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Abstract
A cycle has been suggested for the mid shore region of a moderately exposedrocky shore at Port St. Mary, Isle of Man (Hartnoll & Hawkins, 1985). Thiscycle consists of competition for space between the limpet, Patella vulgata, thebarnacle, Semibalanus balanoides, and the brown alga, Fucus vesiculosus. Thiscycle is split into a number of constituent parts and modelled.Two single species models of S. balanoides and F. vesiculosus are developed.Basic analysis, including the derivation of steady states and stability boundaries,are done on these models. The models are parameterised from the literatureand the mechanisms are investigated. Four types of dynamics are found: stableunderdamped; stable overdamped; point-cycles; and aperiodic solutions. Themechanism driving the model is dependent upon the ability of a cohort to increasein area over time. Thus, giving rise to a `speed of �ll mechanism' that is dependentupon the settlement rate. Seasonality is investigated and a similar mechanismis found, but only point-cycles and aperiodic solutions are observed. Settlementis the main factor that drives these models, although the length of settlementseason appears to make little di�erence.A two species model is created by linking the single species models and is pa-rameterised from the literature. Steady states are derived, but are complicatedmaking inferences di�cult to draw. Thus, the investigation of this model is doneby simulation. More complex dynamic are found, with stable equilibria of barna-cles, stable equilibria of barnacles and fucoids, and periodic or aperiodic cyclesof the two species. The sub-models are settlement driven and oscillations canbe driven by one or both of the sub-models or the interaction between the twosub-models. Parameters are estimated for the Isle of Man. Within the range ofparameter values individual cycle times and occupancy can be mimicked, but thetotal cycle time is too short. This is because the time lag between the two speciesis too short and requires implementation of seasonal stochastic recruitment.
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Chapter 1An Introduction Rocky ShoreEcology
1.1 General Introduction1.1.1 What is a Rocky Shore?A rocky shore is found at the boundary zone between terrestrial and marine sys-tems. They occur in areas of moderate to extreme water movement where erosionis more important than deposition. Rocky shores are good ecological systems tostudy since they are essentially two dimensional. The community is composedof largely sessile organisms competing for space and mobile organisms that onlymove relatively small distances. This makes in situ description of and experimen-tation on the rocky shore environment fairly easy (see for example, Moore, 1934;Southward, 1956; Connell, 1959, 1961a; Hawkins, 1981a&b; Lubchenco, 1983;Hawkins & Hartnoll, 1982a&b, 1983a&b; Underwood et al, 1983; Paine, 1984;Sousa, 1984; and Chapman, 1986a&b, 1995).A sharp gradient of environmental conditions is found from the low to high shore.These conditions are associated with the amount of time that the area on theshore is immersed by the sea. Thus, in a relatively short horizontal distancethe environment changes from essentially marine to terrestrial. However, theorganisms that inhabit rocky shores are thought to have evolved largely frommarine ancestors. Thus, the gradient can be thought of as uni-directional withstress increasing with increasing shore height. This is known as the verticalgradient. A horizontal gradient of conditions is also found and is associated withthe degree of exposure to wave action found at the site.2



1.1.2 The Vertical GradientThe vertical gradient of environmental conditions is found between the lowestastronomical tide and the top of the wave splash zone. The largest tides, orspring tides, range between mean low water springs (MLWS) and mean high waterspring (MHWS). The mean tidal level (MTL) is found at the vertical midpointof these limits. The mid-shore of mid-tidal level covers an area on either sideof MTL from about 2.5 to 3.5 meters above chart datum (see Hawkins & Jones,1992, for a general review). The environmental gradient observed is due to thephysical stress on the mainly marine organisms as they are emersed. Organismsliving higher on the shore spend more time emersed and su�er greater stress fromdesiccation.The unidirectional nature of the gradient of environmental conditions and bio-logical interactions cause zonation of organisms on sheltered and exposed shores(Hawkins & Jones, 1992). Concentrating upon shores around the British Isles,sheltered shores have a seaweed dominated community (see �gure 1.1). As onemoves from the MHWS to MLWS distinct zones of Pelvetia caniculata, Fucusspiralis, Ascophyllum nodosum and F. serratus are found. The position of F.vesiculosus depends on the degree of exposure (Hawkins & Jones, 1992). Onexposed shores there is a �lter feeder dominated community of barnacles andmussels. Again as one moves from MHWS to MLWS distinct zones of Porphyra,Chthamalus montagui, Semibalanus balanoides, Chthamalus stellatus and Mytilusedulis are found.There are a number of factors that determine the zonation of these plants andsessile animals. High on the shore, upper limits of zones are caused by physicalfactors (Schonbeck & Norton, 1978). However, lower on the shore the upper limitof these zones can be caused by competition (Hawkins & Hartnoll, 1985) andgrazing (Southward & Southward, 1978; Underwood & Jernako�, 1981). Thelower limit of these zones are caused by competition and predation, although ina few cases physical factors are important, for example Pelvetia (Schonbeck &Norton 1980a).Mobile animals also have upper and lower limits to their zones. The upper limitis set by unfavourable conditions occasionally killing an individual. Lower levelsare either set by predation or by competition with seaweeds for space.
3



1.1.3 The Horizontal GradientThe horizontal gradient has the most impact on the community structure (Lewis,1964). It is not a uni-directional gradient as found with the vertical gradient. Forexample, with a higher degree of wave action there is a greater risk of dislodgementfrom the rock, but in shelter there is a greater risk of being covered in silt (see�gure 1.1).
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Ascophyllum.Figure 1.1: Diagram to represent the changes in stress associated with increasingexposure to wave action and the result in terms of community structure on N.E.Atlantic shores (modi�ed from Ra�aelli & Hawkins, in press).The degree of exposure to wave action is di�cult to assess. It can be measuredusing biological exposure scales. These give shores an exposure rating by lookingat the community with special attention given to a number of indicator species.The two best examples of these scales were developed by Ballantine (1961) andLewis (1964). Biological scales di�er from circularity scales if they are used tostudy the biota themselves. Map based methods have been used to rank shoresand direct physical methods are also possible.The communities found at di�erent degrees of exposure in the British Isles are welldocumented (see �gure 1.1). The community structure is observed to change froman algal dominated community at sheltered places to an animal dominated shorein exposed places. At an intermediate degree of exposure the community structureappears to be a mix of these two communities with a mosaic of limpets, barnaclesand seaweed. An example of a moderately exposed British rocky shore is theledges at Kallow Point, Port St. Mary, Isle of Man. Much work has been doneon this shore. The balance of the community structure was �rst investigated byJones (1948) when he removed limpets from a �ve metre wide strip and observed4



a massive increase in the biomass of algae on this strip. He suggested thatthe balance was between the limpet, Patella vulgata, and algae. Burrows &Lodge (1950) noted that the presence of barnacles also had an e�ect on thestability of the system. Thus, the instability of the system was noted and furtherinvestigations were carried out (see for example, Southward 1956, 1964; Hawkins,1981a&b, 1983; Hawkins & Hartnoll, 1980, 1983a&b; Hartnoll & Hawkins, 1980,1985).A cycle was proposed for the mid-shore region of this shore by Hartnoll & Hawkins(1985) (see �gure 1.2). They suggested that both deterministic processes andstochastic events are involved in the cycle. For example, recruitment is a stochas-tic process and competition for space or grazing are deterministic events. Hawkinset al (1992) revised this theory and suggested that stochastic events initiate thecycle, for example escapes from grazing, but deterministic processes control itsprogression. In this cycle they propose that 
uctuations in the abundances ofSemibalanus balanoides (barnacle), Fucus vesiculosus (seaweed) and Patella vul-gata (limpet) are linked to the abundances of the each other. Two other speciesplay a minor role in this cycle. Nucella lapillus is a dogwhelk and preys uponadult barnacles (Connell, 1961a; Dunkin & Hughes, 1984). Actinia equina is asea anemone and occupies space in shelter provided by the seaweed canopy. Thiscycle can be viewed as a successional sequence that never reaches a stable endpoint (see �gure 1.2).The CycleIn stage one dense barnacle cover disrupts limpet grazing and barnacle settlementis enhanced by conspeci�cs (Lewis, 1977). Stage two shows dense adult barnacleand decreased limpet grazing because of seabird predation (Feare & Summers,1985), storm strewn boulders (Southward, 1956) and aggregation of limpets else-where (Hartnoll & Hawkins, 1985). Decreased grazing pressure increases thelikelihood of seaweed `escapes' (Hawkins, 1981a&b). An escape occurs when aseaweed gets to a length of three to four centimeters and is then largely unaf-fected by P. vulgata grazing (Burrows & Lodge, 1950; Hawkins, 1979; Hawkins& Hartnoll, 1983a&b). Stage three has fucoid clumps growing on the barnaclematrix. Limpets tend to aggregate under these clumps and thus grazing pressureis reduced elsewhere on the shore allowing more `escapes'. The barnacle matrixis smothered by the fucoid algae and dies. The fucoid algae growing on the deadbarnacle matrix is now insecurely attached (Proud, 1994) and plants are ripped5
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Figure 1.2: Simpli�ed diagram to represent the cycle in the mid-tide level of amedium-exposed rocky shore in the Isle of Man. The numbered rectangles arestages in the cycle. The circles are intrinsic biological processes generating andmaintaining the cycle. The heavy arrows indicate where very good settlementof named species either promotes (solid arrows) or inhibits (open arrows) theprogress of the cycle. Settlement and recruitment from the planktonic phase isasterisked. Reproduced from Hartnoll & Hawkins (1985) �gure 7.6



o� the rock in storms. Stage four shows the thinned old fucoid plants, very fewbarnacles as N. lapillus aggregate under the canopy and predate upon the re-maining adult barnacles. The high densities of limpets under the canopy preventfucoid recruitment. As there is no recruitment to the fucoid population when theold plants die there are no juveniles to replace the adults and stage �ve is reached.Stage �ve has very few barnacles, no fucoids and aggregated limpets. Graduallythe limpets disperse leading to stage six in the cycle which is essentially barerock. This cycle can be in di�erent stages at di�erent places on the shore andthis gives the shore the appearance of a patchy mosaic of limpets, barnacle andfucoids with up to forty percent free space (Hartnoll & Hawkins, 1985).It has been suggested that the balance of barnacles, fucoids and limpets on mod-erately exposed shores follow population 
uctuations and the amplitude of these
uctuations is determined by the degree of exposure to wave action. Small ampli-tude cycles are found at both ends of the scale. Southward & Southward (1978)suggested that very sheltered and very exposed shores changed very little overtime. However, moderately exposed shores exhibit large amplitude cycles withthe balance shifting between the di�erent components in the system due to bi-ological interactions prompted by recruitment 
uctuations. A conceptual modelof proposed barnacle and fucoid cover at di�erent degrees of exposure emphasisesthe di�erent amplitude of the cycles (see �gure 1.3) (Hartnoll & Hawkins, 1985).Other examples of this type of interaction on moderately-exposed shores havebeen described both in the British Isles and worldwide. Baxter et al, (1985) ob-served a similar cycle in the Orkney Islands. On the East Coast of the UnitedStates there are no patellid limpets and the main grazer is Littorina littorea.Vadas & Elner (1992) noted L. littorea shows great variation in density overshort distances and escapes occur in areas of reduced density. They also ob-served annual colonisation cycles of bare rock by barnacles and green ephemeralalgae. Underwood et al (1983) looked at the dynamics of a mid-shore communityin New South Wales, Australia. They found that algae prevented the recruitmentof barnacles and that the arrival of barnacles has a subsequent e�ect upon thepredators. They suggested that these e�ects varied in both time and space due torecruitment 
uctuations. Dungan (1986) studied a three way interaction betweenthe barnacle, Chthamalus anisopoma, encrusting algae, Ralfasia, and the limpet,Collisella, near Puerto Pe~nasco, Mexico in the Gulf of California. Carter & An-derson (1991) looked at the interaction between barnacles, limpets and Gelidiumpristoides in the eastern Cape, South Africa. They found that the distribution7
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Figure 1.3: A model of barnacle cover plotted against fucoid cover in di�erentdegrees of wave exposure. Reproduced from Hartnoll & Hawkins (1985) �gure 6,modi�ed from Southward & Southward (1978).of G. pristoides was dependent upon the presence of limpets and the security ofattachment, ie whether attached to rock or barnacles.1.2 The BarnacleBarnacles are sessile marine invertebrates. They are members of the phylumArthropoda, sub-phylum Crustacea and class Cirripedia. Barnacles are �lterfeeders using the cirral net to �lter particles of suspended organic matter fromthe water column. They are of great economic importance as a number of com-mon shallow water and intertidal species are responsible for fouling the hulls ofship and coastal installations worldwide. They have also been used as indicatorspecies for global warming (Southward, 1991). For these reasons considerable re-search has been carried out on barnacles since the 1940s. Some of the classic workhas been done by authors such as Barnes, Connell, Crisp and Southward. Morework on the interaction of barnacles within the community has be done by authorssuch as Dayton, Hawkins, Lubchenco, Menge, Paine and Sutherland. More re-cently mathematical modelling of barnacle populations has been done by Bence,Iwasa, Kuang, Nisbet, Possingham, Roughgarden and So (see below). This is8



because barnacle populations are essentially open populations with space-limitedrecruitment, as they have a planktonic larval phase. Thus, new theory was re-quired as these populations cannot be modelled using traditional Lotka-Volterrapopulation models.Lewis (1964) stated that barnacles were the most characteristic and dominantorganisms of the eulittoral zone throughout the world. He also suggested thatthe barnacles were restricted in distribution by competition and adverse physicalconditions. Thus, barnacles are limited to moderately-exposed shores, 
at veryexposed shores and vertical rocks where the competition for space is less (Connell,1961a). On the high shore there is less predation and competition for space, butdessication stress and decreased food supply causes increased mortality and setsthe upper limit. On the low shore there is intense competition for space withalgae and more predation. The lower limit of the barnacle has been describedas equal to the upper limit of laminarians (Lewis, 1964) or the red algal turfs(Ballantine, 1964).In Britain there are four major species of intertidal barnacle Chthamalus mon-tagui, Chthamalus stellatus, Semibalanus balanoides and Elminius modestus. Bal-anus perforatus can also be locally common in the south and west. All four speciesexhibit di�erent distributions because of di�erent larval dispersal, development,settlement (Burrows, 1988; O'Riordan, 1992) and juvenile mortality. The speciesof interest in this project is S. balanoides.Much attention has recently been focused on barnacles because of their impor-tance in structuring communities. This has been investigated experimentally inthe �eld and more recently by modelling (Roughgarden et al, 1985).1.2.1 Semibalanus balanoidesThe strong preference of S. balanoides for the intertidal zone was �rst notedby Darwin (1854). Individuals are distributed between mean low water neap(MLWN) and mean high water neap (MHWN) (Stubbings, 1975). It is a boreo-arctic species and is distributed widely across the North Atlantic and WesternEurope (Stubbings, 1975). S. balanoides, previously called Balanus balanoides,has been researched greatly. However, two problems are associated with theliterature. Firstly, much of it is scattered and old so may be di�cult to locate.Secondly, it is location speci�c, for example data for settlement, growth rates andmortality of S. balanoides found on the North East coast of the USA are likely9



to be very di�erent to that for the West Coast of Britain.The life history of S. balanoides is fairly complicated. Adults mature at theage of 2+, although a small proportion breed from the 1+ age-class (Arnold,1977). Adults may live to as old as �ve on the high shore (Stubbings, 1975). S.balanoides is hermaphrodite and fertilisation is internal. The adults produce onebrood of eggs per year (Barnes & Barnes, 1968). Each individual can producebetween 400 and 8000 eggs in a single brood (Barnes and Barnes,1968). Howeverthe water temperature must drop to below twelve centigrade for several weeks totrigger fertilisation. Fertilisation takes place in autumn and then eggs are broodedinternally until spring (Stubbing, 1975). Eggs hatch and larvae are released inthe period from March to April (Crisp, 1964; Stubbings, 1975).The hatched nauplii are released into the water becoming planktonic. These thendevelop through six feeding naupliar stages before a non-feeding cypris larva isproduced (see Stubbings, 1975 for a general review). This development lasts for18 to 30 days dependent up on the water temperature (Harms, 1984). Cyprids arethe settling stage of S. balanoides. The larvae become photonegative and swimdown through the water column. When substrate is located cyprids will onlysettle with the appropriate settlement cues (Knight-Jones & Stevenson, 1950;Knight-Jones, 1953; Lewis, 1977; Barnett & Crisp, 1979; Wethey, 1984), forexample, arthropodin, water currents, rugotropism, light and gravity are all im-portant cues (see Lewis, 1977, for a general review). The density in which cypridssettle is limited by the supply of larvae or the space available for settlement (Con-nell, 1985). Once settled the cyprids metamorphose into the adult form of thebarnacle1.2.2 SettlementAs far back as the 1950s various authors were aware of the importance of recruit-ment in the structure of rocky shores. This thinking was formalised and larvalbiology was given the name `Supply side ecology' (Lewin, 1986). Underwood &Fairweather (1989) described the advent of `Supply side ecology' as `old wine in anew bottle'. Since then there has been increasing investigation of both settlementand recruitment of barnacles, because these processes are thought to determinecommunity structure (see, for example, Roughgarden et al, 1985).Measurement of actual settlement is di�cult as cyprids are only about 1 mm inlength. Settlement densities are very variable and regional, local and temporal10



variation in density can occur (Ca�ey, 1985; Gaines et al, 1985; Wethey, 1985;Raimondi, 1990). Supply of cyprids has been correlated with strength of onshorewinds (Hawkins & Hartnoll, 1982), maximum tidal range (Shanks, 1986), andincreasing with increasing wave action and decreasing shore height (Bertness etal, 1992). This variation in settlement gives a pattern with many peaks. Varioushypotheses have been put forward to explain these peaks but the process is notyet understood (Wethey, 1985).When settlement density is high cyprid settlement density is directly correlatedto the area of bare rock (Minchinton & Scheibling, 1993) and discrete cohortsare observed on the shore. However, when settlement density is low cohorts aremixed and vacant space is abundant for Balanus glandula (Roughgarden et al,1985) and S. balanoides (Hawkins & Hartnoll, 1982a).1.2.3 GrowthGrowth has been widely researched. It is in
uenced by both abiotic factors suchas water temperature, and biotic factors such as density of adults. The �rststudies on the growth and 
ow rate of S. balanoides were carried out by Moore(1934). In general growth rate is a�ected by age, season, shore level, degree ofexposure (Moore 1934) and algal cover (Barnes, 1955). Most factors a�ect thegrowth rate by modifying food intake. This can be done by either reducing thewater motion around the barnacle or interfering with its cirral net.Generally younger individuals have a higher growth rate than older ones. Growthrate increases with decreasing shore height in the �rst year. However, in thesecond year growth rate on the high shore has been reported as being higher(Moore, 1934). Growth is seasonal and is higher in summer when the particulatematter in the water is high. Individuals immersed for longer tend to have a highergrowth rate, but do not live as long (Barnes and Powell, 1953). Specimens cangrow up to a mean of 25.8 mm in shell length (see �gure 1.4) on the high shore(Barnes & Powell, 1953). Size at the end of the �rst season varies with height onthe shore and latitude (Crisp, 1960).1.2.4 MortalityThere are many causes of mortality both biotic and abiotic (see table 1.1). Recentstudies have concentrated on predation, disturbance and competition as causative11
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Figure 1.4: Measurements used for growth studies of barnaclesagents in distribution patterns and community structure (Connell, 1983; Sih etal, 1985).Predation of S. balanoides is an important source of mortality. One of the mainpredators of S. balanoides is N. lapillus, but only eats larger individuals (Con-nell,1961a; Dunkin and Hughes, 1984). Overcrowding can lead to hummocks ofbarnacles (Barnes and Powell, 1950). This is because the limited resource onrocky shores is generally space. Thus, when little space is available hummocksare formed which are more susceptible to dislodgement (Barnes and Powell, 1950;Shanks & Wright, 1986). Mechanical damage is also an important source of mor-Table 1.1: Causes of barnacle mortality.Abiotic Biotic AnthropogenicDessication Hummocks (Shanks Oil spill and& Wright, 1986) toxic dispersants(Southward andSouthward, 1978;Southward, 1979)Increased Limpet bulldozing Shore tramplingWave Action (Miller & (Bally &Carefoot, 1989) Gri�th 1989)Storms Algal over-growth (Proud, 1994)Low temperature Algal coverstarvation (Barnes, 1955)(Southward, 1955) Predation(Connell, 1959)
12



tality. For example, tests of adult barnacle can be damaged by rocks in stormsand juvenile barnacles can be dislodged by feeding limpets (Hawkins, 1983; Miller& Carefoot, 1989).Density dependent mortality has been suggested to occur in two situations. Con-nell (1985) suggests mortality is density-dependent for the �rst two weeks aftersettlement if the settlement is high. Density-dependent mortality has been ob-served when the competition for space is high, for example hummocking mortality(Shanks & Wright, 1986).1.3 Brown AlgaeThe brown algae or the phaeophyceae are found commonly in the rocky intertidaland subtidal zones world wide. The members are classi�ed as:Kingdom: PlantaeDivision: ChromophycotaClass: PhaeophyceaeBrown algal stands are often described as naturally occurring monocultures. How-ever, Paine (1984) argues that these stands are not true monocultures becauseepiphytic species, especially microalgae may occupy up to 20 % of the space.Thus, Paine (1984) de�nes monoculture as \..at least 80 % space occupation bya single species". Monocultures are dense populations with interactions betweenindividuals for resources. This implies that intraspeci�c competition within thesestands can be intense and the a�ect on individuals can be profound.Monocultures of brown algae lead to the formation of a canopy of adults. Thisa�ects juvenile fucoid recruitment by altering the environment (Burrows & Lodge,1950; Dayton, 1971). This happens in a number of ways:1. A much lower light intensity is found under an adult canopy. In fact 98%of the incident light can be absorbed by the canopy (Schonbeck & Norton,1980a).2. Lower nutrient levels are found under the canopy. This could either be as adirect e�ect of the adult plant (Dayton et al, 1984) or indirectly as a facetof decreased water movement under the canopy.13



3. Whiplash and sweeping e�ects of adults cause density-independent mortal-ity of juveniles (Dayton, 1971; Ang, 1985).4. Sediment build up can swamp juveniles (Kennelly, 1989).5. Scour (Ang, 1985).6. Aggregation of grazers under the canopy (Hartnoll & Hawkins, 1985).Harper (1967) stated that \When the carrying capacity is reached then the formor size of a plant may be modi�ed without mortality taking place". He called thisa plastic response. The brown algae have a high degree of plasticity and thereforehave a vast range of potential shapes and sizes (Russell, 1986). The �nal sizeand shape of a plant is determined by genetics, form changes from juveniles toadults, reproduction and the environment. The �nal shape of the plant has beendescribed as \a compromise of the range of forms and the form permitted by theenvironment" (Norton et al, 1982). Increasing plasticity is found with increasingdensity.The brown algae have a very large variation in size. The average gamete is 10 to20�m and adults range from 15 cm to 50m in length. Vadas et al (1992) suggestedthat brown algae have a change in size of about 5 orders of magnitude.1.3.1 Fucus vesiculosusF. vesiculosus is an important component of intertidal communities on Britishand other northern temperate shores (Knight and Parke, 1950; Keser et al, 1981;Chapman, 1990a). It is found predominantly in even aged monospeci�c stands.It is most commonly found on the mid-shore region of moderately exposed shores.The population structure of F. vesiculosus is positively skewed with respect toplant length. This implies a population with a few large adult plants and manyjuveniles (Knight & Parke, 1950; Burrows & Lodge 1951), ie a canopy.The Fucus genus is a complex of species, subspecies, hybrids and ecads, andF. vesiculosus is no exception (Burrows & Lodge, 1950). The many di�erentmorphs of F. vesiculosus makes identi�cation very di�cult. For example, F.vesiculosus evesiculosus has no gas bladders and F. vesiculosus var linearis canonly be separated from F. spiralis by lack of twisting and possessing no sterilemargin of the fruiting bodies (Hawkins & Jones, 1992).14



The life cycle of F. vesiculosus can be seen in �gure 1.5. It has a diploid sporo-phyte with haploid gametes. Fertilisation is external with synchronous releaseof gametes (see South & Whittick, 1987, for a general review). There is a shortdispersal phase in their life cycle. Dispersal distances to my knowledge have notbeen measured for F. vesiculosus, but distances have been found to be short inother fucoids, for example F. serratus (Arrontes, 1993).
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FertilizationFigure 1.5: The life cycle of F. vesiculosus. Reproduced from South & Whittick(1987).Various aspects of the population dynamics of F. vesiculosus have been studied.However, Chapman (1986b) stated \Nearly all the demographic studies of sea-weed populations (single species) have been reported since 1980" and that \...littleattention has been given to the ecology at an organismic level". Although sparse,studies on observed dynamics of F. vesiculosus have been carried out (Knight &Parke, 1950; Keser & Larson, 1984; Creed, 1993). However, research has concen-trated on population interactions with other algal species (Hawkins & Harkin,1985; Chapman, 1990a) and population interactions in a multispecies community(Hawkins, 1981a&b; 1983). For example, Hawkins (1983) found that recruitmentof S. balanoides under a F. vesiculosus canopy was much less dense than withouta canopy.The longevity of F. vesiculosus has only been mentioned in a few papers as algaeare generally di�cult to age (Cheshire & Hallam, 1989). Knight & Parke (1950)suggested individuals of F. vesiculosus can live for 3 to 4 years and that in Devonan area of 1m2 can support a biomass of 6.74 kg. Keser & Larson (1984) suggesteda longevity of F. vesiculosus of between 2 and 4 years.15



1.3.2 SettlementMost seaweed populations reported only investigate plants of visible size allowingthe possibility of seed banks (Ho�mann & Santelices, 1991). Creed (1993) statesthat F. vesiculosus on the Isle of Man has a seed bank, with a maximum of 26,000individuals per m2.F. vesiculosus is a highly fecund species. Large individuals may have 1000 recep-tacles with maximum of 3269 eggs per receptacle. Thus there is a possibility ofover three million eggs from a single large plant (Knight & Parke, 1950). Gameterelease is between May and July and release is one month earlier in Devon thanthe Isle of Man (Knight & Parke, 1950).If settlement is su�ciently heavy then competition for space is important. Thereis insu�cient space to support settlement of more than 43,600 germlings per m2(Keser & Larson, 1984). Germlings are not visible to the naked eye until 2 weeksafter settlement (Knight & Parke, 1950).The presence of a dispersive phase in the water column in the life cycle of F.vesiculosus provides a similar scenario to the barnacle settlement. This dispersivephase generates temporal, seasonal and regional variation in settlement densities.However, the dispersal is not generally as far as that found for barnacles, as thegametes are immediately viable. In fact often propagules are only transported ashort distance from their parents (Deysher & Norton, 1982; Arrontes, 1993).1.3.3 GrowthGrowth is characterised by large variation in rates both within and between sites.Seasonal variation is found with slow to moderate growth rates in winter andspring and rapid growth in summer and autumn (Keser & Larson, 1984). Aproblem is found with a number of studies of growth where authors have assumedthat the oldest plants were the longest(for example, Knight & Parke, 1950). Inthe �rst year increase in length seems to be uniform regardless of time of yearsettled (Keser & Larson, 1984). Some experimental growths rates can be seenin table 1.2. Dring (1982) gives relative growth rates of 0.015, 0.017 and 0.024g:g�1:d�1 for high, medium and low shore F. vesiculosus respectively.
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Table 1.2: Growth Rates for F. vesiculosus. (Source Keser & Larson, 1984)Growth Rate Location Source25-33mm:mo�1 France Lemoine (1913)28mm:mo�1 Great Britain Knight & Parke (1950)15-21mm:mo�1 Maine. USA Keser & Larson (1984)6-10mm:mo�1 Norway Printz (1959)16-32mm:mo�1 Canada Breton-Provencher et al(1979)1.3.4 MortalityThere are data available for age-speci�c survivorship (see table 1.3 reproducedfrom Knight & Parke, 1950). Mortality is especially high when individuals are lessthan 3cm in length due to grazing pressure. Parke (1948) showed an exponentialdecline in the number of Laminaria saccharina plant almost to zero in a 24month period. Mortality of large plants is higher in winter due to ice damageand storms (Keser and Larson, 1984). It is possible that di�erent curves areapplicable at di�erent stages of development (see for example Gunhill, 1980).Despite knowledge that di�erent curves are applicable, most studies are doneusing tagging methods which do not work on small individuals (Creed, 1993).Table 1.3: The composition of Fucus populations in year classes on the Devonand Manx coasts. Reproduced from Knight & Parke, 1950, table VIIIPopulation (%)Station 1st year 2nd year 3rd yearDevonNormal population 100 57 17.3Experimental Population 100 33.8 5.0Isle of ManNormal population 100 30.8 10.0Experimental Population 100 31.4 9.5There have been numerous studies of survivorship and all types of curve have beenfound (see for example Chapman & Goudey, 1983; Santelices & Ojeda. 1984).Creed (1993) commented on the confusion in the interpretation of the di�erentcurves and cited Chapman (1986b) as an example. This is because arithmeticand logarithmic plots have been used by authors and should be interpreted indi�erently (Creed, 1993). Harper (1977) constructed depletion curves and from17



these Chapman (1986a) suggested that age-speci�c survivorship schedules cannotbe constructed.Partitioning mortality into its component sources is very di�cult. Generally thisis not attempted and the overall mortality rate is measured (Chapman, 1986b).
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Chapter 2A General Introduction toModelling
2.1 What is Modelling?In the last 20 years mathematics has increasingly become an integral part of bi-ology as it becomes more quantitative. As a result biomathematical modelling isnow utilised as a research tool with powerful, well developed techniques. How-ever, it is not the miraculous technique that many believe can prove or disprovebiological theory. This is because biology does not have rigid theory and thusmathematics cannot provide a complete solution on its own. The limitations ofmodelling must be recognised and techniques applied accordingly. For example,even if the dynamics produced by a model are exactly the same as the data setthat it is tested against, this does not necessarily imply that the mechanism thatpredicts these dynamics is correct.A `good' model has the minimum number of parameters and still produces all thedynamics exhibited by the data set that it is tested against. This allows moreanalytical techniques to be used. Then inferences can be drawn about the mech-anisms governing the system, which can be used to construct new hypothesesfor the experimental biologists to test (Murray, 1993). These experiments willsupport or undermine the present biological theory. Thus, any model that stim-ulates experiments is successful, regardless of predicting the correct mechanisms.In fact modelling can be useful if the model is formulated with an appreciationand understanding of the biological problem; a realistic mathematical represen-tation of the biological phenomena; �nds useful qualitative solutions; and, mostimportantly, biological insight and predictions are formed from interpretation of19



the mathematical results (Murray, 1993).Nisbet and Gurney (1982) suggested that there are 3 general types of model.These are:1. Tactical - a model which yields accurate short term predictions.2. Strategic - simple mathematical models that aim to identify ecologicalprinciples by asking the question \Could it happen?".3. Testable - models of laboratory or �eld data.2.2 Structured Population ModelsStructured population models (SPMs) are models where individuals are dividedinto classes according to their state. Individuals are able to move between statesand interact with individuals in other states, as well as responding to the birth-death dynamics. A clearly de�ned set of rules govern the transition betweenthe compartments describing the births, deaths, immigration, emigration andinteractions. These are written as either a system of di�erence or di�erentialequations.SPMs can be discrete or continuous (see section 2.3), deterministic or stochas-tic (see section 2.4) and may involve time delays. However, the more biologicalrealism incorporated the more complex the model becomes, making analyticalsolutions harder or impossible to �nd. Simple models can have exact analyticalsolutions, but if not, simulation allows investigation of the model. The main wayof investigating the dynamics of a deterministic model is by stability analysis.This analysis can be local or global. Local stability analysis is done by investi-gating the behaviour of an in�nitesimally small perturbation from a steady stateusing local linearisation. The results of this analysis give the dynamics of a modelas it approaches equilibrium. For example, it is possible to predict if an equilib-rium is overdamped or underdamped and the long term behaviour of a solution,ie whether the solution is stable or unstable (see Gurney & Nisbet (in press) fora review of local stability analysis). The theory of global stability analysis is farless complete. Global stability analysis examines the stability of an equilibriumto a perturbation of any size. However, the mathematics required to do globalstability analysis are complicated and can only be done for very simple models.An example of global stability analysis is found in Kuang & So (1995). Nisbet &20



Gurney (1982) suggested that in many cases local stability analysis is su�cientas it will hold for larger perturbations.2.3 Discrete and Continuous ModelsDiscrete models use an update rule that relates the future state to the currentstate of the system. This is done using di�erence equations which forecast thesystems state at equal time intervals. The validity depends on the accuracy ofthe update rule and the precision of the initial conditions.Continuous models use an update rule that relates the rate at which a systemis changing using di�erential equations. They are able to forecast the state of asystem at any point in time. However, when simulated a discrete approximationhas to be used where a su�ciently small time-step is chosen, such that changingit does not e�ect the behaviour of the model.SPMs can be discrete or continuous. One way of structuring a model is to splitthe individuals into classes of di�erent age. This is known as an age-structuredmodel. Discrete age-structured models use a time interval that is equal to theage-class width. This is important as it allows the distribution of a cohort tomove through the age-structure without changing shape. Changing the age-classwidth in discrete time models can e�ect the behaviour of the model.The classic demographic model, the Leslie matrix model (Leslie, 1945; 1948) givesrise to discrete age-structured models. Although the matrix notation is better foranalysis, it is sometimes easier to view these models as a series of equations. Ifna;t is the number in age-class a at time t, Sa;t is the survivorship from age-classa ! a + �a in the time interval t ! t + �t, and �a and �t are the age-classwidth and time interval respectively (�a = �t), thenna+�a;t+�t = Sa;tna;t (a > 0):If Ba;t is the individual fecundity in the interval a! a+�a at time t! t +�tthen the renewal equation isn0;t+�t = Xall aBa;tna;t:21



There is a similar argument in the construction of continuous time age-structuredmodels. However, there are two problems. Consider what happens as �a ! 0,this causes the number of age-classes to tend to in�nity and na;t ! 0. Thesolution to this problem is to let density per unit age vary with time and age(f(a; t)) rather than numbers. The other problem is that it is di�cult to obtaina function in continuous time for the aging process, as all individuals must age atthe same rate and su�er mortality. The solution to the second problem is to usethe McKendrick von Forester equation for continuous aging. This states that, if�(a; t) is rate of mortality of an individual of age a at time t, then�f�t = ��f�a � �(a; t)f(a; t):If �(a; t) is the rate at which o�spring are produced, then the renewal conditionis f(0; t) = Zall a �(a; t)f(a; t)da:Simulation of continuous time models requires a discrete approximation to thecontinuous process, as the age-class width must be greater than zero. The age-class width is chosen so it is su�ciently small that changing the width doesnot a�ect the behaviour of the model. Simulation of the aging process is muchmore complicated than for discrete time models, as it requires implementationof the McKendrick von Forester equation. This can be done using a number oftechniques, for example the escalator box cart method (see De Roos, 1989).The choice of whether to use discrete or continuous models to examine the be-haviour of a system is not easy and is fairly subjective. There are times when thechoice is obvious, for example the automatic choice for modelling a system withdiscrete generations and constant mortality is a discrete model. Usually a tradeo�is found. The computational power required to simulate a continuous time modelis far greater than the analogous discrete time model. This is because of havingto use an implementation of the McKendrick von Forester equation. However,this ease can only be justi�ed if the model is easy to analyse (as analyses of dis-crete models is more di�cult) and carefully formulated. Discrete models must beformulated carefully as it is easy to incorporate artifactual dynamics not found inthe continuous model. This is especially problematic when one of the processes is22



not constant in continuous time. For example, density-dependent mortality is nota constant death process and could cause a discrete formulation to be non-viable.If a model is required for a system with overlapping generations of several species,then all the processes are in continuous time. At this stage the choice is a matterof convenience and personal preference. Again the formulation of these types ofmodels in discrete and continuous time must be careful, as they must representthe same model. The discrete form of the model may not be a direct analogy tothe continuous form, for example see discrete and continuous form of the logisticdescribed in Nisbet & Gurney (1982). The forms are not analogous when thereis no analytic solution to the continuous time model.Neither the discrete nor continuous formulation of any model has been moresuccessful in the literature. Thus, the choice of discrete or continuous time age-structured model is largely dictated by the nature of the problem and personalpreference. For a full description of discrete and continuous age-structured modelssee Chapters 2 and 7, Gurney & Nisbet (in press).2.4 Deterministic and Stochastic ModelsDeterministic models produce the same dynamics when the same parameter setsare used. The phrase comes from the Greek philosophical doctrine of determinismthat states \...all events including human actions and choice are fully determinedby preceding events and states of a�airs, so that freedom of choice is illusory".A stochastic process is the basis of a stochastic model and is de�ned as \...involv-ing a random variable successive values of which are not independent". Stochasticmodels are based upon probabilistic rules that make use of pseudo-random num-bers. These pseudo-random numbers are used to determine events occurring attime points in the future generated by the current state of the system. A numberof simulations are done to produce a sample, which is analysed statistically togive a single trajectory with limits. The use of the pseudo-random numbers issupposed to mimic the random 
uctuations in nature and determine the conse-quences of rare events that would not be predicted by deterministic models.Both stochastic or deterministic models must be used to gain the maximumknowledge about the system being modelled. In fact, Renshaw (1993) statedthat \...slavish obedience to one technique can lead to disaster".Deterministic models are supposed to produce the `average' trajectory of the23



stochastic sample. This is not always the case. If the model has high populationnumbers, then deterministic models may enable su�cient knowledge to be gainedabout a system (Renshaw, 1993). However, if the population becomes close toextinction then stochastic analyses are essential (Renshaw, 1993).Analysis of stochastic models is far more complicated than deterministic models.In fact, stochastic models have to be very simple for any analyses to be done.Thus, only simulation can be used to investigate many models, which makesthe mechanism driving dynamics more di�cult to understand. This suggeststhat there is a possible tradeo� between deterministic and stochastic models. Ifpopulation numbers are not close to extinction then deterministic models can beused in preference. However, when the population comes close to extinction thereis a tradeo� between the knowledge gained from stochastic models and lack ofanalysis.2.5 Thesis OutlineThere are a number of objectives of this project. The main objective is to buildand understand the behaviour of sub-models of the system found on the mod-erately exposed shore at Port St. Mary, Isle of Man (see �gure 1.2). Once thedynamics of the simple cases of the deterministic single species models are un-derstood, then reassess the assumptions of the model and look at the behaviourof these sub-models with slightly more realistic assumptions. These sub-modelswill then be joined to produce a model of two interacting species.In Chapter 3 a discrete time age-classi�ed model of the colonisation of bare rockby the barnacle, S. balanoides, in a constant environment is examined. Thismodel is a variant of the one produced by Roughgarden et al (1985), whichassumes an open system with space-limited recruitment. The behaviour of themodel with both linear and logistic growth is investigated using steady states,various stability criteria and simulation.In Chapter 4 a similar model of the colonisation of bare rock by F. vesiculosusin a constant environment is constructed. However, a discrete time size-classi�edmodel is used, as seaweeds have plastic growth, and assumes an open system withspace-limited recruitment. The dynamics of the model are examined using steadystates, local stability and simulation. An attempt was made to parameterise themodel of F. vesiculosus from the literature and the dynamics are re-examined.24



In Chapter 5 the most advanced cases of the models produced in Chapters 3 and4 are examined in a seasonal environment. This is done by incorporating distinctsettlement periods into the models. As propagules of F. vesiculosus remain viablefor a time after production, the presence of a seed bank is assumed, in a similarway to that found in terrestrial systems. Phase locking as a possible mechanismfor the behaviour of the solutions is investigated. Di�erent lengths of settlementperiod are used to look at variation in settlement strength.In Chapter 6 the size-classi�ed model of F. vesiculosus and the age-classi�edmodel of S. balanoides are combined to produce a two species model. This dis-crete time model assume that F. vesiculosus inhibits S. balanoides settlementand that S. balanoides enhances the settlement of F. vesiculosus. The model isparameterised between limits using values from the literature, in order to targetsimulation. The dynamics are investigated using simulation. The model is then�tted to limits suggested for the cycle at Kallow Point, Port St. Mary, Isle ofMan.In Chapter 7 the main �ndings of each of the models are reviewed and the bi-ological inferences are re-examined. I also suggest additions to the model thatwill make the dynamics of the models produced more realistic, problems with thedata sets used and where this �ts into current research.2.6 TechniquesSo far in this Chapter we have considered a few of the many possible modellingtechniques. In Section 2.5 the thesis outline only describes the use of one generalcategory of model, this is a deterministic structured population model with space-limited recruitment. In this section we ask `Why use only this particular type ofmodels?'. The answer to this question hinges on 2 main factors. Firstly, whatthese models will be used for and the training behind this M.Phil.. Secondly, thetradeo� between which models incorporating the most biological realism (andthus more complex) and the ability to understand the dynamics (De Roos, 1989).The future of these models has to be considered before a discussion of the tech-niques can occur. This project has been used as a starting point for a biologistwho was interested in learning modelling from the mathematicians point of view.Thus, an investigation of the basic techniques was required. May (1976) states25



\There are many situations, in many disciplines, that can be de-scribed, at least to crude �rst approximation, by a simple �rst-orderdi�erence equation. Studies of dynamics usually consist of �ndingconstant equilibrium solutions, and then conducting a linear stabil-ity analysis to determine their stability with respect to small distur-bances..."As knowledge of some of the basic techniques of mathematical modelling wasrequired this seemed as good a place as any to start. And anyway, as a biologist,who am I to argue with Professor May!The second in
uence on my choice of model was making simple single speciesmodels, so that the mechanism driving the dynamics could be understood com-pletely. These single species models were going to be used as sub-units in 3species spatially explicit models, as part of my Ph.D. thesis, to model the cyclefound at Port St. Mary, Isle of Man (see �gure 1.2). However, to understand themechanisms that drive these complicated models, it is necessary to understandcompletely the behaviour of each of the individual sub-units.The models used in this thesis are deterministic. They are described as discrete,structured open populations models with space-limited recruitment. Thereforewe have to ask whether a di�erent approach would have been better for what isrequired.2.6.1 Why Use Discrete Models?The choice of discrete or continuous models is not simple and is often subject, iedue to personal preference and convenience. However, there are advantages anddisadvantages of using discrete models. Discrete models require far less compu-tational power to do simulations than continuous models. This is because con-tinuous time models require a special function to implement structure. However,discrete models are much harder to analyse and require care when formulating.In fact if formulated incorrectly, a discrete time model can produce artifactualdynamics not found in the analogous continuous model.In this thesis computation ease is essential. This is because the model producein this thesis are going to be used as sub-model in a 3 species spatial modelwith stochastic recruitment functions. A continuous model would require a largeamount of computation power to do this as a spatial and aging function would26



have to be used (Steele, 1993).The models produced in this thesis are not particularly complicated. Thus, thedi�cultly of analysing discrete models is not a problem. This simplicity makesformulation without the addition of artifactual dynamics easy. Thus, in this caseit is important to keep the computational power to a minimum by using discretemodels.Adding detail to discrete models is far more intuitive than to continuous models.This is important in this thesis as models are designed and their mechanismsare tested. Once understood, extra features are added to the model to increasethe biological realism. De Roos (1989) stated that discrete models are often theobvious choice in biology as they are developed from demography. In this thesis,I investigate the demography of di�erent species which makes discrete modellingan obvious choice.For this thesis it appears that discrete models are the obvious choice as the modelsused are not too complicated. This allows formulation and analysis to be doneeasily and computational power to be reduced. However, the models have to besu�ciently complicated to produce a wide enough range of dynamics to mimicthe system. This is not a problem even with linear discrete models. May (1976)stated:\First order di�erence equations arise in many contexts in the bio-logical, economic and social sciences. Such equations even thoughsimple and deterministic can exhibit a surprising array of dynami-cal behaviour, from stable points to a bifurcating hierarchy of stablecycles, to apparently random 
uctuations. There are consequentlyfascinating problems, some concerned with delicate mathematical as-pects of the �ne structure of trajectories and some concerned with thepractical implications and applications".2.6.2 Why Use Structured Population Models?Traditional population models use densities as their state variables. This typeof model has been criticised for many di�erent reasons. For example, unrealisticdynamics (Judson, 1994); ignoring the di�erence between individual organisms;and interactions between individuals only take place locally (Gross, 1986).27



Structuring populations using a state variable such as age, size or stage producesa model that has less unrealistic dynamics and treats individuals in the sameclass as identical. This is a slightly less unrealistic from the biological point ofview.The alternative to using a structured population model is to use a physiologicallystructured individual based model (PSIBM). This treats all individuals within thepopulation as di�erent and keeps a track of each. Thus, increasing the biologicalrealism. However, again there is a tradeo� between realism (complexity) andunderstanding. In this thesis there are a number of problems associated withusing PSIBMs.The time required to simulate a three species PSIBMs would become a factorwhen the model becomes spatially explicit. The simulations would take a longtime and require large computational power.Parameterisation of these models would not only be very di�cult as the demo-graphic rates of the species tend to be measured as an average. The standarderrors associated with this model would be very large because of the large num-ber of parameters associated with the model. The large number of parametersin the model would make the mechanism much more di�cult to understand andincrease the number of simulations required to investigate the parameter set. Atradeo� between realism (complexity) and understanding is sought. However,understanding is more important at this stage.Last but by no means least the aim of this project is to produce a model thatproduces hypotheses for the experimentalists to test. The PSIBMs would nodoubt be better predictors of the single species community, but we are interestedin looking mechanistically at a moderately exposed rocky shore. Understandingthe mechanism controlling the dynamics of a three species PSIBM would be verydi�cult as the number of parameters would be large. PSIBMs would make theproduction of hypotheses for the experimentalists to test very di�cult. Thus wechoose a structured population model.2.6.3 Why Use Deterministic Models?It is stated in this chapter that neither deterministic nor stochastic models shouldbe used alone. These models should be used in unison. However, within thetime scale allowed by this M.Phil. it was not possible to produce any stochastic28



versions of the models. So, the absence of stochastic models from this thesis isnot due to choice, rather due to time limitation. However, as part of my Ph.D.thesis the e�ect of adding stochastic recruitment functions to the models willbe investigated. From this inferences will be drawn about the relative roles ofstochastic events and deterministic processes in the rocky intertidal communities.2.6.4 Why Use Open Models with Space limited Recruit-ment Models?The species that are modelled in this thesis are sessile with a pelagic eggs or larvae.The sessile adult populations have great spatial and temporal variation. O�springare not always part of the same population as their parents (Roughgarden etal, 1985). Thus, Lotka-Volterra models cannot be produced for this process asthe populations are not closed. Migration can be added to the Lotka-Volterratype models, but this assumes that migration is slight relative to the number ofrecruits. Whereas, settlement into the system from outside is the major form ofsettlement in systems such as these.Open populations cannot become closed simply by enlarging the area studied.For example barnacle larvae may spend up to six weeks in the plankton beforethey are able to settle, during which time currents may move the juveniles longdistances from their parents. The larvae can then land anywhere, they do not justmigrate across the perimeter of the model, but settle anywhere in the system fromthe water column. If we then consider a situation where the model is spatiallyexplicit, then the Lotka-Volterra even with migration is a useless description ofthis population, as individuals do not just migrate over the perimeter. Thus, wehave to use a model of an open system.Space is obviously the limiting resource in the rocky shore environment. Tra-ditional population models do not model the nature of the resource explicitly.However, in this system the amount of space occupied dictates the number ofnew individuals that are able to settle. Thus, for a rocky shore environment werequire a model with theory that explicitly treats the capture and release of spaceto attach. Roughgarden et al (1985) produced a model for open systems withspace-limited recruitment, including the settlement of larvae being proportionalto the available space, and the subsequent growth and mortality of these larvae.They suggested that the model is not meant as a literal description of a barna-cle dominated shore but o�ers a picture of what happens when space dependent29



settlement, growth and mortality all occur at the same time.As these are the major processes occurring on a rocky shore anywhere in theworld this type of model appeared to be the correct choice for each of the singlespecies models.
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Chapter 3An Age Structured Model for theColonisation of Bare Rock by theBarnacle Semibalanus balanoides
3.1 Introduction3.1.1 Age-Classi�ed Demographic ModelsClassical demographic analysis is based on a system of tabulating age-speci�c sur-vivorship and reproduction into a `life table'. The original demographic analysiswas done by Lotka (1924). However, matrix models for demographic analyseswere not developed until the 1940s. This type of model was proposed simulta-neously by Bernardelli (1941), Lewis (1942) and Leslie (1945, 1948). The mostin
uential of these authors was Leslie. Matrix notation for demographic mod-els was not adopted until the late 1960s by demographers and until the 1970sby ecologists (Caswell, 1989). Lefkovitch, Pennycuik, Rabenovich, Usher andWilliamson were the pioneers of this technique before the 1970s.Barnacles have a sessile adult stage and pelagic larvae. These populations can-not be modelled usefully using either the logistic or Lotka-Volterra equations ofpopulation theory (Roughgarden et al, 1985). Adults are sessile and live in aclosed region. However, their larvae are free moving, spending up to 6 weeks inthe plankton and can settle great distances from their parents. Thus, recruit-ment to the population is not closed and cannot, in principle, be made closedsimply by enlarging the area (Roughgarden et al, 1985). Free space is the limit-ing resource and should be explicit in the model, as larvae are unable to settle32



without it. Settlement rates into these populations can be high resulting in largechanges in population size over the lifespan of an individual. In these circum-stances, construction of a reasonable model must take account of the structure ofthe population (see Caswell (1989) for a review of the theory). Hence, to modela barnacle population successfully we need to use an age-structured demographicmodel with space-limited recruitment (Roughgarden et al, 1985; Roughgarden &Iwasa, 1986; Bence & Nisbet, 1989; Kuang & So, 1995;).The theory of open systems and of metapopulations of locally open systems hasdeveloped quickly in the last �fteen years. For example, Chesson and Warner(1981), Roughgarden et al (1984), Iwasa & Roughgarden (1985), Roughgarden etal (1985), Iwasa & Roughgarden (1986), Roughgarden et al (1987), Possingham& Roughgarden (1990) and Kuang & So (1995). Roughgarden et al (1985) usedthis theory to produce a model which is appropriate for an open, age-structuredpopulation with space-limited recruitment. Two forms of dynamics were pro-duced by the model: a stable steady state and cyclic 
uctuations. A steady stateis produced when settlement is low and a stable distribution of mixed cohorts andfree space is found. Cyclic 
uctuations are produced when settlement is high andan unstable mosaic of cohorts and occasional free space is found. The mechanismsuggested for the instability is that growth interferes with recruitment when set-tlement is su�ciently high. Possibly the most important mechanism of this typeof model is the relationship between the growth and mortality functions. Theoccupied area will increase if the increase in area due to growth and settlement isgreater than the loss of area due to the mortality of individuals and vice versa. Asteady state is produced when the mortality and the growth and settlement arein balance, ie when the net area of the population neither increases nor decreases.Bence & Nisbet (1989) re-examined the dynamics of simpli�ed versions of theRoughgarden et al (1985) model, their most complicated models being specialcases of Roughgarden's model. They noted that the model proposed by Rough-garden et al (1985) o�ers insight into any system where there is debate on whetherpopulations are regulated by recruitment or density-dependent factors. For ex-ample, reef �sh (Mapstone & Fowler, 1988) and giant kelp (Nisbet & Bence,1989). Their conclusions were similar to Roughgarden et al (1985). However, astheir formulation was simple, they were able to highlight the biological processesthat produce the interesting dynamics and suggested that not all the inferences ofRoughgarden et al (1985) are correct. Bence & Nisbet (1989) found the two pop-ulation states, cyclic 
uctuations in population density and a stable steady state.33



The mechanism proposed to produced cyclic 
uctuations is a time delay betweensettlement and recruitment to the adult population. Two types of growth areconsidered: determinate and indeterminate. Determinate growth is found whenadults reach a maximum size and growth ceases. Indeterminate growth is desta-bilising (see the numerical examples presented by Roughgarden et al (1985)).However, when growth is determinate, there is a time delay between settlementand attaining the maximum size. Faster maturation from juveniles to adults re-sults in a shortening of this lag allowing increases or decreases in growth to bestabilising. This result does not depend on representing the size-distribution astwo discrete stages.Kuang & So (1995) performed a global stability analysis of the delayed two stagepopulation model proposed by Bence & Nisbet (1989). They established con-ditions for persistence of the system, local and global stability of the positiveequilibrium. They concluded that the increasing the settlement or area occupiedby an adult destabilises the model globally. However, increasing the mortality ofadults or juveniles or the time delay stabilises the model globally. They inferredthat the large amplitude cycles could be controlled in nature by harvesting, ieincreasing the mortality.Roughgarden & Iwasa (1986) extended their model to a metapopulation modelwith space-limited sub-populations. Larval settlement is again onto vacant spaceand each sub-population contributes to the common pool of larvae. The metapop-ulation is assumed to be closed even though each of the sub-populations is open.The metapopulation model has several simultaneous stable steady states, whichlead to thresholds such that an introduced population may not become estab-lished unless the propagule size exceeds the threshold value.Possingham & Roughgarden (1990) extended the model of Roughgarden et al(1985) to include spatial dimensions for both adults and larvae. This was doneby integrating mesoscale features in ocean current with coastal habitat structurein an attempt to predict adult distribution.These models described are still a massive simpli�cation of the system describedbut have potential to support more detailed models of a population where space,light, rainfall or territory are limited (Kuang & So, 1995). This slow buildingof models has considerable potential for improving the understanding of suchecological systems (Bence & Nisbet, 1989).
34



3.1.2 Modelling AimsAs competition on the rocky shore is essentially for the resource of space, twodimensional models can be constructed. The aim of this chapter is to producea general model for intertidal barnacles with space-limited recruitment. Thisdiscrete time model will be based on the concept of individuals �lling up area asproposed by Roughgarden et al (1985).Once the analyses of the general model are done, then linear growth will beimplemented to investigate the dynamics of this model. The model will be appliedto S. balanoides using a logistic growth function and the dynamics re-examined.This will be used to model stage six to stage two in the cycle shown in �gure 1.2.
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3.2 An Age-StructuredModel for Intertidal Bar-naclesIn this section we look at a general model for intertidal barnacles space-limitedrecruitment.3.2.1 The ModelThe model used is developed from Roughgarden et al (1985) discrete time model.The model makes a number of assumptions:1. All individuals of the same age are the same area.2. Larvae are found in the surrounding water.3. Larvae occupy free space, and the number landing increases as a functionof free space.4. Free space cannot be negative.5. All recruits are the same area.6. There is a known area at age for the barnacles.7. The survivorship function is known and time independent.The population is divided up into N + 1 age-classes of equal width, �a, and thetime interval, �t, is equal to the age-class width. In each of these age-classesindividuals have the same area, ai, measured in m2. If ni;t is the number ofindividuals in age-class i at time t, then the total area occupied at time t, At, isAt = NXi=0 aini;t (3.1)Free space at time t, Ft, is a function of the total available space (m2), A, and isexpressed as Ft = (A� At)+ (3.2)36



where the + denotes that free space cannot be negative. If the number of bar-nacles in age-class i at time t+�a is ni;t+�a, and Si�1 is the survivorship at agei� 1, then ni;t+�a = Si�1ni�1;t i = 1; 2; : : : ; N: (3.3)All of the individuals of age greater than N�a days die. Thus, no individualssurvive further than the �nal age-class. Age-class 0 presents a di�erent problem.If we de�ne It as the settlement function then,n0;t+�a = It: (3.4)Thus, equations (3.1) - (3.4) describe the population. As we are unlikely to knowthe total available area, A, it is more useful to look at this problem in termsdensity of organisms per m2. If equations (3.1) - (3.4) are divided by A then thepopulation can be modelled usingF̂t = FtA = "1� NXi=0 �i;tai#+ (3.5)�i;t = ni;tA = Si�1�i�1;t i = 1; 2; : : : ; N (3.6)�0;t+�a = ItA = Ît (3.7)where �i;t is the density of individuals in age-class i at time t (numbers:m�2).The Settlement FunctionSettlement per time unit cannot increase without bound. As barnacles settlein the system, they occupy space and thus reduce the space available for futuresettlers. If the rate at which cyprids become available to settle from the watercolumn m�2:d�1 (�) is low, the amount of space occupied by settlers early in thetime-step is small, and thus incremental settlement F̂�1t :�a�1 (�) is una�ected.However, when � is high, a large proportion of the space is occupied by earlysettlers and thus, the incremental settlement is much lower than expected fromthe number of cyprids available to settle. The rate of change of settlement over37



time can be described by a di�erential equation. If R is the barnacles that havealready settled into the system and occupy space, thendRdt = � (F (t0)� a0R) (3.8)where F (t0) is the free space at time t0 and a0R is the area occupied by what hasalready settled. If equation (3.8) is solved over time (t), then,R(t) = F (t0)a0 �1� e��a0t� (3.9)The discrete analogy to equation (3.9) is�F̂t = F̂ta0 �1� e��a0�a� : (3.10)If � and � are calculated for set parameters, then an asymptotic relationship isproduced (see �gure 3.1). The relationship is linear at low values, but as �!1then � ! �max = 1=a0.
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Ît = �F̂t = F̂ta0 �1� e��a0�a� : (3.11)Roughgarden et al (1985) use a di�erent settlement function which assumes thatsettlement can increase without bound. This gives spurious solutions and a com-parison of the two functions can be seen in �gure 3.1. As can be seen at low dailyinstantaneous settlement rate the incremental settlements are similar. However,at high daily instantaneous settlement Roughgarden et al (1985) settlement func-tion gives far greater incremental settlement than our settlement function.3.2.2 Steady StatesAt equilibrium there is no variation over time. Let�i;t+�a = �i;t = ��iF̂t+�a = F̂t = F̂ �Ît+�a = Ît = Î�At+�a = At = A�If these steady state variables are substituted into (3.5) - (3.7) and (3.11), witha little simple algebra the equilibrium conditions areF̂ � = 11 + �PNi=0 liai (3.12)��i = �liF̂ � (3.13)where the survivorship function, li, is de�nedli = i�1Yi=0Si (where l0 = 1): (3.14)It is useful to note that from equation (3.12) increasing either �, ai, or S willincrease the value of A�. Similarly increasing the area function, increases the39



value of F̂ �. It is possible to look at two sets of conditions. If space �ling is fast,ie �a0�a! 1, then � ! 1=a0 and��i � liPNi=0 liai : (3.15)This suggests that the equilibrium age-class density varies independently of set-tlement and that settlement does not limit the equilibrium densities. However, ifspace �ling is slow, ie �a0�a! 0, then � ! 0 and��i � �li: (3.16)Thus, equilibrium age-class density is directly proportional to settlement andsettlement limits the equilibrium densities.3.2.3 Local Stability Analyses and the 50% Free SpaceRuleLocal Stability AnalysisLocal stability analysis is done by examining the behaviour of a perturbationfrom equilibrium. If the perturbation grows then the equilibrium is unstable, ifit decays then the equilibrium is locally stable. The behaviour of a perturbationis described by the roots of the characteristic equation, �, or the eigenvalues. Ifall the eigenvalues lie within the unit circle, ie j�j < 1, then the perturbation willdecay back to the equilibrium and the equilibrium is locally stable. It is useful tonote that local stability analysis assumes an in�nitesimally small perturbation.However, it many cases it will hold for larger perturbations (see Nisbet & Gurney,1982).The �rst step in stability analysis is to derive the characteristic equation. This isdone by de�ning a perturbation, �i;t, from age-class i at time t and then lookingat its behaviour over time. Thus,�0;t+�a = Ît � Î� (3.17)�i;t+�a = Si�1�i�1;t (3.18)40



where, Ît � Î� = � NXi=0 �ai: (3.19)Equations (3.17) - (3.19) can be expressed in matrix form, where,�t+�a = b�tand
b = 266666664 ��a0 ��a1 ��a2 � � � ��aNS0 0 0 � � � 00 S1 0 � � � 0... ...0 0 � � � Si�1 0

377777775 ; �t = 266666664 �0;t�1;t�2;t...�N;t
377777775 :The characteristic equation is found by considering det(b � �I) = 0, where I isthe identity matrix. Considering the minors gives

fi(�) = det 266666664 ��a0 � � ��a1 ��a2 � � � ��aNS0 �� 0 � � � 00 S1 �� � � � 0... ...0 0 � � � Si�1 ��
377777775 (3.20)(where i = 0; 1; 2; : : : ; N)Developing the last column of (3.20), we get the iterative equationsfi(�) = (��)fi�1(�) + (�1)i(��aili) (where i = 1; 2; : : : ; N) (3.21)and f0(�) = ��a0 � �: (3.22)41



From these the characteristic equation isdet(b� �i) = fN (�) = 0= (�1)N+1 ��N+1 + �a0l0�N + �a1l1�N�1 + : : :+ �aN lN� = 0;(3.23)or �N+1 + NXi=0 �aili�N�i = 0: (3.24)The 50% Free Space RuleThe net area function, liai, is the size of an individual after i age-classes in thesystem. It has an important role in the system. The area controlled by a settlercumulated throughout its life is give byA0 = NXi=0 liai: (3.25)If there is an eigenvalue, �0, such that the steady state is unstable, then j�0j � 1.If equation (3.24) is divided by �N+10 , with a little simple algebra1 = ����� NXi=0 �aili�i+10 ����� (3.26)� NXi=0 �aili = �A0: (3.27)From equation (3.12) we know thatF̂ � = 1= (1 + �A0) : (3.28)From equation (3.27) we have shown that �A0 � 1. This implies that F̂ � � 0:5.Therefore, if �0 is such that the steady state is unstable, then j�0j � 1 andF̂ � � 0:5. However, if F̂ � > 0:5 then all eigenvalues lie within the unit circle.42



3.2.4 Numerical TechniquesA number of packages were used to investigate this model. The steady stateswere assessed using Splus ( c
1989, 1991 Statistical Sciences, Inc.). This packagewas also used for any data manipulation and curve �tting.The characteristic equation and 50% free space rule were modelled using con-tour which is part of the solver suite of programs ( c
1994, STAMS, Universityof Strathclyde, Glasgow, G1 1XH, Scotland). This uses the Newton-Raphsontechnique to follow the roots of equations. The implementation used has 125age-classes, ie from age-class 0 to 124. From equation (3.24) the characteristicequation is �125 + 124Xi=0 �aili�N�i = 0: (3.29)The roots of this characteristic can be either real or complex. The boundarycondition for an equilibrium to be locally stable is j�j = jx+ iyj = px2 + y2 < 1.This is to say that the eigenvalues of all the roots lie within the unit circle. Thus,the stability boundary of the model is where px2 + y2 = 1. If this boundary istraced it is possible to look at the stability of the model with varying S and �.Simulation was done using a program called iterator which is also part of thesolver suite of programs ( c
1994, STAMS, University of Strathclyde, Glasgow,G1 1XH, Scotland). This is used to �nd the numerical solution of di�erenceequations. We assume that the maximum age that a barnacle can reach is about5 years. Thus, we take �a = 14 days and N = 124.3.3 Linear GrowthIn this section we look at the general model of intertidal barnacles using simple in-determinate linear growth and constant survivorship to investigate the dynamicsof the model.3.3.1 The Linear Growth FunctionThe increase in area function is a simple linear increase with age and is describedby the equation: 43



ai = �(i+ 1) (3.30)where � is the linear growth coe�cient. The maximum size attained using eachof the growth functions can be seen in table 3.1. The maximum area of a barnacleincreases with decreasing shore height (Stubbings, 1975). The maximum diame-ter being about 26mm on submerged panels (Barnes and Powell, 1953). `Fast',`average' and `slow' growth rates are examined (see table 3.1). These were calcu-lated assuming that a circular barnacle grows linearly until reaching its maximumsize in age-class 124 from an initial size of �. From these growth functions it ispossible to calculate the maximum incremental settlement or �max.Table 3.1: Linear growth functions.Growth Maximum length Maximum area Shore �maxFunction (�) mm mm2 Level (1=a0)4:2474 � 10�6 26 531 Submerged 2354381:6085 � 10�6 16 201 Mid 6216976:2832 � 10�7 10 78.5 High 1591546
3.3.2 Steady StatesThere is a logistic increase in the area occupied, A�, with increasing age indepen-dent survivorship (S) and � (see �gures 3.2 and 3.3 respectively). In both cases, ahigher growth rate causes increased occupancy (A�). Intuitively this makes senseas fewer individuals are required to occupy the same space.At both high and low instantaneous settlement rate the age-distributions aresimilar. The density of individuals in an age-class decreases with increasing age(see �gures 3.4 and 3.5). Although the densities decrease with age the maximumspace occupied is found at an age of 266 - 280 days (age-classes 19 and 20).Figures 3.4 and 3.5 are very similar despite the di�erence in the settlement rate.This is because the density decreases at a constant rate from an initial valuecalculated from the settlement rate. The higher the settlement rate the higherthe density observed. When the survivorships are equal the density curves willdecrease at the same rate producing the same shape. The linear growth functionsin the �gures 3.4 and 3.5 are the same. The occupancy is calculated by multiplying44
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3.3.3 StabilityThe stability boundary and the 50% free space rule illustrate that increasingeither S or � is destabilising (see �gures 3.6 and 3.7). Decreasing the growthrate � increases the stability of the model in both cases. This is because moreindividuals are required to �ll up the area, and once the individuals settle spaceis �lled at a slower speed.The stability predicted by the 50% free space rule is far lower than that obtainedby local stability analysis. This is because the 50% rule is a su�cient but notnecessary condition for stability and thus is a bad approximation to the localstability analysis. The approximation becomes worse with increasing �.
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the model is simulated, unstable solutions show waves of cohorts moving throughthe age-structure. Space is made rapidly available when all the individuals in theage-class N die, which is rapidly occupied by new settlers. This mechanism givesrise to the classic relaxation oscillations that are observed. Four types of solutionwere found these are stable underdamped, stable overdamped, limit cycles andaperiodic. The unstable solutions are very persistent with oscillations lasting forover 38,000 years.The local stability boundaries and the 50% free space rule both indicate thatincreasing ai, S or � destabilises the model. This is intuitively correct for thereason stated above. However, as the 50% free space rule is only a su�cient con-dition for stabillity, it becomes a worse approximation to the stability boundaryas � is increased.Understanding the mechanism that drives this model allows the derivation of asimple stability criteria. The mechanism that governs the oscillations is depen-dent upon the are occupied by a cohort over time (�t). These oscillations caneither persist or decay depending upon the rate at which space is occupied. Asimple heuristic stability criteria can be derived ignoring the settlement rate. Ifa cohort has a density of n0 initially with area ai, then �t = n0ai. At time t+ 1,a proportion S survive, thus �t+1 = Sn0ai+1. For the cohort to increase in area�t+1 > �t, therefore (Sai+1=ai) > 1. The minimal condition for the area of acohort to increase is the increase in the area between age-classes 0 and 1. Asthe area doubles from age-class 0 to 1, then the heuristic stability shows thatoscillatory solutions exist when S > 0:5. The nature of these oscillations is notknow, if they decay then stable underdamped solutions are produced, if not limitcycles are found. This criteria is far simpler to derive than the 50% free spacerule, but it gives a much larger area of the parameter space where the behaviourof a solution is known (see �gure 3.12).3.4 An Application the Model to S. balanoidesIn this section the general model is applied to S. balanoides. A logistic growthcurve is �tted to data from the literature and survivorship is age-independent.
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Figure 3.12: Heuristic stability and the 50% free space rule (U= unstable, UK=unknown, O= oscillatory).3.4.1 The Logistic Growth FunctionS. balanoides does not grow linearly with age. The increase in area varies withboth height on the shore and age (see Barnes & Powell 1953, for a general review).Data were taken from Barnes & Powell (1953) for the mean speci�c growth ratesof barnacles per day from 5.4 feet above chart datum. This was the closest heightto the 6.2 feet of MTL. A linear regression was �tted to the change in proportionallength per day against square roots of the lengths. This gave a good �t with anF statistic of 4:37 � 10�17 (see �gure 3.13). Using a minimum length for thebarnacle from extrapolation of the curve a growth curve was produced iterativelyusing the equation for the increase in length per unit length (see �gure 3.14). Alogistic curve �tted this data well with a residual sum of squares of 6.817496 anda residual standard error of 0.0624513. The logistic curve was of the formLi = L1h1 + �L1�L0L0 � eib�ai ; (3.31)where L0 = 1:130319, L1 = 15:98195 and b = �0:0302853.It is assumed that all the barnacles are essentially circular and therefore the areaat age curve is given by
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3.4.3 StabilityLocal Stability and the 50% Free Space RuleThe local stability boundary of the model can be seen in �gure 3.19, the stableand unstable indicate local stability. This boundary shows that in the 125 age-class model at high S, � is destabilising. However, at lower values of S increasing� can be stabilising.The 50% free space rule is also illustrated in �gure 3.19. At low � the 50%free space rule is a fairly good approximation to the local stability boundary.However, as � is increased then the 50% free space rule become a progressivelyworse approximation to the local stability boundary. This is because the 50%rule is a su�cient condition for stability.
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Number of Age-ClassesThe number of age-classes in the model was altered in the range of 8 to 256. Asthe number of age-classes is varied then it is necessary to scale the age-class width,�a, such that N�a is constant. The instantaneous mortality, �, was calculatedfrom the survivorship by 53



� = �ln(S)=�a;which allows the age-class comparison, as S is scaled to �a, ie doubling age-classwidth is equivalent to squaring S.The comparison of local stability for the di�erent number of age-classes can beseen in �gure 3.20. At very low � a similar pattern is seen. However, as � isincreased, increasing the number of age-classes can be stabilising or destabilising.Increasing the number of age-classes e�ects the shape and position of the stabilityboundary. A model with 8 age-classes is most stable. However, as the numberof age-classes is increased the e�ect is destabilising to 32 age-classes and thenstabilising up to 256 age-classes (see �gure 3.20). The shape of the boundarychanges from almost a right angle with 8 age-classes, to a smooth curve with256 age-classes. In the 256 and 128 age-class cases � is �rst destabilising thenstabilising.3.4.4 SimulationIncreasing � causes equilibrium to be reached more quickly. However, if � andS are large enough then oscillations are produced. These oscillations can beperiodic with stable limit cycles persisting for more than 38,000 years. When thesystem is unstable, decreasing � or S causes a decreases in the periodicity andthe amplitude of the oscillations (see table 3.2).Table 3.2: Table showing the e�ect of changing S and � on stability and theperiodicity of unstable solutions.Survivorship Settlement Stability Periodicity of(S) Rate (�) Solution (weeks)0.95 103 Unstable 770.90 103 Unstable 560.85 103 Unstable 460.80 103 Stable -0.95 105 Unstable 1200.95 104 Unstable 1070.95 103 Unstable 770.95 102 Stable -54
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When � is small then stable solutions are observed (see �gure 3.21). When � islarge then an unstable solution is obtained (see �gure 3.22). It is useful to notethat there are slight di�erences in the amplitude of each peak. This however, isa facet of discrete models as they sample at distinct points.The pictures produced for the age-distributions are very similar to those producedby the linear growth model. For unstable solutions, waves of cohorts pass throughthe population (see �gure 3.23). For stable solutions, a negative exponentialdistribution was observed, where decreasing S increases the negative gradient.3.4.5 DiscussionThe same mechanism is observed controlling dynamics in the logistic growthmodel as in the linear growth model. Increasing S or � leads to an increase in theoccupancy, A�, and a decrease in the stability. This is due to the `speed of �ll'mechanism. � = 1:6085 � 10�6 is used in the linear model to compare with thelogistic. This is because the maximum diameter in both cases is about 16mm.When the steady states are compared for a similar S and � the logistic modelhas a higher occupancy and is less stable than the linear growth model. This isbecause of the time delay inherent between the individuals settling and reachingtheir maximum size. In the linear growth model this process takes 5 years, butin the logistic model maximum size is reached after less than a year. This logisticgrowth rate is a bit high for the mid-shore, but is similar to the situation foundon the low-shore or submerged panels (Hawkins, pers. com.).Again four di�erent types of dynamics are found. However, aperiodic solutions aremore di�cult to locate. Limit cycles are more common with persistent oscillationslasting for over 38,000 years.The stability boundary and the 50% free space rule show similar patterns tothe linear model. The same explanations for the di�erences can be drawn. Thelogistic growth model is again shown to be less stable than the linear growthmodel. A heuristic stability criteria can be derived in exactly the same way asshown in Section 3.3.5. In the logistic growth model S > (Li=Li+1)2 allows thearea of a cohort to increase over time and thus, oscillations to occur (where Li isthe length of an individual in age-class i). If the minimum condition is examinedthen we �nd that S > 0:461 for oscillations to occur. This again provides afar larger area of the parameter space where the behaviour of solutions is knowcompared to the 50% free space rule (see �gure 3.24) and is far simpler to derive.56
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uctuations. When I added density-dependent mor-tality to the model, parameter values that previously gave aperiodic solutionsproduced two point-cycles.The mechanism controlling the dynamics of the model is the same in both thelinear and logistic growth models. Increasing ai, S or � causes an increase in A�.This increase in the area occupied is destabilising, which suggests that any factorcontributing to the increase of A� is also destabilising. This intuitively makes57



sense as increasing the area occupied will increase the `speed of �ll mechanism'.This mechanism means that the dynamics of the model are controlled by therate of occupancy of free space. When the rate of occupancy is low, ie ai, S, or� are low, then a longer time is required to �ll the same space. This give riseto stable overdamped and underdamped solutions. However, when this rate ishigh, then free space is �lled by short `pulses' of settlement as soon as the spacebecomes available. The free space is provided by individuals reaching the end ofthe age-class structure and dying. This situation gives rise to unstable solutions.Although the logistic growth model has the same mechanism, it is less stable.Growth is determinant (ie the adults have a maximum size) and adult growthis very slow in comparison with the juveniles, which reach adult size in about ayear. If a similar maximum size in the linear growth of 16mm is compared withlogistic growth, then a higher value of proportional occupied space is found forthe logistic growth model. Kuang & So (1995) stated that the best indicatorof stability is the ratio of the total area occupied by juveniles to the total areaoccupied by adults. The higher this ratio the more stable the model is. The ratioin the linear growth model is 8�10�3 and in the logistic growth model is 5�10�3.Thus, the logistic growth model should be less stable.The 2-cycles can be very persistent, with the cycles continuing to be stable afterover 38,000 years (one million time units). The cycles shown in �gure 3.22 couldwell be found on a exposed shore with high recruitment. Increasing growth,settlement or mortality when the 
uctuations are periodic 2-cycles causes anincrease in the amplitude and the period of these cycles.The 50% free space rule and the characteristic equation suggest that increasingsettlement rate or survivorship is destabilising. This reinforces the conclusionsreached by Roughgarden et al (1985), Bence & Nisbet (1989) and Kuang & So(1995). The 50% free space rule is a good approximation to the characteristicequation at low settlement rates, but at high settlement the approximation isvery bad. This is because the 50% free space rule is only a su�cient conditionfor stability and is dependent upon settlement. Thus, as settlement increases theapproximation becomes worse.Heuristic stability criteria were derived for both the linear and logistic growthmodels. This provides a greater area within the parameter set where the be-haviour of the model is known and is simpler to derive. The logistic model isshown to be less stable than the linear growth model when these heuristic limitsare compared. Oscillatory solutions are found where S > 0:5 in the linear growth58



and where S > 0:461 in the logistic growth model.A very useful area of further work would be to investigate the e�ect of the numberof age-classes on the stability of the model. This is because increasing the numberis �rst stabilising then destabilising and e�ects the shape of the boundary. Thismay make the selection of number of age-classes important.To construct this model a number of assumptions had to be made. It is now usefulin the light of the present �ndings to review these assumptions and comment onthe suitability. The assumption that larvae are found in the surrounding wateris not biologically realistic. S. balanoides is known to have a distinct settlementperiod between March and August (Connell, 1961a; Hawkins & Hartnoll, 1982a).Large variation in the settlement has also been observed with peaks in settlementbeing correlated with shore height (Bertness et al, 1992), maximum tidal range(Shanks, 1986) and onshore winds (Hawkins & Hartnoll, 1982a). The mechanismthat controls this process is not yet fully understood (Wethey, 1985). Thus, adiscrete settlement period with peaks of settlement would be more biologicallyrealistic.The assumption that settlement is related to free space is under debate. However,the question of what is free space should be addressed �rst. Not all free space isthe same. Barnacle larvae require speci�c settlement cues. Lewis (1977) statedthat free living acorn cirripeds respond to a variety of stimuli during settlement:arthropodin (an insoluble protein found in adults); water currents; surface ru-gosity; light; and, gravity and hydrostatic pressure. In the absence of speci�csettlement cues settlement is usually delayed (Lewis, 1977). The assumptionthat settlement and free space are linearly related implies that settlement intoareas of substratum with the same free space will re
ect the supply of larvae.However, all but one of the studies of the validity of this hypothesis have foundthat the resident assemblage has a larger e�ect on settlement than the free space(Minchinton, 1995). Roughgarden & Possingham (1985) found that settlementwas proportional to free space only if the patch was less than 50cm2 and Raimondi(1990) found no support for this relationship. This suggests that settlement isdue to the cues suggested by Lewis (1977) and availability of free space. Thus,the type of free space should be taken into account and the relationship betweenfree space and settlement should perhaps be sigmoidal (Roughgarden et al, 1985).Assuming that free space cannot be negative is true, although percentage covercan be greater than 100. However, this raises the question of what is 100% oc-59



cupancy? Individuals will settle on the tests (shells) of adults when settlementrates are especially high (Connell, 1961a). However, overcrowding of barnaclescauses increased mortality due to hummocking (Shanks & Wright, 1986), de-creased growth rates (Crisp, 1960), di�erent growth forms (Moore, 1934) andincreased mortality due to undercutting and uplifting (Connell, 1961a).Assuming all individuals are the same area is a gross simpli�cation of the realsituation. On the shore all barnacles will have di�erent growth rates and forms(see Stubbings (1975) for a general review). For example, when barnacles becomevery crowded they tend to interact in their growth form. Instead of growingdiameter they become much higher and more tubular in form (Moore, 1934).Growth rate is a�ected on two scales, local (1 m2) and regional (a whole shore)(Crisp, 1960). The scale that is modelled should involve all the local processesthat a�ect growth rate. However, locally growth rate can be a�ected by manyfactors including water 
ow, orientation, population density and parasites (Crisp,1960).Circular barnacles is a reasonable assumption. Barnes & Powell (1953) show thatthe length-breadth ratio decreases with increasing size and tend to the circularform. For example, at about 7mm barnacles on all shores height have a length-breadth ratio of 1.10.The assumption that all the recruits are the same area is reasonable. This di�er-ence is small in comparison with the area in m2. Connell (1961a) measured newlymetamorphosed barnacles at Millport, Scotland, and the mean lengths only var-ied between 0.7 and 1.21mm. The assumption that there is a known area at ageis again a gross simpli�cation of the actual case. It is possible to argue that weare looking at the average of these di�erent areas for each particular age-class.However, having a number of di�erent growth functions would be more accurate.To make the model more tractable we assume constant survivorship. This seemsto produce a sensible survivorship curve (see Connell (1961a) �gures 5, 9 & 10).However, it would be useful to look at density-dependent mortality in the �rsttwo weeks after settlement and at high occupied space (Connell, 1961a). It mightalso be useful to look at a di�erential mortality between early and late settlement,as later settlers appear to su�er increased mortality due to increased temperature(Connell, 1961a).This model provides insight into the colonisation of rock by barnacles. However,to produced a better realisation of S. balanoides, it is necessary to re�ne the60



assumptions. I would suggest that a number of things are attempted in furtherwork:1. A sigmoidal relationship between free space and settlement.2. A number of di�erent growth functions with the model to simulate di�erentgrowth types.3. A realisation of the settlement cues and not treating all free space as thesame.4. Seasonal settlement.5. Density dependent mortality and di�erent survivorship functions.Although these additions to the model would make it more biologically realistic,a more complex model would be produced. The mechanism driving these modelswould be more di�cult to �nd, as the models have more parameters and are lesstractable. This makes understanding the simple models essential before morecomplex variants are investigated. This is highlighted by Bence & Nisbet (1989),who investigated simple versions of Roughgarden et al (1985) and showed thatsome of the inferences that they had drawn were wrong.
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Chapter 4A Size-Structured Model for theBrown Alga Fucus vesiculosus
4.1 Introduction4.1.1 General IntroductionAge-classi�ed models assume that age-speci�c survival and fertility rates are suf-�cient to determine population dynamics (Caswell, 1989). This is not alwaystrue and organisms can be classi�ed by a factor other than age that is a betterindicator of the vital rates. This is known as the state of the stage-classi�edmodel. Formal state theory was introduced into population ecology by Caswellet al (1972), Boling (1973) and Metz (1977). Several circumstances combine tomake other state variables more suitable than age. These include the combinationof size- or stage- dependent demography with plastic growth, multiple modes ofreproduction and environmental heterogeneity (Caswell, 1989).Seaweeds have a large degree of plasticity in their growth form. Their �nal shapeis a combination of their genetics and the environment (Norton et al, 1982).Individual plants can increase, decrease or remain the same size. This is due tothe trade-o� between growth and various di�erent types of damage, for example,grazing and storm damage. Thus, age is not necessarily a good predictor of size(�Aberg, 1992a). Generally, size is thought to be a better predictor of demographicrates than age (Chapman, 1986b; Ang, 1987, 1991b). Thus, it seems sensible touse size-class models to investigate algal demography.Algal populations have been modelled since the 1970s. Much of this modellinghas been for harvesting of subtidal algae (see for example Seip, 1980; Smith,62



1986; Ang, 1987). This is because the algae are grown commercially for alginatesand for consumption in the Far East. Recently models for investigation of thebasic biology and ecology of algal populations have been developed. Nisbet &Bence (1989) developed a family of models depicting a simpli�ed relationshipbetween adult density and juvenile recruitment in Macrocystis pyrifera. Despitethe simpli�cation they found that they were able to mimic the real dynamics andconcluded that factors a�ecting recruitment were very important in determiningthe dynamics of the population. They looked at a situation where recruitmentis dependent upon the temperature and shading of light, and not directly by theadults. Burgman & Gerard (1990) developed a better model for the same speciesincluding life history stages, environmental and demographic stochasticity, anddensity-dependent interactions. When adults are absent, then gametophyte den-sities corresponding to adult densities of 0:002m�2 are used to simulate recruit-ment from distant kelp populations. They suggest that stochastic environmentalvariation and density-dependence are important in algal population models, aswithout these factors the models overestimate recruitment, survival and growth.Very recently demographic modelling of intertidal algal populations has beendone. �Aberg (1992a) investigated two populations of Ascophyllum nodosum inSweden. He assumed a closed system, divided the model into �ve size-classesand measured the mortality, growth and fecundity. He found that environmentalice-scour caused the population to mature earlier and decrease in numbers dueto damage. If a stochastic environment is added to the model then the mean ex-tinction time for the population is 163 years (�Aberg, 1992b). Ang & De Wreede(1993) used a 9x9 matrix model based on recruit stages and plant size to investi-gate a population of Fucus distichus. They compared the dominant eigenvaluesand found that population size only increased when recruitment was positive.The `propagule' bank was very important in their model, as its absence couldreduce population growth by 83% per annum. Simulations showed that 60% ofpopulations had a negative growth rate and suggest that the populations mayavoid extinction by occasional large pulses of recruitment.Both �Aberg (1992b) and Ang & De Wreede (1993) suggest that the long termdynamics of their closed demographic models is extinction. These systems areinherently closed as propagules are only transported a short distance from theirparents (Deysher & Norton, 1982; Arrontes, 1993). However, both of these aresystems with well established adult populations. Thus, on more exposed shoresbare rock may be colonised by large infrequent recruitment events, indicating63



that the system is open.4.1.2 Modelling AimsThe models discussed in this Chapter are similar to the model in Chapter 3.The construction is more akin with those produced by Roughgarden et al (1985),Bence & Nisbet (1989) and Kuang & So (1995).As competition on the rocky shore is essentially for the resource of space, twodimensional models can be constructed. The aim of this chapter is to produce ageneral model for intertidal perennial algae based on the concept of space-limitedrecruitment. This is done in a similar way to the model for S. balanoides inChapter 3. A strategic model will be constructed using simplifying assumptionsfrom the general model. Steady states and local stability criteria are derived andinvestigated. These techniques and simulation are used to provide insight intothe mechanism that controls the dynamics of the model.Once the dynamics are understood, the model will be parameterised using valuesfrom literature for F. vesiculosus. Simulation, steady state and local stability willbe investigated and compared to the strategic model. This model will be used asthe third stage in the cycle shown in �gure 1.2.
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4.2 A General Size Structured Model for Inter-tidal Canopy Forming AlgaeIn this section a size-structured population model for a general intertidal algae isconstructed with the minimum assumptions.4.2.1 The ModelThis model makes a number of assumptions:1. The survivorship function is known.2. The mean size range of sizes is known.3. Negative free space cannot exist.4. All individuals in the same size-class are of the same size.5. There is a maximum canopy area that a given area of rock can support.6. The model has Q+ 1 size-classes.This model assumes space-limited recruitment. Thus, the free space at time t(Ft) is a function of the total available area (A) and the area occupied by fucoids(At), ie Ft = [A� At]+ (4.1)where the + denotes that free space cannot be negative. The area occupied attime t is At = QXj=0 ajnj;t (4.2)where nj;t is the number of individuals in size-class j at time t and aj is the areaof rock occupied by an individual in size-class j. If cj is the canopy area of anindividual in size-class j and �j = aj=cj, then65



At = QXj=0�jcjnj;t: (4.3)This model uses an equation relating the transition between di�erent size-classesand adds settlement. If ni;t+�t is the number in size-class i at time t+�t, Si;t isthe probability of surviving one time interval in size-class i from t! t+�t, thenni;t+�t = QXj=0P ij;tSj;tnj;t + Ii;t (4.4)where P ij;t is the probability of being promoted or demoted from size-class j tosize-class i in the interval t ! t + �t and Ii;t is new settlement into size-class iat time t. Promotion occurs implicitly at the end of a time-step in the model. If�i;t is the density of fucoids in size-class i in the interval t! t+�t, then�i;t = ni;tA (4.5)F̂t = FtA (4.6)Ît = ItA: (4.7)From equations (4.1) , (4.3) and (4.5) - (4.7)F̂t = 241� QXj=0�jcj�j;t35+ : (4.8)Expressing the model in terms of density gives�i;t+�t = QXj=0P ij;tSj;t�j;t + Îi;t: (4.9)It is useful to note that the sum of the transition probabilities is always equal to1, or QXi=0 P ij;t = 1: (4.10)66



4.2.2 The Settlement FunctionSettlement per time unit cannot increase without bound. As barnacles settlein the system, they occupy space and thus reduce the space available for futuresettlers. If the rate at which cyprids become available to settle from the watercolumn m�2:d�1 (�) is low, the amount of space occupied by settlers early in thetime-step is small, and thus incremental settlement F̂�1t :�a�1 (�) is una�ected.However, when � is high, a large proportion of the space is occupied by earlysettlers and thus, the incremental settlement is much lower than expected fromthe number of cyprids available to settle. The rate of change of settlement overtime can be described by a di�erential equation. If R are the fucoids that havealready settled into the system and occupy space, thendRdt = � (F (t0)� a0R) (4.11)where � is the daily instantaneous settlement rate per m2 of rock, F (t) is thefree space at time t0 and a0R is what has already settled in the area. If equation(4.11) is solved over time (t), then,R(t) = F (t0)a0 �1� e��a0t� (4.12)If a0 = �0c0, then the discrete analogy to equation (4.12) is�F̂t = F̂t�0c0 �1� e���0c0�t� : (4.13)If � and � are calculated for set parameters, then we �nd that there is an asymp-totic relationship (see �gure 4.1). The relationship is linear at low values, but as� !1 then � ! �max = 1=(�0c0).This function allows us to de�ne the settlement function Îi;t. As settlement isproportional to free space,QXi=0 Îi;t = �F̂t = F̂t�0c0 �1� e���0c0�t� : (4.14)67
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Figure 4.1: The relationship between � and � (�t = 14, c0 = 5 � 10�6 and�0 = 0:5).4.3 A Strategic 4 Size-Class Model4.3.1 The ModelThe general model is fairly intractable. Thus, �rstly we investigate a very sim-pli�ed case of the model. The assumptions made are:1. The model has 4 size-classes.2. All settlement is to the �rst size-class.3. Survivorship (S) is constant.4. An individual cannot be promoted more than one size-class.5. An individual cannot be demoted to a smaller size-class.6. An individual can only remain in the largest size-class.7. The probability of being promoted (P ) is constant.8. The ratio of area occupied to canopy area (�) is constant.9. There is a geometric increase in size as an individual is promoted.These assumptions allow the general model to be simpli�ed to a strategic model.This model can be simply de�ned using four transition equations, where fromassumption 2 settlement is only into size-class 0. Thus,68



�0;t+�t = Ît + (1� P )S�0;t (4.15)�1;t+�t = PS�0;t + (1� P )S�1;t (4.16)�2;t+�t = PS�1;t + (1� P )S�2;t (4.17)�3;t+�t = PS�2;t + S�3;t: (4.18)The settlement at time t, Ît, is de�ned as being proportional to the free space.Thus, Ît = �F̂t = � "1� 3Xi=0 ai�i;t#+ : (4.19)As the ratio of are occupied by an individual (ai) to actual canopy area (ci) isconstant, then � = ai=ci. Assumption 9 implies that ci = �ci�1 = �ic0. Thisallows equation (4.19) to be re-written asÎt = �F̂t = � "1� �c0 3Xi=0 �i�i;t#+ : (4.20)The incremental settlement rate per m2 , �, is related to the daily instantaneoussettlement rate per m2 , � using the same relationship as in the general model, ie� = 1� e���c0�t�c0 : (4.21)4.3.2 Steady StatesDerivationFrom equations (4.15)-(4.18) and (4.20) it is possible to derive the steady statesof the model. If the system is at equilibrium and�i;t+�t = �i;t = ��iAt+�t = At = A�F̂t+�t = F̂t = F̂ �Ît+�t = Ît = Î�;69



then from equations (4.15) and (4.20) respectively��0 = Î�(1� (1� P )S) (4.22)Î� = � "1� �c0 3Xi=0 �i��i # : (4.23)If we let �1; �2 = (PS)=(1� (1� P )S) (4.24)�3 = (PS)=(1� S); (4.25)then, with a little simple algebra, the equilibrium steady states are��0 = �(1� (1� P )S) + ��c0A0 ; (4.26)��1 = �1��0; (4.27)��2 = �1�2��0; (4.28)��3 = �1�2�3��0; (4.29)where, A0 = 1 + ��1 + �2�1�2 + �3�1�2�3: (4.30)The derivation of these steady states allows insight into the limiting parametersat high and low settlement densities. When ��c0�t ! 1, then � ! 1=(�c0)and ��0 ! 1=A0. This suggests that at high settlement rates the equilibriumoccupied space is limited by P , S and the choice of the size-classes. However, as��c0�t! 0, then � ! 0 and the equilibrium occupied space is limited by �.Parameter ValuesA range of parameter values must be chosen such that the steady states can beinvestigated. Obviously both P and S must be in the interval (0,1). The strategic70



nature of the model allows the size-class choice to be made fairly arbitrarily. Thus,a geometric increase in area is used as an individual moves up size-classes (seetable 4.1). It is assumed that the ratio of ai to ci is less than one as the area ofrock occupied is less than the actual canopy area. Thus, for the moment we take� = 0:5. Table 4.1: Logarithmic size-class choice for � = 0:5.Size- Area Individual ci Maximumclass range (mm2) area (mm2) (m2) Number.m�20 0� 10 5 5 � 10�6 4:0 � 1051 10� 102 50 5 � 10�5 4:0 � 1042 102 � 103 500 5 � 10�4 4:0 � 1033 103 � 104 5000 5 � 10�3 4:0 � 102
Investigation of the Steady StatesThe analytical steady states were used to investigate the e�ect of increasing �,P and S on the proportional occupied space, density of individuals and areaoccupied by the di�erent size-classes.Increasing P , S or � increases the proportional occupied space at equilibrium,A� (see �gures 4.2 and 4.3). Increasing S gives an exponential increase in areaoccupied. Increasing P or � gives a logistic increase in area occupied. The generalincrease in area is due to the mechanism controlling the model. If the area of acohort increases with time then oscillations occur. Increasing P , S or � increasesthe potential of a size-class to increase in area. For example, increasing S causesmore individuals to survive to occupy area, increasing P increases the rate atwhich area is gained by a cohort and increasing � increases the densities in asize-class and therefore the potential to gain area.It is also possible to look at the e�ect of increasing P , S and � on the densitiesof individuals in and area occupied by a particular size-class. Increasing � givesan asymptotic increases in the density of individuals and a logistic increase inthe area occupied by a size-class (see �gure 4.4 and 4.6). Increasing S causes aninitial increase in both densities and area occupied in size-classes 0-2. However,as S is increased further the densities and area occupied decrease (see �gure4.5 and 4.7). Size-class 3 shows a di�erent picture with both the densities andarea occupied increasing exponentially with increasing S. Increasing P gives an71
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Figure 4.3: The e�ect of � on A�.exponential decline in the densities and area occupied in size-class 0. There is aninitial increase in both densities and area occupied in size-classes 1 and 2, butafter P > 0:05 they decline. Size-class 3 shows an asymptotic relationship forboth densities and area occupied (see �gure 4.8 and 4.9).In �gures 4.4 - 4.9 it is obvious that size-class 3 is the dominant size-class in termsof the total area occupied. This is similar to the situation found on shelteredshores where a few large plants dominate the area forming a canopy.4.3.3 Stability AnalysesLocal stability analysis investigates the behaviour of a small perturbation fromthe steady state. If the steady state is stable then the perturbation will decayand the solution will return to the same steady state value. If the perturbationis unstable then the solution will diverge away from the steady state.The Characteristic EquationTo derive the characteristic equation for this simple model, we de�ne a pertur-bation from a steady state in size-class i time t as �0;t. This gives four equationsfor the behaviour of the perturbation
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Figure 4.9: The e�ect of P on the size-class distribution (S = 0:9, � = 10).
�0;t+�t = (Ît � Î�) + (1� P )S�0;t; (4.31)�1;t+�t = PS�0;t + (1� P )S�1;t; (4.32)�2;t+�t = PS�1;t + (1� P )S�2;t; (4.33)�3;t+�t = PS�2;t + S�3;t; (4.34)where,
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Ît � Î� = ���c0 3Xi=0 �i�i;t: (4.35)These equations for the behaviour of a perturbation can be summarised simplyin matrix form. �t+�t = a�t (4.36)where,
a = 26664 �+ 
0 
1 
2 
3� � 0 00 � � 00 0 � S 37775 ; �t = 26664 �0;t�1;t�2;t�3;t 37775and, � = (1� P )S� = PS
i = ���c0�i: (4.37)The characteristic equation is the determinant of the matrix (a��I). By lookingat the minors of matrix a, the characteristic equation is(S � �)(�� �)2(� + 
0 � �)� (S � �)(�� �)�
1 + (S � �)�2
2 � �3
3 = 0:(4.38)Eigenvalues (�) are the roots of the characteristic equation, and these give in-formation on the stability of solutions and the way in which equilibrium is ap-proached (see Nisbet & Gurney (1982) for a general review). A solution is de-scribed as stable when all the eigenvalues are within the unit circle, ie j�j < 1.75



A Heuristic Mechanism for StabilityThe mechanism that governs the oscillatory nature of this system is dependentupon the variation of area occupied by a cohort over time. The system is not os-cillatory if this area decreases, but oscillations are produced if this area increases.These oscillations can either decay giving rise to stable underdamped solutions orcan persist to produce limit cycles. The oscillations decay or persist dependingon the rate at which free space is occupied, ie the settlement rate.Ignoring the settlement rate allows a heuristic stability criteria to be derived.If the area occupied by a cohort at time t is de�ned as �t and start with n0individuals all in size-class i with area �ci, then,�t = n0�ci: (4.39)At time t +�t, Sn0 individuals remain P of which have been promoted to size-class i+ 1 and now occupy an area of ��ci. Thus the area of the cohort at timet + 1 is �t+1 = (1� P )Sn0�ci + PSn0��ci: (4.40)Obviously for a cohort to increase in area occupied over time then �t+1 > �t.Thus with a little simple algebra we �nd thatS > 11 + P (�� 1) (� > 1): (4.41)As we ignore the settlement rate, this solution will only be a good approximationto the stability boundary at high settlement rates. This is because at high settle-ment rates S, P and � are the density limiting parameters. In fact the heuristicboundary should be the limit of the stability boundary as � !1.Numerical Investigation of StabilityEquation (4.38) can easily be solved analytically with the quartic formula us-ing a package such as maple v ( c
1991, Waterloo Maple Software, University76



of Waterloo, Ontario, Canada). However, these solutions are very complicatedand tell us little about the actual nature of the boundary. A far more usefulimplementation of the characteristic equation is to solve it numerically.Numerical solution is done using di�erent sets of parameter values to give an ideaof the nature of the stability boundary at di�erent values of P , S and �. A pro-gram called contour was used which is part of the solver package ( c
STAMS,Livingstone Tower, 26 Richmond Street, Glasgow G1 1XH). contour is a pack-age that uses Newton-Raphson techniques to follow the roots of equations. Ini-tial condition for the contour code were produced using numerical solution inmaple v ( c
1991, Waterloo Maple Software, University of Waterloo, Ontario,Canada).The roots can be real or complex conjugate pairs, with each complex boundaryrepresenting a pair of solutions. To locate the boundary we take j�j = j�+ i!j =p�2 + !2 = 1. Once the stability boundary is located, setting p�2 + !2 < 1 andp�2 + !2 > 1 on the same plot allows the direction of stability to instability tobe discerned.The stability boundaries for di�erent � can be seen in �gures 4.10 - 4.13. Increas-ing either P , S or � is destabilising. From the steady state analyses we knowthat increasing these parameters increases the occupied space. Thus, increasingthe occupied space is destabilising.The di�erence between the heuristic and real stability boundary decreases assettlement rate is increased (see �gures 4.10 - 4.13). As the heuristic criteria onlypredicts oscillations, the parameter space between these 2 curves is the regionthat produces stable underdamped solutions. The persistence of these oscillationsdepends on the rate at which the space is �lled, ie the settlement rate. Thus, at anincreased settlement rate the space is �lled faster producing a smaller parameterspace where the solution is stable underdamped (see �gures 4.10 - 4.13). Thissuggests that as � ! 1 the space should �ll in�nitely fast and there should beno parameter space where stable underdamped solutions are produced. Thus,as � ! 1 the heuristic criteria should become a better estimate to the actualboundary.
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4.3.4 SimulationA time-step must be chosen for simulation that is short in comparison to themaximum age of an individual. Thus, the vital rates are assumed not to varywithin this time-step. A time-step or �t of 14 days is used, as this value is shortin comparison with the lifespan of perennial seaweeds. Also sampling on a realtime scale is unlikely to happen more often than this period.Two types of dynamics are produced by this model they are stable and periodicsolutions (see �gures 4.14 and 4.15 respectively). The stable solutions give stablesize-class distributions (see �gures 4.16). However, unstable solutions are foundwhen waves of individuals pass through the size-classes creating an unstable size-distribution (see �gure 4.17).
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Figure 4.17: An unstable size-distribution (� = 200, S = 0:95 and P = 0:05).4.4 An Application of the Model to F. vesicu-losusIn this section the strategic model is applied to F. vesiculosususing parametervalues from the literature. The choice of size-classes, probability of promotionand size-speci�c survivorship are set in order to produce densities that are in thecorrect order of magnitude. 80



These new parameter values and size-speci�c survival will be used in the model.The results of this model will be compared with the strategic model to investigaterobustness.4.4.1 The ModelThe synthesis of this model is very similar to the synthesis of the strategic model.However, in this section size-speci�c survivorship is assumed. Thus, the fourtransition equations are�0;t+�t = Ît + (1� P )S0�0;t (4.42)�1;t+�t = PS0�0;t + (1� P )S1�1;t (4.43)�2;t+�t = PS1�1;t + (1� P )S2�2;t (4.44)�3;t+�t = PS2�2;t + S3�3;t; (4.45)where,
Ît = �F̂t = � "1� � 3Xi=0 ai�i;t#+ : (4.46)As the ratio of area occupied by an individual (ai) to actual canopy area (ci) isconstant, then � = ai=ci. This allows equation (4.19) to be re-written as

Ît = �F̂t = 1� e���c0�t�0c0 "1� � 3Xi=0 ci�i;t#+ : (4.47)4.4.2 ParameterisationChoice of Size ClassesThere are four size-classes in the model which are picked to represent length andaverage age of the plants. As the longevity of F. vesiculosus is about 4 years(Knight & Parke, 1950), then the size-classes will represent the 0+, 1+, 2+ and3+ year old plants. The mid point of these size-classes is the area occupied by81



an individual in this class. In this case, insu�cient data has been collected to �tsize-classes using an algorithm (see for example Moloney, 1986) and the size-classchoice had to made fairly arbitrarily.The density of plants in each size-class is dictated by the area of bare rock occu-pied by an individual in size-class i, ai = �ci. Thus, � and ci were scaled suchthat reasonable densities of plants were found in the size-classes. As the area ofplants is not generally measured as it is very labour intensive, reasonable lengthsof plant were examined for a certain age of plant (see table 4.2). The area ofrock occupied by as individual is smaller than the actual canopy area of thatindividual. Thus, arbitrarily we use � = 0:5.Keser & Larson (1984) noted that in Maine there is not enough substratum tosupport very high densities of germlings (> 43; 600:m�2). So if �max = 5 � 104,then �c0 = 1=�max = 20mm2. `Escapees' should be in the range of 0�50mm andare still a single frond (Hawkins, pers. com.). Both the area and length for size-class 0 are known and thus it is possible to derive a linear relationship betweenarea and length. As the plants in size-class one are still single fronds, the linearlength-area relationship was used to calculate the area from the lengths of theseplants. Creed (1993) suggests that the density of individuals of length� 120mmis around 3000 in monospeci�c stands. Thus the estimate produced in this scalingfor a maximum density of about 8000 is in the correct order of magnitude.After the second year the plants start to dichotomise (Knight & Parke, 1950).Thus, area is now roughly proportional to length squared. To get the densitiesin the �nal size-class in the correct order of magnitude it was necessary to scalethe size-classes such that �ci = 0:25 � length2. The maximum density that canbe found in the �nal size-class is about 11.1 plants, which is within the correctorder of magnitude (Hawkins, pers. com).Table 4.2: Size class choice for � = 0:5 (Hawkins, pers. com.).Group Spread of Individual Area- �ci MaximumLengths length length (m2) Number.m�2(mm) (mm) TrendEscapees 0-50 25 Linear 2:000 � 10�5 5:0 � 104Juveniles 50-250 150 Linear 1:2 � 10�4 83331stseason 250-500 375 Quadratic 3:516 � 10�2 28.42ndseason 500+ 600 Quadratic 9:900 � 10�2 11.1
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Probability of PromotionI assume that the size-classes 0 to 3 are essentially composed of plants that are0+, 1+, 2+ and 3+ years old respectively. Thus, we are required to make theaverage transition time from size-class i ! i + 1 one year. As the time intervalchosen, �t, is fourteen days, then it is assumed that 26 of these time intervalsmake 1 year. As promotion of the complete size-class is required in a year thenthe probability of promotion is 1=26.Size-Speci�c SurvivalA number of di�erent conclusions have been reached on size-speci�c survivorshipor mortality. However, most studies suggest that the probability of death remainsconstant with age. This is possibly due to the studies ignoring the microscopicstages. For example, Chapman (1986a) found a negative exponential relationshipbetween age and mortality in Laminaria saccharina, with almost all the plantsdead by 24 months. A similar relationship has been found forMacrocystis pyrifera(Rosenthal et al, 1974) and Pelvetia fatigiata (Gunhill, 1980). Black (1974) statedthat older individuals of Egregia laevigata ensure a high death rate amongst indi-viduals of the same species. Chapman (1986a) proposed that mortality is constantat a size of greater than 10cm in L. saccharina, but most mortality occurs beforethis stage. The maximum size that L. saccharina reached in this study was 4min length. Creed (1993) suggested that mortality is inversely proportional to sizein small F. vesiculosus. Thus, size speci�c survivorship was investigated.This information infers that survivorship should be higher for older plants. How-ever, the maximum longevity of the plant should still be a mean of 4 years (Knight& Parke, 1950). The size-class survivorship used is shown in table 4.3, which pro-duces the survivorship curve shown in �gure 4.18. The size-speci�c survivorshipusing Si = 0:9223 was back calculated from the cumulative survivorship afterTable 4.3: Size-speci�c survivorship (�t=14 days).Group Survivorship Proportion SurvivingEscapees 0.90 6:46 � 10�2Juveniles 0.91 5:56 � 10�31stseason 0.93 8:43 � 10�42ndseason 0.95 2:22 � 10�483
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Figure 4.19: The age-speci�c survivor-ship curve of the two models (�t = 14days).208 weeks. This produces a very similar curve to the survivorship curve of thestrategic model (see �gure 4.19). This will be used to compare the dynamics.4.4.3 Steady StatesDerivationThe derivation of the steady states is similar to that of the strategic model. Ifthe same line of reasoning is followed and we rede�ne �i then steady states canbe derived. If we let �1 = (PS0)=(1� (1� P )S1) (4.48)�2 = (PS1)=(1� (1� P )S2) (4.49)�2 = (PS2)=(1� S3) (4.50)then, with a little simple algebra, the equilibrium steady states are��0 = �(1� (1� P )S0) + ��A0 ; (4.51)��1 = �1��0; (4.52)84



��2 = �1�2��0; (4.53)��3 = �1�2�3��0; (4.54)where, A0 = c0 + c1�1 + c2�1�2 + c3�1�2�3: (4.55)Investigation of the Steady StatesThe steady states give a very similar picture to the strategic model. Increasing �causes an increase in the area occupied at equilibrium, as it increases the potentialarea of a cohort and the speed at which space �lls (see �gure 4.20). The densityof individuals and space occupied by each size-class again increase asymptoticallyand logistically respectively (see �gure 4.21 and 4.23). The densities in each size-class are inversely proportional to the area occupied by the size-class. This istrue of all perennial seaweeds. Most importantly the area of rock is dominatedby a few individuals in the largest size-class. This is similar to the canopy thatis found on sheltered shores.The steady state dynamics of this model are similar to the strategic model. In allcases P = 1=26 and the value of � was varied. The di�erent types of models usedcan be seen in table 4.4, where constant survivorship implies that S = 0:9223, andsize-speci�c survivorship and realistic size-classes are as described in section 4.4.2.In both models increasing � increases the area occupied (see �gure 4.22). Howeverchanging size-classes has a very large e�ect on the area occupied at equilibriumat low settlement rates. This is because fewer individuals are required in theF. vesiculosus model to �ll the space quickly. When � becomes larger similaroccupied space values are found, as even with the small size-classes space �lls uprelatively quickly. Changing the survivorship function make little di�erence tothe area occupied. This is because the functions are quite similar (see �gure 4.19).The trajectories produce a smaller occupied area with constant survivorship, asmore individuals survive from size-classes 1 and 2 to 2 and 3 respectively. Thusthe gain in area is greater as the largest increase in area is between size-class 1and 3.
85



Log(zeta)

Pr
op

or
tio

na
l o

cc
up

ied
 sp

ac
e

0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 4.20: The e�ect of increasing �on the area occupied at equilibrium. log(zeta)

De
ns

ity

0 1 2 3 4

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Size-class
    0
    1
    2
    3

Figure 4.21: The e�ect of increasing �on the density of individuals in di�erentsize-classes at equilibrium.

Log(zeta)

Pr
op

or
tio

na
l o

cc
up

ied
 sp

ac
e

0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

FS
GS
GC
FC

Figure 4.22: Comparison of the modelfor F. vesiculosus and the strategicmodel (see table 4.4). log(zeta)

Pr
op

or
tio

na
l O

cc
up

ied
 S

pa
ce

0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Size-class
    0
    1
    2
    3

Figure 4.23: The e�ect of increasing �on the total area occupied by di�erentsize-classes at equilibrium.
86



Table 4.4: Model Types in �gure 4.22 (P = 1=26).Model Size-class SurvivorshipFS Realistic Size-speci�cGS Geometric Size-speci�cGC Geometric ConstantFC Realistic Constant4.4.4 Local Stability AnalysesIn this section the characteristic equation is derived, then the behaviour of theroots of this equation is examined. This allows the investigation of a perturbation,�i;t, from the steady state. The characteristic equation is found in the same wayas for the strategic model. The characteristic equation is(S3 � �)(�2 � �)(�1 � �)(�0 + 
0 � �)� (S3 � �)(�2 � �)�0
1 + (S3 � �)�0�1
2 � �0�1�2
3 = 0 (4.56)where, �i = (1� P )Si�i = PSi
i = ���c0�i: (4.57)The analytical solution to this equation is very complicated and can be solved us-ing maple v ( c
1991, Waterloo Maple Software, University of Waterloo, Ontario,Canada). However, the solution is uninformative and is not expressed here.Realistic parameter values for P , Si, and �ci have been described above. Thesevalues are substituted into equation (4.56) and then solved for � where j�j = 1.This gives the critical value of �. Below this critical value of � the model is stable,above it the model is unstable.The model types used are the same as described in table 4.4. If the relativestability of each of these models is investigated (see table 4.4) then it is foundthat the models with the highest values of A� in �gure 4.22 are the least stable.87



Table 4.5: Stability of the di�erent model types (see table 4.4).Model Critical �type P = 0:019 P = 0:038 P = 0:077 P = 0:2FS 2.2779 7.2899 29.155 0.80746GS - 331.02 77.292 25.574GC - 317.63 78.328 26.175FC 2.0395 5.9612 21.902 0.78030As can clearly be seen from table 4.5 the more carefully parameterised model ismuch less stable than the strategic model. However, changing the size-classes hasa far greater e�ect on the model than the instigation of size-speci�c survivorship.4.4.5 SimulationAgain a time-step (�t) of 14 days was chosen as this value is short in comparisonwith the maximum age of an individual and vital rates are assumed not to varywithin this time.A very similar pattern is found to the strategic model. Both stable and unsta-ble solutions are obtained. The stable solutions have stable size-distributions.Unstable solutions have unstable size-distributions.A similar mechanism is observed for the speed of space �lling. If space is �lledquickly, ie a high settlement rate, then persistent oscillations are found. If space�lls gradually then stable underdamped solutions are found.4.5 DiscussionThe mechanisms that produce the dynamics in both of the 2 models are verysimilar. This is not surprising as their formulation is essentially the same. If thesettlement rate, �, is high then the occupied space is limited by the parametersP , S, and �. If the settlement rate is low then the occupied space is limited bythe settlement rate. Oscillations are found when the area occupied by a cohortincreases over time. The decay or persistence of these oscillations depends uponthe rate at which free space is �lled, ie the settlement rate. Oscillations decay ifthe settlement rate is low, as free space is �lled slowly, producing an underdampedsolution. Oscillations persist if the settlement rate is high, as free space is �lled88



by short `pulses' of recruitment, producing limit cycles. This is illustrated nicelyby the comparison between real and heuristic stability in the strategic model.Increasing P , S or � is destabilising as it causes and increase in the area occupiedat equilibrium. This is because the potential area of a cohort increases withincreasing P , S or �.The model for F. vesiculosus is much less stable than the strategic model. Thisis because the density of individuals required to �ll the space is lower. The meansthat only small increases in settlement rate enhance the speed of occupation ofspace. Thus, smaller settlement rates are required to �ll the free space and theF. vesiculosus model is more likely to produce oscillations.Both models produce a size-distribution that is very similar to a canopy structurewith the density of individuals decreasing with increasing size. The models alsopredict that a few large individual will dominate the area occupied. This is alsosimilar to the canopy of perennial seaweeds.The values of � that produce instability in the model for F. vesiculosus appear tobe very low. However, the densities produced in the size-classes are in the correctorder of magnitude.All of the models produced for seaweeds have looked at e�ectively closed (see forexample, Nisbet & Bence, 1989; Bergman & Gerrard, 1990). Most are systemswhere the density of propagules available for recruitment to the population isdependent upon the adult population (see for example, Ang, 1987, 1991b; �Aberg,1992a&b; Ang & De Wreede, 1993). These models are mainly simulation, themost similar seaweed model being Nisbet & Bence (1989). The work in thischapter is closer to the work of Roughgarden et al (1985), Bence & Nisbet (1989)and Kuang & So (1995). There is a similar tradeo� between increase and loss ofarea to that found by Roughgarden et al (1985) and Bence & Nisbet (1989). Thestability criteria are similar, as formulation and assumptions are essentially thesame. Space-limited recruitment and a deterministic system allow us to avoidthe problems of extinction often experienced (�Aberg, 1992b; Ang & De Wreede,1993).In light of the �ndings of this chapter it is now useful to reassess the assumptionsused to formulate this model and suggest areas for further work. A di�cultassumption to justify is that the system is open. As was stated in the introduction,propagules are only transported short distances from their parents (see Deysher &89



Norton, 1982; Arronties, 1993). However, the speci�c shore that we are interestedin receives sporadic settlement from outside the system (Hartnoll & Hawkins,1985).The assumption of constant settlement is not realistic. F. vesiculosus is knownto have a distinct settlement period between May and July (Knight & Parke,1950). Over this period the settlement is not constant and is e�ected in a similarway to barnacle settlement. This would give a series of peaks and troughs ofsettlement. Thus, a stochastic recruitment function would be a useful addition tothe model, as without some kind of stochasticity recruitment and adult density areoverestimated (Burgman & Gerard, 1990). The addition of a seed bank similarto that observed in terrestrial systems would be useful. There is great debateover the existence of the seed bank and a number of authors have suggested itsexistence (see for example Ang & De Wreede, 1993; Creed, 1993; Creed et al,1996). Modelling it may provide some new hypotheses for the experimentaliststo test.Assuming that probability of promotion is constant across size-classes is feasible.As the assumption that the average age of an individual in each of the size-classesis 0+, 1+, 2+ and 3+ respectively, then this allows us to keep this probabilityconstant. However, it would be useful to examine a model where the probability isnot constant and it is possible to be demoted. The probability of being demoted issmall. The results of Knight & Parke (1950) for the growth rate of F. vesiculosusat Wembery showed that only 1 of 45 plant decreased in length during their study.However, this probability will increase at sites of higher exposure, as the plantsare more susceptible to wave damage.There is little data for the estimates of S, ci, � or P . This has made the modelvery hard to parameterise and no algorithm could be used to �t the size-classes.Thus, the assumptions that the P , S, � and Ci are all known is wrong. Moreaccurate data describing all the demographic parameters would be useful in boththe parameterisation of this model and the accurate prediction of densities overtime. For example, Knight & Parke (1950) made one of the very few investigationsinto the increase in length of F. vesiculosus in the British Isles. They found alarge variation in growth from -3 to 47.5 cm. However, one of the main uses ofthis model is to suggest where data is needed. I would suggest that a taggingstudy similar to �Aberg (1992a) on the speci�c shore and species being modelledis necessary to derive accurate demographic parameters. As the longevity of F.vesiculosus is four years this study would have to run for at least that time period.90



Density dependent survivorship would have been an interesting addition to themodel. Creed (1993) suggest that F. vesiculosus follows the -3/2 self thinningrule which has been suggested to apply to all terrestrial plants. He also statesthat monospeci�c stands of seaweed are detrimental to the overall survivorship.Thus, at greater densities in the model the survivorship should be lower andthe -3/2 self thinning law should be investigated. Another useful addition tothe survivorship function would be the inhibition of smaller plants by the largercanopy plants. This occurs in a number of ways. For example, lower light intensity(Schonbeck & Norton, 1980a); lower nutrient levels (Dayton et al, 1984); whiplashand sweeping e�ects (Dayton, 1971; Ang, 1985); sediment build up (Kenelly,1989); and aggregation of grazers (Hartnoll & Hawkins, 1985).The problems of `What is free space?' and `What is 100% occupied space?' existin this model. For a review of the arguments produced for barnacles which areessentially the same as for fucoids.
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Chapter 5Single Species Models of F.vesiculosus and S. balanoides ina Seasonal Environment
5.1 IntroductionA strong seaonality in the settlement of both S. balanoides and F. vesiculosushas been observed by many empiricists. There are small changes in timing fromyear to year, but general periods are found. These will be discussed separatelyfor the two species below.5.1.1 Seasonal settlement in S. balanoidesSeaonality in the settlement period of barnacles has been investigated by manyauthors (see for example, Connell, 1961a; Wethey, 1980; Hawkins & Hartnoll,1982a; Ca�ey, 1985; Gaines & Roughgarden, 1985; Wethey, 1985; Pannacciulli,1995). Much of the work on the settlement period has been direct, as daily densi-ties of cyprids are measured, but many di�erent results in both settlement periodand density are observed. For example, Hawkins & Hartnoll (1982a) investigatedthe settlement of S. balanoides on the Isle of Man between 1977 and 1981. Theyfound that cyprid settlement varied from a 40 day period in 1977 to a 90 day pe-riod in 1981. The start of settlement was found to vary between the end of Apriland mid-May. The end of settlement varied between June and the beginning ofJuly. Kendall et al (1985) found a similar pattern for Robin Hood Bay in 1978.However, peak settlement was much later at around the beginning of June.92



The settlement period of barnacles appears to be almost random, although Hawkins& Hartnoll (1982a) hypothesised that the timing is correlated with the algalbloom. Settlement patterns are not constant, peaks and troughs are observedthat appear to be random. Peak settlement rates have been correlated with anumber of factors including the strength of onshore winds (Hawkins & Hartnoll,1982a); maximum tidal range (Shanks, 1986); and increasing wave action and de-creasing shore height (Bertness et al, 1992). This temporal and spatial variationin settlement is not yet understood (Wethey, 1985).5.1.2 Seasonal settlement in F. vesiculosusSeasonal settlement has been suggested for F. vesiculosus (Knight & Parke, 1950;Hawkins, 1981a; Creed, 1993). The settlement period is between May and July(Knight & Parke, 1950; Creed, 1993). However, a lower background settlementhas also been observed, which suggests the presence of a seed bank (Ho�man &Santilices, 1991; Ang & De Wreede, 1993; Creed, 1993; Creed et al, 1996).The seed bank is supposed to operate in exactly the same way as in a terrestrialsystem and has been the subject of great debate. Hawkins (1981a) inadvertentlyfound data to support the presence of a seed bank. He looked at the succes-sional sequence of colonisation of barnacle covered rock and found that di�erentsuccessional sequences occur depending on the time of clearing. However, thereappears to be low background settlement of F. vesiculosus in all treatments,although recolonisation occurs fastest during the settlement season (July's exclu-sion). Creed (1993) has the best evidence for F. vesiculosus. He suggests fromextrapolation of data that there are a maximum of 26000 plants.m�2 available inthe spore/germling bank in September, two months after settlement is supposedto cease.5.1.3 Modelling AimsAs settlement of S. balanoides and F. vesiculosus is seasonal, the aim of thisChapter is to investigate single species models of the colonisation of bare rock byF. vesiculosus and S. balanoides in a seasonal environment. The seasonal com-ponent of the models is introduced into the most complicated models producedin Chapters 3 and 4. Phase locking is investigated as a possible mechanism forproduction of di�erent solution types. The model for F. vesiculosus will include93



settlement into the system from a seed bank in the period outside the settlementseason.
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5.2 Modelling S. balanoides in a Seasonal En-vironment5.2.1 The ModelIn this section seaonality is added to the logistic growth model (see Chapter 3).A step function is used to model seaonality, with constant settlement during theseason and none otherwise. Thus, the daily instantaneous settlement rate duringthe settlement season is de�ned as �, then the renewal condition is written as�F̂t = ( F̂ta0 �1� e��a0�a� Within the settlement season0 Otherwise (5.1)where � is the incremental settlement. This is used with equations (3.5)-(3.7)and (3.11) to implement seasonal settlement in the logistic growth model.Step functions of di�erent lengths were used to simulate `good' and `bad' set-tlement. Settlement was assumed to be better if the period of settlement waslonger. Three di�erent periods were used to simulate `good', `average' and `bad'settlement (see table 5.1).Table 5.1: Settlement periods and strength of the years settlement for the threemodels.Date of Settlement Season Strength of Settlement Number of Settlers8th Apr - 12th Aug `Good' High22nd Apr - 15th Jul `Average' Average6th May - 17th Jun `Bad' LowFourier TransformsFast Fourier Transforms (FFTs) were taken to investigate the periodicity of so-lutions. This allows investigation into whether solutions are phase locked. Asolution is phase locked when the natural period of the solution is synchronisedwith either the driving period or (sub-) harmonic of this period. When settlementis annual, the driving period of the model is 52 weeks or 1 year. It is necessary tolook at the periodicity of the constant environment models to discern the natural95



period of the system. This technique was used to determine whether a solutionis periodic or aperiodic.The FFT is a technique used in Fourier Transforms to cut the time and compu-tational power required to transform the data. The FFT algorithm requires farfewer additions and multiplications, as the number is proportional to number �[log2(number)] for FFT. For a normal Fourier algorithm the number of calcula-tions required is number2 (see Gonzalez & Woods, 1992, for a general review).The calculation of the FFT power spectra from the data was done using a pro-gram calledFFT, which is part of the solver suite of programs ( c
1994, STAMS,University of Strathclyde, Glasgow, G1 1XH, Scotland).5.2.2 SimulationGeneral ResultsThese solutions are found when settlement occurs between the 22nd April andthe 15th July. The steady state is oscillatory, as settlement only occurs duringa set period of the year. Thus, all solutions are oscillatory and can be periodic(see �gure 5.1) or aperiodic (see �gure 5.2). Aperiodic solutions are found at thetransition between the periods of oscillation, for example, when the period movesfrom one to two years or two to three years.Increasing � causes an increase in the amplitude of oscillation in the periodic
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Figure 5.1: A periodic solution (S =0:95, � = 102). time/Delta a
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Table 5.2: General results from the seasonal settlement model and the naturalperiod produced using the same parameters in a constant environment, wherethe - indicates aperiodicity (S = 0:95).Settlement Natural Period of Amplitude of SolutionRate (�) Period Oscillations Oscillations Type(weeks) (weeks)1 � 106 - 208 23.38 Periodic5 � 105 - 208 23.37 Periodic1 � 105 - 208 22.44 Periodic5 � 104 - 208 19.79 Periodic2 � 104 - 208 16.57 Periodic1 � 104 106 - - Aperiodic6 � 103 100 156 5.833 Periodic5 � 103 99 156 5.514 Periodic2 � 103 87 156 3.779 Periodic1:5 � 103 84 - - Aperiodic1 � 103 77 104 1.4303 Periodic5 � 102 68 104 1.047 Periodic2:5 � 102 62 52 0.230 Periodic1 � 102 2 52 0.151 Periodic1 � 101 2 52 0.025 Periodicsolutions. Aperiodic solutions are found at the change between annual periods(see table 5.2). The natural period shows that periodic solutions are phase lockedto the next great harmonic of the driving period.The aperiodic solutions were investigated using Fourier transforms. These solu-tions are produced when the natural and driving periods of oscillation are outof phase. If sums and di�erences of the natural and driving periods are presentthen the solutions are out of phase. If the natural period is not visible then thesolution is phase locked.When a periodogram of a periodic solution is calculated using FFT, a single peakand harmonics of that peak are found (see �gure 5.3). As only the driving periodand its harmonics are seen, the natural and driving period are in phase and thesolution is phase locked. However, when the solution is aperiodic, many peaks arefound with both the driving and natural periods present (see �gure 5.4). Thus,the aperiodic solutions are not phase locked.The age-class distribution given by the seasonal settlement model shows a similarpicture to the unstable solutions of the logistic growth model with cohorts passing97
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Figure 5.4: The power spectrum of anaperiodic solution, where the naturalperiod is 84 weeks (S = 0:95, � =1:5 � 103).through the age-classes.There is a general decrease in the period and the amplitude of the oscillations ofthe solutions with decreasing survivorship (see table 5.3). The aperiodic solutionsare again found at the changes in period of oscillations. The periodic solutionsstabilise to a single amplitude more quickly as survivorship is decreased. Theage-class distribution again shows cohorts moving through the age-classes, but asthe survivorship is decreased the cohorts die at an earlier age and more cohortsare found.Simulation of `Good' and `Bad' SettlementThere is a general increase in both amplitude and period with increasing � (see�gures 5.5 and 5.6). In the case of the amplitude the increase appears to belogistic. This logistic shape is not surprising as when � is increased then � ! 1=a0.Thus, as � reaches a limit then the period and amplitude will not increase further.The maximum period for S = 0:95 appears to be 208 weeks. When the periodchanges aperiodic solutions are found which accounts for the discontinuities inthe �gures. The natural period is generally less than the actual period suggestingthat the solutions lock to the harmonic of the driving period that is greater thatis greater than the natural period. 98



Table 5.3: The e�ect of decreasing the survivorship in the seasonal settlementmodel (� = 1 � 103) and the natural period, where the - indicates aperiodicity.Survivorship Natural Period of Amplitude of Solution(S) Period Oscillations Oscillations Type(weeks) (weeks)0.99 262 260 5.579 Periodic0.98 257 260 5.155 Periodic0.97 93 - - Aperiodic0.96 87 156 2.303 Periodic0.955 77 - - Aperiodic0.95 - 104 1.430 Periodic0.90 2 52 0.623 Periodic0.80 2 52 0.522 Periodic0.70 2 52 0.219 Periodic0.50 2 52 0.047 Periodic0.30 2 52 0.017 Periodic0.10 2 52 0.009 PeriodicThe e�ect of changing the strength of settlement has little e�ect on the amplitudeat low �, the `good' settlement always having a slightly larger amplitude. How-ever, if 103 < � < 5 � 104, then `good' settlement oscillates less than the `average'and `bad' settlement. This is because I could not �nd a solution for the `good'
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settlement that was stable with a period of 156 weeks. The period of the `good'settlement seems to jump straight from 104 to 208 weeks. Once � > 5 � 104, theamplitudes are very similar.5.2.3 DiscussionTwo types of solution are produced when seaonality is added to the model, pe-riodic 2-cycles and aperiodic. Although the model appears to produce 4- and6-cycles solutions these decay to 2-cycles over after over 38,000 years (> 106 timeunits).Periodic solutions are produced when the natural and driving periods of thesolution are phase locked. These solutions oscillate with a period of 52n (wheren = 1; 2; 3; : : :). Aperiodic solutions are not phase locked and are found wherethe period is close to increasing from 52n! 52(n+ 1).The mechanism that drives the model is the same as the model examined inChapter 3. Increasing S increases the period and amplitude of the solutions.This is because increasing the survivorship increases the potential of a cohort toincrease in area over time. This, as we know from Chapter 3, is a destabilisingmechanism. Increasing S causes more individuals to survive to larger area andthus, the proportion of occupied space increases. This increases the amplitude ofthe 
uctuations. As the occupied space is higher, increasing S causes the systemto take longer to relax back to the state where more settlement can occur andthus the period of the solution is longer.Increasing � causes an increase in period and amplitude of the 
uctuations. Againa similar explanation to the increase in S can be given. Increasing � increasesthe density of individuals that settle, which increases the ability of the cohortto increase in area. As the cohort has a larger increase in area then the systemrequires longer to return to the same state, thus increasing the period of theoscillations.The e�ect of `good', `average' and `bad' settlement is not as clear. There isa general increase in amplitude and period when � is increased in all of thesettlement types. When � � 103, the expected pattern is found with the longersettlement period having solutions with a slightly longer period and amplitudethan other settlement types. This is consistent with the conclusions in Chapter3 where we found that � limited the area occupied at equilibrium at low values.100



However, when 103 < � � 105 the `bad' and `average' solutions have larger periodand amplitude than the `good' settlement. This appears to be because this regionis full of aperiodic solutions and it was hard to �nd any periodic solutions for thesevalues of �. Also this may be moving into a region where settlement is not limitingthe proportional occupied space. When � � 105 all the settlement types havevery similar period and amplitude. This is because at high values of � settlementdoes not limit the area occupied and thus these periods would be very similar asthere is no di�erence in the area of an individual or survivorship.5.3 Modelling F. vesiculosus in a Seasonal En-vironment5.3.1 The ModelIn this section seaonality is added to the parameterised model (see Chapter 4).Seasonal settlement is modelled in exactly the same way as for S. balanoidesusing a step function. The daily instantaneous settlement rate from the watercolumn within the settlement season is de�ned as �, and 0 otherwise. In this casethe settlement of fucoids is allowed outside the settlement season from a bankof propagules called the seed bank. To model the presence of the seed bank, allpropagules that are not able to settle are assumed to enter the seed bank. Thesepropagules su�er a constant mortality and can settle at a rate proportional tothe available space outside the settlement season. Thus, the renewal condition is�F̂t = 8<: F̂t h1� e��c0�ti = (�c0) Within Settlement Season�tF̂t Otherwise (5.2)where �t is the number of propagules in the seed bank at time t. The seed bankrenewal can be written as�t+�t = 8<: �t#+ � �1� F̂t� Within Settlement Season�t# �1� F̂t� Otherwise (5.3)where # is the survivorship of propagules in the seed bank from t ! t + �t.Equations (5.2) and (5.3) are used with equations (4.15)-(4.18) and (4.20) toimplement seasonal settlement in the model.101



The amplitude and period of periodic solutions was investigated. If the solutionwas not periodic then the phase locking of the solution was investigated.Di�erent strengths of settlement were investigated using di�erent lengths of stepfunction. The longer the length of the step in the function the more propagulesare available to settle. Thus, longer settlement periods mimic years with increaseslarval supply and vice versa. The period of settlement is assumed to be betweenthe start of May and the end of July (Knight & Parke, 1950). Thus, an `average'settlement period for F. vesiculosus is from the 6th May - 15th July in any givenyear. `Good' and `bad' settlement period are 6 weeks longer or shorter respectively(see table 5.4).Table 5.4: Settlement periods and strength of the years settlement for the threemodels.Date of Settlement Season Strength of Settlement Number of Settlers22nd Apr - 12th Aug `Good' High6th May - 15th Jul `Average' Average20th May - 17th Jun `Bad' Low
5.3.2 SimulationIn this section, the mechanism driving the dynamics produced by the model isexamined. This simulation uses runs with `good' settlement, ie the settlementseason is between 22nd April and 12th August. Investigations are done of thee�ect of the seed bank survivorship (#) and the daily instantaneous settlementrate ( �) on the type, period and amplitude of solutions. Di�erent strengths ofsettlement will then be considered by shortening the step function.General ResultsThe steady state in this model is oscillatory and thus, all the solutions are oscil-latory. A wide range of behaviour is exhibited by this model, including periodic,4-cycle, 28-cycle and aperiodic solutions (see �gures 5.7 - 5.10 respectively).The mechanism that drives this model is di�erent to that found in the barnaclemodel. Settlement into this system is from 2 sources and periodic solutionscan have settlement from outside and/or the seed bank in a regular order (see102
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Figure 5.7: A periodic solution (� = 5,# = 0:9). time/Delta t
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Figure 5.10: An aperiodic solution (� =5000, # = 0:9).
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Figure 5.11: Settlement from the seedbank (dotted line) and from outside(dashed line) into a periodic solution(� = 5, # = 0:9).
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Figure 5.12: Settlement from the seedbank (dotted line) and from outside(dashed line) into a 4-cycle solution(� = 80, # = 0:9).
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Figure 5.13: Settlement from the seedbank (dotted line) and from outside(dashed line) into a 6-cycle solution(� = 230, # = 0:9).
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Figure 5.14: Settlement from the seedbank (dotted line) and from outside(dashed line) into an aperiodic solution(� = 5000, # = 0:9).for example �gure 5.11). Thus, phase locking occurs. 4-cycle solutions havealternate settlement from the seed bank and from outside the system (see �gure5.12). These solutions are also phase locked, but are locked to one of the sub-harmonics of the driving period. A similar situation is found for the 28-cycle,with settlement coming from outside the system and smaller settlement coming104



from the seed bank (see �gure 5.13). Again these solutions are phase locked toone of the sub-harmonics of the driving period. The aperiodic solutions are notphase locked, settlement can come from either source and has no pattern (see�gure 5.14). It is useful to note at this stage that the majority of settlement isfrom the seed bank. This is not a realistic situation, on a rocky shore most of theplants come from the heavy output of propagules settling during the settlementseason. This suggests that in these simulations the seed bank survivorship (#)needs to be reduced.The input into the system from a combination of two sources drives the dynamics.This can be seen by looking at the behaviour of the model as the seed bank is shutdown. At high seed bank survivorship the solutions are not simple 2-cycles. Asthe survivorship is decreased then the solutions become stable and the amplitudeand period decrease (see table 5.5). However, decreasing # further cause �rstunstable solutions then an increase in the period and amplitude of the solutions(see table 5.5).Table 5.5: Decreasing the survivorship in the seasonal settlement model (� =5 � 102, natural period is 147 weeks).Seed Bank Period of Amplitude of SolutionSurvivorship Oscillations Oscillations Type(#) (weeks)0.99 - - Aperiodic0.97 - - 4-cycle0.95 156 2.484 Periodic0.90 104 0.579 Periodic0.85 - - Aperiodic0.80 - - Aperiodic0.70 - - 4-cycle0.60 156 1.527 Periodic0.50 156 1.547 Periodic0.30 156 1.551 Periodic0.10 156 1.551 Periodic0 156 0.009 PeriodicFurther investigation of this shows that phase locking and the seed bank combineto produce these dynamics. When � = 5 � 102, the aperiodic solution producedwhen # = 0:99 show that the natural and driving periods of the solution are notphase locked. Settlement occurs from both the seed bank and outside the system,but does not occur in an orderly pattern. Thus, creating this aperiodic solution.105



4-cycles are produced by input from both these settlement sources. The naturalperiod of the oscillations doubled, locks to the some multiple of the driving period.2-cycles can occur by 2 di�erent mechanisms. Settlement can be entirely fromoutside, for example � = 5 � 102 and # = 0 or can be entirely from the seedbank, for example � = 5 � 102 and # = 0:9. Settlement entirely from the seedbank causes larger oscillations as the space is �lled more quickly when the seedbank survivorship is high. This is because the seed bank accumulates a highernumber of propagules. As the seed bank survivorship is decreases, the periodand amplitude of solutions decreases initially. This is because the settlementfrom the seed bank is less. However, when the seed bank survivoship is low thenthe period increases as more free space becomes available and a larger proportionof the settlement from outside can settle.Finally it is useful to note increasing settlement (�) is generally destabilising (seetable 5.6) as in the case of the barnacle model. This is hardly surprising as fromChapter 4 we know that increasing the number of propagules available to settle,increases the potential increase in area of a cohort and is therefore a destabilisingmechanism.Table 5.6: Increasing settlement in the seasonal settlement model and the naturalperiod where the - indicates aperiodicity (# = 0:9).Settlement Natural Period of Amplitude of SolutionRate (�) Period Oscillations Oscillations Type(weeks) (weeks)1 � 105 - 208 12.12 Periodic5 � 104 - 208 12.12 Periodic1 � 104 - 208 12.06 Periodic5 � 103 - - - Aperiodic1 � 103 156 - - Aperiodic5 � 102 145 - - Aperiodic1 � 102 122 156 2.565 Periodic5 � 101 112 104 0.579 Periodic1 � 101 91 104 0.361 Periodic5 � 100 2 52 0.041 Periodic1 � 100 2 52 0.017 Periodic
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Figure 5.16: The amplitude of os-cillations for models with di�erentstrengths of settlement, where the solidline indicates the natural period.Simulation of `Good' and `Bad' SettlementAs can be seen from �gures 5.15 and 5.16, there is a general increase in theperiod and amplitude of oscillations with increasing settlement. This is hardlysurprising as we indicated in Chapter 4 that increasing the settlement rate wasdestabilising. It is very hard to �nd periodic solutions for the `average' and `bad'settlement strength above a settlement rate of about 400. However, at settlementlevels below this there appears to be a generally higher period and amplitude forthe higher strengths of settlement (see �gures 5.15 and 5.16). It is generally thecase that the natural period is lower than the solutions and thus locks to the nexthighest harmonic of the driving period.5.3.3 DiscussionAdding seaonality to these models causes the steady state to be oscillatory, assettlement only occurs during a set period of the year. Thus, stable equilibriacannot be reached as the area entering the system cannot balance the area leavingthe system throughout the year.A much wider range of dynamics are produced by the model when seaonalityis added. Stable periodic 2-cycle, anything from 4- to 28- cycle and aperiodicsolutions are produced. This is because of the two sources of settlement in this107



model, the seed bank and from outside.The mechanism that drives this model is more complicated than the seasonalbarnacle model. This is because of the two separate sources of settlement. Thetype of solution produced is to do with the degree of phase locking between thenatural and driving periods. However, the seed bank also in
uences the dynamicsand settlement can occur at any stage from this bank. There are two ways ofobtaining periodic solutions, although all of these solutions are phase locked.Firstly, the seed bank and the natural period of the solutions are phase locked tothe driving period of the solution. Secondly, either the seed bank or the outsidesettlement is phase locked to the driving period of the solution. Point-cycles areproduced when the natural period of the solution is locked to a sub-harmonic ofthe driving period. The lower the sub harmonic the higher the number of points.Aperiodic solutions are not phase locked and are produced when settlement canoccur from either of the two source of settlement with no obvious pattern.Increasing the settlement rate into the system increases the period and amplitudeof the cycles. This is hardly surprising as we showed that increasing the settlementrate was a destabilising mechanism in Chapter 4.Decreasing the seed bank survivorship is �rst stabilising then destabilising. Thisis because of the free space is able to drop to a lower value when there is noseed bank and thus the free space is �lled with more propagules. The seed banksurvival used in the simulations is probably too high as most of the settlementappears to come from the seed bank in all the runs. This suggests that if thereis a seed bank on a rocky shore it would su�er large mortality and have lowprobabilities of escape.Di�erent strengths of settlement cause generally little di�erence in the model.Generally the `good' settlement had a higher period and amplitude than thelower settlement. This is hardly surprising as again the `good' settlement impliesthat although the rate of settlement is the same more propagules are able tosettle. This is obviously destabilising as shown in Chapter 4.5.4 DiscussionIn this section we will compare the barnacle and fucoid models and then examineboth of these models in a biological context. Before embarking on this it is usefulto note that these models have all the biological shortcomings expressed in the108



discussions of Chapters 3 and 4, except of course they both have distinct discretesettlement periods.The models of barnacle and fucoid settlement have fairly similar dynamics despitethe di�erence in formulation. This is highlighted in the discussions of Chapter3 and 4. When a seasonal component is added to the model the behaviour isstill similar. Both models produce cyclic and aperiodic dynamics and the phaselocking mechanism is similar. However, the big di�erence between the models iscaused by the addition of a seed bank to the fucoid model. This causes a muchricher spectrum of dynamics to be found in the fucoid model as there are threecyclical mechanisms that need to phase lock.Biologically these models are still very unrealistic and require addition of manyparameters (see discussion of Chapters 3 and 4). The very simple components ofbiological dynamics that are predicted is that the populations cycle or producesome kind of aperiodic behaviour. However, the proportional occupied spacevalues of 23 and 12 for the barnacle and fucoids respectively (see tables 5.2 and5.6) seem rather high. In e�ect, this means that on a shore this would indicate23 layers of barnacles on top of each other or 12 times the maximum amount ofcanopy that an area of bare rock can support. This suggests that both of thesemodels exhibit over-occupancy at high settlement rates. The reason that thisoccurs is the absence of density-dependent survivorship from these models. Thiswould dampen the oscillations in both models.The main settlement of fucoids is in a known period between May and July(Knight & Parke, 1950). If the survivorship of the seed bank is low, then set-tlement in the model is driven mainly by the seasonal settlement. However, ifthe seed bank survivorship is high, then settlement in the model is mainly fromthe seed bank and the seasonal component has little e�ect. As this is not thecase in the real system, it is possible to hypothesise that if a seed bank exists themortality associated with propagules in the bank is very high. However, exper-imental tests of this hypothesis are di�cult as the is no conclusive evidence forthe existence of a seed bank. This is because it is impossible to tell propagulesapart on the shore, they have to be grown in the laboratory.
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Chapter 6A Two Species Model for F.vesiculosus and S. balanoides ina Constant Environment
6.1 Introduction6.1.1 General IntroductionOn moderately exposed rocky shores S. balanoides and F. vesiculosus are knowto compete for space. This competition results in the presence or absence of eachof these species having a direct e�ect on the abundance of the other.The limpet, P. vulgata, is a keystone predator in the system studied. It grazesupon the microalgal �lm, removing juvenile fucoids. Inhibition of this grazinghas a marked e�ect on the abundance of fucoids. This has been illustrated manytimes, but probably the best example was when Jones (1948) removed limpetsfrom a strip of shore 5m wide. He found that there was a massive increase in thebiomass of algae in that strip.The grazing pressure of limpets is decreased by the presence of S. balanoides(Hawkins & Hartnoll, 1982b). This is because of increased seabird predationof limpets (Feare & Summer, 1985) and aggregation of limpets elsewhere wheregrazing is less disrupted by a barnacle matrix or dessication stress is lower (Hart-noll & Hawkins, 1985). Once the fucoids are greater than about 3cm in lengththen they are too big to be grazed by limpets (Proud, 1994) and are known as`escapes'. Thus, the presence of barnacles enhance the the ability of fucoids tosettle an area of rock. 111



Once the fucoids have escaped grazing by P. vulgata, they continue to grow on thebarnacle matrix. This attachment is not as secure as the bare rock, so once theplants reach a certain size many are lost (Proud, 1994). The sweeping a�ect ofthe canopy of these plants disrupts the feeding of the barnacles, by the bu�etinge�ect and disruption of water 
ow (Barnes, 1955; Proud, 1994). Thus, many ofthe older barnacles die. Limpets tend to aggregate under the fucoid canopy asdessication stress is lower (Hartnoll & Hawkins, 1985). The sweeping e�ect ofthe canopy (Barnes, 1955; Hawkins, 1983; Jenkins, 1995) and limpet bulldozing(Miller & Carefoot, 1989) inhibits the settlement of new barnacles. Thus, thepresence of fucoids inhibits the ability of barnacles to colonise an area of rock.6.1.2 ModellingVast amount of time and money have been spent on modelling two species inter-actions in terrestrial and marine closed systems. However, very little work hasbeen done on two species models of rocky shores.Iwasa & Roughgarden (1986) looked at interspeci�c competition among metapop-ulations with space-limited subpopulations. Their metapopulation is not openbut each of the subpopulations are, with larvae produced being contributed to acommon pool. The general results are the number of species found is less thanor equal to the number of distinct habitat types and where species coexist eachspecies will have areas where their productivity relative to their larval mortality ishigher than the other species. They examined the two species case. If both of thehabitats are net sources of larvae, then the interspeci�c competition is the sameas the classic Lotka-Volterra models. However, if one of these habitats is a sinkthen the existence of a species may require its competitor; a species that cannotinvade an empty space may be able to invade if the other species is present; andone invading species may result in the extinction of both species.Possingham & Roughgarden (1990) modelled mesoscale current features andcoastal habitats in order to predict the distribution and abundance of the barnacleBalanus glandula. The adults on the coast are limited by recruitment, mortalityand the availability of suitable habitat. They found that the persistence of apopulation was dependent upon the amount of suitable habitat; larval mortality;the along shore 
ow �eld; and initial conditions.
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6.1.3 Modelling AimsAs competition on the rocky shore is essentially for the resource of space, twodimensional models can be constructed. The aim of this chapter is to producea two species model of F. vesiculosus and S. balanoides in a constant environ-ment. This discrete time model is based upon the single species models producedin Chapters 3 and 4. However, here the models are linked using generalised as-sumptions of interactions between the two species taken from the literature. Thisdiscrete time model represents the sixth to the second stage of the cycle shownin �gure 1.2.Investigation of this model will be mainly by simulation despite the fact that thesteady states are derived. Simulation will use a set of parameters found in theliterature. These will be varied by the maximum degree of error associated withthe parameter. The mechanisms controlling the dynamics will be investigatedusing the behaviour of the sub-models.
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6.2 The ModelThis two species model was constructed by joining the single species models forS. balanoides and F. vesiculosus described in the previous chapters. The case ofthe constant environment is examined as it is a more simple case.This model makes a number of assumptions:1. The survivorship functions of F. vesiculosus (SF ) and S. balanoides (SB)are known and constant with respect to time and age.2. The mean size range of F. vesiculosus sizes is known.3. The area at age function of S. balanoides is known.4. Negative free space cannot exist.5. All individuals in the same age-/size- class are of the same size.6. There is a maximum canopy area that a given area of rock can support.7. S. balanoides enhances the settlement of F. vesiculosus as a known function.8. F. vesiculosus decreases the settlement of S. balanoides as a known function.9. Settlement is constant and is only into the �rst age-/size- class.10. F. vesiculosus can only be promoted one size-class with probability P orremain in the same class with probability 1� P .11. F. vesiculosus in the �nal size-class (Q+1) cannot be promoted or demoted.12. S. balanoides in the �nal age-class (N+1) all die at the end of that timestep.The free space at time t (Ft) is the total available area (A) minus the occupiedspace (At), ie Ft = [A� At]+where the plus denotes that free space cannot be negative. The occupied spaceis the sum of the area occupied by fucoids at time t (Ct) and the area occupiedby barnacles at time t (Bt), or 114



Ft = [A� (Bt + Ct)]+ : (6.1)Bt can be expressed as the sum of the area of an individual barnacle in age-classk (aBk ) multiplied by the number in age-class k at time t (nBk;t)Bt = NXk=0 aBk nBk;t: (6.2)In a similar way Ct can be expressed, however it is necessary to scale the area ofrock that an individual occupies (aFj ) to the actual individual canopy area (cj)using a constant, �, where � = aFj =cj. Thus Ct can be expressed asCt = QXj=0�cjnFj;t (6.3)where nFj;t is the number of plants in size-class j at time t. The update rules forboth barnacles and fucoids are easy to describe. These rules model the populationfor every age-/size- class apart from j; k = 0. The barnacles will age at a constantrate �a which is equal to the time step �t. If a proportion SB survive in theinterval t! t+�t, thennBk;t+�t = SBnBk�1;t k = 1; 2; : : : ; N: (6.4)A similar argument is used for the fucoids. If SF is the proportion that survivein the interval t! t+�t, P of which are promoted, thennFj;t+�t = PSFnFj�1;t + (1� P )SFnFj;t j = 1; 2; : : : ; Q� 1 (6.5)nFQ;t+�t = PSFnQ�1;t + SFnFQ;t: (6.6)Note that as individuals cannot be promoted from size-class Q, so a di�erentupdate rule is required and that promotion happens implicitly at the end of atime step. 115



The renewal conditions are slightly more complicated to construct and assumethat settlement is proportional to free space. An assumption is made that the set-tlement of barnacles is inhibited by fucoids. Thus, barnacle settlement is relatedto the area occupied by fucoids and the incremental settlement (or settlementper proportional space per unit time, �) ie f1(�; Ct). A piece wise function with2 thresholds is used to model this relationship. Below the lower barnacle thresh-old (�) fucoids do not a�ect barnacle settlement and above the upper barnaclethreshold (�) no barnacles can settle. Thus, ifnB0;t+�t = f1(�; Ct)Ft (6.7)where,
f1(�; Ct) = 8>><>>: � 0 � Ct < �h��Ct��� + 1i� � � Ct < �0 � � Ct: (6.8)A graphical representation of equation (6.8) can be seen in �gure 6.1.A similar argument can be constructed for the renewal condition for the fucoids.If � is the incremental settlement (or settlement per proportional space per unittime) then the renewal condition for the fucoids can be written asnF0;t+�t = f2(�; Bt)Ft + (1� P )SFnF0;t (6.9)where,
f2(�; Bt) = 8>><>>: 0 0 � Bt < 
hBt�
��
 i � 
 � Bt < �� � � Bt ; (6.10)and 
 and � are the lower and upper fucoid interaction thresholds respectively. Agraphical representation of equation (6.10) can be seen in �gure 6.2. It is usefulto note that 0 � �, �, �, 
 � 1, � � � and 
 � �.116
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�B0;t+�t = f1(�; Ĉt)F̂t (6.14)�Bk;t+�t = SB�Bk�1;t k = 1; 2; : : : ; N (6.15)�F0;t+�t = f2(�; B̂t)F̂t + (1� P )SF�F0;t (6.16)�Fj;t+�t = PSF�Fj�1;t + (1� P )SF�Fj;t j = 1; 2; : : : ; Q� 1 (6.17)�FQ;t+�t = PSF�FQ�1;t + SF�FQ;t: (6.18)where,
f1(�; Ĉt) = 8>><>>: � 0 � Ĉt < �h��Ĉt��� + 1i� � � Ĉt < �0 � � Ĉ (6.19)f2(�; B̂t) = 8>><>>: 0 0 � B̂t < 
h B̂t�
��
 i � 
 � B̂t < �� � � B̂t: (6.20)6.2.1 Settlement FunctionsClearly, as in Chapters 3 and 4, the incremental settlement cannot increase with-out bound, as this would produce spurious stability boundaries and be biologicallyunrealistic. So, in this case a similar argument is used as in the single species.The relationship between incremental and daily instantaneous settlement rate isassumed to be asymptotic (see Chapters 3 and 4 for a full description).If � and � are the the rates at which cyprids/propagules become available to settlefrom the water column m�2:d�1 for barnacles and fucoids respectively, then wede�ne the settlement functions as� = 1a0 �1� e��a0�t� (6.21)� = 1�c0 �1� e���c0�t� : (6.22)

118



6.3 Derivation of the Steady StatesThe steady states of this model are fairly complicated, thus inferences on themechanisms and dynamics are di�cult to draw. As a result, the steady stateswill be derived, although little investigation of these states will be done. Thederivation is done in a similar way to the previous models. At equilibriumF̂t+�t = F̂t = F̂ �B̂t+�t = B̂t = B̂�Ĉt+�t = Ĉt = Ĉ��Bk;t+�t = �Bk;t = �B�k�Fj;t+�t = �Fj;t = �F�j :Substitution of the steady states into equations (6.14) - (6.15) and a little simplealgebra gives the steady states for the barnacles as�B�0 = f1(�; Ĉ�)F̂ � (6.23)�B�k = lk�B�0 k = 1; 2; : : : ; N (6.24)where lk = �SB�k. Similarly the steady state values of fucoids are found bysubstitution of state state variables into equations (6.16) - (6.18). A little simplealgebra gives �F�0 = f2(�; B̂�)F̂ � (6.25)�F�j = �j�F�0 j = 1; 2; : : : ; Q� 1 (6.26)�F�Q = �̂Q�Q�1��0: (6.27)where,  = 1� (1� P )SF ;�j =  PSF !j119



and �̂Q = PSF1� SF :There are two piece functions in the steady states used to link area occupiedby fucoids to the barnacle settlement (see equation (6.8)) and area occupied bybarnacles to the fucoid settlement (see equation (6.10)). Thus, nine separatecases of the steady states must be derived (see table 6.1). When each case isderived only the calculation of �B�0 and �F�0 are stated as the calculation of theremaining age- or size- classes is done using equations (6.24), (6.26) and (6.27).Table 6.1: The steady states.0 � Ĉ� < � � � Ĉ� < � � � Ĉ�0 � B̂� < 
 Case 1 Case 2 Case 3
 � B̂� < � Case 4 Case 5 Case 6� � B̂� Case 7 Case 8 Case 9Case 1When 0 � Ĉ� < � then f1(�; Ĉ�) = � and when 0 � B̂� < 
 then f2(�; B̂�) = 0.Let AB0 = NXk=0 aklkAF0 = Q�1Xj=0 �cj�j +�cQ�Q�1�̂Q:Substitution of equations (6.24) and (6.26) into (6.11) givesF̂ � = [1� (B̂� + Ĉ�)]+ (6.28)where 120



B̂� = �B�0 AB0 ; (6.29)and Ĉ� = �F�0 AF0 : (6.30)The incremental settlement is �, and thus, from equation (6.23)�B�0 = � h1� (AB0 �B�0 + AF0 �F�0 )i= 1� AF0 �F�01=� + AB0 : (6.31)When f2(�; B̂�) = 0 then �F�0 = 0 and there are no fucoids present at the steadystate. Thus, from equation (6.31)�B�0 = �1 + �AB0 : (6.32)It is useful to note that, not unsurprisingly, the equilibrium steady state foundwhen there are no fucoid propagules is the same as the steady state found in thesingle species barnacle model.Case 2Case 2 is found when � � Ĉ� < � and 0 � B̂� < 
. Thus, f1(�; Ĉ�) = �[(� �Ĉ�)=(� � �)] and f2(�; B̂�) = 0. If f2(�; B̂�) = 0, then Ĉ� = 0 and �F�0 = 0.Substitution into equation (6.23) and simpli�cation gives�B�0 = ��� � � + ��AB0 (6.33)Case 3Case 3 is found when � � Ĉ� and 0 � B̂� � 
. Thus, the settlement of barnaclesand fucoids are f1(�; Ĉ�) = 0 and f2(�; B̂t) = 0 respectively. This case obviouslyresults in the zero steady state. 121



Case 4Case 4 is found when 0 � Ĉ� < � and 
 � B̂� < �. Thus, the settlementof barnacles and fucoids is f1(�; Ĉ�) = � and f2(�; B̂�) = �(B̂� � 
)(� � 
)respectively. Combining equations (6.25) and (6.28) - (6.30) and solving for �F�0gives �F�0 = � ��B�0 AB0 � (�B�0 AB0 )2 � 
 + 
�B�0 � � �  
 + ��B�0 AB0 AF0 � �
AF0 : (6.34)Similarly, combining equations (6.23) and (6.28) - (6.30) and solving for �F�0 gives�F�0 = ��B�0 � � + ��B�0 AB0�AF0 : (6.35)As equations (6.34) and (6.35) are equal, combination gives a quadratic in �B�0 .This can be solved using the quadratic formula and the two solutions back sub-stituted into equation (6.34) or (6.35) to give �F�0 .Case 5Case 5 is found when � � Ĉ� < � and 
 � B̂� < �. Thus, the barnacle and fucoidsettlement is f1(�; Ĉ�) = �(� � Ĉ�)=(� � �) and f2(�; B̂t) = �(B̂� � 
)(� � 
)respectively. Combining equations (6.25) and (6.28) - (6.30) and solving for �F�0gives
�F�0 = �� ���B�0 AB0 �2 � (
 + 1)AB0 �B�0 + 
���B�0 AB0 AF0 � �
AF0 �  
 +  � : (6.36)Similarly, combining equations (6.23) and (6.28) - (6.30) and solving for �B�0 gives
�B�0 = �� ���F�0 AF0 �2 � (� + 1)AF0 �F�0 + ����F�0 AF0 AB0 � ��AB0 � � + � : (6.37)Substitution of equation (6.37) into (6.36) gives a cubic equation in �F�0 . This canbe solved using the cubic formula and the three roots can be back substituted122



into equation (6.37) to get the three steady states for �B�0 . Note that the steadystate must be real and positive, thus there can be either one or three possiblesteady states from this case.Case 6When � � Ĉ� then f1(�; Ĉ�) = 0 and �B�0 = 0. When 
 � B̂� < � thenf2(�; B̂t) = �(B̂�� 
)(�� 
). Combining equations (6.25) and (6.28) - (6.30) andsolving for �F�0 gives �F�0 = 
� (
 � �) + �
AF0 : (6.38)Case 7When � � Ĉ� then f1(�; Ĉ�) = � and when 
 � B̂� < � then f2(�; B̂t) = �. Sub-stitution of these conditions into equations (6.25) and (6.28) - (6.31) respectively,gives �B�0 = 1AB0 � " + �AF0�AB0 # �F�0 ; (6.39)and �B�0 = � �1� �F�0 AF0 �1 + �AB0 : (6.40)Equations (6.39) and (6.40) are equal, so combining and solving for �F�0 gives�F�0 = � +  �AB0 + �AF0 : (6.41)Back substitution gives �B�0 =  � +  �AB0 + �AF0 : (6.42)123



Case 8When � < Ĉ� � � then f1(�; Ĉ�) = �[(B̂�� Ĉ�)=(���)] and when � � B̂� thenf2(�; B̂t) = �. Combining equations (6.25) and (6.28) - (6.30) and solving for �B�0gives �B�0 = �(�AF0 +  )�F�0 � ��AB�0 : (6.43)Similarly, combining equations (6.23) and (6.28) - (6.30) and solving for �B�0 gives
�B�0 = �� ���F�0 AF0 �2 � (� � 1)�F�0 AF0 + ����F�0 AF0 AB0 � � + �� ��AB0 : (6.44)Clearly equations (6.43) and (6.44) are equal. If these equations are combined aquadratic in �F�0 is produced and may be solved using the quadratic formula. Ifthe two solutions for �F�0 are back substituted into equation (6.43) or (6.44) thenthe steady states for �B�0 may be obtained.Case 9When � < Ĉ�, f1(�; Ĉ�) = 0 and �B�0 = 0. When � < B̂� then f2(�; B̂�) = �.Combining equations (6.25) and (6.28) - (6.30) and solving for �B�0 gives�F�0 = � + �AF0 : (6.45)Not unsurprisingly this steady state is the same as the steady state derived forthe single species fucoid model.6.4 Parameter EstimationInvestigation of the entire parameter space of this discrete two species modelwould involve at least 10 values of each parameter. For 9 parameters 109 sim-ulations would be required to investigate the parameter space completely. As124



this is not feasible in the time scale of this project, simulation has to be moretargeted. The aim of this targeting is to examine the behaviour of the modelusing parameter sets around the observed values from literature. There will be alarge degree of error associated with parameter estimates, as the methods usedto acquire these parameters are quite crude. However, an upper and lower limitfor the parameter will also be investigated, which, where possible, will involvevariation of plus or minus an order of magnitude.6.4.1 S. balanoidesIn this section data are used from the literature to estimate parameter values forS. balanoides. Although a lot of work has been done on S. balanoides, much isinapplicable to this study, so only a few data sets can be used.SettlementThe �rst thing that should be noted about this parameter is that there is a hugevariation in the daily instantaneous settlement rates per unit area along boththe temporal and spatial scales (Hawkins & Hartnoll, 1982a; Kendall et al, 1982;Wethey, 1984, 1985). Thus, this parameter is estimated using crude, quick andeasy methods.Hawkins & Hartnoll (1982a) measured daily settlement patterns of S. balanoidesat Kallow Point, Port St. Mary, Isle of Man, in 1978 and 1979 (see �gure 2,Hawkins & Hartnoll, 1982a). These data were scaled to produce daily instan-taneous settlement per m2. As the settlement density 
uctuates, a mean of thedaily settlement rate was taken. This gives estimates for the daily instantaneoussettlement rate (�) of 1206 and 977 for 1978 and 1979 respectively. The mean ofthese values gives an estimate of � = 1091.Other estimates of � can be obtained from the data of Kendall et al (1982). Theypresented settlement data for the N.W. of Scotland and N.E. England. Theymeasured 7 di�erent sites at each of these locations and provided maximums,minimums and standard deviations for their data (see table 6.2). If the meansfor the sites in Scotland are averaged and scaled to individuals:m�2:d�1, then �is estimated at 17,000. A similar technique for English sites gives � = 9143.Data of numbers:cm�2:d�1 can be estimated from �gure 2, Kendall et al (1982)for Robin Hood Bay in 1978. They measured settlement on 5 high and 5 low125



Table 6.2: Barnacle settlement rates for 2 week intervals (numbers:cm�2).NW Scotland Site1 2 3 4 5 6 7Maximum 14.8 17.4 89.0 53.6 74.0 35.0 45.9Minimum 4.2 1.7 9.0 13.4 11.0 3.4 5.4Mean 9.1 4.8 32.5 35.8 39.5 19.3 25.7Sd 3.6 2.5 27.5 15.8 28.0 9.4 12.5NE England Site1 2 3 4 5 6 7Maximum 20.4 23.2 39.8 40.0 19.7 14.3 14.2Minimum 2.0 6.3 3.8 1.8 1.3 1.7 1.5Mean 10.1 13.9 17.2 18.6 12.4 9.2 8.2Sd 5.8 5.1 11.6 12.7 5.9 4.2 4.4shore sites. The settlement rates can be estimated from the graph and the meansettlement rate can be derived. When scaled to numbers:m�2:d�1, then � isestimated at 2237 and 5583 for the low and high shore sights respectively. Themid-shore is found between the high and low shore. If it is assumed that thereis continuous gradient between the high and low shore, then the average of theseshould give an estimate of the settlement on the mid-shore (albeit very rough!).This gives an estimate of � = 3910 individual:m�2:d�1.The estimates for N.W. Scotland and N.E. England from Kendall et al (1982) areprobably a bit higher than would be expected on the Isle of Man. There are tworeason for this. Firstly, the estimates for N.W. Scotland will have a higher degreeof exposure and thus, have a higher larval supply (Hawkins & Hartnoll, 1982a).Secondly, the Isle of Man is a locally recruiting population and thus will havelower levels of settlement than mainland sites, for example the Menai Straits,Wales (Hawkins & Hartnoll, 1982a). For this reason I will use an estimate of� = 2000 and vary the estimate by an order of magnitude in each direction. Thisestimate is slightly higher than the estimate obtained from Hawkins & Hartnoll(1982a), but larval sampling is di�cult and ine�cient.
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SurvivorshipThe barnacle survivorship has been estimated using data from Pannacciulli (1995).She examined the survivorship of di�erent sub-cohorts of S. balanoides a CellarBeach, North Devon using photographic time series (see �gure 6.3). This is amoderately exposed shore, facing north-north-west and is fairly steep sloping. Ihave used her data from MTL (3:3m above chart datum) and assumed that thereis no di�erence in mortality between the sub-cohorts. This allows the assumptionthat all the individuals settle on the same day and gives a much larger data set.A curve was �tted through the adjusted data set using a non-linear least squaresmethod in Splus ( c
1989, 1991 Statistical Sciences, Inc.). The curve �tted wasof the form Survivorship = Sagewhere S is the daily survivorship and age is the age of the barnacle in days. Thisgave a good �t with a residual sum of squares of 2.039921 and a standard errorof 0.171942 (see �gure 6.4). This gave an estimate that S = 0:984477. This is adaily survivorship and to get an estimate of SB it is necessary to scale this valueto produce a survivorship in the interval t! t+�t or per two week period. Thisgives an estimate of SB = 0:8033051.
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Figure 6.3: Survivorship of di�erentsub-cohorts found at MTL on CellarBeach (Pannacciulli, 1995). Age (Days)
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This estimate of survivorship seems a bit low. This is possibly because of the factthat although this beach is moderately exposed, if the tide is high and the wind isblowing in the right direction waves break directly onto the shore (Pannacciulli,1995). This shore is also crowded (pers. obs.) and thus, may have a highermortality than would be expected on the Isle of Man. For this reason, 0.8 is setas the lower limit on the parameters and use 0.875 as `normal' estimate and 0.95as the upper limit.6.4.2 F. vesiculosusThe estimation of demographic parameters for F. vesiculosus is much more chal-lenging than for S. balanoides. Many more tenuous assumptions (leaps of faith!)must be made in this section as this species is not as well reported.SettlementThis parameter is probably the most di�cult to estimate. This is because verylittle work has been done on recruitment in fucoids, as the propagules are verydi�cult to identify unless they are brought back to the laboratory and grown.Knight & Parke (1950) estimated that a large plant of F. vesiculosus may have1000 receptacles each containing a maximum of over 3000 eggs. Thus, each plantis capable of producing over 3 million propagules. In Section 4.4.2 I estimatedthat the maximum density of plants in the largest size-class was 11.1. This givesa total reproductive output 3:3 � 107 propagules:m�2. Not all receptacles on theplants mature at the same time, making release of propagules gradual. If it isassumed that a `normal' settlement season is 10 weeks, then the reproductiveoutput is 2:36 � 105 propagules:m�2:d�1.Norton (1986) suggested that dissemination by water motion and the inability ofpropagule to select a suitable settlement site, means that many of the propagulesare deposited out of their zone. This decreases the survival of the propagules.Considering this inability to select settlement sites, it is assumed that only 10% ofpropagules �nd a suitable site. Thus, the number of settlers is 2:36�104:m�2:d�1.Even if the propagules are deposited in the right zone, 90% of the F. vesiculosuspropagules die within the �rst 17 days (Bray, 1993) which is long before they reachthe size allocated to size-class 0 (see Section 4.4.2). Chapman (1995) noted thatonly 0.4-12% of F. distichus settlement reach visible size. So, if it is estimated128



that 5% of the settlers reach visible size then the daily settlement rate (�) is1179 individuals:m�2:d�1.The number of propagules decreases exponentially with distance from the source(Deysher & Norton, 1982; Arrontes, 1993). Thus, I will use a daily instantaneoussettlement of � = 1000 as the upper limit of the settlement, assuming that thereare parent plants within 1m of the modelled area. The `normal' parameter esti-mate is obtained by assuming that parent plant are 2m from the modelled area.This gives a one order of magnitude drop in the number of propagules (Deysher& Norton, 1982). Thus, the normal estimate is � = 100. The lower limit is setby assuming that parent plants are within 5m of the modelled area, giving anestimated further drop of 2 orders of magnitude. Thus giving a lower limit of� = 1.SurvivorshipMany di�erent types of survivorship curves have been found for di�erent species ofseaweed (see for example Chapman & Goudey, 1983; Santelices & Ojeda, 1984).Creed (1993) suggested that this is because the di�erent types of curves uselogarithmic and arithmetic methods and thus, should be interpreted di�erently.This makes estimation of this parameter di�cult.There is some data on the survivorship of F. vesiculosus over a number of years(see Knight & Parke, 1950). However, this data does not look at the mortality ofplants of 0+ years old, as the plants examined were already established. Knight& Parke (1950) suggested that the maximum age of F. vesiculosus is 3 to 4 yearsold. This can be used in parameterising the survivorship. If it is assumed that a`normal' survivorship means that maximum average age of the plant is 3.5 years,then we can �t a curve such that essentially zero plants survive beyond this age.This process can then be repeated assuming that `bad' and `good' survivorshipsgive a maximum average age of 2.5 and 4.5 years respectively.Gunhill (1980) used 314 individuals of Pelvetia fastigiata to produce a log-logregression of survivorship. From the linearity of this plot, she suggested thatthere were a constant proportion of the plants dying with each time interval.Thus, a curve of the form Survivorship = �SF�j129



Age (days)

Su
rv

ivo
rs

hip

0 500 1000 1500
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Good   
Normal
Bad

Figure 6.5: F. vesiculosus survivorship curves.is used. This gave survivorship curve curves of the form shown in �gure 6.5 usingthe values for incremental survivorship shown in table 6.3.Probability of PromotionThe probability of promotion, P , is estimated at 1=26. This is because it isassumed for the size-class selection that individuals in each class are on average,0+, 1+, 2+ and 3+ years old. Thus, the average time required to be promotedis 1 year (for a fuller description see Section 4.4.2). The probability of promotionwill be varied by plus or minus a half of its value. Thus, the lower limit is 1/39and the upper limit is 1/13.6.4.3 Interaction ThresholdsThese parameters are probably the most di�cult to quantify. This is becausethere is debate over which of a number of factors is the most important andTable 6.3: Estimates of F. vesiculosus survivorship.Maximum Age (years) SF Proportion Remaining`Good' 4.5 0.950 2:6 � 10�3`Normal' 3.5 0.925 9:0 � 10�4`Bad' 2.5 0.900 1:2 � 10�3130



because settlement itself is so di�cult to quantify. In this section evidence of theinteraction between the two species is examined in an attempt to quantify theseinteractions.The E�ect of F. vesiculosus on S. balanoides SettlementThe inhibition of S. balanoides by the canopy of F. vesiculosus is well documented(Hatton, 1938; Connell, 1961a; Hawkins, 1983; Miller & Carefoot, 1989; Proud,1994; Jenkins, 1995). However, this e�ect has been attributed to a number ofcauses. Firstly, canopy sweeping has been suggested to reduce the recruitmentof barnacles under the canopy (Hatton, 1938; Hawkins, 1983; Jenkins, 1995).Secondly, limpets aggregate under the mature canopies of F. vesiculosus as thisreduces the stress due to dessication. This increases the incidence of limpetbulldozing, where limpets undercut juvenile barnacles (Connell, 1961a; Hawkins1983). This e�ects the recruitment and mortality of juvenile barnacles. There aresize and location refuges from limpet bulldozing. For example, Miller & Carefooot(1989) suggested that the size refuge is as little as 5mm2 basal area and thatdepressions in the rock or dense adult barnacles provide a refuge. Hawkins (1983)found that this e�ect is much less important than canopy sweeping. Finally,Nucella also aggregate under F. vesiculosus canopies and predate upon adult S.balanoides, reducing the density of adults under the canopy (Proud, 1994).Jenkins (1995) tried to quantify the e�ect of the canopy on cyprid settlement. Hefound that sweeping reduced the settlement of cyprids on sheltered shores (seetable 6.4). Post-settlement cyprid survival was much reduced under a canopy,for example from 92.3% to 3.4%. F. serratus was the best `sweeper' on shelteredshores because of its lack of air bladders and bushy nature.Table 6.4: Cyprid settlement onto 144cm2 of rock in the presence and absence ofa fucoid canopy (data from Jenkins, 1995).22/5/93 28/5/93 2/6/93Species Absent Present Absent Present Absent PresentF. spiralis 40 7 31 3 3 2A. nodosum 18 3 - - 6 0F. serratus 26 3 11 1 6 0.5Hawkins (1983) measured the e�ect of canopy sweeping on moderately exposedshores. He found that Fucus sweeping inhibits S. balanoides settlement at all131



levels on the shore. When Fucus plants were transplanted to barnacle dominatedledges, after 55 days there was reduced settlement of S. balanoides in the presenceof a canopy of F. vesiculosus (see table 6.5) on scraped settlement squares. Thisis an underestimate as the adult barnacle surrounding the settlement squaresreduced the canopy sweeping e�ect.Table 6.5: Number of metamorphosed barnacles in the presence/absence of a F.vesiculosus canopy (data from Hawkins, 1983).Experiment With Canopy Without Canopy1 37.1 1002 10 54.3Limpet bulldozing e�ects the settlement of S. balanoides. The density of limpetson the ledges at Port St. Mary is between 2.5 (Hartnoll & Hawkins, 1985)and 35 individuals:m�2 (Proud, 1994). Hartnoll & Hawkins (1985) note thata density of limpet of 20 individuals:m�2 can clear 71% of the substrate, but 7individuals:m�2 can only clear 25%. A normal density of limpets is 19:m�2.To quantify this into some kind of lower and upper threshold for barnacle set-tlement, limpet bulldozing and canopy sweeping are quanti�ed as the processesthat act on recruitment. There are two extremes of the relationship, a full canopyand maximum limpet density completely excludes S. balanoides settlement; andno canopy and minimum limpet density has no e�ect on settlement. A densityof 20 limpets allows 71% of substrate to be grazed (Hartnoll & Hawkins, 1985).Assuming that limpet density is directly proportional to canopy and that limpetgrazing is directly proportional to S. balanoides bulldozing, then at about 50%canopy cover, 71% of the S. balanoides settlement is removed by bulldozing. Atthis level of limpets the canopy will also exclude a number of settlers, so weestimate the upper barnacle threshold (�) at 0.5. This will be varied betweenthe limits of 0.4 and 0.7 to investigate di�erent intensities of canopy sweeping.The lower barnacle threshold (�) is estimated in a similar way. At a density of 7,limpet can clear 25% of the substratum. At this stage we assume that the canopyhas a minimal e�ect at 20% of the maximum, and that the encounter rate withlimpets is low allowing more barnacles to reach the size refuge. Thus, the lowerbarnacle threshold (�) is estimated at 0.2, with a range of 0.1 to 0.35.
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The E�ect of S. balanoides on F. vesiculosus SettlementDense S. balanoides aids the establishment of a F. vesiculosus canopy. This is be-cause P. vulgata grazes upon the spores of algae and is very e�ective at removingall of these spores from bare rock. However, when S. balanoides occurs it disruptsthe grazing of P. vulgata, by making the surface topography irregular. Hawkins& Hartnoll (1982b) examined the e�ect of barnacle cover on number, behaviourand growth of P. vulgata on a vertical pier on the Isle of Man. They found thatthe growth rate of P. vulgata was inversely proportional to the percentage coverof barnacles. This suggests a lower grazing e�ciency. Once F. vesiculosus reachabout 3cm in length, they are too large to be grazed by P. vulgata (Proud, 1994).Thus, the denser the cover of barnacles, the lower the grazing e�ciency of P. vul-gata and the more likely that F. vesiculosus will reach the size threshold wherethey have `escaped' grazing. These `escapees' will form the canopy.Hawkins (1981b) looked at the in
uence of season and barnacles on the algalcolonisation of P. vulgata exclusion areas. He looked at the di�erence between F.vesiculosus colonisation of areas with and without barnacles. In the areas withbarnacles F. vesiculosus settled and established a canopy much more quickly thanin areas without barnacles.The only actual value that I can �nd for this interaction is from Waterhouseet al (1986). They suggest that in Australia the grazing e�ects of limpets arenegligible at barnacle percentage cover of greater than 67%. I think this value isan underestimate, as in P. vulgata are able to sustain grazing on both the 50%mosaic and the 95% cover in the Isle of Man (Hawkins & Hartnoll, 1982b). Thus,this will give us an estimate of the lower limit of the upper fucoid threshold (�),at a proportion of 0.7. On crowded shores limpet scars maybe in the middle ofdense barnacle cover and thus, I will use a upper limit of � = 0:9. The estimatewill be arbitrarily set at the mid point of these values, ie � = 0:8.Getting the lower fucoid threshold is more di�cult. I suggest that at very lowdensities of barnacles there is no e�ect on the grazing e�ciency of the limpets.However, as the cover of barnacles increases there is a rapid decrease in grazinge�ciency. Hawkins & Hartnoll (1982b) show that there is a decrease in growthrate of P. vulgata grazing on a 50% mosaic of barnacles and therefore we assumethat there is a decrease in grazing e�ciency. Thus, 
 = 0:5 will be used asan estimate of the lower fucoid threshold. The lower limit of the threshold willmimic a gradual decrease in grazing pressure with increased barnacle cover, so133



is estimated at 
 = 0:1. The upper limit will be as high as possible to mimic asharp threshold and thus is 
 = 0:65.6.5 SimulationThe parameter estimates can be seen in table 6.6. For simulation of this model,comparable models to the models found in Chapters 3 and 4 are required, asaltering the number of size-/age- classes can a�ect the stability of the model.Thus, the fucoids will have 4 size-classes which are estimated in the same way as inSection 4.4.2. The barnacles have 125 age-classes and the model of logistic growthmodel is used (see Section 3.4). The same time step is used with �a = �t = 14days. Table 6.6: Parameter estimates.Parameter Name Symbol Upper Limit Estimate Lower LimitBarnacle Survivorship SB 0.950 0.875 0.800Barnacle Settlement � 20000 2000 200Fucoid Survivorship SF 0.950 0.925 0.900Fucoid Settlement � 1000 100 1Fucoid Promotion P 1/13 1/26 1/39Lower Barnacle Threshold � 0.35 0.20 0.10Upper Barnacle Threshold � 0.70 0.50 0.40Lower Fucoid Threshold 
 0.65 0.50 0.10Upper Fucoid Threshold � 0.90 0.80 0.70
6.5.1 General ResultsIn this section the behaviour of the model is examined with di�erent parametersets. The e�ect of changing parameter on the overall dynamics is examined andoscillatory dynamics are investigated in terms of combinations of the sub-models.E�ect of changing parametersThe dynamics of this model are far more complicated than the dynamics of thesingle species models. However, in general, there are four types of behaviour.These are an equilibrium with only barnacles present; an equilibrium with both134



barnacles and fucoids present; periodic 
uctuations in both the barnacles andfucoids; and aperiodic 
uctuation in both of the species.Increasing the barnacle survivorship (SB) increases both the amplitude and theperiod of the oscillations of the space occupied by both fucoids (Ct) and barnacles(Bt), which increases the total space occupied (At). However, if the barnaclesurvivorship is decreased su�ciently then the space occupied by barnacles maynever reach the threshold (
) that allows the F. vesiculosus to settle. This resultsin a stable equilibrium with only barnacles present.Increasing the daily instantaneous settlement rate of the barnacles (�) leads toan increase in the amplitude and the period of oscillations in the space occupiedby barnacles. Thus, it has a destabilising e�ect on the system. However, this hasa variable a�ect on the space occupied by fucoids (Ct).Decreasing the survivorship of fucoids (SF ) increases the the period and am-plitude of oscillations of the barnacle occupancy and decreases the period andamplitude of fucoid oscillations. This is hardly surprising as, from Chapter 4,increasing survivorship increases the potential of a cohort to increase in area andthus, is destabilising. Similarly, increasing the daily instantaneous settlementrate of fucoids (�) is destabilising. As this also increases the potential of a cohortof fucoids to increase in area over time. Increasing this settlement rate causesan increase in the period and amplitude of both the occupancy by barnacles andfucoids. Increasing the probability of promotion of the fucoids has a destabilisinge�ect on the model for the same reason as the survivorship and settlement.Decreasing the lower barnacle interaction threshold (�) increases the stabilityof the model and decreases the amplitude of the cycles. Thus, decreasing thisthreshold is stabilising. Decreasing the upper barnacle interaction threshold (�)decreases the stability of the model and increases the amplitude of the cycles.Thus, decreasing this threshold is destabilising eventually giving rise to aperiodicsolutions.Increasing the lower fucoid interaction threshold (
) increases the stability theoccupancy of S. balanoides and decreases the occupancy of F. vesiculosus. Thisincrease is therefore destabilising. Decreasing the upper fucoid interaction thresh-old (�) decreases the stability of the model and increases the amplitude of thecycles. Thus, decreasing this threshold is destabilising.
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How are Oscillations Produced?Within the parameter set (see table 6.6), solutions can be found where both ofthe sub-models are stable and unstable. Using the same parameter sets, it ispossible to see if the oscillatory dynamics in the two species model are driven byoscillations in the sub-models or by interaction between two stable sub-models.Thus, parameters are de�ned that cause the sub-models to be stable or unstable(see tables 6.7 and 6.8). The model will then be simulated using the sixteencombinations of the sub-model behaviour. For this the interaction threshold willbe set at the estimate values, apart from the upper fucoid threshold which is setat its lower limit. This is because it is di�cult to get a solution with occupancyof greater than 0.8 in the barnacle sub-model and when found, have very longtransients.Table 6.7: Stable and unstable parameter sets in the barnacle sub-model.Stable UnstableParameter Name Symbol A� < 
 
 < A� < � � < A�Barnacle Survivorship SB 0.80 0.89 0.91 0.95Barnacle Settlement � 200 200 200 200Barnacle Occupancy A� 0.336 0.661 0.739 -Table 6.8: Stable and unstable parameter sets in the fucoid sub-model.Stable UnstableParameter Name Symbol A� < � � < A� < � � < A�Fucoid Survivorship SF 0.900 0.900 0.900 0.925Fucoid Settlement � 1 3 5 10Fucoid Promotion P 1/39 1/26 1/26 1/26Fucoid Occupancy A� 0.186 0.480 0.697 -Initially the barnacle occupancy is important in driving the dynamics. If thebarnacle occupancy is always less than the lower fucoid threshold, then a stablesteady state with only barnacles is produced regardless of the fucoid parameters(see �gure 6.6). This is because the fucoids are never able to settle.When the solution of the barnacle sub-model is stable and the solution of thefucoid sub-model is less than the upper barnacle interaction threshold, then astable steady state is produced with both barnacles and fucoids (see �gure 6.7).136
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Figure 6.6: Stable steady state with only barnacles present (SB = 0:8, � = 200,SF = 0:9, � = 3, P = 1=26, � = 0:2, � = 0:5, 
 = 0:5 and � = 0:7).This is because in the two species model the occupancy by barnacles is reducedand thus, settlement of barnacles and fucoids is never shut o� completely. There-fore, a state can be reached where the area lost via mortality is balanced by thegain in area from settlement.If either of the solutions to the sub-models is oscillatory, then oscillations areproduced in the two species model (see �gure 6.8). This is because the oscillationsof one of the models causes settlement to be switched on and o� and drives theoscillations of the other species. If both of the sub-models are oscillatory thenoscillations are produced in the two species models (see �gure 6.9). However,these oscillations interact to produce oscillations in each species with a period ofgreater than 2.Oscillations in the two species model can be produced when the sub-models areboth stable, ie by the interaction between the two sub-models. When the fu-coid sub-model has an occupancy of greater than the upper barnacle interactionthreshold, then oscillations occur (see �gure 6.10). This is because then fucoidoccupancy is su�ciently high to shut o� barnacle settlement giving rise to oscil-lations.
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Figure 6.7: Stable steady state with both barnacles and fucoids present (SB =0:89, � = 200, SF = 0:9, � = 3, P = 1=26, � = 0:2, � = 0:5, 
 = 0:5 and � = 0:7).
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Figure 6.8: A cyclic solution of the 2 species model, where oscillations in thefucoid sub-model drive oscillations in the in the barnacle sub-model (SB = 0:91,� = 200, SF = 0:925, � = 10, P = 1=26, � = 0:2, � = 0:5, 
 = 0:5 and � = 0:7).138
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Figure 6.9: A cyclic solution of the 2 species model, where both sub-modelsoscillate (SB = 0:95, � = 200, SF = 0:925, � = 10, P = 1=26, � = 0:2, � = 0:5,
 = 0:5 and � = 0:7).
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Figure 6.10: Interaction between the sub-models causing oscillatory dynamics inthe two species model (SB = 0:89, � = 200, SF = 0:9, � = 5, P = 1=26, � = 0:2,� = 0:5, 
 = 0:5 and � = 0:7). 139



6.5.2 Application to the Isle of ManIn this section parameters of the model are varied to produce cycle shown in theliterature (see table 6.9). This is attempted using parameter within the valuessuggested in the parameter estimation section.Table 6.9: Percentage cover estimates for Kallow Point, Port St. Mary, Isle ofMan (cycle is the length of the cycle in years).F. vesiculosus S. balanoides Bare Total% cover Cycle % cover Cycle Rock CycleHartnoll & 0 - 65 3 0 - 46 3 - 4 44 - 94 6 - 7Hawkins (1985)Proud (1994) 0 - 70 4 10 - 60 3 - 4 40 - 90 6 - 7It soon became clear that it is di�cult to obtain a correct total cycle length ofabout 6-7 years within the parameter set. This is possibly because the barnaclesare growing too fast and thus reach the lower fucoid threshold to quickly, ie thetime lag between barnacle and fucoid settlement is too small. So to obtain solu-tions with a total cycle length of 6-7 the settlement values had to be very highand the variation in percentage cover was far too great. If the actual estimatedparameter set is used (see �gure 6.11) then a solution is produced with an oc-cupancy that is outside the bounds suggested. The individual cycle lengths arecorrect, at about 3 years for both species. However, the total cycle time is tooshort, at about 4 years. To obtain a longer cycle length it was necessary to usesurvivorships of 0.978 for both species (see �gure 6.12). However, this altered thecycle time of the fucoids to around 5.6 years which is almost twice that suggestedin the literature.To produce a solution that �ts nicely within the bounds suggested in the litera-ture, it is necessary to lower the lower and upper barnacle interaction thresholdssigni�cantly (�gure 6.13). However, the total cycle time of this solution is lowand thus there is a problem with the time lag.6.6 General DiscussionA number of general points about the linked model become clear with just obser-vation. This model is non-linear and therefore will exhibit a much wider range of140
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Figure 6.11: Fitting model to observed values - attempt 1 (SB = 0:875, � = 2000,SF = 0:925, � = 100, P = 1=26, � = 0:2, � = 0:5, 
 = 0:5 and � = 0:9).
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Figure 6.12: Fitting model to observed values - attempt 2 (SB = 0:978, � = 100,SF = 0:978, � = 5, P = 1=26, � = 0:2, � = 0:5, 
 = 0:5 and � = 0:8).141
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Figure 6.13: Fitting model to observed values - attempt 3 (SB = 0:9, � = 200,SF = 0:95, � = 15, P = 1=26, � = 0:1, � = 0:15, 
 = 0:5 and � = 0:7).behaviour than any of the linear models described so far (May, 1976). However,the component models behave in a very similar way to the single species mod-els described in Chapters 3 and 4. Thus, many of the observed results are thesame, for example, increasing either of the survivorships or the settlement ratesincreases the amplitude and period of oscillations in that species. Settlementagain is the main driving factor in this model.Four types of behaviour are produced by the model. These are a stable steadystate with only barnacles; a stable steady state with both barnacles and fucoids;coupled periodic oscillations; and coupled aperiodic oscillations.The stable steady state with only barnacles is found when the barnacle occupancyis always less than the lower fucoid interaction threshold. Thus, fucoids are neverable to settle. A stable steady state with both species is found when the barnacleand fucoid sub-models are stable. The barnacle sub-model has to have occupancyabove the lower fucoid interaction threshold and the fucoid occupancy has to beless than the upper barnacle interaction threshold.Oscillations are produced in two ways, either by oscillatory behaviour in one orboth of the sub-models or by the interaction between stable sub-model solutions.142



If one of the sub-model solutions is unstable then it will force the other sub-modeldynamics to oscillate as settlement is switched on and o�. If both sub-model in-dividually have oscillatory solutions, then these oscillations interact to producepoint-cycles of greater than 2. Oscillations can be produced by the interactionbetween stable solutions of the sub-models. When the fucoid occupancy is greaterthan the upper barnacle interaction threshold and the barnacle sub-model occu-pancy is greater than the lower fucoid interaction threshold, then oscillations areproduced by interaction between the two sub-models.The output of this model can give similar occupancy and lifespan for the indi-vidual species compared with data from Port St. Mary, Isle of Man (Hartnoll &Hawkins, 1985; Proud, 1994). However, the total cycle length is too short. Hast-ings (1986) stated that the key to understanding the dynamics of two speciesmodel is to look at the interaction between the time delays. In this case the timelag between the two species colonising is not su�cient. Increasing the time delaycould be achieved by either stochastic recruitment functions and seasonal set-tlement, and implementing interaction between adults of the two species ratherthan just at settlement.Before the discussion of further work required, it is necessary to again note thatthis two species model has all the shortcomings of the single species model inChapter 3 and 4. It would be useful further work to implement these adjustmentsin the single species models singly, and then look at the overall e�ect on thebehaviour of this two species model.Probably the most important thing that would make this model more accuratewould be a better data set to calibrate the model from. As can be seen fromSection 6.4, the actual estimates of the parameters is done using bits of datafrom everywhere and rough crude techniques. In fact a lot of the data used isfrom a single 2m2 unreplicated quadrat. A better data set would allow a betterrange of parameters to be estimated, which might increase the accuracy of themodel and allow the model to be more testable.Stochastic recruitment in a seasonal environment would make a large di�erenceto the dynamics of this model. This would give a short period where recruitmentis not guaranteed, more like the situation found on the moderately exposed rockyshores where recruitment of fucoid is not a yearly occurrence and the strength ofbarnacle settlement is variable (Hartnoll & Hawkins, 1985).A grazer threshold would be very useful in this model. If the fucoid settlement143



is very large then it would make sense to let a few plant escape even in theabsence of barnacles. This is because in the �eld grazing is limited by the timethe grazer is immersed on horizontal surfaces (see Hawkins & Jones, 1992, fora general review) and thus grazers can become saturated. Therefore, it wouldmake biological sense for a proportion of the fucoid propagules to `escape' at highsettlement rates even in the absence of barnacles.The interaction thresholds between the barnacle and fucoid need to be revised.Firstly a more realistic relationship between adult density and settlement wouldbe useful. However, a large data set is required to produce this relationship, asthese a�ects are very changeable (see for example, Jenkins, 1995). Secondly, in-teractions between adults of the two species is ignored in this model. For example,the fucoid canopy e�ects adult barnacles by canopy sweeping and increasing Nu-cella predation, and the adult barnacles provide insecure attachments for fucoidswhich then have higher mortality (Proud, 1994). This last statement also impliesthat a major problem with this model is that barnacle and fucoid occupancy istreated as the same quantity. However, fucoids are able to settle on the barnaclematrix (Proud, 1994) and thus, the free space that they are able to settle includesthat area occupied by barnacles.In summary, this chapter has been a useful �rst insight into the rich dynamicsof two species models and the mechanisms that control it. However, althoughthe accuracy of the individual species cycles are correct, the total cycle times arenot su�ciently long. A better data sets and a few additions to the model shouldincrease the accuracy. This model has been an interesting introduction and willprovide a useful insight into the more complicated dynamics of models producedin my Ph.D.
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Chapter 7Discussion and Conclusions
In this chapter I shall draw the major �ndings of this work together. The singlespecies models (see Chapters 3 to 5) and then the two species case are exam-ined. I will discuss in short the gaps in the data that require �lling in order toparameterise the models. Finally, there will be a general summary section.7.1 Single Species Models7.1.1 MechanismsConstant EnvironmentIn a constant environment the age-structured model of barnacle populationsshowed fairly simple dynamics with four types of behaviour: stable overdamped,stable underdamped, point-cycles and aperiodic solutions. Roughgarden et al(1985) and Bence & Nisbet (1989) did not �nd aperiodic solutions, as theyboth incorporated density-dependent survivorship in their models. This density-dependent survivorship stabilises the aperiodic behaviour of the model to point-cycles. These point-cycles can last for over 38,000 years.The mechanism operating is controlled by the settlement rate, survivorship andthe growth rate. These factors are all destabilising as they increase the areaoccupied at equilibrium. If the combination of these factors is su�ciently lowthen a stable steady state is produced with a stable age-distribution. This is notgenerally the case on the rocky shore where cohorts once established can occupythe space for a number of years until they die and then the area is recolonised byanother heavy settlement period. However, if the combination of the settlement146



rate, survivorship and the growth rate is high enough then point-cycles are pro-duced. These are produced when the space is �lled by short `pulses' of settlementand waves of cohorts pass through the age structure.Fitting a logistic model to growth rate data (Barnes & Powell, 1953) gives anoverestimate of the rate at which barnacles grow on the mid-shore. Using thisfunction the barnacles reach their maximum size in under a year, this is morelike the growth rate of S. balanoides at the lower limits of their range (Hawkins,pers. com).Comparing a number of di�erent stability criteria shows that in all cases increas-ing settlement, growth or survival is destabilising. This decrease is stability ise�ected by a number of factors, such as the type of criteria and the number age-classes. A simple derived criteria which assumes that there is a locally unstableeigenvalue approximates well to the local stability boundary at low settlementvalues, not at larger values.The mechanism proposed to control the barnacle model in a constant environmentis very similar to those that control the size-structure fucoid model, despite thedi�erence in formulation. This is possibly because although the fucoid modelis size-structured individuals cannot get smaller, with a constant probability ofpromotion. Thus, making increase in size with age a more constant process.The fucoid model is slightly di�erent to most other models developed in this�eld (see for example Seip, 1980; Ang, 1987; �Aberg, 1992a&b). These havegenerally been simulation models of closed populations. The model presentedhere is open as the system that is modelled requires `pulses' of recruitment fromoutside populations (Hartnoll & Hawkins, 1985). It also allowed me to look atseaweed models from a more mechanistic view.The mechanisms that produce the dynamics. Increasing the probability of promo-tion, survivorship or size-class choice is destabilising, as it increases the potentialof the area of a cohort to increase over time. If the settlement rate is high thenthe occupied space is limited by the probability of promotion, survivorship andthe size-class selection. If the settlement rate is low then the occupied space islimited by the settlement rate. Oscillations are found when the area occupiedby a cohort increases over time. The decay or persistence of these oscillationsdepends upon the rate at which free space is �lled, ie the settlement rate. Oscil-lations decay if the settlement rate is low, as free space is �lled slowly, producingan underdamped solution. Oscillations persist if the settlement rate is high, as147



free space is �lled by short `pulses' of recruitment, producing point-cycles. This isillustrated by the comparison between real and heuristic stability in the strategicmodel.These models predict that a few large individuals will dominate the area occu-pied, which is similar to the canopy of perennial seaweeds. However, the onlylow settlement rates are required to produce instability which suggests that theparameterisation of the model is not correct. This is hardly surprising as the dataavailable on F. vesiculosus is very sparse.Seasonal EnvironmentThere is a distinct discrete settlement season for both S. balanoides (see forexample Hawkins & Hartnoll, 1982a) and F. vesiculosus (see for example Knight& Parke, 1950). Thus, the most logical extension of the above models is toinvestigate a seasonal environment.The barnacle steady state is oscillatory as settlement is a discrete period. Thus,two type of solution are found, periodic and aperiodic. Periodic solutions areproduced when the natural and driving periods of the solution are phase locked.Aperiodic solutions are not phase locked. The mechanism that drives the modelis the same as in a constant environment.Increasing the settlement or survivorship of barnacles causes and increase in theamplitude and period of the oscillations. The e�ect of changing the settlementperiod is important at low settlement rates, with `good' settlement having largeroscillations than `average' and `bad'. However, as settlement increases it no longerforces the model and there is no di�erence between the models. However, atintermediate settlement the results are di�cult to interpret with many aperiodicsolutions.The seasonal fucoid model produces a much wider variety of dynamics, with 2 to28 point cycles and aperiodic solutions being produced. This is because settle-ment is from two sources, the seed bank and from outside. The type of solutionproduced is to do with the degree of phase locking between the natural anddriving periods. Point-cycles are phase locked, aperiodic solutions are not. Thegeneral mechanism is the same as in the constant environment model. However,the steady states are now oscillatory.Increasing the settlement rate into the system increases the period and ampli-148



tude of the cycles. Decreasing the seed bank survivorship is �rst stabilising thendestabilising. This is because of the free space is able to drop to a lower valuewhen there is no seed bank and thus the free space is �lled with more propagules.Di�erent strengths of settlement cause generally little di�erence in the model.The models of barnacle and fucoid settlement have fairly similar dynamics despitethe di�erence in formulation. This is highlighted in the discussions of Chapter 3and 4. When a seasonal component is added to the model, the behaviour is stillsimilar. Both models produce cyclic and aperiodic dynamics. The phase lockingmechanism is similar. However, the big di�erence between the models is caused bythe introduction of a seed bank into the fucoid model. This causes a much richerspectrum of dynamics to be found in the fucoid model as there are three cyclicalmechanisms that need to phase lock. Overoccupancy is a big problem in both ofthe models, this is due to survivorship being completely density-independent.Biologically these models are still very unrealistic and require addition of manyparameters (see discussion of Chapters 3 and 4). The very simple components ofbiological dynamics that are predicted is that the populations cycle or producesome kind of aperiodic behaviour. The one possibly useful biological hypothesisthat has been drawn is that seed bank mortality is required to be high so thatsettlement generally happens within the settlement season. However, conclusiveproof is needed of the actual existence of a seed bank and how to test it beforethis hypothesis can be tested.7.1.2 Further StudyIn this section simple extensions of the model are examined that would improvethe biological realism of the models. However, the tradeo� is that with increaserealism the models become more complex and less can be discerned from analyses.These models are very simplistic. The only real biological conclusions that can bedrawn are that populations cycle and settlement is the most important processin determining the structure of these populations. These simplistic conclusionsre
ect the construction of the models and suggest that further work needs to bedone increasing biological realism.The most important extension to the models is density-dependent survivorship,as all the models exhibit overoccupancy. Bence & Nisbet (1989) noted that openmodels with space-limited recruitment could provide insight into any population149



where there is debate on whether populations are regulated by recruitment ordensity dependent factors. These are essentially the processes which control boththe fucoid and the barnacle populations. Density-dependent survivorship hasbeen proposed for both F. vesiculosus (Creed, 1993) and S. balanoides (Crisp,1960; Connell, 1961a; Shanks & Wright, 1986).On hundred percent occupied space is di�cult to de�ne on these shores. Al-though all the space is occupied, individuals of S. balanoides will settle on thetests of adults (Connell, 1961a) and the F. vesiculosus will settle and join thespore/germling bank (Creed, 1993). Even when 100% occupancy does not oc-cur not all free space is the same. For example, Lewis (1977) states that freeliving acorn cirripeds respond to a variety of stimuli during settlement: arthro-podin (an insoluble protein found in adults); water currents; surface rugosity;light; and, gravity and hydrostatic pressure. In the absence of speci�c settlementcues settlement is usually delayed (Lewis, 1977). F. vesiculosus is also limitedby the spatial aspect of free space, for example smaller plants are inhibited bythe larger canopy plants. This occurs in a number of ways. For example, lowerlight intensity (Schonbeck & Norton, 1980a); lower nutrient levels (Dayton et al,1984); whiplash and sweeping e�ects (Dayton, 1971; Ang, 1985); sediment buildup (Kenelly, 1989); and aggregation of grazers (Hartnoll & Hawkins, 1985). Tomodel this would require a spatial explicit model.The inhibition of juveniles by adults would be a useful addition to the models. Inboth barnacles and fucoids this is an important factor. For example, juvenile S.balanoides su�er mortality due to undercutting (Connell, 1961a) and F. vesiculo-sus su�er shading (Schonbeck & Norton, 1980a) in overcrowded conditions. Thiscould be implemented in the models using simple thresholds. Overcrowding alsochanges the growth forms of the adults with barnacles becoming more tubular(Moore, 1934) and fucoids show a general decrease in growth rate (Creed, 1993).These again could be added with simple thresholds and di�erent growth functions.This shows that a few simple changes would improve the realism of the models.However, there is a tradeo� between the biological realism and not just under-standing of the model, but also parameterisation of the model.
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7.2 Two Species ModelsIn this section the behaviour of the two species model is examined and furtherwork suggested.7.2.1 MechanismsIn this section the dynamics and the mechanisms that produce them are exam-ined. The behaviour of this type of non-linear model is much more diverse thanthe linear single species models. However, the general mechanisms that controlthe single species models act on the two species model. The two species modelis driven primarily by settlement, but survivorship and size both in
uence theperiod and amplitude of oscillations.The mechanism driving this model depends on the behaviour of the sub-modelsand the the interaction thresholds. The sub-models are driven in exactly thesame way as the single species models, and can produce stable and oscillatorydynamics. If one or both of the sub-models produce oscillatory dynamics, thenoscillations are driven in the other sub-model as the settlement is switched onand o�. However, when the sub-models would individually be stable, interactionsbetween the two sub-models can drive oscillations.It is possible to �t the model to the limits suggested for the shore (Hartnoll &Hawkins, 1985; Proud, 1994). This also gives realistic cycle time for the individualspecies, ie 3-4 years for fucoids and 3 years for barnacles. However, the totalcycle length is much shorter than found on the shore. Hartnoll & Hartnoll (1985)suggested that a total cycle time of about 7 years is correct. However, unlessthe survivorships of both species is pushed outside the bounds of the predictedparameters then the maximum cycle time is 4-5 years in the model. This suggeststhat the time delay between the two species is too short. Hastings (1986) statedthat the key to understanding two species models is to look at interaction betweenthe two time delays. Thus, increasing the delay between the species could be doneby implementing stochastic seasonal settlement or interaction between adults ofthe two species rather than just at settlement.Although this model is not very accurate, it does give a good �rst estimate usingparameters from the literature. It will also provide a good building block to workon during the course of my Ph.D. 151



Further StudyStochastic recruitment in a seasonal environment would make a large di�erenceto the dynamics of this model. This would give a short period where recruitmentis not guaranteed, more like the situation found on the moderately exposed rockyshores where recruitment of fucoid is not a yearly occurrence and the strength ofbarnacle settlement is variable (Hartnoll & Hawkins, 1985). This would increasethe total cycle length with species able to dominate the shore for longer periodsof time.A grazer threshold would be very useful in this model. If the fucoid settlement isvery large then it would make sense to let a few plant escape even in the absenceof barnacles. This is because in the �eld grazing is limited by the time the grazeris immersed on horizontal surfaces (see Hawkins & Jones, 1992, for a generalreview) and thus can become saturated.The interaction thresholds between the barnacle and fucoid need to be revised.Firstly a more realistic relationship between adult density and settlement wouldbe useful.7.3 Wider ImplicationsAt this stage it is necessary to summarise how this thesis �ts into the widerpicture of rocky shore ecology and modelling. The implications for modellingand then rocky shore ecology will be discussed.The theory of open models with space-limited recruitment is a recent addition tothe modelling techniques (Roughgarden et al, 1985). These models were createdto investigate systems where dispersal of juveniles can occur over long distancesand in fairly large densities. Therefore traditional Lotka-Volterra systems cannotbe used. However, investigation of these models does not just apply to specieslike barnacles. It could be used to model any system where a resource is limited,for example, light, space, territory or rainfall (Kuang & SO, 1995). These modelscan also provide insight into any community where there is debate over whetherpopulations are regulated by density-dependent factors or recruitment (Bence& Nisbet, 1989). For example, reef �sh (Mapstone & Fowler, 1988) and giantkelp (Nisbet & Bence, 1989). This gives a huge number of systems that canbe modelled in this way. The work done in this thesis clearly demonstrates152



the mechanisms that control these type of models. Stability criteria have beeninvestigated and a new type of criteria based on the mechanisms has been derived.Thus, this research could aid in the understanding of the same type of model butwith a di�erent limiting resource when applied to a di�erent community. However,insight into the dynamics of these types of simple models is essential for the slowbuilding of ecological models (Bence & Nisbet, 1989) and will be very useful forunderstanding the dynamics of these more complex models in my Ph.D.In biology there are a number of reasons why this type of research is important.Firstly, any type of modelling aids in the formalisation of thoughts and ideasthat experimental biologist have about a system and allows the testing of theseideas. Secondly, rocky shores are found all over the world, and despite theirdi�erences in species appendages, the general processes controlling these systemsare very similar. The moderately exposed rocky shore is the shore that seemsto have a mixture of sheltered and exposed shore characteristics, that keep theshore in a non-equilibrium state. If this research, when extended, could aid inthe understanding of this particular shore, then these processes could be appliedto more shores worldwide. Finally, barnacles and seaweeds are important foulingorganism. They settle on the hulls of ships, causing drag and thus, increasing thefuel required. Modelling the growth of single species populations like this couldgive us an idea of how to reduce the population numbers naturally rather thanhaving to use antifouling paint. This paint in many cases is toxic, for example,tributyltin from antifouling paints caused female Nucella lapullis in the EnglishChannel to grow a penis (Spence et al, 1990). Although few biological inferenceshave been drawn for the experimentalist to test, in the course of my Ph.D. whenthe models created are more complex and thus, include more biological realism,may help to investigate these questions.7.4 Data ProblemsIn this section the problem with the lack of comparable data in this �eld isexamined. Shores tend to speci�c, and if a model is created for that shore then,the data set that it is parameterised from needs to be long term set and fromthat particular shore. In the parameter estimation sections, it has become clearthat there is insu�cient data on the ledges at Port St. Mary to parameterisethe models, let alone test them. Although there is a relatively long biologicaltime series for this shore (1977-1994) this is just for a single unreplicated 2 �153



1m quadrat. This type of broad scale monitoring survey is useful in biologyas it allows inferences about the processes occurring on the shore and is cheap.However, this quadrat may not be representative of the MTL as a whole, or evenof the immediately surrounding area. The data comprises of percentage covervalues only, and does not record any of the interaction coe�cients. However,further replicated work has been done on the interactions and settlement on thespeci�c shore (Creed, 1993; Proud, 1994; Jenkins, 1995).From a number of sections (see, for example, Section 6.4) it is quite obvious thatdata that have been produced is generally measured using di�erent techniques,at di�erent time of year, in di�erent units and by di�erent people. Thus, mostof the data are not comparable and cannot be pooled to make larger sets, asthe pooling of these data would be statistically invalid. In fact, Underwood& Fairweather (1986) stated that intertidal communities do not have di�erentecologies, they just have di�erent ecologists. They concluded from three examplesthat di�erences in regions are sometimes confounded with di�erent methodologyand interpretation. Gaines & Bertness (1993) suggested that �eld ecologists needto be able to integrate over time to produce a standard technique that works overlong periods of juvenile dispersal.I would like to state that being a biologist that I understand the di�culty with�eld experimentation. Underwood (1991) suggested that many modellers havespent to much time on `easy' sciences like physics and have never had to grapplewith �eld experimentation in complex and variable worlds. However, a standard-isation in methodology, time-scales and units would provide a much better andmore comparable data set for the modeller to use.7.5 SummaryThe aim of this thesis was to produced single species models that could then belinked in order to try and model the moderately exposed rocky shore, Port St.Mary, Isle of Man. The cycle was proposed by Hartnoll & Hawkins (1985).Similar dynamics are produced by both the single species models, despite thedi�erence in construction. Increasing settlement rate, growth and survivorshipincreases period and amplitude of cycles. However, further work would involveincluding density-dependent survivorship, spatial scales and the e�ect of adultson juveniles. 154



A two species model was producing by linking the two single species models usingassumptions of the e�ect of barnacle on fucoids and vice versa. Understanding ofthis model was facilitated greatly by the work on the single species models. Set-tlement again drives the sub-models and oscillations can be caused by oscillationsin one or both of the sub-models or by the interaction between the sub-models.Further work includes joining more complicated single species models, stochas-tic recruitment functions, a grazer saturation threshold and adult inhibition ofjuveniles.These models are very simple, but it has been possible to draw a few inferencesfor the experimentalist to test. These are settlement is the most important factorin structuring the shore studied and that if a seed bank exists it must su�er veryhigh mortality.A better data set to parameterise and test these models against needs to be largerand replicated. The problem of di�erent ecologists, methodologies and interpre-tation is suggested as a problem. However, the di�culty of experimentation insuch a complex and variable environment is noted.In summary I would like to say that the two main aims of this thesis have been ac-complished. These were to produce simple models of S. balanoides and F. vesicu-losus with understandable dynamics and to instruct the author in the techniquesof mathematical modelling.
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