at low

densities. The characteristics of wavefronts in these models can be predicted with

the Shooting method. In the epidemic models, the threshold and varying con-

tact rate formulations have near identical wave characteristics. Using the latter

formulation increases the accuracy of the Shooting method, so this formulation

is now to be used in preference to the threshold formulation in each model.

Now the 3 stage epidemic model, with the contact rate varying at low densities,

is going to be applied to a real system.
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6.1.1 Accuracy of the Shooting Method

The completely continuous growth function with an Allee effect, used in Chapter

2, shows that when the discontinuity is removed, the velocity predictions are

accurate to an arbitrary level. Unfortunately this Allee formulation is not suitable

to be used in these models as it effects the dynamics of the populations at high

densities as well. For this reason, a formulation which is continuous in value

but not in slope has been used to reduce discrepancies between the predictions

and observations from simulations. It is known that the numerical simulations

of the time and space models miss the threshold. In z transformed models when

the simulations have a starting population which is lower than the point of the

discontinuity, it is possible that the discontinuity is also missed. This can be

checked by reducing the minimum value of ∆z until the Shooting results converge.

minimum ∆z v wf
0.5 1.8657 8.5
0.3 1.8651 8.4
0.2 1.8652 8.2
0.1 1.8653 8.3
0.01 1.8653 8.3
0.00001 1.853 8.3

Table 6.1: Shooting method predictions for the Fisher model with a discontinuous
Allee effect, with a = 1.5, an integration tolerance of 0.00001 and nP = 1× 10−4

and varying the minimum ∆z. v is the velocity of the wave front and wf is the
width of the wave front from 0.1 to 0.9.

Table 6.1 shows that the results converge at ∆z = 0.1. The minimum value of ∆z

used in all the variants of the Shooting method was 0.00001, so it is unlikely that

the Shooting method results are affected by discontinuities in growth functions.

6.2 Rabies Epidemics in 1D

The 3 stage epidemic model described in chapter 5 was formulated to represent

the rabies epidemic currently spreading through the European fox population

(Murray et al. 1986) (Murray 1987) (Murray 1989). Now the 3 stage epidemic
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model with an Allee effect is used, and the velocities predicted by the Shooting

method are compared those seen in nature.

To investigate this, a set of parameters for the spread of rabies in European foxes

was taken from Murray (1989). At first at the velocity of epidemic waves with no

Parameter Symbol Value
average birth rate a 1 yr−1

average intrinsic death rate M 0.5 yr−1

average duration of clinical disease 1/D 5 days
average incubation time 1/L 28 days
force of infection B0 80 km−2yr−1

carrying capacity K 0.2 → 4 foxes km−2

diffusion coefficient Ψ 200 km2 yr −1

threshold, V0, is considered. The velocity calculation from Murray (1989) for the

3 stage rabies epidemic was adapted to this formulation of the model to estimate

V0.

K (km−2) V (km yr−1)
1.2 22
1.5 34
2 51
3 75
4 93

The results in table 6.2 are very similar to those obtained by Murray in 1986

and 1989, so the small changes between the 3 stage epidemic model formulated

in this thesis produce no large difference from Murray et al.’s 3 stage epidemic

formulation. Table 6.2 shows that when K is at the higher end of the possible

scale the predicted velocities are higher than those observed in nature. This

suggests that reducing regrowth of unbiological populations, which would reduce

the velocity of the epidemic wave, may be a good idea. An Allee formulation

as described in previous chapter is used to effect this as this allows accurate

Shooting predictions to be made about the wave characteristics.

A series of runs carried out for the parameters in table 6.2 are shown in figure 6.1.

In chapter 5 it has been shown that for the parameters given in table 6.2, with a
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threshold of 10−6km−2, the model gives rise to a soliton solution. The predictions

of the Shooting method show that with a threshold this low the epidemic is only

a few percent slower than the non-thresholded model. Much higher thresholds

can cause significant changes in the characteristics of the epidemic.

To estimate the appropriate threshold for a rabies epidemic, it is assumed that

no rabid individual is likely to live for more than double the average lifespan, 10

days. The diffusion coefficient is difficult to estimate, but Murray (1989) states

that it is unlikely to lie out with the range, 70 → 330 km2yr−1. The root mean

square displacement of an rabid individual between becoming infected and dying

must therefore be between 2.8 and 6.1 km. Since the probability distribution of

this displacement is Gaussian, it seems reasonable to assume that any susceptible

individual that does not have at least one rabid individual within three times the

root mean square displacement in safe from infection. This implies that RP lies

within the range 1× 10−3 km−2 and 4.5× 10−3 km−2.

In the calculation of the contact rate, B0, it is assumed that below a critical value

of the carrying capacity, KP , the epidemic wave cannot form. There is a wide

range of observed values for KP , from 0.25 → 1km−2. B0 in Table 6.2 is chosen

so that the front of the epidemic wave does not form at KP = 1. As this value is

at the top of the range for the critical carrying capacity, the centre of the range,

KP = 0.63, is chosen as the best estimate for this study. The force of infection,

B0 is calculated so that the epidemic wave cannot form below KP .

As the smallest value of Ψ differs from the highest by a factor of 5, Ψ =

150km2yr−1 is chosen as the best estimate of Ψ as it differs from both ends

of the range by a factor of ≈ 2.2.

The top two frames of figure 6.2 show that there is a very wide range of velocities

and peak heights associated with the uncertainty of the diffusion coefficient. The

velocities predicted are too high at large values of K. Because of the adjustment

of B0 to KP , the predicted velocities differ little from the original predictions of

Murray.

The wide range in velocity associated with changes in the carrying capacity are
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not observed in nature. To combat this, van den Bosch et al. (1990) suggested

that as the environment is always full of fox territories, that the diffusion coeffi-

cient should vary inversely with the carrying capacity, so that

Ψ =
Ψ0

K
(6.2.1)

where Ψ0 is arbitrarily anchored where K = 2 in the previous calculations.

The bottom 2 frames of figure 6.2 show that if the diffusion coefficient varies

inversely with K, the velocity does not vary with K. For the best estimate of

Ψ, the velocity of the epidemic remains within the range of velocities observed

in nature. The graph looks similar to that of van den Bosch et al.’s. The largest

error is that associated with the uncertainty of the diffusion coefficient.

This suggests that when the 3 stage epidemic model is applied to a rabies epi-

demic in European foxes, the main features of the epidemic are robust to the

removal of reinfection from low densities. The features such as the wake of the

epidemic which are not observed in nature are efficiently removed by reducing

the infectivity of low densities of infectives.

This representation of a rabies epidemic predicts that behind the initial inva-

sion the epidemic dies out. The epidemic has been shown to persist in nature.

The next step in this investigation is to find a mechanism which would allow

persistence of the epidemic behind the wave front.
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Figure 6.1: Properties of epidemic fronts as a function of threshold RP . In the 3
stage epidemic model with an Allee effect, with parameters from table 6.2 appro-
priate to rabies in the European fox population. Curves derived from the bisection
search method for the given values of K. Points show direct simulation results.
(a) front velocity, (b) peak rabid density and (c) front width defined as between
5% and 95% rm.
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Figure 6.2: Properties of the epidemic fronts of the 3 stage epidemic model, as
a function of carrying capacity, K for rabies in European foxes. Solid curves
show best estimates, dotted curves are from extreme values of the diffusion co-
efficient. Upper frames have constant diffusion coefficient. Ψ = 150km2yr−1,
RP = 2.1 × 10−3km−2, B0 = 221km2yr−1. Lower frames have diffusion coeffi-
cient proportional to K, with Ψ0 = 300km2yr−1, RP = 1.05 × 10−3km−2 and
B0 = 164km2yr−1. 80



Part II
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Chapter 7

Single Species Discrete Models

7.1 Motivation

Part I of this thesis showed that in these invasion and epidemic models with

either an Allee effect or a threshold term in the growth function of the dispersing

component, the invasion or epidemic does not persist behind the front of the

wave. As this is known not to be the case in many epidemics and invasions, other

mechanisms which are not already included in these models must be at work.

Simulations of the continuous time and space models in 1 spatial dimension take

many hours and in some cases, days, to run. The investigation of some of these

mechanisms requires the use of two dimensional spatial arenas (Hassell et al.

1994). For reaction-diffusion models these two dimensional simulations may take

days or weeks to run until completion. Testing potential mechanisms of persis-

tence behind the invasion or epidemic front may require many simulations. A

faster and more computationally efficient method for testing these mechanisms

must be used.

Simulations of discrete time and space models are less computationally intensive

and take a shorter time to run, as update rules are used to represent the model

instead of differential equations. Using update rules means that numerical inte-

gration methods are not used in simulations. Using discrete models instead of

continuous models would therefore allow a faster and more efficient investigation
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of these mechanisms. In order to carry this out, discrete time and space analogues

of the reaction-diffusion models described in chapters 2 to 5 must be formulated.

It is important that these discrete models do not show behaviour different to

that of the reaction diffusion models and that reasonably large time and space

steps can be taken. These models should also be predictable, for instance by the

Shooting method.

From now on in this thesis, continuous time and space models are termed con-

tinuous models and discrete time and space models are termed discrete models.

This chapter looks at dispersal in a discrete time and space framework. van den

Bosch et al. (1990) devised a calculation of the velocity of discrete time con-

tinuous space models, generalised so that advection could be taken into account

in the calculation. Like the Fisher (1937) - Kolmogorov et al. (1937) velocity

calculation, the exponential shape of the toe of the wave is instrumental to the

calculation and it therefore cannot be used to calculate the velocity of a wave

which has no regrowth from low density populations. A method of predicting the

characteristics of waves in discrete time and space is developed by considering

a very simple model of invasion (Kot et al. 1996). Then a discrete time and

space version of the Fisher model with an Allee effect is formulated and the best

method of predicting the velocity and shape of the Fisher wave is investigated.

7.2 Distribution Kernel

A discrete time and space dispersal kernel is sought. In a discrete time and space

arena in one dimension,

NX,T = Number of individuals in location X → X + ∆X at time T. (7.2.1)

A group of individuals, N0, is released from a single location, X = 0, at time

T = 0, and at time T + ∆T each spatial segment is searched. A proportion ρ of

the survivors from the initial population is the total proportion recaptured.

If ρ is independent of location, the number of individuals expected to be recovered
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from segment X is related to the expected number of survivors from the initial

population (ξN0) by

CX = ρξN0. (7.2.2)

If all spatial segments are sampled, then the number of recaptures will be a

fraction ρ of the survivors from the original release, that is

∑
all X

CX = ρξN0 . (7.2.3)

The probability of dispersing into segment of distance J from the release site

after a single time increment is equal to the proportion of recaptures which occur

in the segment, so

JJ =
CJ∑
CJ

. (7.2.4)

Dispersal kernels, such as described by J , share a number of properties. Each

survivor must land at exactly one destination. This implies that all valid dispersal

kernels must satisfy ∑
all J

JJ = 1. (7.2.5)

For the dispersal kernel being considered here, the dispersal probability is as-

sumed to fall linearly with the magnitude of displacement as in figure 7.2. This

is written as

JJ = φ (1− α|J |)+ , (7.2.6)

where + ≡ max(X, 0). Jm ≡ trunc(1/α) is used to represent the number of

space increments either side of the origin over which the dispersal distribution is

non-zero, so ∑
all J

JJ = θ [Jm + (1− αJm)(Jm + 1)] . (7.2.7)

This is consistent with equation (7.2.5) if and only if θ is chosen appropriately.

As this dispersal kernel only disperses the population over a finite area it approx-

imates the diffusion term in reaction-diffusion models.

The mean displacement per time step and the mean square displacement per time

step of this dispersal kernel are discussed in full by Gurney and Nisbet (1998).
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This kernel is symmetrical about the origin, so the mean displacement must be

zero.

The above dispersal kernel is dimensional. The continuous time and space models

were scaled to increase the speed of computations, so it is only sensible to repeat

the scaling process to reduce the dimensions of the dispersal kernel. The non-

dimensional version is of the form

J
X0j = θ(1− αX0|j|)+ . (7.2.8)

To be able to compare the scaled continuous and discrete models, α′ ≡ αX0 must

be chosen to ensure that the spatial variance increases at the same rate in both

models. The dimensional version of this requirement is, from Gurney and Nisbet

(1998),

2Ψ =
θ

∆T

∑
all J

|J |2(1− α|J |)+ =
1

∆T

∑ |J |2(1− α|J |)+∑
(1− α|J |)+

. (7.2.9)

Working in 1 dimension means that j ≡ m∆x. Equation (7.2.9) is then restated
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as

2Ψ
T0∆t

X2
0 ∆x2

=

∑
m2(1− αX0|m|∆x)+∑
(1− αX0|m|∆x)+

. (7.2.10)

If X0 =
√

ΨT0 and α′ ≡ αX0∆x then this becomes

2∆t

∆x2
=

∑
m2(1− α′|m|)+∑
(1− α′|m|)+

(7.2.11)

which forms a recipe for working out a value of α′ appropriate for a given com-

bination of normalised time and space steps.

For further information on this dispersal kernel, refer to Gurney and Nisbet

(1998).

7.3 Piecewise Continuous Approximation to the

Fisher Model with an Allee Effect

Kot et al. (1996) developed a method for predicting the spread of a wave with

a simple growth function and a threshold in a discrete time continuous space

simulation. The organisms have a growth phase, after which they disperse. The

growth function used is a piecewise constant approximation to the Fisher model

with an Allee effect (see figure 7.1),where if a population’s density is above a

threshold level the population grows instantaneously to carrying capacity, K, and

if the population’s density is below the threshold density, NP , the population

instantaneously becomes extinct. A Laplace distribution kernel was used for

dispersal of the organisms in Kot et al. (1996).

The method developed in the paper is adapted to a discrete time and continuous

space system with the piecewise constant growth function and a tent dispersal

kernel as described by equation (7.2.6), so

NX,T+∆T =
∫ XP,T +1/α

XP,T−1/α
KJ(X − Y )dY . (7.3.1)

The wave front lies where N(X,T ) = NP , and this position is denoted as X =

XP (T ). If 1/α is the maximum dispersal distance, then after the next time step,
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Figure 7.1: (a) The discrete time Allee Growth function as described by equations
(7.4.9) → (7.4.13). The bold line is the function with regards to population den-
sity, the diagonal line satisfies NT+∆T = NT , and the dotted line is the piecewise
constant approximation to the Allee growth function. (b) shows the situation at
the front of an invasion wave with the piecewise constant growth function. The
bold line shows the application of the tent distribution kernel to the wave front.

the position of the front, XP (T + ∆T ) must lie within the region

XP (T ) < XP (T + ∆T ) < XP (T ) +
1

α
. (7.3.2)
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As XP (T + ∆T ) = NP ,

NP =
∫ XP (T )

XP (T+∆T )−1/α
KJ(X − Y )dY , (7.3.3)

which after some algebra can be written as

NP =
1

2
K

(
1− XP (T + ∆T )−XP (T )

1/α

)2

. (7.3.4)

Rearrangement of this gives the difference in extent of the invasion wave between

times T and T + ∆T ,

XP (T + ∆T )−XP (T ) = 1/α
(

1−
√

2NP/K
)
. (7.3.5)

This predicts the new extent of the invasion at the next time step.

Jm NP predicted spread observed spread
2 0.1 1 1
3 0.1 2 2
4 0.1 3 3
10 0.1 8 8
10 0.05 8 8
10 0.01 9 9
10 0.005 9 9

Table 7.1: Comparison between observed and predicted spread of the piecewise
continuous approximation of the Fisher model with an Allee effect over one time
increment. ∆T = 1, ∆X = 1 and K = 5.

Table 7.3 shows that the method devised to predict the rate of spread of the

discrete time and space piecewise-continuous approximation of the Fisher model

with an Allee effect with the tent dispersal kernel in this section is accurate.

Trying to predict the shape of this invasion wave is pointless as the shape is

known. Now this method of prediction is applied to the discrete time and space

formulation of the Fisher model with an Allee effect.
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7.4 Invasions of Logistically Growing Popula-

tions

7.4.1 The Discrete Logistic Model - Dynamics in Absence
of Dispersal

The well known, analytical solution of the logistic model, is written as

NT+∆T =
KNT

NT + Γ(K −NT )
, (7.4.1)

where

Γ = e−R∆T (7.4.2)

where the parameters are equivalent to those described for in the continuous time

model described in chapter 2.

As in the continuous model, there are two steady states, N = 0 which is unstable,

and N = K which is locally stable.

An Allee effect is used to remove the regrowth of low density populations. As in

the Fisher model with an Allee growth function, described in subsection 2.2.4,

the function is continuous in value but not in slope. So again there is a linearly

dependent per capita death rate, D, where

D = D0 +D1N , (7.4.3)

and a fecundity rate B which is a constant, B0, at high densities but increases

linearly with slope B1 at low densities. With this modification the model becomes

NT+∆T =
K ′NT

NT + Γ(K ′ −NT )
, (7.4.4)

where

Γ = e−R
′∆T , (7.4.5)

K ′ =

{
−(B1 −D1)/D0 NT < Nc

(B0 −D0)/D1 otherwise
(7.4.6)

and

R′ =

{
−D0 NT < Nc

B0 −D0 otherwise
(7.4.7)
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where

Nc =
B0

B1

. (7.4.8)

Using the same scaling process as in the continuous model, this can be scaled to

nt+∆t =
ntk

′

nt + γ(k′ − nt)
, (7.4.9)

where

γ = e−r
′∆t , (7.4.10)

k′ =

{
nP nt < nc
1 otherwise

(7.4.11)

and

r′ =

{
−a nt < nc
1 otherwise

(7.4.12)

where, as in chapter 2,

nc =
1 + a

1 + a/nP
. (7.4.13)

7.4.2 The Discrete Fisher Model

Now the model is made explicitly spatial and a scaled dispersal kernel is added.

The population has a net per capita growth factor, gx,t, which is the sum of the

survival probability and the average offspring per individual for the population,

nx,t, so from equation (7.4.9)

gx,t =
k′

nx,t + γ(k′ − nx,t)
, (7.4.14)

with γ and k′ as defined by equations (7.4.10) and (7.4.11). Combining this

growth term with the dispersal term, given by equation (7.2.8), but scaled by the

same factor as the continuous model, gives

nx,t+∆t =
∑

all j

Jjgx−j ,tnx−j ,t . (7.4.15)
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7.4.3 Prediction of Wave Front Properties using Method
Developed for Piecewise-Constant Approximation

The method for making predictions about a discrete time and space wavefront

as described in section 7.3 is used to predict the velocity of the discrete time and

space version of the Fisher model with an Allee effect. The wave shape of the

Fisher model is different to that in the piecewise constant approximation, but the

wavefront can be manipulated into a similar shape by careful choice of parameter

values. The wave front is steepened by increasing the threshold, by increasing

the per capita growth rate and by increasing the size of the space step. A number

of choices of parameter value are considered.

∆x nP observed v predicted v
0.25 0.01 1.5761 5
0.25 0.1 1.0599 3
1 0.01 1.5789 2
1 0.1 1.0652 0
2 0.01 1.5754 1
2 0.1 0.9214 1
4 0.01 1.6104 1
4 0.1 1.1150 1

Table 7.2: Comparisons between wave properties predicted for the piecewise con-
tinuous approximation of the model and those observed from discrete time and
space simulations of the Fisher model with an Allee effect, with a = 1.5 and
∆t = 0.25.

Table 7.2 suggests that the method devised for the piecewise constant approxi-

mation of the Fisher model with an Allee effect works better for simulations with

large ∆x and large nP , because within this parameter range the wavefront is sim-

ilar in shape to the piecewise constant approximation. This method is far from

perfect though. The calculation for the prediction results in 2 roots; if both are

real and positive then an arbitrary choice has to be made as to which is correct.

The piecewise continuous approximation only spreads in integers, so again the

calculation is erroneous when applied to the Fisher model. As the waveform this

method was formulated to make predictions about has a very set wave shape,

this method cannot be used to make predictions about the shape of the wave
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front. This method only works on specially chosen waves, so this method cannot

be used generally. There is no obvious way of extending its use. Another method

for making predictions about the velocity and shape of the wave front must be

sought.

7.4.4 Prediction of Wave Properties using the Shooting
Method

The Shooting method was devised for a continuous model, so it will only work

for the discrete model if it is a good approximation to a continuous model. In

chapter 2 it was shown that there will be an error in the simulations as time

steps will step over the point were a population transcends from being below nc

to above nc. A series of simulations were done to investigate the relationship

between the discrete model, the time and space steps used, and the continuous

model.

∆x ∆t v wf
0.25 0.25 1.5761 7.708
0.25 1 1.4873 7.190
0.25 2 1.4996 7.719

1 0.25 1.5789 7.214
1 1 1.4771 8.246
1 2 1.5000 7.721
2 0.25 1.5754 7.098
2 1 1.4987 7.614
2 2 1.4707 7.574
4 0.25 1.6104 7.420
4 1 1.5385 8.052
4 2 1.6923 9.048

Table 7.3: The effects of increasing space and time steps on the velocity and shape
of the wave front of the discrete Fisher model with an Allee Effect with a = 1.5
and nP = 0.01. v is the wave front velocity and wf is the width of the wavefront
measured from n = 0.1 to n = 0.9. The Shooting method predicts that v = 1.5708
and wf = 7.071.

In table 7.3, for up to around ∆t = 0.5 and ∆x = 1, the observations from

the simulations of the discrete model are within 10% of the predictions from the
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Shooting method. Now it is investigated whether this relationship holds up for a

range of parameter values.
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Figure 7.2: Comparisons between calculated wave properties and those observed
from simulations of the discrete time and space Fisher model with an Allee effect
in one dimension, with ∆x = 1 and ∆t = 0.5. v is the velocity of the wavefront,
and wf is the width of the wave front, measured from n = 0.1 to n− 0.9.

Figure 7.2 shows that for a range of parameter values observed velocities and

wave front widths of the discrete time and space model are within 10% of the

predictions from the Shooting method. This suggests that the discrete model is a
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good approximation of the continuous model and that the Shooting method can

be used to make predictions about invasion waves generated by the model.

7.5 Discussion

A discrete time and space model is needed which is a good approximation of the

continuous time and space Fisher model with an Allee effect which is continuous

in value but not in slope. There must be a way in which to make predictions

about this model.

A distribution kernel, known to approximate diffusion, was chosen. This was

based on capture-recapture experiments. Dispersal was assumed to fall linearly

with distance from the starting location. This dispersal kernel was termed the

Tent dispersal kernel.

In order to derive a method to predict the shape and velocity of an invasion wave

in the discrete Fisher model, a piecewise constant approximation to the Fisher

model was considered. A method was adapted from Kot et al. (1996) which

predicts the velocity of this system. Although the method worked well for the

model it was devised for, when applied to the Fisher model with an Allee effect,

it only worked for specific cases, when the Fisher wave was forced into the same

shape as the approximation. Only the velocity could be predicted. There were

other complications associated with the calculation of the predictions. So this

method was rejected as a way to make predictions about the Fisher wave with

an Allee effect.

The Shooting method was then used to make predictions about the discrete time

and space model. It worked for a range of values of space and time steps and for

a range of a and nP . This suggests that within this range of time and space steps

the model is a good approximation of the continuous time model.

This exercise was the first step in looking for persistence mechanisms for more

complex models where the wave becomes a soliton due to the lack of regrowth

from unbiologically small populations. Now discrete versions of the predator prey
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model and the 2 and 3 stage rabies epidemic models should be formulated. Once

formulated, methods for predicting the shape and velocity of the wave fronts of

these models should be sought.
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Chapter 8

Formulation of Discrete
Multi-Component Models

Now discrete versions of the predator-prey invasion model and the 2 and 3 stage

rabies epidemic models are formulated. As with the discrete Fisher model in

Chapter 7, these models have to show no behaviour that is qualitatively differ-

ent from their continuous counterparts at quite large time and space steps, so

simulations can be run in as little time as possible. The models also have to be

predictable.

In this chapter the formulation of the discrete 2 stage rabies epidemic model is

gone through carefully, then the discrete formulations of the 3 stage epidemic

model and the predator prey invasion model are considered briefly as these for-

mulations have already been partially described by Gurney et al. (1998) and

Gurney and Nisbet (1998). As the Shooting method was so successful at predict-

ing the wave characteristics of the discrete Fisher wave, the Shooting method is

now applied to the multi-component models.

8.1 Discrete Time 2 Stage Epidemic Model

It is assumed that the infective population, I, changes slowly compared to the sus-

ceptible population. Hence, a solution of equations (4.1.1) and (4.1.2) is sought

which is valid over time scales where the infective population is effectively con-
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stant. This assumption on its own is not enough to permit a closed form solution

for the continuous time equation, but extending the assumption so that BI is

constant over the time scale of interest is a better aid to finding a solution. The

equation to be solved is

dS

dT
= RS

(
1− S

K

)
−BIS. (8.1.1)

By defining

R′ ≡ R−BI and K ′ ≡ R′K/R (8.1.2)

this can be recast as
dS

dT
= R′S

(
1− S

K ′

)
, (8.1.3)

to which the solution is

S(T ) =
K ′S(0)

S(0) + (K ′ − S(0))e−R′T
. (8.1.4)

K ′ and R′ are either strictly positive or strictly negative but both must have

the same sign. They can both simultaneously be zero. In this case the equation

becomes the limit of the system as R′ → 0,

lim
R′→0

S(T ) =
KS(0)

K +RS(0)T
(8.1.5)

which agrees with solving equation (4.1.1) with R = BI(T ). Also, as the time

step is increased,

lim
T→∞

S(T ) =

{
K ′ if K ′ > 0 and R′ > 0
0 if K ′ ≤ 0 and R′ ≤ 0

. (8.1.6)

The cumulative infection of susceptibles by infectives over a time increment has

to be determined. If U(T ) denotes cumulative infection by time T , then again

working on the approximation that BI is constant over the time scale of interest,

U(T ) = BI(T )
∫ T

0
S(x)dx. (8.1.7)

If the case where R′ = 0 is considered,

U(T ) = BI(T )
∫ T

0

KS(0)

K +RS(0)x
dx =

BI(T )K

R
ln

[
K +RS(0)T

K

]
, (8.1.8)
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which can be rewritten as

U(T ) =
BI(T )K

R
ln

[
S(0)

S(T )

]
. (8.1.9)

In the general case where R′ 6= 0,

U(T ) = BI(T )
∫ T

0

K ′S(0)

S(0) + (K ′ − S(0))e−R′T
dx , (8.1.10)

which is

U(T ) =
BI(T )K ′

R′

[
R′T − ln

(
K ′

S(0) + (K ′ − S(0))e−R′T

)]
. (8.1.11)

As K ′/R′ = K/R, this can be rewritten as

U(T ) =
BI(T )K

R

[
R′T + ln

(
S(0)

S(T )

)]
. (8.1.12)

These short term estimates of S(T) and U(T) allow a discrete time model to be

written. It is assumed that a fraction ξI of the infectives survive each increment.

Therefore

ST+∆T =
K ′TST

ST + (K ′T − ST )e−R′∆T
(8.1.13)

and

IT+∆T = (ξI + UT )IT , (8.1.14)

where

UT ≡
BK

R

[
(R−BIT )∆T + ln

(
ST

ST+∆T

)]
, (8.1.15)

R′T ≡ R−BIT and K ′T ≡ KR′T/R. (8.1.16)

The steady states of the model are (0, 0), (K, 0) and (S∗, I∗) where

S∗ =
1− ξI
B∆T

and I∗ =
R

B

(
1 +

ξI − 1

BK∆T

)
. (8.1.17)

For the existence of the interior steady states (for I∗ to be positive),

K >
1− ξI
B∆T

. (8.1.18)

If this inequality is not fulfilled the system will eventually reach the (K, 0) steady

state.
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If

D′ ≡ 1− ξI
∆T

, (8.1.19)

and the time increment is small enough for D′ ≈ D in the continuous time model,

the steady states are essentially identical to those of the continuous time 2 stage

epidemic model.

The infective growth function is then modified so that the contact rate varies with

density at low densities. As in the continuous time model described in section

3.4, the force of infection, B, is a constant, B0 at high densities of infectives, but

at low densities B varies linearly with infective density. In equations (8.1.13),

(8.1.14) and (8.1.13),

B =

{
B0 IT ≥ IP (B0K/D)
(D/K)(IT/IP ) otherwise

. (8.1.20)

Equations (8.1.13) and (8.1.14) can then be scaled. K is chosen as the natural

scale of population and M is chosen as the natural scale of time. The choice of

scale of time in this model, T0 = M , is different to that of that in the continuous

model, R. The mortality rate of rabid animals is very high. The mortality rate

is therefore chosen as the scale of time in this formulation since the length of

possible time steps is restricted by a high mortality rate. This scaling process

produces the new dimensionless variables, s = S/S0, i = I/S0 and t = T/T0 and

the parameter groups iP = IP/S0, r = R/T0 and b0 = B0K/T0. After scaling,

the model becomes

st+∆t =
k′tst

st + (k′t − st)e−r′∆t
(8.1.21)

and

it+∆t = (ξi + ut)it , (8.1.22)

where

ut ≡
b

r

[
(r − bit)∆t+ ln

(
st

st+∆t

)]
, (8.1.23)

r′t ≡ r − bit and k′t ≡ r′t/r , (8.1.24)

and

b =

{
b0 it ≥ (b0iP )
it/iP otherwise

. (8.1.25)
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This model has the interior steady state

s∗ =
1− ξi
b∆t

and i∗ =
r

b

(
1 +

ξi − 1

b∆t

)
. (8.1.26)

The scaled dispersal kernel, as described in the previous chapter, is then applied to

the infective individuals, so if the growth of the infective population is described

by

gx,t = ξi + ux,t , (8.1.27)

where

ξi = 1−∆t (8.1.28)

and ux,t is described in equation (8.1.23), with mobile infectives and immobile

susceptibles. The update equation for the susceptible population becomes

sx,t+∆t =
k′x,tsx,t

sx,t + (k′x,t − sx,t)e−r′∆t
(8.1.29)

and the equation for the infective population is

ix,t+∆t =
∑

all j
Jjgx−d,tix−d,t . (8.1.30)

In chapter 7 it was shown that the Shooting method developed for a continuous

Fisher model with an Allee effect could successfully be used to make predictions

about the velocity and shape of the wave front of a discrete version of the model.

Predictions made by the Shooting method about the continuous formulation of

the model are compared with observations made from simulations of wave fronts

in the discrete model.

Table 8.1 shows that up to around ∆x = 1 and ∆t = 0.5, the observed wave

front velocity and shape are within 10% of the predictions made by the Shooting

method. ∆t cannot be larger than 1 as shown by equation (8.1.28).

The relationship between the Shooting method predictions and observations from

the discrete model is tested for a wide range of parameter values. Figure 8.1

shows that with ∆x = 1 and ∆t = 0.5, for a range of parameter values the

Shooting method is still a good method of making predictions about the model.
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∆x ∆t v wf im
0.25 0.125 1.9532 2.625 0.4839
0.25 0.5 1.6784 3.226 0.4686
0.25 1 1.4650 3.774 0.4451
0.5 0.125 1.9440 2.608 0.4830
0.5 0.5 1.6830 3.200 0.4660
0.5 1 1.4678 3.771 0.4442
1 0.125 1.8900 2.614 0.4815
1 0.5 1.6497 3.081 0.4593
1 1 1.4509 3.759 0.4383
2 0.125 1.6452 3.600 0.4334
2 0.5 1.5497 3.898 0.4744
2 1 1.5417 3.712 0.4264

Table 8.1: Effects of increasing space and time steps on the wave front of the
discrete 2 stage epidemic model with r = 1, b = 4 and iP = 0.04. v is the wave
front velocity , im is the maximum density of infectives in the peak and wf is
the width of the wavefront measured from 5% to 95% im. The Shooting method
predicts that v = 2.0939, im = 0.4884 and wf = 2.666.

This means that the Shooting method can be used to make predictions about the

discrete 2 stage epidemic model. As the Shooting method was formulated to make

predictions about the continuous model, it also suggests that with small enough

time and space steps this model is a good approximation of the continuous time

model.

8.2 Predator-Prey Model

The discrete predator-prey model with no Allee effect or threshold is identical

to the predator-prey model described by Gurney et al. (1998). In this model is

assumed that a fraction ξC of the predators survive each time increment, and that

consuming UT prey items during an increment produces EUT surviving offspring.

Using the same arguments as in the 2 stage epidemic model for estimating the

total uptake of prey by predators within an increment and for prey growth, the

discrete time predator-prey model can be written as

FT+∆T =
FTK

′

FT + (K ′ − FT )Γ
(8.2.1)
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Figure 8.1: Comparisons between wave properties predicted by the Shooting
method and those observed from simulations of the discrete 2 stage epidemic
model. ∆x = 05 , ∆t = 0.125 and r = 0.006. v is the velocity of the wave-
front, im is the maximum density of predators at the peak of the wavefront and
wf is the width of the wave front, measured from 5% to 95% of im.

and

CT+∆T = (ξC + UT )CT , (8.2.2)

where

UT =
ECTKµ

R

[
R′∆T + ln

(
FT

FT+∆T

)]
, (8.2.3)
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µ ≡ Um
FT +H

, R′ ≡ R− µCT , K ′ = KR′/R (8.2.4)

and

Γ ≡ exp(−R′∆T ) (8.2.5)

The efficiency for the conversion of ingested prey into predators, E, is a constant,

E0 at high predator densities and at low densities it varies linearly with predator

densities, so

E =

{
E0 CT ≥ CP (E0Um/D)
DCT/(UmCP ) otherwise

. (8.2.6)

The model is scaled as in the continuous case in Chapter 4. The spatial scale is

chosen as X0 ≡
√

Ψ/R, as in the continuous model. The scaled dispersal kernel

(equation(7.2.8)) is then applied to the predator population and the prey are

immobile.

fx,t+∆t =
k′x,tfx,t

fx,t + (k′x,t − fx,t)e−r
′
x,t∆t

(8.2.7)

and

gx,t+∆t = ξc + eux,t , (8.2.8)

cx,t+∆t =
∑

all j
Jjcx−j ,tgx−j ,t (8.2.9)

where

ux,t ≡ νk

[
r′x,t∆t+ ln

(
fx,t

fx,t+∆t

)]
(8.2.10)

and

νx,t ≡
um

fx,t + 1
, r′x,t ≡ 1 + νx,t and k′x,t ≡ kr′x,t. (8.2.11)

e =

{
1 cx,t ≥ cPum/d
dcx,t/(umcP ) othe rwise

. (8.2.12)

When r′ = 0 the limit of the expression (8.2.7) must be used, namely

fx,t+∆t =
kfx,t

k + fx,t∆t
. (8.2.13)

The model has exterior steady states at (0, 0) and (k, 0), and interior steady

states at

f ∗ =
d′

um − d′
and c∗ =

R(f ∗ + 1)

um

(
1− f ∗

k

)
, (8.2.14)
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where

d′ ≡ 1− ξc
∆t

. (8.2.15)

As in the 2 stage epidemic model, if the time increment is small enough that

d′ ' d in the continuous model, these steady states are essentially equal to those

in the continuous time model.

The interior steady state can only exist if

k >
d′

um − d′
. (8.2.16)

The stability analysis carried out by Gurney et al. (1998) shows that the be-

haviour of the discrete time model is essentially identical to that of the continuous

time model for small time increments. This means that the discrete time model

can be used as an approximation to the continuous time model.

∆x ∆t v wf cm
0.25 0.25 0.7015 11.23 44.28
0.25 1 0.6809 12.00 46.17
0.25 2 0.6570 12.94 48.61

1 0.25 0.7010 11.16 44.12
1 1 0.2814 12.00 46.10
1 2 0.6565 12.92 48.57
2 0.25 0.7082 11.80 45.26
2 1 0.6790 11.82 45.73
2 2 0.6586 14.46 48.77
4 0.25 0.7327 12.26 43.52
4 1 0.7040 13.46 47.65
4 2 0.6696 13.87 48.96

Table 8.2: Effects of increasing space and time steps on the wave front of the
discrete predator-prey model with an Allee effect with k = 20, um = 0.2, δ = 0.05
and cP = 0.01. v is the wave front velocity and wf is the width of the wavefront
measured from 5% to 95% cm. The Shooting method predicts that v = 0.7089,
cm = 43.74 and wf = 10.07.

Table 8.2 shows that with up to ∆x = 1 and ∆t = 0.5 the observed wave shape

and velocity is within 10% of the values predicted by the Shooting method. With

space and time steps larger than this waves that should be solitons can grow at

low densities and a wave train can form. Again, a range of parameter values are
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considered to see if this good comparison between the discrete invasion waves and

the Shooting method holds up generally. Figure 8.2 shows that this is the case.

This means that the Shooting method can be used to make predictions about the

discrete predator-prey model with an Allee effect. The Shooting method correctly

predicts the wave characteristics of both the continuous model and the discrete

model at small values of ∆x. This suggests that the wave characteristics of the

2 models are similar.

8.3 Discrete 3 Stage Epidemic Model

The formulation of the discrete time 3 stage epidemic model very similar to that

of the 2 stage epidemic model. The unmodified discrete model has already been

described in Gurney and Nisbet (1998) but has been repeated here for fullness of

explanation. ST denotes the susceptible population, IT the incubating population

and R the infective population at time T .

ST+∆T =
STK

′

ST + (K ′ − ST )Γ
, (8.3.1)

IT+∆T = UT + ξT ξIIT (8.3.2)

and

RT+∆T = ξRRT + (1− ξT )ξIIT , (8.3.3)

where

Γ ≡ exp(−Q′∆T ) , Q′ ≡ Q− µ , K ′ = KQ′/Q , µ ≡ BRT , (8.3.4)

the cumulative infection of susceptibles, UT , is

UT =
Kµ

Q

[
Q′∆T + ln

(
ST

ST+∆T

)]
, (8.3.5)

and the function for the contact rate is

B =

{
B0 RT ≥ KB0RPL/(D(L+M))
(L+M)DRT/(LKRP ) otherwise

. (8.3.6)

Q is the net growth rate of the susceptible population, ξT is the proportion of

the incubating population which do not become rabid during a time increment,
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Figure 8.2: Comparisons between wave properties predicted by the Shooting
method and those observed from simulations of the discrete predator-prey model.
∆x = 1, ∆t = 0.5, um = 0.2 and d = 0.05. v is the velocity of the wavefront, cm
is the maximum density of predators at the peak of the wavefront and wf is the
width of the wave front, measured from 5% to 95% to cm.

ξI is the proportion of the incubating population which survives an increment in

time and ξR is the proportion of the infective population which survives a time

increment. Other parameters are the same as those in the continuous time model.

The model is then scaled, with the scale of time chosen as T0 ≡ D as opposed to Q
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in the continuous model. This is because of the limitations a large mortality rate

puts on the possible range of time steps. The populations are scaled to K, the

carrying capacity. The distribution kernel is then scaled by X0 ≡
√

Ψ/D to give

equation (7.2.8), and applied to the infective rabid individuals. The susceptible

and incubating individuals are treated as immobile. The model then becomes

sx,t+∆t =
k′x,tsx,t

sx,t + (k′x,t − sx,t)e−q′∆t
(8.3.7)

where

µx,t ≡ brx,t, q′x,t ≡ q − µx,t and k′x,t ≡ kq′x,t/r . (8.3.8)

The proportion of infected individuals who survive a time increment is ξi, and

the proportion of infected individuals that do not go on to become infectives is ξe.

Hence if the number of susceptible individuals which are infected within a time

increment is ux,t, using arguments set out in the section about 2 stage epidemic

models, the growth of the infected population is given by

ix,t+∆t = ux,t + ξeξiix,t, (8.3.9)

where

ux,t ≡
µx,tk

q

[
(q − µx,t)∆t+ ln

(
sx,t

sx,t+∆t

)]
. (8.3.10)

The proportion of infective individuals which survive a time increment is ξr, so

the update rule for the change in density of the infective population is

gx,t+∆t = ξrrx,t + (1− ξe)ξiix,t (8.3.11)

rx,t+∆t =
∑

all j

Jjgx−j ,trx−j ,t (8.3.12)

where

b =

{
b0 rx,t ≥ b0rPσ/d(l +m)
drx,t/rP (1−m/l) otherwise

. (8.3.13)

If large enough,this model had the exterior steady states (0, 0, 0) and (1, 0, 0) and

the interior steady states

s∗ =
1− ξr − ξeξi + ξeξiξr

b∆tξi(ξe − 1)
, i∗ =

ξr − 1

ξi(ξe)
r∗ and r∗ =

q

b
(1− s∗) . (8.3.14)
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If

ξr ≡ 1−∆t, ξi ≡ 1−m∆t and ξe ≡ 1− l

ξi
∆t, (8.3.15)

then these interior steady states are almost equivalent to those of the discrete

time model for small ∆t if rescaled.

The interior steady states can only exist if

1 >
1− ξr − ξeξe + ξeξiξr

b∆tξi(ξe − 1)
. (8.3.16)

∆x ∆t v wf rm
0.25 0.125 0.7059 7.265 0.06067
0.25 0.5 0.6587 7.075 0.06044
0.25 1 0.5988 6.769 0.05989

1 0.125 0.7121 7.358 0.06074
1 0.5 0.6618 7.073 0.06035
1 1 0.6021 6.754 0.05967
2 0.125 0.7509 7.806 0.06067
2 0.5 0.7494 7.452 0.06061
2 1 0.5989 6.714 0.05950
4 0.125 0.8537 8.44 0.05810
4 0.5 0.7891 8.9 0.06194
4 1 0.7099 7.688 0.05443

Table 8.3: Effects of increasing space and time steps on the wave front of the
discrete 3 stage epidemic model with b0 = 4.3836, q = 0.00684932, m = 0.684932,
l = 0.17808 and rP = 10−6. v is the wave front velocity, rm is the maximum
density of rabid individuals in the peak and wf is the width of the wavefront
measured from 5% to 95% rm. The Shooting method predicts that v = 0.7115,
rm = 0.06066 and wf = 7.202.

Table 8.3 shows that as long as ∆x ≤ 1 and ∆t ≤ 0.5 observations of the velocity

and shape of the epidemic wave of the 3 stage epidemic model are within 10%

of the predictions made by the Shooting method. Figure 8.3 shows that this

remains the case for a range of parameter values. Therefore the Shooting method

can be used to make predictions about the discrete 3 stage epidemic model. As

the Shooting method was developed for the continuous version of this model,

it suggests that for small time and space steps the discrete model is a good

approximation of the continuous model.
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Figure 8.3: Comparisons between wave properties predicted by the Shooting
method and those observed from simulations of the discrete 3 stage epidemic
model. ∆x = 1, ∆t = 0.5, l = 0.2, q = 0.006 and m = 0.006. v is the ve-
locity of the wavefront, cm is the maximum density of predators at the peak of the
wavefront and wf is the width of the wave front, measured from 5% to 95% rm.

8.4 Discussion

Discrete time and space versions of the predator-prey, 2 stage and 3 stage epi-

demic models were formulated. For small time steps the steady states and sta-
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bility of the models showed no new behaviours to those of the continuous model.

The value of cP which created a soliton wave in the predator-prey model in-

creased. The Shooting method was shown to be a good method of predicting

the peak height, the velocity and the width of the wave fronts of the epidemic

and invasion waves. This suggested that the discrete spatial models were good

approximations of the continuous models.

Discrete approximations of the continuous models have been formulated for 1

dimensional spatial arenas. Before persistence mechanisms for invasions and epi-

demics which have no regrowth from unbiologically low population densities can

be investigated, these discrete formulations have to be extended to 2 dimensional

spatial arenas so all possible mechanisms can be studied.
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Chapter 9

Discrete Models in Two
Dimensions

In part III of the thesis, mechanisms which allow persistence of an epidemic or the

establishment of the invading species behind the front when the wave form of the

epidemic is a soliton are looked for. Some spatial, biological processes are only

realizable when space is considered to have more than one dimension (Hassell

et al. 1994). In terrestrial systems, space can be thought of as a 2 dimensional

plane (Hanski 1994). Therefore, 2 dimensional arenas are constructed for the

discrete spatial models. In this case the arenas are considered to be a form of

islands and the boundaries are reflective.

More than one waveform can be generated in a 2 dimensional arena. Plane waves

are initialised from a line innoculum of the invading or diseased component at one

edge of the arena. They are exact 2 dimensional extensions of the 1 dimensional

waves and are not considered likely to have different dynamics from them. Two

wave forms, which are not clearly 2 dimensional extensions of the 1 dimensional

waves, are going to be considered in this chapter. The first of these is the circular

wave (Skellam 1951) (Gurney et al. 1998). Circular waves are interesting as any

compact point innoculum generates a circular wave. The second wave form to

be considered is the spiral wave (Keener and Tyson 1986) (Kessler and Levine

1989) (Gurney et al. 1998). The spiral wave is initialised from a very carefully

set up initial condition. For a spiral to be initialised the wave has to be a soliton.
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The spiral wave is important when considering the persistence of the invasion or

epidemic (Hassell et al. 1994).

This chapter considers how spiral and circular waves are propagated, how they

relate to the persistence problem, and whether or not predictions can be made

about their characteristics by the Shooting method.

The Shooting method was developed to predict the wave front characteristics of

1 dimensional wave fronts. These characteristics should be the same as those of

the cross section of a plane wave or a circular wave with a large diameter. In this

chapter the Shooting method, as developed for the continuous time 1 dimensional

models, is used to predict the cross sectional wave characteristics of circular waves

with small diameters and spiral waves in 2 dimensional discrete models.

9.1 The Two Dimensional Scaled Dispersal Ker-

nel

The models used in this chapter are basically the same as those formulated in

chapters 7 and 8. The scaling of the parameters used in the dispersal kernel, as

described in equation (7.2.11), is changed in the 2 dimensional model. The recipe

for calculating α′ uses the same method as in chapter 7 to produce

4∆t

∆x2
=

∑∑
(m2 + n2)(1− α′

√
m2 + n2)+∑∑

(1− α′
√
m2 + n2)+

(9.1.1)

and j = (m∆x, n∆x). The difference in the calculation for α′ is due to the

variance increasing at 4 times the rate of the diffusion coefficient in 2 dimensions,

as opposed to 2 times, as in 1 dimensional arenas (Gurney and Nisbet 1998).

9.2 Circular Waves

A circular wave is formed by any innoculum with compact support of over a

critical size, dictated by the size of the threshold population. The wave expands

outwards in all directions at the same velocity when the population is diffusing
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(Skellam 1951). The shape of the initial condition is chosen by calculating the

square distance of the grid co-ordinates from the centre of the arena, q2
mid, and

then choosing the initial density (ninit) in the given square with the equation

ninit = 4nmax(1− 10q2
mid/NN)+ (9.2.1)

where nmax is the highest expected density of the population, given as the highest

marked value of the density scale of the arena, and NN is the number of nodes

along each axis of the square arena. If the value of the equation is negative, the

density in the square is 0.

9.2.1 Single Species Model

In figure 9.1 the simulation was started with the initial condition described by

equation (9.2.1). As the wave spreads, the populations in the centre reach car-

rying capacity and the steady state of n = 1 spreads out. Figure 9.2 shows the

time series of the mean density of an area of the arena. The area starts off empty,

the invasion of the area starts at t = 130 and by time t = 125 the area is full

to carrying capacity. By time t = 150 the whole arena is full of organisms at

carrying capacity. Persistence of the invading organisms behind the wave front

is not an issue in this model.

In table 9.1 the velocities and wave front widths observed from the 2 dimensional

simulations are compared with predictions made by the Shooting method devised

in chapter 2. The table shows that circular waves have wave characteristics within

10% of those predicted, so the Shooting method can be used to make predictions

about circular wave fronts. This also shows if a cross section were to be taken of

the wave front, it would be similar in profile to that of the 1 dimensional model.

9.2.2 The Two Stage Epidemic Model

An innoculum of susceptibles, described by equation (9.2.1) is added to an arena

of prey at carrying capacity results in a circular soliton which expands (figure

9.3), leaving an area in the centre of the circle where the susceptible density
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(a)
(b)

n 0 0.17 0.33 0.5 0.67 0.83

Figure 9.1: The discrete Fisher model with an Allee effect in 2 dimensions in a
350×350 arena. a = 1.5, nP = 0.0002, ∆t = 0.25 and ∆x = 2. (a) is a snapshot
of the spatial distribution at t = 20 and (b) is a snapshot of the spatial distribution
at t = 65. There is a large increase in the spatial range of the population from
(a) to (b).
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Figure 9.2: Time series of mean density of n in the Fisher model with an Allee
effect, in a 20 × 20 square area of the arena. By time 175 the population has
locally reached its carrying capacity.

a nT Predicted Values Observed Values
v wf v wf

1.5 2× 10−4 1.8440 8.198 1.9249 8.742
1.5 5× 10−2 1.2643 5.888 1.1820 5.715
150 1× 10−4 1.7824 7.939 1.9108 8.684
150 6× 10−3 1.2889 5.979 1.4546 6.767

Table 9.1: Comparisons between calculated wave properties and those measured
from discrete time and space simulations in 2 dimensions of the Fisher model
with ∆x = 2 and ∆t = 0.25. v is the velocity of the wavefront, wf is the width
of the wave front, measured from n = 0.1 to n = 0.9.

is low and the infective populations become extinct. As the circle spreads, the

susceptibles in the centre of the arena begin to recover. As the soliton reaches the

edge of the arena the infectives reflect back into the area of susceptible depletion

and dies out. The area of susceptible recovery expands, and eventually the arena

reaches a state where susceptibles everywhere are at carrying capacity and the

epidemic has died out. Figure 9.11 shows the time series of the mean density of

susceptibles and infectives in an area of the arena. At t = 60 the soliton wave

enters the area and the susceptible density falls. At t = 80 the soliton wave leaves

the area and the susceptible density begins to rise, reaching the carrying capacity
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across the area at t = 125 . So with a circular wave, the epidemic dies out behind

the wave front as in the 1 dimensional case.

The Shooting method as described in chapter 4 is used to predict the wave front

characteristics of circular waves. The observed wave front width, peak height and

velocity were compared with those predicted by the Shooting method. Figure 9.5

shows that the observed values are within 10% of the predicted values, so the

Shooting method can be used to predict the wave front characteristics. The cross

section of the circular soliton wave of the 2 stage epidemic model is very like the

profile of the one dimensional wave.

9.2.3 The Predator-Prey Model

An innoculum of predators, described by equation (9.2.1) with half the diameter

as the previous simulations, so the 10 in the equation was replaced with a 20, is

added to an arena where the prey are initially at carrying capacity. This results in

a circular soliton of predators spreading out from the centre (figure 9.3) (Gurney

et al. 1998). As the invasion wave moves away from the centre of the arena the

prey return to carrying capacity in the centre. When the soliton reaches the edge

of the arena the predators reflect back into the region where prey are scarce and

the invasion dies out. Eventually the prey recovers to carrying capacity over the

entire arena.

Again the Shooting method as described in chapter 3 is used to make predictions

about the velocity, peak height and width of the wave front of this model, and

the comparison between the predicted and observed characteristics is shown in

figure 9.7. The observed values are within 10% of the predicted values, so again

the Shooting method can be used to make predictions about the 2 dimensional

discrete predator-prey model with and Allee effect.
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(a) (b)

(c) (d)

s 0 0.17 0.33 0.5 0.67 0.83

0 0.025 0.05 0.075 0.01 0.125i

Figure 9.3: The discrete 2 stage epidemic model with an Allee effect in a 350×350
arena. b0 = 2, iP = 0.01, r = 0.1, ∆t = 0.125 and ∆x = 0.5. (a) and (b) are
snapshots of the spatial distribution of the susceptibles and infectives respectively
at t = 12.5. (c) and (d) are snapshots of the spatial distribution of susceptibles
and infectives at t = 37.5. There is a large increase in the spatial range of the
epidemic from t = 12.5 to t = 37.5.
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Figure 9.4: Time series of mean density of susceptibles and infectives in the 2
stage epidemic model in a 20 × 20 square area of the arena. By time 125 the
susceptible population has locally reached its carrying capacity and the soliton
wave of infectives has passed out of the area.

9.2.4 The Three Stage Epidemic Model

As with the previous model, the initial state of the arena is that the susceptible

population is at carrying capacity, and the incubating and infective populations

initially have the distribution described by equation (9.2.1). A circular soliton

wave is formed (figure 9.8) and this wave spreads out from the centre of the

arena, leaving an area where there are no incubating individuals and infectives

behind it. As the wave spreads away from the centre, the susceptible population

begins to recover. When the wave reaches the edge of the arena the infectives are

reflected back into the region of susceptible depletion and the epidemic dies out.

Eventually the susceptibles recover to carrying capacity over all the arena.

Again the Shooting method, as described in chapter 5, is used to make predictions

about the wave front characteristics of circular waves in the 2 dimensional model.

Figure 9.9 shows that these predictions are within 10% of the observed velocity,

peak height and width of the front, so the Shooting method can be used to make

predictions about this model.
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Figure 9.5: Comparisons between wave properties predicted by the Shooting
method and those observed from discrete time and space simulations of the 2
stage epidemic model in 2 dimensions. ∆x = 0.5, ∆t = 0.0125 and r = 0.05. v
is the velocity of the wavefront, im is the maximum density of predators at the peak
of the wavefront, wf is the width of the wave front, measured from i = im ∗ 0.05
to i = im ∗ 0.95.

9.3 Spiral Waves

Now the spiral wave form is considered. A spiral wave is a self organised pattern

that forms during very carefully initialised simulations in an excitable medium.
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(a) (b)

f 0 0.83 1.67 2.5 3.33 4.17

0 1.67 3.33 5 6.67 8.33c

Figure 9.6: The discrete predator-prey model in a 350×350 arena. k = 5, cP = 2,
d = 0.05,um = 0.2,∆t = 0.5 and ∆x = 1. (a) is a snapshot of the prey and (b) is
a snapshot of the predators at t = 210.
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Figure 9.7: Comparisons between circular wave properties predicted by the Shoot-
ing method and those measured from discrete time and space simulations of the
predator-prey model in 2 dimensions. ∆x = 0.5 and ∆t = 0.5. um = 0.2 and
δ = 0.05. v is the velocity of the wavefront, cm is the maximum density of preda-
tors at the peak of the wavefront and wf is the width of the wave front, measured
from 5% to 95% of cm.

Spiral waves cannot be generated in the Fisher model as a soliton solution is re-

quired for a spiral to form; only in the multi-component models with Allee effects

or thresholds when the thresholds are big enough to cause the wave to become a

soliton. The velocity of expansion of the spiral wave perpendicular to the wave
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(a) (b)

(c)

s 0 0.17 0.33 0.5 0.67 0.83

0 1.17 2.33 3.5 4.67 5.83r (x10
3
)

(x10
2
)i 0 0.23 0.47 0.7 0.93 1.17

Figure 9.8: The discrete 3 stage epidemic model in a 350 × 350 arena. l = 0.2,
rP = 0.0001, m = 0.006, q = 0.006, b0 = 1.5, ∆t = 0.5 and ∆x = 1. (a),
(b) and (c) are snapshots of the susceptible, incubating and infective distributions
respectively at t = 400.
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Figure 9.9: Comparisons between calculated wave properties and those measured
from discrete time and space simulations of the 3 stage epidemic model of circular
waves, with ∆x = 1 and ∆t = 0.5. l = 0.2, q = 0.006 and m = 0.006. v is the
velocity of the wavefront, rm is the maximum density of predators at the peak of
the wavefront and wf is the width of the wave front, measured from 5% to 95%
rm.

front is compared with the velocity predicted by the Shooting method which was

developed to predict the velocity of wavefronts in continuous, 1 dimensional mod-

els. The width of the wavefront and the height of the peak of the wave are also

compared with the Shooting method predictions.
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9.3.1 The Two Stage Epidemic Model

The initial condition used to initiate a spiral wave has been termed the assymetric

half line initial condition, as shown by figure 9.10 (a) and (b). This is formed

by starting a plane wave of infectives moving from left to right through an arena

where in the susceptibles are at carrying capacity. The initial condition used is

described by equation (9.2.1), with q2
mid becoming the distance of the grid point

from the left hand side of the arena squared. When the susceptibles start to

recover behind the wave front, the top half of the arena is reinitialised so that the

susceptibles are all at carrying capacity and there are no infectives. This causes

the infectives to form an “umbrella handle” shape as demonstrated by figure 9.10

(c) and (d), where the infectives start to enter the top half of the arena as well

as moving from left to right. The tip of the umbrella handle curls down into the

region of susceptible recovery behind the wave front. As the wavefront moves

to the right, the region of susceptible recovery spreads to the right and the tip

follows. The tip also curls upwards as it moves left to right as it creates a region

of susceptible depletion below it. This curve forms the core of the spiral, figure

9.10 (e) and (f), which then spreads to fill the whole arena.

Figure 9.11 shows the time series of the mean density of an area in the top left

of the arena. At the start of the simulation the soliton used to set up the initial

condition passes through the area. At t = 120 the first wave of the spiral passes

through, followed by the second, at t = 165, and so forth. So the epidemic does

not die out within the arena as in the circular wave.

Spiral waves are different from the 1 dimensional waves discussed in chapter 8

in a variety of ways. The spatial arena must be large enough for a fully formed

spiral to fit into. This may require the use of large space steps. The space steps

may be larger than the space steps shown to give a good comparison between

the 1 dimensional continuous and discrete models in chapter 8. The wave spins

slightly, so only the velocity of spread perpendicular to the wave front can be

measured. This is not directly comparable with the velocity of the 1 dimensional

wave. Because of these differences, predicting the wave characteristics of spiral
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(a) (b)

(c) (d)

(e) (f)

s 0 0.17 0.33 0.5 0.67 0.83

0 0.025 0.05 0.075 0.01 0.125i

Figure 9.10: Formation of a spiral wave in the discrete 2 stage epidemic model in
a 350×350 arena. r = 0.1, iP = 0.01, b0 = 2, ∆t = 0.125 and ∆x = 0.5. (a) and
(b) are snapshots of the assymetric half line initial condition for the susceptibles
and infectives respectively at t = 55. (c) and (d) are snapshots of the “umbrella
handle” for the susceptibles and infectives respectively at t = 75. (e) and (f)
are snapshots of the fully formed spiral wave for the susceptibles and infectives
respectively at t = 135. In (e), at the bottom right of the arena, the region of
susceptible depletion is still recovering from the passage of the initial plane wave.
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Figure 9.11: Time series of mean density of susceptibles and infectives of the
2 stage epidemic model in a 20 × 20 square area of the arena. The population
densities oscillate as the spiral waves move through the area.

waves by using the Shooting method is going to be inexact.

The results of this comparison are shown in table 9.2. The observations from

the spiral waves are all around 10% of the predictions made by the Shooting

method. So the Shooting method, is able to make reasonable predictions about

the velocity, peak height and width of the spiral wave front in the 2 stage epidemic

model.

b iT Predicted Values Observed from Spirals
v wf im v wf im

2 0.005 1.528 4.966 0.1620 1.370 4.673 0.1404
2 0.01 1.395 4.474 0.1586 1.259 4.109 0.1411

Table 9.2: Comparisons between wave characteristics of spiral waves observed
from simulations of the discrete 2 stage epidemic model in 2 dimensions and
predictions made by the Shooting method. ∆x = 0.5, ∆t = 0.125 and r = 0.1.
v is the velocity of the wavefront, im is the maximum density of predators at the
peak of the wavefront, wf is the width of the wave front, measured from 5% to
95% of im.
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(a) (b)

n 0 0.17 0.33 0.5 0.67 0.83

Figure 9.12: The discrete predator-prey model with an Allee effect in a 350× 350
arena. um = 0.2, cP = 0.3, k = 10,d = 0.05, ∆t = 0.5 and ∆x = 1. (a) is a
snapshot of the prey distribution and (b) is a snapshot of the predator distribution
at t = 720. There is a pattern formation at the tip of the spiral of a smaller scale
than is of interest.

9.3.2 The Predator-Prey Model

In the predator-prey model the spiral wave (see figure 9.12) was initiated from

an assymetric half line condition as described for the 2 stage epidemic model

(Gurney et al. 1998).

The wave characteristics observed from the spiral waves are compared with pre-

dictions made by the Shooting method in table 9.3. The Shooting method pre-

dicts the spiral expansion velocity and peak height well, and the observed width

of the front is about 10% larger than the predictions. So the Shooting method
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can be used to make predictions about the characteristics of a spiral wave front

in this model.

k cT Predicted Values Observations from Spiral
v wf cm v wf cm

10 0.3 0.6114 9.388 22.34 0.6006 10.45 23.01
10 1 0.5463 8.384 21.67 0.5487 9.420 22.12

Table 9.3: Comparisons between wave characteristics of spiral waves observed
from simulations of the 2 dimensional discrete predator-prey model and predicted
values made by the Shooting method. ∆x = 2, ∆t = 0.5, um = 0.2 and δ = 0.05.
v is the velocity of the wavefront, cm is the maximum density of predators at the
peak of the wavefront and wf is the width of the wave front, measured from 5%
to 95% of cm.

9.3.3 The Three Stage Epidemic Model

Again the spiral wave was initiated by the assymetric half line initial condition.

In the case of the 3 stage epidemic model, when the condition is created, the

incubating stage is treated as the infective stage. The spiral formed is shown by

figure 9.13.

The wave front characteristics of the spiral waves are compared with those pre-

dicted by the Shooting method. Table 9.4 shows that the Shooting method

predicts the wave front characteristics to around 10%, so the Shooting method

can be used to make predictions about the wave front characteristics of the spiral

waves formed by the 3 stage epidemic model.

b rT Predicted Values Observations from Spirals
v wf rm v wf rm

2 0.001 0.2514 5.759 0.02229 0.2242 5.686 0.01845
2 0.002 0.2075 4.968 0.02091 0.1900 5.306 0.01882

Table 9.4: Comparisons of observed wave front characteristics from simulations
of the discrete 3 stage epidemic model of spiral waves and predictions made by
the Shooting method. ∆x = 2, ∆t = 0.5, l = 0.2, q = 0.006 and m = 0.006. v is
the velocity of the wavefront, rm is the maximum density of predators at the peak
of the wavefront and wf is the width of the wave front, measured from 5% to 95%
of rm.
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Figure 9.13: Spiral wave formed by the discrete 3 stage epidemic model in a
350× 350 arena. l = 0.2, rP = 0.001, m = 0.006, q = 0.006, b0 = 1.5, ∆t = 0.5
and ∆x = 1. (a), (b) and (c) are snapshots of the susceptible, incubating and
infective distributions respectively at t = 2740.
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9.4 Discussion

Circular waves can be formed from any point initialisation large enough to form

a wave in the presence of the given threshold. In cross section, the circular

waves are similar in profile to the 1 dimensional waves for all the models. In

the Fisher model the invading population spreads out to fill whole arena. In

multi component models where the wave is a soliton, when the wave reaches the

reflective boundary, the organisms reflect back into the area of resource depletion

and the invasion or epidemic dies out. So there is still a problem of persistence

of the epidemic or invasion behind the wave front in the 2 dimensional spatial

models where the wave propagated is a circular wave. The Shooting method can

be used to make predictions about the velocity, peak height and width of the

wave fronts in all 4 of the models considered.

Spiral waves are self organised patterns which are formed by using an “asymmetric

half line” initial condition. The spiral wave has characteristics of the same scale

as the circular wave, so the Shooting method can be used to predict the scale but

not exact magnitudes of the characteristics. The spiral may to be too large to fit

into the given arena. The self organisation of spirals may be a mechanism which

allows persistence of an epidemic or an invasion behind the wave front; this is

investigated in the next part of the thesis.

There can be difficulties forming spiral waves. The space steps have to be large

enough to allow the arena to fit the spiral in. It has been shown that the point

of transition between soliton and wave trains is affected by space step size. So

the spiral may go through phases when it is not a soliton at all points, causing

the spiral to buckle and eventually break up. This generally happens in the core

of the wave.

Models have been formulated which are computationally efficient. They are good

discrete analogues of the continuous models. The arena has been expanded into

2 dimensions. The Shooting method can be used to make predictions about the

velocity, wave front width and peak height of both spiral and circular waves.
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The procedures carried out in this part have created the tools which permit a

thorough investigation into mechanisms which allow persistence of epidemics and

the establishment of invading species.
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Part III

Persistence Mechanisms
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Chapter 10

Persistence Mechanisms

10.1 Introduction

In the multi-component models used in this thesis, altering the formulation of

the models, so that there is no growth or infection from low density populations,

creates soliton waves where no endemic or established state is reached behind

the wave front. In both epidemics and invasions of exotic species, frequently the

epidemic or species continues to survive in the area that the wave front has passed

over.

A number of biological mechanisms, which have been omitted from the models

as they stand, are considered as mechanisms for allowing the epidemic to become

endemic or the invading species to become established. They shall be described

in this chapter and then applied to the multi-component models in the following

chapters of this part.

The modified Fisher model is not considered in this part of the work; its role in

this thesis was as a well understood model to be used as a vehicle for devising a

method of predicting the characteristics of wave fronts with no regrowth at the

toe. Its job is now complete. In the Fisher model, the invading population does

not die out behind the wave front. The mechanisms described here are chosen to

promote the growth of populations behind the wave front and are not going to

have much impact on the dynamics of the Fisher model.
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10.2 Environmental Heterogeneity

10.2.1 Spatial Heterogeneity: Patches

Frequently, work on spatial heterogeneity looks to understand the effects of habi-

tat fragmentation on the stability of populations of endangered species (Fahrig

1992) or on epidemic control regimes (Lloyd and May 1996). Such studies con-

sider patches of suitable habitat in a matrix of unsuitable habitat. These systems

are well described by meta-population models (Hanski 1994) and diffusion models

(Seno 1991). The results of these studies show that the presence of very suitable

patches encourages settlement of less suitable or unsuitable matrix.

Scheffer and de Boer (1995) consider a predator-prey model with the same growth

functions as the unmodified predator-prey model, as described in chapter 3, but

the predators are immobile and the prey disperse diffusively. They found that

when the predators are restricted to a patch, and the prey diffuse freely in and

out of the patch, the oscillatory dynamics of the system are reduced.

In this thesis, the oscillatory dynamics of the systems, which result in the for-

mation of soliton wave fronts, are caused by the richness of the habitat. So, to

investigate the effects of spatial heterogeneity on the persistence of epidemics or

invasions behind the wave front, spatial heterogeneity is in the form of patches of

less suitable habitat within a matrix of suitable habitat. Inequality (3.1.14) shows

that in the predator-prey model, if the carrying capacity is low, the dynamics are

stable. The amplitude of the oscillations in the unstable case increases with car-

rying capacity. Also, at high thresholds, the system can become non-oscillatory

with a steady state dictated by the threshold (equation (3.3.9)), as shown by fig-

ure 3.3. The effect of spatial heterogeneity in the form of a patchwork of different

carrying capacities throughout the arena on a the predator-prey model with a

threshold was investigated by Gurney et al. (1998). They showed that new inva-

sions appeared in low carrying capacity patches if the threshold density was low.

The wake of the 2 stage epidemic model becomes more oscillatory as the carrying

capacity is increased, as shown by inequality (4.1.9). This means that at low car-

134



rying capacities, the first trough of the wake is less likely to fall below threshold

density so the wave does not become a soliton. Also, at high thresholds and low

carrying capacities the model becomes non-oscillatory (equation (4.1.9))and the

steady state depends on the threshold (equation (4.3.5)), as shown by figure 4.3.

The oscillatory nature of the 3 stage epidemic model also decreases with carrying

capacity and this effects the dynamics of the system in the same way as in the 2

stage epidemic model. So decreasing the carrying capacity in a patch may create

an area of stable dynamics in the arena.

10.2.2 Seasonal Variation

White and Harris (1994) showed that contacts between foxes from neighbouring

territories increased during winter in Bristol foxes as foraging took male foxes

farther afield and into the territories of others. Varying the contact rate through-

out the year may reduce the oscillatory nature of the wake behind the epidemic

front in the epidemic models, so for part of the year the dynamics may be stable.

10.3 Long Range Dispersal

Continuous immigration from outside the arena would allow the invasion or epi-

demic to persist (Gurney et al. 1998), but the assumption in these models is

that there is only a finite initial innoculum in the given arena, so this persistence

mechanism is not investigated.

Kot et al. (1996) discuss how many organisms disperse leptokurtically. The

description of dispersal by diffusion does not successfully describe the dispersal

of these organisms. To compensate for this, they used integrodifference equations

with long tailed dispersal kernels to represent long range dispersal, so that some

individuals migrate further than is described by diffusion. In chapter 12, the

predator-prey model is modified so that occasionally a predator will disperse

much further than most others. In the 2 stage epidemic case, the occasional

infective individual travels a longer distance than that described by diffusion.
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At the end of the journey the infective starts infecting susceptibles locally. This

process cannot be applied to a rabies epidemic, but it may be possible in other

epidemics.

In the 3 stage epidemic model, it is unlikely that rabid fox will live long enough to

travel further than the distances described by the diffusive term in the model, so

the rabid population is not chosen to migrate long distances. The model assumes

that once recruited into the adult population the susceptibles and incubating

individuals remain within their territories. However, young foxes may embark on

long journeys to find empty territories to inhabit as adults. A young fox may be

incubating the rabies virus when it embarks on such a journey (Murray 1989).

The fox then becomes rabid, stops travelling, and infects the local susceptibles.

Although Macdonald (1980) has shown that young foxes are less likely to be

infected, this process may still happen occasionally.

10.4 Self Organised Patterns

10.4.1 Spiral Waves

It has already been shown, in chapter 9, that spiral waves form in these models.

Now the issue is whether or not spirals can be formed by environmental processes.

Much work has been carried out on host-parasitoid models which form spiral

waves, e.g. (Hassell et al. 1991)(Comins et al. 1992) (Hassell et al. 1994), but

the relevance of such pattern formation to ecology is not obvious. No spiral waves

have been witnessed in ecological systems (Rohani et al. 1997).

Can a natural process be found to create the half line initial condition? Ro-

hani et al. (1997) discuss the possibilities for the formation of spirals due to an

asymmetry , stochasticity or inhomogeneities in the medium. G. Ruxton (pers.

comm.) suggested that a river, too wide, deep or fast flowing to be crossed, going

through a period of drought may be a possible ecological system which could

form a half line initial condition. This idea is tested in chapter 13.
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If a spiral were to form in an ecological system, would it be robust to environmen-

tal and individual heterogeneities as described in the previous sections? Ruxton

and Rohani (1996) modified the (Hassell et al. 1991) host-parasitoid model so

that there were temporal and spatial heterogeneity. They found that spiral waves

formed in this system were robust to variations in the host’s fecundity but not

to random local extinctions. Gurney et al. (1998) found that spiral waves in a

predator-prey model with a threshold are robust to random immigration used

as an approximation to long range dispersal, and robust to spatial heterogeneity

provided that the soliton is not compromised in any patches.

The long range dispersal algorithm used in these models moves individuals. This

would create gaps in the spiral wave, similar to the local extinctions in Ruxton

and Rohani’s work, so the robustness of spiral waves to long range dispersal is

investigated in chapter 13. Spatial heterogeneity in the form of patches that

are known to compromise the soliton wave form will also be added to arenas

which contain spirals to monitor the effects. The interference pattern formed by

multiple spiral waves may break the spirals up. The interactions of two spirals

turning in the same direction and the opposite directions are investigated.

10.4.2 Small Scale Patterns

Another form of self-organised pattern arises in this investigation. Self-organised

patterns on a very small scale are formed when space is heterogeneous (McLaugh-

lin and Roughgarden 1991) (McLaughlin and Roughgarden 1992) (Gurney and

Veitch 1998) and, in the case of the predator-prey model, when a spiral is formed.

These patterns have already been described fully by Gurney and Veitch (1998)

for the predator-prey model used in this thesis, and shall not be investigated

further.

137



Chapter 11

Environmental Heterogeneity

11.1 Introduction

Environmental heterogeneity has not so far been included in any of the three

models. Two forms of heterogeneity are considered in this chapter - temporal

and spatial. The affects of the inclusion of seasonal variation and patches of

reduced carrying capacity in the models are investigated in this chapter.

11.2 Seasonality

It was observed by White and Harris (1994) that contacts between foxes from

different territories increase in winter. This seasonal factor was included in the

model in the form of a contact rate varying sinusoidally throughout the year.

Figure 11.1 shows that varying the contact rate creates persistence of the epidemic

behind the front in the 3 stage epidemic model in 1 dimension. When the contact

rate is reduced the dynamics of the system become less oscillatory, so the trough

does not dip to low densities which are affected by the threshold.

The break up of the soliton wave front in a model due to a seasonal factor was

only observed in the 1 dimensional 3 stage epidemic model. The observed change

in dynamics was sensitive to the time and space steps chosen. In the other models

the only observed effect was the periodic decrease in velocity, peak height and
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Figure 11.1: 3 stage epidemic model with seasonal contact rate. K = 2, M = 0.5,
L = 13, Q = 0.5, D = 73, Ψ = 150, B0 = 80 → 100, RP = 0.001, ∆t = 0.1
and ∆x = 0.5. (a), (b) and (c) show the spatial distribution of the susceptibles,
incubating and infective individuals respectively after 5.5 years and (d), (e) and
(f) at 11 years.

front width. In 2 dimensional models, a larger innoculum is needed to start an

epidemic because the epidemic spreads in many directions instead of only 2 in

the 1 dimensional model. Therefore a larger population is needed to establish

behind the wave front in the 2 dimensional model to allow the epidemic to persist
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behind the wave front. The incubating stage may have acted as a buffer which

allowed the effects of if the decreased contact rate to persist when the contact

rate increased. The predator-prey model was altered so that conversion efficiency

was seasonal. The predator-prey model will always be unstable for periods of the

year.

11.3 Spatial Heterogeneity

In this section spatial heterogeneity in the form of patches where the carrying

capacity of the susceptibles or prey is reduced is investigated as a persistence

mechanism.

11.3.1 The Three Stage Epidemic Model

A patch of low carrying capacity is placed in the centre of a 1 dimensional arena.

The patch is parabolic in shape to reduce edge effects. Figure 11.2 (c) and (d)

shows that when the original soliton first reaches the patch, the rabies epidemic

survives in the patch as the dynamics are less oscillatory. Wave trains start to

emanate from either side of the patch. Eventually, as shown by figure 11.2 (e) and

(f) the coexistence steady state begins to form around the patch. After a long

time, as shown by figure 11.2 (i) and (j), the entire arena is at the coexistence

steady state.

This was then repeated in a 2 dimensional arena, as shown by figure 11.3. The

patch in 2 dimensions is the shape of an inverted Gaussian distribution. Again a

wave train emanates out from the patch, but instead of the whole arena eventually

reaching the epidemic steady state, a small scale pattern forms. The pattern

forms around the patch and then spreads outwards. The simulation was run

over 2 millenia, and the patterns continued to appear (but reduced in intensity).

The pattern may be a very long lived transitional behaviour, it may be caused

by interference from waves reflected by the boundaries, or it may be that the

equilibrium properties of the system are different in 2 dimensions from the 1
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Figure 11.2: 3 stage epidemic model with a patch of low carrying capacity in
1 dimension. B0 = 80, D = 73, L = 13, M = 0.5, Q = 0.5, ∆t = 0.5,
∆x = 2, RP = 4 × 10−6 and K = 4 and the minimum value of K in the patch
of low density is 1.2. (a) and (b) are snapshots of the susceptible and infective
populations at time 14 years. (c) and (d) are snapshots of the susceptible and
infective populations at time 27 years. (e) and (f) are snapshots of the susceptible
and infective populations at time 54 years. (g) and (h) are snapshots of the
susceptible and infective populations at time 109 years. (i) and (j) are snapshots
of the susceptible and infective populations at time 164 years.

dimensional model.
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Figure 11.3: 3 stage epidemic model with one patch of low carrying capacity in
a 301 × 301 arena. B0 = 80, D = 73, L = 13, M = 0.5, Q = 0.5, ∆t = 0.5,
∆x = 2, RP = 4 × 10−6 and K = 4 and the minimum value of K in the
patch of low density is 1.2. (a) and (b) are snapshots of the susceptible and
infective populations at time 5 years. (c) and (d) are snapshots of the susceptible
and infective populations at time 12 years. (e) and (f) are snapshots of the
susceptible and infective populations at time 23 years. (g) and (h) are snapshots
of the susceptible and infective populations at time 68 years. The infectives are
spreading out from the patch of low carrying capacity.

142



The interaction of 2 patches of low carrying capacity is now investigated. The

rabies epidemic survives in the patches as before. When the wave trains form,

there is interference where they meet and figure 8 shaped waves are formed.

When the unexplained pattern spreads out from the patches, they form a filled

in figure 8, and then spreads throughout the whole arena as before. This also

demonstrates that above a minimum size, the dynamics are not sensitive to the

patch size.

11.3.2 The Two Stage Epidemic Model

A patch of low carrying capacity is created in the 1 dimensional 2 stage epidemic

model in the same manner as in the 3 stage epidemic model. Figure 11.5 shows

that, like the one dimensional 3 stage epidemic model, eventually the whole arena

reaches the coexistence steady state.

The experiment is then repeated in a 2 dimensional arena (figure 11.6). Again

the sequence of events is the same as those involved in the whole arena reaching

its coexistence steady state as in the 1 dimensional, 2 stage epidemic model.

11.3.3 The Predator-Prey Model

It is known (see chapter 3) that if inequality (3.1.14) is not satisfied then there is

no coexistence steady state in the predator-prey model. This poses the question

of what will happen if a patch of non oscillatory dynamics (where inequality

(3.1.14)) is satisfied.

Figure 11.7 shows that in the 1 dimensional arena, where again the patch is

parabolic in shape, again the invading organisms establish themselves in the

patch. Repeated solitons then emanate out from the patch. A complex pattern

is formed in the patch, a feature of the model described in detail in Gurney and

Veitch (1998).

The experiment was then repeated in a 2 dimensional arena (figure 11.8). Again

the resultant pattern was repeated solitons emanating from the patch.
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Figure 11.4: 3 stage epidemic model with two patches of low carrying capacity.
Parameters are the same as in figure 11.3. (a) and (b) are snapshots of the
susceptible and infective populations at time 5 years. (c) and (d) are snapshots
of the susceptible and infective populations at time 12 years. (e) and (f) are
snapshots of the susceptible and infective populations at time 27 years. (g) and
(h) are snapshots of the susceptible and infective populations at time 137 years.
The infectives spread out from the low carrying capacity patches.
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Figure 11.5: 2 stage epidemic model with patch of low carrying capacity in 1
dimension. r = 0.01, b0 = 2, iP = 10−6, ∆t = 0.1, ∆x = 1, the unscaled carrying
capacity is 2 and the minimum carrying capacity in the patch is 1.2. (a) and
(b) are snapshots of the distribution of susceptibles and infectives respectively
at time t = 300. (c) and (d) are snapshots of the distribution of susceptibles
and infectives respectively at time t = 600. (e) and (f) are snapshots of the
distribution of susceptibles and infectives respectively at time t = 900. (g) and
(h) are snapshots of the distribution of susceptibles and infectives respectively at
time t = 1200. (i) and (j) are snapshots of the distribution of susceptibles and
infectives respectively at time t = 2000.
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Figure 11.6: 2 stage epidemic with one patch of low carrying capacity in a
301 × 301 arena. The infectives are spreading out from the patch of low car-
rying capacity. r = 0.01, b0 = 2, iP = 10−6, ∆t = 0.2, ∆x = 4, the unscaled
carrying capacity is 2 and the minimum carrying capacity in the patch is 1.2. (a)
and (b) are snapshots of the distribution of susceptibles and infectives respectively
at time t = 280. (c) and (d) are snapshots of the distribution of susceptibles and
infectives respectively at time t = 4000. (e) and (f) are snapshots of the distri-
bution of susceptibles and infectives respectively at time t = 7360. (g) and (h)
are snapshots of the distribution of susceptibles and infectives respectively at time
t = 12000.
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Figure 11.7: Predator-prey model with patch of low carrying capacity in 1 dimen-
sion. um = 0.2, d = 0.05, cP = 0.1, ∆t = 0.5, ∆x = 2, k = 20 and the minimum
carrying capacity of the patch is 1.5. (a) and (b) are the snapshots of the prey
and predators respectively at time t = 1000. (c) and (d) are the snapshots of
the prey and predators respectively at time t = 1500. (e) and (f) are the snap-
shots of the prey and predators respectively at time t = 2000. (g) and (h) are the
snapshots of the prey and predators respectively at time t = 2500. (i) and (j) are
the snapshots of the prey and predators respectively at time t = 4000. Repeated
solitons are produced from the patch of low carrying capacity.

Then a second patch of low carrying capacity to look at the interactions of the
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Figure 11.8: Predator-prey model with one patch of low carrying capacity in a
301 × 301 arena. um = 0.2, d = 0.05, cP = 0.1, ∆t = 0.5, ∆x = 4, k = 20
and the minimum carrying capacity of the patch is 1.5. (a) and (b) are the
snapshots of the prey and predators respectively at time t = 300. (c) and (d) are
the snapshots of the prey and predators respectively at time t = 600. (e) and (f)
are the snapshots of the prey and predators respectively at time t = 1000. (g)
and (h) are the snapshots of the prey and predators respectively at time t = 1850.
Repeated solitons are produced from the patch of low carrying capacity.
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repeating solitons (figure 11.9). When the solitons meet, there is interference and

the solitons form figure 8s. As the patches are different sizes this also demon-

strates that the effect is not sensitive to the size of the patch providing that the

patch is over a critical size.

11.4 Discussion

Temporal heterogeneity , i.e. seasonality in a given parameter value only, created

persistence of an epidemic behind the wave front in the case of the 3 stage rabies

epidemic in 1 dimension. This result was sensitive to the space and time steps

chosen for the simulation. This sensitivity is probably what caused the non-

occurrence of the effect in the 2 dimensional model. To clarify the effect of

seasonality, real parameter sets should be obtained for the 2 stage epidemic and

predator prey models.

In the epidemic models a persistent, endemic state of the infection spreads out

from patches of low carrying capacity. In the predator- prey model repeated

solitons radiate out from the patches. The patches act as sources of infec-

tion/invasion. This result may have implications for epidemic and wildlife man-

agement.

The effects are not affected by the size of the patch, provided the patches are

larger than a critical size. Multiple patches do not have any great affect either.

So spatial heterogeneity acts as a robust mechanism which allows reinfection or

reinvasion behind the original wave front.

In the predator-prey model, small scale patterns are formed. These small scale

self-organised patterns have been investigated for predator-prey models by McLaugh-

lin and Roughgarden (1991) McLaughlin and Roughgarden (1992) and more

specifically for the predator-prey model used in this thesis by Gurney and Veitch

(1998).

149



(a) (b)

(c) (d)

(e) (f)

f 0 3.3 6.7 10 13.3 16.7

0 6.7 13.3 20 26.7 33.3c

Figure 11.9: Predator-prey with two patches of low carrying capacity in a 301×301
arena. Parameters are the same as in figure 11.8. (a) and (b) are the snapshots
of the prey and predators respectively at time t = 300. (c) and (d) are the
snapshots of the prey and predators respectively at time t = 600. (e) and (f) are
the snapshots of the prey and predators respectively at time t = 1000. (g) and (h)
are the snapshots of the prey and predators respectively at time t = 2000. When
the soliton waves meet, the interference pattern produces figure 8 shaped waves.
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Chapter 12

Long Range Dispersal

12.1 Introduction

In this chapter the long range dispersal of mobile individuals is investigated as a

mechanism for allowing the establishment of an invading species or an epidemic

to become endemic in systems where the initial wave front is a soliton (Gurney

et al. 1998). This process involves a single individual moving a long distance

with a higher probability than is suggested by diffusion. In the predator-prey

model this may involve a pregnant or asexually reproducing organism settling

away from the wave front. In the 2 stage epidemic model long range dispersal

involves in infective individual travelling and after a period becoming too ill to

move on and proceeding to infect susceptibles in the area it has settled in. In the

3 stage epidemic model, an incubating individual moves, becomes infective and

starts to infect susceptibles locally.

In models with 1 spatial dimension the arena is infinitely thin. To identify an

individual in an spatial model where density is the dependent variable, an area

has to be found where

area× density = 1 . (12.1.1)

Area is not a property of a 1 dimensional arena, so to identify an individual,

an arbitrary width would have to be attributed to the arena. If the migrating

individual moves ahead of the front in a 1 dimensional arena, the new innoculum
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will send a soliton both forwards and backwards (in relation to the movement

of the initial wave front). The backwards moving soliton will collide with the

original wave front and the mobile component of the system dies out locally.

The wavefront immediately moves to the position of the forwards moving soliton

created by the outlier. This greatly increases the velocity of the wave front.

Because of these consequences of long range dispersal in 1 dimension, long range

dispersal has only been investigated in 2 dimensional arenas in this chapter.

12.2 The Three Stage Epidemic Model

In this model, it is assumed that the susceptible and incubating populations

are immobile in the sense that once adult, they have fixed territories. In the

long range dispersal formulation, it is assumed that a proportion of young foxes,

setting out to find a territory away from their families, are incubating rabies. If

a fox is rabid, it is assumed that it sets off in a random direction, and after a

short time it becomes infective and starts to infect the susceptibles foxes around

it.

In the model, an incubating fox is chosen at random. This is done by picking an

address in the arena by means of a random number generator. An edge of the

arena (top, bottom, left or right) was then chosen randomly, then the transect

between the address and the edge of the arena specified is scanned for a maximum

density of incubating foxes. The direction of the scan (starting either at the edge

of the arena or at the address) was also chosen at random. If a sizable (10−4)

incubating fox density is found, the immediate surroundings are searched for

a fox; the nearest neighbour of highest density is the next looked at, then it’s

nearest neighbour of highest density, until a whole fox is found. Another random

address is generated in the locality of the original position of the fox, and the

incubating fox is removed from its original position to the new address, turning

rabid during its journey. If a whole incubating fox is not found during the search,

nothing happens.
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Figure 12.1: (a) and (b) show the distribution of susceptibles and infectives re-
spectively of the 3 stage epidemic model with long range dispersal, and (c) and
(d) show the distribution of susceptibles and infectives respectively, of the 3 stage
epidemic model with no long range dispersal, both at time 15 years in a 301×301
arena. b0 = 2.1, q = 0.006, l = 0.2, m = 0.006, rP = 0.0001, Ψ = 150km2yr−1,
∆t = 0.5 and ∆x = 4 in both models. In the model with long range dispersal, the
maximum dispersal distance is 170km.
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Figure 12.1 (a) and (b) shows the distribution of the rabies epidemic after 15

years when long range dispersal of incubating foxes occurs.

If the fox moves ahead of the front, it starts a new circular wave. The section of

the wave moving towards the original front causes interference with the section

of front it meets, and the section of the new front moving in the same direction

as the original becomes part of the original front. This only causes an increase

in spatial distribution locally, so does not affect the front velocity greatly. The

velocity of the front when there is no long range dispersal, as shown by figure

12.1 (c) and (d). The velocity of the circular wave is 36 km yr−1 and the velocity

of the new wave is approximately 60 km yr−1, so it is still within the observed

range of 30→ 60 km yr−1.

If the fox migrates behind the front 2 things can happen. The rabid fox can land

in the region of susceptible depletion and the localised epidemic will die out. The

fox can land on the region of susceptible regeneration and a new epidemic starts

in the centre of the original epidemic. This repeats itself up to and over 100

years, shown by figure 12.2. Figure 12.3 shows that with no long range dispersal,

the epidemic would die out within the arena after 20 years and the susceptibes

return to carrying capacity within 25 years.

Obviously for the repeating epidemics to happen ,it is necessary for incubating

foxes to migrate long enough distances that they can reach the area of suscep-

tible recovery within the circle. Other than that there is a question of whether

persistence of the rabies epidemic is sensitive to the maximum distance the foxes

travel. Figure 12.4 (a) and (b) shows the same long range dispersal algorithm as

describes above, but the distance the foxes can travel is greater. The result is

still qualitatively the same as with the shorter maximum migration distance.

The algorithm as described above may have a bias as to the positions of foxes

found. The the use of long range dispersal as a persistence mechanism may

be dependent on the frequency of finding a whole incubating fox. To test the

robustness of the mechanism to the algorithm and frequency of finding a fox, a

slightly different algorithm is used to find the incubating fox. A line in either the
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Figure 12.2: (a) and (b) show the distribution of susceptibles and infectives re-
spectively of the 3 stage epidemic model with long range dispersal at time 50 years,
and (c) and (d) show the distribution of susceptibles and infectives respectively
of the same model at time 100 years. The parameters are the same as those in
figure 12.1.
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Figure 12.3: Time series of the mean density of susceptibles and infectives in the
arena. By time 20 years infectives no longer exist within the arena and by time
25 years the susceptibles have all reached their carrying capacity. The parameters
are the same as those in figure 12.1.

vertical or horizontal directions is chosen randomly. A start point and end point

for a search along the line is then generated. The maximum density of incubating

foxes is sought along the line, and if it is greater than 10−4, a whole incubating fox

is sought in the same manner as above. This alteration to the search algorithm

reduces the frequency of finding an incubating fox as less of the chosen line is

searched. Figure 12.4 (c) and (d) shows that this change in algorithm does not

change the success of the persistence mechanism.

12.3 The Two Stage Epidemic Model

When thinking about using this model for rabies, having infective foxes dispersing

long distances does not make biological sense. The 2 stage epidemic model is

bloody useless as a rabies model; it does not account for the latent period before

rabies is developed or that some foxes develop the paralytic form of the disease.

In this chapter it is considered as a more general epidemic model. An infective

is assumed to be healthy enough to travel long distances when it first contracts
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s 0 0.17 0.33 0.5 0.67 0.83

0 0.33 0.67 1 1.33 1.67r (x10
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)

Figure 12.4: (a) and (b) show the susceptible and infective distributions respec-
tively of the 3 stage epidemic model with long range dispersal. Parameter values
are as in figure 12.1 but the maximum dispersal distance is 200km. (c) and (d)
show the susceptible and infective distributions respectively of the 3 stage epidemic
model with long range dispersal in a 301× 301 arena. Parameter values are as in
figure 12.1 but the algorithm used to choose an incubating fox has been modified
so that they disperse less frequently. All snapshots are taken at time 15 years.
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Figure 12.5: The 2 stage epidemic model with long range dispersal. (a) is a snap-
shot of the susceptible distribution and (b) is a snapshot of infective distribution
at t = 137 in a 301× 301 arena. r = 0.1, iP = 0.005, b0 = 2.1, Ψ = 10, D = 10,
∆t = 0.125, ∆x = 2 and the maximum dispersal distance is 30 space steps.

the disease. After it has travelled a long distance, the infective stops and begins

to infect susceptibles around it.

A whole infective is found in the same manner as the first algorithm described in

the previous section. A random address within a certain distance of the infective’s

original position is generated, and the infective is moved to the new address.

Figure 12.5 shows that long range dispersal works as a mechanism for allowing

an endemic state to be created behind the initial wave front.
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Figure 12.6: Predator-prey model with long range dispersal. (a) is the prey distri-
bution and (b) is the predator distribution at time t = 548 in a 301× 301 arena.
k = 20, um = 0.2, d = 0.05, cP = 0.1, R = 1, Ψ = 0.1, ∆t = 0.5, ∆x = 4 and
the maximum dispersal distance is 30 space steps.

12.4 The Predator-Prey Model

In the predator prey model a predator migrates a distance longer than that

associated with diffusion. A predator is chosen in the same manner as described

for the incubating foxes in the 3 stage epidemic model. A random address within a

finite distance is then generated and the predator is moved to the chosen address,

where it establishes itself and starts to feed on the local prey.

Figure 12.6 shows that the predator prey model has the same pattern of new

waves behind the front as the 3 stage epidemic model.
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This has already been done (Gurney et al. 1998) for a very similar model with

random immigration approximating long range dispersal. The pattern produced

by random immigration is more broken than that due to long range dispersal.

This is due to the limitation to the number of migrating predators to the number

that exist within the arena.

12.5 Discussion

Long range dispersal of incubating or infective individuals permits repeated epi-

demic waves to form behind the initial epidemic front in the 2 and 3 stage epi-

demic models. Long range dispersal of predators in the predator prey model

allows predators to establish behind the initial invasion front and create repeat-

ing invasion waves. The mechanism is robust to the maximum distance the given

individual can disperse, the algorithm used to find the individual which disperses

and the frequency of long range dispersal events. The resulting pattern is inde-

pendent of new individuals immigrating into the arena.

The choice of parameters in the 2 stage epidemic and the predator-prey models

was arbitrary, and the experiments should be repeated with real parameter sets.
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Chapter 13

Spiral Waves

13.1 Introduction

It has already been demonstrated that the 3 models considered are able to form

spiral waves. It has also been shown that spiral waves are a mechanism for

continuing an epidemic or invasion behind the epidemic or invasion front. No

spirals have been observed in ecological systems, so this chapter will consider

a likely ecological mechanism for initiating a spiral wave. Gurney et al. (1998)

showed that spirals propagated by the predator-prey model with a threshold were

robust to random immigration and a very fine heterogeneous spatial patchwork,

so this chapter will also investigate the robustness of spirals to the forms of long

range dispersal and spatial heterogeneity as described in the previous 2 chapters

and to interactions with other spirals.

13.2 Creating the “Assymetric Half Line” Ini-

tial Condition with an Environmental Pro-

cess

A naturally occurring initial condition for a spiral is needed. If an invasion or

epidemic wave is travelling at one side of the barrier, then the barrier disappears,

allowing the wave to spread to new virgin territory, an assymetric half line initial
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(a) (b)

n 0 0.17 0.33 0.5 0.67 0.83

Figure 13.1: Spiral waves formed from a periodic river initial condition. (a)
and (b) are snapshots of the prey and predator distributions respectively of the
predator-prey model at t = 420. k = 10, um = 0.2, d = 0.05, cP = 0.3, ∆t = 0.5
and ∆x = 1 in a 301× 301 arena.

condition would be created. A likely candidate for this barrier is a river (G.

Ruxton, pers. comm.). A river may be too wide and deep for the given organism

to cross. A change in rainfall or temperature may reduce the flow of the river and

it becomes traversable. Rivers can have seasonal cycles of flow. In this model it

is assumed that the river is a barrier at the start of the run with the invasion

or epidemic wave running along one bank, then when the environmental change

occurs the river becomes periodic, so the river becomes traversable for part of

each year. In the case of the simulations shown in figures 13.1, 13.2 and 13.3 the

river becomes periodic when the wave front reaches the centre of the arena.
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Figure 13.2: Spiral waves formed from a periodic river initial condition. (a) and
(b) are snapshots of susceptibles and infectives of the 3 stage epidemic model at
time 43 years in a 301times301 arena. b0 = 1.5, q = 0.006, l = 0.2, m = 0.006 ,
rP = 0.001, ∆t = 0.5 and ∆x = 2.
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Figure 13.3: Spiral waves formed from a periodic river initial condition in a
301 × 301 arena. (a) and (b) are snapshots of susceptibles and infectives of the
2 stage epidemic model at t = 100. b0 = 2, r = 0.1, iP = 0.01, ∆t = 0.125 and
∆x = 0.5.
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Figures 13.1, 13.2 and 13.3 show that all 3 of the models form spirals with the

assymetric half line initial condition created by a river acting as a barrier initially

then altering so that there is less flow for a period each year. The spirals are

slightly square in shape due to the periodicity of the river.

13.3 Robustness of Spirals to the Environment

Now that a plausible natural mechanism for forming a spiral is known, the ro-

bustness of spiral waves to intrinsic and environmental factors is examined. The

river has not been included in the models tested for robustness; it is assumed

that once formed the spirals are not different from artificially formed spirals.

13.3.1 Multiple Spirals

If it is possible for one spiral to form, it should be possible for more than one

spiral to form. Two solitons meeting cancel each other out as there are regions of

resource depletion behind both waves. This raises the question of whether 2 (or

more) spirals cancel each other out. There are two situations to be considered;

one where the spirals are turning in the same direction, and one where the spirals

are turning in different directions.

Figure 13.4 (a) and (b) shows that when the spirals are turning in the same

direction, as long as the cores of the spirals to not meet, the outer waves of the

spirals combine to figure 8 shapes, with the cores continuing in the centre.

Figure 13.4 (a) and (b) shows that when the spirals are turning in different

directions, the top of the spirals form half of the 8 shape, and the bottom of the

left spiral becomes the bottom of the right spiral.

More than one spiral forming in a small arena does not compromise the integrity

of the spiral waves.
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Figure 13.4: Interactions between spirals in 301 × 301 arenas. The 3 stage epi-
demic model with q = 0.006, b0 = 2.1, l = 0.2, m = 0.006, rP = 0.001, ∆t = 0.5
and ∆x = 4. (a) and (b) show the susceptible and infective distributions at time
44 years with 2 spirals spinning in the same direction. (a) and (b) show the
susceptible and infective distributions at time 58 years with 2 spirals spinning in
opposite directions.
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13.3.2 Spatial Heterogeneity

In chapter 11, a patch of low carrying capacity acts as a source for reinvasion of

the region behind a soliton wave front. If a spiral form in a spatially heterogeneous

arena, do these reinvasions break the spiral up? This question is investigated for

both the 3 stage epidemic model and the predator-prey model.

In the 3 stage epidemic model, a patch of low carrying capacity causes an area

of the epidemic steady state to spread out from the patch, as shown by figure

13.5 (a) and (b). The spiral wave is broken up by this because there is not a

region of susceptible depletion behind the secondary epidemic. In the predator-

prey model, when the soliton waves radiating from the patch meet the spiral,

there are regions of prey depletion behind the reinvasion wave and immediately

behind the section of the spiral wave. Both waves die out. As long as the core is

unaffected by this, the spiral continues with a diffraction pattern around the low

carrying capacity patch.

13.3.3 Long Range Dispersal

The robustness of a spiral wave to the long range dispersal of incubating individ-

uals in the 3 stage epidemic model as described in chapter 12 is tested. This has

already been carried out for a predator-prey model by Gurney et al. (1998) with

random immigration acting as an approximation of long rage dispersal. The spiral

is allowed to form a core before the long range dispersal algorithm is applied.

Figure 13.6 shows that the spiral is robust to the long range dispersal of incubating

foxes. In a spiral wave, if a fox lands on another part of the wave, the wave returns

to its original shape. If it lands in a trough the susceptible population is too low

to sustain a new invasion wave. Therefore long range dispersal does not break

the spiral up.
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(a) (b)

s 0 0.17 0.33 0.5 0.67 0.83
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(c) (d)

n 0 0.17 0.33 0.5 0.67 0.83

Figure 13.5: Spiral waves in heterogeneous 301 × 301 arenas. (a) and (b) are
the susceptible and infective distributions of the 3 stage epidemic model at time
68 years. B0 = 80, Q = 0.5, D = 73, L = 13, M = 0.5, ∆t = 0.5, ∆x = 2,
K = 4 and the lowest carrying capacity in the patch is 1.2. (c) and (d) are the
prey and predator distributions of the predator-prey model at t = 4100. um = 0.2,
d = 0.05, ∆t = 0.5, ∆x = 4, k = 10 and the lowest carrying capacity in the
patch is 1.5. In the predator-prey model solitons produced from the low carrying
capacity patch are “cancelled out” by the spiral waves. In the 3 stage epidemic
model the infectives spread out from the patch, disrupting the spiral.
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Figure 13.6: Spiral wave formed by the 3 stage epidemic model with long range
dispersal starting at time 41 years. (a) and (b) are the distributions of susceptibles
and infectives at time 45 years and (c) and (d) are the distributions of susceptibles
and infectives at time 61 years in a 301×301 arena. b0 = 2.1, q = 0.006, l = 0.2,
m = 0.006, rP = 0.0001, ∆t = 0.5, ∆x = 4, and the maximum dispersal distance
is 170km.
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13.4 Discussion

There are plausible natural phenomena that might give rise to spirals, in this case

a river which fluctuates periodically. The length of a year in the 2 stage epidemic

and predator prey models was chosen arbitrarily and these simulations should be

run again with parameters observed from nature.

The spiral waves produced by the 3 stage epidemic model are robust to interac-

tions with other spiral waves and long range dispersal. The predator prey spiral

wave is robust to the presence of a patch of low carrying capacity as long as the

core is unaffected. The epidemic spiral wave is not robust to the presence of a

patch of low carrying capacity because the steady state manages to spread out

through the spiral.

All that remains is for a spiral to be observed in a population other than a

laboratory culture (Rohani et al. 1997).
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Part IV

Discussion
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Chapter 14

Discussion

14.1 Thresholds and Allee Effects

Mollison’s atto-individual effect has been effectively removed from the original

reaction-diffusion models by adding thresholds and Allee effects. At low densities

deterministic models do not act as an average of stochastic realizations, since at

low densities stochastic effects are much more important to population dynamics

that at high densities (Rand and Wilson 1991). At high densities deterministic

models act as approximations of stochastic models. So, if the dynamics of unre-

alistically low density populations are altered so that they can no longer increase

in reaction-diffusion models, but the dynamics of the high density populations

are preserved, the deterministic model should become an approximation of the

stochastic model.

A demonstration of the importance of atto-individuals in reaction-diffusion mod-

els is the formation of soliton waves in the multi component models. In the

unstable case of the predator prey model, a wave train forms behind the wave

front. In the oscillatory case of the 2 and 3 stage epidemic models, there is a

series of damped oscillations behind the wave front. If the growth of populations

at low densities is the same as that of high density populations, the growth of

the small populations in the first trough behind the wave front creates the wake

behind the front. Remove the regrowth of these low density populations, and
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there is no wake - the wave front becomes a soliton and the invasion or epidemic

dies out behind the front. This behaviour has important consequences for the

spreading population and needs careful investigation.

14.2 Analysis of Wavefronts

The wave fronts of the original, unmodified reaction-diffusion models with no

threshold or Allee effect can be analysed (Fisher 1937) (Kolmogorov et al. 1937)

(Dunbar 1983) (Dunbar 1984) (Murray et al. 1986) (Murray 1989). The threshold

or Allee effect slows the wave down, and makes the front narrower, so a new

method must be found to analyse these wave fronts.

Brunet and Derrida (1997) devised a calculation for the velocity of the Fisher

model with a cutoff. The calculation correctly predicted the velocities of Fisher

wave fronts with low thresholds, but the calculation does not work at high thresh-

olds. The below threshold per capita mortality rate is not included in the calcu-

lation. The cutoff formulation used by Brunet and Derrida cannot be simulated

by a continuous time model. Therefore this calculation was not considered useful

in this context.

In the predator-prey model with a threshold, it is assumed that a soliton wave

front velocity is only minimally effected by the threshold due to a careful choice

of parameters (Gurney et al. 1998). The velocity calculation of Dunbar can then

be used to predict the width of the wave front and the velocity. It is then assumed

that the prey nearly die out behind the wave front. This assumption allows the

prediction of the width of the soliton, the height of the soliton and the width of

the region of prey depletion. This method cannot be extended to the epidemic

models as in epidemics, the susceptible population rarely falls to near zero.

A single component model - the Fisher model - was chosen to develop a method

of predicting the characteristics of wave fronts which don’t have regrowth from

low densities. This model does not form solitons when a threshold or Allee effect

is applied, but is used as an easily understandable vehicle.
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The method devised, termed the Shooting method (Cruickshank et al. 1998),

involves transforming the model into a moving frame of reference, reducing the

number of variables the population depends on from 2 to 1. This simplifies the

model further. A bisection search was developed to find the correct velocity of

the wave front by searching for the frame of reference velocity which was equal

to it. This was possible due to the behaviour of the transformed model; if the

frame of reference velocity is greater than the wave front velocity the trajectory

of the solution eventually reaches infinity and if the frame of reference velocity is

less than the wave front velocity the trajectory dips below zero before increasing

to ∞. The closer the frame of reference velocity is to the wave front velocity the

further the trajectory of the solution follows the shape of the wave front in the

untransformed model (Brunet and Derrida 1997) (Kessler and Levine 1989). The

wave front velocity is never found exactly, but can be found to arbitrarily high

accuracy. If the velocity is known, the shape of the wave front can be traced and

characteristics such as the wave front width can be estimated.

The Shooting method was applied to 3 formulations of the Fisher model with no

regrowth at low densities. When the growth function of the model was completely

continuous, with an Allee effect achieved by Michaelis-Menten like growth, the

Shooting method estimates were correct to arbitrary accuracy. Unfortunately,

this model did not have the same dynamics as the Fisher model at high densities.

When the growth function was discontinuous, either by the addition of a thresh-

old to the model or by making mortality linearly dependent on density at low

densities, there were errors created in the simulations by the numerical integra-

tion process. Once it was confirmed that a working method of estimating wave

front characteristics of a model with no regrowth from low densities had been de-

veloped, it was investigated whether it could be applied to the multi-component

models.

The Shooting method was then applied to 2 formulations of the predator-prey

model with no regrowth of the predator at low population densities. In the

threshold formulation, the Shooting method worked well. In the multi component

models the height of the peak of the wave front can also be predicted by the
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Shooting method. The velocity, peak height and front width can all be substituted

into the calculations for estimating the width of the peak and the region of prey

regeneration developed by Gurney et al. (1998). The Shooting method also

worked well for the Allee effect formulation.

Next, the Shooting method was adapted to 2 formulations of the 2 stage epidemic

model with no reinfection at low densities. It worked well at making predictions

about the threshold formulation; as in the single component model the trans-

formed model was solved with the initial population density at the threshold, so

the only error occurred in the simulations. The Shooting method also worked for

the formulations which were continuous in value but not in slope.

The Shooting method was then applied to 2 formulations of the 3 stage epidemic

model with no reinfection at low densities. The method worked well for both

formulations.

In these models, it was decided that the formulations which are continuous in

slope and not in value, which were simulated more accurately by the adaptive

timestep RK4 numerical integration algorithm, should become our formulations

of choice for the remainder of the thesis.

14.3 Discrete Models

Now that predictions can be made about the wave front characteristics of 1 dimen-

sional continuous models, the next step in investigating the systems where solitons

formed was finding formulations of the models which were faster and easier to run

simulations. The forms chosen were discrete analogues of the reaction-diffusion

models.

It was important that the discrete models did not show behaviours which were

not observed in the continuous models and that the models were predictable in

some way.

A distribution kernel, based on capture-mark-recapture experiments, where dis-
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persal probability fell linearly with distance from point of origin, was chosen.

At first a model which was a piecewise-constant approximation of the Fisher

model with an Allee effect was investigated. A calculation, adapted from Kot

et al. (1996)’s work, was developed to predict the velocity of the wave front.

This method was then applied to the discrete Fisher model with an Allee effect.

The method only worked well when the Fisher model was forced to behave like

the piecewise-constant approximation. It did not make any prediction about the

shape of the wave. The calculation produced 2 roots, and it was not always

obvious which should be chosen.

It was shown that for a range of smallish time and space steps the Shooting

method made good predictions about the Fisher wave front characteristics. The

Shooting method worked well for a range of parameter values. This was also

shown to be true for discrete formulations of the multi-component models. One

problem occurred as the value of threshold which creates a soliton wave in the

predator prey model increases at large time and space steps.

These discrete analogues of the reaction-diffusion models were extended into 2

dimensional arenas. Circular waves were initiated from a compact point innocu-

lum in all 4 models. In the Fisher model with an Allee effect the wave front

spread outwards from the innoculum at then same rate in all directions. Behind

the wave front the populations were at carrying capacity. When the wave front

reached the edge of the arena, the arena remained at carrying capacity. In the

multi-component models, when the wave was a soliton, the wavefront spread out-

wards at the same velocity from the innoculum. Behind the front the resource

component was exhausted by the mobile component, but eventually regrew to the

carrying capacity and the spreading component died out. When the wave front

reached the edge of the arena the spreading components were reflected back into

the region of resource depletion and died out. Eventually the arena reached a

state when all the resource component was at carrying capacity and the spreading

component had died out.

Circular wave characteristics are similar to the characteristics of the 1 dimensional
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models and can be estimated by the Shooting method to around 10%.

Spiral waves were then considered. These only occur in systems where there

are soliton waves. The spirals were initiated from an assymetric half line initial

condition; a plane wave travelling from left to right across the arena is halved so

the top half of the arena is reinitialised with the resource component at carrying

capacity and no spreading component. The space step had to be increased in some

cases to allow a complete spiral to form. The Shooting method also managed to

predict the shape and velocity of the spiral waves to within 10%.

Discrete models in 1 and 2 dimensions have been formulated as approximations

of the continuous models. These models have been shown to be predictable by

the Shooting method, either exactly, or, as in the case of spiral waves, the scale

can be predicted. Now these models can be used to investigate mechanisms which

would allow the persistence of the spreading species behind soliton wave fronts.

14.4 Persistence behind the Front

14.4.1 Environmental Heterogeneity

Spatial heterogeneity worked as a method of allowing epidemics and invasions

to persist behind soliton wave fronts. The populations within the low carrying

capacity patches had less oscillatory dynamics than in the rest of the arena and

allow the invading species or epidemic to established. These patches then acted

as sources of the epidemic or invading species within the arena. In the case of the

predator prey model persistence was in the form of repeating solitons radiating

out from the patches. In the epidemic models a persistent endemic state of the

spread out from the patches (the coexistence steady state in the case of the 2

stage model and a complex, so far unexplained in the 3 stage model). These

effects happened as long as the patches were larger than a critical size. The

ability of patches of low carrying capacity to act as local sources of an epidemic

or invading species has implications for management.
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The presence of patches produces small scale self organised patterns within a

reasonable arena size; this is described in detail by Gurney and Veitch (1998).

A seasonal variation in contact rate is known to alter the dynamics of measles

models (London and Yorke 1973). European foxes have seasonal contact rates.

In the epidemic models in this thesis a seasonal contact rate added to the models

to try and create a time each year when the dynamics are less oscillatory. In the

predator prey model the conversion rate is made oscillatory. The only model in

which the inclusion of seasonal effects created the persistence of the epidemic or

invasion behind the wave front is the 1 dimensional 3 stage epidemic model. The

effect was dependent on time and space steps chosen but not on the amplitude

of the seasonal variation. This sensitivity to size and time steps is thought to

be the reason the same effect was not repeated in the 2 dimensional model. The

waves of the other models slowed down and widened in response to the seasonal

term, but persistence was not produced.

14.4.2 Long Range Dispersal

Long range dispersal, dispersal of longer distances than are associated with diffu-

sion, allows the epidemic or invasion to persist behind the initial wave front. In

the 3 stage epidemic model long range dispersal was of the form of young incu-

bating individuals dispersing to find a territory as an adult, and then becoming

infective. In the 2 stage epidemic it was of the form of an infective individual

travelling while still relatively healthy. In the predator prey model a predator

travelled a long distance. The frequency of the long distance dispersal events

was dictated by the success of the individual finding algorithm, so increased with

arena population. If , by dispersal, predators or infectives become established

in the region of resource recovery behind the wave front, new wave fronts form

behind the original, so repeating waves pulse through the arena. This effect is

robust to changing the distance the individual moves (as long as it can jump over

the region of resource depletion behind the wave front), the frequency of event

and changing the algorithm for finding whole individuals.
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14.4.3 Spiral Waves

It is already known that spiral waves form in the threshold or Allee effect for-

mulations of epidemic and predator prey model. The interest of spiral waves in

an ecological context is whether spirals can be formed by a natural process and

whether they can withstand the rigours of environmental and individual vari-

ability. A river which cannot be crossed, acting as a barrier while a wave front

travelled along one side of it, becoming periodically crossable (G. Ruxton, pers.

comm.), is a possible mechanism for forming a spiral in an ecological context. It

formed spirals in all three models. Spiral formation is not sensitive to the length

of the yearly cycle the river is periodic (over a critical length). The spirals are

robust to spatial heterogeneity if solitons are emitted by the patch, as in the

predator-prey model, but not if a wave front with a wake is spreading out from

the patch, as in the 3 stage epidemic model. Spirals maintain their integrity while

interacting provided the cores are not affected. Long range dispersal does not

affect spiral waves as the dispersing individual either lands on the wave itself or

in a trough, neither outcome altering the spiral dynamics.

14.5 Conclusions

The aim of this thesis was to remove a biological inaccuracy from some reaction-

diffusion models which represent ecological epidemics and invasions. The feature

to remove from the reaction-diffusion models is the ability for tiny populations

to grow as large populations do. This was removed from the models by the

addition of a threshold or an Allee effect, allowing no growth below a certain

density. It was important that there was some way to predict the dynamics of

the systems of the models. A semi-numerical method, the Shooting method, was

then devised to make these predictions. The success of the Shooting method was

only compromised by the limitations of the numerical integration method used

to deal with discontinuities in the growth function.

This initial success threw up another problem to be solved; in models that had
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oscillatory dynamics in the wake behind the wave front or limit cycles, if the

trough behind the wave front dipped to densities near those of the threshold,

the wave died pit behind the front, leaving a soliton wave. Although this may

occasionally occur in ecological systems, it is far from usual. So mechanisms

which would allow establishment of the invasion or epidemic behind the front

were looked for.

Both intrinsic and extrinsic factors were considered. Mobile individuals may oc-

casionally travel distances longer than those associated with diffusion. Spatial

inhomogeneities may cause formation of persisting patterns or local sources for

the invasion or epidemic. There may be seasonality in the contact or reproduc-

tive rates of the species concerned. All these ideas had some success at helping

establishment of the invasion or epidemic behind the wave front.

So the result of this work is that the models have been modified to be more

biologically realistic in two ways; by removing regrowth from low densities and

adding individual and environmental heterogeneities.

14.6 Further Work

Time has not permitted certain questions raised by this work to have been fully

investigated.

The reaction-diffusion models with no regrowth from low densities are hopefully

good approximations of stochastic models. The next step is to formulate stochas-

tic models to allow a direct comparison.

The initial innoculum in every simulation had to be large enough to spread out

without falling beneath the threshold. The relationship between the initial con-

ditions and the thresholds should be worked out, as this has implications both

for releasing locally extinct species and controlling pest species and epidemics.

Knowing the minimum size and shape the innoculum has to be to be successful

would also save computer time as some simulations of high threshold systems

have to be repeated to find the minimum innoculum.
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Inaccuracies in the Shooting method are laid at the door of the numerical in-

tegration package used to simulate the models. A program should be found or

developed which restricts the length of time steps so that the discontinuity is not

over stepped in either the simulations of the original or the transformed mod-

els. Such a program would be very computationally intensive and would take

a very long time to run simulations, but is necessary to simulate models with

discontinuities in value or slope.

In all the models considered in this thesis, only one component is mobile. This

is unrealistic in many systems. The properties of wave fronts in systems where

more than one component is mobile should be considered in a similar way to

those in the thesis.

Predicting the threshold value which turns a wave train or wave front with a wake

into a soliton has not been investigated in this thesis. An attempt was made for

the predator-prey model by (Gurney et al. 1998), but this was based on many

assumptions which do not always hold, even for the model it was devised for. A

bisection search could be written but would not be insightful into the processes

dictating this change in behaviour.

The critical patch size and shape has not fully been investigated in the models

with spatial heterogeneity. The critical period of time the river has to be crossable

to allow a spiral should also be investigated.

The spatially heterogeneous 3 stage epidemic model shows that patches of reduced

carrying capacity of susceptibles help the epidemic to persist behind the wave

front. If a 4 stage epidemic model were used, would vaccination in patches create

the same pattern?

One problem encountered while investigating the affects of long range dispersal,

spiral formation and seasonality on the predator-prey an 2 stage epidemic models

was that the choice of spatial and temporal scales was arbitrary. This may

mean that observed effects are artifacts of unrealistic parameterisation. The work

investigating persistence mechanisms for the 2 stage epidemic and predator-prey

models should be repeated with real parameter sets.
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In the last part, patterns were formed which were claimed to be possible results of

individual and environmental heterogeneities. If these patterns are to be looked

for in the environment, methods should be found to identify these patterns.
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Appendix A
Solutions of

dn

dz
= φ n(0) = n0 , (0.0.1)

d/φ

dz
= vRφ− g(n) φ(0) = φ0 (0.0.2)

are sought. This is equivalent to

d/φ

dn
= γ(n, vR, φ) φ(n0) = φ0 (0.0.3)

where

γ(n, vR, φ) ≡ vR −
g(n)

φ
. (0.0.4)

The solution of this system is represented by φ(n, vR, φ0) and φc(v) is defined

such that φ(n, v, φc(v))→ 0 as n→ 1−.

Equation (0.0.4) implies that

v1 > v2 ⇒ γ(n, v1, φ) > γ(n, v2, φ) , (0.0.5)

which in turn implies that, so long as φ(n, v1, φ0) > 0,

v1 > v2 ⇒ φ(n, v1, φ0) ≥ φ(n, v2, φ0) . (0.0.6)

Now 2 trajectories are considered, the first calculated with phi(n0) = φc(v1) and

vR = v1, and the second calculated from the same initial condition but with

vR = v2 < v1. The first trajectory hits (1,0). Inequality (0.0.6) shows that while

the first trajectory is above the N -axis, the second trajectory thus crosses the

n axis (φ = 0) at or to the left of (1,0). If it hits (1,0) then we know that

φc(v1) = φc(v2). If it crosses to the left of (1,0) then the phase plane analysis

shown in Figure 2.1c implies that to cause it to hit (1,0) we must use an increased

value of φ(n0), so φc(v1) < φc(v2). Hence, we know that

v1 > v2 ⇒ φc(v1) ≤ φc(v2) . (0.0.7)
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