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Abstract

A cycle has been suggested for the mid shore region of a moderately exposed
rocky shore at Port St. Mary, Isle of Man (Hartnoll & Hawkins, 1985). This
cycle consists of competition for space between the limpet, Patella vulgata, the
barnacle, Semibalanus balanoides, and the brown alga, Fucus vesiculosus. This

cycle is split into a number of constituent parts and modelled.

Two single species models of S. balanoides and F. vesiculosus are developed.
Basic analysis, including the derivation of steady states and stability boundaries,
are done on these models. The models are parameterised from the literature
and the mechanisms are investigated. Four types of dynamics are found: stable
underdamped; stable overdamped; point-cycles; and aperiodic solutions. The
mechanism driving the model is dependent upon the ability of a cohort to increase
in area over time. Thus, giving rise to a ‘speed of fill mechanism’ that is dependent
upon the settlement rate. Seasonality is investigated and a similar mechanism
is found, but only point-cycles and aperiodic solutions are observed. Settlement
is the main factor that drives these models, although the length of settlement

season appears to make little difference.

A two species model is created by linking the single species models and is pa-
rameterised from the literature. Steady states are derived, but are complicated
making inferences difficult to draw. Thus, the investigation of this model is done
by simulation. More complex dynamic are found, with stable equilibria of barna-
cles, stable equilibria of barnacles and fucoids, and periodic or aperiodic cycles
of the two species. The sub-models are settlement driven and oscillations can
be driven by one or both of the sub-models or the interaction between the two
sub-models. Parameters are estimated for the Isle of Man. Within the range of
parameter values individual cycle times and occupancy can be mimicked, but the
total cycle time is too short. This is because the time lag between the two species

is too short and requires implementation of seasonal stochastic recruitment.
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Chapter 1

An Introduction Rocky Shore
Ecology

1.1 General Introduction

1.1.1 What is a Rocky Shore?

A rocky shore is found at the boundary zone between terrestrial and marine sys-
tems. They occur in areas of moderate to extreme water movement where erosion
is more important than deposition. Rocky shores are good ecological systems to
study since they are essentially two dimensional. The community is composed
of largely sessile organisms competing for space and mobile organisms that only
move relatively small distances. This makes in situ description of and experimen-
tation on the rocky shore environment fairly easy (see for example, Moore, 1934;
Southward, 1956; Connell, 1959, 1961a; Hawkins, 1981a&b; Lubchenco, 1983;
Hawkins & Hartnoll, 1982a&b, 1983a&b; Underwood et al, 1983; Paine, 1984;
Sousa, 1984; and Chapman, 1986a&b, 1995).

A sharp gradient of environmental conditions is found from the low to high shore.
These conditions are associated with the amount of time that the area on the
shore is immersed by the sea. Thus, in a relatively short horizontal distance
the environment changes from essentially marine to terrestrial. However, the
organisms that inhabit rocky shores are thought to have evolved largely from
marine ancestors. Thus, the gradient can be thought of as uni-directional with
stress increasing with increasing shore height. This is known as the vertical
gradient. A horizontal gradient of conditions is also found and is associated with

the degree of exposure to wave action found at the site.



1.1.2 The Vertical Gradient

The vertical gradient of environmental conditions is found between the lowest
astronomical tide and the top of the wave splash zone. The largest tides, or
spring tides, range between mean low water springs (MLWS) and mean high water
spring (MHWS). The mean tidal level (MTL) is found at the vertical midpoint
of these limits. The mid-shore of mid-tidal level covers an area on either side
of MTL from about 2.5 to 3.5 meters above chart datum (see Hawkins & Jones,
1992, for a general review). The environmental gradient observed is due to the
physical stress on the mainly marine organisms as they are emersed. Organisms
living higher on the shore spend more time emersed and suffer greater stress from

desiccation.

The unidirectional nature of the gradient of environmental conditions and bio-
logical interactions cause zonation of organisms on sheltered and exposed shores
(Hawkins & Jones, 1992). Concentrating upon shores around the British Isles,
sheltered shores have a seaweed dominated community (see figure 1.1). As one
moves from the MHWS to MLWS distinct zones of Pelvetia caniculata, Fucus
spiralis, Ascophyllum nodosum and F. serratus are found. The position of F.
vesiculosus depends on the degree of exposure (Hawkins & Jones, 1992). On
exposed shores there is a filter feeder dominated community of barnacles and
mussels. Again as one moves from MHWS to MLWS distinct zones of Porphyra,
Chthamalus montagui, Semibalanus balanoides, Chthamalus stellatus and Mytilus

edulis are found.

There are a number of factors that determine the zonation of these plants and
sessile animals. High on the shore, upper limits of zones are caused by physical
factors (Schonbeck & Norton, 1978). However, lower on the shore the upper limit
of these zones can be caused by competition (Hawkins & Hartnoll, 1985) and
grazing (Southward & Southward, 1978; Underwood & Jernakoff, 1981). The
lower limit of these zones are caused by competition and predation, although in
a few cases physical factors are important, for example Pelvetia (Schonbeck &
Norton 1980a).

Mobile animals also have upper and lower limits to their zones. The upper limit
is set by unfavourable conditions occasionally killing an individual. Lower levels

are either set by predation or by competition with seaweeds for space.



1.1.3 The Horizontal Gradient

The horizontal gradient has the most impact on the community structure (Lewis,
1964). Tt is not a uni-directional gradient as found with the vertical gradient. For
example, with a higher degree of wave action there is a greater risk of dislodgement
from the rock, but in shelter there is a greater risk of being covered in silt (see
figure 1.1).

Exposure  Sheltered Shores | >Exposed Shores
Decreased Dislodgement Increased Dislodgement
Decreased Nutrients Increased Nutrients
Factors  Decreased Wetting Increased Wetting
Decreased Larval Input Increased Larval Input
Increased Silting Decreased Silting
Seaweed Dominated Patchy. Limpet, Barnacle and
Community Fucus spp. and Barnacle, Fucoid Mussel Dominated.
Ascophyllum, and limpet patch Community Animal
Few Limpets and mosaic Dominated.
Barnacles

Figure 1.1: Diagram to represent the changes in stress associated with increasing
exposure to wave action and the result in terms of community structure on N.E.
Atlantic shores (modified from Raffaelli & Hawkins, in press).

The degree of exposure to wave action is difficult to assess. It can be measured
using biological exposure scales. These give shores an exposure rating by looking
at the community with special attention given to a number of indicator species.
The two best examples of these scales were developed by Ballantine (1961) and
Lewis (1964). Biological scales differ from circularity scales if they are used to
study the biota themselves. Map based methods have been used to rank shores

and direct physical methods are also possible.

The communities found at different degrees of exposure in the British Isles are well
documented (see figure 1.1). The community structure is observed to change from
an algal dominated community at sheltered places to an animal dominated shore
in exposed places. At an intermediate degree of exposure the community structure
appears to be a mix of these two communities with a mosaic of limpets, barnacles
and seaweed. An example of a moderately exposed British rocky shore is the
ledges at Kallow Point, Port St. Mary, Isle of Man. Much work has been done
on this shore. The balance of the community structure was first investigated by

Jones (1948) when he removed limpets from a five metre wide strip and observed



a massive increase in the biomass of algae on this strip. He suggested that
the balance was between the limpet, Patella vulgata, and algae. Burrows &
Lodge (1950) noted that the presence of barnacles also had an effect on the
stability of the system. Thus, the instability of the system was noted and further
investigations were carried out (see for example, Southward 1956, 1964; Hawkins,
1981a&b, 1983; Hawkins & Hartnoll, 1980, 1983a&b; Hartnoll & Hawkins, 1980,
1985).

A cycle was proposed for the mid-shore region of this shore by Hartnoll & Hawkins
(1985) (see figure 1.2). They suggested that both deterministic processes and
stochastic events are involved in the cycle. For example, recruitment is a stochas-
tic process and competition for space or grazing are deterministic events. Hawkins
et al (1992) revised this theory and suggested that stochastic events initiate the
cycle, for example escapes from grazing, but deterministic processes control its
progression. In this cycle they propose that fluctuations in the abundances of
Semibalanus balanoides (barnacle), Fucus vesiculosus (seaweed) and Patella vul-
gata (limpet) are linked to the abundances of the each other. Two other species
play a minor role in this cycle. Nucella lapillus is a dogwhelk and preys upon
adult barnacles (Connell, 1961a; Dunkin & Hughes, 1984). Actinia equina is a
sea anemone and occupies space in shelter provided by the seaweed canopy. This
cycle can be viewed as a successional sequence that never reaches a stable end

point (see figure 1.2).

The Cycle

In stage one dense barnacle cover disrupts limpet grazing and barnacle settlement
is enhanced by conspecifics (Lewis, 1977). Stage two shows dense adult barnacle
and decreased limpet grazing because of seabird predation (Feare & Summers,
1985), storm strewn boulders (Southward, 1956) and aggregation of limpets else-
where (Hartnoll & Hawkins, 1985). Decreased grazing pressure increases the
likelihood of seaweed ‘escapes’ (Hawkins, 1981a&b). An escape occurs when a
seaweed gets to a length of three to four centimeters and is then largely unaf-
fected by P. vulgata grazing (Burrows & Lodge, 1950; Hawkins, 1979; Hawkins
& Hartnoll, 1983a&Db). Stage three has fucoid clumps growing on the barnacle
matrix. Limpets tend to aggregate under these clumps and thus grazing pressure
is reduced elsewhere on the shore allowing more ‘escapes’. The barnacle matrix
is smothered by the fucoid algae and dies. The fucoid algae growing on the dead

barnacle matrix is now insecurely attached (Proud, 1994) and plants are ripped
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stages in the cycle. The circles are intrinsic biological processes generating and

medium-exposed rocky shore in the Isle of Man. The numbered rectangles are
maintaining the cycle.

of named species either promotes (solid arrows) or inhibits (open arrows) the
progress of the cycle. Settlement and recruitment from the planktonic phase is
asterisked. Reproduced from Hartnoll & Hawkins (1985) figure 7.

Figure 1.2: Simplified diagram to represent the cycle in the mid-tide level of a



off the rock in storms. Stage four shows the thinned old fucoid plants, very few
barnacles as N. lapillus aggregate under the canopy and predate upon the re-
maining adult barnacles. The high densities of limpets under the canopy prevent
fucoid recruitment. As there is no recruitment to the fucoid population when the
old plants die there are no juveniles to replace the adults and stage five is reached.
Stage five has very few barnacles, no fucoids and aggregated limpets. Gradually
the limpets disperse leading to stage six in the cycle which is essentially bare
rock. This cycle can be in different stages at different places on the shore and
this gives the shore the appearance of a patchy mosaic of limpets, barnacle and

fucoids with up to forty percent free space (Hartnoll & Hawkins, 1985).

It has been suggested that the balance of barnacles, fucoids and limpets on mod-
erately exposed shores follow population fluctuations and the amplitude of these
fluctuations is determined by the degree of exposure to wave action. Small ampli-
tude cycles are found at both ends of the scale. Southward & Southward (1978)
suggested that very sheltered and very exposed shores changed very little over
time. However, moderately exposed shores exhibit large amplitude cycles with
the balance shifting between the different components in the system due to bi-
ological interactions prompted by recruitment fluctuations. A conceptual model
of proposed barnacle and fucoid cover at different degrees of exposure emphasises
the different amplitude of the cycles (see figure 1.3) (Hartnoll & Hawkins, 1985).

Other examples of this type of interaction on moderately-exposed shores have
been described both in the British Isles and worldwide. Baxter et al, (1985) ob-
served a similar cycle in the Orkney Islands. On the East Coast of the United
States there are no patellid limpets and the main grazer is Littorina littorea.
Vadas & Elner (1992) noted L. littorea shows great variation in density over
short distances and escapes occur in areas of reduced density. They also ob-
served annual colonisation cycles of bare rock by barnacles and green ephemeral
algae. Underwood et al (1983) looked at the dynamics of a mid-shore community
in New South Wales, Australia. They found that algae prevented the recruitment
of barnacles and that the arrival of barnacles has a subsequent effect upon the
predators. They suggested that these effects varied in both time and space due to
recruitment fluctuations. Dungan (1986) studied a three way interaction between
the barnacle, Chthamalus anisopoma, encrusting algae, Ralfasia, and the limpet,
Collisella, near Puerto Peniasco, Mexico in the Gulf of California. Carter & An-
derson (1991) looked at the interaction between barnacles, limpets and Gelidium

pristoides in the eastern Cape, South Africa. They found that the distribution
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Figure 1.3: A model of barnacle cover plotted against fucoid cover in different
degrees of wave exposure. Reproduced from Hartnoll & Hawkins (1985) figure 6,
modified from Southward & Southward (1978).

of G. pristoides was dependent upon the presence of limpets and the security of

attachment, ¢e whether attached to rock or barnacles.

1.2 The Barnacle

Barnacles are sessile marine invertebrates. They are members of the phylum
Arthropoda, sub-phylum Crustacea and class Cirripedia. Barnacles are filter
feeders using the cirral net to filter particles of suspended organic matter from
the water column. They are of great economic importance as a number of com-
mon shallow water and intertidal species are responsible for fouling the hulls of
ship and coastal installations worldwide. They have also been used as indicator
species for global warming (Southward, 1991). For these reasons considerable re-
search has been carried out on barnacles since the 1940s. Some of the classic work
has been done by authors such as Barnes, Connell, Crisp and Southward. More
work on the interaction of barnacles within the community has be done by authors
such as Dayton, Hawkins, Lubchenco, Menge, Paine and Sutherland. More re-
cently mathematical modelling of barnacle populations has been done by Bence,

Iwasa, Kuang, Nisbet, Possingham, Roughgarden and So (see below). This is



because barnacle populations are essentially open populations with space-limited
recruitment, as they have a planktonic larval phase. Thus, new theory was re-
quired as these populations cannot be modelled using traditional Lotka-Volterra

population models.

Lewis (1964) stated that barnacles were the most characteristic and dominant
organisms of the eulittoral zone throughout the world. He also suggested that
the barnacles were restricted in distribution by competition and adverse physical
conditions. Thus, barnacles are limited to moderately-exposed shores, flat very
exposed shores and vertical rocks where the competition for space is less (Connell,
1961a). On the high shore there is less predation and competition for space, but
dessication stress and decreased food supply causes increased mortality and sets
the upper limit. On the low shore there is intense competition for space with
algae and more predation. The lower limit of the barnacle has been described
as equal to the upper limit of laminarians (Lewis, 1964) or the red algal turfs
(Ballantine, 1964).

In Britain there are four major species of intertidal barnacle Chthamalus mon-
tagui, Chthamalus stellatus, Semibalanus balanoides and Elminius modestus. Bal-
anus perforatus can also be locally common in the south and west. All four species
exhibit different distributions because of different larval dispersal, development,
settlement (Burrows, 1988; O’Riordan, 1992) and juvenile mortality. The species

of interest in this project is S. balanoides.

Much attention has recently been focused on barnacles because of their impor-
tance in structuring communities. This has been investigated experimentally in

the field and more recently by modelling (Roughgarden et al, 1985).

1.2.1 Semabalanus balanoides

The strong preference of S. balanoides for the intertidal zone was first noted
by Darwin (1854). Individuals are distributed between mean low water neap
(MLWN) and mean high water neap (MHWN) (Stubbings, 1975). It is a boreo-
arctic species and is distributed widely across the North Atlantic and Western
Europe (Stubbings, 1975). S. balanoides, previously called Balanus balanoides,
has been researched greatly. However, two problems are associated with the
literature. Firstly, much of it is scattered and old so may be difficult to locate.
Secondly, it is location specific, for example data for settlement, growth rates and
mortality of S. balanoides found on the North East coast of the USA are likely



to be very different to that for the West Coast of Britain.

The life history of S. balanoides is fairly complicated. Adults mature at the
age of 2+, although a small proportion breed from the 1+ age-class (Arnold,
1977). Adults may live to as old as five on the high shore (Stubbings, 1975). S.
balanoides is hermaphrodite and fertilisation is internal. The adults produce one
brood of eggs per year (Barnes & Barnes, 1968). Each individual can produce
between 400 and 8000 eggs in a single brood (Barnes and Barnes,1968). However
the water temperature must drop to below twelve centigrade for several weeks to
trigger fertilisation. Fertilisation takes place in autumn and then eggs are brooded
internally until spring (Stubbing, 1975). Eggs hatch and larvae are released in
the period from March to April (Crisp, 1964; Stubbings, 1975).

The hatched nauplii are released into the water becoming planktonic. These then
develop through six feeding naupliar stages before a non-feeding cypris larva is
produced (see Stubbings, 1975 for a general review). This development lasts for
18 to 30 days dependent up on the water temperature (Harms, 1984). Cyprids are
the settling stage of S. balanoides. The larvae become photonegative and swim
down through the water column. When substrate is located cyprids will only
settle with the appropriate settlement cues (Knight-Jones & Stevenson, 1950;
Knight-Jones, 1953; Lewis, 1977; Barnett & Crisp, 1979; Wethey, 1984), for
example, arthropodin, water currents, rugotropism, light and gravity are all im-
portant cues (see Lewis, 1977, for a general review). The density in which cyprids
settle is limited by the supply of larvae or the space available for settlement (Con-
nell, 1985). Once settled the cyprids metamorphose into the adult form of the

barnacle

1.2.2 Settlement

As far back as the 1950s various authors were aware of the importance of recruit-
ment in the structure of rocky shores. This thinking was formalised and larval
biology was given the name ‘Supply side ecology’ (Lewin, 1986). Underwood &
Fairweather (1989) described the advent of ‘Supply side ecology’ as ‘old wine in a
new bottle’. Since then there has been increasing investigation of both settlement
and recruitment of barnacles, because these processes are thought to determine

community structure (see, for example, Roughgarden et al, 1985).

Measurement of actual settlement is difficult as cyprids are only about 1 mm in

length. Settlement densities are very variable and regional, local and temporal
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variation in density can occur (Caffey, 1985; Gaines et al, 1985; Wethey, 1985;
Raimondi, 1990). Supply of cyprids has been correlated with strength of onshore
winds (Hawkins & Hartnoll, 1982), maximum tidal range (Shanks, 1986), and
increasing with increasing wave action and decreasing shore height (Bertness et
al, 1992). This variation in settlement gives a pattern with many peaks. Various
hypotheses have been put forward to explain these peaks but the process is not
yet understood (Wethey, 1985).

When settlement density is high cyprid settlement density is directly correlated
to the area of bare rock (Minchinton & Scheibling, 1993) and discrete cohorts
are observed on the shore. However, when settlement density is low cohorts are

mixed and vacant space is abundant for Balanus glandula (Roughgarden et al,
1985) and S. balanoides (Hawkins & Hartnoll, 1982a).

1.2.3 Growth

Growth has been widely researched. It is influenced by both abiotic factors such
as water temperature, and biotic factors such as density of adults. The first
studies on the growth and flow rate of S. balanoides were carried out by Moore
(1934). In general growth rate is affected by age, season, shore level, degree of
exposure (Moore 1934) and algal cover (Barnes, 1955). Most factors affect the
growth rate by modifying food intake. This can be done by either reducing the

water motion around the barnacle or interfering with its cirral net.

Generally younger individuals have a higher growth rate than older ones. Growth
rate increases with decreasing shore height in the first year. However, in the
second year growth rate on the high shore has been reported as being higher
(Moore, 1934). Growth is seasonal and is higher in summer when the particulate
matter in the water is high. Individuals immersed for longer tend to have a higher
growth rate, but do not live as long (Barnes and Powell, 1953). Specimens can
grow up to a mean of 25.8 mm in shell length (see figure 1.4) on the high shore
(Barnes & Powell, 1953). Size at the end of the first season varies with height on
the shore and latitude (Crisp, 1960).

1.2.4 Mortality

There are many causes of mortality both biotic and abiotic (see table 1.1). Recent

studies have concentrated on predation, disturbance and competition as causative
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Lateral axis (width)

Tezal-scutal axis (shell length)

Figure 1.4: Measurements used for growth studies of barnacles

agents in distribution patterns and community structure (Connell, 1983; Sih et
al, 1985).

Predation of S. balanoides is an important source of mortality. One of the main
predators of S. balanoides is N. lapillus, but only eats larger individuals (Con-
nell,1961a; Dunkin and Hughes, 1984). Overcrowding can lead to hummocks of
barnacles (Barnes and Powell, 1950). This is because the limited resource on
rocky shores is generally space. Thus, when little space is available hummocks
are formed which are more susceptible to dislodgement (Barnes and Powell, 1950;

Shanks & Wright, 1986). Mechanical damage is also an important source of mor-

Table 1.1: Causes of barnacle mortality.

Abiotic ‘ Biotic ‘ Anthropogenic
Dessication Hummocks (Shanks Oil spill and
& Wright, 1986) toxic dispersants
(Southward and
Southward, 1978;
Southward, 1979)
Increased Limpet bulldozing Shore trampling
Wave Action (Miller & (Bally &
Carefoot, 1989) Griffith 1989)
Storms Algal over-

growth (Proud, 1994)

Low temperature
starvation
(Southward, 1955)

Algal cover
(Barnes, 1955)

Predation
(Connell, 1959)
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tality. For example, tests of adult barnacle can be damaged by rocks in storms
and juvenile barnacles can be dislodged by feeding limpets (Hawkins, 1983; Miller
& Carefoot, 1989).

Density dependent mortality has been suggested to occur in two situations. Con-
nell (1985) suggests mortality is density-dependent for the first two weeks after
settlement if the settlement is high. Density-dependent mortality has been ob-
served when the competition for space is high, for example hummocking mortality
(Shanks & Wright, 1986).

1.3 Brown Algae

The brown algae or the phaeophyceae are found commonly in the rocky intertidal

and subtidal zones world wide. The members are classified as:

Kingdom: Plantae
Division: Chromophycota

Class: Phaeophyceae

Brown algal stands are often described as naturally occurring monocultures. How-
ever, Paine (1984) argues that these stands are not true monocultures because
epiphytic species, especially microalgae may occupy up to 20 % of the space.

Thus, Paine (1984) defines monoculture as

‘..at least 80 % space occupation by
a single species”. Monocultures are dense populations with interactions between
individuals for resources. This implies that intraspecific competition within these

stands can be intense and the affect on individuals can be profound.

Monocultures of brown algae lead to the formation of a canopy of adults. This
affects juvenile fucoid recruitment by altering the environment (Burrows & Lodge,

1950; Dayton, 1971). This happens in a number of ways:

1. A much lower light intensity is found under an adult canopy. In fact 98%
of the incident light can be absorbed by the canopy (Schonbeck & Norton,
1980a).

2. Lower nutrient levels are found under the canopy. This could either be as a
direct effect of the adult plant (Dayton et al, 1984) or indirectly as a facet

of decreased water movement under the canopy.
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3. Whiplash and sweeping effects of adults cause density-independent mortal-
ity of juveniles (Dayton, 1971; Ang, 1985).

4. Sediment build up can swamp juveniles (Kennelly, 1989).
5. Scour (Ang, 1985).

6. Aggregation of grazers under the canopy (Hartnoll & Hawkins, 1985).

Harper (1967) stated that “When the carrying capacity is reached then the form
or size of a plant may be modified without mortality taking place”. He called this
a plastic response. The brown algae have a high degree of plasticity and therefore
have a vast range of potential shapes and sizes (Russell, 1986). The final size
and shape of a plant is determined by genetics, form changes from juveniles to
adults, reproduction and the environment. The final shape of the plant has been
described as “a compromise of the range of forms and the form permitted by the
environment” (Norton et al, 1982). Increasing plasticity is found with increasing

density.

The brown algae have a very large variation in size. The average gamete is 10 to
20pm and adults range from 15 cm to 50m in length. Vadas et al (1992) suggested

that brown algae have a change in size of about 5 orders of magnitude.

1.3.1 Fucus vestculosus

F. vesiculosus is an important component of intertidal communities on British
and other northern temperate shores (Knight and Parke, 1950; Keser et al, 1981;
Chapman, 1990a). It is found predominantly in even aged monospecific stands.
It is most commonly found on the mid-shore region of moderately exposed shores.
The population structure of F. wvesiculosus is positively skewed with respect to
plant length. This implies a population with a few large adult plants and many
juveniles (Knight & Parke, 1950; Burrows & Lodge 1951), ie a canopy.

The Fucus genus is a complex of species, subspecies, hybrids and ecads, and
F. vesiculosus is no exception (Burrows & Lodge, 1950). The many different
morphs of F. wvesiculosus makes identification very difficult. For example, F.
vesiculosus evesiculosus has no gas bladders and F. vesiculosus var linearis can
only be separated from F. spiralis by lack of twisting and possessing no sterile

margin of the fruiting bodies (Hawkins & Jones, 1992).
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The life cycle of F. vesiculosus can be seen in figure 1.5. It has a diploid sporo-
phyte with haploid gametes. Fertilisation is external with synchronous release
of gametes (see South & Whittick, 1987, for a general review). There is a short
dispersal phase in their life cycle. Dispersal distances to my knowledge have not
been measured for F. vesiculosus, but distances have been found to be short in

other fucoids, for example F. serratus (Arrontes, 1993).

Mature Sporophyte——\
— (diploid)

Embryonic sporophyte Receptacles (frond tips)
(diploid)
/ Conceptacles
Zygote (oogonia and antheridia)
(diploid)
Ova Oogonium
/ (haploid) (haploid)
Sy nogamyw
Sperm Antheridia
(haploid) (haploid)

Figure 1.5: The life cycle of F. vesiculosus. Reproduced from South & Whittick
(1987).

Various aspects of the population dynamics of F. vesiculosus have been studied.
However, Chapman (1986b) stated “Nearly all the demographic studies of sea-
weed populations (single species) have been reported since 1980” and that “...little
attention has been given to the ecology at an organismic level”. Although sparse,
studies on observed dynamics of F. vesiculosus have been carried out (Knight &
Parke, 1950; Keser & Larson, 1984; Creed, 1993). However, research has concen-
trated on population interactions with other algal species (Hawkins & Harkin,
1985; Chapman, 1990a) and population interactions in a multispecies community
(Hawkins, 1981a&b; 1983). For example, Hawkins (1983) found that recruitment
of S. balanoides under a F. vesiculosus canopy was much less dense than without

a canopy.

The longevity of F. vesiculosus has only been mentioned in a few papers as algae
are generally difficult to age (Cheshire & Hallam, 1989). Knight & Parke (1950)
suggested individuals of F. vesiculosus can live for 3 to 4 years and that in Devon
an area of 1m? can support a biomass of 6.74 kg. Keser & Larson (1984) suggested

a longevity of F. vesiculosus of between 2 and 4 years.
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1.3.2 Settlement

Most seaweed populations reported only investigate plants of visible size allowing
the possibility of seed banks (Hoffmann & Santelices, 1991). Creed (1993) states
that F. vesiculosus on the Isle of Man has a seed bank, with a maximum of 26,000

individuals per m?2.

F. vesiculosus is a highly fecund species. Large individuals may have 1000 recep-
tacles with maximum of 3269 eggs per receptacle. Thus there is a possibility of
over three million eggs from a single large plant (Knight & Parke, 1950). Gamete
release is between May and July and release is one month earlier in Devon than
the Isle of Man (Knight & Parke, 1950).

If settlement is sufficiently heavy then competition for space is important. There
is insufficient space to support settlement of more than 43,600 germlings per m?
(Keser & Larson, 1984). Germlings are not visible to the naked eye until 2 weeks
after settlement (Knight & Parke, 1950).

The presence of a dispersive phase in the water column in the life cycle of F.
vesiculosus provides a similar scenario to the barnacle settlement. This dispersive
phase generates temporal, seasonal and regional variation in settlement densities.
However, the dispersal is not generally as far as that found for barnacles, as the
gametes are immediately viable. In fact often propagules are only transported a
short distance from their parents (Deysher & Norton, 1982; Arrontes, 1993).

1.3.3 Growth

Growth is characterised by large variation in rates both within and between sites.
Seasonal variation is found with slow to moderate growth rates in winter and
spring and rapid growth in summer and autumn (Keser & Larson, 1984). A
problem is found with a number of studies of growth where authors have assumed
that the oldest plants were the longest(for example, Knight & Parke, 1950). In
the first year increase in length seems to be uniform regardless of time of year
settled (Keser & Larson, 1984). Some experimental growths rates can be seen
in table 1.2. Dring (1982) gives relative growth rates of 0.015, 0.017 and 0.024

g.g~'.d=" for high, medium and low shore F. vesiculosus respectively.
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Table 1.2: Growth Rates for F. vesiculosus. (Source Keser & Larson, 1984)

Growth Rate ‘ Location ‘ Source
25-33mm.mo ! France Lemoine (1913)

28mm.mo~' | Great Britain Knight & Parke (1950)
15-21lmm.mo~" | Maine. USA Keser & Larson (1984)

6-10mm.mo~" Norway Printz (1959)
16-32mm.mo™" Canada Breton-Provencher et al(1979)

1.3.4 Mortality

There are data available for age-specific survivorship (see table 1.3 reproduced
from Knight & Parke, 1950). Mortality is especially high when individuals are less
than 3cm in length due to grazing pressure. Parke (1948) showed an exponential
decline in the number of Laminaria saccharina plant almost to zero in a 24
month period. Mortality of large plants is higher in winter due to ice damage
and storms (Keser and Larson, 1984). It is possible that different curves are
applicable at different stages of development (see for example Gunhill, 1980).
Despite knowledge that different curves are applicable, most studies are done

using tagging methods which do not work on small individuals (Creed, 1993).

Table 1.3: The composition of Fucus populations in year classes on the Devon
and Manx coasts. Reproduced from Knight & Parke, 1950, table VIII

Population (%)
Station 1%t year 2nd year 37 year
Devon
Normal population 100 o7 17.3
Experimental Population 100 33.8 5.0
Isle of Man
Normal population 100 30.8 10.0
Experimental Population 100 31.4 9.5

There have been numerous studies of survivorship and all types of curve have been
found (see for example Chapman & Goudey, 1983; Santelices & Ojeda. 1984).
Creed (1993) commented on the confusion in the interpretation of the different
curves and cited Chapman (1986b) as an example. This is because arithmetic
and logarithmic plots have been used by authors and should be interpreted in
differently (Creed, 1993). Harper (1977) constructed depletion curves and from
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these Chapman (1986a) suggested that age-specific survivorship schedules cannot

be constructed.

Partitioning mortality into its component sources is very difficult. Generally this

is not attempted and the overall mortality rate is measured (Chapman, 1986b).
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Chapter 2

A General Introduction to
Modelling

2.1 What is Modelling?

In the last 20 years mathematics has increasingly become an integral part of bi-
ology as it becomes more quantitative. As a result biomathematical modelling is
now utilised as a research tool with powerful, well developed techniques. How-
ever, it is not the miraculous technique that many believe can prove or disprove
biological theory. This is because biology does not have rigid theory and thus
mathematics cannot provide a complete solution on its own. The limitations of
modelling must be recognised and techniques applied accordingly. For example,
even if the dynamics produced by a model are exactly the same as the data set
that it is tested against, this does not necessarily imply that the mechanism that

predicts these dynamics is correct.

A ‘good’ model has the minimum number of parameters and still produces all the
dynamics exhibited by the data set that it is tested against. This allows more
analytical techniques to be used. Then inferences can be drawn about the mech-
anisms governing the system, which can be used to construct new hypotheses
for the experimental biologists to test (Murray, 1993). These experiments will
support or undermine the present biological theory. Thus, any model that stim-
ulates experiments is successful, regardless of predicting the correct mechanisms.
In fact modelling can be useful if the model is formulated with an appreciation
and understanding of the biological problem; a realistic mathematical represen-
tation of the biological phenomena; finds useful qualitative solutions; and, most

importantly, biological insight and predictions are formed from interpretation of
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the mathematical results (Murray, 1993).

Nisbet and Gurney (1982) suggested that there are 3 general types of model.

These are:

1. Tactical - a model which yields accurate short term predictions.

2. Strategic - simple mathematical models that aim to identify ecological

principles by asking the question “Could it happen?”.

3. Testable - models of laboratory or field data.

2.2 Structured Population Models

Structured population models (SPMs) are models where individuals are divided
into classes according to their state. Individuals are able to move between states
and interact with individuals in other states, as well as responding to the birth-
death dynamics. A clearly defined set of rules govern the transition between
the compartments describing the births, deaths, immigration, emigration and
interactions. These are written as either a system of difference or differential

equations.

SPMs can be discrete or continuous (see section 2.3), deterministic or stochas-
tic (see section 2.4) and may involve time delays. However, the more biological
realism incorporated the more complex the model becomes, making analytical
solutions harder or impossible to find. Simple models can have exact analytical
solutions, but if not, simulation allows investigation of the model. The main way
of investigating the dynamics of a deterministic model is by stability analysis.
This analysis can be local or global. Local stability analysis is done by investi-
gating the behaviour of an infinitesimally small perturbation from a steady state
using local linearisation. The results of this analysis give the dynamics of a model
as it approaches equilibrium. For example, it is possible to predict if an equilib-
rium is overdamped or underdamped and the long term behaviour of a solution,
ie whether the solution is stable or unstable (see Gurney & Nisbet (in press) for
a review of local stability analysis). The theory of global stability analysis is far
less complete. Global stability analysis examines the stability of an equilibrium
to a perturbation of any size. However, the mathematics required to do global
stability analysis are complicated and can only be done for very simple models.

An example of global stability analysis is found in Kuang & So (1995). Nisbet &
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Gurney (1982) suggested that in many cases local stability analysis is sufficient

as it will hold for larger perturbations.

2.3 Discrete and Continuous Models

Discrete models use an update rule that relates the future state to the current
state of the system. This is done using difference equations which forecast the
systems state at equal time intervals. The validity depends on the accuracy of

the update rule and the precision of the initial conditions.

Continuous models use an update rule that relates the rate at which a system
is changing using differential equations. They are able to forecast the state of a
system at any point in time. However, when simulated a discrete approximation
has to be used where a sufficiently small time-step is chosen, such that changing

it does not effect the behaviour of the model.

SPMs can be discrete or continuous. One way of structuring a model is to split
the individuals into classes of different age. This is known as an age-structured
model. Discrete age-structured models use a time interval that is equal to the
age-class width. This is important as it allows the distribution of a cohort to
move through the age-structure without changing shape. Changing the age-class

width in discrete time models can effect the behaviour of the model.

The classic demographic model, the Leslie matrix model (Leslie, 1945; 1948) gives
rise to discrete age-structured models. Although the matrix notation is better for
analysis, it is sometimes easier to view these models as a series of equations. If
Ney is the number in age-class a at time ¢, S, is the survivorship from age-class
a — a + Aa in the time interval ¢ — ¢t + At, and Aa and At are the age-class
width and time interval respectively (Aa = At), then

NatAat+rat = OaiNayt (a > 0).

If B,; is the individual fecundity in the interval ¢ — a + Aa at time ¢t — ¢ + At

then the renewal equation is

not+at = ZBa,tna,t-

all a
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There is a similar argument in the construction of continuous time age-structured
models. However, there are two problems. Consider what happens as Aa — 0,
this causes the number of age-classes to tend to infinity and n,; — 0. The
solution to this problem is to let density per unit age vary with time and age
(f(a,t)) rather than numbers. The other problem is that it is difficult to obtain
a function in continuous time for the aging process, as all individuals must age at
the same rate and suffer mortality. The solution to the second problem is to use
the McKendrick von Forester equation for continuous aging. This states that, if

d(a,t) is rate of mortality of an individual of age a at time ¢, then

of of
L = =L _5(a,t)f(a,t).
L S s
If B(a,t) is the rate at which offspring are produced, then the renewal condition

is

[0, = [ Blat)f(a,t)da.

all a

Simulation of continuous time models requires a discrete approximation to the
continuous process, as the age-class width must be greater than zero. The age-
class width is chosen so it is sufficiently small that changing the width does
not affect the behaviour of the model. Simulation of the aging process is much
more complicated than for discrete time models, as it requires implementation
of the McKendrick von Forester equation. This can be done using a number of

techniques, for example the escalator box cart method (see De Roos, 1989).

The choice of whether to use discrete or continuous models to examine the be-
haviour of a system is not easy and is fairly subjective. There are times when the
choice is obvious, for example the automatic choice for modelling a system with
discrete generations and constant mortality is a discrete model. Usually a tradeoff
is found. The computational power required to simulate a continuous time model
is far greater than the analogous discrete time model. This is because of having
to use an implementation of the McKendrick von Forester equation. However,
this ease can only be justified if the model is easy to analyse (as analyses of dis-
crete models is more difficult) and carefully formulated. Discrete models must be
formulated carefully as it is easy to incorporate artifactual dynamics not found in

the continuous model. This is especially problematic when one of the processes is
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not constant in continuous time. For example, density-dependent mortality is not
a constant death process and could cause a discrete formulation to be non-viable.
If a model is required for a system with overlapping generations of several species,
then all the processes are in continuous time. At this stage the choice is a matter
of convenience and personal preference. Again the formulation of these types of
models in discrete and continuous time must be careful, as they must represent
the same model. The discrete form of the model may not be a direct analogy to
the continuous form, for example see discrete and continuous form of the logistic
described in Nisbet & Gurney (1982). The forms are not analogous when there

is no analytic solution to the continuous time model.

Neither the discrete nor continuous formulation of any model has been more
successful in the literature. Thus, the choice of discrete or continuous time age-
structured model is largely dictated by the nature of the problem and personal
preference. For a full description of discrete and continuous age-structured models

see Chapters 2 and 7, Gurney & Nisbet (in press).

2.4 Deterministic and Stochastic Models

Deterministic models produce the same dynamics when the same parameter sets
are used. The phrase comes from the Greek philosophical doctrine of determinism
that states “...all events including human actions and choice are fully determined

by preceding events and states of affairs, so that freedom of choice is illusory”.

A stochastic process is the basis of a stochastic model and is defined as “...involv-
ing a random variable successive values of which are not independent”. Stochastic
models are based upon probabilistic rules that make use of pseudo-random num-
bers. These pseudo-random numbers are used to determine events occurring at
time points in the future generated by the current state of the system. A number
of simulations are done to produce a sample, which is analysed statistically to
give a single trajectory with limits. The use of the pseudo-random numbers is
supposed to mimic the random fluctuations in nature and determine the conse-

quences of rare events that would not be predicted by deterministic models.

Both stochastic or deterministic models must be used to gain the maximum
knowledge about the system being modelled. In fact, Renshaw (1993) stated

that “...slavish obedience to one technique can lead to disaster”.

Deterministic models are supposed to produce the ‘average’ trajectory of the
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stochastic sample. This is not always the case. If the model has high population
numbers, then deterministic models may enable sufficient knowledge to be gained
about a system (Renshaw, 1993). However, if the population becomes close to

extinction then stochastic analyses are essential (Renshaw, 1993).

Analysis of stochastic models is far more complicated than deterministic models.
In fact, stochastic models have to be very simple for any analyses to be done.
Thus, only simulation can be used to investigate many models, which makes
the mechanism driving dynamics more difficult to understand. This suggests
that there is a possible tradeoff between deterministic and stochastic models. If
population numbers are not close to extinction then deterministic models can be
used in preference. However, when the population comes close to extinction there
is a tradeoff between the knowledge gained from stochastic models and lack of

analysis.

2.5 Thesis Outline

There are a number of objectives of this project. The main objective is to build
and understand the behaviour of sub-models of the system found on the mod-
erately exposed shore at Port St. Mary, Isle of Man (see figure 1.2). Once the
dynamics of the simple cases of the deterministic single species models are un-
derstood, then reassess the assumptions of the model and look at the behaviour
of these sub-models with slightly more realistic assumptions. These sub-models

will then be joined to produce a model of two interacting species.

In Chapter 3 a discrete time age-classified model of the colonisation of bare rock
by the barnacle, S. balanoides, in a constant environment is examined. This
model is a variant of the one produced by Roughgarden et al (1985), which
assumes an open system with space-limited recruitment. The behaviour of the
model with both linear and logistic growth is investigated using steady states,

various stability criteria and simulation.

In Chapter 4 a similar model of the colonisation of bare rock by F. vesiculosus
in a constant environment is constructed. However, a discrete time size-classified
model is used, as seaweeds have plastic growth, and assumes an open system with
space-limited recruitment. The dynamics of the model are examined using steady
states, local stability and simulation. An attempt was made to parameterise the

model of F. vesiculosus from the literature and the dynamics are re-examined.
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In Chapter 5 the most advanced cases of the models produced in Chapters 3 and
4 are examined in a seasonal environment. This is done by incorporating distinct
settlement periods into the models. As propagules of F. vesiculosus remain viable
for a time after production, the presence of a seed bank is assumed, in a similar
way to that found in terrestrial systems. Phase locking as a possible mechanism
for the behaviour of the solutions is investigated. Different lengths of settlement

period are used to look at variation in settlement strength.

In Chapter 6 the size-classified model of F. vesiculosus and the age-classified
model of S. balanoides are combined to produce a two species model. This dis-
crete time model assume that F. vesiculosus inhibits S. balanoides settlement
and that S. balanoides enhances the settlement of F. vesiculosus. The model is
parameterised between limits using values from the literature, in order to target
simulation. The dynamics are investigated using simulation. The model is then
fitted to limits suggested for the cycle at Kallow Point, Port St. Mary, Isle of
Man.

In Chapter 7 the main findings of each of the models are reviewed and the bi-
ological inferences are re-examined. I also suggest additions to the model that
will make the dynamics of the models produced more realistic, problems with the

data sets used and where this fits into current research.

2.6 Techniques

So far in this Chapter we have considered a few of the many possible modelling
techniques. In Section 2.5 the thesis outline only describes the use of one general
category of model, this is a deterministic structured population model with space-
limited recruitment. In this section we ask ‘Why use only this particular type of
models?’. The answer to this question hinges on 2 main factors. Firstly, what
these models will be used for and the training behind this M.Phil.. Secondly, the
tradeoff between which models incorporating the most biological realism (and

thus more complex) and the ability to understand the dynamics (De Roos, 1989).

The future of these models has to be considered before a discussion of the tech-
niques can occur. This project has been used as a starting point for a biologist
who was interested in learning modelling from the mathematicians point of view.

Thus, an investigation of the basic techniques was required. May (1976) states
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“There are many situations, in many disciplines, that can be de-
scribed, at least to crude first approximation, by a simple first-order
difference equation. Studies of dynamics usually consist of finding
constant equilibrium solutions, and then conducting a linear stabil-
ity analysis to determine their stability with respect to small distur-

bances...”

As knowledge of some of the basic techniques of mathematical modelling was
required this seemed as good a place as any to start. And anyway, as a biologist,

who am I to argue with Professor May!

The second influence on my choice of model was making simple single species
models, so that the mechanism driving the dynamics could be understood com-
pletely. These single species models were going to be used as sub-units in 3
species spatially explicit models, as part of my Ph.D. thesis, to model the cycle
found at Port St. Mary, Isle of Man (see figure 1.2). However, to understand the
mechanisms that drive these complicated models, it is necessary to understand

completely the behaviour of each of the individual sub-units.

The models used in this thesis are deterministic. They are described as discrete,
structured open populations models with space-limited recruitment. Therefore
we have to ask whether a different approach would have been better for what is

required.

2.6.1 Why Use Discrete Models?

The choice of discrete or continuous models is not simple and is often subject, e
due to personal preference and convenience. However, there are advantages and
disadvantages of using discrete models. Discrete models require far less compu-
tational power to do simulations than continuous models. This is because con-
tinuous time models require a special function to implement structure. However,
discrete models are much harder to analyse and require care when formulating.
In fact if formulated incorrectly, a discrete time model can produce artifactual

dynamics not found in the analogous continuous model.

In this thesis computation ease is essential. This is because the model produce
in this thesis are going to be used as sub-model in a 3 species spatial model
with stochastic recruitment functions. A continuous model would require a large

amount of computation power to do this as a spatial and aging function would
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have to be used (Steele, 1993).

The models produced in this thesis are not particularly complicated. Thus, the
difficultly of analysing discrete models is not a problem. This simplicity makes
formulation without the addition of artifactual dynamics easy. Thus, in this case
it is important to keep the computational power to a minimum by using discrete

models.

Adding detail to discrete models is far more intuitive than to continuous models.
This is important in this thesis as models are designed and their mechanisms
are tested. Once understood, extra features are added to the model to increase
the biological realism. De Roos (1989) stated that discrete models are often the
obvious choice in biology as they are developed from demography. In this thesis,
I investigate the demography of different species which makes discrete modelling

an obvious choice.

For this thesis it appears that discrete models are the obvious choice as the models
used are not too complicated. This allows formulation and analysis to be done
easily and computational power to be reduced. However, the models have to be
sufficiently complicated to produce a wide enough range of dynamics to mimic
the system. This is not a problem even with linear discrete models. May (1976)
stated:

“First order difference equations arise in many contexts in the bio-
logical, economic and social sciences. Such equations even though
simple and deterministic can exhibit a surprising array of dynami-
cal behaviour, from stable points to a bifurcating hierarchy of stable
cycles, to apparently random fluctuations. There are consequently
fascinating problems, some concerned with delicate mathematical as-
pects of the fine structure of trajectories and some concerned with the

practical implications and applications”.

2.6.2 Why Use Structured Population Models?

Traditional population models use densities as their state variables. This type
of model has been criticised for many different reasons. For example, unrealistic
dynamics (Judson, 1994); ignoring the difference between individual organisms;

and interactions between individuals only take place locally (Gross, 1986).
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Structuring populations using a state variable such as age, size or stage produces
a model that has less unrealistic dynamics and treats individuals in the same
class as identical. This is a slightly less unrealistic from the biological point of

view.

The alternative to using a structured population model is to use a physiologically
structured individual based model (PSIBM). This treats all individuals within the
population as different and keeps a track of each. Thus, increasing the biological
realism. However, again there is a tradeoff between realism (complexity) and
understanding. In this thesis there are a number of problems associated with
using PSIBMs.

The time required to simulate a three species PSIBMs would become a factor
when the model becomes spatially explicit. The simulations would take a long

time and require large computational power.

Parameterisation of these models would not only be very difficult as the demo-
graphic rates of the species tend to be measured as an average. The standard
errors associated with this model would be very large because of the large num-
ber of parameters associated with the model. The large number of parameters
in the model would make the mechanism much more difficult to understand and
increase the number of simulations required to investigate the parameter set. A
tradeoff between realism (complexity) and understanding is sought. However,

understanding is more important at this stage.

Last but by no means least the aim of this project is to produce a model that
produces hypotheses for the experimentalists to test. The PSIBMs would no
doubt be better predictors of the single species community, but we are interested
in looking mechanistically at a moderately exposed rocky shore. Understanding
the mechanism controlling the dynamics of a three species PSIBM would be very
difficult as the number of parameters would be large. PSIBMs would make the
production of hypotheses for the experimentalists to test very difficult. Thus we

choose a structured population model.

2.6.3 Why Use Deterministic Models?

It is stated in this chapter that neither deterministic nor stochastic models should
be used alone. These models should be used in unison. However, within the

time scale allowed by this M.Phil. it was not possible to produce any stochastic

28



versions of the models. So, the absence of stochastic models from this thesis is
not due to choice, rather due to time limitation. However, as part of my Ph.D.
thesis the effect of adding stochastic recruitment functions to the models will
be investigated. From this inferences will be drawn about the relative roles of

stochastic events and deterministic processes in the rocky intertidal communities.

2.6.4 Why Use Open Models with Space limited Recruit-
ment Models?

The species that are modelled in this thesis are sessile with a pelagic eggs or larvae.
The sessile adult populations have great spatial and temporal variation. Offspring
are not always part of the same population as their parents (Roughgarden et
al, 1985). Thus, Lotka-Volterra models cannot be produced for this process as
the populations are not closed. Migration can be added to the Lotka-Volterra
type models, but this assumes that migration is slight relative to the number of
recruits. Whereas, settlement into the system from outside is the major form of

settlement in systems such as these.

Open populations cannot become closed simply by enlarging the area studied.
For example barnacle larvae may spend up to six weeks in the plankton before
they are able to settle, during which time currents may move the juveniles long
distances from their parents. The larvae can then land anywhere, they do not just
migrate across the perimeter of the model, but settle anywhere in the system from
the water column. If we then consider a situation where the model is spatially
explicit, then the Lotka-Volterra even with migration is a useless description of
this population, as individuals do not just migrate over the perimeter. Thus, we

have to use a model of an open system.

Space is obviously the limiting resource in the rocky shore environment. Tra-
ditional population models do not model the nature of the resource explicitly.
However, in this system the amount of space occupied dictates the number of
new individuals that are able to settle. Thus, for a rocky shore environment we
require a model with theory that explicitly treats the capture and release of space
to attach. Roughgarden et al (1985) produced a model for open systems with
space-limited recruitment, including the settlement of larvae being proportional
to the available space, and the subsequent growth and mortality of these larvae.
They suggested that the model is not meant as a literal description of a barna-

cle dominated shore but offers a picture of what happens when space dependent
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settlement, growth and mortality all occur at the same time.

As these are the major processes occurring on a rocky shore anywhere in the
world this type of model appeared to be the correct choice for each of the single

species models.
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Part 11

Single Species Models
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Chapter 3

An Age Structured Model for the
Colonisation of Bare Rock by the
Barnacle Semzibalanus balanoides

3.1 Introduction

3.1.1 Age-Classified Demographic Models

Classical demographic analysis is based on a system of tabulating age-specific sur-
vivorship and reproduction into a ‘life table’. The original demographic analysis
was done by Lotka (1924). However, matrix models for demographic analyses
were not developed until the 1940s. This type of model was proposed simulta-
neously by Bernardelli (1941), Lewis (1942) and Leslie (1945, 1948). The most
influential of these authors was Leslie. Matrix notation for demographic mod-
els was not adopted until the late 1960s by demographers and until the 1970s
by ecologists (Caswell, 1989). Lefkovitch, Pennycuik, Rabenovich, Usher and

Williamson were the pioneers of this technique before the 1970s.

Barnacles have a sessile adult stage and pelagic larvae. These populations can-
not be modelled usefully using either the logistic or Lotka-Volterra equations of
population theory (Roughgarden et al, 1985). Adults are sessile and live in a
closed region. However, their larvae are free moving, spending up to 6 weeks in
the plankton and can settle great distances from their parents. Thus, recruit-
ment to the population is not closed and cannot, in principle, be made closed
simply by enlarging the area (Roughgarden et al, 1985). Free space is the limit-

ing resource and should be explicit in the model, as larvae are unable to settle
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without it. Settlement rates into these populations can be high resulting in large
changes in population size over the lifespan of an individual. In these circum-
stances, construction of a reasonable model must take account of the structure of
the population (see Caswell (1989) for a review of the theory). Hence, to model
a barnacle population successfully we need to use an age-structured demographic
model with space-limited recruitment (Roughgarden et al, 1985; Roughgarden &
Iwasa, 1986; Bence & Nisbet, 1989; Kuang & So, 1995;).

The theory of open systems and of metapopulations of locally open systems has
developed quickly in the last fifteen years. For example, Chesson and Warner
(1981), Roughgarden et al (1984), Iwasa & Roughgarden (1985), Roughgarden et
al (1985), Twasa & Roughgarden (1986), Roughgarden et al (1987), Possingham
& Roughgarden (1990) and Kuang & So (1995). Roughgarden et al (1985) used
this theory to produce a model which is appropriate for an open, age-structured
population with space-limited recruitment. Two forms of dynamics were pro-
duced by the model: a stable steady state and cyclic fluctuations. A steady state
is produced when settlement is low and a stable distribution of mixed cohorts and
free space is found. Cyclic fluctuations are produced when settlement is high and
an unstable mosaic of cohorts and occasional free space is found. The mechanism
suggested for the instability is that growth interferes with recruitment when set-
tlement is sufficiently high. Possibly the most important mechanism of this type
of model is the relationship between the growth and mortality functions. The
occupied area will increase if the increase in area due to growth and settlement is
greater than the loss of area due to the mortality of individuals and vice versa. A
steady state is produced when the mortality and the growth and settlement are

in balance, 7e when the net area of the population neither increases nor decreases.

Bence & Nisbet (1989) re-examined the dynamics of simplified versions of the
Roughgarden et al (1985) model, their most complicated models being special
cases of Roughgarden’s model. They noted that the model proposed by Rough-
garden et al (1985) offers insight into any system where there is debate on whether
populations are regulated by recruitment or density-dependent factors. For ex-
ample, reef fish (Mapstone & Fowler, 1988) and giant kelp (Nisbet & Bence,
1989). Their conclusions were similar to Roughgarden et al (1985). However, as
their formulation was simple, they were able to highlight the biological processes
that produce the interesting dynamics and suggested that not all the inferences of
Roughgarden et al (1985) are correct. Bence & Nisbet (1989) found the two pop-

ulation states, cyclic fluctuations in population density and a stable steady state.
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The mechanism proposed to produced cyclic fluctuations is a time delay between
settlement and recruitment to the adult population. Two types of growth are
considered: determinate and indeterminate. Determinate growth is found when
adults reach a maximum size and growth ceases. Indeterminate growth is desta-
bilising (see the numerical examples presented by Roughgarden et al (1985)).
However, when growth is determinate, there is a time delay between settlement
and attaining the maximum size. Faster maturation from juveniles to adults re-
sults in a shortening of this lag allowing increases or decreases in growth to be
stabilising. This result does not depend on representing the size-distribution as

two discrete stages.

Kuang & So (1995) performed a global stability analysis of the delayed two stage
population model proposed by Bence & Nisbet (1989). They established con-
ditions for persistence of the system, local and global stability of the positive
equilibrium. They concluded that the increasing the settlement or area occupied
by an adult destabilises the model globally. However, increasing the mortality of
adults or juveniles or the time delay stabilises the model globally. They inferred
that the large amplitude cycles could be controlled in nature by harvesting, e

increasing the mortality.

Roughgarden & Iwasa (1986) extended their model to a metapopulation model
with space-limited sub-populations. Larval settlement is again onto vacant space
and each sub-population contributes to the common pool of larvae. The metapop-
ulation is assumed to be closed even though each of the sub-populations is open.
The metapopulation model has several simultaneous stable steady states, which
lead to thresholds such that an introduced population may not become estab-

lished unless the propagule size exceeds the threshold value.

Possingham & Roughgarden (1990) extended the model of Roughgarden et al
(1985) to include spatial dimensions for both adults and larvae. This was done
by integrating mesoscale features in ocean current with coastal habitat structure

in an attempt to predict adult distribution.

These models described are still a massive simplification of the system described
but have potential to support more detailed models of a population where space,
light, rainfall or territory are limited (Kuang & So, 1995). This slow building
of models has considerable potential for improving the understanding of such

ecological systems (Bence & Nisbet, 1989).
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3.1.2 Modelling Aims

As competition on the rocky shore is essentially for the resource of space, two
dimensional models can be constructed. The aim of this chapter is to produce
a general model for intertidal barnacles with space-limited recruitment. This
discrete time model will be based on the concept of individuals filling up area as

proposed by Roughgarden et al (1985).

Once the analyses of the general model are done, then linear growth will be
implemented to investigate the dynamics of this model. The model will be applied
to S. balanoides using a logistic growth function and the dynamics re-examined.

This will be used to model stage six to stage two in the cycle shown in figure 1.2.
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3.2 An Age-Structured Model for Intertidal Bar-
nacles

In this section we look at a general model for intertidal barnacles space-limited

recruitment.

3.2.1 The Model

The model used is developed from Roughgarden et al (1985) discrete time model.
The model makes a number of assumptions:

1. All individuals of the same age are the same area.

2. Larvae are found in the surrounding water.

3. Larvae occupy free space, and the number landing increases as a function

of free space.
4. Free space cannot be negative.
5. All recruits are the same area.
6. There is a known area at age for the barnacles.
7. The survivorship function is known and time independent.
The population is divided up into N + 1 age-classes of equal width, Aa, and the
time interval, At, is equal to the age-class width. In each of these age-classes

individuals have the same area, a;, measured in m?. If n;; is the number of

individuals in age-class 7 at time ¢, then the total area occupied at time ¢, A;, is

N
A = Zaini,t (3.1)
i=0

Free space at time ¢, F}, is a function of the total available space (m?), A, and is

expressed as

F, = (A—A)* (3.2)
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where the + denotes that free space cannot be negative. If the number of bar-
nacles in age-class 7 at time ¢ + Aa is n; 444, and S;_; is the survivorship at age
t — 1, then

Nit+Na = Si_lni_l,t 1= ]_, 2, [N N. (33)

All of the individuals of age greater than NAa days die. Thus, no individuals
survive further than the final age-class. Age-class 0 presents a different problem.

If we define I, as the settlement function then,

Not+Aa = It. (34)

Thus, equations (3.1) - (3.4) describe the population. As we are unlikely to know
the total available area, A, it is more useful to look at this problem in terms
density of organisms per m?. If equations (3.1) - (3.4) are divided by A then the

population can be modelled using

. F, N +
o= = ll - Zpi,tai] (3.5)
=0
Tt )
Pit = A = Oi1Pi-14 1=1,2,...,N (3.6)
I R
Po,t+Aa Zt = It (37)

where p;; is the density of individuals in age-class i at time ¢ (numbers.m2).

The Settlement Function

Settlement per time unit cannot increase without bound. As barnacles settle
in the system, they occupy space and thus reduce the space available for future
settlers. If the rate at which cyprids become available to settle from the water
column m~=2.d~" (k) is low, the amount of space occupied by settlers early in the
time-step is small, and thus incremental settlement F{l.Aa_l (o) is unaffected.
However, when x is high, a large proportion of the space is occupied by early
settlers and thus, the incremental settlement is much lower than expected from

the number of cyprids available to settle. The rate of change of settlement over
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time can be described by a differential equation. If R is the barnacles that have

already settled into the system and occupy space, then

dR

— = K(F(t) - aR) (3.8)

where F'(ty) is the free space at time ¢y and aoR is the area occupied by what has

already settled. If equation (3.8) is solved over time (), then,

R(t) = (1= et (3.9)

The discrete analogy to equation (3.9) is

oF, = %(1—5“”). (3.10)

If k and o are calculated for set parameters, then an asymptotic relationship is
produced (see figure 3.1). The relationship is linear at low values, but as x — oo

then 0 — 000 = 1/ay.

£
s
:‘
&
£
S 4
i
— —— Roughgarden et al. (1985)
777777 This Paper
o ©o
£ £ | . __ .
2 7 ¥
/
!
f
!
i
|
i
Fid I
S 4 I
2
b
o 4
T T T T T T
o 1076 2*10"6 3*1076 4*1076 5*1076

Kkappa

Figure 3.1: The relationship between o and &.

This function allows us to define the settlement function ft. As settlement is

space-limited then,
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T n Ft —KkapAa
I, = atha—0(1—e 0de) (3.11)

Roughgarden et al (1985) use a different settlement function which assumes that
settlement can increase without bound. This gives spurious solutions and a com-
parison of the two functions can be seen in figure 3.1. As can be seen at low daily
instantaneous settlement rate the incremental settlements are similar. However,
at high daily instantaneous settlement Roughgarden et al (1985) settlement func-

tion gives far greater incremental settlement than our settlement function.

3.2.2 Steady States

At equilibrium there is no variation over time. Let

Pit+Aa = Pigx = P4
Ft-l—Aa = Ft = F*
jt-l—Aa = It = f*

Appaa = A4 = A

If these steady state variables are substituted into (3.5) - (3.7) and (3.11), with

a little simple algebra the equilibrium conditions are

~ 1

F* = N (3.12)
1+o 21:0 liai

pi = ol,F* (3.13)

where the survivorship function, /;, is defined

It is useful to note that from equation (3.12) increasing either k, a;, or S will

increase the value of A*. Similarly increasing the area function, increases the
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value of F*. It is possible to look at two sets of conditions. If space filing is fast,

ie kagAa — 1, then o — 1/a and

li

_—. 3.15
Zf\;o lia; ( )

p;
This suggests that the equilibrium age-class density varies independently of set-
tlement and that settlement does not limit the equilibrium densities. However, if

space filing is slow, ie kagAa — 0, then ¢ — 0 and

p; ~ ol (3.16)

Thus, equilibrium age-class density is directly proportional to settlement and

settlement limits the equilibrium densities.

3.2.3 Local Stability Analyses and the 50% Free Space
Rule

Local Stability Analysis

Local stability analysis is done by examining the behaviour of a perturbation
from equilibrium. If the perturbation grows then the equilibrium is unstable, if
it decays then the equilibrium is locally stable. The behaviour of a perturbation
is described by the roots of the characteristic equation, A, or the eigenvalues. If
all the eigenvalues lie within the unit circle, ie |A| < 1, then the perturbation will
decay back to the equilibrium and the equilibrium is locally stable. It is useful to
note that local stability analysis assumes an infinitesimally small perturbation.
However, it many cases it will hold for larger perturbations (see Nisbet & Gurney,
1982).

The first step in stability analysis is to derive the characteristic equation. This is
done by defining a perturbation, d;,, from age-class 7 at time ¢ and then looking

at its behaviour over time. Thus,

Sopsna = I —1I (3.17)
digtaa = Si—10i14 (3.18)
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where,

N
L—1" = =) oa. (3.19)
i=0
Equations (3.17) - (3.19) can be expressed in matrix form, where,
dtyAa = BO;
and
[ —o0ayg —0a; —0a» —0oan | [ 6O,t ]
So 0 0 0 O,¢
B = 0 Sl 0 0 , 6t et 52,15
0 o Sy 0| oy |

The characteristic equation is found by considering det(B — A\I) = 0, where I is

the identity matrix. Considering the minors gives

—0ag — A —o0a; —0as —oan
So - 0 0
fi(A) = det 0 S1 —A 0 (3.20)
0 0 Sin =\
(where i =0,1,2,...,N)
Developing the last column of (3.20), we get the iterative equations
fiN) = (“Nfii(\) + (=) (—oal;) (where i=1,2,...,N) (3.21)
and
fo(A) = —oag— A (3.22)
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From these the characteristic equation is

det(B— A1) = fx(A)=0
= (_1)N+1 ()\N+1 + Uaolo)\N —+ Ualll)\Nfl 4+ ...+ UaNlN) =0,
(3.23)

or
N .
AV LN sa AN =0, (3.24)
i=0
The 50% Free Space Rule
The net area function, [;a;, is the size of an individual after i age-classes in the

system. It has an important role in the system. The area controlled by a settler

cumulated throughout its life is give by

N
A = Z lia;. (3.25)
i=0

If there is an eigenvalue, Ay, such that the steady state is unstable, then |\g| > 1.
If equation (3.24) is divided by A}, with a little simple algebra

N
O'Gili
1 =D v (3.26)
i=0 0
N
S Zaaili = O'Ao. (327)
i=0
From equation (3.12) we know that
F*=1/(1+0A4). (3.28)

From equation (3.27) we have shown that Ay > 1. This implies that F* < 0.5.
Therefore, if Ag is such that the steady state is unstable, then |\o|] > 1 and

F* < 0.5. However, if F* > 0.5 then all eigenvalues lie within the unit circle.
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3.2.4 Numerical Techniques

A number of packages were used to investigate this model. The steady states
were assessed using Splus ((©1989, 1991 Statistical Sciences, Inc.). This package

was also used for any data manipulation and curve fitting.

The characteristic equation and 50% free space rule were modelled using CON-
TOUR which is part of the SOLVER suite of programs ((©)1994, STAMS, University
of Strathclyde, Glasgow, G1 1XH, Scotland). This uses the Newton-Raphson
technique to follow the roots of equations. The implementation used has 125
age-classes, ie from age-class 0 to 124. From equation (3.24) the characteristic

equation is

A2y % oa; ;AN =0. (3.29)

i=0
The roots of this characteristic can be either real or complex. The boundary
condition for an equilibrium to be locally stable is || = |z +iy| = V2% + 3% < 1.
This is to say that the eigenvalues of all the roots lie within the unit circle. Thus,
the stability boundary of the model is where /22 + 2 = 1. If this boundary is

traced it is possible to look at the stability of the model with varying S and «.

Simulation was done using a program called ITERATOR which is also part of the
SOLVER suite of programs ((©)1994, STAMS, University of Strathclyde, Glasgow,
G1 1XH, Scotland). This is used to find the numerical solution of difference
equations. We assume that the maximum age that a barnacle can reach is about
5 years. Thus, we take Aa = 14 days and N = 124.

3.3 Linear Growth

In this section we look at the general model of intertidal barnacles using simple in-
determinate linear growth and constant survivorship to investigate the dynamics
of the model.

3.3.1 The Linear Growth Function

The increase in area function is a simple linear increase with age and is described

by the equation:
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a; = a(i+1) (3.30)

where « is the linear growth coefficient. The maximum size attained using each
of the growth functions can be seen in table 3.1. The maximum area of a barnacle
increases with decreasing shore height (Stubbings, 1975). The maximum diame-
ter being about 26mm on submerged panels (Barnes and Powell, 1953). ‘Fast’,
‘average’ and ‘slow’ growth rates are examined (see table 3.1). These were calcu-
lated assuming that a circular barnacle grows linearly until reaching its maximum
size in age-class 124 from an initial size of a. From these growth functions it is

possible to calculate the maximum incremental settlement or ,,4:.

Table 3.1: Linear growth functions.

Growth Maximum length Maximum area Shore O maz
Function () mm mm? Level (1/ag)
4.2474 % 1076 26 531 Submerged 235438
1.6085 % 1076 16 201 Mid 621697
6.2832 % 10~ 10 78.5 High 1591546

3.3.2 Steady States

There is a logistic increase in the area occupied, A*, with increasing age indepen-
dent survivorship (5) and  (see figures 3.2 and 3.3 respectively). In both cases, a
higher growth rate causes increased occupancy (A*). Intuitively this makes sense

as fewer individuals are required to occupy the same space.

At both high and low instantaneous settlement rate the age-distributions are
similar. The density of individuals in an age-class decreases with increasing age
(see figures 3.4 and 3.5). Although the densities decrease with age the maximum

space occupied is found at an age of 266 - 280 days (age-classes 19 and 20).

Figures 3.4 and 3.5 are very similar despite the difference in the settlement rate.
This is because the density decreases at a constant rate from an initial value
calculated from the settlement rate. The higher the settlement rate the higher
the density observed. When the survivorships are equal the density curves will
decrease at the same rate producing the same shape. The linear growth functions

in the figures 3.4 and 3.5 are the same. The occupancy is calculated by multiplying
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Figure 3.4: Densities and proportional
occupied space for different ages (S =
0.95, k = 10, a = 1.6085 * 107°).

the area at age by the density. Thus, multiplying a linear function by a constantly
decreasing function gives the humped curve for occupancy. As these two curve
are the same shape for the parameters used, then the curve produced is the same
shape. However, because the settlement rates are very different, the densities and

occupancy are different.
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3.3.3 Stability

The stability boundary and the 50% free space rule illustrate that increasing
either S or k is destabilising (see figures 3.6 and 3.7). Decreasing the growth
rate « increases the stability of the model in both cases. This is because more
individuals are required to fill up the area, and once the individuals settle space

is filled at a slower speed.

The stability predicted by the 50% free space rule is far lower than that obtained
by local stability analysis. This is because the 50% rule is a sufficient but not
necessary condition for stability and thus is a bad approximation to the local

stability analysis. The approximation becomes worse with increasing x.
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Figure 3.7: 50 % free space rule and
local stability boundaries for different
linear growth functions where S = sta-

ble, US=unstable and UK= unknown.

3.3.4 Simulation

Numerical simulations of the model showed that with this basic model there are
a number of results. Reducing S increases the speed of reaching the steady state.
Examples of stable and unstable solutions of the linear growth model are shown

in figures 3.8 and 3.9 respectively.

An unstable age-distributions is shown in figure 3.10. In this case, cohorts are

seen to age until they die, causing rapid freeing of space for new settlement. This
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suggests that there is a ‘speed of occupancy’ mechanism. When space is filled
quickly, ze the settlement rate is high, then a lot of the area is occupied by a
single cohort. This cohort will move through the age-structure until it reaches
the end of the distribution. Then immediately space becomes filled by a ‘pulse’
of new settlers. This gives rise to the relaxation oscillation. When space is filled
more slowly, ie the settlement rate is low, then settlement occurs of a period of
time and depending on the settlement rate either underdamped or overdamped

equilibria are found.

In the phase plane the unstable solution appears to be aperiodic (see figure 3.11.

3.3.5 Discussion

From this simple case increasing a;, S or k causes an increase in A*. This increase
in the area occupied is destabilising, which suggests that any factor contributing
to the increase of A* is also destabilising. This intuitively makes sense as increas-
ing the area occupied will increase the ‘speed of fill mechanism’. This mechanism
means that the dynamics of the model are controlled by the rate of occupancy of
free space. When the rate of occupancy is low, ie a;, S, or k are low, then a longer
time is required to fill the same space. This gives rise to stable overdamped and
underdamped solutions. However, when this rate is high, then free space is filled

by short ‘pulses’ of settlement as soon as the space becomes available. The free
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Figure 3.10: An unstable age-class distribution (k = 1.5 % 10°, o = 1.6085 % 10~°,
S =0.95).
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Figure 3.11: Phase plane plot for an unstable run (x = 1.5%10%, o = 1.6085%10°,
S =0.95).

space is provided by individuals reaching the end of the age-class structure and
dying, producing unstable solutions.

Investigation of the steady states shows that at both high and low values of x
young individuals occupy the most space. For example when o = 1.6085%107% the

maximum occupancy is held by individuals of 266 or 280 days old. However, when
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the model is simulated, unstable solutions show waves of cohorts moving through
the age-structure. Space is made rapidly available when all the individuals in the
age-class N die, which is rapidly occupied by new settlers. This mechanism gives
rise to the classic relaxation oscillations that are observed. Four types of solution
were found these are stable underdamped, stable overdamped, limit cycles and
aperiodic. The unstable solutions are very persistent with oscillations lasting for

over 38,000 years.

The local stability boundaries and the 50% free space rule both indicate that
increasing a;, S or k destabilises the model. This is intuitively correct for the
reason stated above. However, as the 50% free space rule is only a sufficient con-
dition for stabillity, it becomes a worse approximation to the stability boundary

as k is increased.

Understanding the mechanism that drives this model allows the derivation of a
simple stability criteria. The mechanism that governs the oscillations is depen-
dent upon the are occupied by a cohort over time (x;). These oscillations can
either persist or decay depending upon the rate at which space is occupied. A
simple heuristic stability criteria can be derived ignoring the settlement rate. If
a cohort has a density of ng initially with area a;, then x; = nga;. At time ¢ + 1,
a proportion S survive, thus x;11 = Snga;;1. For the cohort to increase in area
Xt+1 > Xi, therefore (Sa;y1/a;) > 1. The minimal condition for the area of a
cohort to increase is the increase in the area between age-classes 0 and 1. As
the area doubles from age-class 0 to 1, then the heuristic stability shows that
oscillatory solutions exist when S > 0.5. The nature of these oscillations is not
know, if they decay then stable underdamped solutions are produced, if not limit
cycles are found. This criteria is far simpler to derive than the 50% free space
rule, but it gives a much larger area of the parameter space where the behaviour

of a solution is known (see figure 3.12).

3.4 An Application the Model to S. balanoides

In this section the general model is applied to S. balanoides. A logistic growth

curve is fitted to data from the literature and survivorship is age-independent.
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3.4.1 The Logistic Growth Function

S. balanoides does not grow linearly with age. The increase in area varies with
both height on the shore and age (see Barnes & Powell 1953, for a general review).
Data were taken from Barnes & Powell (1953) for the mean specific growth rates
of barnacles per day from 5.4 feet above chart datum. This was the closest height
to the 6.2 feet of MTL. A linear regression was fitted to the change in proportional
length per day against square roots of the lengths. This gave a good fit with an
F statistic of 4.37 * 10717 (see figure 3.13). Using a minimum length for the
barnacle from extrapolation of the curve a growth curve was produced iteratively
using the equation for the increase in length per unit length (see figure 3.14). A
logistic curve fitted this data well with a residual sum of squares of 6.817496 and

a residual standard error of 0.0624513. The logistic curve was of the form

Lo
YT T e o

where Ly = 1.130319, L, = 15.98195 and b = —0.0302853.

It is assumed that all the barnacles are essentially circular and therefore the area

at age curve is given by
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L2

where it is necessary to use a conversion factor of 1% 10° to convert from mm? to
m?. The area of an individual in age-class 0, ag, is 1.00344 x 10~ %m?2, which gives
Omaz = 996571.

3.4.2 Steady States

The steady states of the logistic growth model are very similar to the linear growth
model. There is a logistic increase in the area occupied, A*, with increasing S
and k (see figures 3.15 and 3.16 respectively). The A* in both cases appears to

be similar to the fastest growth rate in the linear growth model.

At both high and low instantaneous settlement rates the age-distributions are
similar. The density of individuals in an age-class decreases with increasing age
(see figures 3.17 and 3.18). Although the densities decrease with age the maxi-
mum space occupied is found at an age of 196 days (age-class 14). This is earlier
than in the linear growth model. This is due to the rapid gain in area, as indi-

viduals reach their maximum size in about 1 year.

The shape of the distributions of occupancy and density are very similar. This is

for exactly the same reason as the in the linear growth model (see section 3.3.2).
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However, the peak occupancy is earlier than in the linear growth model. This

is due to the rapid gain in area, as individuals reach their maximum size in less

than 1 year.
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3.4.3 Stability

Local Stability and the 50% Free Space Rule

The local stability boundary of the model can be seen in figure 3.19, the stable
and unstable indicate local stability. This boundary shows that in the 125 age-
class model at high S, k is destabilising. However, at lower values of S increasing

k can be stabilising.

The 50% free space rule is also illustrated in figure 3.19. At low x the 50%
free space rule is a fairly good approximation to the local stability boundary.
However, as k is increased then the 50% free space rule become a progressively
worse approximation to the local stability boundary. This is because the 50%

rule is a sufficient condition for stability.
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Figure 3.19: Local Stability and the Figure 3.20: The effect of number of
50% Free Space Rule for a model age-classes on local stability.

with 125 age-classes (U=Unstable,

S=Stable, UK=Unknown).

Number of Age-Classes

The number of age-classes in the model was altered in the range of 8 to 256. As
the number of age-classes is varied then it is necessary to scale the age-class width,
Aa, such that NAa is constant. The instantaneous mortality, u, was calculated

from the survivorship by
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po= —In(S)/Aaq,

which allows the age-class comparison, as S is scaled to Aa, ie doubling age-class

width is equivalent to squaring S.

The comparison of local stability for the different number of age-classes can be
seen in figure 3.20. At very low s a similar pattern is seen. However, as k is
increased, increasing the number of age-classes can be stabilising or destabilising.
Increasing the number of age-classes effects the shape and position of the stability
boundary. A model with 8 age-classes is most stable. However, as the number
of age-classes is increased the effect is destabilising to 32 age-classes and then
stabilising up to 256 age-classes (see figure 3.20). The shape of the boundary
changes from almost a right angle with 8 age-classes, to a smooth curve with
256 age-classes. In the 256 and 128 age-class cases k is first destabilising then

stabilising.

3.4.4 Simulation

Increasing x causes equilibrium to be reached more quickly. However, if x and
S are large enough then oscillations are produced. These oscillations can be
periodic with stable limit cycles persisting for more than 38,000 years. When the
system is unstable, decreasing x or S causes a decreases in the periodicity and

the amplitude of the oscillations (see table 3.2).

Table 3.2: Table showing the effect of changing S and x on stability and the
periodicity of unstable solutions.

Survivorship Settlement Stability  Periodicity of

(S) Rate (k) Solution (weeks)
0.95 10° Unstable 77

0.90 10° Unstable 56

0.85 10° Unstable 46

0.80 10° Stable -

0.95 10° Unstable 120

0.95 10* Unstable 107

0.95 103 Unstable 77

0.95 102 Stable -

54



o~
S
o |
]
<
=]
=
]
8 8
g g
5 27 &
4 4
5] 53
g g
5 5
8 8
S o I
= o 7 =
2 2
8 S
£ £
] ]
g g
13 13
g o &
S 7 o
s |
~
o
w
o
e ]
b
T T T T T 1 T T T T T 1
o 200 400 600 800 1000 5000 5200 5400 5600 5800 6000
Age/Delta a Age/Delta a

Figure 3.21: A stable solution (k = Figure 3.22: Periodic cycles (k = 500,
100, S = 0.95). S = 0.95).

Log(Density)
0051152253 35

o 5020

Figure 3.23: Unstable age-class distribution (x = 500, S = 0.9).

%)



When £ is small then stable solutions are observed (see figure 3.21). When & is
large then an unstable solution is obtained (see figure 3.22). It is useful to note
that there are slight differences in the amplitude of each peak. This however, is

a facet of discrete models as they sample at distinct points.

The pictures produced for the age-distributions are very similar to those produced
by the linear growth model. For unstable solutions, waves of cohorts pass through
the population (see figure 3.23). For stable solutions, a negative exponential

distribution was observed, where decreasing S increases the negative gradient.

3.4.5 Discussion

The same mechanism is observed controlling dynamics in the logistic growth
model as in the linear growth model. Increasing S or x leads to an increase in the
occupancy, A*, and a decrease in the stability. This is due to the ‘speed of fill’
mechanism. a = 1.6085 * 10~ is used in the linear model to compare with the
logistic. This is because the maximum diameter in both cases is about 16mm.
When the steady states are compared for a similar S and x the logistic model
has a higher occupancy and is less stable than the linear growth model. This is
because of the time delay inherent between the individuals settling and reaching
their maximum size. In the linear growth model this process takes 5 years, but
in the logistic model maximum size is reached after less than a year. This logistic
growth rate is a bit high for the mid-shore, but is similar to the situation found

on the low-shore or submerged panels (Hawkins, pers. com.).

Again four different types of dynamics are found. However, aperiodic solutions are
more difficult to locate. Limit cycles are more common with persistent oscillations

lasting for over 38,000 years.

The stability boundary and the 50% free space rule show similar patterns to
the linear model. The same explanations for the differences can be drawn. The
logistic growth model is again shown to be less stable than the linear growth
model. A heuristic stability criteria can be derived in exactly the same way as
shown in Section 3.3.5. In the logistic growth model S > (L;/L;,1)? allows the
area of a cohort to increase over time and thus, oscillations to occur (where L; is
the length of an individual in age-class 7). If the minimum condition is examined
then we find that S > 0.461 for oscillations to occur. This again provides a
far larger area of the parameter space where the behaviour of solutions is know

compared to the 50% free space rule (see figure 3.24) and is far simpler to derive.
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Figure 3.24: Heuristic stability and the 50% free space rule (U= unstable, UK=
unknown, O= oscillatory).

Increasing the number of age-classes appears to be both stabilising and destabil-
ising. Further work is required in order to find the exact cause. However, this
investigation was not feasible within the time-scale of this project. It is important
to investigate this behaviour, as the number of age-classes could require specific

selection.

3.5 General Discussion

Four types of behaviour were observed in the simulations: stable overdamped,
stable underdamped, limit cycles and aperiodic solutions. Roughgarden et al
(1985) and Bence & Nisbet (1989) only observed 3 types of the 4 types of so-
lution, as they do not categorise their stable solutions. These authors did not
observe the aperiodic solutions. This is due to our survivorship being entirely
density-independent. Roughgarden et al (1985) numerical examples use the dis-
crete version of the model and incorporates density-dependent mortality. This is
know to stabilise population fluctuations. When I added density-dependent mor-
tality to the model, parameter values that previously gave aperiodic solutions

produced two point-cycles.

The mechanism controlling the dynamics of the model is the same in both the
linear and logistic growth models. Increasing a;, S or k causes an increase in A*.
This increase in the area occupied is destabilising, which suggests that any factor

contributing to the increase of A* is also destabilising. This intuitively makes
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sense as increasing the area occupied will increase the ‘speed of fill mechanism’.
This mechanism means that the dynamics of the model are controlled by the
rate of occupancy of free space. When the rate of occupancy is low, ie a;, S, or
k are low, then a longer time is required to fill the same space. This give rise
to stable overdamped and underdamped solutions. However, when this rate is
high, then free space is filled by short ‘pulses’ of settlement as soon as the space
becomes available. The free space is provided by individuals reaching the end of
the age-class structure and dying. This situation gives rise to unstable solutions.
Although the logistic growth model has the same mechanism, it is less stable.
Growth is determinant (ie the adults have a maximum size) and adult growth
is very slow in comparison with the juveniles, which reach adult size in about a
year. If a similar maximum size in the linear growth of 16mm is compared with
logistic growth, then a higher value of proportional occupied space is found for
the logistic growth model. Kuang & So (1995) stated that the best indicator
of stability is the ratio of the total area occupied by juveniles to the total area
occupied by adults. The higher this ratio the more stable the model is. The ratio
in the linear growth model is 8 x 1072 and in the logistic growth model is 5% 1073,

Thus, the logistic growth model should be less stable.

The 2-cycles can be very persistent, with the cycles continuing to be stable after
over 38,000 years (one million time units). The cycles shown in figure 3.22 could
well be found on a exposed shore with high recruitment. Increasing growth,
settlement or mortality when the fluctuations are periodic 2-cycles causes an

increase in the amplitude and the period of these cycles.

The 50% free space rule and the characteristic equation suggest that increasing
settlement rate or survivorship is destabilising. This reinforces the conclusions
reached by Roughgarden et al (1985), Bence & Nisbet (1989) and Kuang & So
(1995). The 50% free space rule is a good approximation to the characteristic
equation at low settlement rates, but at high settlement the approximation is
very bad. This is because the 50% free space rule is only a sufficient condition
for stability and is dependent upon settlement. Thus, as settlement increases the

approximation becomes worse.

Heuristic stability criteria were derived for both the linear and logistic growth
models. This provides a greater area within the parameter set where the be-
haviour of the model is known and is simpler to derive. The logistic model is
shown to be less stable than the linear growth model when these heuristic limits

are compared. Oscillatory solutions are found where S > 0.5 in the linear growth
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and where S > 0.461 in the logistic growth model.

A very useful area of further work would be to investigate the effect of the number
of age-classes on the stability of the model. This is because increasing the number
is first stabilising then destabilising and effects the shape of the boundary. This

may make the selection of number of age-classes important.

To construct this model a number of assumptions had to be made. It is now useful
in the light of the present findings to review these assumptions and comment on
the suitability. The assumption that larvae are found in the surrounding water
is not biologically realistic. S. balanoides is known to have a distinct settlement
period between March and August (Connell, 1961a; Hawkins & Hartnoll, 1982a).
Large variation in the settlement has also been observed with peaks in settlement
being correlated with shore height (Bertness et al, 1992), maximum tidal range
(Shanks, 1986) and onshore winds (Hawkins & Hartnoll, 1982a). The mechanism
that controls this process is not yet fully understood (Wethey, 1985). Thus, a
discrete settlement period with peaks of settlement would be more biologically

realistic.

The assumption that settlement is related to free space is under debate. However,
the question of what is free space should be addressed first. Not all free space is
the same. Barnacle larvae require specific settlement cues. Lewis (1977) stated
that free living acorn cirripeds respond to a variety of stimuli during settlement:
arthropodin (an insoluble protein found in adults); water currents; surface ru-
gosity; light; and, gravity and hydrostatic pressure. In the absence of specific
settlement cues settlement is usually delayed (Lewis, 1977). The assumption
that settlement and free space are linearly related implies that settlement into
areas of substratum with the same free space will reflect the supply of larvae.
However, all but one of the studies of the validity of this hypothesis have found
that the resident assemblage has a larger effect on settlement than the free space
(Minchinton, 1995). Roughgarden & Possingham (1985) found that settlement
was proportional to free space only if the patch was less than 50cm? and Raimondi
(1990) found no support for this relationship. This suggests that settlement is
due to the cues suggested by Lewis (1977) and availability of free space. Thus,
the type of free space should be taken into account and the relationship between

free space and settlement should perhaps be sigmoidal (Roughgarden et al, 1985).

Assuming that free space cannot be negative is true, although percentage cover

can be greater than 100. However, this raises the question of what is 100% oc-
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cupancy? Individuals will settle on the tests (shells) of adults when settlement
rates are especially high (Connell, 1961a). However, overcrowding of barnacles
causes increased mortality due to hummocking (Shanks & Wright, 1986), de-
creased growth rates (Crisp, 1960), different growth forms (Moore, 1934) and

increased mortality due to undercutting and uplifting (Connell, 1961a).

Assuming all individuals are the same area is a gross simplification of the real
situation. On the shore all barnacles will have different growth rates and forms
(see Stubbings (1975) for a general review). For example, when barnacles become
very crowded they tend to interact in their growth form. Instead of growing
diameter they become much higher and more tubular in form (Moore, 1934).
Growth rate is affected on two scales, local (1 m?) and regional (a whole shore)
(Crisp, 1960). The scale that is modelled should involve all the local processes
that affect growth rate. However, locally growth rate can be affected by many

factors including water flow, orientation, population density and parasites (Crisp,
1960).

Circular barnacles is a reasonable assumption. Barnes & Powell (1953) show that
the length-breadth ratio decreases with increasing size and tend to the circular
form. For example, at about 7mm barnacles on all shores height have a length-
breadth ratio of 1.10.

The assumption that all the recruits are the same area is reasonable. This differ-
ence is small in comparison with the area in m?. Connell (1961a) measured newly
metamorphosed barnacles at Millport, Scotland, and the mean lengths only var-
ied between 0.7 and 1.21mm. The assumption that there is a known area at age
is again a gross simplification of the actual case. It is possible to argue that we
are looking at the average of these different areas for each particular age-class.

However, having a number of different growth functions would be more accurate.

To make the model more tractable we assume constant survivorship. This seems
to produce a sensible survivorship curve (see Connell (1961a) figures 5, 9 & 10).
However, it would be useful to look at density-dependent mortality in the first
two weeks after settlement and at high occupied space (Connell, 1961a). It might
also be useful to look at a differential mortality between early and late settlement,
as later settlers appear to suffer increased mortality due to increased temperature
(Connell, 1961a).

This model provides insight into the colonisation of rock by barnacles. However,

to produced a better realisation of S. balanoides, it is necessary to refine the
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assumptions. I would suggest that a number of things are attempted in further

work:

1. A sigmoidal relationship between free space and settlement.

2. A number of different growth functions with the model to simulate different

growth types.

3. A realisation of the settlement cues and not treating all free space as the

same.
4. Seasonal settlement.

5. Density dependent mortality and different survivorship functions.

Although these additions to the model would make it more biologically realistic,
a more complex model would be produced. The mechanism driving these models
would be more difficult to find, as the models have more parameters and are less
tractable. This makes understanding the simple models essential before more
complex variants are investigated. This is highlighted by Bence & Nisbet (1989),
who investigated simple versions of Roughgarden et al (1985) and showed that

some of the inferences that they had drawn were wrong.
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Chapter 4

A Size-Structured Model for the
Brown Alga Fucus vesiculosus

4.1 Introduction

4.1.1 General Introduction

Age-classified models assume that age-specific survival and fertility rates are suf-
ficient to determine population dynamics (Caswell, 1989). This is not always
true and organisms can be classified by a factor other than age that is a better
indicator of the vital rates. This is known as the state of the stage-classified
model. Formal state theory was introduced into population ecology by Caswell
et al (1972), Boling (1973) and Metz (1977). Several circumstances combine to
make other state variables more suitable than age. These include the combination
of size- or stage- dependent demography with plastic growth, multiple modes of

reproduction and environmental heterogeneity (Caswell, 1989).

Seaweeds have a large degree of plasticity in their growth form. Their final shape
is a combination of their genetics and the environment (Norton et al, 1982).
Individual plants can increase, decrease or remain the same size. This is due to
the trade-off between growth and various different types of damage, for example,
grazing and storm damage. Thus, age is not necessarily a good predictor of size
(Aberg, 1992a). Generally, size is thought to be a better predictor of demographic
rates than age (Chapman, 1986b; Ang, 1987, 1991b). Thus, it seems sensible to

use size-class models to investigate algal demography.

Algal populations have been modelled since the 1970s. Much of this modelling
has been for harvesting of subtidal algae (see for example Seip, 1980; Smith,
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1986; Ang, 1987). This is because the algae are grown commercially for alginates
and for consumption in the Far East. Recently models for investigation of the
basic biology and ecology of algal populations have been developed. Nisbet &
Bence (1989) developed a family of models depicting a simplified relationship
between adult density and juvenile recruitment in Macrocystis pyrifera. Despite
the simplification they found that they were able to mimic the real dynamics and
concluded that factors affecting recruitment were very important in determining
the dynamics of the population. They looked at a situation where recruitment
is dependent upon the temperature and shading of light, and not directly by the
adults. Burgman & Gerard (1990) developed a better model for the same species
including life history stages, environmental and demographic stochasticity, and
density-dependent interactions. When adults are absent, then gametophyte den-

2 are used to simulate recruit-

sities corresponding to adult densities of 0.002m~
ment from distant kelp populations. They suggest that stochastic environmental
variation and density-dependence are important in algal population models, as

without these factors the models overestimate recruitment, survival and growth.

Very recently demographic modelling of intertidal algal populations has been
done. Aberg (1992a) investigated two populations of Ascophyllum nodosum in
Sweden. He assumed a closed system, divided the model into five size-classes
and measured the mortality, growth and fecundity. He found that environmental
ice-scour caused the population to mature earlier and decrease in numbers due
to damage. If a stochastic environment is added to the model then the mean ex-
tinction time for the population is 163 years (Aberg, 1992b). Ang & De Wreede
(1993) used a 9x9 matrix model based on recruit stages and plant size to investi-
gate a population of Fucus distichus. They compared the dominant eigenvalues
and found that population size only increased when recruitment was positive.
The ‘propagule’ bank was very important in their model, as its absence could
reduce population growth by 83% per annum. Simulations showed that 60% of
populations had a negative growth rate and suggest that the populations may

avoid extinction by occasional large pulses of recruitment.

Both Aberg (1992b) and Ang & De Wreede (1993) suggest that the long term
dynamics of their closed demographic models is extinction. These systems are
inherently closed as propagules are only transported a short distance from their
parents (Deysher & Norton, 1982; Arrontes, 1993). However, both of these are
systems with well established adult populations. Thus, on more exposed shores

bare rock may be colonised by large infrequent recruitment events, indicating
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that the system is open.

4.1.2 Modelling Aims

The models discussed in this Chapter are similar to the model in Chapter 3.
The construction is more akin with those produced by Roughgarden et al (1985),
Bence & Nisbet (1989) and Kuang & So (1995).

As competition on the rocky shore is essentially for the resource of space, two
dimensional models can be constructed. The aim of this chapter is to produce a
general model for intertidal perennial algae based on the concept of space-limited
recruitment. This is done in a similar way to the model for S. balanoides in
Chapter 3. A strategic model will be constructed using simplifying assumptions
from the general model. Steady states and local stability criteria are derived and
investigated. These techniques and simulation are used to provide insight into

the mechanism that controls the dynamics of the model.

Once the dynamics are understood, the model will be parameterised using values
from literature for F. vesiculosus. Simulation, steady state and local stability will
be investigated and compared to the strategic model. This model will be used as

the third stage in the cycle shown in figure 1.2.
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4.2 A General Size Structured Model for Inter-
tidal Canopy Forming Algae

In this section a size-structured population model for a general intertidal algae is

constructed with the minimum assumptions.

4.2.1 The Model

This model makes a number of assumptions:

1. The survivorship function is known.
2. The mean size range of sizes is known.
3. Negative free space cannot exist.
4. All individuals in the same size-class are of the same size.
5. There is a maximum canopy area that a given area of rock can support.
6. The model has () + 1 size-classes.
This model assumes space-limited recruitment. Thus, the free space at time ¢

(F}) is a function of the total available area (A) and the area occupied by fucoids

(Ay), ie

F, = [A— A (4.1)

where the + denotes that free space cannot be negative. The area occupied at

time t is

Q
At = Zajnj,t (42)
j=0

where n;; is the number of individuals in size-class j at time ¢ and a; is the area
of rock occupied by an individual in size-class j. If ¢; is the canopy area of an

individual in size-class j and ©; = a;/c;, then
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Q
At = Z@jcjnj,t. (43)
j=0

This model uses an equation relating the transition between different size-classes
and adds settlement. If n;;4, is the number in size-class ¢ at time ¢ + At, S;; is

the probability of surviving one time interval in size-class ¢ from ¢ — ¢+ At, then

Q
Njtrar = ZP;,tSj,tnj,t+Ii,t (4.4)
5=0

where P;’t is the probability of being promoted or demoted from size-class j to
size-class ¢ in the interval £ — ¢ + At and I;; is new settlement into size-class i
at time t. Promotion occurs implicitly at the end of a time-step in the model. If

pis is the density of fucoids in size-class 7 in the interval ¢ — ¢ + At, then

Tt

it = : 4.
. F,

F, = — 4.
= 5 (4.6)
. I,

= 2t 4.
C = (4.7)

From equations (4.1) , (4.3) and (4.5) - (4.7)

§=0

0 +
B, = ll—Z@jijj,t] : (4.8)

Expressing the model in terms of density gives

Q
pigsar = Y P}Sipie+ Liy. (4.9)
Jj=0

It is useful to note that the sum of the transition probabilities is always equal to

1, or

ZP]{t =1. (4.10)



4.2.2 The Settlement Function

Settlement per time unit cannot increase without bound. As barnacles settle
in the system, they occupy space and thus reduce the space available for future
settlers. If the rate at which cyprids become available to settle from the water
column m~=2.d~" (£) is low, the amount of space occupied by settlers early in the
time-step is small, and thus incremental settlement Fj~'.Ag™" (€) is unaffected.
However, when x is high, a large proportion of the space is occupied by early
settlers and thus, the incremental settlement is much lower than expected from
the number of cyprids available to settle. The rate of change of settlement over
time can be described by a differential equation. If R are the fucoids that have

already settled into the system and occupy space, then

dR

e ¢ (F(to) —aoR?) (4.11)

where ( is the daily instantaneous settlement rate per m? of rock, F(t) is the
free space at time ¢y and agR is what has already settled in the area. If equation
(4.11) is solved over time (), then,

F(t
R(t) = (to) (1= e ) (4.12)
If ag = Ogcp, then the discrete analogy to equation (4.12) is

. j2
¢F, = @0';0 (1 — emcOomoat) (4.13)

If ¢ and & are calculated for set parameters, then we find that there is an asymp-
totic relationship (see figure 4.1). The relationship is linear at low values, but as
¢ — oo then £ = &aw = 1/(Op).-

This function allows us to define the settlement function IA” As settlement is

proportional to free space,

A

Fy
Ooco

Q
SNy, = €F = (1 — 6*49000“) . (4.14)
1=0
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Figure 4.1: The relationship between £ and ¢ (At = 14, ¢g = 5 * 107% and
Oy = 0.5).

4.3 A Strategic 4 Size-Class Model

4.3.1 The Model

The general model is fairly intractable. Thus, firstly we investigate a very sim-

plified case of the model. The assumptions made are:

1. The model has 4 size-classes.

2. All settlement is to the first size-class.

3. Survivorship (S) is constant.

4. An individual cannot be promoted more than one size-class.
5. An individual cannot be demoted to a smaller size-class.

6. An individual can only remain in the largest size-class.

7. The probability of being promoted (P) is constant.

8. The ratio of area occupied to canopy area (©) is constant.

9. There is a geometric increase in size as an individual is promoted.

These assumptions allow the general model to be simplified to a strategic model.
This model can be simply defined using four transition equations, where from

assumption 2 settlement is only into size-class 0. Thus,
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4.15
4.16
4.17
4.18

PotrAt = I+ (1= P)Spos
Pravar = PSpor+ (1 —P)Spy
paiar = PSpiy+ (1 —P)Spay
pairar = PSpayy+ Spsy.

(4.15)
(4.16)
(4.17)
(4.18)

The settlement at time f, ft, is defined as being proportional to the free space.
Thus,

3 +
I, = ¢F,=¢ [1 -3 aipi,t] : (4.19)
=0

As the ratio of are occupied by an individual (a;) to actual canopy area (¢;) is
constant, then © = a;/c;. Assumption 9 implies that ¢; = ec; | = €'co. This

allows equation (4.19) to be re-written as

3 +
It = th = f [1 - @CO ZGZpi’t‘| . (420)

1=0

The incremental settlement rate per m? , £, is related to the daily instantaneous

settlement rate per m? , ¢ using the same relationship as in the general model, ie

1— e—C@coAt

(= —gu (4.21)

4.3.2 Steady States

Derivation

From equations (4.15)-(4.18) and (4.20) it is possible to derive the steady states

of the model. If the system is at equilibrium and

Pit+At = Pz’,tZPf
Appar = A=A
Frai = Fi=F

T T A*
[t+At = [tZIJ



then from equations (4.15) and (4.20) respectively

A

>k I*
o= A= -P)9) (422)
I = ¢ [1 - ecoielpjl : (4.23)
If we let
b1,02 = (PS)/(1—(1—P)S) (4.24)
s = (PS)/(1-29), (4.25)

then, with a little simple algebra, the equilibrium steady states are

. £
Po = (1—=(1—=P)S)+ E£OcyA (4.26)
pi = i, (4.27)
py = $1dapy, (4.28)
p3 = G203, (4.29)
where,
Ay = l4ep +EP1ds+ P12 (4.30)

The derivation of these steady states allows insight into the limiting parameters
at high and low settlement densities. When (©cyAt — oo, then & — 1/(Oc)
and p5 — 1/Ap. This suggests that at high settlement rates the equilibrium
occupied space is limited by P, S and the choice of the size-classes. However, as

(OcoAt — 0, then & — 0 and the equilibrium occupied space is limited by (.

Parameter Values

A range of parameter values must be chosen such that the steady states can be
investigated. Obviously both P and S must be in the interval (0,1). The strategic
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nature of the model allows the size-class choice to be made fairly arbitrarily. Thus,
a geometric increase in area is used as an individual moves up size-classes (see
table 4.1). It is assumed that the ratio of a; to ¢; is less than one as the area of
rock occupied is less than the actual canopy area. Thus, for the moment we take
O =0.5.

Table 4.1: Logarithmic size-class choice for © = 0.5.

Size- Area Individual i Maximum
class range (mm?) area (mm?) (m?)  Number.m™2
0 0—10 5 5% 1076 4.0 % 10°
1 10 — 10? 50 5% 107° 4.0 % 10*

2 102 — 10° 500 5107 4.0x10°
3 10* — 10* 5000 5x107% 4.0 %107

Investigation of the Steady States

The analytical steady states were used to investigate the effect of increasing (,
P and S on the proportional occupied space, density of individuals and area

occupied by the different size-classes.

Increasing P, S or ( increases the proportional occupied space at equilibrium,
A* (see figures 4.2 and 4.3). Increasing S gives an exponential increase in area
occupied. Increasing P or ( gives a logistic increase in area occupied. The general
increase in area is due to the mechanism controlling the model. If the area of a
cohort increases with time then oscillations occur. Increasing P, S or ( increases
the potential of a size-class to increase in area. For example, increasing S causes
more individuals to survive to occupy area, increasing P increases the rate at
which area is gained by a cohort and increasing ( increases the densities in a

size-class and therefore the potential to gain area.

It is also possible to look at the effect of increasing P, S and ( on the densities
of individuals in and area occupied by a particular size-class. Increasing ( gives
an asymptotic increases in the density of individuals and a logistic increase in
the area occupied by a size-class (see figure 4.4 and 4.6). Increasing S causes an
initial increase in both densities and area occupied in size-classes 0-2. However,
as S is increased further the densities and area occupied decrease (see figure
4.5 and 4.7). Size-class 3 shows a different picture with both the densities and

area occupied increasing exponentially with increasing S. Increasing P gives an
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Figure 4.2: The effect of S and P on A* Figure 4.3: The effect of ( on A*.
for P =0.05 and S = 0.9 respectively.

exponential decline in the densities and area occupied in size-class 0. There is an
initial increase in both densities and area occupied in size-classes 1 and 2, but
after P > 0.05 they decline. Size-class 3 shows an asymptotic relationship for

both densities and area occupied (see figure 4.8 and 4.9).

In figures 4.4 - 4.9 it is obvious that size-class 3 is the dominant size-class in terms
of the total area occupied. This is similar to the situation found on sheltered

shores where a few large plants dominate the area forming a canopy.

4.3.3 Stability Analyses

Local stability analysis investigates the behaviour of a small perturbation from
the steady state. If the steady state is stable then the perturbation will decay
and the solution will return to the same steady state value. If the perturbation

is unstable then the solution will diverge away from the steady state.

The Characteristic Equation

To derive the characteristic equation for this simple model, we define a pertur-
bation from a steady state in size-class ¢ time ¢ as dp,;. This gives four equations

for the behaviour of the perturbation
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where,

0,t+At
O1,t+At
02,04+ At

03,14 At

(I, = I*) + (1 — P)Séy,,
PSSy, 4 (1 — P)Sdy,,
PS61 44 (1 — P)Sdy,,
PS6y, + Sbs,
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3
LTI = —£0¢) Y €y (4.35)
=0

These equations for the behaviour of a perturbation can be summarised simply

in matrix form.

6t—|—At - Aét (436)
where,
a+% Y Y2 V3 do,t
6 (07 0 0 . 61,t
A=l 0 5 a0 ] %74,
0 0o g S O3t
and,
a = (1-P)S
B = PS
Vi = —EOce’. (4.37)

The characteristic equation is the determinant of the matrix (A —AI). By looking

at the minors of matrix A, the characteristic equation is

(S —N(a—XN*(a+7%—A) = (S —N)(a— )by + (S — N3y — 32y3 = 0.
(4.38)

Eigenvalues (\) are the roots of the characteristic equation, and these give in-
formation on the stability of solutions and the way in which equilibrium is ap-
proached (see Nisbet & Gurney (1982) for a general review). A solution is de-

scribed as stable when all the eigenvalues are within the unit circle, ie |A| < 1.
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A Heuristic Mechanism for Stability

The mechanism that governs the oscillatory nature of this system is dependent
upon the variation of area occupied by a cohort over time. The system is not os-
cillatory if this area decreases, but oscillations are produced if this area increases.
These oscillations can either decay giving rise to stable underdamped solutions or
can persist to produce limit cycles. The oscillations decay or persist depending

on the rate at which free space is occupied, ie the settlement rate.

Ignoring the settlement rate allows a heuristic stability criteria to be derived.
If the area occupied by a cohort at time ¢ is defined as y; and start with ng

individuals all in size-class ¢ with area Oc;, then,

Xi = noOc. (4.39)

At time t 4+ At, Sng individuals remain P of which have been promoted to size-
class ¢ + 1 and now occupy an area of Oec;. Thus the area of the cohort at time
t+1is

Xte1 = (1 = P)SngO¢; + PSnoOec;. (4.40)

Obviously for a cohort to increase in area occupied over time then y;.; > x;.

Thus with a little simple algebra we find that

1
S > — X >1). 441
1+ Ple—1) (e>1) (4.41)
As we ignore the settlement rate, this solution will only be a good approximation
to the stability boundary at high settlement rates. This is because at high settle-
ment rates S, P and € are the density limiting parameters. In fact the heuristic

boundary should be the limit of the stability boundary as ( — oo.

Numerical Investigation of Stability

Equation (4.38) can easily be solved analytically with the quartic formula us-

ing a package such as MAPLE v (©1991, Waterloo Maple Software, University
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of Waterloo, Ontario, Canada). However, these solutions are very complicated
and tell us little about the actual nature of the boundary. A far more useful

implementation of the characteristic equation is to solve it numerically.

Numerical solution is done using different sets of parameter values to give an idea
of the nature of the stability boundary at different values of P, S and (. A pro-
gram called CONTOUR was used which is part of the SOLVER package (©STAMS,
Livingstone Tower, 26 Richmond Street, Glasgow G1 1XH). CONTOUR is a pack-
age that uses Newton-Raphson techniques to follow the roots of equations. Ini-
tial condition for the CONTOUR code were produced using numerical solution in
MAPLE V ((©1991, Waterloo Maple Software, University of Waterloo, Ontario,
Canada).

The roots can be real or complex conjugate pairs, with each complex boundary
representing a pair of solutions. To locate the boundary we take |\| = |pu+iw| =
V2 + w? = 1. Once the stability boundary is located, setting v/u? + w? < 1 and
V2 + w? > 1 on the same plot allows the direction of stability to instability to

be discerned.

The stability boundaries for different ¢ can be seen in figures 4.10 - 4.13. Increas-
ing either P, S or ( is destabilising. From the steady state analyses we know
that increasing these parameters increases the occupied space. Thus, increasing

the occupied space is destabilising.

The difference between the heuristic and real stability boundary decreases as
settlement rate is increased (see figures 4.10 - 4.13). As the heuristic criteria only
predicts oscillations, the parameter space between these 2 curves is the region
that produces stable underdamped solutions. The persistence of these oscillations
depends on the rate at which the space is filled, ie the settlement rate. Thus, at an
increased settlement rate the space is filled faster producing a smaller parameter
space where the solution is stable underdamped (see figures 4.10 - 4.13). This
suggests that as ( — oo the space should fill infinitely fast and there should be
no parameter space where stable underdamped solutions are produced. Thus,
as ( — oo the heuristic criteria should become a better estimate to the actual

boundary.
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4.3.4 Simulation

A time-step must be chosen for simulation that is short in comparison to the
maximum age of an individual. Thus, the vital rates are assumed not to vary
within this time-step. A time-step or At of 14 days is used, as this value is short
in comparison with the lifespan of perennial seaweeds. Also sampling on a real

time scale is unlikely to happen more often than this period.

Two types of dynamics are produced by this model they are stable and periodic
solutions (see figures 4.14 and 4.15 respectively). The stable solutions give stable
size-class distributions (see figures 4.16). However, unstable solutions are found
when waves of individuals pass through the size-classes creating an unstable size-
distribution (see figure 4.17).
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Figure 4.14: A stable solution of the Figure 4.15: An unstable solution of
model (¢ = 20, S = 0.95 and P = the model (( = 200, S = 0.95 and
0.05). P =10.05).

These solutions provide insight into the mechanism that controls the decay or
persistence of oscillations. If the time over which free space fills is long then the
size-distribution will tend to a stable distribution and the oscillations will decay
(see 4.14 and 4.16). However, when the settlement rate is higher, short ‘pulses’ of
settlement occur and free space is occupied quickly. In this case individuals move
through to the final size-class and free space only occurs when one of the large
plants dies (see figures4.17). This gives rise to the classic relaxation oscillations
that are found (see figures 4.15).
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Figure 4.16: A stable size-distribution (¢ = 20, S = 0.95 and P = 0.05).

Figure 4.17: An unstable size-distribution (¢ = 200, S = 0.95 and P = 0.05).

4.4 An Application of the Model to F. vesicu-
losus

In this section the strategic model is applied to F. vesiculosususing parameter
values from the literature. The choice of size-classes, probability of promotion
and size-specific survivorship are set in order to produce densities that are in the

correct order of magnitude.
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These new parameter values and size-specific survival will be used in the model.
The results of this model will be compared with the strategic model to investigate

robustness.

4.4.1 The Model

The synthesis of this model is very similar to the synthesis of the strategic model.
However, in this section size-specific survivorship is assumed. Thus, the four

transition equations are

4.42
4.43
4.44
4.45

Pojt+at = I + (1 —P)Sopo
privar = PSopoy+ (1 —P)Sipry
pagrar = PSipiy+ (1 —P)Sopay
Pagrar = PSapay + Sipsy,

~—~~ N —~
~— O~ ——r e

where,

A

3 +
I, = fﬁt =¢ [1 -0 Z aipi,t] . (4-46)

1=0

As the ratio of area occupied by an individual (a;) to actual canopy area (c¢;) is

constant, then © = a;/c;. This allows equation (4.19) to be re-written as

R R 1— 67§900At
I, = O
- iz

3 +

1=0

4.4.2 Parameterisation

Choice of Size Classes

There are four size-classes in the model which are picked to represent length and
average age of the plants. As the longevity of F. vesiculosus is about 4 years
(Knight & Parke, 1950), then the size-classes will represent the 0+, 1+, 2+ and

3+ year old plants. The mid point of these size-classes is the area occupied by
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an individual in this class. In this case, insufficient data has been collected to fit
size-classes using an algorithm (see for example Moloney, 1986) and the size-class

choice had to made fairly arbitrarily.

The density of plants in each size-class is dictated by the area of bare rock occu-
pied by an individual in size-class i, a; = Oc¢;. Thus, © and ¢; were scaled such
that reasonable densities of plants were found in the size-classes. As the area of
plants is not generally measured as it is very labour intensive, reasonable lengths
of plant were examined for a certain age of plant (see table 4.2). The area of
rock occupied by as individual is smaller than the actual canopy area of that

individual. Thus, arbitrarily we use © = 0.5.

Keser & Larson (1984) noted that in Maine there is not enough substratum to
support very high densities of germlings (> 43,600.m 2). So if &par = 5 * 104,
then Ocy = 1/&ae = 20mm?. ‘Escapees’ should be in the range of 0 — 50mm and
are still a single frond (Hawkins, pers. com.). Both the area and length for size-
class 0 are known and thus it is possible to derive a linear relationship between
area and length. As the plants in size-class one are still single fronds, the linear
length-area relationship was used to calculate the area from the lengths of these
plants. Creed (1993) suggests that the density of individuals of length< 120mm
is around 3000 in monospecific stands. Thus the estimate produced in this scaling

for a maximum density of about 8000 is in the correct order of magnitude.

After the second year the plants start to dichotomise (Knight & Parke, 1950).
Thus, area is now roughly proportional to length squared. To get the densities
in the final size-class in the correct order of magnitude it was necessary to scale
the size-classes such that ©c¢; = 0.25 x length?. The maximum density that can
be found in the final size-class is about 11.1 plants, which is within the correct

order of magnitude (Hawkins, pers. com).

Table 4.2: Size class choice for © = 0.5 (Hawkins, pers. com.).

Group Spread of Individual Area- Oc; Maximum
Lengths length length (m?) Number.m =2
(mm) (mm) Trend
Escapees 0-50 25 Linear 2.000 x 10~° 5.0 % 104
Juveniles  50-250 150 Linear 1.2% 107 8333
1%tseason  250-500 375 Quadratic  3.516 % 1072 28.4
2"seqson 500+ 600 Quadratic  9.900 * 1072 11.1
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Probability of Promotion

I assume that the size-classes 0 to 3 are essentially composed of plants that are
0+, 1+, 24+ and 3+ years old respectively. Thus, we are required to make the
average transition time from size-class i — i 4+ 1 one year. As the time interval
chosen, At, is fourteen days, then it is assumed that 26 of these time intervals
make 1 year. As promotion of the complete size-class is required in a year then

the probability of promotion is 1/26.

Size-Specific Survival

A number of different conclusions have been reached on size-specific survivorship
or mortality. However, most studies suggest that the probability of death remains
constant with age. This is possibly due to the studies ignoring the microscopic
stages. For example, Chapman (1986a) found a negative exponential relationship
between age and mortality in Laminaria saccharina, with almost all the plants
dead by 24 months. A similar relationship has been found for Macrocystis pyrifera
(Rosenthal et al, 1974) and Pelvetia fatigiata (Gunhill, 1980). Black (1974) stated
that older individuals of Egregia laevigata ensure a high death rate amongst indi-
viduals of the same species. Chapman (1986a) proposed that mortality is constant
at a size of greater than 10cm in L. saccharina, but most mortality occurs before
this stage. The maximum size that L. saccharina reached in this study was 4m
in length. Creed (1993) suggested that mortality is inversely proportional to size

in small F. vesiculosus. Thus, size specific survivorship was investigated.

This information infers that survivorship should be higher for older plants. How-
ever, the maximum longevity of the plant should still be a mean of 4 years (Knight
& Parke, 1950). The size-class survivorship used is shown in table 4.3, which pro-
duces the survivorship curve shown in figure 4.18. The size-specific survivorship

using S; = 0.9223 was back calculated from the cumulative survivorship after

Table 4.3: Size-specific survivorship (At=14 days).

Group Survivorship Proportion Surviving

Escapees 0.90 6.46 * 1072
Juveniles 0.91 5.56 % 1073
1%'season 0.93 843 x 104
2"dseqson 0.95 2.22 %107
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208 weeks. This produces a very similar curve to the survivorship curve of the

strategic model (see figure 4.19). This will be used to compare the dynamics.

4.4.3 Steady States

Derivation

The derivation of the steady states is similar to that of the strategic model. If
the same line of reasoning is followed and we redefine ¢; then steady states can
be derived. If we let

¢ = (PSp)/(1—(1—-P)Sy) (4.48)
¢ = (PS1)/(1—(1—P)S,) (4.49)
¢2 = (PSz)/(1—S3) (4.50)

then, with a little simple algebra, the equilibrium steady states are

. €
P T T=(1=P)Sy) + 604, ’
p){ = ¢1p3, (452)

(4.51)
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Py = P192p;, (4.53)
Py = G123, (4.54)

where,

Ay = co+c1d1 + 20102 + c3010203. (4.55)

Investigation of the Steady States

The steady states give a very similar picture to the strategic model. Increasing ¢
causes an increase in the area occupied at equilibrium, as it increases the potential
area of a cohort and the speed at which space fills (see figure 4.20). The density
of individuals and space occupied by each size-class again increase asymptotically
and logistically respectively (see figure 4.21 and 4.23). The densities in each size-
class are inversely proportional to the area occupied by the size-class. This is
true of all perennial seaweeds. Most importantly the area of rock is dominated
by a few individuals in the largest size-class. This is similar to the canopy that

is found on sheltered shores.

The steady state dynamics of this model are similar to the strategic model. In all
cases P = 1/26 and the value of ¢ was varied. The different types of models used
can be seen in table 4.4, where constant survivorship implies that S = 0.9223, and
size-specific survivorship and realistic size-classes are as described in section 4.4.2.
In both models increasing ( increases the area occupied (see figure 4.22). However
changing size-classes has a very large effect on the area occupied at equilibrium
at low settlement rates. This is because fewer individuals are required in the
F. wvesiculosus model to fill the space quickly. When ( becomes larger similar
occupied space values are found, as even with the small size-classes space fills up
relatively quickly. Changing the survivorship function make little difference to
the area occupied. This is because the functions are quite similar (see figure 4.19).
The trajectories produce a smaller occupied area with constant survivorship, as
more individuals survive from size-classes 1 and 2 to 2 and 3 respectively. Thus
the gain in area is greater as the largest increase in area is between size-class 1
and 3.

85



0.6 0.8 1.0
| |

Proportional occupied space
04
I

T T T T T
o 1 2 3 a

Log(zeta)

Density

30

25

20

15

1.0

05

0.0

Size-class
o

1
2
3

T T T
2 3 a

log(zeta)

Figure 4.20: The effect of increasing (  Figure 4.21: The effect of increasing (

on the area occupied at equilibrium.

0.4 0.6 0.8 1.0
| | |

Proportional occupied space

0.2
|

Log(zeta)

Figure 4.22: Comparison of the model
for F. wvesiculosus and the strategic
model (see table 4.4).

86

Proportional Occupied Space

10

08

04

0.2

on the density of individuals in different
size-classes at equilibrium.

Size-class

WNRFRO

log(zeta)

Figure 4.23: The effect of increasing (
on the total area occupied by different
size-classes at equilibrium.



Table 4.4: Model Types in figure 4.22 (P = 1/26).

Model Size-class  Survivorship

FS Realistic ~ Size-specific
GS  Geometric Size-specific
GC  Geometric Constant
FC Realistic Constant

4.4.4 Local Stability Analyses

In this section the characteristic equation is derived, then the behaviour of the
roots of this equation is examined. This allows the investigation of a perturbation,
d; 1, from the steady state. The characteristic equation is found in the same way

as for the strategic model. The characteristic equation is

(S5 — Az = A)(a1 = A)(ag+v — )
— (S35 =X (a2 — X)Boy1 + (S5 — X)Bofiv2 — BofiPays =0 (4.56)

where,

o; = (1 - P)Sl
o= —€Oce. (4.57)

The analytical solution to this equation is very complicated and can be solved us-
ing MAPLE V ((©1991, Waterloo Maple Software, University of Waterloo, Ontario,

Canada). However, the solution is uninformative and is not expressed here.

Realistic parameter values for P, S;, and Oc¢; have been described above. These
values are substituted into equation (4.56) and then solved for ( where |A| = 1.
This gives the critical value of (. Below this critical value of { the model is stable,

above it the model is unstable.

The model types used are the same as described in table 4.4. If the relative
stability of each of these models is investigated (see table 4.4) then it is found
that the models with the highest values of A* in figure 4.22 are the least stable.
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Table 4.5: Stability of the different model types (see table 4.4).

Model Critical ¢

type P =0.019 P=0.038 P=0.077 P=02
FS 2.2779 7.2899 29.155 0.80746
GS - 331.02 77.292 25.574
GC - 317.63 78.328 26.175

FC 2.0395 5.9612 21.902 0.78030

As can clearly be seen from table 4.5 the more carefully parameterised model is
much less stable than the strategic model. However, changing the size-classes has

a far greater effect on the model than the instigation of size-specific survivorship.

4.4.5 Simulation

Again a time-step (At) of 14 days was chosen as this value is short in comparison
with the maximum age of an individual and vital rates are assumed not to vary

within this time.

A very similar pattern is found to the strategic model. Both stable and unsta-
ble solutions are obtained. The stable solutions have stable size-distributions.

Unstable solutions have unstable size-distributions.

A similar mechanism is observed for the speed of space filling. If space is filled
quickly, e a high settlement rate, then persistent oscillations are found. If space

fills gradually then stable underdamped solutions are found.

4.5 Discussion

The mechanisms that produce the dynamics in both of the 2 models are very
similar. This is not surprising as their formulation is essentially the same. If the
settlement rate, (, is high then the occupied space is limited by the parameters
P, S, and O. If the settlement rate is low then the occupied space is limited by
the settlement rate. Oscillations are found when the area occupied by a cohort
increases over time. The decay or persistence of these oscillations depends upon
the rate at which free space is filled, ie the settlement rate. Oscillations decay if
the settlement rate is low, as free space is filled slowly, producing an underdamped

solution. Oscillations persist if the settlement rate is high, as free space is filled
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by short ‘pulses’ of recruitment, producing limit cycles. This is illustrated nicely

by the comparison between real and heuristic stability in the strategic model.

Increasing P, S or ( is destabilising as it causes and increase in the area occupied
at equilibrium. This is because the potential area of a cohort increases with

increasing P, S or (.

The model for F. vesiculosus is much less stable than the strategic model. This
is because the density of individuals required to fill the space is lower. The means
that only small increases in settlement rate enhance the speed of occupation of
space. Thus, smaller settlement rates are required to fill the free space and the

F. vesiculosus model is more likely to produce oscillations.

Both models produce a size-distribution that is very similar to a canopy structure
with the density of individuals decreasing with increasing size. The models also
predict that a few large individual will dominate the area occupied. This is also

similar to the canopy of perennial seaweeds.

The values of ¢ that produce instability in the model for F. vesiculosus appear to
be very low. However, the densities produced in the size-classes are in the correct

order of magnitude.

All of the models produced for seaweeds have looked at effectively closed (see for
example, Nisbet & Bence, 1989; Bergman & Gerrard, 1990). Most are systems
where the density of propagules available for recruitment to the population is
dependent upon the adult population (see for example, Ang, 1987, 1991b; Aberg,
1992a&b; Ang & De Wreede, 1993). These models are mainly simulation, the
most similar seaweed model being Nisbet & Bence (1989). The work in this
chapter is closer to the work of Roughgarden et al (1985), Bence & Nishet (1989)
and Kuang & So (1995). There is a similar tradeoff between increase and loss of
area to that found by Roughgarden et al (1985) and Bence & Nisbet (1989). The
stability criteria are similar, as formulation and assumptions are essentially the
same. Space-limited recruitment and a deterministic system allow us to avoid
the problems of extinction often experienced (Aberg, 1992b; Ang & De Wreede,
1993).

In light of the findings of this chapter it is now useful to reassess the assumptions
used to formulate this model and suggest areas for further work. A difficult
assumption to justify is that the system is open. As was stated in the introduction,

propagules are only transported short distances from their parents (see Deysher &
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Norton, 1982; Arronties, 1993). However, the specific shore that we are interested
in receives sporadic settlement from outside the system (Hartnoll & Hawkins,
1985).

The assumption of constant settlement is not realistic. F. vesiculosus is known
to have a distinct settlement period between May and July (Knight & Parke,
1950). Over this period the settlement is not constant and is effected in a similar
way to barnacle settlement. This would give a series of peaks and troughs of
settlement. Thus, a stochastic recruitment function would be a useful addition to
the model, as without some kind of stochasticity recruitment and adult density are
overestimated (Burgman & Gerard, 1990). The addition of a seed bank similar
to that observed in terrestrial systems would be useful. There is great debate
over the existence of the seed bank and a number of authors have suggested its
existence (see for example Ang & De Wreede, 1993; Creed, 1993; Creed et al,
1996). Modelling it may provide some new hypotheses for the experimentalists
to test.

Assuming that probability of promotion is constant across size-classes is feasible.
As the assumption that the average age of an individual in each of the size-classes
is 0+, 14, 2+ and 3+ respectively, then this allows us to keep this probability
constant. However, it would be useful to examine a model where the probability is
not constant and it is possible to be demoted. The probability of being demoted is
small. The results of Knight & Parke (1950) for the growth rate of F. vesiculosus
at Wembery showed that only 1 of 45 plant decreased in length during their study.
However, this probability will increase at sites of higher exposure, as the plants

are more susceptible to wave damage.

There is little data for the estimates of S, ¢;, © or P. This has made the model
very hard to parameterise and no algorithm could be used to fit the size-classes.
Thus, the assumptions that the P, S, © and C; are all known is wrong. More
accurate data describing all the demographic parameters would be useful in both
the parameterisation of this model and the accurate prediction of densities over
time. For example, Knight & Parke (1950) made one of the very few investigations
into the increase in length of F. wvesiculosus in the British Isles. They found a
large variation in growth from -3 to 47.5 em. However, one of the main uses of
this model is to suggest where data is needed. I would suggest that a tagging
study similar to Aberg (1992a) on the specific shore and species being modelled
is necessary to derive accurate demographic parameters. As the longevity of F.

vesiculosus is four years this study would have to run for at least that time period.
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Density dependent survivorship would have been an interesting addition to the
model. Creed (1993) suggest that F. vesiculosus follows the -3/2 self thinning
rule which has been suggested to apply to all terrestrial plants. He also states
that monospecific stands of seaweed are detrimental to the overall survivorship.
Thus, at greater densities in the model the survivorship should be lower and
the -3/2 self thinning law should be investigated. Another useful addition to
the survivorship function would be the inhibition of smaller plants by the larger
canopy plants. This occurs in a number of ways. For example, lower light intensity
(Schonbeck & Norton, 1980a); lower nutrient levels (Dayton et al, 1984); whiplash
and sweeping effects (Dayton, 1971; Ang, 1985); sediment build up (Kenelly,
1989); and aggregation of grazers (Hartnoll & Hawkins, 1985).

The problems of ‘What is free space?’ and ‘What is 100% occupied space?’ exist
in this model. For a review of the arguments produced for barnacles which are

essentially the same as for fucoids.
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Chapter 5

Single Species Models of F.
vestculosus and S. balanoides in
a Seasonal Environment

5.1 Introduction

A strong seaonality in the settlement of both S. balanoides and F. vesiculosus
has been observed by many empiricists. There are small changes in timing from
year to year, but general periods are found. These will be discussed separately

for the two species below.

5.1.1 Seasonal settlement in S. balanoides

Seaonality in the settlement period of barnacles has been investigated by many
authors (see for example, Connell, 1961a; Wethey, 1980; Hawkins & Hartnoll,
1982a; Caffey, 1985; Gaines & Roughgarden, 1985; Wethey, 1985; Pannacciulli,
1995). Much of the work on the settlement period has been direct, as daily densi-
ties of cyprids are measured, but many different results in both settlement period
and density are observed. For example, Hawkins & Hartnoll (1982a) investigated
the settlement of S. balanoides on the Isle of Man between 1977 and 1981. They
found that cyprid settlement varied from a 40 day period in 1977 to a 90 day pe-
riod in 1981. The start of settlement was found to vary between the end of April
and mid-May. The end of settlement varied between June and the beginning of
July. Kendall et al (1985) found a similar pattern for Robin Hood Bay in 1978.

However, peak settlement was much later at around the beginning of June.
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The settlement period of barnacles appears to be almost random, although Hawkins
& Hartnoll (1982a) hypothesised that the timing is correlated with the algal
bloom. Settlement patterns are not constant, peaks and troughs are observed
that appear to be random. Peak settlement rates have been correlated with a
number of factors including the strength of onshore winds (Hawkins & Hartnoll,
1982a); maximum tidal range (Shanks, 1986); and increasing wave action and de-
creasing shore height (Bertness et al, 1992). This temporal and spatial variation
in settlement is not yet understood (Wethey, 1985).

5.1.2 Seasonal settlement in F. vesiculosus

Seasonal settlement has been suggested for F. vesiculosus (Knight & Parke, 1950;
Hawkins, 1981a; Creed, 1993). The settlement period is between May and July
(Knight & Parke, 1950; Creed, 1993). However, a lower background settlement
has also been observed, which suggests the presence of a seed bank (Hoffman &
Santilices, 1991; Ang & De Wreede, 1993; Creed, 1993; Creed et al, 1996).

The seed bank is supposed to operate in exactly the same way as in a terrestrial
system and has been the subject of great debate. Hawkins (1981a) inadvertently
found data to support the presence of a seed bank. He looked at the succes-
sional sequence of colonisation of barnacle covered rock and found that different
successional sequences occur depending on the time of clearing. However, there
appears to be low background settlement of F. wesiculosus in all treatments,
although recolonisation occurs fastest during the settlement season (July’s exclu-
sion). Creed (1993) has the best evidence for F. vesiculosus. He suggests from
extrapolation of data that there are a maximum of 26000 plants.m 2 available in
the spore/germling bank in September, two months after settlement is supposed

to cease.

5.1.3 Modelling Aims

As settlement of S. balanoides and F. vesiculosus is seasonal, the aim of this
Chapter is to investigate single species models of the colonisation of bare rock by
F. vesiculosus and S. balanoides in a seasonal environment. The seasonal com-
ponent of the models is introduced into the most complicated models produced
in Chapters 3 and 4. Phase locking is investigated as a possible mechanism for

production of different solution types. The model for F. vesiculosus will include
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settlement into the system from a seed bank in the period outside the settlement

season.
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5.2 Modelling S. balanoides in a Seasonal En-
vironment

5.2.1 The Model

In this section seaonality is added to the logistic growth model (see Chapter 3).
A step function is used to model seaonality, with constant settlement during the
season and none otherwise. Thus, the daily instantaneous settlement rate during

the settlement season is defined as k, then the renewal condition is written as

ao

B = Ly (1 — e"woAa) Within the settlement season (5.1)
! 0 Otherwise '

where o is the incremental settlement. This is used with equations (3.5)-(3.7)

and (3.11) to implement seasonal settlement in the logistic growth model.

Step functions of different lengths were used to simulate ‘good’ and ‘bad’ set-
tlement. Settlement was assumed to be better if the period of settlement was
longer. Three different periods were used to simulate ‘good’, ‘average’ and ‘bad’
settlement (see table 5.1).

Table 5.1: Settlement periods and strength of the years settlement for the three
models.

Date of Settlement Season ‘ Strength of Settlement ‘ Number of Settlers

8" Apr - 12 Aug ‘Good’ High
22" Apr - 15 Jul ‘Average’ Average
6" May - 17 Jun ‘Bad’ Low

Fourier Transforms

Fast Fourier Transforms (FFTs) were taken to investigate the periodicity of so-
lutions. This allows investigation into whether solutions are phase locked. A
solution is phase locked when the natural period of the solution is synchronised
with either the driving period or (sub-) harmonic of this period. When settlement
is annual, the driving period of the model is 52 weeks or 1 year. It is necessary to

look at the periodicity of the constant environment models to discern the natural
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period of the system. This technique was used to determine whether a solution

is periodic or aperiodic.

The FFT is a technique used in Fourier Transforms to cut the time and compu-
tational power required to transform the data. The FFT algorithm requires far
fewer additions and multiplications, as the number is proportional to number *
[logz(number)] for FET. For a normal Fourier algorithm the number of calcula-
tions required is number? (see Gonzalez & Woods, 1992, for a general review).
The calculation of the FF'T power spectra from the data was done using a pro-
gram called FF'T, which is part of the SOLVER suite of programs ((©)1994, STAMS,
University of Strathclyde, Glasgow, G1 1XH, Scotland).

5.2.2 Simulation

General Results

These solutions are found when settlement occurs between the 22"¢ April and
the 15" July. The steady state is oscillatory, as settlement only occurs during
a set period of the year. Thus, all solutions are oscillatory and can be periodic
(see figure 5.1) or aperiodic (see figure 5.2). Aperiodic solutions are found at the
transition between the periods of oscillation, for example, when the period moves

from one to two years or two to three years.

Increasing k causes an increase in the amplitude of oscillation in the periodic
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Figure 5.1: A periodic solution (S = Figure 5.2: An aperiodic solution (S =
0.95, k = 10?). 0.95, k = 1.5 % 10%).
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Table 5.2: General results from the seasonal settlement model and the natural
period produced using the same parameters in a constant environment, where
the - indicates aperiodicity (S = 0.95).

Settlement Natural  Period of  Amplitude of Solution
Rate (k)  Period Oscillations  Oscillations Type

(weeks) (weeks)
1% 10° - 208 23.38 Periodic
5% 10° - 208 23.37 Periodic
1% 10° - 208 22.44 Periodic
5% 10* - 208 19.79 Periodic
2 % 10* - 208 16.57 Periodic
1% 10* 106 - - Aperiodic
6% 10° 100 156 5.833 Periodic
5% 103 99 156 5.514 Periodic
2% 10° 87 156 3.779 Periodic
1.5 %103 84 - - Aperiodic
1% 10? 77 104 1.4303 Periodic
5 % 10? 68 104 1.047 Periodic
2.5 % 10? 62 52 0.230 Periodic
1 %102 2 52 0.151 Periodic
1% 10" 2 52 0.025 Periodic

solutions. Aperiodic solutions are found at the change between annual periods
(see table 5.2). The natural period shows that periodic solutions are phase locked

to the next great harmonic of the driving period.

The aperiodic solutions were investigated using Fourier transforms. These solu-
tions are produced when the natural and driving periods of oscillation are out
of phase. If sums and differences of the natural and driving periods are present
then the solutions are out of phase. If the natural period is not visible then the

solution is phase locked.

When a periodogram of a periodic solution is calculated using FFT, a single peak
and harmonics of that peak are found (see figure 5.3). As only the driving period
and its harmonics are seen, the natural and driving period are in phase and the
solution is phase locked. However, when the solution is aperiodic, many peaks are
found with both the driving and natural periods present (see figure 5.4). Thus,

the aperiodic solutions are not phase locked.

The age-class distribution given by the seasonal settlement model shows a similar

picture to the unstable solutions of the logistic growth model with cohorts passing
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is 2 weeks (S = 0.95, k = 10?).

through the age-classes.

There is a general decrease in the period and the amplitude of the oscillations of
the solutions with decreasing survivorship (see table 5.3). The aperiodic solutions
are again found at the changes in period of oscillations. The periodic solutions
stabilise to a single amplitude more quickly as survivorship is decreased. The
age-class distribution again shows cohorts moving through the age-classes, but as
the survivorship is decreased the cohorts die at an earlier age and more cohorts

are found.

Simulation of ‘Good’ and ‘Bad’ Settlement

There is a general increase in both amplitude and period with increasing  (see
figures 5.5 and 5.6). In the case of the amplitude the increase appears to be
logistic. This logistic shape is not surprising as when & is increased then o — 1/a,.
Thus, as o reaches a limit then the period and amplitude will not increase further.
The maximum period for S = 0.95 appears to be 208 weeks. When the period
changes aperiodic solutions are found which accounts for the discontinuities in
the figures. The natural period is generally less than the actual period suggesting
that the solutions lock to the harmonic of the driving period that is greater that

is greater than the natural period.
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Table 5.3: The effect of decreasing the survivorship in the seasonal settlement
model (k = 1% 10%) and the natural period, where the - indicates aperiodicity.

Survivorship Natural  Period of  Amplitude of Solution

(S) Period  Oscillations  Oscillations Type
(weeks) (weeks)
0.99 262 260 5.579 Periodic
0.98 257 260 5.155 Periodic
0.97 93 - - Aperiodic
0.96 87 156 2.303 Periodic
0.955 7 - - Aperiodic
0.95 - 104 1.430 Periodic
0.90 2 52 0.623 Periodic
0.80 2 52 0.522 Periodic
0.70 2 52 0.219 Periodic
0.50 2 52 0.047 Periodic
0.30 2 52 0.017 Periodic
0.10 2 52 0.009 Periodic

The effect of changing the strength of settlement has little effect on the amplitude
at low k, the ‘good’ settlement always having a slightly larger amplitude. How-
ever, if 10® < K < 5% 10%, then ‘good’ settlement oscillates less than the ‘average’

and ‘bad’ settlement. This is because I could not find a solution for the ‘good’
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settlement that was stable with a period of 156 weeks. The period of the ‘good’
settlement seems to jump straight from 104 to 208 weeks. Once k > 5 x 10*, the

amplitudes are very similar.

5.2.3 Discussion

Two types of solution are produced when seaonality is added to the model, pe-
riodic 2-cycles and aperiodic. Although the model appears to produce 4- and
6-cycles solutions these decay to 2-cycles over after over 38,000 years (> 10° time

units).

Periodic solutions are produced when the natural and driving periods of the
solution are phase locked. These solutions oscillate with a period of 52n (where
n =1,2,3,...). Aperiodic solutions are not phase locked and are found where

the period is close to increasing from 52n — 52(n + 1).

The mechanism that drives the model is the same as the model examined in
Chapter 3. Increasing S increases the period and amplitude of the solutions.
This is because increasing the survivorship increases the potential of a cohort to
increase in area over time. This, as we know from Chapter 3, is a destabilising
mechanism. Increasing S causes more individuals to survive to larger area and
thus, the proportion of occupied space increases. This increases the amplitude of
the fluctuations. As the occupied space is higher, increasing S causes the system
to take longer to relax back to the state where more settlement can occur and

thus the period of the solution is longer.

Increasing x causes an increase in period and amplitude of the fluctuations. Again
a similar explanation to the increase in S can be given. Increasing s increases
the density of individuals that settle, which increases the ability of the cohort
to increase in area. As the cohort has a larger increase in area then the system
requires longer to return to the same state, thus increasing the period of the

oscillations.

The effect of ‘good’, ‘average’ and ‘bad’ settlement is not as clear. There is
a general increase in amplitude and period when « is increased in all of the
settlement types. When x < 103, the expected pattern is found with the longer
settlement period having solutions with a slightly longer period and amplitude
than other settlement types. This is consistent with the conclusions in Chapter

3 where we found that x limited the area occupied at equilibrium at low values.
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However, when 10® < x < 10° the ‘bad’ and ‘average’ solutions have larger period
and amplitude than the ‘good’ settlement. This appears to be because this region
is full of aperiodic solutions and it was hard to find any periodic solutions for these
values of k. Also this may be moving into a region where settlement is not limiting
the proportional occupied space. When x > 10° all the settlement types have
very similar period and amplitude. This is because at high values of x settlement
does not limit the area occupied and thus these periods would be very similar as

there is no difference in the area of an individual or survivorship.

5.3 Modelling F. vesiculosus in a Seasonal En-
vironment

5.3.1 The Model

In this section seaonality is added to the parameterised model (see Chapter 4).
Seasonal settlement is modelled in exactly the same way as for S. balanoides
using a step function. The daily instantaneous settlement rate from the water
column within the settlement season is defined as (, and 0 otherwise. In this case
the settlement of fucoids is allowed outside the settlement season from a bank
of propagules called the seed bank. To model the presence of the seed bank, all
propagules that are not able to settle are assumed to enter the seed bank. These
propagules suffer a constant mortality and can settle at a rate proportional to

the available space outside the settlement season. Thus, the renewal condition is

E, {1 - eC@COAt] / (©c¢y) Within Settlement Season

F, = ., 5.2
&F: { T, F; Otherwise (5:2)

where T, is the number of propagules in the seed bank at time ¢. The seed bank

renewal can be written as

T,9+¢(1—F,) Within Settlement Season
Tt+At — { ! ( t) (53)

T, (1 — Ft) Otherwise

where ¢ is the survivorship of propagules in the seed bank from t — ¢ 4+ At.
Equations (5.2) and (5.3) are used with equations (4.15)-(4.18) and (4.20) to

implement seasonal settlement in the model.
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The amplitude and period of periodic solutions was investigated. If the solution

was not periodic then the phase locking of the solution was investigated.

Different strengths of settlement were investigated using different lengths of step
function. The longer the length of the step in the function the more propagules
are available to settle. Thus, longer settlement periods mimic years with increases
larval supply and vice versa. The period of settlement is assumed to be between
the start of May and the end of July (Knight & Parke, 1950). Thus, an ‘average’
settlement period for F. vesiculosus is from the 6"* May - 15" July in any given
year. ‘Good’ and ‘bad’ settlement period are 6 weeks longer or shorter respectively
(see table 5.4).

Table 5.4: Settlement periods and strength of the years settlement for the three
models.

Date of Settlement Season ‘ Strength of Settlement ‘ Number of Settlers

22" Apr - 12 Aug ‘Good’ High
6" May - 15 Jul ‘Average’ Average
20" May - 17" Jun ‘Bad’ Low

5.3.2 Simulation

In this section, the mechanism driving the dynamics produced by the model is
examined. This simulation uses runs with ‘good’ settlement, ie the settlement
season is between 22"¢ April and 12* August. Investigations are done of the
effect of the seed bank survivorship (¢) and the daily instantaneous settlement
rate ( () on the type, period and amplitude of solutions. Different strengths of

settlement will then be considered by shortening the step function.

General Results

The steady state in this model is oscillatory and thus, all the solutions are oscil-
latory. A wide range of behaviour is exhibited by this model, including periodic,

4-cycle, 28-cycle and aperiodic solutions (see figures 5.7 - 5.10 respectively).

The mechanism that drives this model is different to that found in the barnacle
model. Settlement into this system is from 2 sources and periodic solutions

can have settlement from outside and/or the seed bank in a regular order (see
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bank (dotted line) and from outside
(dashed line) into a 6-cycle solution
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bank (dotted line) and from outside
(dashed line) into a 4-cycle solution
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Figure 5.14: Settlement from the seed
bank (dotted line) and from outside
(dashed line) into an aperiodic solution
(€ = 5000, 9 = 0.9).

for example figure 5.11). Thus, phase locking occurs. 4-cycle solutions have

alternate settlement from the seed bank and from outside the system (see figure

5.12). These solutions are also phase locked, but are locked to one of the sub-

harmonics of the driving period. A similar situation is found for the 28-cycle,

with settlement coming from outside the system and smaller settlement coming
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from the seed bank (see figure 5.13). Again these solutions are phase locked to
one of the sub-harmonics of the driving period. The aperiodic solutions are not
phase locked, settlement can come from either source and has no pattern (see
figure 5.14). Tt is useful to note at this stage that the majority of settlement is
from the seed bank. This is not a realistic situation, on a rocky shore most of the
plants come from the heavy output of propagules settling during the settlement
season. This suggests that in these simulations the seed bank survivorship (1)

needs to be reduced.

The input into the system from a combination of two sources drives the dynamics.
This can be seen by looking at the behaviour of the model as the seed bank is shut
down. At high seed bank survivorship the solutions are not simple 2-cycles. As
the survivorship is decreased then the solutions become stable and the amplitude
and period decrease (see table 5.5). However, decreasing o further cause first

unstable solutions then an increase in the period and amplitude of the solutions
(see table 5.5).

Table 5.5: Decreasing the survivorship in the seasonal settlement model ({ =
5 % 102, natural period is 147 weeks).

Seed Bank Period of  Amplitude of  Solution

Survivorship Oscillations  Oscillations Type
() (weeks)
0.99 - - Aperiodic
0.97 - - 4-cycle
0.95 156 2.484 Periodic
0.90 104 0.579 Periodic
0.85 - - Aperiodic
0.80 - - Aperiodic
0.70 - - 4-cycle
0.60 156 1.527 Periodic
0.50 156 1.547 Periodic
0.30 156 1.551 Periodic
0.10 156 1.551 Periodic
0 156 0.009 Periodic

Further investigation of this shows that phase locking and the seed bank combine
to produce these dynamics. When ¢ = 5 % 102, the aperiodic solution produced
when ¢ = 0.99 show that the natural and driving periods of the solution are not
phase locked. Settlement occurs from both the seed bank and outside the system,

but does not occur in an orderly pattern. Thus, creating this aperiodic solution.
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4-cycles are produced by input from both these settlement sources. The natural
period of the oscillations doubled, locks to the some multiple of the driving period.
2-cycles can occur by 2 different mechanisms. Settlement can be entirely from
outside, for example ¢ = 5 % 102 and ¥ = 0 or can be entirely from the seed
bank, for example ¢ = 5 % 10? and ¥ = 0.9. Settlement entirely from the seed
bank causes larger oscillations as the space is filled more quickly when the seed
bank survivorship is high. This is because the seed bank accumulates a higher
number of propagules. As the seed bank survivorship is decreases, the period
and amplitude of solutions decreases initially. This is because the settlement
from the seed bank is less. However, when the seed bank survivoship is low then
the period increases as more free space becomes available and a larger proportion

of the settlement from outside can settle.

Finally it is useful to note increasing settlement ({) is generally destabilising (see
table 5.6) as in the case of the barnacle model. This is hardly surprising as from
Chapter 4 we know that increasing the number of propagules available to settle,
increases the potential increase in area of a cohort and is therefore a destabilising

mechanism.

Table 5.6: Increasing settlement in the seasonal settlement model and the natural
period where the - indicates aperiodicity (¢J = 0.9).

Settlement Natural  Period of  Amplitude of  Solution
Rate (k)  Period Oscillations  Oscillations Type

(weeks) (weeks)
1% 10° - 208 12.12 Periodic
5% 10* - 208 12.12 Periodic
1% 10% - 208 12.06 Periodic
5% 103 - - - Aperiodic
1%10° 156 - - Aperiodic
5 % 102 145 - - Aperiodic
1% 102 122 156 2.565 Periodic
5% 10! 112 104 0.579 Periodic
1% 10 91 104 0.361 Periodic
5% 10° 2 52 0.041 Periodic
1% 10° 2 52 0.017 Periodic
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Simulation of ‘Good’ and ‘Bad’ Settlement

As can be seen from figures 5.15 and 5.16, there is a general increase in the
period and amplitude of oscillations with increasing settlement. This is hardly
surprising as we indicated in Chapter 4 that increasing the settlement rate was
destabilising. It is very hard to find periodic solutions for the ‘average’ and ‘bad’
settlement strength above a settlement rate of about 400. However, at settlement
levels below this there appears to be a generally higher period and amplitude for
the higher strengths of settlement (see figures 5.15 and 5.16). It is generally the
case that the natural period is lower than the solutions and thus locks to the next

highest harmonic of the driving period.

5.3.3 Discussion

Adding seaonality to these models causes the steady state to be oscillatory, as
settlement only occurs during a set period of the year. Thus, stable equilibria
cannot be reached as the area entering the system cannot balance the area leaving

the system throughout the year.

A much wider range of dynamics are produced by the model when seaonality
is added. Stable periodic 2-cycle, anything from 4- to 28- cycle and aperiodic

solutions are produced. This is because of the two sources of settlement in this
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model, the seed bank and from outside.

The mechanism that drives this model is more complicated than the seasonal
barnacle model. This is because of the two separate sources of settlement. The
type of solution produced is to do with the degree of phase locking between the
natural and driving periods. However, the seed bank also influences the dynamics
and settlement can occur at any stage from this bank. There are two ways of
obtaining periodic solutions, although all of these solutions are phase locked.
Firstly, the seed bank and the natural period of the solutions are phase locked to
the driving period of the solution. Secondly, either the seed bank or the outside
settlement is phase locked to the driving period of the solution. Point-cycles are
produced when the natural period of the solution is locked to a sub-harmonic of
the driving period. The lower the sub harmonic the higher the number of points.
Aperiodic solutions are not phase locked and are produced when settlement can

occur from either of the two source of settlement with no obvious pattern.

Increasing the settlement rate into the system increases the period and amplitude
of the cycles. This is hardly surprising as we showed that increasing the settlement

rate was a destabilising mechanism in Chapter 4.

Decreasing the seed bank survivorship is first stabilising then destabilising. This
is because of the free space is able to drop to a lower value when there is no
seed bank and thus the free space is filled with more propagules. The seed bank
survival used in the simulations is probably too high as most of the settlement
appears to come from the seed bank in all the runs. This suggests that if there
is a seed bank on a rocky shore it would suffer large mortality and have low

probabilities of escape.

Different strengths of settlement cause generally little difference in the model.
Generally the ‘good’ settlement had a higher period and amplitude than the
lower settlement. This is hardly surprising as again the ‘good’ settlement implies
that although the rate of settlement is the same more propagules are able to

settle. This is obviously destabilising as shown in Chapter 4.

5.4 Discussion

In this section we will compare the barnacle and fucoid models and then examine
both of these models in a biological context. Before embarking on this it is useful

to note that these models have all the biological shortcomings expressed in the
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discussions of Chapters 3 and 4, except of course they both have distinct discrete

settlement periods.

The models of barnacle and fucoid settlement have fairly similar dynamics despite
the difference in formulation. This is highlighted in the discussions of Chapter
3 and 4. When a seasonal component is added to the model the behaviour is
still similar. Both models produce cyclic and aperiodic dynamics and the phase
locking mechanism is similar. However, the big difference between the models is
caused by the addition of a seed bank to the fucoid model. This causes a much
richer spectrum of dynamics to be found in the fucoid model as there are three

cyclical mechanisms that need to phase lock.

Biologically these models are still very unrealistic and require addition of many
parameters (see discussion of Chapters 3 and 4). The very simple components of
biological dynamics that are predicted is that the populations cycle or produce
some kind of aperiodic behaviour. However, the proportional occupied space
values of 23 and 12 for the barnacle and fucoids respectively (see tables 5.2 and
5.6) seem rather high. In effect, this means that on a shore this would indicate
23 layers of barnacles on top of each other or 12 times the maximum amount of
canopy that an area of bare rock can support. This suggests that both of these
models exhibit over-occupancy at high settlement rates. The reason that this
occurs is the absence of density-dependent survivorship from these models. This

would dampen the oscillations in both models.

The main settlement of fucoids is in a known period between May and July
(Knight & Parke, 1950). If the survivorship of the seed bank is low, then set-
tlement in the model is driven mainly by the seasonal settlement. However, if
the seed bank survivorship is high, then settlement in the model is mainly from
the seed bank and the seasonal component has little effect. As this is not the
case in the real system, it is possible to hypothesise that if a seed bank exists the
mortality associated with propagules in the bank is very high. However, exper-
imental tests of this hypothesis are difficult as the is no conclusive evidence for
the existence of a seed bank. This is because it is impossible to tell propagules

apart on the shore, they have to be grown in the laboratory.
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Chapter 6

A Two Species Model for F.
vestculosus and S. balanoides in
a Constant Environment

6.1 Introduction

6.1.1 General Introduction

On moderately exposed rocky shores S. balanoides and F. vesiculosus are know
to compete for space. This competition results in the presence or absence of each

of these species having a direct effect on the abundance of the other.

The limpet, P. vulgata, is a keystone predator in the system studied. It grazes
upon the microalgal film, removing juvenile fucoids. Inhibition of this grazing
has a marked effect on the abundance of fucoids. This has been illustrated many
times, but probably the best example was when Jones (1948) removed limpets
from a strip of shore 5m wide. He found that there was a massive increase in the

biomass of algae in that strip.

The grazing pressure of limpets is decreased by the presence of 5. balanoides
(Hawkins & Hartnoll, 1982b). This is because of increased seabird predation
of limpets (Feare & Summer, 1985) and aggregation of limpets elsewhere where
grazing is less disrupted by a barnacle matrix or dessication stress is lower (Hart-
noll & Hawkins, 1985). Once the fucoids are greater than about 3cm in length
then they are too big to be grazed by limpets (Proud, 1994) and are known as
‘escapes’. Thus, the presence of barnacles enhance the the ability of fucoids to

settle an area of rock.
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Once the fucoids have escaped grazing by P. vulgata, they continue to grow on the
barnacle matrix. This attachment is not as secure as the bare rock, so once the
plants reach a certain size many are lost (Proud, 1994). The sweeping affect of
the canopy of these plants disrupts the feeding of the barnacles, by the buffeting
effect and disruption of water flow (Barnes, 1955; Proud, 1994). Thus, many of
the older barnacles die. Limpets tend to aggregate under the fucoid canopy as
dessication stress is lower (Hartnoll & Hawkins, 1985). The sweeping effect of
the canopy (Barnes, 1955; Hawkins, 1983; Jenkins, 1995) and limpet bulldozing
(Miller & Carefoot, 1989) inhibits the settlement of new barnacles. Thus, the

presence of fucoids inhibits the ability of barnacles to colonise an area of rock.

6.1.2 Modelling

Vast amount of time and money have been spent on modelling two species inter-
actions in terrestrial and marine closed systems. However, very little work has

been done on two species models of rocky shores.

Iwasa & Roughgarden (1986) looked at interspecific competition among metapop-
ulations with space-limited subpopulations. Their metapopulation is not open
but each of the subpopulations are, with larvae produced being contributed to a
common pool. The general results are the number of species found is less than
or equal to the number of distinct habitat types and where species coexist each
species will have areas where their productivity relative to their larval mortality is
higher than the other species. They examined the two species case. If both of the
habitats are net sources of larvae, then the interspecific competition is the same
as the classic Lotka-Volterra models. However, if one of these habitats is a sink
then the existence of a species may require its competitor; a species that cannot
invade an empty space may be able to invade if the other species is present; and

one invading species may result in the extinction of both species.

Possingham & Roughgarden (1990) modelled mesoscale current features and
coastal habitats in order to predict the distribution and abundance of the barnacle
Balanus glandula. The adults on the coast are limited by recruitment, mortality
and the availability of suitable habitat. They found that the persistence of a
population was dependent upon the amount of suitable habitat; larval mortality;

the along shore flow field; and initial conditions.
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6.1.3 Modelling Aims

As competition on the rocky shore is essentially for the resource of space, two
dimensional models can be constructed. The aim of this chapter is to produce
a two species model of F. wvesiculosus and S. balanoides in a constant environ-
ment. This discrete time model is based upon the single species models produced
in Chapters 3 and 4. However, here the models are linked using generalised as-
sumptions of interactions between the two species taken from the literature. This
discrete time model represents the sixth to the second stage of the cycle shown

in figure 1.2.

Investigation of this model will be mainly by simulation despite the fact that the
steady states are derived. Simulation will use a set of parameters found in the
literature. These will be varied by the maximum degree of error associated with
the parameter. The mechanisms controlling the dynamics will be investigated

using the behaviour of the sub-models.
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6.2 The Model

This two species model was constructed by joining the single species models for
S. balanoides and F. vesiculosus described in the previous chapters. The case of

the constant environment is examined as it is a more simple case.

This model makes a number of assumptions:

1. The survivorship functions of F. vesiculosus (ST') and S. balanoides (SP)

are known and constant with respect to time and age.
2. The mean size range of F. vesiculosus sizes is known.
3. The area at age function of S. balanoides is known.
4. Negative free space cannot exist.
5. All individuals in the same age-/size- class are of the same size.
6. There is a maximum canopy area that a given area of rock can support.
7. S. balanoides enhances the settlement of F. vesiculosus as a known function.
8. F. vesiculosus decreases the settlement of S. balanoides as a known function.
9. Settlement is constant and is only into the first age-/size- class.

10. F. vesiculosus can only be promoted one size-class with probability P or

remain in the same class with probability 1 — P.
11. F. vesiculosus in the final size-class (Q+1) cannot be promoted or demoted.

12. S. balanoides in the final age-class (N+1) all die at the end of that time
step.

The free space at time ¢ (F}) is the total available area (A) minus the occupied

space (A;), ie

Ft = [A—At]+

where the plus denotes that free space cannot be negative. The occupied space
is the sum of the area occupied by fucoids at time ¢ (C;) and the area occupied

by barnacles at time ¢ (B;), or
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F, = [A— (B, +C)]". (6.1)

B; can be expressed as the sum of the area of an individual barnacle in age-class

k (a?) multiplied by the number in age-class k at time ¢ (n?
k kot

N
B, = Y agng,. (6.2)
k=0

In a similar way C} can be expressed, however it is necessary to scale the area of
rock that an individual occupies (a}) to the actual individual canopy area (c;)

using a constant, ©, where © = af/cj. Thus C} can be expressed as

Q
C, = Y O¢nl, (6.3)
=0

where nft is the number of plants in size-class j at time ¢. The update rules for
both barnacles and fucoids are easy to describe. These rules model the population
for every age-/size- class apart from j, k = 0. The barnacles will age at a constant
rate Aa which is equal to the time step At. If a proportion S? survive in the
interval t — t + At, then

n]?,t+At = SBnkBiLt k - ]_, 2, ey N (64)

A similar argument is used for the fucoids. If S¥ is the proportion that survive

in the interval ¢ — t + At, P of which are promoted, then

nia = PS™l,+(1-P)S"nl, j=12..0-1 (6.5)

nosar = PS g1+ S"ng,. (6.6)

Note that as individuals cannot be promoted from size-class (), so a different
update rule is required and that promotion happens implicitly at the end of a

time step.
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The renewal conditions are slightly more complicated to construct and assume
that settlement is proportional to free space. An assumption is made that the set-
tlement of barnacles is inhibited by fucoids. Thus, barnacle settlement is related
to the area occupied by fucoids and the incremental settlement (or settlement
per proportional space per unit time, o) ie fi(o,Cy). A piece wise function with
2 thresholds is used to model this relationship. Below the lower barnacle thresh-
old («) fucoids do not affect barnacle settlement and above the upper barnacle
threshold () no barnacles can settle. Thus, if

noear = fi(0,C)F, (6.7)
where,
o 0 S Ct <«
filo,C) =4 [5% +1]0 a<C < (6.8)
0 b <G

A graphical representation of equation (6.8) can be seen in figure 6.1.

A similar argument can be constructed for the renewal condition for the fucoids.
If € is the incremental settlement (or settlement per proportional space per unit

time) then the renewal condition for the fucoids can be written as

nopiar = [f2(&B)F + (1 - P)S"nf, (6.9)
where,
h&B) =4 [2=2]¢ v<Bi <0, (6.10)
3 0 < By

and v and ¢ are the lower and upper fucoid interaction thresholds respectively. A
graphical representation of equation (6.10) can be seen in figure 6.2. It is useful
to note that 0 < «, 3,0, v <1, a < and v < 4.
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Figure 6.1: The Barnacle Settlement Figure 6.2: The Fucoid Settlement
Function. Function.

The total available area for occupation, A, is unlikely to be known. Thus, density
and proportional space are modelled by diving by A. If the density (numbers/m?)
of barnacles in age-class k at time ¢ is defined as p,}zt, the density of fucoids in

size-class 7 at time ¢ as pﬁt, and the ~ denotes proportional space, then

B _ B
Pt — ”k,t/A-

F _ F
Pit = nj,t/A'

Ft — Ft/A
Bt — Bt/A
ét = Ct/A
where
F, = [1—-(B,+C)]* (6.11)
N
B, = Y arpp, (6.12)
k=0
X Q
C, = Y Oc¢pl,. (6.13)
=0

Combining equations (6.4) - (6.13) allows the model can be expressed as a series

of 5 equations relating density, ie
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Phiiar = filo,CE (6.14)
Phriar = SPpp 1y k=1,2,...,N (6.15)
PoF,t+At = fa(§, Bt)ﬁt +(1— P)SFpg:t (6.16)
Proar = PSTpl 4+ (1—-P)STPl, j=12..Q-1 (617
Posiar = PSTph 1+ ST ph, (6.18)
where,
(o 0< C’t <«
filo,Cy) = [OZ;% + 1] o a<Ci<p (6.19)
( 0 p<C
(0 0< B, <~
R&B) = | [55]¢ v<Bi<s (6.20)
[ € 6 < By.

6.2.1 Settlement Functions

Clearly, as in Chapters 3 and 4, the incremental settlement cannot increase with-
out bound, as this would produce spurious stability boundaries and be biologically
unrealistic. So, in this case a similar argument is used as in the single species.
The relationship between incremental and daily instantaneous settlement rate is

assumed to be asymptotic (see Chapters 3 and 4 for a full description).

If x and ¢ are the the rates at which cyprids/propagules become available to settle
from the water column m~2.d~! for barnacles and fucoids respectively, then we

define the settlement functions as

o = %0(1—6—“%“) (6.21)
§ = @%0(1—6‘4900“). (6.22)
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6.3 Derivation of the Steady States

The steady states of this model are fairly complicated, thus inferences on the
mechanisms and dynamics are difficult to draw. As a result, the steady states
will be derived, although little investigation of these states will be done. The

derivation is done in a similar way to the previous models. At equilibrium

Fus = Fi = F
Bus = Bi= B
Cuose = € = €
PkB,H-At = pl?,t: PkB*

F _F __  Fx
Pjtrar = Pig = Pj -

Substitution of the steady states into equations (6.14) - (6.15) and a little simple

algebra gives the steady states for the barnacles as
pE* = fi(o,CH)F* (6.23)
o = hoo” k=1,2,...,N (6.24)

k
where [, = (SB) . Similarly the steady state values of fucoids are found by
substitution of state state variables into equations (6.16) - (6.18). A little simple

algebra gives

P f2(&§, B") F™

o = 6.25
0 w ( )
Po" = dado-11. (6.27)

where,

Y = 1—(1-P)SF,
PSF J
% = ( v >
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and

. PST
¢ 1-sF

There are two piece functions in the steady states used to link area occupied
by fucoids to the barnacle settlement (see equation (6.8)) and area occupied by
barnacles to the fucoid settlement (see equation (6.10)). Thus, nine separate
cases of the steady states must be derived (see table 6.1). When each case is
derived only the calculation of pf* and pl* are stated as the calculation of the

remaining age- or size- classes is done using equations (6.24), (6.26) and (6.27).

Table 6.1: The steady states.

0<C*<a a<C*<pB pB<C*

0< B* < y Case 1 Case 2 Case 3
v< B <4 Case 4 Case b Case 6
§ < B* Case 7 Case 8 Case 9

Case 1

When 0 < C* < o then fi(o, C’*) — ¢ and when 0 < B* < v then fg(f,B*) =0.
Let

N
AOB = Zaklk

k=0

Q-1 A
Al = Y O6c¢id; + Ocghg-10q.

j=0

Substitution of equations (6.24) and (6.26) into (6.11) gives

F* = [1—(B*+CH* (6.28)
where
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B* = plAp, (6.29)

and

C* = pirAY. (6.30)

The incremental settlement is o, and thus, from equation (6.23)

oy = o [L=(ATpd" + AL o)
1 _AF F'x
= o (6.31)
1/o+ Ap
When f5(&, B*) = 0 then p{* = 0 and there are no fucoids present at the steady
state. Thus, from equation (6.31)

o

m. (6.32)

Bx
Po

It is useful to note that, not unsurprisingly, the equilibrium steady state found
when there are no fucoid propagules is the same as the steady state found in the

single species barnacle model.

Case 2

Case 2 is found when o@ < C* < 8 and 0 < B* < ~. Thus, fi(o, C’*) =o[(B —
C*)/(B — )] and fo(€, B*) = 0. If fo(¢, B*) = 0, then C* = 0 and pf™* = 0.

Substitution into equation (6.23) and simplification gives

. op
= B—a+oBAl (6.33)

Case 3

Case 3 is found when g < C* and 0 < B* < 7. Thus, the settlement of barnacles
and fucoids are fi(o,C*) = 0 and f»(€, B;) = 0 respectively. This case obviously

results in the zero steady state.
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Case 4

Case 4 is found when 0 < C* < a and v < B* < 4. Thus, the settlement
of barnacles and fucoids is f(0,C*) = o and fo(€,B*) = £(B* — 7)(6 — 7)
respectively. Combining equations (6.25) and (6.28) - (6.30) and solving for p{™*

gives

e & (B AL — (pB*AD)? = v+ pl*)
° W6 — iy + Epr AT AL — Ev AT

(6.34)

Similarly, combining equations (6.23) and (6.28) - (6.30) and solving for pl™ gives

0 g Al

(6.35)

As equations (6.34) and (6.35) are equal, combination gives a quadratic in pJ*.
This can be solved using the quadratic formula and the two solutions back sub-
stituted into equation (6.34) or (6.35) to give ph™*.

Case 5

Case 5 is found when o < C* < B and v < B* < 4. Thus, the barnacle and fucoid
settlement is f,(o,C*) = (8 — C*)/(B — @) and fo(€, By) = £(B* — 7)(6 — 7)
respectively. Combining equations (6.25) and (6.28) - (6.30) and solving for pf™*

gives

2
£ ((poB*AéB) — (v +1D)AFpg" + 7)
o= - Bx A\B AT F . (6.36)
Epo Ay Ay — Ev Ay — Py + 4o

Similarly, combining equations (6.23) and (6.28) - (6.30) and solving for pf’* gives

2
b o ((eap) e nafep )
T T ol ATAY —oBAT — B+ a

(6.37)

Substitution of equation (6.37) into (6.36) gives a cubic equation in p{*. This can

be solved using the cubic formula and the three roots can be back substituted
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into equation (6.37) to get the three steady states for pP*. Note that the steady
state must be real and positive, thus there can be either one or three possible

steady states from this case.

Case 6

When 3 < C* then fi(0,C*) = 0 and pf* = 0. When v < B* < § then
fo(€, By) = £(B* — 7)(6 —~). Combining equations (6.25) and (6.28) - (6.30) and

solving for pf™* gives

phe = . (6.38)

Case 7

When 8 < C* then f,(0,C*) = o and when v < B* < § then fo(€, B,) = €. Sub-
stitution of these conditions into equations (6.25) and (6.28) - (6.31) respectively,

gives

e 1 [1/14‘5145] Fa
pU _AB -
0

W Po (6-39)

and

U(l—p{f*Ag)
1+ cAf

Pt = (6.40)

Equations (6.39) and (6.40) are equal, so combining and solving for pk™* gives

Fx 6
= . 6.41
AT T doAl T eAl (641)
Back substitution gives
" Yo
o (6.42)

Y+ o Af + EAL
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Case 8

When o < C* < f then f(0,C*) = o[(B* — C*)/(8 — @)] and when § < B* then
fo(€, B,) = £. Combining equations (6.25) and (6.28) - (6.30) and solving for pB*

gives

Similarly, combining equations (6.23) and (6.28) - (6.30) and solving for pJ* gives

2
A (R YRR A )
T T o ATAT = B+ a— opAp

(6.44)

Clearly equations (6.43) and (6.44) are equal. If these equations are combined a
quadratic in p{™* is produced and may be solved using the quadratic formula. If
the two solutions for pl* are back substituted into equation (6.43) or (6.44) then

the steady states for p* may be obtained.

Case 9

When 3 < C*, fi(0,C*) = 0 and pB* = 0. When § < B* then f,(€, B*) = €.
Combining equations (6.25) and (6.28) - (6.30) and solving for pF* gives

Fx 5

Not unsurprisingly this steady state is the same as the steady state derived for

the single species fucoid model.

6.4 Parameter Estimation

Investigation of the entire parameter space of this discrete two species model
would involve at least 10 values of each parameter. For 9 parameters 10° sim-

ulations would be required to investigate the parameter space completely. As
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this is not feasible in the time scale of this project, simulation has to be more
targeted. The aim of this targeting is to examine the behaviour of the model
using parameter sets around the observed values from literature. There will be a
large degree of error associated with parameter estimates, as the methods used
to acquire these parameters are quite crude. However, an upper and lower limit
for the parameter will also be investigated, which, where possible, will involve

variation of plus or minus an order of magnitude.

6.4.1 S. balanoides

In this section data are used from the literature to estimate parameter values for
S. balanoides. Although a lot of work has been done on S. balanoides, much is

inapplicable to this study, so only a few data sets can be used.

Settlement

The first thing that should be noted about this parameter is that there is a huge
variation in the daily instantaneous settlement rates per unit area along both
the temporal and spatial scales (Hawkins & Hartnoll, 1982a; Kendall et al, 1982;
Wethey, 1984, 1985). Thus, this parameter is estimated using crude, quick and

easy methods.

Hawkins & Hartnoll (1982a) measured daily settlement patterns of S. balanoides
at Kallow Point, Port St. Mary, Isle of Man, in 1978 and 1979 (see figure 2,
Hawkins & Hartnoll, 1982a). These data were scaled to produce daily instan-
taneous settlement per m2. As the settlement density fluctuates, a mean of the
daily settlement rate was taken. This gives estimates for the daily instantaneous
settlement rate (k) of 1206 and 977 for 1978 and 1979 respectively. The mean of

these values gives an estimate of k = 1091.

Other estimates of k can be obtained from the data of Kendall et al (1982). They
presented settlement data for the N.W. of Scotland and N.E. England. They
measured 7 different sites at each of these locations and provided maximums,
minimums and standard deviations for their data (see table 6.2). If the means
for the sites in Scotland are averaged and scaled to individuals.m=2.d" ', then x

is estimated at 17,000. A similar technique for English sites gives x = 9143.

Data of numbers.cm™2.d~" can be estimated from figure 2, Kendall et al (1982)
for Robin Hood Bay in 1978. They measured settlement on 5 high and 5 low
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Table 6.2: Barnacle settlement rates for 2 week intervals (numbers.cm™?).

NW Scotland
Site
1 2 3 4 5 6 7
Maximum | 14.8 174 89.0 53.6 74.0 35.0 45.9
Minimum | 4.2 1.7 9.0 134 11.0 34 54
Mean 9.1 48 325 358 395 19.3 25.7
Sd 3.6 25 275 158 28.0 9.4 125

NE England
Site
1 2 3 4 5 6 7
Maximum | 20.4 23.2 39.8 40.0 19.7 14.3 14.2
Minimum | 2.0 6.3 38 1.8 13 1.7 15
Mean 10.1 139 17.2 18.6 124 9.2 8.2
Sd 58 5.1 11.6 127 59 42 44

shore sites. The settlement rates can be estimated from the graph and the mean
settlement rate can be derived. When scaled to numbers.m 2.d!, then & is
estimated at 2237 and 5583 for the low and high shore sights respectively. The
mid-shore is found between the high and low shore. If it is assumed that there
is continuous gradient between the high and low shore, then the average of these
should give an estimate of the settlement on the mid-shore (albeit very rough!).

This gives an estimate of x = 3910 individual.m=2.d~".

The estimates for N.W. Scotland and N.E. England from Kendall et al (1982) are
probably a bit higher than would be expected on the Isle of Man. There are two
reason for this. Firstly, the estimates for N.W. Scotland will have a higher degree
of exposure and thus, have a higher larval supply (Hawkins & Hartnoll, 1982a).
Secondly, the Isle of Man is a locally recruiting population and thus will have
lower levels of settlement than mainland sites, for example the Menai Straits,
Wales (Hawkins & Hartnoll, 1982a). For this reason I will use an estimate of
k = 2000 and vary the estimate by an order of magnitude in each direction. This
estimate is slightly higher than the estimate obtained from Hawkins & Hartnoll
(1982a), but larval sampling is difficult and inefficient.
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Survivorship

The barnacle survivorship has been estimated using data from Pannacciulli (1995).
She examined the survivorship of different sub-cohorts of S. balanoides a Cellar
Beach, North Devon using photographic time series (see figure 6.3). This is a
moderately exposed shore, facing north-north-west and is fairly steep sloping. I
have used her data from MTL (3.3m above chart datum) and assumed that there
is no difference in mortality between the sub-cohorts. This allows the assumption

that all the individuals settle on the same day and gives a much larger data set.

A curve was fitted through the adjusted data set using a non-linear least squares

method in Splus ((©1989, 1991 Statistical Sciences, Inc.). The curve fitted was
of the form

Survivorship = S%°

where S is the daily survivorship and age is the age of the barnacle in days. This
gave a good fit with a residual sum of squares of 2.039921 and a standard error
of 0.171942 (see figure 6.4). This gave an estimate that S = 0.984477. This is a
daily survivorship and to get an estimate of S® it is necessary to scale this value
to produce a survivorship in the interval ¢ — ¢+ At or per two week period. This
gives an estimate of S® = (0.8033051.
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Figure 6.3: Survivorship of different Figure 6.4: Fitting a survivorship curve
sub-cohorts found at MTL on Cellar to data from Pannacciulli (1995).
Beach (Pannacciulli, 1995).
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This estimate of survivorship seems a bit low. This is possibly because of the fact
that although this beach is moderately exposed, if the tide is high and the wind is
blowing in the right direction waves break directly onto the shore (Pannacciulli,
1995). This shore is also crowded (pers. obs.) and thus, may have a higher
mortality than would be expected on the Isle of Man. For this reason, 0.8 is set
as the lower limit on the parameters and use 0.875 as ‘normal’ estimate and 0.95

as the upper limit.

6.4.2 F. vesiculosus

The estimation of demographic parameters for F. vesiculosus is much more chal-
lenging than for S. balanoides. Many more tenuous assumptions (leaps of faith!)

must be made in this section as this species is not, as well reported.

Settlement

This parameter is probably the most difficult to estimate. This is because very
little work has been done on recruitment in fucoids, as the propagules are very

difficult to identify unless they are brought back to the laboratory and grown.

Knight & Parke (1950) estimated that a large plant of F. vesiculosus may have
1000 receptacles each containing a maximum of over 3000 eggs. Thus, each plant
is capable of producing over 3 million propagules. In Section 4.4.2 T estimated
that the maximum density of plants in the largest size-class was 11.1. This gives
a total reproductive output 3.3 x 107 propagules.m=2. Not all receptacles on the
plants mature at the same time, making release of propagules gradual. If it is
assumed that a ‘normal’ settlement season is 10 weeks, then the reproductive

output is 2.36 * 10° propagules.m 2.d 1.

Norton (1986) suggested that dissemination by water motion and the inability of
propagule to select a suitable settlement site, means that many of the propagules
are deposited out of their zone. This decreases the survival of the propagules.
Considering this inability to select settlement sites, it is assumed that only 10% of

propagules find a suitable site. Thus, the number of settlers is 2.36 % 10*.m=2.d~".

Even if the propagules are deposited in the right zone, 90% of the F. vesiculosus
propagules die within the first 17 days (Bray, 1993) which is long before they reach
the size allocated to size-class 0 (see Section 4.4.2). Chapman (1995) noted that

only 0.4-12% of F. distichus settlement reach visible size. So, if it is estimated
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that 5% of the settlers reach visible size then the daily settlement rate () is
1179 individuals.m=2.dL.

The number of propagules decreases exponentially with distance from the source
(Deysher & Norton, 1982; Arrontes, 1993). Thus, I will use a daily instantaneous
settlement of ( = 1000 as the upper limit of the settlement, assuming that there
are parent plants within 1m of the modelled area. The ‘normal’ parameter esti-
mate is obtained by assuming that parent plant are 2m from the modelled area.
This gives a one order of magnitude drop in the number of propagules (Deysher
& Norton, 1982). Thus, the normal estimate is ¢ = 100. The lower limit is set
by assuming that parent plants are within 5m of the modelled area, giving an

estimated further drop of 2 orders of magnitude. Thus giving a lower limit of

(=1.
Survivorship

Many different types of survivorship curves have been found for different species of
seaweed (see for example Chapman & Goudey, 1983; Santelices & Ojeda, 1984).
Creed (1993) suggested that this is because the different types of curves use
logarithmic and arithmetic methods and thus, should be interpreted differently.

This makes estimation of this parameter difficult.

There is some data on the survivorship of F. vesiculosus over a number of years
(see Knight & Parke, 1950). However, this data does not look at the mortality of
plants of 0+ years old, as the plants examined were already established. Knight
& Parke (1950) suggested that the maximum age of F. vesiculosus is 3 to 4 years
old. This can be used in parameterising the survivorship. If it is assumed that a
‘normal’ survivorship means that maximum average age of the plant is 3.5 years,
then we can fit a curve such that essentially zero plants survive beyond this age.
This process can then be repeated assuming that ‘bad’ and ‘good’ survivorships

give a maximum average age of 2.5 and 4.5 years respectively.

Gunhill (1980) used 314 individuals of Pelvetia fastigiata to produce a log-log
regression of survivorship. From the linearity of this plot, she suggested that
there were a constant proportion of the plants dying with each time interval.

Thus, a curve of the form

Survivorship = (SF>j
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Figure 6.5: F. vesiculosus survivorship curves.

is used. This gave survivorship curve curves of the form shown in figure 6.5 using

the values for incremental survivorship shown in table 6.3.

Probability of Promotion

The probability of promotion, P, is estimated at 1/26. This is because it is
assumed for the size-class selection that individuals in each class are on average,
0+, 1+, 24 and 3+ years old. Thus, the average time required to be promoted
is 1 year (for a fuller description see Section 4.4.2). The probability of promotion
will be varied by plus or minus a half of its value. Thus, the lower limit is 1/39

and the upper limit is 1/13.

6.4.3 Interaction Thresholds

These parameters are probably the most difficult to quantify. This is because

there is debate over which of a number of factors is the most important and

Table 6.3: Estimates of F. vesiculosus survivorship.

| Maximum Age (years) S¥  Proportion Remaining

‘Good’ 4.5 0.950 26%103
‘Normal’ 3.5 0.925 9.0%10*
‘Bad’ 2.5 0.900 1.2% 1073
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because settlement itself is so difficult to quantify. In this section evidence of the
interaction between the two species is examined in an attempt to quantify these

interactions.

The Effect of F. vesiculosus on S. balanoides Settlement

The inhibition of S. balanoides by the canopy of F. vesiculosus is well documented
(Hatton, 1938; Connell, 1961a; Hawkins, 1983; Miller & Carefoot, 1989; Proud,
1994; Jenkins, 1995). However, this effect has been attributed to a number of
causes. Firstly, canopy sweeping has been suggested to reduce the recruitment
of barnacles under the canopy (Hatton, 1938; Hawkins, 1983; Jenkins, 1995).
Secondly, limpets aggregate under the mature canopies of F. vesiculosus as this
reduces the stress due to dessication. This increases the incidence of limpet
bulldozing, where limpets undercut juvenile barnacles (Connell, 1961a; Hawkins
1983). This effects the recruitment and mortality of juvenile barnacles. There are
size and location refuges from limpet bulldozing. For example, Miller & Carefooot
(1989) suggested that the size refuge is as little as 5mm? basal area and that
depressions in the rock or dense adult barnacles provide a refuge. Hawkins (1983)
found that this effect is much less important than canopy sweeping. Finally,
Nucella also aggregate under F. vesiculosus canopies and predate upon adult 5.

balanoides, reducing the density of adults under the canopy (Proud, 1994).

Jenkins (1995) tried to quantify the effect of the canopy on cyprid settlement. He
found that sweeping reduced the settlement of cyprids on sheltered shores (see
table 6.4). Post-settlement cyprid survival was much reduced under a canopy,
for example from 92.3% to 3.4%. F. serratus was the best ‘sweeper’ on sheltered

shores because of its lack of air bladders and bushy nature.

Table 6.4: Cyprid settlement onto 144em? of rock in the presence and absence of
a fucoid canopy (data from Jenkins, 1995).

22/5/93 28/5/93 2/6/93
Species Absent Present | Absent Present | Absent Present
F. spiralis 40 7 31 3 3 2
A. nodosum 18 3 - - 6 0
F. serratus 26 3 11 1 6 0.5

Hawkins (1983) measured the effect of canopy sweeping on moderately exposed

shores. He found that Fucus sweeping inhibits S. balanoides settlement at all
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levels on the shore. When Fucus plants were transplanted to barnacle dominated
ledges, after 55 days there was reduced settlement of S. balanoides in the presence
of a canopy of F. vesiculosus (see table 6.5) on scraped settlement squares. This
is an underestimate as the adult barnacle surrounding the settlement squares

reduced the canopy sweeping effect.

Table 6.5: Number of metamorphosed barnacles in the presence/absence of a F.
vesiculosus canopy (data from Hawkins, 1983).

Experiment ‘ With Canopy Without Canopy

1 37.1 100
2 10 54.3

Limpet bulldozing effects the settlement of S. balanoides. The density of limpets
on the ledges at Port St. Mary is between 2.5 (Hartnoll & Hawkins, 1985)
and 35 individuals.m™? (Proud, 1994). Hartnoll & Hawkins (1985) note that
a density of limpet of 20 individuals.m 2 can clear 71% of the substrate, but 7

individuals.m™? can only clear 25%. A normal density of limpets is 19.m 2.

To quantify this into some kind of lower and upper threshold for barnacle set-
tlement, limpet bulldozing and canopy sweeping are quantified as the processes
that act on recruitment. There are two extremes of the relationship, a full canopy
and maximum limpet density completely excludes S. balanoides settlement; and
no canopy and minimum limpet density has no effect on settlement. A density
of 20 limpets allows 71% of substrate to be grazed (Hartnoll & Hawkins, 1985).
Assuming that limpet density is directly proportional to canopy and that limpet
grazing is directly proportional to S. balanoides bulldozing, then at about 50%
canopy cover, 71% of the S. balanoides settlement is removed by bulldozing. At
this level of limpets the canopy will also exclude a number of settlers, so we
estimate the upper barnacle threshold (3) at 0.5. This will be varied between
the limits of 0.4 and 0.7 to investigate different intensities of canopy sweeping.
The lower barnacle threshold («) is estimated in a similar way. At a density of 7,
limpet can clear 25% of the substratum. At this stage we assume that the canopy
has a minimal effect at 20% of the maximum, and that the encounter rate with
limpets is low allowing more barnacles to reach the size refuge. Thus, the lower
barnacle threshold («) is estimated at 0.2, with a range of 0.1 to 0.35.
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The Effect of S. balanoides on F. vesiculosus Settlement

Dense S. balanoides aids the establishment of a F. vesiculosus canopy. This is be-
cause P. vulgata grazes upon the spores of algae and is very effective at removing
all of these spores from bare rock. However, when S. balanoides occurs it disrupts
the grazing of P. vulgata, by making the surface topography irregular. Hawkins
& Hartnoll (1982b) examined the effect of barnacle cover on number, behaviour
and growth of P. vulgata on a vertical pier on the Isle of Man. They found that
the growth rate of P. vulgata was inversely proportional to the percentage cover
of barnacles. This suggests a lower grazing efficiency. Once F. vesiculosus reach
about 3cm in length, they are too large to be grazed by P. vulgata (Proud, 1994).
Thus, the denser the cover of barnacles, the lower the grazing efficiency of P. vul-
gata and the more likely that F. vesiculosus will reach the size threshold where

they have ‘escaped’ grazing. These ‘escapees’ will form the canopy.

Hawkins (1981b) looked at the influence of season and barnacles on the algal
colonisation of P. vulgata exclusion areas. He looked at the difference between F.
vesiculosus colonisation of areas with and without barnacles. In the areas with
barnacles F. vesiculosus settled and established a canopy much more quickly than

in areas without barnacles.

The only actual value that T can find for this interaction is from Waterhouse
et al (1986). They suggest that in Australia the grazing effects of limpets are
negligible at barnacle percentage cover of greater than 67%. I think this value is
an underestimate, as in P. vulgata are able to sustain grazing on both the 50%
mosaic and the 95% cover in the Isle of Man (Hawkins & Hartnoll, 1982b). Thus,
this will give us an estimate of the lower limit of the upper fucoid threshold (§),
at a proportion of 0.7. On crowded shores limpet scars maybe in the middle of
dense barnacle cover and thus, I will use a upper limit of 6 = 0.9. The estimate

will be arbitrarily set at the mid point of these values, ie 6 = 0.8.

Getting the lower fucoid threshold is more difficult. 1 suggest that at very low
densities of barnacles there is no effect on the grazing efficiency of the limpets.
However, as the cover of barnacles increases there is a rapid decrease in grazing
efficiency. Hawkins & Hartnoll (1982b) show that there is a decrease in growth
rate of P. vulgata grazing on a 50% mosaic of barnacles and therefore we assume
that there is a decrease in grazing efficiency. Thus, 7 = 0.5 will be used as
an estimate of the lower fucoid threshold. The lower limit of the threshold will

mimic a gradual decrease in grazing pressure with increased barnacle cover, so
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is estimated at v = 0.1. The upper limit will be as high as possible to mimic a
sharp threshold and thus is v = 0.65.

6.5 Simulation

The parameter estimates can be seen in table 6.6. For simulation of this model,
comparable models to the models found in Chapters 3 and 4 are required, as
altering the number of size-/age- classes can affect the stability of the model.
Thus, the fucoids will have 4 size-classes which are estimated in the same way as in
Section 4.4.2. The barnacles have 125 age-classes and the model of logistic growth
model is used (see Section 3.4). The same time step is used with Aa = At = 14

days.
Table 6.6: Parameter estimates.

Parameter Name ‘ Symbol Upper Limit Estimate Lower Limit
Barnacle Survivorship SB 0.950 0.875 0.800
Barnacle Settlement K 20000 2000 200
Fucoid Survivorship St 0.950 0.925 0.900
Fucoid Settlement ¢ 1000 100 1
Fucoid Promotion P 1/13 1/26 1/39
Lower Barnacle Threshold « 0.35 0.20 0.10
Upper Barnacle Threshold I} 0.70 0.50 0.40
Lower Fucoid Threshold 0 0.65 0.50 0.10
Upper Fucoid Threshold ) 0.90 0.80 0.70

6.5.1 General Results

In this section the behaviour of the model is examined with different parameter
sets. The effect of changing parameter on the overall dynamics is examined and

oscillatory dynamics are investigated in terms of combinations of the sub-models.

Effect of changing parameters

The dynamics of this model are far more complicated than the dynamics of the
single species models. However, in general, there are four types of behaviour.

These are an equilibrium with only barnacles present; an equilibrium with both
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barnacles and fucoids present; periodic fluctuations in both the barnacles and

fucoids; and aperiodic fluctuation in both of the species.

Increasing the barnacle survivorship (S?) increases both the amplitude and the
period of the oscillations of the space occupied by both fucoids (C;) and barnacles
(B;), which increases the total space occupied (A;). However, if the barnacle
survivorship is decreased sufficiently then the space occupied by barnacles may
never reach the threshold () that allows the F. vesiculosus to settle. This results

in a stable equilibrium with only barnacles present.

Increasing the daily instantaneous settlement rate of the barnacles (k) leads to
an increase in the amplitude and the period of oscillations in the space occupied
by barnacles. Thus, it has a destabilising effect on the system. However, this has

a variable affect on the space occupied by fucoids (Cy).

Decreasing the survivorship of fucoids (ST) increases the the period and am-
plitude of oscillations of the barnacle occupancy and decreases the period and
amplitude of fucoid oscillations. This is hardly surprising as, from Chapter 4,
increasing survivorship increases the potential of a cohort to increase in area and
thus, is destabilising. Similarly, increasing the daily instantaneous settlement
rate of fucoids (() is destabilising. As this also increases the potential of a cohort
of fucoids to increase in area over time. Increasing this settlement rate causes
an increase in the period and amplitude of both the occupancy by barnacles and
fucoids. Increasing the probability of promotion of the fucoids has a destabilising

effect on the model for the same reason as the survivorship and settlement.

Decreasing the lower barnacle interaction threshold («) increases the stability
of the model and decreases the amplitude of the cycles. Thus, decreasing this
threshold is stabilising. Decreasing the upper barnacle interaction threshold (3)
decreases the stability of the model and increases the amplitude of the cycles.
Thus, decreasing this threshold is destabilising eventually giving rise to aperiodic

solutions.

Increasing the lower fucoid interaction threshold () increases the stability the
occupancy of S. balanoides and decreases the occupancy of F. vesiculosus. This
increase is therefore destabilising. Decreasing the upper fucoid interaction thresh-
old (&) decreases the stability of the model and increases the amplitude of the
cycles. Thus, decreasing this threshold is destabilising.
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How are Oscillations Produced?

Within the parameter set (see table 6.6), solutions can be found where both of
the sub-models are stable and unstable. Using the same parameter sets, it is
possible to see if the oscillatory dynamics in the two species model are driven by
oscillations in the sub-models or by interaction between two stable sub-models.
Thus, parameters are defined that cause the sub-models to be stable or unstable
(see tables 6.7 and 6.8). The model will then be simulated using the sixteen
combinations of the sub-model behaviour. For this the interaction threshold will
be set at the estimate values, apart from the upper fucoid threshold which is set
at its lower limit. This is because it is difficult to get a solution with occupancy
of greater than 0.8 in the barnacle sub-model and when found, have very long

transients.

Table 6.7: Stable and unstable parameter sets in the barnacle sub-model.

Stable Unstable
Parameter Name Symbol | A* <v v <A*<§d §<A*
Barnacle Survivorship SB 0.80 0.89 0.91 0.95
Barnacle Settlement K 200 200 200 200
Barnacle Occupancy A* 0.336 0.661 0.739 -

Table 6.8: Stable and unstable parameter sets in the fucoid sub-model.

Stable Unstable
Parameter Name Symbol | A*<a a<A*<fp pB<A*
Fucoid Survivorship St 0.900 0.900 0.900 0.925
Fucoid Settlement ¢ 1 3 D 10
Fucoid Promotion P 1/39 1/26 1/26 1/26
Fucoid Occupancy A* 0.186 0.480 0.697 -

Initially the barnacle occupancy is important in driving the dynamics. If the
barnacle occupancy is always less than the lower fucoid threshold, then a stable
steady state with only barnacles is produced regardless of the fucoid parameters

(see figure 6.6). This is because the fucoids are never able to settle.

When the solution of the barnacle sub-model is stable and the solution of the
fucoid sub-model is less than the upper barnacle interaction threshold, then a

stable steady state is produced with both barnacles and fucoids (see figure 6.7).
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Figure 6.6: Stable steady state with only barnacles present (S? = 0.8, x = 200,
SF=09,(=3P=1/26,0a=0.2, 3=0.5,v=0.5and § = 0.7).

This is because in the two species model the occupancy by barnacles is reduced
and thus, settlement of barnacles and fucoids is never shut off completely. There-
fore, a state can be reached where the area lost via mortality is balanced by the

gain in area from settlement.

If either of the solutions to the sub-models is oscillatory, then oscillations are
produced in the two species model (see figure 6.8). This is because the oscillations
of one of the models causes settlement to be switched on and off and drives the
oscillations of the other species. If both of the sub-models are oscillatory then
oscillations are produced in the two species models (see figure 6.9). However,
these oscillations interact to produce oscillations in each species with a period of

greater than 2.

Oscillations in the two species model can be produced when the sub-models are
both stable, 7e by the interaction between the two sub-models. When the fu-
coid sub-model has an occupancy of greater than the upper barnacle interaction
threshold, then oscillations occur (see figure 6.10). This is because then fucoid
occupancy is sufficiently high to shut off barnacle settlement giving rise to oscil-

lations.
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Figure 6.7: Stable steady state with both barnacles and fucoids present (SB =
0.89, k =200, S¥ =09,(=3,P=1/26,a=10.2,3=0.5,v=0.5and § = 0.7).
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Figure 6.8: A cyclic solution of the 2 species model, where oscillations in the
fucoid sub-model drive oscillations in the in the barnacle sub-model (S = 0.91,
k=200, S =0.925, (=10, P=1/26, « = 0.2, 3=0.5, v = 0.5 and § = 0.7).
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Figure 6.9: A cyclic solution of the 2 species model, where both sub-models
oscillate (S = 0.95, k = 200, ST = 0.925, ( =10, P = 1/26, a = 0.2, 3 = 0.5,
v=0.5and 6 = 0.7).
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Figure 6.10: Interaction between the sub-models causing oscillatory dynamics in

the two species model (S = 0.89, k = 200, S¥ = 0.9, ( =5, P =1/26, a = 0.2,
f=0.5,v=0.5and § =0.7).
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6.5.2 Application to the Isle of Man

In this section parameters of the model are varied to produce cycle shown in the
literature (see table 6.9). This is attempted using parameter within the values

suggested in the parameter estimation section.

Table 6.9: Percentage cover estimates for Kallow Point, Port St. Mary, Isle of
Man (cycle is the length of the cycle in years).

F. vesiculosus S. balanoides Bare | Total
% cover ‘ Cycle | % cover ‘ Cycle | Rock | Cycle
Hartnoll & 0-65 3 0-46 3-4 144-94| 6-7

Hawkins (1985)
Proud (1994) 0-70 | 4 | 10-60 | 3-4[40-90| 6-7

It soon became clear that it is difficult to obtain a correct total cycle length of
about 6-7 years within the parameter set. This is possibly because the barnacles
are growing too fast and thus reach the lower fucoid threshold to quickly, ie the
time lag between barnacle and fucoid settlement is too small. So to obtain solu-
tions with a total cycle length of 6-7 the settlement values had to be very high
and the variation in percentage cover was far too great. If the actual estimated
parameter set is used (see figure 6.11) then a solution is produced with an oc-
cupancy that is outside the bounds suggested. The individual cycle lengths are
correct, at about 3 years for both species. However, the total cycle time is too
short, at about 4 years. To obtain a longer cycle length it was necessary to use
survivorships of 0.978 for both species (see figure 6.12). However, this altered the
cycle time of the fucoids to around 5.6 years which is almost twice that suggested

in the literature.

To produce a solution that fits nicely within the bounds suggested in the litera-
ture, it is necessary to lower the lower and upper barnacle interaction thresholds
significantly (figure 6.13). However, the total cycle time of this solution is low

and thus there is a problem with the time lag.

6.6 General Discussion

A number of general points about the linked model become clear with just obser-

vation. This model is non-linear and therefore will exhibit a much wider range of
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Figure 6.11: Fitting model to observed values - attempt 1 (S” = 0.875, x = 2000,
ST =0.925, ¢ =100, P=1/26, a = 0.2, 3=10.5, v = 0.5 and § = 0.9).
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Figure 6.12: Fitting model to observed values - attempt 2 (SB = 0.978, x = 100,
SF=0.978,(=5 P=1/26,a=0.2,3=0.5,7=0.5and § = 0.8).
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Figure 6.13: Fitting model to observed values - attempt 3 (S® = 0.9, x = 200,
ST =095 (=15 P=1/26,a=0.1, 3=0.15, 7= 0.5 and § = 0.7).

behaviour than any of the linear models described so far (May, 1976). However,
the component models behave in a very similar way to the single species mod-
els described in Chapters 3 and 4. Thus, many of the observed results are the
same, for example, increasing either of the survivorships or the settlement rates
increases the amplitude and period of oscillations in that species. Settlement

again is the main driving factor in this model.

Four types of behaviour are produced by the model. These are a stable steady
state with only barnacles; a stable steady state with both barnacles and fucoids;

coupled periodic oscillations; and coupled aperiodic oscillations.

The stable steady state with only barnacles is found when the barnacle occupancy
is always less than the lower fucoid interaction threshold. Thus, fucoids are never
able to settle. A stable steady state with both species is found when the barnacle
and fucoid sub-models are stable. The barnacle sub-model has to have occupancy
above the lower fucoid interaction threshold and the fucoid occupancy has to be

less than the upper barnacle interaction threshold.

Oscillations are produced in two ways, either by oscillatory behaviour in one or

both of the sub-models or by the interaction between stable sub-model solutions.
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If one of the sub-model solutions is unstable then it will force the other sub-model
dynamics to oscillate as settlement is switched on and off. If both sub-model in-
dividually have oscillatory solutions, then these oscillations interact to produce
point-cycles of greater than 2. Oscillations can be produced by the interaction
between stable solutions of the sub-models. When the fucoid occupancy is greater
than the upper barnacle interaction threshold and the barnacle sub-model occu-
pancy is greater than the lower fucoid interaction threshold, then oscillations are

produced by interaction between the two sub-models.

The output of this model can give similar occupancy and lifespan for the indi-
vidual species compared with data from Port St. Mary, Isle of Man (Hartnoll &
Hawkins, 1985; Proud, 1994). However, the total cycle length is too short. Hast-
ings (1986) stated that the key to understanding the dynamics of two species
model is to look at the interaction between the time delays. In this case the time
lag between the two species colonising is not sufficient. Increasing the time delay
could be achieved by either stochastic recruitment functions and seasonal set-
tlement, and implementing interaction between adults of the two species rather

than just at settlement.

Before the discussion of further work required, it is necessary to again note that
this two species model has all the shortcomings of the single species model in
Chapter 3 and 4. It would be useful further work to implement these adjustments
in the single species models singly, and then look at the overall effect on the

behaviour of this two species model.

Probably the most important thing that would make this model more accurate
would be a better data set to calibrate the model from. As can be seen from
Section 6.4, the actual estimates of the parameters is done using bits of data
from everywhere and rough crude techniques. In fact a lot of the data used is
from a single 2m? unreplicated quadrat. A better data set would allow a better
range of parameters to be estimated, which might increase the accuracy of the

model and allow the model to be more testable.

Stochastic recruitment in a seasonal environment would make a large difference
to the dynamics of this model. This would give a short period where recruitment
is not guaranteed, more like the situation found on the moderately exposed rocky
shores where recruitment of fucoid is not a yearly occurrence and the strength of

barnacle settlement is variable (Hartnoll & Hawkins, 1985).

A grazer threshold would be very useful in this model. If the fucoid settlement
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is very large then it would make sense to let a few plant escape even in the
absence of barnacles. This is because in the field grazing is limited by the time
the grazer is immersed on horizontal surfaces (see Hawkins & Jones, 1992, for
a general review) and thus grazers can become saturated. Therefore, it would
make biological sense for a proportion of the fucoid propagules to ‘escape’ at high

settlement rates even in the absence of barnacles.

The interaction thresholds between the barnacle and fucoid need to be revised.
Firstly a more realistic relationship between adult density and settlement would
be useful. However, a large data set is required to produce this relationship, as
these affects are very changeable (see for example, Jenkins, 1995). Secondly, in-
teractions between adults of the two species is ignored in this model. For example,
the fucoid canopy effects adult barnacles by canopy sweeping and increasing Nu-
cella predation, and the adult barnacles provide insecure attachments for fucoids
which then have higher mortality (Proud, 1994). This last statement also implies
that a major problem with this model is that barnacle and fucoid occupancy is
treated as the same quantity. However, fucoids are able to settle on the barnacle
matrix (Proud, 1994) and thus, the free space that they are able to settle includes

that area occupied by barnacles.

In summary, this chapter has been a useful first insight into the rich dynamics
of two species models and the mechanisms that control it. However, although
the accuracy of the individual species cycles are correct, the total cycle times are
not sufficiently long. A better data sets and a few additions to the model should
increase the accuracy. This model has been an interesting introduction and will
provide a useful insight into the more complicated dynamics of models produced
in my Ph.D.
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Chapter 7

Discussion and Conclusions

In this chapter I shall draw the major findings of this work together. The single
species models (see Chapters 3 to 5) and then the two species case are exam-
ined. I will discuss in short the gaps in the data that require filling in order to

parameterise the models. Finally, there will be a general summary section.

7.1 Single Species Models

7.1.1 Mechanisms

Constant Environment

In a constant environment the age-structured model of barnacle populations
showed fairly simple dynamics with four types of behaviour: stable overdamped,
stable underdamped, point-cycles and aperiodic solutions. Roughgarden et al
(1985) and Bence & Nisbet (1989) did not find aperiodic solutions, as they
both incorporated density-dependent survivorship in their models. This density-
dependent survivorship stabilises the aperiodic behaviour of the model to point-

cycles. These point-cycles can last for over 38,000 years.

The mechanism operating is controlled by the settlement rate, survivorship and
the growth rate. These factors are all destabilising as they increase the area
occupied at equilibrium. If the combination of these factors is sufficiently low
then a stable steady state is produced with a stable age-distribution. This is not
generally the case on the rocky shore where cohorts once established can occupy
the space for a number of years until they die and then the area is recolonised by

another heavy settlement period. However, if the combination of the settlement
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rate, survivorship and the growth rate is high enough then point-cycles are pro-
duced. These are produced when the space is filled by short ‘pulses’ of settlement

and waves of cohorts pass through the age structure.

Fitting a logistic model to growth rate data (Barnes & Powell, 1953) gives an
overestimate of the rate at which barnacles grow on the mid-shore. Using this
function the barnacles reach their maximum size in under a year, this is more
like the growth rate of S. balanoides at the lower limits of their range (Hawkins,

pers. com).

Comparing a number of different stability criteria shows that in all cases increas-
ing settlement, growth or survival is destabilising. This decrease is stability is
effected by a number of factors, such as the type of criteria and the number age-
classes. A simple derived criteria which assumes that there is a locally unstable
eigenvalue approximates well to the local stability boundary at low settlement

values, not at larger values.

The mechanism proposed to control the barnacle model in a constant environment
is very similar to those that control the size-structure fucoid model, despite the
difference in formulation. This is possibly because although the fucoid model
is size-structured individuals cannot get smaller, with a constant probability of

promotion. Thus, making increase in size with age a more constant process.

The fucoid model is slightly different to most other models developed in this
field (see for example Seip, 1980; Ang, 1987; Aberg, 1992a&b). These have
generally been simulation models of closed populations. The model presented
here is open as the system that is modelled requires ‘pulses’ of recruitment from
outside populations (Hartnoll & Hawkins, 1985). It also allowed me to look at

seaweed models from a more mechanistic view.

The mechanisms that produce the dynamics. Increasing the probability of promo-
tion, survivorship or size-class choice is destabilising, as it increases the potential
of the area of a cohort to increase over time. If the settlement rate is high then
the occupied space is limited by the probability of promotion, survivorship and
the size-class selection. If the settlement rate is low then the occupied space is
limited by the settlement rate. Oscillations are found when the area occupied
by a cohort increases over time. The decay or persistence of these oscillations
depends upon the rate at which free space is filled, ie the settlement rate. Oscil-
lations decay if the settlement rate is low, as free space is filled slowly, producing

an underdamped solution. Oscillations persist if the settlement rate is high, as
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free space is filled by short ‘pulses’ of recruitment, producing point-cycles. This is
illustrated by the comparison between real and heuristic stability in the strategic

model.

These models predict that a few large individuals will dominate the area occu-
pied, which is similar to the canopy of perennial seaweeds. However, the only
low settlement rates are required to produce instability which suggests that the
parameterisation of the model is not correct. This is hardly surprising as the data

available on F. vesiculosus is very sparse.

Seasonal Environment

There is a distinct discrete settlement season for both S. balanoides (see for
example Hawkins & Hartnoll, 1982a) and F. vesiculosus (see for example Knight
& Parke, 1950). Thus, the most logical extension of the above models is to

investigate a seasonal environment.

The barnacle steady state is oscillatory as settlement is a discrete period. Thus,
two type of solution are found, periodic and aperiodic. Periodic solutions are
produced when the natural and driving periods of the solution are phase locked.
Aperiodic solutions are not phase locked. The mechanism that drives the model

is the same as in a constant environment.

Increasing the settlement or survivorship of barnacles causes and increase in the
amplitude and period of the oscillations. The effect of changing the settlement
period is important at low settlement rates, with ‘good’ settlement having larger
oscillations than ‘average’ and ‘bad’. However, as settlement increases it no longer
forces the model and there is no difference between the models. However, at
intermediate settlement the results are difficult to interpret with many aperiodic

solutions.

The seasonal fucoid model produces a much wider variety of dynamics, with 2 to
28 point cycles and aperiodic solutions being produced. This is because settle-
ment is from two sources, the seed bank and from outside. The type of solution
produced is to do with the degree of phase locking between the natural and
driving periods. Point-cycles are phase locked, aperiodic solutions are not. The
general mechanism is the same as in the constant environment model. However,

the steady states are now oscillatory.

Increasing the settlement rate into the system increases the period and ampli-
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tude of the cycles. Decreasing the seed bank survivorship is first stabilising then
destabilising. This is because of the free space is able to drop to a lower value
when there is no seed bank and thus the free space is filled with more propagules.

Different strengths of settlement cause generally little difference in the model.

The models of barnacle and fucoid settlement have fairly similar dynamics despite
the difference in formulation. This is highlighted in the discussions of Chapter 3
and 4. When a seasonal component is added to the model, the behaviour is still
similar. Both models produce cyclic and aperiodic dynamics. The phase locking
mechanism is similar. However, the big difference between the models is caused by
the introduction of a seed bank into the fucoid model. This causes a much richer
spectrum of dynamics to be found in the fucoid model as there are three cyclical
mechanisms that need to phase lock. Overoccupancy is a big problem in both of

the models, this is due to survivorship being completely density-independent.

Biologically these models are still very unrealistic and require addition of many
parameters (see discussion of Chapters 3 and 4). The very simple components of
biological dynamics that are predicted is that the populations cycle or produce
some kind of aperiodic behaviour. The one possibly useful biological hypothesis
that has been drawn is that seed bank mortality is required to be high so that
settlement generally happens within the settlement season. However, conclusive
proof is needed of the actual existence of a seed bank and how to test it before

this hypothesis can be tested.

7.1.2 Further Study

In this section simple extensions of the model are examined that would improve
the biological realism of the models. However, the tradeoff is that with increase

realism the models become more complex and less can be discerned from analyses.

These models are very simplistic. The only real biological conclusions that can be
drawn are that populations cycle and settlement is the most important process
in determining the structure of these populations. These simplistic conclusions
reflect the construction of the models and suggest that further work needs to be

done increasing biological realism.

The most important extension to the models is density-dependent survivorship,
as all the models exhibit overoccupancy. Bence & Nisbet (1989) noted that open

models with space-limited recruitment could provide insight into any population
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where there is debate on whether populations are regulated by recruitment or
density dependent factors. These are essentially the processes which control both
the fucoid and the barnacle populations. Density-dependent survivorship has
been proposed for both F. vesiculosus (Creed, 1993) and S. balanoides (Crisp,
1960; Connell, 1961a; Shanks & Wright, 1986).

On hundred percent occupied space is difficult to define on these shores. Al-
though all the space is occupied, individuals of S. balanoides will settle on the
tests of adults (Connell, 1961a) and the F. vesiculosus will settle and join the
spore/germling bank (Creed, 1993). Even when 100% occupancy does not oc-
cur not all free space is the same. For example, Lewis (1977) states that free
living acorn cirripeds respond to a variety of stimuli during settlement: arthro-
podin (an insoluble protein found in adults); water currents; surface rugosity;
light; and, gravity and hydrostatic pressure. In the absence of specific settlement
cues settlement is usually delayed (Lewis, 1977). F. vesiculosus is also limited
by the spatial aspect of free space, for example smaller plants are inhibited by
the larger canopy plants. This occurs in a number of ways. For example, lower
light intensity (Schonbeck & Norton, 1980a); lower nutrient levels (Dayton et al,
1984); whiplash and sweeping effects (Dayton, 1971; Ang, 1985); sediment build
up (Kenelly, 1989); and aggregation of grazers (Hartnoll & Hawkins, 1985). To

model this would require a spatial explicit model.

The inhibition of juveniles by adults would be a useful addition to the models. In
both barnacles and fucoids this is an important factor. For example, juvenile S.
balanoides suffer mortality due to undercutting (Connell, 1961a) and F. vesiculo-
sus suffer shading (Schonbeck & Norton, 1980a) in overcrowded conditions. This
could be implemented in the models using simple thresholds. Overcrowding also
changes the growth forms of the adults with barnacles becoming more tubular
(Moore, 1934) and fucoids show a general decrease in growth rate (Creed, 1993).
These again could be added with simple thresholds and different growth functions.

This shows that a few simple changes would improve the realism of the models.
However, there is a tradeoff between the biological realism and not just under-

standing of the model, but also parameterisation of the model.
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7.2 Two Species Models

In this section the behaviour of the two species model is examined and further

work suggested.

7.2.1 Mechanisms

In this section the dynamics and the mechanisms that produce them are exam-
ined. The behaviour of this type of non-linear model is much more diverse than
the linear single species models. However, the general mechanisms that control
the single species models act on the two species model. The two species model
is driven primarily by settlement, but survivorship and size both influence the

period and amplitude of oscillations.

The mechanism driving this model depends on the behaviour of the sub-models
and the the interaction thresholds. The sub-models are driven in exactly the
same way as the single species models, and can produce stable and oscillatory
dynamics. If one or both of the sub-models produce oscillatory dynamics, then
oscillations are driven in the other sub-model as the settlement is switched on
and off. However, when the sub-models would individually be stable, interactions

between the two sub-models can drive oscillations.

It is possible to fit the model to the limits suggested for the shore (Hartnoll &
Hawkins, 1985; Proud, 1994). This also gives realistic cycle time for the individual
species, ie 3-4 years for fucoids and 3 years for barnacles. However, the total
cycle length is much shorter than found on the shore. Hartnoll & Hartnoll (1985)
suggested that a total cycle time of about 7 years is correct. However, unless
the survivorships of both species is pushed outside the bounds of the predicted
parameters then the maximum cycle time is 4-5 years in the model. This suggests
that the time delay between the two species is too short. Hastings (1986) stated
that the key to understanding two species models is to look at interaction between
the two time delays. Thus, increasing the delay between the species could be done
by implementing stochastic seasonal settlement or interaction between adults of

the two species rather than just at settlement.

Although this model is not very accurate, it does give a good first estimate using
parameters from the literature. It will also provide a good building block to work

on during the course of my Ph.D.

151



Further Study

Stochastic recruitment in a seasonal environment would make a large difference
to the dynamics of this model. This would give a short period where recruitment
is not guaranteed, more like the situation found on the moderately exposed rocky
shores where recruitment of fucoid is not a yearly occurrence and the strength of
barnacle settlement is variable (Hartnoll & Hawkins, 1985). This would increase
the total cycle length with species able to dominate the shore for longer periods

of time.

A grazer threshold would be very useful in this model. If the fucoid settlement is
very large then it would make sense to let a few plant escape even in the absence
of barnacles. This is because in the field grazing is limited by the time the grazer
is immersed on horizontal surfaces (see Hawkins & Jones, 1992, for a general

review) and thus can become saturated.

The interaction thresholds between the barnacle and fucoid need to be revised.
Firstly a more realistic relationship between adult density and settlement would

be useful.

7.3 Wider Implications

At this stage it is necessary to summarise how this thesis fits into the wider
picture of rocky shore ecology and modelling. The implications for modelling

and then rocky shore ecology will be discussed.

The theory of open models with space-limited recruitment is a recent addition to
the modelling techniques (Roughgarden et al, 1985). These models were created
to investigate systems where dispersal of juveniles can occur over long distances
and in fairly large densities. Therefore traditional Lotka-Volterra systems cannot
be used. However, investigation of these models does not just apply to species
like barnacles. It could be used to model any system where a resource is limited,
for example, light, space, territory or rainfall (Kuang & SO, 1995). These models
can also provide insight into any community where there is debate over whether
populations are regulated by density-dependent factors or recruitment (Bence
& Nisbet, 1989). For example, reef fish (Mapstone & Fowler, 1988) and giant
kelp (Nisbet & Bence, 1989). This gives a huge number of systems that can

be modelled in this way. The work done in this thesis clearly demonstrates
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the mechanisms that control these type of models. Stability criteria have been
investigated and a new type of criteria based on the mechanisms has been derived.
Thus, this research could aid in the understanding of the same type of model but
with a different limiting resource when applied to a different community. However,
insight into the dynamics of these types of simple models is essential for the slow
building of ecological models (Bence & Nisbet, 1989) and will be very useful for

understanding the dynamics of these more complex models in my Ph.D.

In biology there are a number of reasons why this type of research is important.
Firstly, any type of modelling aids in the formalisation of thoughts and ideas
that experimental biologist have about a system and allows the testing of these
ideas. Secondly, rocky shores are found all over the world, and despite their
differences in species appendages, the general processes controlling these systems
are very similar. The moderately exposed rocky shore is the shore that seems
to have a mixture of sheltered and exposed shore characteristics, that keep the
shore in a non-equilibrium state. If this research, when extended, could aid in
the understanding of this particular shore, then these processes could be applied
to more shores worldwide. Finally, barnacles and seaweeds are important fouling
organism. They settle on the hulls of ships, causing drag and thus, increasing the
fuel required. Modelling the growth of single species populations like this could
give us an idea of how to reduce the population numbers naturally rather than
having to use antifouling paint. This paint in many cases is toxic, for example,
tributyltin from antifouling paints caused female Nucella lapullis in the English
Channel to grow a penis (Spence et al, 1990). Although few biological inferences
have been drawn for the experimentalist to test, in the course of my Ph.D. when
the models created are more complex and thus, include more biological realism,

may help to investigate these questions.

7.4 Data Problems

In this section the problem with the lack of comparable data in this field is
examined. Shores tend to specific, and if a model is created for that shore then,
the data set that it is parameterised from needs to be long term set and from
that particular shore. In the parameter estimation sections, it has become clear
that there is insufficient data on the ledges at Port St. Mary to parameterise
the models, let alone test them. Although there is a relatively long biological
time series for this shore (1977-1994) this is just for a single unreplicated 2 x*
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1m quadrat. This type of broad scale monitoring survey is useful in biology
as it allows inferences about the processes occurring on the shore and is cheap.
However, this quadrat may not be representative of the MTL as a whole, or even
of the immediately surrounding area. The data comprises of percentage cover
values only, and does not record any of the interaction coefficients. However,
further replicated work has been done on the interactions and settlement on the
specific shore (Creed, 1993; Proud, 1994; Jenkins, 1995).

From a number of sections (see, for example, Section 6.4) it is quite obvious that
data that have been produced is generally measured using different techniques,
at different time of year, in different units and by different people. Thus, most
of the data are not comparable and cannot be pooled to make larger sets, as
the pooling of these data would be statistically invalid. In fact, Underwood
& Fairweather (1986) stated that intertidal communities do not have different
ecologies, they just have different ecologists. They concluded from three examples
that differences in regions are sometimes confounded with different methodology
and interpretation. Gaines & Bertness (1993) suggested that field ecologists need
to be able to integrate over time to produce a standard technique that works over

long periods of juvenile dispersal.

I would like to state that being a biologist that I understand the difficulty with
field experimentation. Underwood (1991) suggested that many modellers have
spent to much time on ‘easy’ sciences like physics and have never had to grapple
with field experimentation in complex and variable worlds. However, a standard-
isation in methodology, time-scales and units would provide a much better and

more comparable data set for the modeller to use.

7.5 Summary

The aim of this thesis was to produced single species models that could then be
linked in order to try and model the moderately exposed rocky shore, Port St.
Mary, Isle of Man. The cycle was proposed by Hartnoll & Hawkins (1985).

Similar dynamics are produced by both the single species models, despite the
difference in construction. Increasing settlement rate, growth and survivorship
increases period and amplitude of cycles. However, further work would involve
including density-dependent survivorship, spatial scales and the effect of adults

on juveniles.
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A two species model was producing by linking the two single species models using
assumptions of the effect of barnacle on fucoids and wvice versa. Understanding of
this model was facilitated greatly by the work on the single species models. Set-
tlement again drives the sub-models and oscillations can be caused by oscillations
in one or both of the sub-models or by the interaction between the sub-models.
Further work includes joining more complicated single species models, stochas-
tic recruitment functions, a grazer saturation threshold and adult inhibition of

juveniles.

These models are very simple, but it has been possible to draw a few inferences
for the experimentalist to test. These are settlement is the most important factor
in structuring the shore studied and that if a seed bank exists it must suffer very

high mortality.

A better data set to parameterise and test these models against needs to be larger
and replicated. The problem of different ecologists, methodologies and interpre-
tation is suggested as a problem. However, the difficulty of experimentation in

such a complex and variable environment is noted.

In summary I would like to say that the two main aims of this thesis have been ac-
complished. These were to produce simple models of S. balanoides and F. vesicu-
losus with understandable dynamics and to instruct the author in the techniques

of mathematical modelling.
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