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Abstract

Catches of Atlantic salmon returning to Scottish rivers have declined steadily
since the 1960’s and it is highly likely that spawning stocks in some locations
are now marginal in their capacity to replenish juvenile numbers. One method of
enhancing salmon production is to stock rivers with ova or fry in order to increase
the number of juveniles emigrating. The timing, location and scale of stocking is
likely to affect the size and age of the emigrants, so it is necessary to be able to

predict growth rates in order to develop an efficient stocking strategy.

A functional growth model for Atlantic salmon parr is developed and fitted to
electro-fishing data from the Girnock Burn, Scotland. A fitting function, ¢(t),
is used to estimate the quality of the local environment between years. Further
adaptations enable the model to predict the mean weights, and their variation,
for the different age-classes of the resident population. It also predicts the mean
lengths, and their variation, for the migrants from different age-classes, and the

proportion of each cohort that migrates each year.

o(t) is derived for different parts of the Girnock Burn and indicates that, after
the effects of temperature on growth have been removed, the quality of habitat
available for juvenile salmon growth increases with altitude. A model to esti-
mate consumption rates is also developed and integrated into the growth model,
allowing the seasonal maximum and minimum feeding periods of the parr to be

determined.

The model can be used as a tool for habitat assessment and to develop optimal
stocking strategies, and is part of a larger project to enhance salmon production
in Scotland. The applications of this study to the conservation and management

of wild Atlantic salmon stocks is discussed.
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Chapter 1

General Introduction

“For many years I have scarcely done anything else either officially or
privately, except to attend to and carefully watch the interests of the

King of Fish, the great Salmo salar.”

So wrote Buckfield (1880), a sentiment echoed by Jones (1959) many years later.
Their fascination with the Atlantic salmon is one shared with many, as the salmon
is a species that has managed to capture the public imagination. This is partly be-
cause of the great variety they exhibit during their life, occupying several ecosys-
tems and embarking on migrations which may be thousands of kilometres long,
before returning to their natal rivers to spawn. They have also been hunted for
sport for centuries, and as the number of salmon fishing rivers decreases, has led
to the sport becoming more exclusive and of great economic value to the regions
which they still inhabit (Anon. 1997).

Salmon have always been an important source of food, and the last 30 years has
seen the growth of large scale salmon aquaculture, which has coincided with a
reduction in the commercial fishing of wild salmon, in particular the off-shore
fisheries in the North Atlantic near Greenland and the Faeroe Island (Parrish
et al. 1998). Wild Atlantic salmon are still considered a delicacy, but there
have been further and more recent reductions in exploitation rates by coastal
and freshwater fisheries. This has been in response to global declines in the wild

Atlantic salmon population (Gross 1998).



1.1 Life History of the Atlantic Salmon

Atlantic salmon originally occurred in all the countries whose rivers flowed into
the North Atlantic Ocean and the Baltic Sea (Mills 1989). Now, however, the
populations in some of Europe’s major rivers, such as those along the northern
coast of continental Europe from Poland to France, and in southern England,
have disappeared (Parrish et al. 1998). They are still to be found in Europe
from as far north as Norway, Finland and Russia to as far south as Portugal
and Spain, and in North America from Greenland and Arctic Canada to New
England in the U.S.A. (Folt et al. 1998).

The Atlantic salmon is an anadromous species, which means it breeds and spends
the juvenile stages of its life in freshwater but migrates to the sea for part its adult
life. There are exceptions to this general rule, and several nonanadromous land-
locked subspecies of salmon are known to exist (e.g. S. salar sebago). For those
that do migrate to sea, salmon from both sides of the Atlantic converge to similar
feeding grounds in the North Atlantic, except for those from the Baltic rivers,
which tend to feed in the Baltic Sea and East Atlantic (Carlin 1969). Salmon
generally spend one or two (rarely three or four) years at sea before returning
to freshwater to spawn (Hutchings and Jones 1998). Those that return after one
full year at sea are called grilse, those that return after more than one year are

called multi-sea-winter (MSW) salmon.

Atlantic salmon possess a well developed homing ability enabling many of sur-
viving adults to return to their natal rivers to spawn (Mills 1989), which will
usually occur during autumn, the timing likely to be temperature dependent
(Webb and Mclay (1996), Heggberget (1988)). During spawning, the adult fe-
males will construct a nest into which she will lay her eggs, called a redd. Adult
males compete for the best position along side the females in order to fertilise the
eggs (Jones 1959). Also, sexually mature male parr compete amongst themselves,
and occasionally with the adult males, to fertilise ova (Fleming 1996). Once fer-
tilisation has taken place, the female covers the redd with gravel, and may go on
to construct another redd (Fleming et al. 1997). Most adults die shortly after
spawning, (on average 89% of the total, and 78% of the females and 96% of the
males (Fleming 1998)), but the survivors, known as kelts, return to the sea, and

may spawn again.



The following spring, the eggs hatch and the young salmon, called the alevins,
are born with a yolk sac which they live off whilst in the redd (Gorodilov 1996).
Once this is depleted they leave to redd as fry. The rates of developments of
the eggs and the time of hatching and emergence from the redd are thought to
be dependent on temperature (Egglishaw and Shackley (1977), Brannas (1986),
Jensen et al. (1989), Crisp (1981)).

The fry disperse from the redd and seek to establish territories, which they will
defend against intruders. During this time, competition is severe, and the mor-
tality rates at their highest (Egglishaw and Shackley 1977), where death may
occur through predation or starvation (Gardiner and Geddes 1980). When the
fry are about 6.5-7.0 cm in length, they start to develop dark blotches along their

sides, known as parr marks, and are now defined as parr (Mills 1989).

It is within the defended territories that parr and fry capture and consume their
food (Kalleberg (1958), Keenleyside and Yamamoto (1962)). The majority of
their diet consists of invertebrates captured from the water column (Allen (1941a),
Egglishaw (1967)). They are also able to capture invertebrates of terrestrial
origin which fall onto the water surface, as well as being able to forage in the
substrate for food, (Stradmeyer and Thorpe (1987a), Wankowski and Thorpe
(1979a)) and the larger parr have been known to take fry and ova (Egglishaw
1967). Rapid growth occurs during this period, typically when temperatures
exceed 6-7°C (Allen (1940), Allen (1941b), Allen (1969), Gardiner and Geddes
(1980), Cunjak (1988), Elliott (1991)). This period of growth, which may last
from spring to autumn depending on altitude and latitude, is called the growing

season.

Egglishaw and Shackley (1977) found an inverse relationship between salmon fry
density and their lengths at the end of the growing season, whilst Prouzet (1978)
found that the growth of fry was density dependent for one stream with a steep
gradient, but in another stream with a lower gradient, the biomass was regulated
by emigration. However, in the Miramichi River, New Brunswick, growth of
salmon fry was inversely related to population density, but growth of the parr
was not (Randall (1982), Randall and Paim (1982))

The juvenile salmon live along side other fish species in most rivers, such brown
trout (Salmo trutta) and brook trout (Savelinus fontinalis Mitchill). Studies look-



ing at the level of competition between juvenile wild salmon and brook trout ob-
served depression in the growth rates of the salmon (MacCrimmon et al. (1983),
Gibson and Dickson (1984)). These studies were conducted in habitats which
are preferential to brook trout, and the authors concluded that in the preferred
salmon habit, intraspecific competition within year classes of salmon is more
severe than the interspecfic competition from the brook trout. Competition be-
tween salmon and brown trout was looked at by Gibson and Cunjak (1986) who
found that the two species were spatially segregated, and they concluded that
the two species were ecologically compatible and competition appeared to be

minimised by habitat segregation.

As winter approaches, the juveniles appear to undergo a decrease in feeding
motivation, and feeding activity is reduced or stops (Metcalfe et al. (1986),
Metcalfe et al. (1988)). During this time their physiological state changes (Berg
and Bremset (1998), Shackley et al. (1994)) which coincides with the young
salmon changing their habitat. They leave the relatively shallow fast flowing
riffles preferring to spend long periods beneath the substrate (Rimmer et al.
(1983), Gibson (1978)), which lasts until the water becomes warmer the following

spring and they emerge to begin feeding again.

It is possible for both male and female anadromous salmon to become sexu-
ally mature whilst they are still parr. This is rare for females, (Gibson (1983),
Youngson and Hay (1996)) and may be due to the benefits (e.g. pre-reproductive
survival) not being great enough to outweigh the costs (e.g. reduced fecundity
and competitive ability) (Fleming 1998). However, early maturation of males is
common, and in some populations, up to 100% of males have been estimated to
have matured early as parr during their life history (Fleming 1998). There are
cost involved to the mature male parr (often called precocious parr) in terms of
growth retardation (Myers et al. 1986) and survival (Myers (1984), Berglund
et al. (1992)) but a large proportion of the eggs may get fertilised by male parr,
estimated at about 11% by Jordan and Youngson (1992) for the Girnock Burn

in Scotland.

During the autumn there are large movements of parr (Calderwood 1906), many
of which may be precocious males (Pyefinch and Mills 1963), which are in search
of adult females (Buck and Youngson 1982). It has also been suggested that the

autumn migrants may be the forerunners of the following spring migration (Mills



1989). At this time, they have yet to undergo the physiological adaptation to

seawater, called smolting, and maintain their parr-like appearance.

Smolting occurs during the spring, after the parr have spent a numbers of years
in freshwater, the time to smolting generally varies with the latitude from as
little as 1 year for males in France (Bagliniere and Maisse 1985) to up to 10 years
for some anadromous salmon in the Ungava river of Northern Quebec (Powers
(1969), Robitaille et al. (1986)). In Scotland, parr tend to smolt after between
two and four years in freshwater (Buck and Youngson 1982). Symons (1979)
points out that, with the exception of the Ungava rivers, average smolt age of
any particular river can be estimated from the number of days each year on which
water temperature reaches or exceeds 7°C. Once they have left the rivers, they
migrate to their feeding grounds as post-smolts, and begin the marine phase of
the life.

1.2 The Status of Wild Salmon in Scotland

The wild Atlantic salmon of Scotland are an important natural resource, both
economically and environmentally. Although salmon are now extensively farmed
for food on the West Coast of Scotland (more than 94% of worldwide Atlantic
salmon population has been estimated to be in aquaculture (Gross 1998)), there
are still commercial fisheries for wild salmon. However, the main source of revenue
for wild salmon is through sport. In 1995, it was estimated that salmon angling
on the River Dee in Scotland contributed between £5 million and £6 million a

year to the local economy of the Grampian region (Anon. 1997).

The salmon also form an important part of the ecosystem of Scotland as they are
preyed upon by a number of animals during all stages of their lives. During the
juvenile phase, older parr and brown trout will eat the fry, and the salmon parr
and smolts may be eaten by burbot (Lota lota) and the pike (Esox lucius) (Mills
(1964), Mills (1989)). As parr and smolts, they are prey to fish eating birds, such
as sawbill ducks (Mergus merganser and M. serrator) and the cormorant (Pha-
lacrocoraz carbo) (Mills (1962), Mills (1965), Blackwell et al. (1997), Feltham
and MacLean (1996), Kennedy and Greer (1988)). They have been found in the
stomachs of many marine fish whilst at sea, (See Wheeler and Gardner (1974)),



and as adults, they are eaten by the grey seal (Halichoerus grypus) and the com-
mon seal (Phoca vitulina) near estuaries (Rea (1960), Rea and Shearer (1965)).
Further up stream, otters (Lutra lutra) are known to feed on the adult salmon
(Carss et al. (1990), Hewson (1995)).

Part of the MSW adult salmon population are called springers. The springers are
salmon that have been at sea for at least two winters, but return to freshwater
in the spring, as opposed to autumn for the other MSW salmon. The springers
have greater commercial value, as they extend the fishing season, and is the group
presently showing the greatest decline in Scotland (Youngson 1994). The number
of females counted in the Girnock Burn, a tributary of the River Dee is shown
in Fig. 1.1, where the adult population is dominated by springers. There is at
present much work being conducted to identify the reasons for the decline and

develop management techniques to enhance to current salmon stocks.
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Figure 1.1: Number of adult females caught at the Girnock burn from 1966 to
1998. Data supplied by FFL.

Scotland has a long history of salmon conservation, with legislation concerning
salmon in Scotland dating back to the 14th and 15th centuries, which involved
protecting smolts. Other early legislation was intended to allow salmon access
to spawning ground and prohibited to killing of fish during the spawning season
(Anon. 1997).

The majority of management techniques are applied at the freshwater stages of
the salmon life cycle. This is due to the marine phase being hard to manipulate,
though exploitation at sea has been reduced with the closure of many deep sea

fisheries in the North Atlantic, angling organisation buying up deep sea fishing



permits to protect wild stocks and international treaties aimed at reducing marine

exploitation rates (Vigfusson and Ingolfsson 1993).

The fate of the returning adults has been improved through attempts to increase
the proportion of the population likely to spawn. This may be through the
control of the numbers of predators, such as mergansers (Elson 1962), (but there
is debate as to the effectiveness and ethics of these measures (Davidson and Bielak
1993)), and by restricting activities of coastal and fresh water fisheries through
the introduction of quotas (May 1993). The removal of fish through angling
has attempted to be minimised by capture-release programs, whereby the angler
releases some or all the salmon which are caught (Walker and Walker (1991),
Webb (1998)) and also the fishing season in some rivers have been reduced (Mills
1993).

Measures have also been taken to improve the habitat quality of spawning and
nursery streams in the hope to improve survival rates and increase the carrying
capacity (Shearer 1993). The range of rivers available to salmon has been in-
creased by the construction of fish ladders that allow the adults to migrate to
otherwise inaccessible parts of the stream. They have been constructed where
dams or other water works have impeded to upstream migration of the salmon
(Skalski et al. (1996), Gowans et al. (1999)). Attempts to reintroduce salmon
have been made in rivers where they were once abundant, but have since dis-
appeared (Mckeon and Stolte 1993). These disappearances may have been due
to pollution and the activities of man, so the water quality has been improved
to levels suitable for salmon (Parrish et al. 1998). These methods are aimed at
increasing the smolt output in the hope of increasing the numbers of returning
adults.

Many enhancement strategies involve stocking rivers where populations have de-
clined below the estimated carrying capacities of the rivers. This may include
planting out ova or hatchery reared fry into the rivers (Harris (1978), Kennedy
(1988)). Studies have revealed that genetic differences exist between the pop-
ulations of different rivers, and among fish living in different parts of the same
river system (Jordan et al. 1997). This may due to adaptation to a particular
environment and introduction of the progeny from different rivers may lower the
overall fitness of the fish in that part of the river, with lower returned rates for
the stocked fish than the native fish (Garcia de Leaniz et al. 1989).



Efficient stocking strategies maximise the smolt output from the numbers of
eggs or fry planted into the river. This requires an understanding of the stock-
recruitment relationship. There is at present debate over the shape of the stock-
recruitment curve with some studies suggesting that it is domed shaped (Crozier
and Kennedy (1995), Gee et al. (1978)) as proposed by Ricker (1954), and oth-
ers that it is asymptotic (Buck and Hay (1984), Jonsson et al. (1998)). Either
way, both relationships imply that there is an optimal stocking density given
that there are limited resources. However, these relationships are of limited use
as they do not take into account changing environmental conditions, which will

influence growth rate and when the parr will smolt.

A successful stocking strategy will then require knowledge of when members of
the population will smolt. This will be determined by how the social and physical
environment of a river effects the growth rate of the parr. In order to predict the
growth rates of the members of the population, a model for individual growth of

juvenile parr is required.

1.3 Aims and Objectives

The life of the Atlantic salmon is very complicated, with each parr facing dif-
ferent choices at different stages of its life. These may be when to migrate, to
become precocious or where to choose a territory. These choices, which effect the
dynamics of the population, invariably depend on the growth rate of the parr
(Metcalfe et al. 1990). If we are to understand the dynamics of the population,
then we must first be able to understand the growth of the individuals in the

population.

Growth of the parr will depend on the abiotic as well as the biotic environment.
It is also likely to depend on its interactions with conspecifics within and between
cohorts (its social environment). Thus, density may affect growth through com-
petition for limited resources such as territory space. In the wild, such effects are
hard to isolate due to the number of other effects on growth, such as temperature
and prey abundance. In order to examine growth in the social environment, we

must first remove to the effects of the physical environment.

An individual based growth model will be used to model the growth rate of the



juvenile salmon. Whereas a stochastic model would have the advantage of al-
lowing us to model the variability in the growth rate of the whole population,
the most probable growth trajectory is likely to follow that predicted by a deter-
ministic model. This trajectory would be the one of primary interest to us, as
we would be initially looking at the performance of an average individual in the
cohort. It will also be best suited to the type of data that is available, which is

examined in Chapter 2.

The model will be designed to predict growth rates in the wild of the resident
population using factors in the physical environment as driving variables. It is
also intended to predict the dynamics of the smolts from each cohort. This will
allow scope for the examination of the social environment on the growth rate,

which can then be used as a management tool for stocking rivers.

1.4 Structure of the Thesis

The Girnock Burn, a tributary of the River Dee in Scotland, has been a monitor-
ing site for salmon since 1966. Historical data sets collected there will form the
basis of the data that will be used in this thesis. Chapter 2 provides a description
of the site and methodology, and some exploratory data analysis that will enable

us to adopt the most appropriate strategy.

A number of growth models exist in the literature and Chapter 3 contains a
review of these models. A hybrid model is developed from two of these and is

parameterised for Atlantic salmon reared at satiation in a tank environment.

This model is adapted to predict the growth rates of wild salmon parr and a
method of fitting the model to the data is developed in Chapter 4. The sensitivity

of the input variables on the fit of the model to the data is also examined.

Additional data was collected at the Girnock Burn for individuals that were
marked from June 1998 until March 1999. In Chapter 5, the model was fitted
to this data to test two things. The first was whether the model could actually
reproduce the observed growth trajectories of individual wild parr throughout the
year. The second was whether fitting to the model to the weights of individuals

was substantially different to fitting to the mean weights of the population.



Aspects of smolting are included into the growth model in Chapter 6, which
enables to model to predict the weights of the resident parr and lengths of the
smolts. Other aspects of the population are estimated, such as the variation of
the parr weights and smolt lengths, and the proportions of smolts leaving each

cohort at different age-classes.

The model was then fitted to additional data sets from the Girnock Burn, in
Chapter 7. Derived estimates of the growth rates in different parts of the Burn

were then compared.

A foraging model to estimate consumption rates is derived in Chapter 8 and is
fitted to data collected from parr in different streams. The model is fitted to
the data by assuming different characteristics of the prey populations available
to the salmon, such as a temperature and seasonally dependent size-frequency

distribution of the prey.

Chapter 9 contains a summary of the work with a description of what this anal-
ysis can tell us about the salmon population. Improvements to the model are
suggested and future work proposed which would improve the model to make it

a more effective tool for management.
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Chapter 2

Data Analysis

2.1 Introduction

Atlantic salmon are widely distributed across Scotland, among some 400 salmon
rivers. Among salmon sport fishermen, these salmon rivers are amongst the most
highly regarded in the world. Due to the physical landscape of Scotland, the
longer and more productive rivers tend to be on the East Coast (Anon. 1997).
The River Dee is one such river, which is about 126km long, flowing from the
Cairngorm Mountains to the North Sea at Aberdeen. It has 17 major tributaries
and a catchment area of approximately 2,100 km? which rises to an altitude of
approximately 1200m (Maizels 1985). It has been described as perhaps having
the greatest length of first-class salmon fishing in Britain (Ashley-Cooper 1987),
and between 1952 and 1992 has yielded on average 39% of the total reported
Scottish rod catch of MSW salmon landed before April (DSFIA 1994).

Production on the River Dee is extensively monitored (Shearer 1985), particularly
at the Girnock Burn, a tributary of the River Dee. This tributary has been kept
free from fishing and has been a monitoring site since 1966, and is where many
studies have been conducted (Buck and Youngson (1982), Youngson et al. (1983),
Buck and Hay (1984), Hay (1987), Armstrong and West (1994), Youngson et al.
(1994), Moir et al. (1998)). The majority of the data that will be used in this
thesis are from the Girnock Burn and were collected by FRS!, and covers the
period from 1966 to 1999.

! The Fisheries Research Services, The Freshwater Fisheries Laboratory, Faskally, Pitlochry,
Perthshire, PH16 5LB
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2.1.1 The Girnock Burn
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Figure 2.1: Map of the Girnock Burn (Buck and Hay, 1984). The part of the
stream between the fish traps and A is the lower section, between A and B is the
middle section, and above B is the upper section.

The Girnock Burn flows from a catchment of area 29.77km? and joins the River
Dee at an altitude of 230m, and about 80km from the sea. The catchment, which
rises to an altitude of 570m, contains 32.68 km of streams, with an estimated
11.05km to 13.32km being available to wild salmon (Webb and Bacon 1999).
Granite rock dominates the geology of the catchment, particularly in the upper
part of the catchment, with schist’s and other metamorphic rock being more
extensive in the lower reaches (Moir et al. 1998). A map of the burn is shown in
Fig. 2.1.

Heather and ‘peatlands’ (grouse moor) comprises 89% of the vegetation, with
6% rough grass, 3% conifer, 1% broadleaf and mixed woodlands, the remaining
1% being of other types. Deer stalking and grouse shooting takes place dur-

ing autumn and winter in the upper reaches of the catchment, where heather
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dominates. Other fish, as well as salmon, inhabit the Girnock Burn, and in-
clude brown trout and sea trout, (Salmo trutta), eels (Anguilla anguilla), brook
lampreys (Petromyzon planeri) and minnows (Phozinus phozinus) but compose
less than 3% of the fish population. There is little vegetation within the stream
but filamentous algae are widespread in the spring and decaying leaves settle in
the lower reaches. The most common invertebrates are the larvae of Chironomi-
dae and Simulidae, Ephemeroptera (mainly Baetis spp.) and Plecoptera (mainly
Leuctra spp.) (Buck and Hay 1984)

The climate and flow rates in the catchment are highly variable and exhibit
strong seasonality. The catchment receives an average of 1100mm of precipitation
annually, up to 25% of which falls as snow, with the driest months being from May
to August (Warren 1985). The river has a mean annual discharge of 0.5m3s™"
although flow between June and August rarely exceeds 0.1m3s~! (Moir et al.
1998). The peak flow rates occur during the spawning season (October and
November) and the spring, due to snow melt, when the smolts are migrating

downstream.

2.1.2 Data Collection at the Girnock Burn

The Girnock Burn was chosen as a study site for the Dee as it represented what
was viewed as a typical salmon spawning stream of the Dee. Adult salmon found
in the Girnock are both grilse and MSW salmon, typically 85% of which are 2-
sea winter fish (Moir et al. 1998). The juveniles in the stream emigrate both in
autumn, as precocious males and sexually immature parr, and during the spring
as smolts, the majority of which leave two or three years after hatching (Buck
and Youngson 1982).

The salmon population was monitored using three methods. The first was by
conducting fishing surveys in different parts of the burn to assess the resident parr
population, which is described in Section 2.3. The other two were by collecting
data from an adult fish trap at the lower end of the burn, which would be able
to capture all the adults ascending the burn in order to spawn, and from a smolt
trap, near the adult trap, which attempted to capture all the migrating fish as
they descended the burn (Section 2.4). In addition, water temperatures at the

burn were monitored and are described in Section 2.2.
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2.1.3 The 1978 Experimental Manipulation of the Girnock
Burn

In the autumn of 1978, a relatively low number of adult females were caught in
the adult trap as they ascended the burn to spawn. It was decided that these
adults should be prevented from spawning above the trap, in order that there be
no cohort born in 1979. The effect of this ‘missing cohort’ on the survival and
growth rates of previous and future cohorts could then be monitored, and would
be an indication of how the resident fish would be affected by a large change in

their social environment.

2.2 Temperature Measurements at the Girnock
Burn

Records of water temperatures recorded at the Girnock burn fish trap are avail-
able from May 1968 until December 1996. The first part of this data set from
May 1968 until May 1986 was collected using a continuous water temperature
recorder which traced out temperature measurements on rotating paper discs
that were changed weekly. These recordings were summarised by averaging daily
maximum and minimum temperatures over the whole month. In 1986, the con-
tinuos recorder was replaced by a digital recorder, which took temperature mea-
surements every 15 minutes and these temperatures were also summarised into
monthly averages. However, gaps remained in the data set due to mechanical
failure of the continuous recorder. Temperatures for these missing months were
estimated using polynomial interpolation across months. Thus a data set was
compiled for the mean monthly temperatures from May 1968 until December

1996, and the mean annual temperatures are plotted in Fig. 2.2.

There is no significant trend in these estimated annual temperatures, and the
only significant monthly temperature change with time in years was for April,
which increased with year (F) 25 = 3.71, P < 0.01). However the general monthly
trends indicated that the summer temperatures (March to August) are increasing
whilst the winter temperatures are decreasing (September to February). This is
shown in Fig. 2.3, where the coefficient for the slope of the regressions between

mean monthly temperature and year are shown with the 95% confidence intervals.
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Figure 2.2: Estimated mean annual temperatures at the fish trap on the Girnock
Burn from 1969-1996.
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Figure 2.3: The values of the slope coefficient with its 95% confidence intervals
from regressions with mean monthly temperature as the predicted variable and the
year as a covariate.

2.3 Electro-Fishing Data from the Girnock Burn

Samples of the resident parr population were collected by electro-fishing. This
involves using an electric device to stun fish so that they can be caught with
ease and without causing permanent injury (Jones 1959). The reliability of these
surveys may be highly variable and depends on the efficiency of the equipment
and the characteristics of the environment in which it is used, such as the conduc-
tivity, turbidity, water velocity and water depth (Mills 1989). The electro-fishing
methodology of the surveys on the Girnock were shown to be reliable through
experiments involving fishing to extinction by R. Chalmers of FRS (unpublished
data) but there may still be uncertainty associated with density estimates. How-
ever, there is very little reason to believe that even inefficient electro-fishing would

bias the sample collected with regard to estimates of the parr sizes.

The electro-fishing data was collected during July and August each year from 1969
to 1986 (except 1980), from the Girnock Burn, in order to monitor population
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levels. The burn was divided into five different habitat types, defined according
to substrate type and current, which are listed in Table 2.1. In 1969 all five
habitat types were fished after which fishing in T» was abandoned due to the low
numbers caught. After 1977, only 77 and T}, were fished.

Table 2.1: Definition of the five habitat types in the Girnock Burn.

Name Current Substrate
Ty Rather deep and rapid flowing Boulders and rough stones
Tia Shallow and fast flowing Small boulders and rough stones
T Slow flowing and rather deep Boulders, coarse gravel and silt
T; Median to fast flow Gravely spawning area
Tp | Deep and generally slow flowing

The burn was also divided into four sections based on altitude, called the upper,
middle and lower section for the main stem of the Girnock (see Fig. 2.1), and in
addition, a small tributary, the South Burn was fished from 1969-71. The areas
for each section and each habitat type within them are given in Table 2.2. From

1977 to 1986, fishing was restricted exclusively to the middle section.

Table 2.2: Area of different habitat types within different stream sections, in m?2,
estimated by FRS.

T1 TIA T2 T3 Tp Total
Lower Section | 13329 | 4728 | 2786 | 297 | 208 | 21348
Middle Section | 7510 | 12077 | 813 | 4274 | 686 | 25360
Upper Section | 4203 | 5037 | 1379 | 959 | 474 | 12052
South Burn 3481 | 4416 | 1898 | 258 | 748 | 10801
Total 28523 | 26259 | 6877 | 5788 | 2117 | 69565

The age of the salmon can be determined by examining scale samples from the
fish, and thus its year of birth. As the salmon grow, a ringed pattern is produced
on the scales. The distance between the rings depends on the rate of growth
of the salmon. Periods where the spaces between the rings are relatively large
indicate summer growth, and the converse for winter growth. Scale samples can
accurately determine which cohort a fish is from. The age of a parr is defined
by the number of periods when the rings are close together (i.e. the number of

winters), so a fish which was born in April and sampled the next February will
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be defined as a one year old fish. If there is some summer growth on the youngest
part of the scale (indicating the fish was caught when it was growing well) then a
‘+’ is added to the age. Therefore a fish born in April and sampled the following
September will be defined as a ‘0+’ fish. This notation will be used throughout
this thesis.

The method of electro-fishing has remained the same for each site during every

2 and 150m? was fished three times with stop

year. An area of between 100m
nets. The age of all fish caught was determined either by inspection or by taking
scale samples. This was straightforward for the 04 fry as there was a distinct
difference in lengths between the largest 0+ and the smallest 1+ parr. The ages
of the larger 14+ and all the 24+ and 3+ parr had to be determined by taking scale
samples. Due to the large numbers of 0+ fish caught, only a small subsample
had their lengths measured, and these were chosen randomly from those caught.

All the other parr caught had their lengths measured.

There are gaps in the data set. For 1975 and 1976 there are no lengths available
for the 0+ and only partial data for the 1+ fish (only the proportion scaled). No
survey was conducted in 1980 due to high currents in the burn (this decreased the
water conductivity and reduced the effectiveness of electro-fishing). The missing

cohort from 1979 caused another gap in the data set.

2.3.1 Weight-Length Relationships

A useful functional growth model would need to predict changes in weight before
it could predict changes in length, as the consumption rate would be required
to have the same units as the fish weight. No weight measurements were taken
during the electro-fishing surveys in the Girnock from 1969-1986, so a weight-
length relationship was required to provide the link between the data and model
predictions. This relationship is unlikely to be the same for parr throughout the
year due to variations in their biological condition, e.g. over winter weight loss,
but it only needs to be correct when the data measurements are taken (i.e. during

the periods of the surveys).

The form of the weight-length relationship that we shall use will be the allometric
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relationship of
In(W) = In(a) + x.In(L), (2.1)

which has been frequently used for fish (Manooch and Potts (1997), Dulcic and
Kraljevic (1996), Petrakis and Stergiou (1995), Potts et al. (1998), Planes et al.
(1997)). W is the wet weight (g) and L is the fork length (cm) of the fish?, with a
being a scaling constant (also known as the condition factor) and « the exponent

(the allometric factor).

There are two sets of weight-length data available from the tributaries of the
River Dee. The first is from two electro-fishing surveys carried out in the middle
section of the Girnock burn on 27th July 1998 and 26th August 1998. During
each of these surveys, two sites were fished once (both of habitat type 774), and

the weights and fork lengths of all the parr caught were measured.

In addition to this, data was available from the River Ey, a tributary of the Dee at
the top end of the catchment. It is in a U-shaped valley, where heather moorland
dominates, and the main land use is grouse shooting. An electro-fishing survey
was carried out at two different habitat types in the River Ey on 7th August
1996. The first site was habitat type 77, and the second site was of type Ti4. At
both sites, there was little vegetation in the river and no overhanging vegetation.
Each site was fished three times and had an area of about 100m?. A subsample
of the 0+ fish and all of the older fish caught were weighed and measured for fork
length.

Values of In(a) and x were derived by fitting equation (2.1) to the data the River
Ey, and the two surveys from the Girnock Burn. The values found and their

standard errors are shown in Table 2.3.

Table 2.3: Parameters for equation.(2.1) to derive a weight-length relationship for
gquvenile salmon. The coefficients are shown with their standard errors brackets.

River Date In(a) T Sample Size
Ey | 7/8/96 | -4.608 (0.072) | 3.046 (0.036) 08

Girnock | 27/7/98 | -4.734 (0.169) | 3.115 (0.078) 72

Girnock | 26/8/98 | -4.708 (0.155) | 3.099 (0.071) 92

2The fork length is defined as the length of the fish from its snout to the middle (the ‘fork’)
of its tail. Other measurements that may be used are total length, e.g. Potts et al. (1998).
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When the site was placed as a factor in the regression model for the Ey data,
it was found not to be significant (Fj g5 = 0.0013, P = 0.972). The derived
parameters shown in Table 2.3 and are the same irrespective of habitat type or
tributary. Their condition would be expected to change during different times
of the year (e.g. over winter) or during periods of physiological changes (e.g.

smolting or early sexual maturation).

It was therefore decided to convert the length measurements from the Girnock
electro-fishing surveys into weights using equation 2.1 with the coefficients from
the Ey in Table 2.3 for all the parr caught in each of the habitat types.

2.3.2 Size Differences of Parr Between Habitat Types

All parts of the Girnock Burn that were available to salmon could be classified
into one of the habitat types defined in Table 2.1. Each of them contained parr
aged 04+ to 34, apart from type 7Tp». However, the density estimates varied
between habitat types, to the extent that fishing was abandoned in type Tp after
the first year, and the data collected from type Tp will be omitted from this
analysis. From 1978 to 1986, only the two most productive habitat types, T} and
Ti4 (in terms of numbers caught), were fished. The differences in the habitat
types may be enough to alter the growth rates of the parr significantly. It is

therefore important to know if this is likely to happen, and if so, to what extent.

Box plots have been produced in Fig. 2.4 for each age-class in each habitat type
for the years 1969-1977. In these plots, the centre line represents the median
of the data with the box as the interquartile distance (IQD). The error bars
extend to the extreme values of the data or a distance 1.5xIQD from the centre,
whichever is less. For data having a Guassian distribution, approximately 99.3%
of the data would fall within the error bars. The horizontal lines outside of the

error bars are outlying values. These graphs also indicate whether the data may
be skewed.

A one-way ANOVA was used to test if the variation within habitat types was
greater than the variation between habitat types. This was shown to be true for
the 04+ (F3g55 = 18.73, P < 0.001), 14 (F349235 = 89.19, P < 0.001) and 2+
(F302455 = 30.24, P < 0.001) age-classes, but not for the 3+ age-class (F5 136 =
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Figure 2.4: Box-plot of the weights of the parr from different age-classes divided
into different habitat types, from 1969-1976. For normally distributed data, ap-
prozimately 99.3% of the data would fall within the error bars, and the horizontal
lines outside of the error bars are outlying values.

0.78, P = 0.507).

The mean weights from the different habitat are similar but there are systematic
differences across the age-classes between the habitat types. These differences
are emphasised in Table 2.4, which shows the mean weights predicted by the
ANOVA with their standard errors. With the exception of the 3+ age-class, the
mean weight of the fish caught in 7} is always the largest, and the smallest fish
are always caught in 75. The fish caught in 774 and 73 tend to be similar in
weight for the 0+, 14+ and 3+ age-classes and 2+ at 774 being larger than those
at 13.

2.3.3 Size Differences of Parr Between Stream Sections

The Burn was divided into different sections based on altitude, which are given in

Table 2.5. Shackley and Donaghy (1992) found a significant relationship between
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Table 2.4: Mean weights for different age-class predicted using a one-way ANOVA
for the different habitat types fished from 1969-1976, with standard errors in
brackets.

Age-Class T Tia 15 T
0+ 1.034(0.023) | 0.916(0.038) | 0.743(0.031) | 0.917(0.025)
1+ 6.184(0.044) | 5.547(0.126) | 4.502(0.107) | 5.500(0.046)
2+ 12.80(0.088) | 11.52(0.278) | 10.66(0.269) | 11.91(0.103)
3+ 17.84(0.526) | 16.86(2.026) | 15.89(2.220) | 18.80(0.785)

the length of 14 parr and altitude in the Dee catchment, so it was important to
know if there were systematic differences between in the weights of parr caught

in different sections.

Table 2.5: The mazimum and minimum altitudes of the different stream section
of the Girnock Burn.

Stream Section | Min. Alt. (m) | Max. Alt. (m)
Lower 240 285
Middle 285 320
Upper 320 370

The data was divided into different age-classes and sections and has been sum-
marised in the box-plots in Fig. 2.5. The data from the South Burn is not a
reliable indicator of section effects as it was only fished in three years and sub-
ject to strong year effects. There are consistent differences between the median
weights of parr from different sections across the three age-classes. The largest
fish are found in the lowest section of the burn, followed by the middle section

and then the upper section.

A one-way ANOVA was used to test if the variation within stream sections was
greater than the variation between stream sections. This was shown to be true
for the 0+ (Fyss = 161.26, P < 0.001), 1+ (Fyu936 = 351.16, P < 0.001), 2+
(Fy 2456 = 215.65, P < 0.001) and 3+ (Fy137 = 15.79, P < 0.001) age-classes.
The mean weight predicted using the ANOVA are shown in Table 2.6, and for

each age-class, the mean weight of the parr decreases with altitude.
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Figure 2.5: Boz-plot of the weights of the parr from different age-classes divided
into the different stream section, from 1969-1976. For normally distributed data,
approzimately 99.3% of the data would fall within the error bars, and the hori-
zontal lines outside of the error bars are outlying values.

2.3.4 The Test Electro-Fishing Data Set

The data collection can be divided into two parts: that collected from 1969-77
and from 1978-86. The mean weights of the parr from each age-class during
each year will depend on which habitat type and stream section the data is
from. Therefore taking the average weight for all the parr of a particular age-
class each year is inappropriate if we wish to examine changes in weight across
years. Correction factors could be incorporated into any analysis, but this would

increase its complexity by the addition of many more parameters.

A simpler way to remove the bias would be to remove the data that is causing the
bias. The sites that were consistently fished from 1969-1986 were habitat types
Ty and Ti4 in the middle section. These are the two most populated habitat
types and the middle section is the most representative of the burn, and each
year was fished to same number of times. The dates for each of the mean weights

will be taken as the average date for that sample.
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Table 2.6: The means weights predicted by the one-way ANOVA between the
different sections of the stream with standard errors in brackets for the data from
1969-1976.

Age- Lower Middle Upper

class Section Section Section
0+ | 1.262(0.025) | 0.911(0.018) | 0.657(0.023)
1+ | 4.796(0.063) | 5.354(0.044) | 4.796(0.063)
2+ | 13.89(0.105) | 11.93(0.087) | 10.49(0.134)
3+ | 21.55(0.821) | 17.83(0.516) | 15.25(0.771)

The main cost in the reduction of the data set will be the loss in degrees of
freedom and a consequent increase in the standard errors of the mean weights.
This will be most evident for the 34+ age-class where the sample sizes are already
small. However, the samples will be of a comparable size to those in the later

years and the overall data set will be standardised.

The test data set that will be used is shown in Fig. 2.6. It can be seen that
there is missing data for the 0+ and 1+ age-classes in 1975 and 1976, and for

all age-classes for 1980. There is also a gap where the missing cohort from 1979

s

0
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
Year

Figure 2.6: Mean weights, with standard errors, of parr from cohorts, indicated
by solid lines, divided into different age-classes.
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2.4 Data from the Fish Traps at the Girnock
Burn

2.4.1 The Girnock Burn Fish Traps

The adult fish trap was situated 520m upstream from confluence of the River Dee
and the Girnock Burn. The trap consisted of a deflecting fence and a holding
box that allowed all the ascending salmon to be caught. Once caught, they were
weighed, their fork lengths were measured and scale samples taken to determine
age. Sex was determined from external secondary sexual characteristics. The fish
were then released above the fish traps and allowed to spawn naturally (except
in 1978).

Fish descending the burn were caught in a modified Wolf trap (Wolf 1950) located
80m upstream from the adult trap. The fish were sieved out of the stream into
a holding tank, and their fork lengths were measured. Scale samples were taken
from every fifth fish to determine age and fish > 9cm were tagged. Descending
kelts were also caught in the trap. A fuller description of the fish traps is given by
Buck and Hay (1984). Occasionally during the autumn spates, the trap became
clogged with leaves, with meant that water, and possibly parr did not go through
the trap as they were able to swim over it. Therefore, for these years, the number
of parr caught in the trap provided a lower bound of the total number of migrants

that autumn.

2.4.2 Data from the Adult Trap

Ultimately, from a management perspective, the most important stage of the
salmon life cycle is the adult’s freshwater stage. This is when they have their

highest economic value and these fish will sustain the population.

A minimum ova deposition is required to maintain the river at its carrying capac-
ity, and for the Girnock, it is estimated that levels of more than approximately
200,000 eggs would not result in an increased migrant parr population under
average (environmental) conditions (Buck and Hay 1984). Estimates of ova de-
position (EOD) were calculated for the Girnock Burn from a relationship derived

from salmon in the Dee by Pope et al. (1961), and are shown in Fig. 2.7. There
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Figure 2.7: FEstimated ova deposition (EOD) above the fish trap at the Girnock
Burn, with the solid line representing the estimated deposition required to main-
tain the Burn at carrying capacity.

has been gradual decline in the EOD over the period when the trap has been in
operation, and in recent years has fallen below the estimated carrying capacity.
Considering how the population responded to previous periods of low spawning

may enable us to determine how the present population is being affected.

2.4.3 Data from the Spring Smolts

The main migration period is from February to May, when the migrants become

smolts and migrate downstream to the sea. The majority of smolts are three years
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Figure 2.8: The percentage of the age-classes which make up the spring migration
from 1968-1994.

old, followed by two then four, the percentages being shown in Fig. 2.8. Excep-
tions to this occur two years after low egg depositions, as in 1970, 1979, 1984 and

the early 1990’s, as can be seen in Fig. 2.7. In each migration season, the mean

25



=
w

=
N

Length (cm)
H
H

10
o—eo 3 yr old smolts
+ — ¢ 2yrold smolts
9
68 72 76 80 84 88 92 96

Year of Migration

Figure 2.9: Mean lengths of two and three year old spring smolts from 1968-1995
with standard errors.

lengths of the older smolts are larger, as can be seen in Fig. 2.9, with the lengths
of the two and three year olds being highly correlated (r = 0.801, P < 0.001).
Typically, two years low EOD, the mean lengths of both two and three year old
spring smolts are larger than expected, and the EOD is negatively correlated
to with lag 2 to the lengths of the two (r = —0.352, P < 0.05) and the three
(r = —0.643, P < 0.001) year olds. However, three years after low EOD, there

are no significant correlations with smolt length.

2.4.4 Data from the Autumn Parr

During the autumn of each year, large numbers of parr are caught in the smolt
trap as they are moving down stream, which has been called the autumn migra-
tion. The autumn migrants will not have developed into smolts, though tagging
has shown that some will migrate to sea the following spring. Estimates of the
numbers of autumn migrants are not as accurate as for the spring smolts as the
trap can become clogged with leaves. This means that the accuracy of the es-
timates varies from year to year. However, the sample sizes are large enough
to estimate the mean lengths and the proportion from each age-class, which are
shown in Figs. 2.10 and 2.11.

As with the smolts, the older migrants are the generally larger and comprises the
largest proportion of the autumn migration, except following periods following
low spawning, when the 1+ dominate. The lengths of the 1+ and 24 parr are
correlated with each other (r = 0.397, P < 0.05) and the lengths of the 2+ are
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Figure 2.10: Mean lengths of 1+ and 2+ autumn migrants which were caught in
the smolt trap from 1968-1995 with standard errors.

negatively correlated to the EOD in the previous year (r = —0.536, P < 0.01).
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Figure 2.11: Percentage of different age-classes which make up the autumn mi-
gration.

Both precocious parr (PP) and non-precocious parr (NPP) were caught in the
fish trap during the autumn migration from the Girnock Burn. For the years
1968-1976, an average of 6.3% (s.e=0.022) of the 1+ and 18.6% (s.e=0.027) of
2+ autumn migrants each year were identified as PP. This had risen considerably
to 26.4% (s.e=0.105) for the 1+ and 47.0% (s.e=0.109) for the 2+ for the years
1989-1995, which may be due to the PP migrating in search of females as fewer
ascend the burn to spawn in later years. Data regarding the precocity of the

autumn migrants was not available from 1977-1988.

The lengths of a sample of PP and NPP caught in the trap during autumn from

1989-1995 were measured. Comparisons within age-classes within years revealed
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that the PP were not significantly different in length to the NPP except in 1989
when the 24+ PP were greater (F} 193 = 11.545, P < 0.001).

2.4.5 Comparing Data from Spring and Autumn Migrants

Approximately % of juveniles that leave the burn during any migration season
(defined as from September until May), do so during the spring migration, as

shown in Fig. 2.12.
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Figure 2.12: Ratio of the numbers of autumn to spring migrants leaving the
Girnock Burn. Ratios are only given for the years where the numbers of autumn
migrants leaving are thought to be reliable, the mean being 0.575.

The differences in the lengths of the autumn and spring migrants from the same
cohorts are shown in Fig. 2.13. The difference between the 1+ and 2 yr. olds,
and between the 24 and 3 yr. olds is fairly similar and constant, with the spring
migrants generally being larger. The only exception being 1979 during the time
of the manipulation of the spawning activities of the salmon. With no females
above the trap, large numbers of PP may have migrated in search of females
(Buck and Youngson 1982). Some of these migrants may have been fish which
would have otherwise chosen to migrate the following spring, as the mean weight
of the migrants during autumn 1978 are relatively large, and those during spring

1979 relatively small.

Over the life of each cohort, a number of the members leave at different times.
Fig. 2.14 shows what percentage of the migrants from cohorts born from 1968-

1977 leave during different migration seasons. Data were not available for later
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Figure 2.13: Difference in the lengths of the autumn and spring migrants from
the same cohorts.

years due to unreliable estimates for the numbers of autumn migrants. On aver-
age, 28.3% leave when they are either 1+ or 2 yr. olds, 70.0% leave at either 2+
or 3 yr. olds, and 1.7% leave at either 3+ or 4 yr. olds.
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Figure 2.14: Percentages of migrants from the cohorts from 1968-1976 to have
emigrated during different seasons.

2.5 Summary and Conclusions

Juvenile salmon exhibit a great deal of flexibility in terms of the decisions they
may take and their response to changes in their environment. Temperature is
an important factor in the physiological processes of growth, and as the cli-
mate changes, the growth rate will be affected (Power and Power (1994), Mangel
(1994)). Although the increases in summer temperatures at the Girnock (Fig.
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2.3) have been offset by decreases in the winter, the net effect on the growth rate

of parr in the wild is not known.

Salmon are known to have preferred habitat types (Bult et al. (1999), Heggenes
et al. (1999)), with the largest Girnock parr being found in the faster flowing
waters with gravely substrates. These types are more suited to the salmons’

foraging habits of taking food from the water column or foraging in the substrate.

Altitude may be a surrogate for temperature, as larger parr are found in the lower
parts of the burn. However, these differences may in part be due to other factors
in the local environment. The lower section has more overhanging vegetation so
more invertebrates of terrestrial origin are available as food for the salmon if they
fall onto the water surface. There are also higher levels of detritus, which provide

food for the invertebrates on which the salmon feed.

Ova deposition is negatively correlated with the lengths of the emigrant parr dur-
ing autumn and spring, which suggests that increased density depresses growth.
The scale of these social effects cannot be assessed without taking into account
other environmental effects such as temperature. Also, Ova deposition may be re-
lated to temperature (Webb and Mclay 1996). A method of accounting for growth
due to temperature is to develop a growth model dependent on temperature and

consumption as driving variables.

Unfortunately, measurements of parr food are unavailable for the Girnock, so
will need to be inferred from the data via a model. Surrogates for consumption
may be in the form of limiting quantities such as space (territory size), and these
estimates of consumption are likely to change for parr from the different habitat
types and stream sections. This would give an indication of the differences in
the quality of habitat between different parts of the Burn and allow us to assess

differences in suitability of different parts of the stream for salmon growth.

A growth model will have to consider the effects of migration on the resident
population. Migration from the burn occurs during autumn and spring when a
large proportion of the population leaves the stream. As these fish leave, there
will be an effect on the mean weight of the population within the stream if the

decision to migrate is based on the size attained by the parr.

The PP are also moving around the burn during autumn. The PP that were
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caught at the trap were similar in length to the NPP migrating at the same
time. The condition, and the weight-length relationship, for the PP is likely to
be different from the NPP, as they are allocating resources toward reproduction
rather than somatic growth, but this cannot be confirmed for the Girnock as
these parr were not weighed. However, given that the lengths of the PP are not
noticeably different from the NPP, and that a growth model would be fitted to
population mean weights, derived from the parr lengths, there is no need to treat
the PP differently from the other members of the population during the initial
stages of the growth model.

An energy balance model will be developed to determine the environmental effects
on the growth of the juvenile parr. It will first be tested on parr fed to satiation,
then adapted to wild parr where smolting is occurring in the population. It will

then be used to predict the overall dynamics of the population.
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Chapter 3

Growth Models

3.1 Modelling the Growth of Fish

An important tool in fisheries management is use of growth models to predict
the weight and length of both for farmed and wild fish. On fish farms, models
allow managers to make informed decisions regarding production (Seiwarth and
Summerfelt (1993), Soderburg (1992)). In the wild, growth models are more
frequently becoming part of overall management strategies, which aim to improve
fish production whilst maintaining a balanced ecosystem. They have been used
to assess the impact of changes to the environment on the growth rate of the fish
(Limburg (1996), Trebitz and Nibbelink (1996)), determine optimum stocking
densities fish (Deangelis et al. (1993), Breck (1993)), and suitable feeding regimes
(Yang 1998).

A model is required for the Girnock burn, which is able to predict the weight and
length of parr given temperature and estimates of initial weight. Juvenile parr
lose weight during the winter (Metcalfe and Thorpe 1992) so the model must
be able to predict weight loss as well as gain. In the wild, the biomass of the
invertebrate drift available as food to the parr may change, so the consumption
rate must be able to vary. Rates of consumption and maintenance are affected
by both temperature and fish size, so must be included in the model. Finally, the
model must be parameterised and be applicable throughout the juvenile phase of

the Atlantic salmon lifecycle.
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3.1.1 Weight Based Empirical Growth Models

These models assume that the specific growth rate, GG, is a dependent on weight,
W, as in equation (3.1), and a selection of these types of models are shown in

Table 3.1.
B dW

= (3.1)

Table 3.1: Growth models based on achieved size, where specific growth rate,

G = dW/Wdt, is a function of weight, W .

Model G1

Logistic k(1 —W/Wy)
Gompertz k1(logeWse — logeW)
Monomolecular | ki (W /W) — 1)
Richards (1 — (W/Woo)*2)ky /Ky

*Source: Causton et al. (1978).
"W, asymptotic weight; k; and k, are constants.

They are fitted to data in order to determine the parameters, then used to predict
the growth of fish raised in similar conditions (Baker et al. 1991), (Schnute 1981).
However, these models give no insight into the causes of growth, or how growth
varies with changes to the environment of the fish. This problem began to be
addressed by Bertalanffy (1957), whose model took into account different aspects
of growth.

3.1.2 The Bertalanffy Growth Model

Bertalanfty (1957) developed a physiologically dependent growth model that was
used to predict weight and length. It was based on the principle that the rate of
change of weight equals the rate of anabolism less the rate of catabolism, such
that

aw

WM~ W™ 3.2
dt ! 2 (3.2)

where h; and hy are the coefficients for anabolism and catabolism, and n; and

no are how these quantities scale with weight.

This model still lacked any environmental input or dependence on rates of food

consumption and is used more as a descriptive rather than a predictive model,
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e.g. Ismen (1995), Xiao (1994), Chen et al. (1992), Crisp and Beaumont (1995).
Changes have been made to the Bertalanffy format, such as making the anabolic
and catabolic rates on dependent uptake and temperature, as well as body weight
(From and Rasmussen 1984). Other adaptations have been used to predict density
dependent (Lorenzen 1996) and seasonal (Fontoura and Agostinho 1996) effects
on growth. The principles of growth proposed by Bertalanffy have been extended

to bioenergetic models that take into account more aspects of fish growth.

3.1.3 Bioenergetic Growth Models

Bioenergetic models for growth take the energy budget of the fish and divide it

up into its component parts, such as
Cy=F+U+Ry+ B, (3.3)

where C), is the energy of the food consumed, F, and U, are the energy lost in
faeces and excretion, R, is the standard, digestive and activity metabolism and
P, is somatic growth and gamete production (Wootton 1990). Typically, these
components are further subdivided in order to predict P (see Trans. Am. Fish.
Soc. 122(5) (1993), Kitchell et al. (1977), Stewart et al. (1983)). This type of
model has also been used to estimate consumption rates (Brodeur et al. 1992),
(Stockwell and Johnson 1997) and foraging behaviour (Brandt and Kirsch 1993),
(Goyke and Brandt 1993).

Due to the number of factors affecting growth that are included in bioenergetic
models, they can become very complex. Functions are required for each factor,
which in turn may require many parameters. Feedback into the system is hard to
implement as the models generally express the whole fish as composed of material
that can be metabolised, so any weight loss will affect the whole energy equation
causing a reduction in the proposed consumption rate, due to its dependence on
total weight. Weight loss is unlikely to reduce the capacity for consumption, as
the parts involved cannot be metabolised, e.g. mouth parts and bones. Therefore,
when sufficient food becomes available to enable growth, the model is unable to

simulate consumption at its previous maximum rate.
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3.1.4 A Carbon-Based Functional Growth Model

A model that can be used for salmonids is a compensatory growth model by
Broekhuizen et al. (1994), with growth measured in units of carbon, rather than
energy. Using units of energy ignores the fact that different parts of the fish have
different energy content. Energy is assimilated and converted into weight, and
as the fish is not homogeneous, different parts of the fish will require different
conversion rates. The same problem occurs when the energy is remobilized.
Using carbon bypasses these problems, as it is not converted into other forms.
This model is able to demonstrate weight loss and can easily be adapted for
seasonal variations in temperature and food supply. More importantly, it is able
to simulate changes in the behaviour of the fish as it loses weight so that there is
an element of control, which is reflected by the health and condition of the fish.
Such controls can mimic the changes in uptake and metabolic rates that may

occur at low temperatures or food supply.

3.2 The Compensatory Growth Model

3.2.1 Introduction

Compensatory growth occurs when an animal undergoes an accelerated growth
rate after the period of starvation, which results in a higher body mass than
would have occurred had the starvation not taken place. This has been ob-
served for different salmonid species (Dobson and Holmes 1984), (Miglavs and
Johnson, 1989a, b), and the compensatory growth model (CGM) by Broekhuizen
et al. (1994) has been used to successfully predict weight changes in tank reared
salmonids caused by cyclic feeding patterns. It was originally tested on rain-
bow trout (Oncorhynchus mykiss) and Arctic charr (Salvelinus alpinus L.) with
parameters derived from the literature. This type of model will be suitable for
parr, as they lose weight during the winter (Cunjak 1988), (Metcalfe and Thorpe
1992), (Berg and Bremset 1998). Salmon parr have been observed to experience
compensatory growth after periods of restricted temperature and photoperiod by
Mortense and Damsgard (1993) and restricted temperature and food by Nicieza
and Metcalfe (1997).
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The model is based on two central principles, the first is that the total fish
weight, W, can be divided into to two component materials in terms of carbon:
those of structural tissue, S, and reserve tissue, R. Structural tissue can not be
remobilized once it has been laid down so will never decrease, and includes bones,
nerves and mouth parts. Reserve tissue can be remobilized once laid down, and is
converted into energy to meet the needs of the fish and includes lipids and parts

of the musculature, so R is able to decrease.

The second is that the fish will seek to maintain a constant ideal ratio between
R and S. Any effects from starvation will lead to a decrease in R but not S,
so p = R/S can be taken as a measure of health. A healthy fish will have an
ideal ratio of py and will allocate material to R and S in such a way as to keep
p as close to py as possible. Sufficiently large decreases in p from py will lead
to behavioural changes in the fish which are its response to starvation. pg is
assumed to be constant, although it may change if parr become sexually mature

and allocate resources to reproduction.

3.2.2 Derivation of the CGM

The model assumes that the fish assimilates material at a rate A and loses ma-
terial due to maintenance costs at a rate of M. The difference between A and M
is then divided between R and S depending on a function of p, C'(p). The rates

of change of R and S are given in equations (3.4).

dR _ . dS s
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(where [z]T denotes max{z,0}). C(p) must decrease when p < py and increase

when p > py. When p = pg, C'(p) must remain constant at the value in equation

(3.5),
1

N L+po

Moreover, C(p) must have an upper limit so that when p is relatively high, all

C(p) =Cy

(3.5)

assimilated material will be allocated to S. Conversely, there must be a lower
limit where all assimilated material must be allocated to R. Thus C(p) has been
defined as a function which varies between 0 and 1 and is given a gradient of Cy6

(6 being the reserve control sensitivity), which determines how quickly the limits
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are reached. C(p) is defined as
C(p) =min{l, Co [L+0(p— po)]"}- (3.6)

The assimilation rate is assumed to be dependent on the assimilation efficiency,
g, food supply, ® and the maximum uptake rate, U,,,,. Assimilation efficiency is
the proportion of food consumed that ends up as body tissue. It takes into ac-
count the costs of digestion, incomplete absorption, and specific dynamic action.
As tank reared fish are likely to feed at their maximum uptake rate if there is

sufficient food available, the total assimilation rate can be defined by equation
(3.7).

A =¢e min{®, Uz} (3.7)

An important part of the model is to show how a fish responds to being healthy,
hungry or torpid. It assumes that the behaviour of the fish changes as it loses
weight, which affects both U,,,, and M. These changes are shown in the model
by the starvation response functions, v(p) and A(p). Uy and My are defined as
the uptake and maintenance rates for a healthy fish, and so U,,., and M can be
written as

Unae = ’Y(P)UH M = )‘(p)MH (38)

v(p) and A(p) are step functions which change in value when p passes through
certain threshold values. When p decreases below the healthy /hungry threshold,
the uptake rate increases and M remains the same. Below the hungry/torpid
threshold, both costs and uptake rates decrease. This is to simulate a strategy
that the fish may adopt until food becomes more abundant. An additional feature
of the starvation response functions is when p increases from below to above the
hungry/torpid threshold, the behaviour remains the same for a small increment
(A) of p above the threshold. This is intended to simulate observations where the
fish does not immediately resume the costs of a hungry fish. These observations
may be due to the fish being unable to change its physiological or behavioural
state instantaneously, or it might be a cautious type of behaviour. These two
functions are defined in Broekhuizen et al. (1994) Table 1.

The model states that Uy and My vary as geometric functions of body weight

and exponential functions of temperature. Up will be dependent on gut and
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mouth parts so will scale allometrically (with constant k) with S. With the
scaling constant Upop and the characteristic temperature for uptake 74, Uy is

thus derived as equation (3.9).

T
Uy = UyoS"exp (—) (3.9)
Ty

All body tissue will require maintenance so My will scale allometrically with
total weight (with allometric constant v). The scaling constant is denoted as
Mpyo and the characteristic temperature for maintenance Tk. This yields the

equation (3.10), which completes the model.

T
My = Mgo(R+ S)"exp <T—R> (3.10)

3.2.3 Parameterizing the CGM for Salmon Parr

The CGM was developed to predict growth rates for tank reared salmonids, and
changes need to be made in order to apply it to the wild. The definition of A
given by equation (3.7) states that the fish will eat all food presented to it if
® < Uz, otherwise it will feed at U,,,,. This is a reasonable assumption in a
tank environment as the parr have no problem finding food, but in the wild, they
are unlikely to be able to feed at U,,q,. Ideally, equation (3.7) would be redefined
to include the type II functional response, derived by Holling (1959) which has
been used to estimates consumption rates in wild freshwater fish (Madenjian and
Carpenter 1991), (Stockwell and Johnson 1997), (Eby et al. 1995). Unfortunately,
there is insufficient data regarding prey density in the Girnock Burn for this to

be done.

An empirical growth model, developed by Elliott and Hurley (1997), has been
used to predict growth rates of wild salmon parr. It uses weight and temperature
to determine the specific growth rate and was parameterised using data from
Atlantic salmon parr. In the next section, this model will be applied to data from
the Girnock Burn to assess its effectiveness. Elements of the Elliott and Hurley
(1997) model will then be combined with the CGM to create a new growth model

for Atlantic salmon parr.

38



3.3 Elliott and Hurley Growth Model for Juve-
nile Atlantic Salmon

3.3.1 Introduction

An empirical growth model derived by Elliott (1975a, b) to predict the growth
of brown trout, (Salmo trutta L.), has recently been modified (Elliott and Hurley
(1995), Elliott et al. (1995)). It has also been reparameterized for immature
stone-loach, (Barbatula barbatula L.) (Elliott et al. 1996) and juvenile Atlantic
salmon, (Elliott and Hurley 1997). The model assumes that the fish are feeding to
satiation and growing at their maximum rate for a given temperature. Predictions
from the model appear to be very good for well-fed tank reared salmon parr grown

at constant temperatures.

The Elliott and Hurley (1997) (E&H) model can be used to simulate growth
trajectories for different cohorts in the Girnock Burn. Predicted weights can
then be compared to the estimated mean weights of the resident parr, which
have been derived from electro-fishing data. The quality of the E&H model can

then be determined by examining the residuals between the model and the data.

The E&H model describes the proportional growth rate, G, as in equation (3.11),
at a water temperature of 7°C' and at an instant in time when the live mass of
the fish is W grams.

1 dW T—-"1T,
Go=————=c W'l |—0—— 3.11
Woar [TM—TO] ’ (3:11)
where T oper
. L <1y
To = { Ty otherwise (3.12)

There are five parameters in the model; three associated with water temperature
and two with fish size. The temperature for optimum growth is set at 7, with
the upper and lower temperatures when zero growth occurs being Ty and 77,. The
mass exponent b is the power transformation of mass that produces linear growth
with time and ¢, is the growth rate of a 1g fish at the optimum temperature.
Thus in order to predict the weight of a fish at time ¢ using this model, we require

its initial weight at ¢y and the water temperatures between ¢, and ¢.
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Table 3.2: Parameters for the E€SH juvenile salmon growth model

Parameter Symbol Value Units
Weight exponent b 0.31 | dimensionless
Maximum growth rate for 1gm fish Cy 0.035 |d~'gm®
Optimum temperature T 159 |°C
Low temperature limit 17 6.0 °C
High temperature limit Ty 22,5 | °C

3.3.2 Simulations using the Girnock data

Electro-fishing surveys were conducted during the summer from 1968 to 1986,
with the exception of 1981. From these records, we have length measurements
of the resident parr at ages 0+, 14+, 24+ and 3+. Older fish were too rare to be
included in the analysis. There are no lengths for the 0+ and 14 age-classes for
the years 1975 and 1976 due to lost data. The weight-length relationship de-
rived in Chapter 2 was used to convert the lengths into weights, which were then
summarised into mean weights for each age-class in each cohort. The tempera-
ture data has been summarised into monthly mean temperatures, as described

previously.

Simulated growth trajectories were produced using the E&H model with the
temperatures from the Girnock Burn, the parameters in Table 3.2, and initial
fish weights of 0.15¢g on the 1% April. The initial weight and starting data are
the nominal birth weights and dates for salmon in the Girnock Burn (D. W. Hay,
pers. comm.). Simulations were carried out for each cohort born from 1968-1986
except for 1979 when adult fish were prevented from spawning the previous year,
which resulted in no cohort born that year. Fig. 3.1 shows the simulations with

the estimates of fish weights from the electro-fishing data, with standard errors.

3.3.3 Analysis of the E&H Model

Fig. 3.1 shows that there are large discrepancies between the model predictions
and the weight estimates from the electro-fishing data. The parameters were
derived from well-fed fish reared in a controlled environment so the model should
at least over-predict the parr weights and ideally be an upper bound for growth

at the given temperature. Nearly all of the predicted weights are less than the
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Figure 3.1: Growth trajectories for cohorts of salmon parr in the Girnock Burn
deried using the EE/H model. Data points are the mean weights of each age-class
from each cohort, where the filled circles are associated with the solid lines and
the open circles with the dotted lines.

observed weights, and many substantially so. Also, the over winter weight loss
predicted by the model is very large and in some cases is roughly equivalent to
the weight gain during the summer. From the data, it can be seen that the

predictions for the Girnock are clearly not realistic.

Elliott & Hurley, (1997) used this model to simulate growth trajectories of wild
parr in the R. Eden, a stream in Northwest England. These simulations did not
produce the large winter weight loses seen when using the Girnock temperature
data and there was a tendency for the weights of the 1+ age-class to be under-
predicted, although the weights of the 2+ age-class were over-predicted. However,
in general, the fit was realistic, so the model appears to be appropriate for the
R. Eden but not the Girnock Burn. Possible reasons for this are that either the

parameters are incorrect, the model is structurally wrong, or both.
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Figure 3.2: The function g(T') as defined in equation(3.14).

The specific growth rate can be split into two parts, G, = f(W)g(T), where

fW)=c,W?° (3.13)
and T
g(T) = T T, (3.14)

with the parameters defined as above. The function ¢(7T') is plotted out in Fig. 3.2
and illustrates how G, is affected by temperature. When T = Ty and T =
T, G, is zero, and the maximum growth rate will occur when the temperature
is at Thy. At temperatures below 77, or above Ty, weight loss will occur. In
Fig. 3.3, we compare the Girnock temperatures and the Eden temperatures and
we can see that more weight loss is predicted by the model when temperatures
from the Girnock are used. In the Girnock, large parts of the year are spent at
temperatures that are below that required for growth and, according the E&H
model, the fish is predicted to lose weight.

Different parameter values would reduce the weight loss predictions and increase
overall growth. Reducing T, T, or 1T}, increases weight gain and reduces weight
loss at low temperatures. However, there is lots of evidence to suggest the es-
timates are reasonable (Tj;: Wankowski and Thorpe (1979a), Dwyer and Piper
(1987), Peterson and Martin-Robichaud (1989), and T7,: Evans et al. (1985), Lee
and Power (1976), Jensen et al. (1989)). The mean monthly temperatures in the

Girnock are rarely greater than 7}, so the value of 7y, will have a very small
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Figure 3.3: Comparisons of the temperatures used by Elliott Hurley from the R.
Eden and those found in the Girnock over same period (April 1977 to April 1981).

effect on weight predictions in the Girnock. The remaining two parameters b and
cq are independent of the temperature so if these were changed, G, would still be
negative for temperatures below 77,. The weight loss can be reduced by altering
b and ¢, but this will also cause the growth rate at temperatures above 77, to be

reduced.

The real problem lies within the structure of the model. As the temperature
decreases from T}, the growth rate will decrease linearly for a fish of constant
size. GG, becomes negative when 1" = T, and continues to decrease until 7" reaches
its minimum at 0°C. During periods of cold temperatures (< 6°C), parr will
become less active and reduce their metabolic costs (Metcalfe and Thorpe (1992),
Cunjak (1988), Gardiner and Geddes (1980)), but there is no such mechanism
included in this model, which predicts continued weight loss. Changes need to
be made to the model so that it will no longer produce growth trajectories with
large weight losses during the winter but still be able to fit the experimental
data used by Elliott & Hurley to parameterise their model. The CGM does take
into account these aspects of fish growth and a new model is constructed in the
final section of this chapter, which will combine components of the E&H and the
CGM. This will enable us to create a realistic upper bound for the growth of parr
in the Girnock.
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3.4 Combining Aspects of the E&H model with
the CGM

3.4.1 Restructuring the CGM

The E&H model is not suitable in its present form, but any credible model must
be able to fit the data from Elliott and Hurley (1997) as well as the E&H model is
able to. Due to the structural inadequacies of the E&H model, the CGM model

will form the basis of a new model.

A well-fed fish can be assumed to have p maintained at its optimum value p, so
that S = W./(1 + po), where W, is the fish weight in carbon. Rearranging the
left-hand member of (3.4) gives

1 dW, 1
= °— A— M) =Wt W, — T 1
AT TA ) =W [Ta =l (3.15)
where
EUH[] T _ T
U,=—" — Uy =WY"rM — . 1
P At o) exp (TA> m=W 10 €XP (TR> (3.16)

To harmonise the CGM and the E&H model requires two things. First v =k =
1—bis set so that ¥, and ¥,; depend only on temperature and G, oc G, oc W2,
This harmonises the weight scaling of the two models. Second, two functions,
UA(T) and Wy, (T), are chosen such that so that

T—Ty ]

—_— 3.17
T T, (3.17)

UA(T) — VD) =, |
Equation (3.17) is clearly incompatible with both ¥, and W), having the forms
given in equation (3.16). The standard metabolic rate (SMR) is often described
as being exponentially dependent on temperature, (Wootton 1990), but this is
not always the case with U,,,,. Van Winkle et al. (1998), Stockwell and Johnson
(1997), Lantry and Stewart (1993) and Rand et al. (1993) all use the function
Uy, for the SMR, but use a function developed by Thornton and Lessem (1978)
to describe how U, is dependent on temperature. Since the evidence for the
SMR being exponentially dependent on temperature is stronger than that for
uptake, ¥, will remain as defined in equation (3.16), and have

7 jp)ng(T) (3.18)
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e &(T) = (14 po)" |:MH0 exp (%) T+ (%)T ' .

The ‘*’ in this equation is there to avoid negative uptake. This leads to a final

model in which

iR ds s N

where C(p) is defined by equations (3.5) and (3.6), and

A= Ap)S"E(T) M = 5(p)Muo(R + S)*exp (T/Tr)  (3:21)

with £(7") defined by equation (3.19), Tj as defined in equation (3.12), and A and
7 are defined in Broekhuizen et al. (1994) (Table 1).

Table 3.3: Main Parameters for the Modified CGM salmon growth model

Parameter Symbol Value Units
Weight exponent K 0.69 | dimensionless
Maximum growth rate for 1mg fish Ce 0.155 |[d~'mgC'™"
Optimum temperature T 159 |°C
Low temperature limit 17 6.0 °C
High temperature limit Ty 22,5 | °C
SMR characteristic temperature Tr 12.5 e
SMR at 0°C Mo 0.04 |d 'mgC'*
Ideal Reserve ratio Po 1.5 dimensionless
Reserve control sensitivity 0 3 dimensionless

The main parameter values for this model can be adopted from Elliott and Hurley
(1997) and Broekhuizen et al. (1994). Since the CGM is formulated in terms
of carbon weight (mgC) and E&H in wet weight (g), the units of ¢, must be
changed from d~'gm® to d 'mgC’, and will be redefined as c,. Using the CGM
parameters for the SMR, we arrive at the parameter set shown in Table 3.3. The
other model parameters, which govern the behaviour of the starvation/recovery
part of the model, can be taken from CGM.

Finally, in Fig. 3.4 the weight-scaled assimilation and basal metabolic rates
against temperature are plotted. The ‘clipping’ of the assimilation function does
not act until 7' < 2.5°C', which indicates that the model reproduces all of the
region of E&H’s model which is supported their data.
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Figure 3.4: Weight-scaled assimilation (A/W*) and weight scaled SMR (M /W*)
for the CGM modified so as to force compliance with the EEH picture of the
temperature dependence of growth rate. Parameters taken from Table 3.3 .

3.4.2 Parameterizing the CGM/Elliott model

Combining the E&H model with the CGM has guaranteed that, over the temper-
ature range of Elliott and Hurley (1997) data, the CGM/Elliott model (CGM,)
will reproduce their observed growth rates for satiated fish. This is independent
of our choices of SMR and the starvation/recovery responses. However, for the
model to predict an upper bound to growth in conditions where long-term weight
loss occurs, appropriate values for the SMR and starvation/recovery parameters

must be obtained.

The CG M, requires new parameters for Atlantic salmon parr, and the first change
is the carbon content of the Atlantic salmon which ranges from 11.4-12.5%, with
a mean of 11.93% (Carter et al. 1992), from the value of 15% for rainbow trout
used by Broekhuizen et al. (1994). The hysteresis in the starvation response
functions will also be dropped from the model. The effect of this on the growth
trajectories will small as they will only be affected once a year, during the spring
as they gain weight after the winter. The hysteresis can also cause numerical

problems to occur at certain levels of assimilation.
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Figure 3.5: Mean weights by length class (£ s.e.) for fish caught in Catamaran
brook in the autumn and spring of 1992-93 (upper) and 1993-94 (lower).

Winter weight loss in Catamaran Brook

Electro-fishing surveys were conducted at a single site in the Catamaran Brook,
New Brunswick in autumn and spring of the years 1992/93 and 1993/94 (R.A.
Cunjak, unpublished data).In each survey, weights and fork lengths were mea-
sured for the Atlantic salmon parr that were caught. In Fig. 3.5 the mean weight
of autumn and spring fish classified by length are shown. The spring fish of a
given length class are noticeably lighter than autumn fish of the same length.
To confirm this result, a weight length curve was fitted to each data-set (Table
3.4), such that W = aL®’ where W is weight, L is fork length and a and b are
constants. Temperatures in the brook between the autumn and spring surveys
are continuously below the 77, = 6°C' limit for growth, so this difference will be

assumed to be due to over-winter weight loss.

Table 3.4: Weight-length coefficients for the Catamaran brook data

Season a b

Autumn 1992 | 0.0090 | 3.081
Spring 1993 0.0092 | 2.990
Autumn 1993 | 0.0108 | 2.972
Spring 1994 0.0095 | 2.964

47



Short term starvation experiments

Two data sets in which weight loss was measured over short periods of starvation
by Carter et al. (1992) and Wainwood et al. (1992) were found in the literature.
In the Wainwood et al. (1992) experiment, juvenile Canadian salmon were starved
for 43 days at a constant temperature of 13°C' + 1°C'. Scottish juvenile salmon
were used by Carter et al. (1992), and were starved for 30 days with varying

temperatures of 5 — 8°C'. Details of the results are given in Table 3.5.

A starvation-recovery experiment

Another data set that involved starvation was by Metcalfe and Thorpe (1992).
Over a 29 day period, fish were starved for the first 21 days, then fed to satiation
for four days, then starved for a further two days before undergoing a two day
appetite trial. During the trial, the fish were offered food and their growth
response was noted. By the end of the trial, the fish were refusing food, which
indicates that they were fed to satiation. Over the experimental period the
temperature changed from 10.2 — 10.5°C" at the beginning in 26-27 October to
8.3—8.6°C' by the end in 23-24 November. Estimates of the mean specific growth

rate per day over this period are given, as well fork lengths of the fish.

Parameterizing weight loss

To form a data set in order to parameterise the starvation response part of the
CGM,, weight loss for three representative starting weights (5, 10 and 15 g)
was calculated from the Catamaran brook data for 1992/3 and 1993/4 using the
derived weight-length relationships in Table 3.4. The two short-term experiments
were added to this, resulting in the complete data set shown in Table 3.5. The
Metcalfe and Thorpe (1992) experiment was omitted from consideration at this
time, since its results are dominated by the recovery process and only tell us

about weight loss indirectly.

In the CGM,, the SMR is related to weight and temperature by

M = ~(p) MuoW¥eap (%) (3.22)
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Table 3.5: The parameterisation data set for SMR and starvation parameters

Experiment | Start | Finish Initial Final Temp
Date | Date | Weight (g) | Weight (g) °C
Carter 3 Feb | 5 Mar | 12.30 (2.03) | 11.12 (2.12) | 6.2(1.0)
Wainwood | 5 Mar | 17 Apr | 20.2 (0.7) 16.9 (1.0) 13(1)
13 Nov | 3 May 15 12.47 0
1992/93 13 Nov | 3 May 10 7.11 0
13 Nov | 3 May 5 3.60 0
4 Nov | 28 Apr 15 13.00 0
1993/94 4 Nov | 28 Apr 10 8.68 0
4 Nov | 28 Apr 5 4.34 0
* (@ . (b)
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Figure 3.6: Fits to the test dates using best fit parameters in Table 3.6 a)Carter
b) Wainwood c¢)Catamaran brook 1992/3 d) Catamaran brook 1993/4.

where

_ 1 plpy >
v(p) —{ C0 1> plpo (3.23)

This attempt at parameterisation assumes that the weight and temperature scal-
ing are correct, and treats Mpyo, 72 and &,z as fitting parameters. Since an
analytic solution for the weight trajectory under starvation conditions can be ob-
tained, an automatic optimisation by the downhill simplex method (Press et al.
1989) was used and the parameters constrained. Constraints of 0.026 < My,
and 0.4 < 75 < 1 needed to be placed on these parameters to ensure the model
still fitted the Elliott and Hurley (1997) data. The constraint on 0.1 < &,;, <1
was set to prevent it from becoming negative. The best fit values are given in
Table 3.6 and the quality of fit is shown in Fig. 3.6.
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Table 3.6: Best fit parameters - attempt 1
Error Measure Mpyo To &y | Error (g)
Mean Absolute Error 0.0260 | 0.8580 | 0.1000 | 0.3400
Root Mean Square Error | 0.0260 | 0.8440 | 0.1000 | 0.5001

Table 3.6 suggests that the quality of the optimal fit is not very good. Examina-
tion of Fig. 3.6 shows that all the experiments are well fitted ezcept the Wainwood
et al. (1992) experiment, which is the only one not carried out at low tempera-
ture. This suggests that the temperature scaling of SMR needs to be adjusted.
This is not just a question of adjusting T'g, since this changes both the slope of
the curve and its absolute position on the axis. The present SMR will be assumed
to be correct at the lower zero-growth temperature, 77, so
exp (1., /Tr T

M =~v(p)W* MHO—eXp ((TL/TR]\z)] exp (ﬂ) ) (3.24)
Tgrn, T2, and &, are now the fitting parameters, with constraints 3.8 < Txy,
04 <7 < 1land 0.1 <&, < 1. Downhill simplex fitting gives the results
shown in Table 3.7. The resulting quality of fit is illustrated in Fig. 3.7 and is
much better than the previous attempt, so these new parameters will be used to

describe SMR for Atlantic salmon parr.

Table 3.7: Best fit parameters - attempt 2
Error Measure Try Ty &1 | Error (g)
Mean Absolute Error 5.2465 | 0.8601 | 0.1008 | 0.1497
Root Mean Square Error | 4.8720 | 0.8744 | 0.1000 | 0.2685

Parameterizing recovery from starvation

When the fish begin feeding after a period of starvation during which they have
lost sufficient weight to become torpid, they recover to a healthy state, given
enough food and time. The function A(p) shows how uptake changes with the
condition of the fish. The form that A(p) takes is

_J1 p/po > T
Alp) = { 1, < 1.0 1 Z"p/pz (3.25)

The model will be fitted to data from Metcalfe and Thorpe (1992) by varying

the parameters that are associated with recovery from starvation. These are
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Figure 3.7: Fits to the test data set using best fit parameters in Table 3.7 a)Carter
b) Wainwood c)Catamaran brook 1992/3 d) Catamaran brook 1993/3.

6, the reserve control sensitivity and &, the torpid/hungry uptake ratio. These
parameters were varied individually with the other parameters in the model being
held constant at their previous values. The errors between the model prediction

and the data point as the parameters are varied are shown in Table 3.8.

Changing the value of # will alter the allocation of assimilated material between
R and S and hence affect the rate of recovery of the fish. Lower values of # mean
more material is allocated to S and recovery is slower. At a value of § = 1, the
fish remains in a torpid state throughout the period of feeding. Therefore it is
useful to derive the error at this value as any lower values of # would produce
the same trajectory. As @ is increased, the fish recovers from starvation quicker,
which decreases the error in the Metcalfe and Thorpe (1992) data. However
large increases in 6 produce increasingly smaller decreases in the error, so only

at unreasonably high values of 6 is the error at an acceptable level.

Varying the &, will produce an excellent fit to the data when &,; is changed
from its original value of 0.8 to 0.42. This implies that when salmon parr are fed
to satiation after a period of starvation, their growth rate would be lower than

expected for rainbow trout, from which the original parameter was derived. The
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Figure 3.8: Simulation on the data from Metcalfe and Thorpe (1992). The orig-
inal value of y; has been used in one simulation (solid line) and a value of
& = 0.42 for the other simulation. The error bar has been derived from errors
in the estimate of the daily specific growth rate.

simulations shown in Fig. 3.8 are for original set of parameters and with the new
value of &,;, = 0.42 that will be used in the model.

Table 3.8: Errors associated with different parameters when fitting the model to
the data from Metcalfe and Thorpe (1992) starvation-recovery experiment. Pa-
rameters in the model were varied one at a time whilst the others were kept at
their value in the CGM. Errors associated with varying that particular parameter
are given below.

Parameter Value | Error (grams)
Original Parameters 0.071
6 = 100 0.005
=5 0.01
=1 0.193
&, = 0.42 0.001

3.4.3 Fully Parameterised CGM, Model
Finally, reverting to the parameterisations of SMR and the uptake response func-

tion given in equations (3.23) and (3.25), our current view of the best model

parameters is summarised in Table 3.9. Simulations using these parameters are
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Figure 3.9: Simulations from the CGM, with data from the Girnock Burn. The
solid lines correspond to the data points with the filled circles, and the dotted lines
are the growth trajectories of the cohorts with the open circles.

shown in Fig. 3.9 for cohorts born in 1968 to 1986 with the exception of 1979,
when no cohort was born, and the data from the electro-fishing surveys conducted
on the Girnock Burn. As expected, the model over-predicts the weights of the
wild salmon parr and more importantly, over winter weight loss is reasonable.
Thus, the current parameters can be viewed as providing a reasonable upper

limit to the growth of juvenile salmon in the Girnock Burn.

Table 3.9: Parameters for the CGM, salmon growth model

Parameter Symbol Value Units
Weight exponent K 0.69 | dimensionless
Maximum growth rate for 1mg fish Ce 0.155 |d~'mgC'™"
Optimum temperature T 159 |°C
Low temperature limit 17 6.0 °C
High temperature limit Ty 22,5 | °C
SMR characteristic temperature TrN 5.3 e
SMR at 0°C for a healthy 1mgC fish M 0.021 | d~'mgC!™*
Ideal Reserve ratio Po 1.5 dimensionless
Reserve control sensitivity 0 3 dimensionless
Threshold p/pg for torpidity Ty 0.86 | dimensionless
Torpid SMR/Normal SMR §vr 0.1 dimensionless
Torpid uptake/Normal uptake Sy 0.42 dimensionless
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Chapter 4

Protocols for Fitting the Growth
Model to Freshwater Data

4.1 Introduction

The model derived in Chapter 3 is able to simulate long term growth rates for
well-fed salmon parr given initial weight and water temperatures, and so estimate
an upper bound for growth. In the wild, the fish are unlikely to be feeding to
satiation so the effects on the growth rate of a limited food supply must be
included in the model. These effects will be represented by a single function
o(t), where t is time. As each cohort grows throughout its juvenile phase, ¢(t)
will account for some of the differences between the growth rates of well-fed and
wild parr. In this chapter, a method will be developed for deducing ¢(t) using

electro-fishing data from the Girnock Burn.

4.1.1 Individual Observations and Averages

Ideally, measurements of individuals should be used to derive ¢(t). This is not
possible, as individuals were not identified from one survey to the next for the
historical data set. The weights of the fish sampled from each cohort needed to
be summarised in a way that take into account variation in the weights of the
population. This was done by deriving the mean with the standard error (s.e.)
and the median with the quartile values for each age-class in each cohort. Fitting

the model to this data assumes that an individual will grow at the same rate as
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the average of each age-class. There is evidence to suggest that the growth rate of
wild parr is different for different members of the same cohort. Nicieza and Brana
(1993) observed that the smaller members of a cohort increased their growth rate
during the spring and the larger members decreased theirs, which resulted in each
group having similar sizes by the summer. The Girnock Burn data were collected
during the summer and it will be assumed that the growth rates of the individual
resident parr are not different from the growth rate associated with the mean

lengths from the samples of the cohort.

The data were collected from six electro-fishing surveys spread across the summer.
As the mean weight of the fish caught from each age-class during the surveys each
year was being used as a summary of an individuals weight, a single date was
required to be associated with each mean weight. As different numbers of fish

were measured at each survey, the mean capture date was used.

4.1.2 Population Structure vs. Average Individual

As the cohorts age, the numbers caught from each age-class in each sample de-
creases. This is not all due to mortality, as large numbers of parr leave the burn
during autumn and spring. The autumn migrants leave as either normal or pre-
cocious parr whilst the spring migrants leave as smolts. Therefore, by the time
a cohort is two years old, there has been some emigration from the population
and when it is three years old most of the fish from that cohort will have died or
migrated. This means that the electro-fishing samples are not a true subsample
of the survivors of that particular cohort at ages 2+ and 3+, but only of the

resident parr in the stream.

Fitting the model through the mean or median weights assumes that the average
weights of all the fish caught are typical of the individuals in that cohort. In
particular, it does not take into account any size selective effects on removal
from the population. Measurements of the lengths of the migratory juveniles are
available, but for now, we shall concern ourselves solely with fitting the model to

the electro-fishing data.
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4.1.3 Incorporating ¢(t) into the Growth Model

The function ¢(t) is intended to indicate the difference between the growth of
parr in the wild and those fed to satiation and will be a fraction (between 0 and 1)
of the assimilation rate. ¢(¢) = 1 indicates that a parr is assimilating material at
its maximum rate and ¢(¢t) = 0 means that the fish is not assimilating anything,
at time t. The change to the CGM, model, defined in Section 3.4, is by changing
equation (3.20) to

W pwya—a - % Y _cpma-Mt. (4

This change will only affect the growth rate when the parr are assimilating ma-

terial: the rate of weight loss due to metabolic costs remains unaffected.

4.1.4 The Data Set

Different data sets will produce different values for ¢(t), as it is an indication of the
environmental state within which the parr has grown. The best fitting procedure
and form of ¢(t) will be determined using the data from the Girnock Burn. The
subset of the Girnock data selected in Chapter 2 will be used with standard errors
for the means and quartile values for the medians. Temperature data and the
weight-length relationship required for the model have been described in Chapter
2 and the birth weights and dates will be those previously used in Chapter 3.

4.2 Fitting the Model to Average Individuals
with Time Dependent Temperature

4.2.1 Fitting and the use of ¢(¢)

The model will initially be fitted to the means and medians of the data set with
¢(t) = k, where k will have a constant value for all . In order to find the best
fit to the data, k£ will be varied between 0 and 1. The series of criteria described
in Section 4.2.3 are used to determine the best fit of the model to the data.
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4.2.2 Method of Deriving a Single Optimal &

Estimates of k are most likely to be 0 < k£ < 1. Values of £ < 0 are not
applicable as they lead to a negative assimilation rate. £ > 1 will indicate that
the fish grows better in the wild than in tanks where they are fed to satiation. As
this is improbable, it might indicate that there is a flaw in the model. The best
fit to the data will be the value of £ between 0 and 1 which minimise an error
term. In order to find the optimum value of k£ (the value of k£ at which the error
term is minimised), the error was evaluated from & = 0 to £ = 1 at increments of
0.01. This is a robust method and will enable us to see how the error varies with
k. The model will initially be fitted to both the mean and the median weights
of the different age-classes from the different cohorts, in case there is a skewed

distribution of the weights which is able to bias k.

4.2.3 Determining the Goodness of Fit of the Model to
the Data

Running the model produces a growth trajectory for each cohort. Each cohort
has at most four data points, one for each age-class from 0+ to 3+, where data is
available. In order to examine to goodness of fit of the model to each age-class,
a table of results has been complied. The descriptions of what each of these

statistics indicate in Tables 4.2-4.5 is as follows.

The first column is the age-class for which the rows of statistics apply. The
second column is the average of the mean weights for that age-class, which can
be compared with the average of the predicted mean weights in column three.
The range of the predictions is in column four. The absolute mean error is in the
next column and the percentage error in sixth, which is the absolute mean error

divided by the observed mean weight multiplied by 100.

The column Sign. same is derived using two-tailed paired t—test between the
predicted weights and the observed mean weights. The observed mean weights
from each age-class approximate a normal distribution so the predictions should
also form a normal distribution indistinguishable from the observations. A t—test
will be used to test this. The term ‘Y’ indicates that the two means cannot be

distinguished, which is what is required, whereas ‘N’ indicates that the means
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Figure 4.1: Graph showing the RMS error, for different values of k, between
the model prediction and the mean weights of the different age-classes from the
different cohorts. There is a global minimum at k = 0.89 £ 0.005.

are significantly different.

The final column, labelled Sign. correl., which determines whether the predictions
are correlated with the observations, as desired. In this column, NS means the
correlation is not significant, * means it is at P < 0.05, ** means it is at P < 0.01
and *** means it is at P < 0.001.

4.2.4 Estimating k£ by Fitting the Model to the Means
and the Median Weights

The minimum root mean square (RMS) error was calculated for all likely possible
values of £ with both the mean and the median data sets. Fig. 4.1 shows how
the RMS error between the model and the data varies with k. A global minimum
can be seen at £ = 0.89 + 0.005 and there is unlikely to be a minimum at £ > 1.
A similar picture is produced when the model is fitted to the median weights.
Optimum £ and the RMS error for the mean and median weights are shown in

Table 4.1, and a description of the fit to the two data sets are given in Table 4.2.

There is a strong tendency for the 14+ and 2+ age-classes to be under predicted
whilst 34 age-class weights are predicted relatively well. Small changes in &

produce increasingly large changes in the growth trajectories as time increases.
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Table 4.1: The optimum values of k which minimise the RMS error between the
model predictions and the observed mean and median weights.

k| RMS error (g)
mean 0.89 3.24
median | 0.89 3.15

Table 4.2: The fit of the model to the observed mean and median weights when
the optimal value of k is found by minimising the RMS error.

Age- Average Predicted Range of Mean Abs. % Sign.  Sign.
class  Weight (g) Weight (g) Predictions (g)  Error (g9)  Error same correl.
Fitted to the mean when k=0.59
0+ 0.82 0.75 0.42-1.38 0.24 29 Y NS
1+ 5.35 3.63 2.21-5.30 1.81 34 N NS
24 12.34 9.26 5.70-13.78 3.28 26 N NS
3+ 18.92 20.07 14.41-27.67 3.49 18 Y NS
Fitted to the median when k=0.89
0+ 0.79 0.75 0.42-1.38 0.24 30 Y NS
1+ 5.17 3.63 2.21-5.30 1.70 33 N NS
24 12.12 9.26 5.70-13.78 3.13 26 N NS
3+ 18.21 20.07 14.41-27.67 3.37 18 N NS

This results in a large change in the error at the 3+ stage and smaller changes in
the error for the 04, 1+ and the 2+ parr. Therefore, the best fit will be heavily
influenced by the weights of the 34+ age-class.

In order to force the model to fit the younger age-classes better, whose sample
sizes and abundance are much larger, the fitting procedure can be altered so that

it would take into account the sample sizes and the spread of the data.

4.2.5 Estimating k£ by Fitting the Model to the Data by
Minimising a Weighted Function

Two weighting functions that take into account the spread of the data and the

sample sizes are Wi and W, in equations (4.2) and (4.3). The RMS error is

replaced by the weighting function, which will be calculated as k varies. The
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best fit will be the value of £ which minimises W; or Wj.

ZZ( o )2, (4.2)
ZZVD £~ Dudl, (43)

The subscript j refers to the cohort and ¢ to the age-class. When used with
the means, P ; represents the predicted weight which corresponds with D ;, the
observed mean weight, which has a standard error of e; ;. These functions can
also be used with the median weights, where e;; is derived from the quartile

values, as in equation (4.4)

1L — O3
eZ,J — Q 2,] 2 Q Z,,]‘ (44)
where (1;; and @3;; are the upper and lower quartile values respectively and

D, ; is the observed median weight.

The two functions W, and W5 were evaluated for values of 0 < £ < 1 at increments
of 0.01. The values of £k which minimise W; and W5 for both the means and
median weights are shown in Table 4.3, with descriptions of the fit given in

Table 4.4. Use of the weighting functions changes the emphasis of the fitting

Table 4.3: Values of k which minimise the weighting functions when applied to
the means and the medians weights.

W, | Wy
mean 0.89 | 0.90
median | 0.87 | 0.89

procedure. In the case of the means, it has caused an increase in the value of
k when W5 is used. This is due to an optimum value of £ being found that fits
better to the age-classes with more accurate means (which have a smaller s.e.),
which tend to be the 1+ and 24 age-classes. This effect appears to be offset
when W is used as the squared term creates a bias towards reducing the errors
associated with the data points with the larger standard errors, which tend to be

the 34+ age-class.

The optimal values of k derived when the model is fitted to the medians are lower

than for the means. This is due to the differences in the quartile values being
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Table 4.4: The fit of the model to the observed mean and median weights the
optimal value of k is found using the weighting functions Wy and Ws.

Age- Average Predicted Range of Mean Abs. % Sign.  Sign.
class  Weight (g) Weight (g) Predictions (¢)  Error (g9)  Error same correl.
Fitted to the mean when k=0.89 using W1
0+ 0.82 0.75 0.42-1.38 0.24 29 Y NS
1+ 5.35 3.63 2.21-5.30 1.81 34 N NS
2+ 12.34 9.26 5.70-13.78 3.28 26 N NS
3+ 18.92 20.07 14.41-27.67 3.49 18 Y NS
Fitted to the mean when k=0.90 using Wy
0+ 0.82 0.80 0.43-1.51 0.23 28 Y NS
1+ 5.35 4.03 2.43-5.92 1.66 31 N NS
2+ 12.34 10.44 6.38-15.62 2.88 23 N NS
3+ 18.92 22.83 16.33-31.54 4.96 26 N NS
Fitted to the median when k=0.87 using W1
0+ 0.79 0.65 0.38-1.16 0.26 33 N NS
1+ 5.17 291 1.81-4.20 2.25 43 N NS
2+ 12.12 7.19 4.50-10.57 4.93 41 N NS
3+ 18.21 15.26 11.04-20.96 3.45 19 N NS
Fitted to the median when k=0.89 using Wy
0+ 0.79 0.75 0.42-1.38 0.24 30 Y NS
1+ 5.17 3.63 2.21-5.30 1.70 33 N NS
2+ 12.12 9.26 5.70-13.78 3.13 26 N NS
3+ 18.21 20.07 14.41-27.67 3.37 18 N NS

relatively similar in size compared to those of the standard errors. The weighting
functions are defined as residual divided by e;; so is relatively large when the
quartiles are used, especially for the larger fish. Thus the weighting functions are
minimised with low values of k£ which fit the 3+ parr better. As with the means,
the squared term in W; places greater weight on the larger errors which tend to

be the larger fish, which further reduces the value of optimal £.

The sample size of the 3+ fish form a small part of the whole data set, yet have
so far had a very influential role in finding optimal k. The next step will be
to exclude the 3+ data from the fitting procedure to assess its influence and

determine whether a more satisfactory value of k can be derived.
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4.2.6 Estimating k£ by Fitting the Model to only the 0+,
1+ and 2+ Age-Class Data

All the data for parr older than 24 were excluded from the data set and the
fitting procedure was applied to the mean and the median weights as in Section
4.2.4. and Section 4.2.5. The different error functions were minimised in order

to derive the optimum values of £ shown in Table 4.5, with descriptions of the
fits in Table 4.6.

Table 4.5: Values of k which minimise the weighting functions and the RMS error
between the model and the observed mean and median weights when the 3+ data
have been excluded.

RMS | Wy | Wy
mean | 0.91 | 0.91 | 0.91
median | 0.91 | 0.90 | 0.90

Table 4.6: Fit of the model to the observed weights when the 3+ data has been
excluded from the fitting procedure.

Age- Average Predicted Range of Mean Abs. % Sign.  Sign.
class  Weight (g) Weight (g) Predictions (¢)  Error (g9)  Error same correl.
Fitted to the mean when k=0.91
0+ 0.82 0.85 0.45-1.63 0.24 29 Y NS
1+ 5.35 4.46 2.66-6.59 1.55 35 N NS
24 12.34 11.73 7.11-17.62 2.83 23 Y NS
3+ 18.92 25.86 18.43-35.78 7.33 39 N NS
Fitted to the median when k=0.91
0+ 0.79 0.85 0.45-1.63 0.24 30 Y NS
1+ 5.17 4.46 2.66-6.59 1.54 30 Y NS
2+ 12.12 11.73 7.11-17.62 2.80 23 Y NS
3+ 18.21 25.86 18.43-35.78 7.68 42 N NS
Fitted to the median when k=0.90
0+ 0.79 0.80 0.43-1.51 0.23 29 Y NS
1+ 5.17 4.03 2.43-5.92 1.59 31 N NS
2+ 12.12 10.44 6.38-15.62 2.83 33 N NS
3+ 18.21 22.83 16.33-31.54 5.04 28 N NS

The optimum values of k£ found have all increased in value as a result of the

exclusion of the 34+ data. This is to be expected, as lower values of k£ are more
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suited to this age-class. These rises do indicate that the 34+ have an effect on
the values of k, even when functions which discriminate against them due to
their small sample sizes are used. However, those effects are quite small: the
means change from 0.89 and 0.90 to 0.91; medians change from 0.87 to 0.89 and
become 0.90 to 0.91. These small changes probably do not justify omitting the

information from the 3+ data, as the bias is very small.

4.2.7 Determining the Most Appropriate Fitting Proce-
dure for Estimating k

The fitting procedures for k produce a narrow range of values, which vary from
0.87 to 0.91, none of which provide an adequate fit of the model to the data.
They all produce systematic errors in predicting the weights of different age-
classes, with a tendency for the 14+ and 24 to be under predicted or the 34 to be
over predicted. The next stage will be to fit a different value of ¢(t) for each year
in order to indicate variation in the assimilation rate between years, by redefining
o(t) = ¢, where y represents the year. This can be done only after the choices
of whether to fit means or the medians and which fitting procedure to use has

been made.

ANOVA tables can be produced to test if there are significant improvements in
the fit of the model to the data for the different methods of deriving optimal £.
These would compare the predictions when optimal k is derived from the data
and the predictions when the default value of £ = 1 is used. For each method
an F'—statistic can be calculated, and it was found that the use of k provided
a highly significant improvement to the fit between the model and the data,
with P < 0.001 in all cases. However, it would be inappropriate to compare the
different F'—statistics due to their derivation. When the RMS error is minimised,
the F'—statistic is calculated from the sum of the squares, and when the weighted
functions are used, the F'—statistics is calculated from the sum of the weighted
residuals. Each of these methods places a different emphases on different aspects
of the fit and so produce different F'—statistics. Therefore, other criteria will be
used to decide on the best method.

When £ is derived by fitting the model to the means and medians of all the
data (Subsection 4.2.4), there is a tendency for the RMS optimisation procedure
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to fit the weights of the 34 better than the 14+ and 2+ parr. This would be
inappropriate as the 3+ form a very small part of the sample size, so simply
fitting the data to all the medians or means by minimising the RMS error will be
discarded. The method of fitting £ to only the 0+, 14+ and 2+ data will also be
discarded, as it ignores an important point on the growth trajectory. One of the
weighting functions will be used, as they take into account the accuracy of the

estimates of the mean weights.

The weighting function W; will be biased towards the points with the largest
errors, which are from the 3+ age-class. As the sample sizes for these fish are
relatively small, it would be better to use a fit that was more associated with
the bulk of the data, which are the 1+ and 2+ age-classes. Therefore, the W5
weighting function will be used to minimise the error between the model and the
data.

Fitting to the mean and the median weights gives different values of k, which
are a consequence of the spread of the data and the sample sizes. The means
do not reflect the spread of the data as well as the median, but the medians are
less influenced by the sample size. However, as the accuracy of the means can be
estimated well, due to the large sample sizes, the W5 weighted function fitted to
the means will be used as the preferred fitting procedure. Thus, the final choice

is weighting function W, fitted to the mean weights of all the age-classes.

The simulated growth trajectories estimated with the value of £ = 0.90 are shown
in Fig. 4.2 (with a description to the fit in Table 4.4). There are still systematic
differences between the residuals and the data, where the 3+ are under predicted
and the 1+ and 2+ are generally over predicted. The model as it stands does
not provide a good estimate of the growth rates for wild parr. Using a single
constant value of ¢(t) = k assumes that the difference between the growth rate
of wild parr and parr reared when fed to satiation is a constant fraction of the
maximum assimilation rate. The next step will be to investigate what happens

if this fraction varies annually.
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Figure 4.2: Simulations produced when ¢(t)=0.90 in the CG M, with the electro-
fishing data summarised into the means with the standard errors for each age-class
from the cohorts born from 1968-1986.

4.3 Inferring Year Quality from the Model

4.3.1 Estimating Annual Values of ¢,

Deriving a constant value of ¢(¢) does not provide a good fit to the observed
weights, but an optimal method has been developed to fit the model to the data.
This method will be extended and use ¢(t) = ¢,, which will be a set of discrete
values. Each value will be constant within each year but will vary between years
so that the value of ¢, will affect the predicted growth rate of all cohorts present

in year y.

The values for ¢, will be derived by minimising W, between the model and the
observed mean weights, using the downhill simplex method of optimisation, as

described in Appendix A, with the initial conditions described in Subsection 4.3.2.

The growth model has so far been fitted to the weights of the fish. As it is actually
estimating growth rates, it will also be fitted to the observed specific growth rate
(SGR) of parr. This is useful as many growth models, such as the E&H model,
are designed to predict SGR. In addition, we are at the looking directly at the
growth rates in the population, so fitting to growth rate may provide a better fit

to the observed mean weights.

The descriptions of the fits between the model and the mean weights in Tables
4.7-4.10 are the same as previously described in Subsection 4.2.3. The fits of the
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model to the SGR described in Tables 4.7 and 4.8 are similar to those described
in Subsection 4.2.3. except they do not apply to weight but to growth in units
of % day=".

4.3.2 The Fitting Procedure

The Downhill Simplex Method of Optimisation (DSO)

There will be at least 18 values of ¢, that need to be found for the data from the
Girnock Burn. The values are not independent, as fish weight during one year
will affect their weight the next year, so the method previously described to find
k is inappropriate. The DSO will be used as it can find this number of unknown

parameter values more efficiently.

The DSO requires a set of initial values of ¢, and a step size to begin the fitting
procedure. The value of £ = 0.90 was used as the initial value of ¢,, for all y,
with a step size was 0.01. The value of £ = 0.90 was chosen as it provided the
best fit of the model to the data in Section 4.2. With these initial conditions, the
DSO was able to minimise the error between the model predictions and the data

to produce different values for ¢, for each year.

Other initial conditions were used in order to see if the DSO would converge to
the same values of ¢,. It was found that they did not, which meant that the
minimum found by the DSO was dependent on the initial conditions. The values
of the error function, W5, found from each set of initial conditions were compared
and varied little between them (< 2% from the average value). This indicated
that the solutions produced from the different initial conditions might have been
tending towards the global minimum but that the error surface was either too

flat or too rough for it to be reached.

Five different sets of initial conditions were used (with £=0.88, 0.89, 0.9, 0.91 and
0.92 each being the initial conditions for all years) to produce five sets of ¢,. As
the fitting procedure did not converge to the same minimum for different initial
conditions, then the values of ¢, associated with the lowest error value may not
represent the global minimum but it indicated the best fit to the data that could
be found. The growth simulations were then produced using these values of ¢,.

An error term was derived for each value of ¢, based on the standard error of the
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values derived from the different initial conditions. This would give an indication

of how accurately each value of ¢, was known.

4.3.3 Fitting the Model to the Mean Weights by Adjust-
ing ¢,

Now that the values of ¢, are being derived for each year, the data that the model
is being fitted to needs to be defined more rigorously. For the simulations in this
subsection, the first growth trajectories will start at the time of hatching of the
cohort that is born in 1968, whose first data point is in 1969, at the 1+ age-class.
The trajectory for the second cohort will begin at hatching in 1969. The value of
¢ey Will therefore be derived primarily from the 04 and 1+ age-class of 1969, but
this value will also account for most of the growth in 1968. This means ¢gs = ¢g9

and that they are not estimated separately.

In Table 4.7, the fit to the mean weights is shown. In addition to this is the
fit between the observed and the predicted SGR between consecutive age-classes
are shown. The values of ¢, have been derived by minimising the error function

between the predicted and the observed mean weights.

Table 4.7: Fit of the model to the observed mean weights and SGR when ¢,
15 derived by minimising the weighted error between the observed and predicted
weights.

Fit of the model to the mean weights
Age- Average Predicted Range of Mean Abs. % Sign.  Sign.
class ~ Weight (g9) Weight (g9) Predictions (g)  Error (g)  Error same correl.
0+ 0.82 0.84 0.48-1.40 0.12 14 Y ook
1+ 5.35 4.38 2.94-5.67 1.00 19 N *
24 12.34 11.83 7.73-14.23 0.96 8 Y ook
3+ 18.92 25.73 21.20-28.73 6.81 36 N NS
Fit of the model to the SGR
Age- Average Predicted Range of Mean Abs. % Sign.  Sign.
classes SGR SGR Predictions Error Error same  correl.
% day ! % day—* % day ! % day!
0+-1+ 0.40 0.36 0.31-0.41 0.05 11 N NS
1+-2+ 0.22 0.25 0.21-0.31 0.04 21 N NS
24+-3+ 0.11 0.20 0.16-0.26 0.09 87 N NS
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The fit of the model to the data has improved considerably by the change from
o(t) =k to ¢(t) = ¢,, with significant positive correlations between the observed
and predicted 0+, 14 and 24 weights and the absolute mean error lower by a large
amount, as shown by comparing Tables 4.7 and 4.4. for each age-class. There

are differences between the predicted and observed weights of the 1+ age-class.

The fit of the model to the SGR has also been calculated and it can be seen
that the 04 to 14 growth rates have generally been under predicted, whilst the
14 to 24 growth rates are over predicted. The 2+ to 3+ growth rates are over
predicted, as would be expected due to the weighting function. The model will
next be fitted to the SGR and the fit compared to the table above.

4.3.4 Fitting to the SGR by Adjusting ¢,

The model will be fitted to the SGR by minimising the weighting function W,
in equation (4.3), with P, ; as the predicted SGR and D; ; as the observed SGR.
The SGR will have a different error in the weighting function and fewer data

points than the mean weights so will produce different values for ¢,. SGR will
be defined as

SGR. - — Wit1; — Wi, / Wit1; + Wi (4.5)
" tivry — tij 2 ’ '

where j is the cohort, 7 is an age-class and W ; is the weight of the fish. ¢ has units
of days and is the mean date of the survey for age-class ¢ in cohort j. Therefore,
SGR; ; is the SGR between age-classes ¢ and ¢ + 1 of cohort j.

The fitting procedure has to be weighted down so an error term for the SGR is
required. This will not be straightforward as measurements for individual fish do
not exist. Also the sample sizes vary greatly between age-classes so we are unable
to use regression to determine the SGR because there will be a bias towards the

age-classes with larger sample sizes.

An error for the SGR between two mean weights was derived from the standard
errors of the mean weights. An upper limit for the error term was calculated
as the SGR between the point one s.e. below the mean weight of the younger
age-class and one s.e. above the mean of the older age-class. The lower limit

was the SGR between the point one s.e. above the mean weight of the younger
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age-class and one s.e. below the mean of the older age-class. This will not be the
true s.e. of the observed SGR but will be adequate as a weighting function. It
is determine by the spread of the data and the size of the sample, is similar to
the weighting function used previously and provides an error that can be applied
consistently and quickly across the data set. The upper and lower limits that
have been derived for the SGR are different sizes, so the average of the two was

used as the weight.

A new set of ¢, was derived by minimising the error function between the pre-
dicted and observed SGR using the same initial values for ¢, and step sizes
as for the means weights. The quality the fit between the predictions and the

observations shown in Table 4.8.

Table 4.8: Fit of the model to the observed mean weights and observed SGR when
¢y is derived by minimising the weighted error between the observed and predicted

SGR.

Fit of the model to the mean weights
Age- Average Predicted Range of Mean Abs. % Sign.  Sign.
class ~ Weight (g) Weight (g) Predictions (g)  Error (g9)  Error same correl.
0+ 0.82 0.87 0.19-2.86 0.48 59 NA NS
1+ 5.35 6.10 0.80-27.73 3.99 74 NA NS
24 12.34 15.43 1.88-61.99 10.04 81 NA NS
3+ 18.92 30.85 7.08-116.37 20.13 106 NA NS
Fit of the model to the SGR
Age- Average Predicted Range of Mean Abs. % Sign.  Sign.
classes SGR SGR Predictions Error Error same  correl.
% day=* % day=* % day=* % day "
0+-1+ 0.40 0.35 0.24-0.42 0.05 11 N *
14-24 0.22 0.24 0.21-0.30 0.02 11 Y NS
24+-3+ 0.11 0.18 0.14-0.26 0.07 62 N NS

Table 4.8 shows an improvement in the fit of the model to the data when the SGR
is fitted when compared to the fit to the SGR in Table 4.7, as would be expected,
but the fit to the means is substantially worse. The paired t—test between the
observations and predictions is no longer applicable due to the unequal variance
between these two quantities, as can be shown using an F'—test. This case is

denoted as NA in column seven of Table 4.8.

When the model is fitted to the mean weights, the residuals between both the
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observed and predicted SGR’s and mean weights appear reasonable. This is not
the case when the SGR is used to derive ¢,, where although the fit to the SGR
has improved, the fit to the mean weights has deteriorated considerably. This
deterioration may be due in part to the loss of a degree in freedom experienced
when deriving the SGR but is probably mainly due to the fact that the SGR is

a relative measure of growth rather than an absolute measure.

In view of these results, the model will no longer be fitted to the SGR, but
instead to the mean weights. The next subsection will look at how the fit is

affected deriving separate values of ¢gg and ¢g9.

4.3.5 Fitting the Model to the Mean Weights with ¢s and
¢e9 Derived Separately

This method of fitting the model to the data is very similar to the previous
method except that values for ¢gg and ¢g9 are derived separately. Therefore ¢gg
is primarily dependent on the growth that is produced in 1969. As there is no
data for 1968, ¢4 is largely determined by the subsequent data for that cohort.
Note that no value of ¢, is determined by the data from any single year as the
values are not independent. This new method has been used to derive the results
in Table 4.9, by minimising the error function between the predicted and observed

weights.

Table 4.9: Fit of the model to the observed mean weights when ¢, is derived by
manimising the weighted error between observed and predicted mean weights when
Oss and ¢gy are derived separately.

Age- Average Predicted Range of Mean Abs. % Sign.  Sign.
class  Weight (g) Weight (g) Predictions (g)  Error (g9)  Error same correl.
Fit of the model to the mean weights

0+ 0.82 0.86 0.49-1.42 0.13 16 Y ok
I+ 5.35 4.46 3.18-5.98 0.89 17 N *

2+ 12.34 11.99 7.31-14.11 0.80 6 Y otk
3+ 18.92 26.23 19.94-29.81 7.31 39 N NS

There is a slight improvement to the fit of the 14+ and 2+ age-classes when
compared to Table 4.7, but there is also a decrease in the quality of fit to the 0+

and 3+. This has to be considered with the fact that there is an extra value of
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¢, used in this method.

Other data does exist from the electro-fishing surveys from 1969 and 1970, which
has yet to be used, may produce a better predictions and will be used in the next

subsection.

4.3.6 Deriving ¢, with an Extended Data Set

Data exists for the four age-classes caught in 1969 and 1970 but not all of which
has been used previously in predicting ¢,. This has been because the temperature
data does not extend back beyond 1968, so no complete growth trajectories (from
birth) for cohorts born before 1968 can be produced and extended forward to the
data for 1969. The following method requires data from the 0+, 1+ and 2+ age-

classes from 1969 and all four age-classes in 1970 to be included in the analysis.

The starting weights for simulated growth trajectories for the cohorts born from
1967-1969 will be the mean weights of the 0+, 14+ and 2+ age-classes from the
1969 electro-fishing survey. The 34+ mean weight cannot be used as it is the only
data point for that cohort. As the data is collected during the summer, ¢g9 will
be calculated for the period from the electro-fishing survey to the end of the year,
rather than for the whole year as with the subsequent values of ¢,. This method
requires that the reserve to structural tissue ratio be known. During the summer,
the fish are growing at a rate where p = py, as shown by the model. When the
trajectories for the cohorts born from 1967-1969 are started, it will be assumed
that this is the case.

This method fits to fewer data points as the data from the first year (1969) is
used as starting points for the trajectories and so the model is no longer being
fitted to this data. The fit of the model to this new data set is shown in Table
4.10.

Table 4.10 does not produce a clear difference from the previous two methods
of fitting to the mean, both in terms of the residuals between the predicted and

observed means or correlations.
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Table 4.10: Fit of the model to the observed mean weights when ¢, is derived by
minimising the weighted error between the observed and predicted weights when
the extended data set is used.

Age- Average Predicted Range of Mean Abs. % Sign.  Sign.
class  Weight (g) Weight (g) Predictions (g)  Error (g9)  Error same correl.
Fit of the model to the mean weights

0+ 0.81 0.87 0.42-1.35 0.15 19 Y ok
I+ 5.39 4.40 4.07-6.56 0.99 18 N *
2+ 12.34 11.97 10.75-13.62 0.85 7 Y ook
3+ 18.67 25.71 13.00-22.56 7.04 38 N *

1.0 %j

0.9

0.8
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
Year

Figure 4.3: Values of ¢, deriwed when minimising the error function between
the observed and predicted weights: the open circles are from the first method
outlined in this section, the filled diamonds are from the second method and the
open squares are from the third method.

4.3.7 Comparison of Fits

The most suitable method of minimising the error between the observed mean
weights and the model in order to derive ¢, needs to be chosen. The values of ¢,
from the first two methods vary little, as shown in Fig. 4.3. Tables 4.7 and 4.8
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show that there is little difference in the quality of fit. When the third method is
used, more of the values for ¢, are different, but the quality of fit is very similar,

so it is hard to determine which is the best method on this basis.

Tables 4.11 to 4.13 are the ANOVA tables which describe the significance of the
parameters which have been used to fit the model to the data. They show that
the improvement by ¢, has significance around the 5% level. The F'—values have
been calculated from the total weighted deviance, which is a more robust method
than using the total sum of the square. However, as the significance levels are all

similar, we require other criteria to determine which is the best method.

Table 4.11: ANOVA table calculated from the weighted sum of deviancies (WSD)
using the fitting procedure outlined in Subsection 4.3.3.

dtf. | WSD | MD F P
k 1 | 1318.0 | 1318.0 | 156.4 | < 0.001
by 17 | 259.4 15.3 | 1.811 | 0.0616

Residual | 40 | 337.0 8.4
Total 58 | 1914.4

Table 4.12: ANOVA table calculated from the weighted sum of deviancies (WSD)
using the fitting procedure outlined in Subsection 4.3.5.

dtf. | WSD | MD F P
k 1 | 1318.0 | 1318.0 | 161.5 | < 0.001
by 18 | 278.2 15.5 | 1.894 | 0.0474

Residual | 39 | 318.2 8.2
Total o8 | 1914.4

The third method described in Subsection 4.3.6. has a number of advantages
over the others. The first is that the values of ¢, are derived with as much of the
data as possible so the derivation of values with age-classes missing is minimised.
The second advantage is that the temperature record required is only from the
date of the first mean weight measurement. This will be useful when fitting to
other data sets where temperature data may not exist before the electro-fishing

surveys were conducted.

Therefore, the method of deriving ¢, that will become the default procedure for

fitting the model to the mean weights will use the method defined in Subsection
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Table 4.13: ANOVA table calculated from the weighted sum of deviancies (WSD)
using the fitting procedure outlined in Subsection 4.3.6. Note that the d.f. change
which 1s due to using different starting conditions that reduce the data points used.

dtf. | WSD | MD F P
k 1 ] 1268.1 | 1268.1 | 149.2 | < 0.001
Oy 17 | 270.1 15.9 | 1.876 | 0.0520

Residual | 39 | 330.6 | 8.476
Total o7 | 1858.4

Year

Figure 4.4: Simulations produced with the values of ¢, derived by fitting the model
to the mean weights with the extended data set (as in Subsection 4.5.6). Trajec-
tories with broken lines refer to the cohorts with open circles.

4.3.6. Fig. 4.4 shows the simulations produced using this method with the data.
The overall fit is now clearly better, as, for the first time, it is obvious which
curve fits which data points and to which trajectories the few discrepant points
should fit. Table 4.14 shows how the fit of the model has improved as the fitting
procedure has developed from the E&H model to the CGM, when ¢, is used in
Subsection 4.3.6.

4.4 Sensitivity Analysis

Variation of the input variables will affect the values of ¢, and the extent to
which this happens needs to be known. The input variables are approximations,
and in order to predict ¢, with sufficient accuracy, their effect on ¢, needs to be
known and understood in order to prevent misleading results. In this section, the

four input variables will be varied, and their effect on ¢, examined. These are
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Table 4.14: R? values derived from the fit of the model to the data for the various
models used. n represents the numbers of data points to which the R? value ap-
plies. These values were derived by correlating observations with the predictions.

Age — Class | E&H CGM, ot) =k | ¢o(t) =9,
R* n| RP n| R n| R n

0+ 0.126 14 | 0.166 14| 0.154 14| 0.512 13

1+ 0.104 15 0.001 15| 0.001 15| 0.242 14

2+ 0.114 15} 0.005 15| 0.006 15| 0.735 15

3+ 0.006 14 |0.125 14 |0.124 14| 0.235 15

All 0.418 58 1 0.834 58| 0.854 58| 0.915 57

the temperature, time of hatching, the weight-length relationship and the weight
at first feeding.

In order to test the sensitivity of the model to these quantities, how well each
of these quantities has been approximated needs to be known. Then the factors
outlined in the previous paragraph will be varied and different values of ¢, de-
rived. These will then be compared to each other in order to see if the magnitude

and the relative values of ¢, are preserved.

4.4.1 Sensitivity of the ¢, to Temperature

The model uses average mean monthly temperatures, derived from the maxi-
mum and minimum daily temperatures throughout the month. The resolution of
monthly temperature was taken as the actual daily temperatures did not exist for
all months. For these months, summaries were available as monthly means which
had previously been calculated by D.W. Hay using the method above. In order
to have a uniform data set, all monthly temperatures were used and calculated

using this method.

Subsequent data from the Girnock (from May 1986 to December 1996) has been
taken by an electronic measuring device that takes the temperature every 45 min-
utes, which can be regarded as a continuous record. From this, more accurate
estimates of monthly mean temperature were calculated, and these were com-
pared to estimates made using the previous method. From this, an idea of the

error associated with the original method could be deduced.
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Figure 4.5: Values of ¢, with their standard errors when the temperature is low-
ered (V) and raised (A) by 0.2°C compared to the original values (o).

Results from Different Temperature Regimes

The error between approximating the monthly mean by averaging the daily mini-
mum and maximum temperatures and by taking the average of the temperatures
in a month when they are measured every 45 minutes was always less than 0.2°C
for each month. Therefore, ¢, was derived with temperatures raised and lowered
by 0.2°C.

When the temperatures are varied by £0.2°C, the sets of ¢, , which are shown
in Fig. 4.5, were highly correlated (P < 0.001, R? > 0.9). This implies that the
error associated with the method of estimating the temperature from the data
is not large enough to perturb the relative values of ¢, sufficiently to change
their pattern. The absolute values of ¢, do change because lower temperatures
decrease growth rates which is compensated by an increase in ¢,. A two-way
ANOVA with year and temperature regime as factors shows that temperature is
a significant factor. However, the differences in the average values of ¢, are less

than 0.016, which is unlikely to perturb the growth trajectory by a large amount.

4.4.2 Sensitivity of ¢, to the Weight-Length Relationship

The weight-length relationship that has been used was derived using data from

the River Eye is in the form of equation (4.6),
W =alLf (4.6)

where « and [ are constants. Altering the weight-length relationship would

produce new data sets to which the model can be fitted, by adjusting ¢,.
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Deriving ¢, with Different Weight-Length Relationships

Four sets of ¢, were derived with different coefficients for the weight-length re-
lationship. ¢, was derived with 3 lowered by one s.e. and increased by one s.e.,

then with o was lowered by one s.e. and increased by one s.e.

An additional two sets of ¢, were calculated. The first used weights calculated
at the upper 95% confidence interval of the weight-length relationship, so that
they all weights increased. The second used weights calculated at the lower 95%

confidence interval so they all decreased.

Results Using Different Weight-Length Relationships

The six new sets of ¢, could be compared to the values derived in Section 4.3.
and are shown in Fig. 4.6. It was found that all the sets of ¢, were highly cor-
related (P < 0.001, R? > 0.8 in all cases) with each other. A two-way ANOVA
showed that there were significant differences between ¢, derived with the differ-
ent weight-length relationships. This is because the data to which the model is
being fitted has changed in a systematic way. However, the mean absolute differ-
ence is very small, being less than 2% of ¢, derived from the original weight-length
relationship. This indicates that the error associated with the weight-length re-

lation is small enough not to distort the general pattern of the values of ¢,.

4.4.3 Deriving ¢, Using the Variable Hatching Weights

The initial weight of an emerged hatched fish is currently assumed to be 0.15
g. This is the assumed hatch weight of the live alevins. The initial weight may
affect ¢,, so this will be tested by varying the initial weights and comparing the

resulting values of ¢,,.

Estimates of the emergence weights of alevins exist in the literature for Atlantic
salmon. Gunnes (1979) reared Norwegian salmon eggs from fertilisation to emer-
gence at different temperature regimes and found their weight at hatching to vary
between 0.062 and 0.16. Peterson and Martin-Robichaud (1989) used Canadian

Atlantic salmon fry that had been raised at various temperatures with initial
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Figure 4.6: Values of ¢, with their standard errors when the when different weight-
length relationships are used. (a) has the scaling constant « lowered () and
raised (o) by one s.e. In (b) the exponent [ is lowered (0) and raised (o) by
one s.e. For (c) weights were derived using the upper (O) and lower () 95%
confidence intervals. These were all compared to the original values (o).

weights of between 0.171 and 0.181 g.

The sensitivity analysis requires two extreme sizes of Atlantic salmon for the
derivation of ¢,. Based on the sizes above, they will be a lower limit of 0.05 g

and an upper limit of 0.2g.

Results Using Different Hatching Weight

The values of ¢, derived by using different hatching weights are highly correlated
with (P < 0.001, R?* > 0.895), and a two-way ANOVA, with year and hatch
weight as factors, does not show hatch weight to be a significant factor. This

size of variation in the starting weights does not have a significant effect on the
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Figure 4.7: Values of ¢, with their standard errors when the when different birth
weights are used. The V represents ¢, derived from a low birth weight and A are
the ¢, derived from a high birth weight. ¢, derived when birth weight is 0.15g are
shown by o.

derived values of ¢,.

4.4.4 Sensitivity of ¢, to a Temperature Dependent Emer-
gence Date

A nominal hatching date has been used as the starting date for cohorts whose
growth is being predicted from birth. A more appropriate starting time may be
the date of emergence. After the eggs have hatched, the alevins stay in the gravel
for a period, after which they emerge to disperse and feed (Crisp 1981). During
the period when they are in the gravel, they are able to survive from nutriments
from a yolk sac with which they are born (Brannas 1988). The length of the
growing season is defined from the date of emergence and it is possible that it
will have a large influence on the weight of the fish at the end of the growing
season (Shackley and Donaghy 1992).

¢, is a measure of year quality, so emergence date could one of its components.
Introducing emergence date into the model will allow us to see if this is true by
judging the changes of ¢,, as the variation of ¢, should decrease. Therefore, a

variable growing season will be introduced into the model.

A variety of methods can be applied to estimate the time of emergence. Egglishaw
and Shackley (1977) calculated the degree-days from 1%*December to emergence
for a population of salmon in Shelligan Burn in southern Perthshire, Scotland.

This was calculated as 622 degree-days from eggs fertilised in 1972 to emergence
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as fry the following year. This estimate has since been used to estimate emergence
times in the River Dee (Shackley and Donaghy 1992).

Other methods exist to calculate the time from fertilisation to hatching (Crisp
1981), hatch date to emergence (Brannas (1988), Jensen et al. (1989)), and
fertilisation date to emergence (Crisp 1988). These were derived from experiments

where temperature was regulated.

A more complicated model exists to predict emergence period for sea trout, Salmo
trutta L. by Elliott and Hurley (1998), but there is insufficient field data from

the Girnock to reparameterize and use this model for Atlantic salmon.

Deriving ¢, Using Temperature Dependent Emergence Dates

Spawning usually takes place in the Girnock during November and coincides with
the autumn spates. Buck and Youngson (1981) and Webb and Mclay (1996)

observed that spawning occurred between 28" October and 20*™" November.

Temperature and estimates of the spawning time are available for the Girnock
so the equation by Crisp (1981) can be used to predict time from fertilisation to
hatching, defined as D in days, from temperature, 7' (°C). It is given below as
(4.7),

log D = —2.6562 log(T + 11) + 5.1908. (4.7)

Then equation (4.8), which is taken from Jensen et al. (1989), can be used to

estimate the time from hatching to emergence, F,
E = 472777, (4.8)

This method has previously been used by Jensen et al. (1991) to estimate time be-
tween fertilisation and hatching, given temperature records, for Atlantic salmon.
Equations(4.7) and (4.8) were calculated for fish reared at constant temperatures,

and in the wild over this period, there are large changes in temperature.

D was calculated first by taking a range of dates between fertilisation and an
assumed maximum hatching date, D’. The average temperature between fertili-
sation and each date up to D' was calculated and was then used in equation (3.7.)

to produce a series of values of D. The hatching date was taken when D' = D.
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A similar process was used to calculate E. This was repeated for all the years
from 1970-1986 for three different fertilisation dates.

Three sets of ¢, were produced using this method. They corresponded to an early,
middle and late fertilisation date (1%, 10" and 215* November respectively) which
produced emergence dates that ranged from 16" April to 234 June. A fourth
set of ¢, was produced using the method described by Egglishaw and Shackley
(1977) which was based on degree-days, which gave emergence dates between 24
March and 1%* April.

Results Using Different Emergence Dates

These simulations represented a large range of starting dates yet produced very
similar and highly correlated values of ¢,, which are shown in Fig. 4.8. When
correlated with each other and the values of ¢, derived in Subsection 4.3.6, P <
0.001 and R? > 0.73. A two-way ANOVA with year and emergence date as

factors showed that emergence date was not a significant factor for the values of

Py-

4.4.5 Overall Robustness of the model

The pattern of ¢, produced by the original data set has been preserved well for
all the simulations in this section. This indicates that the model’s predictions
of ¢, are robust for the magnitude of measurement error of the input variables.
The values of ¢, from the simulations are shown in Fig. 4.9 and have also been

summarised into mean values with 95% confidence limits.

The model now needs to be tested on data that has more than one data point
for each cohort per year so that we can see if the growth trajectories within
years represent the growth of the population within years. The assumption that
the mean growth rate of the population can represent the growth rate of an
individual needs to be tested. These will be done using data for individual fish
in the Chapter 5.
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Figure 4.8: ¢, derived from different emergence dates. (a) are ¢, derived from
emergence dates based on fertilisation dates and over winter temperatures. ¢,
derived from three fertilisation dates are shown, where V is early, O is mid and
A is late. The middle birth date is compared to the original ¢, (o) in (b). (c)
compares the ¢, when it is derived from the E€S formula (x) and the original
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Figure 4.9: Values of ¢, derived from the sensitivity analysis and the values
derived in Subsection 4.5.6. (a) Scatterplot of ¢,, (b) the 95% CI are shown from
all the ¢, derived in this section and the original values.
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Chapter 5

Fitting the Growth Model to
Data from Individual Parr

5.1 Introduction

The model developed in Chapters 3 and 4 has been used to predict the mean
weights of different age-classes for different cohorts. The mean weight of the parr
from each age-class in each year has been used to represent the weights of the
individuals of the population. Also, the growth trajectories have only been fitted
to the mean weights for parr sampled during the summer. These trajectories
have been assumed to be applicable to an individual in that population all year

round.

In this chapter, we aim to test two aspects of the model. The first will be: How
well can the model predict the mean weights of the population during months
between summer surveys? The second will be: Is the model able to predict the

growth trajectories of individual parr?

These aspects will be tested using a set of data that was collected at approx-
imately monthly intervals from summer 1998 until spring 1999. It consists of
electro-fishing samples taken in the middle section of the Girnock Burn. A selec-
tion of parr at each survey were individually marked, so if they were subsequently
recaptured at a later survey, they could be identified. This would then give an

indication of the growth rates of individual parr over this period.

Previously, the model has been fitted to the data by adjusting the function ¢(t) =
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¢y, an annual step function which changes at the start of each year. The model
will now be fitted to the data by adjusting a single constant value of ¢(t) = ¢,
applied from June 1998 until March 1999. This single annual value will make
comparisons between different parr straight forward, particularly for parr only
captured before or after 1st January 1999 which would have had only one value
whereas the other parr would have had two. Once the model has been fitted to
the mean weights and to the individual parr weights, the predicted growth rates

can be compared by seeing if ¢(t) differs for individuals and the population.

5.2 Data from the Girnock Burn from 1998-99

5.2.1 Data from Individual Salmon Parr

Ten electro-fishing surveys were conducted from June 1998 to March 1999 at two
sites in the middle section of the Girnock Burn. During each survey, salmon parr
had their length and weight measured. Unmarked parr longer than 80mm were
marked using a long lasting panjet marking code that was individually unique.
They were often re-caught at subsequent surveys. Scale samples were taken to
determine the parr’s age, and most of the parr caught were from the 1996 or 1997
cohorts. Parr from other cohorts comprised too small a sample to use. Marked
parr captured at the fish trap during the autumn and spring migrations also had

measurements were taken in the same way.

5.2.2 Temperature Data

The water temperature over the period of the surveys was measured using a digital
recorder every 45 minutes, which was located downstream at the fish trap. The
recordings for each month were summarised into monthly temperatures by taking

their average. These average monthly temperatures were then used in the model.
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5.3 Fitting the Model to the Population Mean
Weights

5.3.1 Fitting the Model to the Data

A method was required to test whether the growth trajectories produced by the
model were similar to those that are observed in the wild population. The model
had previously been fitted to the mean weights during the summer, represented
by just one measurement each year. It could now be fitted to mean weights from

the population sampled on a monthly basis from June 1998 until March 1999.

Three fitting parameters were used. The first was the annual year quality es-
timator, ¢(t) = ¢,,,, which would be kept constant across all age-classes. The
other two were the starting weights for the growth trajectories of the age-classes,
denoted Wy 97 and Wy g6, for the 1997 and 1996 cohorts respectively. The tra-
jectories would start at the time of the measurement of the first mean weight
for each age class, which was on 8th June. The starting weights were fitted pa-
rameters rather than fixed points from which the trajectory could start as there
is some uncertainty associated with each data point. The reserve to structural
weight ratio was assumed to be at its ideal value during the summer when the

growth simulations were started.

The parameters were found using the DSO procedure and minimising the weighted
error function, Wy described in equation (4.3). The initial conditions for the DSO
procedure were varied and always converged to the same minimum, and the fitted

parameters are shown in Table 5.1.

Table 5.1: Parameters derived from fitting the model to the mean weights of the
population by minimising the Wy weighting function.

Woor (8) | Woos (g) O Mean weighted error
4.852 10.016 0.76656 1.2629

5.3.2 The Predicted Mean Weights

The model has been fitted to mean weights of the population sampled at various

times from June until March, a period that covers the autumn migration and
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Figure 5.1: Fit of the model to the mean weights for the 1996 and 1997 cohort
from the electro-fishing surveys. The observations are shown with their standard
errors and the parameters used in the model are those in Table 5.1.

the start of the spring migration. Individuals from the marked population were
found to have migrated during this time as they were recaptured downstream at
the smolt trap. As the older parr form the majority of the migrants, the 1996

cohort will be the one which is most affected.

The data to which the model was fitted, with the standard error of the means,
and the predictions from the model using the parameters in Table 5.1, are shown
in Fig. 5.1. There are two aspects of the cohort’s mean weights that the model is
unable to reproduce. The first is the decrease in the mean weights from September
until December for the 1996 cohort: the model over predicts observed weights.
This is not apparent for the 1997 cohort, where the changes in the mean weights
are predicted well. As the spring migration is beginning, the model is able to
predict the mean weights of the resident parr from the 1996 cohort on the final
two surveys during the 17th and 18th March but not for the weights for the
previous survey, on the 5th March. The observed weights of the 1996 cohort
fall between 5th March and 18th March 1999 may be due to the larger members
of the population smolting, and the decrease in the mean weights of the cohort

during autumn may be due to the autumn migration.

There are no mechanisms in place in the model to cope with the effects of mi-

gration on mean weights of the resident population. If the decision to migration
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is based on the growth rate, which it is generally thought to be (Elson (1957),
Metcalfe et al. (1990), Okland et al. (1993), Osterdalh (1969)), then this will
lower the weight of the resident population, and the model will over predict their

weight, which appears to be the case.

The second aspect that the model fails to predict is a large increase in the mean
weight during the spring. This occurs between the January and the first March
survey for the 1996 cohort, and between the first and the final two March surveys
for the 1997 cohort. Over this period the model predicts weight loss due to the
water temperature being less than 6°C. The reasons why these data are fitted

badly are discussed in Section 5.5.

Another large error occurs between the prediction and observation of the mean
weights of the 1997 cohort on 8th June 1998. The model over predicts by a large
amount, and the errors of the subsequent predictions over the summer for the
cohort are relatively small. As the spring weights are under predicted, the period
of rapid growth may last from March until June. This would indicate that the

predicted growth rate was too low and that, over this period, ¢,, is too low.

5.4 Fitting the Model to Individuals’ Weights

The aim of the model is to predict the growth rates of individual parr, and we
have so far assumed that fitting the model to the mean weights of the population
is representative of fitting to the weights of individuals. We will be able to test
this assumption by fitting the model to data from individual parr. During the
electro-fishing surveys on the Girnock from 8th June 1998 to 18th March 1999,
124 marked parr were caught more than once. This meant that we were able to fit
the model to each individual by adjusting ¢(t) = ¢;. From these parr, we would
be able to compare ¢, to the values of ¢; and also examine the distribution of

the residuals to assess the goodness of fit.
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5.4.1 Derivation of ¢;

Applying the DSO procedure

A growth trajectory was fitted to each individual parr which was caught at least
twice using the weight at first capture as a starting point for the trajectory and
adjusting ¢; to fit the observations. Four different initial values of ¢; were used in
the fitting procedure (¢;=0.65, 0.75, 0.85 and 0.95) in order to see if they would
converge to the same solution. The starting value of p needed to be adjusted for
those parr first caught late in the season, as the parr could no longer be assumed
to be healthy (i.e. p = pp). They were assumed healthy in June, and from
the parr caught in June, p was estimated at the dates of the following surveys.
Therefore, as the season progressed, these values of p were used at the start of
the simulations for newly caught parr. The weighting function could not be used
as there was no standard error associated with each data point, so the RMS error
was minimised. Using this procedure, a value of ¢; was derived which could be

used to produce a growth trajectory for each parr.

Using the four different initial conditions of ¢; mentioned above, it was found
that the DSO did not always converge to a unique solutions. Moreover, the value
of ¢; for all the parr first caught after the August survey was highly sensitive to
the initial conditions. No parr were first caught during the September survey, but
those from the October survey required simulations to begin on the 30th October
1998, which is six days before the predicted assimilation rate becomes and stays
at zero until 12th March 1999. This means that ¢; will have little or no effect on
the growth trajectory over this period, so all parr which were first caught after

the August survey were excluded from further analysis.

Summary of Individual Data

We shall be using the trajectories fitted to the final data set of 71 individual parr.
Table 5.2 shows when the parr were first caught, and the numbers recaptured at
subsequent surveys, with the dates of all the surveys. Of the 71 parr, 45 were
caught more than twice, 26 more than three times, 14 more than four times and
seven more than five times. The parr which were caught the most often tended

to be those which were caught the earliest.
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Table 5.2: Summary of the capture dates for the parr to which the model was
fitted.

Date of Number Number of marked | Mean number

Survey | first caught parr caught of recaptures
8-Jun-98 23 - 2.435
27-Jul-98 37 11 2.324
26-Aug-98 11 43 2.273
30-Sep-98 0 38 -
30-Oct-98 0 16 -
15-Dec-98 0 15 -
29-Jan-99 0 11 -
5-Mar-99 0 10 -
17-Mar-99 0 11 -
18-Mar-99 0 12 -

5.4.2 Analysis of ¢;

The values of ¢; derived from the individuals ranged from 0.592 to 0.905 and are
displayed in Fig. 5.2. Each of these histograms represents a different subsample
of parr, which are defined by the minimum number of times each parr was caught.
The values of ¢; are approximately normally distributed, and as the parr which
are caught least are removed, the standard deviation of the distribution tends to

decrease, as shown in Fig. 5.3.

As the resolution of the data increases, the less variation there is in the derived
values of ¢;, and indicates that there may be a single ‘site’ value of ¢;, and the
observed variation is this site value perturbed by experimental error. This can be
tested by looking at the size of perturbations required to produce the observed

distribution of ¢; for the individual parr which were caught most often.

Error Associated with Recorded Weights

Deducing the size of the perturbation to the data that would produce the spread
¢; which is seen in Fig. 5.2.e. would allow us determine if the spread of ¢; was
the result of measurement error or due to another process. In order to do this,

the size of the experimental error needed to be determined.

Parr caught during the surveys were placed in a holding tank for between half an
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Figure 5.2: Histograms of ¢; derived from individual parr. The top histogram
(a) is for all 71 individuals, (b) is from parr which were caught more than twice,
(c) from parr which were caught more than three times, (d) for parr which were
caught more than four times and (e) is from parr which were caught greater than
five times.

hour and three hours before being weighed. During this time, it was possible that
the parr may have become lighter through evacuation of the gut. If the parr was
recaptured on a subsequent survey, and weighed after a different amount of time
in the tank, then the level of evacuation would be different. These differences
would them produce random errors in the data set, so it was important to know

what the scale of this error was likely to be.
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Figure 5.3: The standard deviation of different subsamples of ¢; from the indi-
vidual parr. The subsamples are defined by the minimum number of times a parr
15 caught.

There is little literature on the gastric evacuation rates of juvenile Atlantic
salmon. Rates for brown trout and rainbow trout reared at 11°C are 0.437mg.g*.
hr=! and 0.786mg.g~'.hr~! respectively, are given by Kristiansen (1998) for fish
which were fed and then starved. The weight range of individual marked parr
used in the random simulation tests above was 6.5-16.2g, which over a period of
three hours, equates to 0.0382g and 0.0213g for a 16.2g fish at 11°C.

In addition, some of the marked parr were caught and measured at the fish
trap and were remeasured three days later, when, on average, they were 0.483g
(SD=0.1169g) lighter. Talbot et al. (1984) observed that it took Atlantic salmon
(approx. 8g live weight) kept at 9-13°C approximately 60 hrs to evacuate a
meal during a period of starvation. If we assume the weight loss was due to
constant evacuation over this period and the parr were not feeding in the fish
trap, then we derive a figure for evacuation of 0.022 — 0.036g for a 16.2g parr
kept at approximately 3.7°C over three hours. This provides an upper limit for

weight loss due to gut evacuation in the holding tank.
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We shall further assume that the weight loss due to metabolic cost in the tank is
negligible. The parr were weighed on a balance with an accuracy of 0.1g, which
gives an error of £0.05g. This gives a combined estimate of the experimental

error of approximately < £0.09g for a large parr.

The Effect of the Perturbations to the Data on ¢;

Using the data from the seven parr for which were caught more than five times,
the weight at each capture was perturbed by a random amount taken from a
uniform distribution between +0.2g. The model was refitted to this new data
set, and this process repeated 50 times for each parr. From the 50 values of ¢;
from each of the seven parr, the variance was calculated and compared to the
variance of the distribution in Fig. 5.2.e. using an F-test to compare sample

variances.

It was found that assuming a random error of £0.2g, the variance of the simulated
distributions were significantly less than for the distribution in Fig. 5.2.e, and for
each parr P < 0.001. Further to this, simulations were carried out with a random
error of +1.0g, and the variance was significantly less for four of the seven parr
(P < 0.01). This indicates that the variation in the distribution of ¢; cannot
be accounted for by random variations of < #+0.2, and so cannot be explained

through experimental error alone.

Correlating ¢; with Final Predicted Weight

The model may be used to predict the weight of the parr at any time, and
predicted weights can be used as a comparison between fish. The final predicted
weight, Wy, will be used as an estimate of the size of a fish relative to others.
Other factors that can be associated with each parr are its age-class and if and
when it was caught in the fish trap, implying that it was emigrating. These

factors may be used to explain some of the variation in ¢;.

A one-way ANOVA was used to look for differences between the values of ¢;
between the age-classes, and was found not to be significant (F} g9 = 0.53, P =
0.469).

The values of ¢; can be correlated with the final predicted weights of the parr. As
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¢; is a measure of the quality with which the parr grows, it may indicate if parr
of different sizes grew at different rates. Table 5.3 is the accumulated ANOVA
table from a regression model which fits ¢; with the final predicted weights of the
parr as a covariate and age-class as a factor. Although the fit is significant, it

only explained 20.7% of the variance. Whether or not the parr migrated, and the

Table 5.3: Accumulated analysis of variance table for the fit between ¢; and the
predicted weight from the CGM, model, Wp. Age-class is a factor and Wy is a
covariate.

d.f. SS MSS | F-value | P | % Var.
Wy 1 10.0266 | 0.02662 | 8.51 | 0.005 | 9.90

Age-Class | 1 |0.0292 | 0.02922 9.34 | 0.003 | 10.87
Residual | 68 | 0.2128 | 0.00313
Total 70 | 0.2687 | 0.00384

season in which they migrated were other factors used in the regression model,

neither of which was significant.

Comparing ¢(t) from the Mean and Individuals

The value of ¢,, derived from the mean weights of the population, in Table 5.1
was compared to the mean ¢; from the individuals using a t-test for the different
subgroups of parr. The results are in Table 5.4, and show that ¢,, is not different
when compared to the mean of different subsets based on the least number of

times the parr were caught.

Table 5.4: Results from using a two tailed t-test to look at the differences between
Om = 0.767 and ;.

Times Caught | n | Mean of ¢; | P
> 2 46 0.755 0.14
>3 26 0.759 0.51
>4 14 0.754 0.30
> 5 7 0.772 0.68
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Figure 5.4: Residuals from fitting the model to the individual data summarised
into means with their 95% CI for parr caught more than twice (residuals shown
are observations-predictions).

5.4.3 Analysis of the Residuals

The residuals from all of the parr that were caught more than twice were calcu-
lated and indicate how well the model fits to the individual data. Fig. 5.4 shows
the mean raw residuals, calculated as the prediction subtracted from the observa-
tion, with 95% CI. The tests in Table 5.5 are based on the normalised residuals,
which were calculated from the raw residuals divided by observed weight. This
was done so that the predictions would not be biased by fish size, as they contain
two different age-classes. The t-tests in Table 5.5 indicate whether the means of

the normalised residuals are different from zero.

Table 5.5: Results from t-tests for the normalised residuals from the model for
parr caught more than twice.

No. Date n | Mean normalised residual P

2 27-Jul-98 | 8 0.0343 < 0.01
3 | 26-Aug-98 | 31 -0.0075 0.41
4 | 30-Sep-98 | 31 -0.0726 < 0.001
5 | 30-Oct-98 | 15 -0.0320 0.23
6 | 15-Dec-98 | 15 -0.0066 0.51
7 | 29-Jan-99 | 11 0.0166 0.60
8 | 05-Mar-99 | 10 0.0048 0.90
9 | 17-Mar-99 | 11 0.0858 < 0.01
10 | 18-Mar-99 | 10 0.0806 0.055

95



The residuals from survey 2 are all positive and 14/15 from survey 4 are negative.
Trajectories with large residuals cannot be accounted for by individuals with few
data points, and correlations between normalised residuals and number of times
caught indicate that for survey 4, the larger normalised residuals are associated
with parr which were caught the most often (R? = 0.67, P = 0.011). The pattern
of these residuals suggest that for the period between survey 1 until survey 3, the

value of ¢; is too low, and between survey 3 to 5, it is too high.

The predicted weights of the parr during the late autumn and winter fit the
observed weights well. Over this period, the assimilation rate is close to or at
zero. This indicates that the function for the maintenance rate of individuals and
the parameters derived for it are able to predict over winter weight loss in the
wild.

The residuals for the final two surveys in March are both greater than zero, and

the reasons why this might be are discussed in Section 5.5.

5.5 Summary and Conclusions

5.5.1 Differences between the Predictions and the Obser-
vations

When the model is fitted to both the mean weights of the population and the
weights for the individuals, it under predicts the weights in spring. This is the
period when the water begins to warm and the parr are able to resume feeding.
If the parr were not eating during the winter, then it is likely that they have
an empty gut. The model only predicts somatic growth, so the under prediction
by the model may in part be a result of the gut contents of the parr. A rough
estimate of gut content can be derived from six parr, which were caught and held
in the fish trap at the Girnock for a period of three days. They were weighed
on 19th March and reweighed on 22nd March, and the mean weight difference
and standard error was 0.48g+0.048 lower after three days, which is enough to

account for the significance of the residuals of surveys 9 and 10 from zero.

If the gut contents are having a large effect on the overall weight in spring, then

there must be a corresponding weight loss when the parr cease feeding during
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autumn and over winter. This may be seen as the model over predicting the parr
weight at survey 4 (30/9/98).

However, during March, the model predicts that the parr are still in a torpid
state, where the predicted assimilation rate is at a very low level, lower than
its predicted metabolic rate. Under these conditions, the parr are still in the
behavioural state that they adopt to survive over winter and the model predicts

that they are losing weight.

When the E&H model was fitted to the data for the River Eden by Elliott and
Hurley (1997) they found that they under predicted the weight during spring and
over predicted during late autumn. This was explained by seasonal changes in
appetite (Metcalfe and Thorpe 1992). As the CGM, uses the same function for
the assimilation rate as the E&H model, the same problem may be occurring.
The CG M, is unable to distinguish changes in appetite, food availability or food

assimilation within years, which have been generalised into the function ¢(¢).

5.5.2 Variation in ¢,

The variation of ¢; cannot be explained by random measurement errors of the
appropriate magnitude, which indicates that not all the observed variation in ¢,
can be explained by measurement error around a site value, which is a constant
and the average for all individuals. However, a significant part of the variation
can be explained by the final predicted weight of the individual parr (Table 5.3),
and the fish that manage to achieve higher values of ¢; are heavier than otherwise

expected at the end of the surveys.

During the surveys, no parr less than 80mm in length were marked. This meant
that as the surveys progressed, a greater proportion of the parr caught could
be marked and the marked individuals became more representative of the entire
population. The marked parr that were most frequently recaptured were those
which were marked earliest in the season, and the lengths of these parr were

biased high with respect to the whole population.

The mean value of ¢; tends to increase with frequency of capture. As both
the residuals and the fit to the mean weights indicate, higher values of ¢; are

required to fit the period of summer growth. If a fish was just sampled during
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this period, its value of ¢; would be high compared to a fish which was more
frequently sampled after late autumn. This was be tested by correlating the
average survey date (ASD) with ¢;, as the ASD can be used as a relative measure
of when the parr were sampled. The relationship was found to be significant
(rzo = 0.222, P < 0.05) which indicates that the variation in ¢; may be a result

of the size selective marking procedure.

We are therefore unable to determine if the variation in ¢; is due to the size
selective marking procedure or the variation in the sizes of the individual parr.
In order to determine this would require all of the individual parr to be marked

at a similar time.

5.5.3 Differences in ¢(t) Between Data Sets

When the values of ¢; are compared to ¢,,, the significance of the difference
depends on the number of times the parr are caught. It is more appropriate to
compare ¢, to the ¢; for the parr most frequently sampled as these parr cover a
longer time span and are better able to approximate the growth trajectory over
a similar time span. This would imply that ¢(¢) is similar when fitting to mean
weights and individual weights. The values of ¢; vary greatly from those derived
from fitting the model to the historic electro-fishing data from 1969-86, where the
average annual value of ¢, was 0.9127. Three possible reasons why this might be

are listed below.

The first is that the conditions for growth within the stream have decreased over
this period. We are unable to tell if there has been a change in the stream condi-
tions, as sufficient data do not exist. However, we are aware that the temperature
profile is changing, as shown in Chapter 2, which would alter the conditions for
growth in the Burn. These temperature changes are the largest in the spring,
which is the period for which individual data is unavailable. As the model at-
tempts to predict growth having accounted for temperature, there may be other

environmental changes (such as food or density) which have caused a reduction
in ()

In 1998/99, ¢; has only fitted across two age-classes and in Chapter 4 it is fitted

across four, where the weights of the 14 age-class during the summer were gen-
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erally under predicted, whilst the 24 age-class were fitted well. In order for the
model to fit both these age-classes equally well for the 1969-86 data would require
¢, to increase in value. It is by fitting to the 34 age-class which prevents this
increase, so the relatively low values of ¢; and ¢,, in 1998/99 cannot be explained

by fitting to just the 14+ and 24 age-classes.

The most likely explanation is that the differences occur because ¢; is fitted only
to the part of the year that misses the growth spurt during spring. This appears
reasonable as ¢; is a measure of the average growth potential over a period of time,
and if this time period excludes a short but vital part of the growing season, then
it would be expected to be lower than a value which includes the entire growing

season.

5.5.4 Improvements to the Model

The model fails to predict the increase in weight during the spring and the pre-
dicted growth trajectories over this period are too low. This would require struc-
tural changes to the model, but individual data do not exist for a sufficiently long
period of time to parameterise such a new model, and the electro-fishing data

from 1969-86 does not cover this part of the season.

When fitting the model for data within years, a variable function for ¢(¢), allowing
it to change on a monthly basis, would seen more appropriate. This would allow
for the changes in consumption throughout the year. However, with the 1969-
1986 Girnock data, there is only one data point per age-class per year, so fitting
a variable ¢, would not be feasible. The values of ¢; derived for the different
age-classes do not differ significantly, so the same value can probably be used

across all age-classes.

There are drawbacks in fitting to the mean weights of age-classes rather than
to individual weights, particularly in a population with size selective migration.
The model needs to be adapted to account for the effects of migration on the
mean weights of the resident parr. This means that a mechanism needs to be
introduced into the model that will alter the prediction of the mean weights of
the 24 and 3+ resident parr. This amended model will more accurately predict

the growth of the smaller parr that do not migrate and we shall develop such a
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model in Chapter 6.
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Chapter 6

Adapting the Model to Include
Size Selective Migration

6.1 Introduction

The CGM, model has not been able to fit all the age-classes equally well, in
particular the 3+ fish which are always over predicted. The 1+ age-class is also

badly fitted, in general being under predicted.

A major feature of the juvenile life history has yet to be included in the model,
which is emigration from the population. Migration from a cohort begins during
the autumn when the parr are approximately 18 months old. There is a lull
over winter and few are caught in the fish trap between December and February.
There in an increase in the number of migrants the following spring, when the
parr become smolts, at around 24 months old. The same migration pattern occurs

in the cohort the following year.

It is unclear what proportion of the cohort migrates during the autumn because
not all of them are caught at the fish trap, but for the years for which good data
does exist approximately a third leave in autumn and the rest in spring. The
average annual percentage of autumn migrants that are 1+ is 32%, and 65% are
2+ parr, the rest (3%) being mostly 3+. Of the spring smolts, an average of 34%
leave annually when they are two year olds and 64% when they are three year

olds, the remaining 2% being four and five year old fish.

Different factors will affect the season the parr in the Girnock migrate, such as
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the numbers of adult females above the fish trap, which affects the numbers of
precocious parr migrating, or the flow rates within the burn (Buck and Youngson
(1982), Youngson et al. (1983)). The critical factor which determines the season
in which the parr migrate appears to be growth rate, and if the parr are too small,
they can postpone migration until the following year (Metcalfe et al. (1990),
Okland et al. (1993)). The result of this behaviour is that the timing of the
parr’s migration is not dependent on the age of the fish, but on its size, and that

migration from the cohort is size selective.

Therefore, as the cohort ages, the mean weights of the resident parr become less
representative of the mean weight of the entire cohort. The growth model was
parameterised with juvenile salmon data that excluded the effects of migration
on the population. When the model was fitted to data from wild parr, it was
fitted to the mean weights of the resident parr, which may change due to effects
of migration. At present, there is no mechanism within that model to account
for this.

In order to include size selective migration from the population in the model,
we must be able to model the variation in the weights within the age-classes in
each cohort. Previously, the model has predicted changes in the mean weight of
age-classes from each cohort, and now it will be adapted to predict the growth
of the weight-frequency distribution (WFD) of the cohort.

The first step to modelling the variation in the WFD of the cohort will be to
fit the model to the data from the 0+ and 1+ summer electro-fishing surveys.
There will have been no seaward migration from these age-classes as they are too
small to undergo smolting. Parr from these age-classes have been observed in the
fish trap at the Girnock over the period from 1969-86, which may have been due
them dispersing in search of territories. Fitting to these age-classes will indicate

how the population grows before parr begin to migrate.

102



6.2 Modelling the Variation in the Weight of
the Population

6.2.1 Fitting the model to the Quartile Values of the 0+
and 1+ Data

The data for each age-class within each cohort shows that each has a different
range of weights. If we are to assume that the proportion of the 2+ and 3+
age-classes that migrate is based on WFD of the population, then we must be
able to model the actual changes in the WFD of the cohort, rather than just

predicting the mean weight of the resident parr population.

We have so far assumed that the initial weight for all the members of a cohort
has been constant at 0.15g and that the growth rate of all the members of the
population has been the same. We shall now look at the growth rates of the
distribution of the 0+ weights by fitting the quartile values of this age-class to
the quartile values of the 14 age-class of the same cohort by adjusting ¢,. This

will indicate differences in the growth rate of different parts of the 0+ distribution.

Growth simulations were produced with starting weights from the 0+ data. These
were the median, upper and lower quartile values of the 0+ WFD. The DSO
procedure was used to find the values of ¢,, and the initial conditions were the
values of ¢, found previously in Chapter 4, which were varied between ¢, £ 0.02
at increments of 0.01. The fitting procedure minimised the RMS error as each

trajectory was only being fitted to a single point.

The model could only be fitted to 12 cohorts as this was the number for which
data for the 0+ and 1+ were available, and the values of ¢, with their standard
errors are shown in Fig. 6.1. Each of the sets of ¢, from the fits to the different
quartiles are highly correlated, with » > 0.7 and P < 0.01 in each case.

6.2.2 Analysis of ¢, from the Quartile Values

When fitting to the quartile values of the mean weights of 0+ and 1+ parr sampled
in the electro-fishing surveys from 1969-1986, the values of ¢, are not different
for the different quartile values. A two-way ANOVA can be used to show that,
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Figure 6.1: The optimal values of ¢, derived from fitting the model to different
quartile values of the 1+ WFD, with their standard errors.

although the between year differences in ¢, are significant (Fi734 = 9.303, P <
0.001), the differences between the values derived for the different quartile values
are not (Fh3s = 0.839, P = 0.441). This can be seen from Fig. 6.1, where the
values are similar for most years and they are not systematically different based
on the quartiles to which the model was fitted. The mean values of ¢, with their
standard deviation are given in Table 6.1 along with the RMS error from the fit
between the model and the data.

Table 6.1: Mean values of ¢, when the model is fitted to the different quartile
values of the 1+ WFED, with their standard deviations, in brackets, and the RMS
error.

Lower Quartile | Median Quartile | Upper Quartile
Mean (S.D.) | 0.906 (0.112) 0.931 (0.112) 0.925 (0.130)
RMS Error 1.34E-03 5.22E-06 5.87E-04

The fit to the data is very good as can be seen by the RMS errors and for each
set, of quartile values, 18 parameters are being fitted to 24 data points. The
values of ¢, are not independent and fitting to the mean weights of the 0+ and
1+ age-classes for each cohort will involve two values of ¢, (i.e. one for the first
year and another for the second year). There are also gaps in the data, and some
of the values of ¢, are determined by the data in the proceeding or subsequent

years.

For the years 1970-4, 1978 and 1982-5, ¢, is derived when both 0+ and 1+ age-
classes are present, and when the 0+ and 1+ data are available for these two

cohorts. For these years, there are still not systematic differences between the
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values of ¢, for the different quartiles. If the values of ¢, for the different quartiles
were found to be systematically different, then this would indicate that the WFD
of the parr was changing. These results imply that the WED is not changing for
the cohorts between the 0+ and 1+ age-classes.

6.2.3 The WFD of the 0+ and 1+ Parr

In Chapter 5 we observed that the values of ¢; were positively correlated with
the final predicted weights of the parr when derived over the period from June
1998 until March 1999. This variation in ¢; may be too subtle to be detected
when fitting to mean weights and when ¢, is derived over a different period of
time. The variation in the shape of the WFD can be examined by comparing the
coefficient of variation (c.v.) of the 0+ and 14 parr. These have been plotted in
Fig. 6.2 for the cohorts from which the data is available.

A two-tailed paired t-test can be used to show that the c.v. from 0+ and the 1+
do not vary significantly, (¢;; = 2.201, P = 0.184) and so are not systematically
different. Although this supports the findings that ¢, should be the same across
the 04+ and 14 age-classes, it does not negate the finding that ¢; is correlated

with size if there is size selective mortality occurring in the population.
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Figure 6.2: The coefficient of variations for the 0+ and 1+ age-classes for which
data is available.

Some values of ¢, derived and displayed in Fig. 6.1 have values of greater than
1.0, and for the years 1970 and 1984, the mean values of ¢, for each quartile
are significantly greater than 1.0. This would indicate that the parr are growing

better than the optimal conditions of the tank reared parr on which the model
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was parameterised. Each value of ¢, represents an annual growth index and, as
we have seen in Chapter 5, the model under predicts spring growth. In order to
compensate for this, the value of ¢, increases during the summer. They may also
be greater than 1 because of size selective mortality. If the smaller members of
0+ age-class died before the population was resampled at 14, then the median

weights would change towards that for the larger members of the population.

However, the values of ¢, are a measure of the relative growth of the population.
We are unable to determine if size selective mortality is occurring in the popula-
tion, as the appropriate data do not exist. Given that ¢, appears to be constant
over age-classes when fitted to the data that is available and that the variation in
the population does not change significantly from the 0+ to 1+ age-classes, we
shall assume that the different variations in the sizes of the parr within age-classes

are not due to differing growth rates but from the initial WFD of the population.

6.3 Fitting the Model to the Data with Thresh-
old Weights for Smolting

The two main periods of migration for any cohort will be between the summer
measurements of the 1+ and 2+, and the 2+ and 3+ age-classes. If the fish are too
small to migrate during the first period, they may wait until the following year.
This will give the majority of them sufficient time to attain a suitable weight. In
this section, the model will be adapted to take into account the fact that a large
proportion of the population will leave during migration, and that proportion

will be dependent on the distribution of weights of the parr population.

6.3.1 Changes to the Model to Allow Size Dependent Mi-
gration

Changes to the Model

We shall use the following assumptions to adapt the model to take into account
the effects of migration on the mean weight of the resident parr in the stream. We
shall define residents as those fish that are in the stream when the electro-fishing

data is collected. The mean weights to which the model is fitted are those of the
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resident parr, and will be denoted by W, (¢) at time ¢. The present model predicts
the growth trajectories of all individuals. We shall assume that this trajectory,
denoted W, (t) at time ¢, is the mean weight of the whole population, regardless
of whether members have smolted. Thus we would expect W),(¢) to fit to the 0+
and 14 data well, but over predict the 2+ and 3+ age-classes.

We shall assume that migration will take place on a fixed date between consec-
utive summers. This date is fairly arbitrary, as we are interested in the effect of
the migrants on the mean weight of the resident population, which is measured
during the summer. The date of migration will be set at the 1st April each year

as it is about the peak time of migration.

The distribution of the weights of the population about W, (t) will be assumed
to be Gaussian and its coefficient of variation, ¢, is constant for the population

at all times.

We shall assume that there are two constant threshold weights above which parr
will migrate. These will be denoted by W, for the first set of migrants from
a cohort and W,, for the second set. Therefore, at the migration date, all fish
above the threshold weights will leave the population. The two migration dates
are denoted m; and my for the first and second migration respectively. We can
therefore deduce the mean weight of the resident population at migration, denoted
W,.(my) and W, (my), given that we know the weight of the whole population at
the migration dates, where W,(m;) is the mean population weight at the first

migration and W),(m2) is the population weight at the second migration date.
Given that we have a constant ¢, if we define

(m2)

Wr
W (ma) (6.1)

9 =

then we can say that

Wp(t) t<my
Wr(t) = lep(t) my <t < my (62)
TQWp(t) i Z mo

Note that r; > ry to ensure that the parr which migrate at m, are not ‘reintro-
duced’ at mo. Fig. 6.3 give a schematic view of the changes which the cohort

undergoes.
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Figure 6.3: These two diagrams show how the model is fitted to the data when
a proportion of the cohort migrates at my and my. (a) These functions describe
the probability of smolting for the different age-classes. (b) The initial WFD
of the cohort will have a coefficient of variation, ¢, and mean weight of 0.15g.
As time increases and the weight of the cohort increases, the mean weight of the
distribution will be fitted to the observed 0+ and 1+ mean weights of EFW0+ and
EFW1+ at times ty, andt,,. At time my, the proportion of the cohort of length >
W,, are removed from the resident population, and are assumed to have migrated.
The remaining part of the distribution continues to grow, and the mean weight
of the distribution at toy is fitted to the observed mean weight of EFW2+. The
distribution remains unchanged until the second migration period at msy, where
all parr of length greater than W., are removed from the resident population and
are assumed to have migrated. The remaining part of the distribution continues
to grow up to tsy where its mean weight is fitted to EFW3+-, the observed mean
weight of the 3+ parr.

108



Fitting with Constant ¢(t) = k

The model was first fitted to the electro-fishing data from 1969-1986 by adjusting
¢, We,, We,, and ¢(t) = k representing a constant value of ¢(¢) across all years.
The DSO was used with a variety of initial conditions, and the parameter values
which minimised the mean weighted error (MWE) shown in Table 6.2. The
trajectories are plotted out in Fig. 6.4 and the fit of the model to the different

age-classes is shown in Table 6.3.

Table 6.2: Parameters found from fitting the model to the data by adjusting c,
We,, We, and k. Also shown is the MWE.

k| Welg) | Welg) | ¢ | MWE
0.933] 121 | 19.3 [0.568 | 9.04

30

Weight

Year

Figure 6.4: Simulations of parr weights produced with the parameters in Table 6.2.
Trajectories with broken lines refer to the cohorts with open circles.

In Fig. 6.4, the cut-off point for the three year old migrants can clearly be seen,
but is less obvious for the two year olds (these are not actual growth trajectories
for individuals, but rather the mean weights of the resident population assuming
that migrations occurs at a specific date). The fit to the age-classes has not
improved over the model with ¢, except for the fit to the 3+ age-class, where the
percentage error has decreased from 38% to 14% (see Tables 4.10 and 6.3).

From Table 6.4, we can see that the scale of the reduction in the MWE from
fitting with the single parameter and compare it to fitting with ¢,. Looking at
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Table 6.3: The fit of the 4 parameter model to the mean weights of the different
age-classes of the electro-fished parr.

Age- Average Predicted Range of Mean Abs. % Sign.  Sign.
class  Weight (g) Weight (g) Predictions (¢)  Error (g9)  Error same correl.
0+ 0.81 0.73 0.35-1.43 0.26 32 Y NS
1+ 9.39 4.57 2.68-7.20 1.61 30 N NS
2+ 12.24 11.12 7.50-15.92 2.19 18 N NS
3+ 18.92 18.12 14.02-22.25 2.70 14 Y NS

the accumulated ANOVA table, in Table 6.5, we see that there is not a significant

improvement to the model.

Table 6.4: Comparison of the MWE for the different models.

Fitted Parameters MWE

1 parameter of ¢(t) = k 10.357
Current 4 parameter model 9.035
18 parameters when ¢(t) = ¢, | 5.832

Table 6.5: ANOVA table calculated from the total weighted deviance from the four
parameter model. R? = 0.723.

df. | WSD | MD | F P
o(t)=k 1 1268 | 1268 | 128 | < 0.001
We, We,, ¢| 3 75 25 1235 ] >0.05
Residual 52 515 9.9
Total 56 | 1858

Using the cut-off points for the migration of individuals does have the desired
effect of reducing the error associated with the least well fitted age-class, the
annual mean weights of the 3+ parr. We shall now combine these parameters
into a model where we fit ¢(t) = ¢, instead of ¢, = k.

Fitting with Annual ¢(t) = ¢,

The next stage was to fit the model to the data by adjusting the values of ¢, as
well as ¢, W,,, W,,. This would involve fitting 21 parameters and was done using

the DSO. Again, a variety of initial conditions were used, and the parameters

110



that gave the best fit are in Table 6.6 with the trajectories shown in Fig. 6.5.
This version of the model will be defined as SSVNI.

Table 6.6: Parameters derived from fitting the model with the new parameters c,

W, We, and ¢y to the data.

c | We(g) | We,(9) | Range of ¢, | MWE
0.428 | 13.761 | 16.948 | 0.809-1.042 4.9

30

Weight

Year

Figure 6.5: Simulations of parr weights produced with the parameters in Table 6.6.
Trajectories with broken lines refer to the cohorts with open circles.

The fit of the model to the separate age-classes is shown in Table 6.7 and the fit
for the 0+, 14+ and 2+ is as good as formerly, though not better. However, the
fit to the 3+ is considerably improved, as expected.

Table 6.7: The fit of the model with the new parameters ¢, W, , W, and ¢, to
the mean weights of the different age-classes.

Age- Average Predicted Range of Mean Abs. % Sign.  Sign.
class  Weight (g) Weight (g) Predictions (g)  Error (g9)  Error same correl.
0+ 0.81 0.92 0.57-1.55 0.17 21 Y x
1+ 5.39 4.54 3.35-5.59 0.95 18 N NS
24 12.34 12.35 7.14-14.93 0.84 7 Y ok
3+ 18.92 18.32 15.52-23.31 2.46 13 Y NS

Table 6.8 shows that there is not significant improvement to the fit when ¢, is used
with the new parameters. Also, the predictions for the 14+ mean weights are still

too low and the predictions of the 3+ are not correlated with the observations.
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Table 6.8: ANOVA table calculated from the total weighted deviance from the
model with the new parameters ¢, W, , W, and ¢,. R* = 0.853 and MW E=4.88.

df. | WSD | MD F P
k 1 1268 | 1268 | 161.3 | < 0.001
by 17 258 15.2 | 1.95 | <0.05
We, We,, ¢| 3 59 19.7 | 2.53 | >0.05
Residual 35 273 7.8
Total 56 | 1858

The model has fitted a common value for the coefficient of variation (c.v.) for all
of the cohorts. This value of 0.428 higher than the observed values of the c.v. for
the 04 and 1+ age-classes in Fig. 6.2, which range from 0.210-0.404 for the 0+
parr and 0.189-0.376 for the 14 parr. Therefore, the variation in the WED of the
cohort is being over predicted. The assumption of a constant c.v. appears to be
too ridged a constraint given the variation in the observed c.v. In the following
subsection, we shall look more closely at the shape of the WFD to find a more

appropriate method of predicting its change.

6.3.2 Assuming Different WFD’s for Population

Fitting the Data with Different WFD’s

The WFED has so far been assumed to be Gaussian for the 04 and 14 age-classes.
The growth of a cohort was defined by the growth of the mean of a Gaussian
distribution, which became truncated at the migration dates defined as times m;
and my. We shall consider using different distributions as the starting points for
the cohorts.

The WED’s of the 1+ age-class for which data was available was fitted with three
different probability density functions (PDFs). The PDFs, which were fitted to
the data by minimising the log likelihood function, were the Gaussian, Gamma
and Weibull, each of which are defined by two parameters. The Gamma and
Weibull PDFs were chosen as they were skewed to the right, which would be the
case for a population with differential growth rates and similar initial weights.

For each cohort, the 14 data was normalised before the fitting procedure began.
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For all of the cohorts fitted, the Gaussian provided the best fit to the data,
followed by the Gamma then the Weibull. Using the Weibull distribution to
describe the spread of the 14+ data was discarded as it fitted the data least well.
The Gamma and Gaussian distributions would be used to define the WED of the
14 parr from each cohort. For the Gaussian, the spread of the data would be
based on the c.v. For the Gamma, the spread of the data would be determined
by the shape parameter of the distribution. Due to the missing data for the 1974
and 1975 cohorts, the spread of these 1+ distributions were approximated by

taking the average value from the other cohorts.

Fitting the Data with a Gaussian Distribution with Variable C.V.

The model was refitted to the electro-fishing data as before but with the following
changes. Instead of fitting the parameter ¢, each cohort will have a value of the
c.v. determined from the observations. This version of the model will be defined
as SSVN2.

Table 6.9: Parameters derived from fitting the model SSVN2 with the parameters
W, We, and ¢y to the data.

We,(g9) | We,(g) | Range of ¢, | MWE
881 | 13.79 | 0.821-1.080 | 2.56

The parameters which provided the best fit to the data are shown in Table 6.9.
Both of the threshold values for smolting have decreased substantially and the
values for the MWE has decreased by 48% in spite of the model being fitted to
the data with one less parameter. The accumulated ANOVA table in Table 6.10
shows that the parameters now account for a significant amount of the variation

between the mean weights.

The fit of the model to the different age-classes are shown in Table 6.11. The
predicted weights of all of the age-classes are correlated with the observations and

there are no longer systematic differences between the data and the predictions.
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Table 6.10: ANOVA table calculated from the total weighted deviance from
the model SSVN2 with the parameters W.,, W., and ¢,. R* = 0.923 and
MW E=2.55.

df. | WSD | MD F P
k 1 1268 | 1268 | 317 | < 0.001
Oy 17 | 2538 15 | 3.75 | < 0.001

Wey, We, | 2 189 95 |23.75 | < 0.001
Residual | 36 143 4
Total 56 | 1858

Table 6.11: The fit of the model SSVIN2 with the new parameters W, , W, and
¢y to the mean weights of the different age-classes.

Age- Average Predicted Range of Mean Abs. % Sign.  Sign.
class  Weight (g) Weight (g) Predictions (¢)  Error (g9)  Error same correl.
0+ 0.81 0.76 0.41-1.23 0.12 15 Y ok
1+ 9.39 5.15 3.44-6.58 0.26 ) Y otk
2+ 12.34 12.39 9.13-15.16 0.77 6 Y ook
3+ 18.92 18.27 14.26-23.35 2.05 11 Y *

Fitting the Data with Gamma Distribution with Variable Shape Pa-
rameter

We have thus far assumed that the WFD of the population is Gaussian. The
distributions of the cohorts will now be assumed to be Gamma, with the average
growth trajectory up to the 14 data being that of the mean of the Gamma
distribution. As smolting occurs, the distribution will be truncated as previously,
with the mean of the remaining part of the distribution being fitted to the data.
As the cohort grows in size, the shape parameter of the distribution will remain
constant. The fitting procedure will otherwise remain the same as for SSVN2.
This version of the model will be defined as SSVGI.

Table 6.12: Parameters derived from fitting the model SSVG1 with the parameters
We,, We, and ¢y to the data.

We,(g9) | We,(g) | Range of ¢, | MWE
822 | 12.68 | 0.745-1.102 | 2.98

The parameters which provide the best fit to the data are shown in Table 6.12
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and shows a large improvement over SSVN1 and similar to SSVN2. The variation
in the data accounted for by the two smolting thresholds is significant, as can be
seen from Table 6.13.

Table 6.13: ANOVA table calculated from the total weighted deviance from
the model SSVG1 with the parameters We,, W, and ¢,. R* = 0.910 and
MWE=2.98.

df. | WSD | MD F P
k 1 1268 | 1268 | 273 | < 0.001
Oy 17 | 2538 15 | 3.23 | <0.01

We, We, | 2 165 82.5 | 17.78 | < 0.001
Residual | 36 167 4.64
Total 56 | 1858

The predictions from the model and the observations from the different age-
classes are now correlated, and also the predictions and the observations are not

systematically different for any of the age-classes.

Table 6.14: The fit of the model SSVG1 with the parameters W, , W, and ¢, to

the mean weights of the different age-classes.

Age- Average Predicted Range of Mean Abs. % Sign.  Sign.
class  Weight (g) Weight (g) Predictions (g)  Error (g9)  Error same correl.
0+ 0.81 0.76 0.24-1.25 0.14 4 Y ook
1+ 5.39 5.29 4.07-6.56 0.21 4 Y okox
2+ 12.34 12.75 9.64-15.68 1.07 9 Y x
3+ 18.92 18.19 14.41-22.09 2.33 12 Y *

Determining the Best Model

Of the three models tested in this section, SSVNI is clearly the worst as the
MWE is the highest and the fit to the age-classes the worst in spite of using an
extra parameter. The models SSVN2 and SSVG1 both have similar MWE are
significant improvements over fitting with only ¢,. In addition, they are able to

predict the weight well across all age-classes.

As the model is able to predict the WFD of the 2+ and 3+ age-classes, we are

able to derive an estimate of its variation that can be compared to the observed
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variation in the data from the 24+ and 3+ age-classes. The c.v. was chosen
as a measure of variation, and derived for the 2+ and 3+ observations and the
predictions from the two models. The observed and predicted c.v. from the

models for the 24+ and 3+ age-classes are plotted in Fig. 6.6.
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Figure 6.6: Predicted and observed c.v. of the 2+ and 3+ age-classes. The
observations are the open squares, the predictions from SSVNZ2 are the closed
circles, and the predictions from SSVG1 are the stars.

The predictions of the c.v. for the 2+ are correlated with the observation for both
SSVN2 (r = 0.736, P < 0.05) and SSVG1 (r = 0.588, P < 0.05), but not for the
3+. The predictions from the model SSVG1 are clearly systematically lower for
both age-classes, which is not the case with SSVN2. This indicates that using a
Gamma, distribution would not be appropriate as it underestimates the variation
in the weights of the resident 24+ and 3+ parr. Also, the 14+ data are better
approximated by a Gaussian distribution than by a Gamma, as was seen earlier.
As this is the case, we shall model the population using a Gaussian distribution

and the model SSVN2 will be used to predict other aspects of the population.

6.4 Comparing Predictions to the Smolt Data

One of the benefits of having the threshold weight for smolting is that as well as
enabling predictions to be made regarding the resident population, predictions
can also be made about the migrants. The proportion of the cohort that leaves the
resident population each year can be used to predict the mean weight or lengths

of the migrants as well as the variation of the sizes of the migrating population.
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The model can also be used to predict what proportion of the cohort will migrate

each year.

Data from the smolt trap exists which will allow comparison between predictions
and observations. Unlike the electro-fishing data, which is site specific, the data
from the smolt trap is collected from the whole of the burn. Also, the estimates
of the proportion of fish leaving from each cohort for the years 1977-1986 are
incomplete. This is due the trap becoming clogged with leaves during the autumn,
which allows an unknown number of fish to avoid being caught in the trap.
However, this data does give us an indication of the population dynamics and will
enable us to see how well the SSVN2 model is able to predict these characteristics

of the population.

6.4.1 Structural Weight-Length Relationship

The weight-length relationship has so far been used to convert the lengths of
the parr into weights. The model predicts weight, and if we are to compare
the predictions to the smolts then we require a relationship between the two.
Simply comparing the predicted weights to the observed weights of the smolts is

insufficient for a number of reasons.

The predicted weights are for parr, and so comparing the two will involve com-
paring fish in different physiological states. This will not take into account the
physiological cost of smolting, when the parr are under going the changes, includ-

ing shape, or weight to length changes, which adapt them to living in seawater.

We can, however, compare the lengths of the smolts with those predicted by
the model. This is due to the model calculating the fish weight as the sum
of the reserve and structural weights. The structural weight (SW) does not
decrease as the fish loses weight. Using a SW-length relationship will allow a
direct comparison between the observed lengths of the smolts and the predicted
lengths of the migrants from the parr population. The relationship will be of the
form in equation (6.3).
w

In(L) = In(as) + bsin (ﬂ) (6.3)

where W is the predicted weight by the model and p is the reserve to structural

weight ratio. The coefficients a; and by are derived from the data used for the

117



original weight-length relationship in Chapter 2, which was collected during Au-
gust when the fish are assumed to be healthy with their reserve to structural
weight ratio being at its ideal value of p = 1.5. The coefficients used are those in
Table 6.15.

Table 6.15: Parameters for the regression used to derive a length from structural
weight. The coefficients are shown, with their standard errors in brackets.

In(as) bs
1.815 (0.0052) | 0.324 (0.0038)

With this relationship, the predicted weights can be converted into predicted
lengths at any time of the year and vice versa. Although at smolting the parr
may be losing weight, its structural weight will not decrease and this can be used

to estimate its length.

6.4.2 The Observed and Predicted Smolt Lengths

Using the data from the smolt trap, the mean lengths of the two year old and
the three year old spring smolts were derived. These have been compared to
the smolt lengths predicted for 1 April each year. The observations with their
standard errors are plotted in Fig. 6.7 with the predictions from the SSVN2

model.

As can be seen in Fig. 6.7, the model under predicts the data for the two year
old smolts in all years, and over predicts in all but two years for the three year
olds. The predictions are positively correlated with the observations, but not
significantly. For the two year olds, » = 0.460 with P = 0.073 and for the three
year olds, r = 0.239 with P = 0.39.

6.4.3 The c.v. of the Smolt Lengths

The predicted smolt lengths are derived from the part of the distribution that
emigrates from the cohort each year. This part of the distribution has been used
to estimate the c.v. of the emigrant population, and has been compared to the

observed c.v. of the smolt lengths in Fig. 6.8.
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Figure 6.7: Predicted and observed mean lengths of the smolts migrating in the
spring.
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Figure 6.8: Predicted and observed c.v. of the lengths of the smolts migrating
in the spring. The filled symbols are the predictions and the empty ones are the
observations, and the two year old smolts are in Fig. a, the three year old smolts
in Fig. b.

The model tends to under predict the c.v. for both age-classes. Also the pre-

dictions are not correlated with the observations, for the two year olds (r =
0.055, P = 0.838) or the three year olds (r = 0.161, P = 0.566).

119



6.4.4 Smolt Proportions

Estimates of the proportion of smolts that migrate each year from each cohort
can be made from the data from the Girnock fish traps. These estimates vary
in their accuracy due to the changes in the collection procedure. For the cohorts
born from 1969-1976, the estimates are reliable due to the amount of effort put
into counting the numbers of emigrants in the trap. After 1976, estimates of the
number of autumn migrants are inaccurate with the degree of uncertainty being
unknown. Therefore, for the cohorts born after 1976, the proportion migrating
from each age-class during each year has been estimated from the spring migrants
and the estimates of the average proportions emigrating in autumn for the years
1969-1976.
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Figure 6.9: Proportion of each cohort predicted to leave at each age-class for the
1+/2yr. old in (a), the 2+/3yr. old in (b) and the 3+/4yr. old in (c). The filled

symbols are the observations and the empty ones are the predictions.
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6.4.5 Summary of Fit to the Data

The predictions by the model fit the electro-fishing data well for both the weight
to which it is fitted, and the c.v. of the 2+ and 3+ data which it predicts. The
predicted weights are both correlated with the observations and do not system-
atically over or under predict the observed weights. The same applies to the
observed and predicted c.v. of the 2+ weights, although the predictions and

observations of the c.v. for the 34 weights are not correlated.

The predicted smolt lengths at two year olds are smaller than the observations
and the predicted lengths of the three year old smolts are greater than their
observation. The predictions are correlated with the two year old observations
which implies the under prediction is of a constant amount. The c.v. of the smolt

lengths is under predicted for the two and three year old smolts.

The predicted proportions of the cohort smolting show the greatest deviation from
the predictions. Attempting to predict characteristics of the smolt population by
fitting to the electro-fishing weight alone has failed to produce the observed data.
The next step will be to fit the model to the entire data set, which will allow us

to consider what changes may be necessary to complete the model.

6.5 Fitting the Model to the Entire Data set

6.5.1 Adapting the Model to Fit the Entire Data set

In Section 6.3, the model was fitted to the electro-fishing weights and then used
to predict other characteristics of the juvenile population. The use of a threshold
weight for smolting has considerably improved the fit of the model to the electro-
fishing weights as well as giving a good indication of the c.v. of the age-classes.
The model has failed to predict the lengths of the spring migrants or the c.v.
of their lengths and has failed to give realistic predictions for the proportion of
the population smolting. The next step will therefore be to fit the model to the
whole data set in order to see the extent to which the predictions of the smolt

data can be improved.

The model SSVN2 was fitted to data with a new error function calculated as the
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total error from each of the different variables. These were the four age-classes
from the electro-fishing data, the c.v. of the 2+ and 3+ parr, the lengths and
the c.v. of the two year and three year old smolts and the proportion of migrants
from each of the age-classes in each cohort. The mean absolute error from each
variable was normalised by dividing by the mean observation for that variable,
and these were summed to produce an overall estimate of the fit of the model to
the data. The change to the model will be defined as SSVN3.

The errors from SSVN2 and SSVN3 are given in Table 6.16, and are further
broken down into the error associated with each of the different data sets. The

% change in the error measurement is also given.

Table 6.16: Mean proportional error associated with different characteristics of
the juvenile population when the model is fitted to the data by two different meth-
ods.

| variable | Age-class | SSVN2 | SSVN3 | % change |
Total 2.9412 | 2.2540 -23.4
EF Weight 0+ 0.1474 | 0.1899 +28.8

1+ 0.0493 | 0.1437 | +191.5
2+ 0.0627 | 0.0855 +36.4
3+ 0.1004 | 0.1075 +7.1

Smolt Length 2 0.0753 | 0.0865 +14.9
3 0.0486 | 0.0476 -2.1
C.V. of Weights 2+ 0.1557 | 0.1349 -13.4
from EF Data 3+ 0.3692 | 0.3471 -6.0
C.V. of Lengths 2 0.4633 | 0.5267 +13.7
from Smolt Data 3 0.3928 | 0.3564 -9.3
Proportion 2 0.7083 | 0.0915 -87.1
migrating 3 0.3683 | 0.1331 -63.9

Overall, the fit to the entire data set has improved by 23.4%. As the model is
no longer being fitted to only the weights of the resident parr, the error being
attributed to these groups has increased. This has ensured that the error has,
in general, decreased for other groups, the largest decrease for the proportion
migrating and the predictions and observations are displayed in Fig. 6.10. The
largest errors are now associated with the c.v. of the smolt lengths which are still

under predicted as can be seen from Fig. 6.11.

We attempted to improve the fit to the data further through the introduction
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Figure 6.10: Proportion of each cohort predicted by SSVNS3 to leave at each age-
class for the 1+/2yr. old in the upper graph, the 2+/3yr. old in middle and the
3+/4yr. old in lower. The filled circles are the predictions and the empty squares
are the observations.

a different smolting threshold each year. This required fitting W,, and W,, on
an annual basis, and would increase the number of fitted parameters from 20 to
49. Using the DSO procedure to find these parameters proved unsuccessful as
it either failed to reach the convergence criteria or when convergence did occur,
many of the parameters were unchanged from their initial values. This suggested
that the error surface was unsuitable for using the DSO procedure. Rather than
develop a new fitting procedure, an alternative strategy of changing the smolting

thresholds was sought.

The largest errors are now associated with the c.v. of the smolt lengths indicating
that the spread of the migrants WFD is greater than predicted. The variation
in the predictions can be changed using a variable smolting threshold, where the

parr have different probabilities of smolting.
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Figure 6.11: Predicted and observed c.v. of the lengths of the smolts migrating in
the spring using the SSVNS model. The filled symbols are the predictions and the
empty ones are the observations, and the 2yr. old smolts are the top graph and
the 3yr. old smolts in lower graph.

6.5.2 Introducing a Variable Smolting Weight to the Model

Fitting the Model to the Data

Observations of the lengths of the smolts indicate that there is not an exact
smolting length, but a range of lengths at which the parr may choose to migrate.
This aspect of smolting behaviour can be introduced into the model using a
variable probability of smolting. We shall assume that for the two periods of
migration, there is a maximum and a minimum smolting threshold. These will
be defined as ay and S5 for the two year old smolts and as and /5 for the three year
old smolts. The a’s will denote the minimum and the ’s will be the maximum.
During any single migration season, on the 1st April, all parr with length > f;
migrate and all those with length < «; will stay, where ¢ denotes the age of the
smolts. The probability of smolting will increase linearly between «a; and ;. This
means that the distribution of each cohort will be divided into parts as indicated
in Fig. 6.12.

Fig. 6.12 shows how the cohort would be divided up, given that the c.v. of the
entire cohort will remain constant throughout its lifetime. The whole distribution
will grow as dictated by the model, and proportions of the distribution will leave
based on the values of a; and ;. The model was fitted to the entire data set with
the error function defined for SSVN3. This version of the model will be called
SSVN4.
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Figure 6.12: These diagrams demonstrate how the cohorts are divided up given
that there is a variable smolting threshold. (a) The probability of smolting will
vary between oo and By for the two year olds, and as and B3 for the three year
olds. (b) The model will fit the mean of the distribution to the 0+ and 1+ mean
weights as before. At mq, a proportion of the cohort migrates, from which the
mean length its c.v. are calculated and fitted to the observations of the smolts.
The size of this proportion of the cohort is used to predict how many leave during
this migration season. At to,, the mean weight and c.v. of this distribution is
fitted to the observed mean weight and c.v. of the 2+. At ms, another proportion
of the population leaves, from which the lengths and their c.v. and the proportion
smolting are fitted to the observations of the three year old smolts, and finally at
ts1, the mean and c.v. of this distribution are fitted to the observations from the
data from the 3+ resident parr.

The Fit of SSVN4 to the Data

This change to the model reduces the overall error by 39.7%. The errors as-

sociated with the electro-fishing data %%ge in general increased and the largest



Table 6.17: Comparisons between the errors of the models SSVN3 and SSVN)

with the % change in the error.

‘ variable ‘ Age-class ‘ SSVN3 ‘ SSVN4 ‘ % change ‘
Total 2.2540 | 1.8573 -39.7
EF Weight 0+ 0.1899 | 0.1952 +2.79

1+ 0.1437 | 0.1597 +11.1
2+ 0.0855 | 0.0736 -13.9
3+ 0.1075 | 0.1358 +23.3
Smolt Length 2 0.0865 | 0.1043 +20.6
3 0.0476 | 0.0417 -12.4
C.V. of Weights 2+ 0.1349 | 0.1458 +8.08
from EF Data 3+ 0.3471 | 0.3535 +1.84
C.V. of Lengths 2 0.5267 | 0.3223 -38.8
from Smolt Data 3 0.3564 | 0.1336 -62.5
Proportion 2 0.0915 | 0.0826 -9.73
migrating 3 0.1331 | 0.1092 -18.0

reductions are through predicting the c.v. of the smolt lengths. The predicted
and observed c.v. of the lengths of the smolts are plotted in Fig. 6.13. In spite
of the large improvements, the c.v. for both age-classes are still under predicted.
However, now the c.v. of the smolt lengths are correlated for the two year olds
(r =0.524, P < 0.05) but not for the three year olds (r = 0.407, P > 0.05).
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Figure 6.13: Predicted and observed c.v. of the lengths of the smolts migrating
in the spring using the SSVN4 model. The filled symbols are the predictions, the
empty ones are the observations, and the two year old smolts are the top graph
and the three year old smolts in lower graph.

The quality of fit to the mean weights for the different age-classes of the electro-
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fishing data has decreased through the successive fits from SSVN2 to SSVN4,
at the cost of fitting to other parts of the data. Table 6.18 shows the fit of the
SSVN4 model to the data for the different age-classes, and shows that although
the predictions and the observations remain correlated, both the 14+ and 3+

age-classes are generally under predicted.

Table 6.18: The fit of the model SSVN/ to the mean weights of the electro-fishing
data

Age- Average Predicted Range of Mean Abs. % Sign.  Sign.
class  Weight (g) Weight (g) Predictions (¢)  Error (g9)  Error same correl.
0+ 0.81 0.72 0.4-1.15 0.16 20 Y ok
1+ 9.39 4.67 3.1-6.4 0.86 16 N *
2+ 12.34 12.40 9.3-15.0 0.91 7 Y otk
3+ 18.92 16.45 12.9-19.9 2.57 14 N *

The c.v. for the electro-fishing data for the 2+ parr has been fitted well, with
the observations being correlated with the prediction (r = 0.763, P < 0.001).
However, this is not the case with the 3+ parr (r = 0.151, P > 0.05), and both

the predictions and the observations for the c.v. are shown in Fig. 6.14.
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Figure 6.14: Predicted c.v. of the 2+ and 3+ weights using the SSVNj model
with the observations. (a) is for the 2+ and (b) is the 3+. The open squares are
the observations and the closed circles the prediction.

Although the error associated with the lengths of the smolts are relatively small,
the prediction for both age-classes are not correlated with the observations and
are still systematically low for the two year old migrants and generally too high

for the three year olds, as can be seen in Fig. 6.15.
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Figure 6.15: The observed and predicted mean lengths of the smolts using the
model SSVINJ.

The largest single improvements between SSVN2 and SSVN4 has been in fitting
the model to the proportion smolting from each age-class, and the fit is shown in
Fig. 6.16. The proportions leaving during the first migration season have been
predicted well, whereas those leaving the next season have been slightly under

predicted, with the proportion leaving later being over predicted.

The model has attempted to predict many aspects of the population. In some of
the cases, the predictions have described the observations well, whilst for others
the there are systematic differences or the observations are not correlated with
the predictions. The reasons why the model may be badly predicting different

aspects of the population is discussed in the final section of this chapter.

6.6 Summary and Conclusions

The SSVN4 variant of the model will be the final version that is developed in

this thesis. There are a number of reasons why further developments are unlikely
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Figure 6.16: Proportion of each cohort predicted by SSVNJ to leave at each age-
class for the 1+/2yr. old in the upper graph, the 2+/3yr. old in middle and the
3+/4yr. old in lower. The filled circles are the predictions and the empty squares
are the predictions.

lead to a significantly greater understanding of the dynamics of the population.

6.6.1 Limitations of the Data

The data to which the model was fitted was collected from two sources. These
were from the electro-fishing surveys and from the smolt trap. The electro-fishing
data has been modelled well with the exception of the c.v. of the 3+ weights.
These observations are highly variable when compared to the observed c.v. of the
2+ and the predictions for both the 2+ and 3+ parr, as can be seen in Fig. 6.14.
This variation may be due to the relatively small sample sizes for this age-class
that has a large variation in individual weights. This leads to the mean weights
and the standard deviation being variable and the model is unable to predict

them.
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The data that are collected from the smolt trap is from across the whole of the
burn. As was shown in Chapter 2, there are differences in the weights of the
resident fish based on the altitude in which they were measured. This could
imply a similar relationship for the migrating fish. If this was so, then the model

would under predict the observed variation in the lengths of the smolts.

The lengths of the smolts are likely to be affected by the stream section in which
they lived before migration, and the size of the effect on the mean length would be
dependent on the numbers emigrating from the different section. If the lower part
of the stream was more productive in terms of the number of smolts produced
than the upper section, the model would be expected to under predict the lengths.

If it were the other way around, then the model would over predict.

The lengths of the migrants are over predicted for the two year olds and under
predicted for the three year olds, which suggests there are other factors involved
other than a bias due to the productivity of the different stream sections. A
major part of the migration season occurs in autumn when many migrants leave
as parr. The model assumes that the growth rates of the autumn emigrants
would be similar to those that did stay and migrated in the spring, if they had of
stayed. The mean lengths of the autumn emigrants are considerably lower than
for the spring smolts, and it is not clear how their lengths differ from those that

choose to migrate the following spring.

Larger proportions of the 24+ migrants are precocious parr than for the 1+ parr
and they are not significantly larger than the other members of the autumn
migration are. However, if large numbers of precocious parr leave the population
during the autumn, the mean weights of the three year old smolts next spring
may be lower. Therefore, the effect of precocious parr on the mean spring lengths
will be to lower them, and the effect will be stronger for the three year old parr.
This will lower the observed mean lengths to which the model has been fitted,
and may be a reason why the model over predicts the three year old lengths but

not the two year olds.

The predictions for the age-class at which different proportions of the cohort
migrate are predicted well. However, these observations have been derived with
an unknown bias from 1977-1986. When predicting the proportion leaving at

different age-classes, estimates of the mortality rates have not been included.
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We would therefore expect to over predict the 3+ /four year old proportions and

under predict the 14 /two year old proportions.

The temperatures that have been used in the model were collected at the smolt
trap at the lower end of the Burn. These temperatures are likely to be higher than
those in the middle section of the burn are. The effect of this on the predictions
is that the values of ¢, may have been under estimated. Data exists for different
sections of the stream, and estimates of the differences in temperature for the
different parts of the stream can be made. In Chapter 7, the SSVN2 model will
be used to predict the weights of parr in different parts of the stream assuming

that there are differences in the water temperatures.

6.6.2 Under Predicting Spring Growth

The model has been shown to under predict the growth rates of the parr in spring.
This is due to the predicted growth rate being less than zero for temperatures
< approximately 6°C, whereas for these temperatures, growth has been seen to
occur. This would lead to the model under predicting spring lengths and the c.v.

of the predicted lengths as has occurred.

These under predictions in the weights result in the model under predicting the
reserve to structural weight ratio, p, so that it is too low. In order to make the
model be able to predict these large changes in weight would require structural
changes to the model. This would require a more detailed understanding of

individual growth rates of the juveniles in the wild.

Many of the values of ¢, are greater than 1 which indicates that either the model is
under predicting growth at some point during the year or the data with which the
model was parameterised with was not predicting maximum growth. It appears
that assuming that ¢, is a constant throughout the year may be too simple, but

again, this would require long term individual data too correct.

6.6.3 The Fitting Procedure

The DSO is unable to find the global minimum for the error function based on the

residuals from the model. As the model increases with complexity, this is likely
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to result in the error surface becoming less appropriate for the fitting procedure.
Therefore, although a minimum is found, and we can estimate its accuracy by
the variation in the parameters derived from different initial condition, how close

we are to the true minimum is still unknown.

A more sophisticated method of fitting is required if a more complex model is to
be used. Only by finding the true global minimum will we be able to accurately

assess how well the model fits the data.

6.6.4 Characteristics of the Social Environment

The factors temperature, weight and ¢(¢) have been used to predict growth but
are unlikely to be the only factors that affect growth rates. These three factors
have been used to describe the effects of the physical environment on the juvenile

parr.

As was seen in Chapter 2, the lengths of the predicted autumn and spring mi-
grants are closely related to the estimated ova deposition. Further changes to the
model need to involve factors associated with the social environment of the parr.
This must include density dependent effects on the growth rates of individuals
and size selective mortality in the population. A mechanism for competition is

suggested in Chapter 8.

However, the model as it is can be used to assess the quality of habitat within
the burn through the derivation of ¢(¢). This index can be compared between
different parts of the burn to determine their suitability for salmon growth. The
model will be applied to the data from different parts of the burn, which will be
the subject of Chapter 7.
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Chapter 7

Fitting Model to Different Parts
of the Stream

7.1 Introduction

The SSVN2 model (Gaussian WFED, variable c.v., fitted to the parr data only)
is able to predict the growth rates of the resident parr by estimating the year
quality given that there is size selective migration within each cohort. It has
been parameterised with data from both tank reared and wild juveniles, and
has previously been fitted to data from the middle section of the burn using the
temperatures from the fish trap. The data from the middle section was collected
at an altitude of approximately 65m higher than the fish trap. The model will
now be fitted to the mean weights of parr from different altitudes in the burn,
but with the same habitat types, with estimates water temperatures at different
altitudes.

When compared to the fish in the middle section of the stream, those in the lower
section are generally larger, and those in the upper are generally smaller (see
Chapter 2). If water temperature can be estimated using a temperature-altitude
relationship, we could attempt to predict the differences between the lengths of
the fish from different stream sections. If ¢, is constant across the burn and the
residuals are similar across sections, then this indicates that to predict the growth

rate in any part of the stream only requires a temperature-altitude relationship.

A further step that can be taken is to actually fit the model to the electro-fishing
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data from the different sections with the temperatures adjusted appropriately.
This would result in different sets of ¢, for the three sections. If they are dis-
similar, then this may indicate that the across year annual effects on growth are
different between stream sections, and the differences in growth between sections
cannot, be solely attributed to differences in temperature. This analysis will use
a shorter data set from 1969-1976, as this is the only period for which data exist

for all three sections.

7.2 Data outline

7.2.1 Summarising the Electro-Fishing Data

Lengths of parr measured during the summer electro-fishing survey in habitat
types 1 and T} 4 are available for the years 1969-1976 for the upper and lower
sections of the burn, after which only the middle section was fished. These lengths
were converted into weights using the same weight-length relationship used on
the parr from the middle section, then summarised into means for the parr from

each age-class in each cohort, and their standard errors derived.

These new data sets from the upper and lower sections were not as complete as
the one from the middle section. No measurements from 3+ parr were recorded
in the upper section during 1970 or in the lower section during 1971 as none were
caught. Otherwise, the data sets are comparable, and form the data to which the
model would be fitted.

7.2.2 Deriving a Temperature-Altitude Relationship

The maximum and minimum altitudes of the three sections are given in Table
7.1, and the sections are shown on the map in Fig. 2.1. Surveys were carried
out within each section and the estimated altitude for each section used was the
average between the minimum and maximum altitudes. This provided a good

approximation of the mean as each section has a fairly constant gradient.

A formula from C. Soulsby (pers. comm.) states that water temperature de-

creases at a rate 6°C for every 1000m increase in altitude. This has been applied
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Table 7.1: The altitude of the different stream section of the Girnock Burn.

Stream Section | Minimum Altitude (m) | Maximum Altitude (m)
Lower 240 285
Middle 285 320
Upper 320 370

to the sections in the Girnock and the estimated differences between the tem-
peratures at the fish trap and the different stream sections are given in Table
7.2.

Table 7.2: The difference in temperatures between the position of the tempera-
ture recorder and the average altitude of each stream section calculated using the
formula from C. Soulsby.

Stream Section | Difference in temperature
from the fish trap (°C)

Lower -0.135
Middle -0.375
Upper -0.57

An additional data set of temperatures were recorded at a point at the upper end
of the middle section from 26/3/81 until 4/12/81. From these records, the maxi-
mum and minimum daily temperatures were used to estimate daily temperatures.
This is the same method as was used for the fish trap data. It was found that
the temperatures from the two recorders were highly correlated and the mean
difference between the two recorders was 1.2°C. The mean monthly temperatures

with their s.e. are shown in Fig. 7.1.

There are significant variations between months and there may well be a seasonal
effect, but given the limited data, we are unable to show this is true so we will
assume that there is a constant difference between the two recorders all year

round and that temperature changes linearly with altitude over the Girnock.

This relationship states that there will be a decrease of 14.1°Ckm~! with increas-
ing altitude. The differences in temperature between sections calculated with

this formula are shown in Table 7.3.

The estimates in Tables 7.2 and 7.3 differ considerable, with the C. Soulsby
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Figure 7.1: Average monthly differences in temperature between the two temper-
ature recorders on the Girnock, with standard errors. The dotted line represents
the mean monthly difference.

Table 7.3: The difference in temperatures between the position of the recorder at
the fish trap and the average altitude of each stream section calculated using data
from an additional recorder.

Stream Section | Difference in temperature
from the fish trap (°C)

Lower -0.32
Middle -0.88
Upper -1.34

formula being approximately half of the relationship derived from the data. As
the second relationship has been derived using site specific data, it will be used

to estimate the temperature differences between the sections of the burn.

In Chapter 4, the sensitivity of the models predictions to variations in temper-
ature was tested by varying it by 40.2°C. The model was then fitted to the
electro-fishing data for each of the different temperatures to derive different sets
of ¢,. The values of ¢, were significantly altered by these temperature variations
although they remained correlated (see Fig. 4.5). If ¢(¢) is constant throughout
the burn, we would expect that the changes in temperature are of a sufficient size
to explain the changes in the mean weights of the resident parr between section
of the burn.
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7.3 Predicting Weights in Different Parts of the
Burn

7.3.1 Using Constant Fitted Parameters Across Sections

The SSVN2 model was fitted to the data from the middle section of the burn, and
¢y for 1969-1976 and the two cut-off points at W, and W, were derived. This
was done using the DSO procedure as outlined previously and the parameters
which produced the best fit are given in Table 7.4. The predictions made with
these parameters are shown in Fig. 7.2, and the fit to the age-classes are given in
Table 7.5. This version of the model will be defined as SSVN2M.

[
©

67 1968 1969 1970 1971 1972 1973 1974 1975

o----0 Observed 1+ Mean Weights
® Predicted 1+ Mean Weight;

[l o

Weight (g)

RN B O 00O RO
Ld
L]

967 1968 1969 1970 1971 1972 1973 1974 1975

o----© Observed 2+ Mean Weights
® Predicted 2+ Mean Weight

T T . -

e I
>

o

Weight (g)

6
3él).967 1968 1969 1970 1971 1972 1973 1974 1975

Q 25 o-----0 Observed 3+ Mean Weights

— ® Observed 3+ Mean Weights

ey

S 20 . R S 3 %
> B T
=15 o

10
1967 1968 1969 1970 1971 1972 1973 1974 1975
Year of Birth

Figure 7.2: Predicted weights using model SSNV2M and observed mean weights
of the different age-classes with their standard errors for the middle section only.

Table 7.4: Summary of the parameters derived from fitting the model to the data
from the middle section with model SSNV2M.

We,(g9) | We,(g) | Range of ¢, | MWE
8.97 | 13.55 | 0.977-1.149 | 1.337

In order to test if these parameter values are applicable across the entire burn,

they will be used to make predictions of the mean weights for the parr in different
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Table 7.5: Fit of the model to the different age-classes when fitted to the data
from the middle section of the burn from 1969-1976 with model SSNV2M.

Age- Average Predicted  Mean Abs. % Sign.  Sign.
class  Weight (g) Weight (g)  Error (g)  Error same correl.

0+ 0.854 0.697 0.164 19.2 Y NS
1+ 5.673 5.674 0.002 0.0 Y otk
2+ 12.53 12.57 0.222 1.8 Y ok
3+ 16.95 16.51 1.023 6.0 Y *

parts of the stream. Differences in the predictions will be due to the adjusted

temperatures being put into the model, which will be those shown in Table 7.3.

Fig. 7.3 shows the observed mean weights of the parr from the upper section
of the stream with the predictions from the SSNV2M model with the estimated
temperature from the upper section of the stream. Although some of the mean
weights of some of the cohorts have been estimated well, such as the 1968 and
1970 cohorts, there are systematic differences in the residuals. The predictions
for the 04+ and 1+ are either below or within the s.e. of the observations, and

the predictions for the 34 are either above or within the s.e. of the observations.
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Figure 7.3: The predicted mean weights of parr from the upper section using model
SSNV2M and the estimated temperatures in the upper section, with the observed
mean weights of the different age-classes with their standard errors.
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The predictions of the mean weights of the parr from the lower section are shown
in Fig. 7.4, which are predicted from the SSNV2M model with the estimated
temperature from the lower section of the stream. Here, the residuals are in
general larger, and all predictions of the 0+, 2+ and 3+ being lower or within

the s.e. of the observations.
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Figure 7.4: The predicted mean weights of parr from the lower section using model
SSNV2M and the estimated temperatures in the lower section, with the observed
mean weights of the different age-classes with their standard errors.

The above predictions of the weights from the different sections have been made
using the same values of ¢, and the same threshold smolting weights, and then
applied to each section using the appropriate temperatures. As the temperature
is increased, the predicted weights of the 0+ and 1+ will also increase. This will
not necessarily be the case for the 2+ and 3+ parr due to the threshold weight
for smolting. When the weight-frequency distribution is truncated, the mean of
the remaining part of the distribution will be different at different temperatures,
and for sufficiently large temperature differences and low cut-off points, the mean
of the distribution at the higher temperature will be lower than the mean of the

distribution at the lower temperature.

When the model is fitted to the different stream sections with the different tem-
peratures, the fits for the different sections vary, and the MWE between the
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different sections are shown in Table 7.6. This means that the parameters that
have been derived for the middle section are not appropriate for the other sec-

tions.

Table 7.6: The mean weighted error from the fit of the model SSNV2M to the
data from the different sections with the different temperatures but same values
of ¢y and threshold weights for migration.

UPPER | MIDDLE | LOWER
3.986 1.337 4.885

As using the same fitted parameters does not provide an adequate fit to all the
data, an alternative approach will be used. The model will be fitted to the data
from the upper and lower sections with the different temperatures by adjusting
the fitted parameters of the smolting threshold weights and ¢,. The values of the

fitted parameters between sections can then be compared.

7.3.2 Using Different Fitted Parameters Between Sections

The model was fitted to the data from the upper and lower section as was done
for the middle section in Section 7.3.1. From the fitting procedure, a set of fitted
parameters was derived, so that each section had its own unique set of ¢, values

and smolt threshold weights.

The fit of the model to the data from the upper section of the burn, which will
be defined as SSNV2U, is shown in Fig. 7.5, and the fit to the data has improved.
The fit of the model to the data from the lower section, which is shown in Fig. 7.6
and will be defined as SSNV 2L, is able to provide good fits to the 14+ and 2+ age-
classes, but tends to under predict the mean weights of 04+ and 3+ age-classes.
The changes in the % error for each age-class for the two new models are shown
in Table 7.7, where, in each case, the least well fitted age-class is the 0+ and best
fitted is the 14-.

The fits to the upper and lower sections are appreciable improvements. The MWE
when the model is fitted to the three stream sections are shown in Table 7.8, which

shows a decrease in the goodness of fit as the altitude decreases.

The largest problem with the fit of the data to the lower section is the under
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Table 7.7: Mean % errors for each age-class derived from fitting the different
models to the mean weights from the different sections of the burn.

SECTION | MIDDLE UPPER LOWER
MODEL | SSNV2M | SSNV2M | SSNV2U | SSNV2M | SSNV2L
Age-Class
0+ 0.192 0.151 0.119 0.339 0.394
1+ 0.000 0.185 0.016 0.169 0.001
2+ 0.018 0.058 0.026 0.127 0.067
3+ 0.060 0.155 0.051 0.347 0.181
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Figure 7.5: The observed mean weights with s.e. and the predictions from the
model SSNV2U when fitted to the data from the upper section of the burn with
the estimates of the upper section temperatures.

prediction of the 0+ parr. The growth trajectories are able to fit the 14 age-
class very well, which indicates that the growth rate between birth and 1+ is
too low. It is interesting to note that for the cohorts born in 1970 and 1971,
apart from for the 1+ age-class, all of the predictions are too low. By looking at
Fig. 1.1, we see that in the years 1969 and 1970, the number of females caught in
the trap were the lowest from 1966-1977, and these were the females that would
give birth to the 1970 and 1971 cohorts.

This, however, cannot explain why all of the 0+ are under predicted. One possible
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Figure 7.6: The observed mean weights with s.e. and the predictions from the
model SSNV2L when fitted to the data from the lower section of the burn with
the estimates of the lower section temperatures.

explanation may be that the intensity of competition is greatest in the lower
section of the stream, and by the time of the 0+ census, a large proportion of the
smaller fry have perished, leaving the larger ones in the stream. This bias would

cause the 24+ and 3+ to be over predicted.

Table 7.8: The mean weighted error from the fit of the models SSNV2U, SSNV2M
and SSNV2L to the data from the upper, middle and lower sections of the burn

respectively. The improvements of the fits can be seen by comparing this table
with Table 7.6.

UPPER | MIDDLE | LOWER
0.9687 1.337 2.1459

7.3.3 Variation of Fitted Parameters between Sections

Variation in ¢, between Sections

For the different stream sections, a set of the values of ¢, were derived, and the

set which provided the best fit of the models to the data were used to produce
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Figs. 7.2, 7.5 and 7.6. The error associated with these sets of ¢, were derived
from using different initial conditions of the fitting procedure. The values of ¢,

for the different sections with their errors are plotted in Fig. 7.7.
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Figure 7.7: Values of ¢, from the different sections of the stream.

A two-way ANOVA with year and stream section as factors can be used to show
that a significant amount of the variation values of the ¢,’s is due to year (F7 14 =
9.39, P < 0.001) and the stream section (Fy14 = 10.9, P < 0.0014). Year as
a factor accounts for 64.7% of the variation and provides an indication of the
years when conditions for parr growth were best. The stream section accounts
for 21.5% of the variation, with the lower section of the stream providing the

lowest vales of ¢,, whilst the upper section provides the higher values.

On the basis of these results, there does not appear to be a single set of values
of ¢, that can be applied across the burn. Instead, the values of ¢, from each
of the sections are correlated with each other' and ¢, appears to increase with
altitude.

!The correlation coefficient between the upper and lower section is r; = 0.666, between
upper and middle is 77 = 0.644 and between middle and lower is r; = 0.931. The critical value
of r7 below which P < 0.05 is r; = 0.669.
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Variation in the Smolting Threshold between Sections

The values of the two threshold weights for smolting for the three sections were
determined by the values that produced the best fit to the data. As with ¢,, the
errors associated with the threshold weights were calculated from using different
initial conditions of the fitting procedure. The values with the errors are displayed
in Fig. 7.8.
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Figure 7.8: Estimated values of the threshold weights for smolting from the dif-
ferent sections of the steam with their standard errors.

The threshold weights for smolting are clearly different for the three sections.
The lowest weights are associated with the upper section, and the middle weights

with the middle section and the highest weights with the lower section.

7.3.4 Relating ¢, to Social Environment of the Parr

Density estimates for the juveniles in each age-class at each survey were made
during each the electro-fishing surveys, which approximate the overall strength
of each age-class in each section of the stream. As sets of values of ¢,’s for the
different sections have been derived, we can use the data regarding the social

environment of the parr to attempt to explain some of the variation in ¢,.
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The estimated densities for each age-class were correlated with the values of ¢,
which were derived for the three sections of the stream, and were found to be
significantly negatively correlated for the 0+ (r7 = —0.740, P < 0.05) and the
2+ (r; = —0.667, P < 0.05) age-classes in the upper section of the burn but no

significant correlations were found in the middle or lower section.

Further to this, the values of ¢, were lagged and then correlated with density.
When density was correlated with ¢,_;, there was a significant correlation for the
1+ age-class in the upper section (r; = —0.769, P < 0.05), and when correlated
with ¢, 5, there was a significant negative correlation for the 0+ age-class in
the upper section (rg = —0.748, P < 0.05). The only significant correlations in
the other two sections occurred with ¢,_5 for the 1+ age-class (middle section,
rs = —0.956, P < 0.01 and lower section, r5 = —0.862, P < 0.05).

The correlations were repeated using the biomass of each age-class, which was
calculated as the product of the density and the mean weight of the parr in that
age-class. ¢, and biomass were found to be significantly negatively correlated for
the 0+ (r5 = —0.928, P < 0.05) and the 2+ (r; = —0.721, P < 0.05) age-classes

in the upper section of the burn.

When biomass was correlated with ¢, i, there was a significant positive correla-
tion for the 0+ in the upper section (r; = 0.837, P < 0.05). When correlated
with ¢,_o, there were significant negative correlations for the 0+ in the upper sec-
tion and the 2+ in the lower section, and when correlated with ¢,_3, there were
significant negative correlation for the 1+ in the upper (r4 = —0.953, P < 0.05),
middle (ry = —0.925, P < 0.05) and lower (r4 = —0.954, P < 0.05) sections.

In addition, the estimated total biomass was correlated with the values of ¢, and
this was repeated when the data was lagged. No significant correlations were
found for each stream section and lag. The estimated ova deposition was also
correlated with ¢, from the different sections with different lags, none of which

were found to be significant.

A considerable number of correlations were attempted, in particular for the ¢, and
lagged correlation tests, four significant results were found from 36 correlations,
and with the ¢, and lagged biomass tests, six significant results were found from

36 correlations. Given that the significant results were neither consistent across
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age-class or section, it is likely that they are due to chance?. All other significant

positive correlations are found in the upper section of the burn.

There are complications with this analysis as the values of ¢, are not independent
and it is likely that the densities not either. There are also few data points, with a
maximum of 8 values of ¢, used for each section, with missing data from different
age-classes in different years. Further and more complex linear models will not
be used to explain the variation in ¢, due to the limitations of the degrees of

freedom available in the data.

These correlations show that there may be an inverse relationship between ¢,
and density or biomass in the upper section, but these effects are undetectable in
the middle and the lower section. Otherwise, the correlations of ¢, do not appear

to be related to biomass and density in any clear and consistent way.

7.4 Conclusions

There are clear and systematic differences between the parameters derived for
each section of the stream. They are consistently different, as are the errors, and
together form a consistent view of the quality of growth in the different parts of
the burn.

As the altitude decreases, the fit of the model to the data deteriorates, which
may be an indication of the increasing complexity of the life style of the juveniles
whose growth we are attempting to model. This may be a result of increases in
the complexity of the ecosystem as the temperature increases. The lower part
of the burn is more populated with salmon as well as other species, and the
surrounding vegetation is more diverse. There are a greater number plants with
vegetation with over hangs the river, which increases the carbon input into the

burn.

Higher values of ¢, are associated with faster growth after the effects of tem-
perature have been removed. This indicates that the local environment for the
growth of parr is better in the higher part of the stream than the lower part.
The higher growth rates in the lower part of the burn can be attributed mainly

2The chance of getting >4 correlations with P < 0.05 from 36 attempts is 10.4% and >6
from 36 is 0.8%.
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to higher temperature.

Differences in ¢, between sections may be due to the lower density and less com-
petition further upstream. The water is likely to be cleaner and the proportion of
the stream suitable for parr higher. In general, habitat quality would be expected
to be better in the upper reaches of the stream otherwise the adult would not

make the extra effort required to get there.

Parr smolt at a smaller size in the upper part of the burn. We must bear in mind
that although the cut off point is termed as the threshold weight for smolting,
it is a threshold weight for parr leaving the resident population. The smaller
emigrants from the upper section could move to the middle section and form

part of the population below the threshold weight there.

The differences in the parameter values across the stream indicate that once the
effects of temperature have been removed, the growth and behaviour of the parr
from the different sections changes. The parr in the upper section are able to
grow better than those in the lower section, and are able to migrate at a lower
weight, which would be necessary as there is a shorter growing season at higher
altitudes.

¢y is a general term that encompasses many aspects of feeding, and its values
derived in Section 7.3.3 range from approximately 0.95 to 1.3. These values sug-
gest that the parr are growing at a far higher rate than the theoretical maximum
growth rate predicted by the model, and the model does tend to over predict the
weights of the 04 parr whilst being able to predict the 1+ mean weights relatively
well. These aspects of the model will be discussed further in Chapter 9. ¢, is a
term for consumption and in Chapter 8, we offer an alternative theoretical model

for ¢, based around the Type II functional response (Holling, 1959).
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Chapter 8

Functional Response Uptake
Model for Atlantic Salmon Parr

The temperature dependent growth models developed in the previous chapters
have been fitted to the data by adjusting the function ¢(¢). This function has been
assumed to be constant within years and across age-classes. In this chapter, we
shall further develop ¢(t) so that it is dependent on the size of the parr and able
to vary within years. These variations will be determined by the characteristics

of the invertebrate populations that form the diet of the parr.

A foraging model, dependent on the size of the individual parr, the size and
density of the invertebrate populations and the current, will be developed to
estimate the consumption rate of the parr. This model will then be integrated into
the CGM model (Broekhuizen et al. 1994) and fitted to electro-fishing data, with

different assumptions about the distribution of the stream dwelling invertebrates.

8.1 The Foraging Behaviour of Parr

8.1.1 Behaviour of the Invertebrate Drift

The food on which the salmon feed is comprised of a variety of aquatic insects,
such as larvae, pupae, nymphs, and insects of terrestrial origin that have fallen
onto the surface of the water (Mundie (1969), Egglishaw (1967), Allen (1940)),

and is known as the freshwater invertebrate drift.
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The aquatic insects live mainly in the substrate and on underwater plants, from
which they enter the water column. This is either through their own need to
move in order to settle somewhere else, or through the turbulence of the current
(Waters 1969) and it is when they are in the current that they are available as

food for the salmon.

Drift occurs with diel periodicity with observed peaks at sunset and sunrise, with
high quantities of drift occurring at night (Mundie 1969). The quantity of the
drift is dependent on factors such as the amount of detritus (overhead vegeta-
tion, stream plants and algae) within the stream (Egglishaw and Morgan (1965),
Egglishaw (1964)) and the chemical composition of the stream (Egglishaw and
Morgan (1965), Egglishaw (1968)). Size of the individual invertebrates increases
throughout the year and seasonal changes in the composition of the bottom fauna

has been observed in Scottish streams (Egglishaw and Mackay 1967).

Drift is related to production, with higher drift leading to increases in production
and higher growth rates (Waters 1969) although predation by parr does have an
impact on the quantity of drift.

8.1.2 Methods of Foraging

Salmon parr must gain a sufficient amount of weight before they are able to mi-
grate to sea, which they do by feeding on invertebrates in the stream (Wankowski
1981). Parr are sit-and-wait predators, who remain stationary at the focal point
of a defended territory from which they make rapid forays to capture and con-
sume their prey. The four basic methods by which they feed are described by
Stradmeyer and Thorpe (1987a) below.

Surface Feeding
Surface feeding is the consumption of terrestrial food items that have fallen onto
the surface of the water. The parr will see a food item floating on the surface

which it swims towards and eats.

Midwater Drift Feeding
This is when is food that is taken from the water column, which contains mainly
benthic invertebrates. This type of feeding can happen in a variety of ways:

1. Direct feeding The salmon attacks the prey item with a rapid burst of swimming
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into the current.

IIa Indirect feeding (active) The salmon will move up into the water column
towards the prey item which it will either attack with a rapid movement or
ignore and return to station.

IIb Indirect feeding (partly passive). This occurs in two ways. The salmon will
drift downstream with the current, facing the prey item, which it either attacks
with a rapid snap or returns to its station. The second method is similar to the
first except before it attacks the prey, the salmon will turn around and capture
the prey item as it moves downstream. This occurs in higher water velocities

with faster moving prey.

Head-jerk Feeding
Prey items moving in the drift passing close to the fish are captured with rapid
side-to-side snapping movements of the head without body displacement such

that the fish does not leave its station.

Bottom Feeding
The fish makes attacks from the feeding station and snaps at the prey as it forages

amongst the substrate.

These types of foraging methods have been widely observed (Keely and Grant
(1995), Wankowski and Thorpe (1979b), Stradmeyer and Thorpe (1987a)) and
this information will be used to derive an estimate of the uptake rate based on
the foraging behaviour of the parr. The predominant method of foraging is when
the fish takes food from the water column, which includes midwater and head

jerk feeding.

Maximum attack distances given by Wankowski and Thorpe (1979b) range from
1 to 5.8 body lengths, those from Stradmeyer and Thorpe (1987a) are approxi-
mately 103cm!. Keely and Grant (1995) give an average attack distance of about
3 body lengths. Any foraging model that is developed must have similar attack

distances and be dependent on the water velocity.

! Distances in body lengths are not given by Stradmeyer and Thorpe (1987a), but may be
6.87-10.3 body lengths based on the size of the parr observed in the study.
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Figure 8.1: With a Type II functional response, the uptake rate will tend to U,,ay
as the food density tends to infinity.

8.1.3 Modelling Foraging Behaviour in Fish

Hollings Type 1I Functional Response

Many foraging attempts are unsuccessful, especially for younger inexperienced
parr, resulting in food being rejected or the ingestion of low nutritional food
such as insect exuviae (Mundie 1969). Visibility may be poor and the water
turbulent. Danger exists from predators which deters foraging (Metcalfe et al.
1987) and competition exists from conspecifics (Symons (1971), Gotceitas and
Godin (1992)). Therefore the maximum uptake rate, Upqq, is unlikely to be
attained. We shall use the Type II functional response (Holling 1959), whose
form is shown in Fig. 8.1 and derivation in Appendix B, to model the uptake rate.
This has been widely used for variety of fish species (Madenjian and Carpenter
(1991), Peterson and Deangelis (1992), Wright et al. (1993), Eby et al. (1995),
Stockwell and Johnson (1997)) in order to determine uptake.

The general form of the Type II function response is given by equation (8.1) where
U is the uptake rate and ® is the rate at which food is found whilst foraging. In

order to estimate the uptake rate, we must determine expressions for U,,., and

1
U=Unoz | —— 8.1
(1 + —%M) (&:1)
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8.2 A Functional Response Model for Salmon
Parr

8.2.1 Probability of Catch

Juvenile salmon show a high degree of prey selection based on size (Allen 1941a)
and travel different distances depending on the size of the prey item (Wankowski
and Thorpe 1979a). Therefore the probability of capture of a food particle of
size p at distance r from a fish of length L will be defined as P(r,p, L). r will be
defined as the minimum distances of approach of the food particles perpendicular
to the flow of the water and will have units of fish body lengths. Although this
is not the actual distance swam by the fish in order to consume an item of prey,
it indicates how close to the fish the particle needs to be in order for it to be
attacked.

Determining P(r,p, L) requires data that will give the probability of food items
of a particular size being caught at a given distance. Data sets from Wankowski
(1981) and Metcalfe et al. (1986) relating to the attack distances, which give the
probability of catch and the size of food particles, were examined. These studies

with hatchery reared salmon parr were conducted from June to September.

Foraging Data Sets

Data from Metcalfe et al. (1986)

A study by Metcalfe et al. (1986) investigated how feeding behaviour was related
seasonal changes in consumption and used food particles that were set at a size to
optimises growth rate (Wankowski and Thorpe 1979a). The data is reproduced
in Table 8.1 and shows that at distances of about one body length distance from
station, the fish ignored about 80% of the food that drifted passed, with high
probabilities of capture only very close to the fish (< 1 body length). There were
no restrictions to foraging such as the tank size being too small and there were
no deterrents to foraging such as predators or competition. These experimental
fish were mostly head jerk feeding and did not travel far in search of food. We are
unable to use this data as it does not accurately portray the foraging behaviour

of wild parr.
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Table 8.1: Percentage of particles ingested with the attack distances in terms of
minimum distance of approach. These are given in absolute and relative terms.

% caught Min. Dist. (bl)
June | July | August | Min. Dist.(cm) | June | July [ August
67.42 | 0.4 0.08 0.4 0.1 [0.084 | 0.082
20.00 | 1.3 0.25 1.3 0.31 | 0.27 0.27
20.76 | 2.6 0.49 2.6 0.625 | 0.55 0.53
11.16 | 4.5 0.85 4.5 1.1 0.95 0.92
11.16 | 6.5 1.23 6.5 1.56 | 1.37 1.33
2.87 | 85 1.60 8.5 2.04 1.8 1.73
3.37 | 11.0 2.08 11.0 2.65 2.3 2.25

Data from Wankowski (1981)

This data set from Wankowski (1981) consisted of four experiments, which at-
tempted to determine the size of food particles that the fish preferred. The
experiments were conducted with salmon that had previously been starved for
seven days before being presented with different sized food particles, and their
response and attack distances were noted. The average attack distance was 3.64
body lengths, which is similar to those found in the wild. These factors enabled

us to make use of this data, which is shown in Table 8.2.

Determining the function P(r,p, L)

Two functions describing P(r, p, L) were fitted to the data in Table 8.2 in order to
determine the most appropriate form P(r,p, L) should take. The first was a one
parameter elliptic function and the second a two parameter discontinuos function.
The term r represented the attack distance in body lengths and v represented
the size of the food particle relative to the length of the fish, such that v = p/L.

One parameter Model

The functional form for P(r,p, L) that was first fitted to the data is shown by
equation (8.2). This states that all food is consumed at 7 = 0 and none at

distances greater than the maximum attack distance D.

r2

P(r,p,L):{ 1—0(ﬁ) :ig (8.2)
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Table 8.2: Number of food particles caught and missed at different distances from
the parr and for different sized food particle during the feeding trails by Wankowski
(1981). r is the attack distance in terms of fish body lengths. A, B, C and D are
the four experiment with increasing size of food particle with whether the food was
eaten (E) or missed (M).

A B C D

0-<1
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2-<3
3-<4
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Table 8.3: The values of D derived by fitting equation (8.2) to the data in Ta-
ble 8.2, for the four food particle sizes, by minimising the RMS error, €, for the
one parameter model.

Experiment y D €
A 0.013 | 25 |0.173
B 0.018 | 7.5 |0.137
C 0.025 | 10.06 | 0.145
D 0.051 | 9.43 | 0.124
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Figure 8.2: The one parameter model fitted to the data from the four experiments
by Wankowski (1981).

Equation (8.2) was fitted separately to the data from each of the four food sizes
by adjusting D through minimising the RMS error, e. The values of D and €
for the four food sizes are shown in Table 8.3 and the trajectories from equation
(8.2) using these values of D are plotted, along with the data, for the four food
sizes in Fig. 8.2.

The values of D in Table 8.3 indicate how the maximum attack distance of the
parr varied with the size of the food particle. A relationship between D and -y
was derived by fitting equation (8.3) to the values in Table 8.3 by minimising the
RMS errors.

D(v) = a1 + ayy + azy*]" (8.3)

Equation (8.3) is plotted, along with the data to which it is fitted, in Fig. 8.3,

using the coefficients found are in Table 8.4.

A quadratic was used because it enforces an optimal particle size. Items smaller
than the optimum have less energy value and are less appealing due to the cost

involved in their capture, which increase as the attack distance increases. Smaller
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Figure 8.3: Values of D (denoted by e), from Table 8.3, and the fitted curve D(7y),
which represent mazimum attack distances for all v. D(7) is a quadratic, which
is within the morphological limitations of food size for juvenile salmon (denoted

by o).

Table 8.4: Values of coefficients derived from fitting equation (8.3) to the data
in Table 8.3 by minimising the RMS error, which has a minimum value of 0.505
body lengths.

Coefficient | Value
a; -11.1
a9 1305
as -17720

particles are also less visible at greater distances. Attempting items larger than
the optimum means that more time and energy is required for manipulation prior
to ingestion and also have a greater chance of rejection (Wankowski and Thorpe
1979a).

The values of v at which D(y) = 0 are 7y, = 0.0098 and 7,4, = 0.064. This is in
close agreement with the morphological natural limits derived from Wankowski
(1979). Salmon feed by sucking food and water into their mouths and then
squeezing the water out through the gills. Food particles too small will be expelled
with the water. The gill rakers, which filter the food out, scale linearly with parr
length and will retain food of relative size v > 0.0083. Upper limits are imposed
due to the internal breath of the mouth. This also scales linearly with length

and the salmon can consume particles of relative size v < 0.068. These values
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Figure 8.4: Two parameter model fitted to the data from the four experiments by
Wankowski (1981).

are applicable for parr from approximately 4cm to 20cm in length.
Two parameter Model

The function in equation (8.4) will be used as the second model with r defined

previously and a; and a; being the fitted parameters.
P(r,p,L) = min{1, [ay + a;.r]"} (8.4)

This model assumes that the parr take all the food within a certain distance and
as the distance of the food particle from the fish increases, the probability of
capture rapidly decreases. The parameter q; is the gradient of the slope and ay,
is the point where this slope would intercept the vertical axis. The model was
fitted to the data in Table 8.2 by minimising ¢, and the parameters that provided
the best fit are given in the Table 8.5 and plotted in Fig. 8.4.

The Upper cut-off point is the attack distance at which the salmon no longer takes
all the food presented to it. The Lower cut-off indicates the attack distance at

which no food is accepted. These cut-off points, along with the fitted parameters
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Table 8.5: Values of a;, and a; which minimise the mean square error, €, for each
experiment with relative particle size and the values of the upper and lower cut-off
points.

Experiment | ay, a; Upper cut-off | Lower cut-off €
A 2.50 -1 1.5 2.9 0.167
B 7.097 | -1.040 5.857 6.818 0.000
C 2.079 | -0.196 5.051 10.606 0.138
D 3 -0.32 6.25 9.375 0.044

and e, are shown in Table 8.5.
Choice of Model

The fit to the data of the two parameter model is better than for the one param-
eter model. However the parameters for the two parameter model do not change
in a consistent way so fitting a function to explain how a; and a; are related to
7 is likely to be more complex than D(vy). The function D(vy) fits within the
natural constraints that are imposed and is behaviourally consistent. It provides
a good relationship between maximum attack distance and food particle size so

we shall use the one-parameter model to describe P(r,p, L).

8.2.2 Effective Search Volume

As the salmon is foraging, it makes most of its attacks from the centre of its
territory and food that is available to the salmon will pass through the territory.
We shall define the area through which food passes as a semicircle perpendicular
to the flow of water, shown in Fig. 8.5. The radius of this area is D(y) and
dependent on the size of the fish and the food particle. Although the whole of
this area is accessible to the salmon, food will not be taken from it uniformly

because as r increases, P(r,p, L) decreases.

We shall take the effective search area, A (p, L) as the area that will provide
food for the salmon. To derive A4(p, L), we shall first determine the effective
search area over a small annulus of width d(rL). The area of this annulus
can be approximated by mrLd(rL) so the effective search area of the annulus
is P(r,p, L)mrLd(rL), and the total effective area searched Ag(p, L) is the inte-

gral over rL in equation (8.5).
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% Water Current Direction

Figure 8.5: This is the shape in which the salmon will forage. All the food that will
be available will pass through the hemisphere perpendicular to the flow of water.

As(p, L) = / P(r,p, L)nrLd(rL), (8.5)
rL=0
Ag(p, L) represents an area from which an amount of food will be gathered of size

p. To determine Ag(p, L) over all food particle sizes, we integrate over p to give

'Ymaa:L
)= [ A Dyap (5.6)
P=YminL
Ap(L) represents the range over which foraging will occur and is constrained by
the food size range and foraging distance and is shown in Fig. 8.6. It has constant

value for each size of salmon. We can normalise A,(p, L) to get a,(p, L),

As(p, L)
Ap(L)

We can further prove that Ap(L) = aL?® where o = 5.479 which is determined
from the coefficients of D(~y), with the proof of this in Appendix C. By multiplying
Ar(L) by the water velocity, we are able to derive the effective search volume of

the foraging salmon.
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Figure 8.6: The salmons’ effective search area is defined by the food particle size.
As L increases the maximum attack distance increases, as well as the absolute
particle size range. This will causes the food available to scale with L?.

8.2.3 Biomass Available to the Parr

We need to estimate of the size distribution of the invertebrates available to the
salmon. We shall use the function ((p) to describe the size-frequency distribution,
which will give the number of particles per unit volume over a given diameter
range of p; to py as fppipl C(p)dp. In order to estimate the biomass available
between p; and p, requires the weight-length relationship of the invertebrates,
w(p). Therefore the biomass per unit volume, B(py, ps), of food items of size p;

to po is

Blwp) = [ " pwm)dp. 8.9)

8.2.4 Handling Time

The handling time per item for a fish of length L at a temperature 7', 7(L,T),
is the time between searching whilst actively foraging. It is assumed to be de-
pendent on temperature, as temperature rises can increase digestion rates as well
as foraging activity. Salmonids have been observed to have two bouts of feeding
during warm weather because they are able to digest more food. This extra food
can then be allocated to growth (Elliott 1973). For salmon, 7(L,T") will involve
orientation towards prey, capture and ingestion, then return to station where it

resumes searching. We shall assume that handling time is independent of food
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particle size.

The handling time per unit biomass is denoted as 7,(L,T"). This is a more useful
term than 7(L,T) because we will be working in units of biomass. Given 7(L,T)
and the weight of the food particles that are consumed, we can estimate 7, (L, T).
We shall assume that a fish of length L will consume particles with an average

weight w(yep L), where

P)/opt _ Ymin ; f)/maa:7 (89)

which enables us to calculate the biomass handling time for when a fish is actively

foraging as
(L, T)

wLT) = w(%ptL) '

(8.10)

8.2.5 Full Functional Response

We are now able to construct our functional response. The effective volume
searched for food particles of size p is vAs(p, L) where v is the water velocity.
The biomass distribution per unit volume is w(p){(p), so the total food available
to a fish of length L will be the integral from p = ¥, L t0 Vinaz L. With our term

for the handling time we have

Tl Ay(p, L)w(p)C(p)dp

— P=Ymin — (8.11)
L+ 7a(L.T) [77°F | v A, (p, Dyw(p)C(p)dp
It is convenient to take out the factor
Unaz(L,T) = 1/7,(L, T) (8.12)

to which the uptake will tend as the food density tends to infinity. We shall
further simplify by dividing the top and bottom by vA;(L). This has the effect
of normalising the effective search area and enables us to have one term with v.

Thus we can define
Umaa: (La T)

Wy(v,L,T) = D (8.13)
and "
W= [ oLy o) (8.1
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Werp(L) is the effective biomass of the food population that is available to a
foraging salmon of length L and W), (v, L, T) is the half saturation food density.

Thus we have the form

U(v, L, T) = Upae (L, T) (Wh o LV,V;’“)f Rveff : L)> (8.15)

as the full functional response and will be defined as the UFR model.

8.3 Applying the UFR model

We now wish to apply this model to wild Atlantic salmon, which are known to
feed less during the winter (Metcalfe and Thorpe 1992). During this period they
exhibit low growth rates whilst in the summer growth rates are higher (Skilbrei
1988). In this section, we shall integrate the UFR into the CGM (Broekhuizen
et al. 1994) and apply this to electro-fishing data sets from different rivers whilst

assuming different distributions for the invertebrate drift.

8.3.1 Electro-Fishing Data Sets

Electro-fishing data sets were found in the literature which were suitable for
testing the UFR model. These data sets gives us the opportunity to apply the
model over both the periods when the salmon undergo rapid growth prior during

the spring and weight loss during the autumn.

Data from Gardiner and Geddes (1980)

Mean weight and length measurements from samples of wild salmon parr were
taken in the Shelligan Burn (described in Egglishaw and Shackley (1977)) from
April 1973 until April 1975. The data for the 1973 cohort will be denoted as
GGT73-74 and the data for the 1974 cohort will be denoted GG74-75, and the
mean weight measurements will be displayed with their 95% CI. Temperatures
for this river over these periods are given by given by Egglishaw and Shackley
(1977) and in the form of the mean weekly water temperatures, which would be

used in the model.
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Data from Randall and Paim (1982)

Two further data sets from populations of wild parr were obtained from two
sites in a stream in New Brunswick, denoted RPL1 and RPC2 over the period
from summer 1977 until autumn 1978. Randall and Paim (1982) provide maxi-
mum and minimum temperature profiles at each of the sites with mean weight
and length measurements of salmon from emergence until 16 months later, and
the error bars for the mean weights will represent +1SE. The series of temper-
ature measurements were taken at intermittent times during the year and were
converted into weekly average temperatures, using linear interpolation, for the
maximum, minimum and median temperatures, which would then be used in the

model.

8.3.2 Assumptions about Food Abundance

The feeding regime was hard to estimate due to lack of data. It is known that
invertebrate drift varies seasonally. It was therefore assumed that:

i) Biomass particle size distribution function was proportional to temperature
with a constant lag of one week. This was to give the biomass time to react to
changes in temperature.

ii) The biomass that was available for the fish to consume was dependent on the
weight of the salmon. This meant that as the salmon grew in size, the amount of
food that was available for them to consume increased. As a fish grows, its range
of food particle sizes increase as will its territory size (Grant and Kramer (1990),
Keely and Grant (1995)). Therefore, as they grow, more food is accessible to

them.

We shall be using a uniform food biomass distribution of value acgp. The
function used to indicate seasonal temperature dependent fluctuation in the food
supply will be defined as (7T,

_ Tiag

u(T) =

(8.16)

where T}, is the temperature from the previous week and T, is the mean annual

temperature.
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Figure 8.7: Growth curves at different quantities of food available. The solid line
represent Upqez. The curves are superimposed onto the data set GG73-74.

This gives our function for the food available as
(R, S, T) =acem(T)(R+S). (8.17)

As ®(R, S,T) has units of mgC.day™", acgn will have units day='.

8.3.3 Testing the model

Using these new environmental parameters and the physiological parameters for
Atlantic salmon in the CGM, simulated growth trajectories were derived by al-

tering acagpr- In the CGM, the assimilation rate is defined as
A =¢e min{®, Uz} (8.18)

and will be changed to use the Type II functional response such that A = ¢ U
where U is defined in equation (8.1). We can let U,,,, be the same as the uptake
in the CGM so as the food available increases, the uptake will tend to U,,qz.

The data from GGT73-74 is shown with the simulated growth curve in Fig. 8.7.
The values of cvcgar are 0.075 for the dashed line and 0.085 for dotted line. These
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values are equivalent to the fish being offered 7.5% and 8.5% carbon body weight
of carbon food weight per day although not all is eaten. The value of the solid line
is the maximum growth that the model can predict given the current temperature,
when the salmon is feeding at U,,,,. The defects with these simulations are that
the growth rates are insufficient during the spring and autumn and too high
during the winter. These problems will be addressed later but first the full UFR
model will be integrated into the CGM model.

8.3.4 Combining the UFR Model with the CGM

We are now in a position to combine our two models by using the ratio of Fy /F,
which is the ratio of the food density, F', to the half saturation food density, Fj.
It appears in both of the CGM as

FH Umam
IH 1
F d (8.19)
where I Upaal(T. S)
max — max ) 820
and in the UFR as
Fu _ Walv, L. T) (8.21)
F Wers(L)
where
Wi(v, L, T) _ Unnas (L, T) (8.22)
Wers(L)  wAz(L) [ | an(p, L)w(p)S(p)dp

We shall assume that the biomass distribution is constant over the range that
we will be using which will vary according to the temperature. Therefore we
can let w(p)((p) = [y, which is constant and can be taken out of the integral
of equation (8.22). a,(p, L) has been normalised so will integrate to unity and
Ap(L) = «L?® which can be substituted into equation (8.22). By redefining
['yav = «a; and including the term for the temperature dependence of I'y, we can
rewrite equation (8.22) as
Wi, L,T) _ Una(L, T)

WD) $(D)al® (8.23)

To interchange between equations (8.20) and (8.23) requires a weight-length re-

lationship. The structural carbon weight to length relationship of the form

S =a,L", (8.24)
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can be converted to
L? = a‘;Scl, (8.25)

where ¢; = 3/bs and a5, = a. This can be substituted into equation (8.23).
Thus the food available in the UFR is ¢(T)ayrrS®, where aypr = as,0q and
is a constant. ®(S,T") will replace the term ®(R,S,T) in the CGM. The terms
for the maximum uptake rates, Uy,q. (L, T) and U,,.. (T, S) are interchangeable,

therefore the only changes that need to be made to the CGM uptake function are

& . Umaa: (Sa T)

F = 0D)avrns (8.26)

Estimates of the coefficients for the structural weight-length relationship for the
different data sets are given in Appendix D, along with estimates of other factors
in the URF model.

This will use the constant biomass spectrum with ay g having units of mgC! <.

day~!

, and varying aypr changes the quantity of the biomass available passing
through the foraging area per unit time. Simulations with this type of uptake

are produced in Figs. 8.8 for GG73-74, 8.9 for GG74-75 and 8.10 for RPL1.

The values for U,,,, are the same in both Figs. 8.7 and 8.8. The curves in Fig.
8.8 are generally smoother due to the independence of the uptake on R. Thus
uptake will not decrease due to weight loss, only through lack of food, and the
two values of aypg are 0.085 and 0.095. The values of aypr are much higher for
GG74-75 at 0.175 and 0.165 (Fig. 8.9), and for RPL1 in Fig. 8.10, ayrr = 0.073.
This is for the median weekly average temperature. The maximum and minimum

temperature with this value of aypg are also shown on Fig. 8.10.

From observing the curves, we can see that the uniform food distribution propor-
tional to temperature does not appear to be correct. Although it is likely to be
closely correlated to temperature, assuming that it is directly proportional may
be to simplistic. We can though see that the data can be fitted by an appropri-
ately varying food availability. This can be applied to all the data points except
for those at the very beginning of the data sets. This will be discussed later. We
will now attempt to fit the data by using a step function to describe the food

distribution.
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Figure 8.8: Simulated growth curves using the UFR for different quantities of
food available (cypr = 0.085 for the dotted line and aypr = 0.095 for the dashed
line). The solid line represent Upa,. The curves are superimposed onto the data

from GG73-74.
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Figure 8.9: The UFR is fitted to the data from GG74-75 with a different temper-
atures and value of aypr. The solid line represents Uz, and the dotted line is
the value of ayrpr = 0.165 and the dashed line has the value of aypr = 0.175.

8.3.5 A Step Function to Describe the Food Available

The biomass spectrum previously used was a uniform distribution proportional
to temperature which scaled allometrically with structural weight. This did not
produce adequate results so different type of biomass spectrum will be examined.
The approach that will be taken in this section is to assume that the biomass
distribution of food available to the parr is the step function @ (¢, S) = ag(t)S,
which replaces the previous function ®(S,7’) used in equation (8.26).

The threshold values for the step function changes are dependent on when the
rapid bursts of growth begin and end. The values of the step function alternate
between a high value close to or at U,,,, and a low value which will maintain the
fish at a weight that may decrease, but not allow the fish to starve. The step
function was fitted to the data set from GG73-74, RPL1 and RPC2 by hand in
Figs. 8.11, 8.12 and 8.13.

Fitting the step function ag(t) to the data has considerably improved the fit of the
model to the data compared to the previous attempts. For GG73-74 (Fig. 8.11),
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Figure 8.10: These simulations have the same parameters as the model for GG74-
75 except for the temperate and aypr. The three curves are those simulated at
the mazimum, minimum and medium temperature profiles, with aypr = 0.073
used on the data set RPLI.
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the fish are feeding at close to U, (as(t) = 9) for the first 71 days. After this
in mid September ag(t) = 0.025 until the second threshold during the following

April when it is increased U,,,,. The temperature at the two thresholds are
13.8°C and 2.6°C'.

For RPL1 in Fig. 8.12, ag(t) = 0.34 for the first 60 days until the first threshold
occurs during September. During the winter until the end of April ag(t) = 0.0005,
after which it increases to 0.4 until during July when ag(t) is reduced to 0.005.

This when the first migrations occurs.

The graph for RPC2 has similar parameters for the threshold of the changes in
®,(t,S). This could be due to the similar average weekly temperature at these
times. At the first threshold, the temperature at RPL1 is 15.6°C and at RPC2
14.8°C'. The temperature at the second threshold at RPL1 is 2.4°C and at RPC2
2.0°C'. The third threshold at RPL1 is 17.1°C' and at RPC2 is 17.3°C".

The four values of ag(t) are 0.32, 0.018, 0.48 and 0.005 respectively for RPC2
in Fig. 8.13. The first value is lower than that for RPL1, which is reflected in
the lower growth rates and smaller fish. The second value is higher, as the fish
actually gain a small increment of weight before the onset of winter. This may
be caused by the fish needing to attain a minimum weight in order to survive the
winter. The next value of ag(t) occurs during a rapid period of growth where
the relative weight gain for RPC2 is higher than RPL1. The final value of ag(t)
is the same as RPL1. This occurs during the period when the first migrations
occur as some of the parr become smolts. This part of the model has not been
modified to account for the effects of migration on the mean weights of the resident
population. This will cause a reduction in their mean weight of those staying,
and a possible growth spurt from those that will attempt to migrate (Metcalfe
et al. 1988).

Although the parameters of the step function have been set to give the best fit,
it does illustrate that some type of dramatic change is occurring at the threshold
points. The temperature at the thresholds after periods of rapid growth during
the autumn are very high relative to those before rapid growth in the spring.
This may be related to the behaviour of the invertebrate drift at these times of
year. After emergence when the fry are small, there will be lots of food items of

the appropriate size for them to consume. For those that have survived to the
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Figure 8.11: The CGM with a functional response uptake function with the data
set GGT73-7. A step function is used to describe the biomass available. The solid
line is the simulated growth curve.

first threshold there will be many less of their preferred size. If at this time of
year the growing season for the invertebrates is over and they have laid their eggs
and are dying out before the winter, then this could be reflected in a change in

food abundance for the salmon.

However the biomass spectrum is unlikely to undergo such dramatic changes
described by the step function although drift abundance does decrease during the
winter. It has been suggested that even if there is sufficient drift abundance for
growth during the winter, but the parr will ignore this (Metcalfe et al. 1986). This
is due to insufficient temperature occurring to digest the food that is available so

rather than risk foraging, the salmon will prefer to become more inactive.

What we are seeing seems more like a behavioural change that the salmon under-
take. During the first summer the fry will feed at a very high rate, which has been
suggested to happen in order to build up reserves of tissue that will sustain them
throughout the winter (Metcalfe et al. (1986), Metcalfe and Thorpe (1992)).
The timing of the changes in the step function are likely to be triggered by some

environmental cue other than temperature like photo-period or a closer link to
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Figure 8.13: Thus is the graph with a step function on the data from RPCI1. The
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food supply. In order to predict such thresholds and biomass density values, we

must know their causes.

8.4 Summary and Conclusions

The simulations from the model show that a number of additions and corrections
must be made. The first is that even when the salmon is feeding at U,,,;, there
are cases where this growth is less than or equal to the observed growth, as in
Figs. 8.8 and 8.11. Due to the functional response curve, one would expect the

growth at U, to be an overestimate at the very least, which is not the case.

Additional data regarding maximum growth rates of artificially reared parr at
different temperatures from Austreng et al. (1987) was examined. These mea-
surements were from fast growing parr from aquaculture and it was found that
the growth rates of these fish were less than the apparent growth rates of the

salmon parr in the wild.

A possible explanation for this may be that the weight-frequency distribution of
the electro-fishing data is positively skewed. If there is size selectivity mortality
within the population, such that the survival rates of the smaller par is less than
for the larger parr, the larger fish would survive and go on to be measured in the

next sample. There is at present no mortality effects in the model.

However, the model may not be appropriate for fish of this size, as at this age
the salmon are still fry and the allometric relationships be able to represent the
physiological state of the salmon at this stage of their life. The parameters were

derived from fish that were at the parr stage of their life.

Beyond the initial data points, we see that the parr undergo weight loss before
settling down to fairly steady weight during the winter, which the model was
unable to show with the temperature dependent biomass distribution. The data
contained the total wet weights of fish, which would include the gut content.
What we may see happening is that after emergence, the fry will consume as
much food as it can and allocate resources to its digestive system in order to
increase its uptake as quickly as possible. The result of this behaviour is that

the faster growing fry will gain a size dependent advantage over its conspecifics.
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After this period of rapid growth, it may reach a point where it stops feeding
and has sufficient quantities of food in its stomach and remobilizable tissue for it
to survive the winter on a very low diet. Thus the actual somatic growth of the
fish will be different to the measurements that were taken. We must therefore
estimate the gut contents in order to find out what proportion of weight that we

are predicting is actually assimilated material.

Incorporating parameters that change as the condition of the parr varies may
improve the model. Most of the parameters are held constant for all sizes and
temperatures. Whilst this may seem unlikely to be true, it is the best that can
be achieved with limited data. However when data does exist, these changes
can be made. Examples of immediate changes to the model would be a variable
to describe the carbon-wet weight ratio, which is much lower for smaller fish
due to their higher water content. The water content will change during the
winter, increasing as the fish metabolises material (Gardiner and Geddes 1980).
Assimilation efficiency will also change depending on the amount of food that is

consumed.

Salmon are territorial and once having established a territory they will not nor-
mally stray very far from it. Any parr that are unable to hold and defend a
territory are likely to die as a result of this. The direct cause of death is likely to
be predation but this would be due to a lack of fitness from having no territory.
We have seen that as the salmon grow, so will the area in which they forage, as
well as the range of food particle size. The number of food particles at their pre-
ferred food size is likely to decreases as the salmon grow, so competition for food
will become more intense. Food density is a key factor in determining territory
size, although the largest is the length of the parr (Keely and Grant 1995).

In the current model all the environmental parameters except for temperature are
represented in a single parameter ccgu, @y pr or ag(t). This is a combination of
water velocity, biomass size distribution function. It was held at various constant
values during the simulations but will have to be examined in its component

parts. Initial estimates of some of these are given in Appendix D.

Prey items in the wild, such as insect larvae have a different shape to the round
food pellets used in this experiment, being long and thin. Hatchery reared fish
have been observed to prefer food of this shape, (Stradmeyer et al. 1988) and
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will also prefer wild prey to pelleted food (Stradmeyer and Thorpe 1987b) though
maximum attack distances were not given. This implies that the attack distances
derived from the Wankowski data may be under estimates. However these fish
were starved prior to the Wankowski experiments, and the attack distances are

similar to estimates in the wild.

The use of a step function in the model indicates that there is a behavioural
change in the salmon at certain times of year. To examine this behaviour in the
wild requires a more detailed account of the drift abundance and what are the
triggers for such changes. The UFR model requires a wide range of environmental
parameters that are likely to be highly dependent on the microhabitat of the parr.
If they can be determined, then the UFR will be able to replace ¢(t). This will
allow within year variation in the consumption rates and be related to the size
of the parr. The juvenile growth model will then be in a suitable state in order

to predict the growth rates of the parr in the wild.
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Chapter 9

General Discussion

9.1 Summary of the CGM, Growth Model

9.1.1 Growth Modelling

The model attempts to determine growth rates of juvenile salmon using a number
of functions and driving variables that describe a set of physiological processes
within the parr that result in consumption being transferred into somatic weight.
Elements of a bioenergetics and a semi-empirical growth model were combined
into a hybrid model, which has been called the C'GM,, then further adaptations
were introduced to account for the effects of size selective migration from the
population. Because of these changes, other characteristics of the population

dynamics of each cohort could be deduced.

Increased complexity of the model has lead to improvements in the fit of the
model to the data and better descriptions of the overall dynamics of the popu-
lation. In particular, the addition of an age-dependent variable threshold weight
to determine the proportion of the population that would migrate has enabled
the model to predict the mean lengths and its variation for the migrants. This is
in addition to the mean weights and the variation for the resident parr from each
age-class within each cohort. Such improvements can not carry on indefinitely,
and further developments to the model have been halted due to the quantity and
quality of the data that is available.

Greater resolution and scope of data and will indicate structural aspects of the
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model that need to be addressed and whether they are functions describing the
physiological or social behaviour of the parr. Developments can then be made
to account for the inaccuracies that exist within the model and to derive further
insights into the population. A description of the results from the CGM, will
be presented in this chapter along an interpretation of these results. Deductions
made about the social structure and population dynamics of the juvenile salmon,

with their implications, will also be presented.

9.1.2 Functions within the Model

The quantity of carbon consumed by an individual can be divided into a number
of components, as described by equation (3.3) in a typical bioenergetics model.
Broekhuizen et al (1994) used this basic format for the CGM with the two
important additions of dividing the weight of the parr into structural and reserve
tissue, and including the starvation response functions. This allowed to model
to describe the observed behaviour of tank reared juvenile salmonids. Similar
behaviour observed in wild salmon parr indicated that the model could be applied

to salmon parr but required reparameterization.

The E&H model required a mechanism to prevent over winter weight loss although
it fitted experimental data very well. This model provided the instantaneous
growth rate given temperature and fish weight, and was parameterised using short
term experimental data from fish that were fed to satiation and was collected over

the summer and autumn.

The CGM and E&H model were combined to form the CGM,, which was able
to fit the data from Elliott and Hurley (1997), and additional parameters were
found using data from the literature. It was assumed that the parr, which were
fed to satiation, were growing at their maximum rate and that this rate would
not be attained in the wild. The function ¢(¢) was used to indicate the difference
between the growth rates of wild parr and those fed at satiation, and was assumed

to be constant within years but variable between years.

The model had been fitted to the mean weights of the population whereas it was
designed to predict the growth trajectories of individuals. The variation in the

life history of the juveniles is too great to assume that they follow a single mean
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trajectory so an age and size dependent smolting threshold was introduced. This
considerably improved the fit of the model to the data as the whole cohort was
now being modelled. Given that the growth trajectories for all the individuals
were now being simulated, predictions of the behaviour of different groups within

each cohort (e.g. the spring smolts) could be made.

The final important addition was the extension of ¢(¢) into the UFR foraging
model, which allowed uptake to be dependent on foraging behaviour and envi-
ronmental variables. It could not be fully implemented into the model as it was
only partially parameterised but it does provide a mechanism to account for vari-
able growth rates within years, that could not be accounted for by temperature

alone.

9.1.3 Fitting the Model to the Data

The downbhill simplex method of optimisation was used to fit the model to the
data. This method is most effective when the error surface is sufficiently smooth
to allow convergence to occur. If it is not then variation in the initial conditions
and the size of the simplex may lead to the DSO being unable to find the global
minimum. When the DSO was used to fit the CG M, to the mean weights of the
long term data set, we were unable to determine if the global minimum had been
found. However, errors associated with the parameter estimates were calculated
and the parameters from the different initial conditions did not vary considerably

given the variation in and accuracy of the data.

Fitting to individual growth trajectories within years was straightforward with
the DSO procedure appearing to converge to unique solutions each time. The
DSO was wholly appropriate and the fit of the model was able to describe insuf-

ficiencies in the model.

Fitting the model to the different sections of the stream used many less fitted
parameters and the variation in the derived ¢(¢) was smaller than previously.
They were also able to show that there were differences between the sections and
that there is sufficient accuracy in the model to distinguish between the quality
of different habitat types.

However, as the complexity of the model increases, with more parameters being
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used, there is a danger that the results that are being found will continue to
become less reliable. A more sophisticate and accurate optimisation method will

need to be devised in order to progress in to the development of the model.

9.1.4 Interpreting the Results from the Model

The most important feature of the model is the output which is in the form of
¢(t). This gives a description of the state of the stream and the environment in
which the parr is growing. A variety of methods of using ¢(¢) have been used

throughout the thesis and are summarised below.

The model has shown that different individuals had their own unique value of
¢;. These values were significantly correlated with the size of the parr, although
it was shown that this might have been an artefact of the sampling procedure.
However, given an adjustment in the sampling procedure, the difference in the
growth rates of different sized parr can be found and used to calculate proportions

of the population that are migrating.

This variation in ¢; means that there is no single value which can be applied to
all individuals at any site within the stream. It implies that the microhabitat
of the parr is an important factor in their growth or that the individuals may
be predisposed to have different growth rates. Increased resolution of data of all
the fish in each cohort is required, rather than a size selective subset, to better

understand the growth of individuals in the wild.

The annual values of ¢, were derived from fitting the model to the mean weights.
These may be regarded as an average index of the growth of parr in that part
of the stream once the effects of temperature have been removed. The values of
¢, were seen to increase with altitude. This is to be expected as the quality of

habitat would be expected to improve in the higher parts of the burn.

In order for the model to predict within year growth, ¢(¢) must be variable
within years. This has been seen when using data for parr, both individuals and
means, to predict growth within years. The prediction of both the individuals
and population mean weights within years was deficient in the spring, which
indicates the necessity of varying ¢(t) within years. This was further indicated

as the values of ¢(t) are between 0.95 and 1.3 in the final versions of the model.
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If Upae is seasonal (as thought by Metcalfe et al (1990)) the E&H model may
only be applicable for the parameterisation period. By using the parameterised
UFR model, variation of U,,,, can be introduced into the CGM,.

Variation of the input parameters was introduced in the sensitivity analysis and
the values for ¢(¢) remained stable. A suite of models have been developed which
can be applied to different data sets and make prediction relating to different
aspects of the population dynamics. The next section will detail characteristics

of the population that can be deduced using the model.

9.2 Population Structure

9.2.1 Social Structure

Adult salmon were prevented from spawning in the Girnock Burn in 1978, and
consequently, no cohort was born in 1979. This represented a large change in
the social structure of the stream, and was done in order to examine how these

changes to the population would affect other cohorts.

In particular, the effect of the changes to the density of the parr on their growth
rates needed to be examined. This information could then be used to estimate
optimal stocking strategies. This could only be done once the effects of tem-
perature had been removed from growth, which was one of the objectives of the
model. An estimate of the growth potential, ¢(¢) of the resident parr could then
be made for the year, and this would be examined to see how it changed when
the 1979 cohort was absent.

Correlation between ¢, and density or biomass are weak and do not offer conclu-
sive proof of any relationship. Comparisons over the period of low spawning do
not show a strong relationship between ¢, and estimated ova deposition (EOD),

which suggests that the social effects on the growth of the resident parr are small.

However, we have seen that ova deposition is negatively correlated with the
lengths of the migrants, which suggests that density does depress growth. The
density in the social environment does effect the growth of the parr but this is
not apparent in the growth rates of the resident parr. It is apparent in the growth

and behaviour of the fish that are migrating from the population.
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9.2.2 Aspects of Migration

The model was adapted to predict several aspects of the population, in particular
the lengths of the smolts. It was unable to make accurate predictions, with the
greatest deviations from the mean error occurring during periods proceeding low
EOD (see Figs. 1.1 and 6.15). During these periods the lengths were under

predicted, which meant that ¢, was too low.

What may be happening is that an excess of good conditions is reflected by an
increase in the mean lengths of the migrants rather than the residents. Larger parr
will migrate whilst those that remain are in a relatively similar size to those who
will remain during years when densities are higher. Therefore, the characteristics
of the population that stays are more likely to be dictated by the characteristics

of the stream rather than the social effects.

Alternatively, this homogeneity of the residents may be a reflection of the sam-
pling procedure that may not have given an accurate description of the size
composition of the stream. The larger parr may not have been sampled within
the habitats on which the model is based (types T; and T74) or the larger parr
may have a different habitat preference (see Table 2.4).

The smolting thresholds decrease as altitude increases for both the two and three
year old smolts. This may be a result of the parr attaining a suitable state in
which to smolt, but carrying on growing until the time is right i.e. parr will only

smolt at certain times of the year, irrespective of size.

The fit of the model to the resident parr shows that the smolt threshold weights
increase with age. This implies that there may be a trade-off between growth
rate and age of smolting. This may be of the form of the increased chance of
survival given a larger size against the risk of mortality when spending an extra

year in freshwater.

9.2.3 Precocious Parr
The behaviour of the precocious parr (PP) provides an important component to

the dynamics of the population. Little is known of their movement within the

stream except that during autumn they will move in search of spawning females.
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In the Girnock, when low numbers of adult females were spawning above the trap,
the proportions of PP migrating compared to the whole population of migrants
increases. This is often followed in the spring by relatively low mean lengths of

the spring migrants.

The growth model groups the PP and the non-precocious parr (NPP) together
during the autumn migration as their lengths are indistinguishable from each
other. The same cannot be said of the weights, as it is likely that they will
have a different weight-length relationship as they allocate resources towards

reproduction.

The criterion that enables NPP to become PP is not known and the model has
no specific mechanism to predict the dynamics of the PP and some PP may never
migrate. To predict when they will become precocious and the effect that this
will have on their growth and the timing of their migration requires more detailed

data regarding the condition of the PP, both during and before early maturation.

9.3 Adaptation and Improvements to the Model

9.3.1 Spring Growth

The model is unable to produce acceptable predictions for the change in weight
observed during spring, in the 14+ and 2+ parr. This indicated that although
the parr may have been growing at their maximum rate when the model was
parameterised, this was not necessarily the case throughout the year. The annual
values of ¢, are not an indication of the difference between optimal and wild
growth, but an index of average annual growth relative to the maximum growth

rate attained over the period of the experiments.

These under predictions may be due to a behavioural or physiological mechanism
that increases growth rates, such as a change in the appetite of the parr. The
starvation response functions included in the model are insufficient to account
the relatively large increase in the growth rate. In addition, the observed growth
spurt occurs when the water temperature is low and the model predicts that the
parr are actually losing weight. Accounting for these changes is likely to require a
structural change in the main part of the CGM, or the UFR model. This would
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require additional data and knowledge of the physiological state of the parr, such
as why the parr increases its growth so drastically, and the environmental and

physical cues that trigger this response.

One variable that increases during spring will be the gut contents of the parr.
After the winter during which feeding and digestion rates are low, the parr will
have a lower gut content than at any other time of the year. As the water warms
and their consumption rate increases, a larger proportion of observed weight
will be due to gut contents. Accurate data regarding seasonal changes in the gut

contents will greatly enhance the predictions and little data exist for wild salmon.

9.3.2 Greater Environment Dependence

Many environmental variables that have not been included in the model and
the introduction of additional variables may unnecessarily complicate the model.
There are some important changes that can be made which will improve the

predictions of the CG M, without a large addition to the complexity of the model.

Temperature is the most important driving variable in the model and is currently
calculated using linear interpolation between the average monthly temperatures.
This temperature resolution may be too low, particularly during the spring and
autumn periods when the parr are their most sensitive to temperature changes.
This may partially explain why spring growth is under predicted, as a few low
temperatures may give an unrepresentative view of the actual changes in tem-

perature, and hence predicted growth, as experienced by the parr.

Parr from different altitudes will have different growth rates, which is likely to
be due to water temperature being dependent on altitude. As it is impractical to
measure water temperature at all latitudes, local variations can be calculated with
an altitude-temperature relationship. The model can then calculate the growth
rates in different parts of the stream, and if the densities within the stream are
known, then predictions of the weight-frequency distribution of the stream can

be made.

The UFR model, which aims to replace ¢(t), is a measure of the consumption
rate of the parr. It requires a large amount of parameterisation, as sufficient data

does not exist at present for it to be parameterised, and those that it lacks are
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discussed below.

In order for the UFR model to be of any practical use, the main factor that is
required is the annual size-frequency distribution of the invertebrate drift within
the stream. Ideally, this would be specific to the microhabitat of the parr, and
form of a separate model of invertebrate drift abundance. Although much litera-
ture does exist regarding the composition and size of benthic invertebrates, this
will be different from the composition in the water column that is available to
the salmon. However, if a relationship could be derived between the two, then
the required predictions could be made. This would need new data measuring

the drift available to the salmon in both the water column and the substrate.

The flow rates will determine how much food passes through the salmons territory,
and we have so far assumed the food available is proportional to water velocity.
The water velocity is not uniform with depth, with water current decreasing with
distance from the surface. Its importance will depend upon the magnitude of the

differences that exist.

Flow rates also affect the behaviour of the invertebrates in the stream, and in-
creased flow rates will not necessarily result in increased food availability. There-
fore, the quantity of invertebrate drift available to the salmon will be dependent

on the flow rates and must be included in any predictions.

The UFR model estimates the consumption rate of the parr. In the simulations
produced in chapter 8, a large number of unknown parameters were condensed
into a single term which was then derived by fitting the model to the data. One of
these terms was the assimilation efficiency. This term may be defined as the costs
involved in the capture and digestion of the food, which has yet to be estimated.
This may depend on the water temperature and the size of the food particle

captured by the parr but would be best derived from experimentation.

More details of the environment of the parr will allow more detail into the model
and allow it to be applied more widely. Parr have different preferences to different
habitat types, and migrate between habitat types at different ages as immature
juveniles. Water velocity and substrate are important in habitat selection and
therefore the microhabitat available and its quantity may be an important factor,
particularly in regards to the quantity and quality of food passing through these
habitats.
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9.3.3 Social vs. Physical Effects on Growth

The model has so far been based on driving variables based with the physical
environment of the parr. There are large affects on growth, which are due to
the social environment of the fish, which can be described as density dependent
effects (Huntingford et al. (1998), Steingrimsson and Grant (1999)). Social
effects may work on different scales, from density dependent mortality associated
with dispersion from the redd and competition for territory to the movements of

precocious parr and the autumn and spring migrations.

Ova deposition has been seen to affect the size of the smolts produced in the
stream yet there are no mechanisms with the model to account for these affects.
It is not known if size selective mortality occurs, although the larger and more
dominant juveniles will secure the best territories, and force other parr to adopt
an alternative growth strategy that may extend its time to migration. If size
selective mortality is occurring, then fitting the model to the mean weights of
each age-class is an inappropriate method of predicting the weight change of the

resident parr.

A limiting factor on the capacity of a stream is the quantity and quality of
available habitat, and its accessibility to the parr during different times of its
juvenile life. A method of including limited territory into the model would be
to produce a map of the stream based on the potential for growth in different
sites and the probability of them being occupied. This would allow the dispersion
from the redd to be estimated, and as the parr increased in size, this map would
change as more of the stream became accessible and as the habitat requirements
of the parr changes. Changes would also occur as a result of emigration from the
resident population. The growth rates of the parr in different parts of the stream
could then be calculated to determine the overall weight-frequency distribution

of the parr in that part of the stream as well a estimating mortality rates.

In order to do this would require a detailed map of the habitat within the stream
as well as knowledge of which were preferred by the parr. In order to parameterise

it would require data regarding the densities of the parr in different habitat types.

When predicting the size of the migrants, it was assumed that on 1 April all the

resident parr had a probability of smolting that increased with size. An additional
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assumption was that those parr that migrated the previous autumn would have
been part of the population that migrated in spring. It therefore assumed that the
growth rates of the spring and autumn migrants were the same. It is not known if
this is the case, however, when the autumn migrants are large, the following group
of spring migrants are relatively small (see Figs. 2.9 and 2.10). The relationship
between the autumn and spring migrants is likely to be a complex one and further
electro-fishing data from individual marked parr is required to determine whether

the spring and autumn migrants should be predicted separately.

9.3.4 Extrapolation to the Growth of Fry

The parameters for the model have been derived mainly from data regarding
the parr and the growth trajectories produced by the model have attempted to
predict growth from birth until smolting. This has meant that there has been
a degree of extrapolation and the assumption the parameters will scale with the
size of the parr. The salmon are isomorphic during the parr stage of their lives

but this cannot be said of either the smolt stage or the fry stage.

Predictions regarding smolts have been made using the length rather than weight
so any changes in shape (i.e. the condition of the fish) will not decrease the
length. However the weights of the fry are predicted and the parameters may not

be applicable at this stage of the juveniles life.

The model was used to predict the mean weights of populations in the Chapter
8 using the CGM. It was seen that even when the uptake rate was set at U,,uq,
the model under predicted the growth rates when the salmon were approximately
three to five months old. Two reason for these discrepancies are either the allo-
metric relationships are invalid for the fry or there are high rates of size selective

mortality within the population during this period.

Further data would be required to test if the same relationships will hold for
the fry and the parr, and size selective mortality within the population will be

discussed in the next subsection.
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9.3.5 Modelling Mortality Rates

An important aspect of the population dynamics that has yet to be examined is
the mortality rates within the cohorts. The model is capable of predicting the
proportions of parr migrating at each age-class from the whole cohort, but mor-
tality rates must be known if these predictions are to be of any use in predicting

number of parr smolting.

It has been implicitly assumed that mortality rates are not size selective and that
the mean weight of the 0+ parr will transform to the mean weight of the 1+
given the assumptions in the model. In the event of size selective mortality rates,
this will not be the case. If the mortality rates are higher for the smaller fish,
then the mean weights will be higher than expected. This has been observed to
be the case when predicting the mean weights of the 0+ parr.

It is widely accepted that there is high density dependent mortality during and
after dispersion from the redd. For the model to be able to attempt to predict
numbers of fish migrating each year requires the addition of a mortality model.
Whether this should be size selective will depend on whether data can be gathered

to show this.

9.3.6 Modelling The Condition of the Parr

During the year, the condition of the juveniles change, such as during the winter
when the consumption rate decreases and they experience weight loss. Also, in
the spring, when they begin to feed, they will experience an apparent weight gain

due to increased gut contents.

The majority of the data that has been used has been in the form of lengths
converted into weights using a weight-length relationship. This relationship will
change with time, and would be necessary to predict the fish lengths at any time
during the year. This would enable the model to be fitted to the autumn migrants

as well as the spring smolts.

Considering the condition of the parr at different times of the year may offer
insights into whether the males will become PP (as this results in a change in

condition as resources are diverted to the reproductive organs). This may also
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indicate whether a parr will migrate, as condition changes during smolting.

9.4 Using the Model as a Management Tool

The ultimate aim of this thesis was too develop a model that could be developed
into a tool to aid fisheries management and enhance salmon production. Below
are a series of methods in which the model can be used to assess the suitabil-
ity of streams and optimise production by examining the local populations and

environment.

9.4.1 Habitat Assessment

The environment in which a salmon grows has a very large effect on the growth
rate of the parr. The physical environment may be defined by the substrate type
and the current or by the altitude. Either way, growth will be affected, and
during the juvenile stage of the salmons life, different habitats may be preferable

to others.

The model was fitted to data from different altitudes and it was found that ¢(t)
increased with altitude which was done by using different temperatures. The
values of ¢(t) can be used as a measure of the quality of the river, and therefore
the likely changes in the sizes of the salmon given changes in temperature can
be assessed. The implications for this is that in the event of global warming and
changes in the long term mean monthly temperatures, as have been observed
in the Girnock, changes in the expected sizes of the fish, which will determine

migration patterns, can be estimated.

The model can be fitted to data from different rivers and the values of ¢(t)
used as a relative index of habitat quality. When fitted to different altitudes,
it was found that ¢(t) increased with altitude and the predictions became less
accurate as altitude decreased. These values indicated that although the parr at
higher altitudes grew slower and migrated at a smaller weight, this was due to
temperature and the quality of habitat was better than down stream. Comparing
o(t) between rivers will indicate where that may be spare capacity (by the high

values of ¢(t)) in the river and the more suitable environment in which to stock
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fish.

The model can be applied to rivers where there are no fish to determine suitability.
An assumed minimum smolt length will need to be determined, such that if the
parr do not reach that weight in a certain time then the river is not viable. The
model can then be fitted to these weights (given that temperature is known) and
if ¢(t) is too low, then turnover is likely to be low. High values will lead to fish

migrating sooner and may mean that the river is more suitable to be stocked.

9.4.2 Optimising Production

The stocking of rivers with artificially reared stock is an important aspect of
fisheries management and one that has received much attention (Verspoor and
deLeaniz (1997), Largiader et al. (1996), Philippart et al. (1994)). There is
much uncertainty as to knowing what the optimal stocking strategy should be to
maximise the number of smolts given the costs that are involved. It is not ac-
cepted that stocking beyond the rivers estimated carrying capacity will maximise
production as high densities may reduce growth rates so severely as to make the

stocking procedure uneconomic.

The growth model has shown that variation in ova deposition will have little if
no effect on the resident population, but will produce larger smolts. This means
that although the population as a whole will grow faster, once the migrants have
left, the remaining population will be of a similar size to those that would remain

in years when ova deposition is higher.

The conclusions that can be drawn from this are that the average age of the
migrants will be lower when ova deposition is lower. However, this relationship
cannot be quantified, as accurate numbers of emigrants from the population in
the Girnock is unknown. The proportion of the population migrating at each age-
class cannot be estimated until the estimated mortality rates are derived. This
would require reliable estimates of the numbers of autumn as well as spring mi-
grants from the burn. Without this, the model can not determine how increasing

ova deposition changes the number of smolts.

The model does make a considerable contribution to understanding the problem

of optimal stocking densities. It has shown that once the effects of temperature
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have been removed, the mean weights of the parr that stay in the burn remains
steady in spite of large fluctuation in the ova deposition. The effect of density on
the growth rates of the parr is only seen in the changes in the lengths of the smolts.
During periods when ova deposition is low, followed by years when it is high,
the extra capacity may be accounted for by the parr from other cohorts. This
effectively means that because of the overlapping age-classes, cohort which are
more populous are able to take advantage of the spaces left by the less populous
cohorts. The result of which means that the benefits to the resident population

born in a year of low ova deposition are small.

It is possible that the benefits of a year when ova deposition is low is gained
during the period between the summer surveys (i.e. autumn and spring) which
allow a proportion of the population to migrate earlier as relatively large smolts.
This aspect of the growth has not been included in the model (and the model has
been seen to predict smolt lengths badly) and is a period for which we have little
data. However this analysis appear to indicate that the capacity of the river has
yet to be exceeded, and for capacity to be exceeded may require several years of

consistently high levels of ova deposition.

9.4.3 DeeCAMP GIS

One method in which the environment of the river Dee catchment is studied and
managed is through the use of the Dee CAtchment Management Planning Geo-
graphical Information System (DeeCAMP GIS). This is funded by a consortium
of interested parties, such as the Grampian Regional Council Water Services,
Scottish Natural Heritage, the Scottish Environmental Protection Agency and
the Dee Salmon Fishing Improvement Association and is based at the Institute
of Terrestrial Ecology (ITE) Banchory. One of the aims of DeeCAMP was to
identify areas of the river which were accessible to salmon and suitable for rear-

ing viable salmon populations.

DeeCAMP GIS contains many environmental variables which can be used to
assess the suitability of parts of the stream for salmon rearing. Gradients of
rivers can be calculated to determine which parts of the streams are accessible
to the salmon. The inaccessible areas could be made accessible through the

introduction of fish ladders or the removal of impassable barriers. This would
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only be done if it were thought that a viable population could exist above the

barrier.

This requires a method of assessing whether the local environment was suitable.
One such method could be by stocking the parts of the burn with trial populations
and by conducting surveys of the stream. However, due to the large number
of potential sites, these methods are prohibitively expensive, and a method is

required to reduce the number of potential sites.

Given the data which are contained within the DeeCAMP GIS, the model can
be adapted to be used as a tool to predict growth rates and estimate emigration
times at the potential sites. This would enable further investigations to be con-
ducted and allow stocking policies to be evaluated. This would then lead to the
introduction, or reintroduction, of salmon to more parts of the river, and hence

increase the overall production of the Dee.

9.5 Conclusions

This thesis has seen the development of an individual based model to predict the
growth rates of salmon parr. The model has been applied to a wide range of
data in a number of different forms and scenarios, each of which has lead to a
greater understanding of the model and improvements to be made. It has then
been extended to predict wider aspects of the population. Improvements to the
model and applications have been given in the final chapter that lead us towards

achieving the objective of enhancing salmon production in the river Dee.

The main deterrent to further progress with the thesis has been the lack of data
on an individual level, both concerning the growth rates of individuals and mea-
surements of the food that they consume. This situation has been realised, and
with the beginning of the data set on individuals in Chapter 5 and plans to mon-
itor invertebrates within the stream, promises to explain much of the life of the

individuals.

The examination of the selection of, and competition for, microhabitat by the
juveniles is also an area of great importance as it can have great implications for

the parrs future life history. Prime locations will lead to increased growth rates
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and earlier opportunities to smolt or become precocious parr. Therefore, events

from dispersion of the redd will have a great bearing on the fate of the parr.

The future of salmon research will lie in the small scale examination of their life,
as it is only by piecing together aspects from the individuals will the behaviour
of the population be realised. The fascinating complexity and variety which the
salmon exhibit, and the complexity of their population dynamics will ensure that
they will remain the subject of much interest and research across different fields

of science for many years to come.
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Appendix A

The Downhill Method of
Optimisation

The downhill methods of optimisation (DSO) is a procedure whereby the error
between a function and the data is minimised by altering parameters of the
function, and was developed by Nelder and Mead (1965). The DSO algorithm
that will be used is from Press et al (1989) and is able to parameterise models in

the following way.

Estimates of each parameter, along with a step size are specified. The procedure
will then create a shape, the simplex, whose size and the corners are defined by
the parameters and the step size. The simplex will have N +1 dimensions, where
N is the number of parameters to be found. The error value is then derived at
each of the corners, which is based on the output from the model and the data.
Once the corner with the lowest error value has been determined, the simplex
undergoes a transformation about a corner, such as a reflection, expansion or
contraction, and a new set of errors are derived from the new set of corners.
This process is repeated until the change in the error is less than a specified

convergence criterion.

In effect, what the simplex is doing is moving down the error surface, and then
moving across it to its lowest point. Ideally, the lowest point would be the global

minimum, which would require a fairly smooth error surface.
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Appendix B

Derivation of the Type 11
Functional Response

A population of N individuals can be divided into two groups during bouts of
foraging. Those that are searching for prey, Ng, or handling prey, Ny. The
average time to handle one biomass of food shall be defined as 75,. If we let the

rate at which food is found whilst foraging be ®, then we can use the expression

dNs Ny
—— = — — ®Ng. B.1
dt Th o ( )
This is constant when Ng = 7,® Ng and because Ng=/N-Ng we can derive N in

terms of Ng,

The uptake for the population is Uy = ®Ng therefore for an individual it is
U = ®Ng/N and by substitution gives the uptake per individual as

0
N 1—|—7’h(I)

(B.3)

Upnaz Will occur when all the time spent is handling so the most food that can
be handled per unit time is 1/7,. We shall define U4, = 1/7,. Therefore if we
divide through by U,,4,/® we get our desired form,

1
U=Upoo | — 10— |- B.4
(1 + —%w) (B4)
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Appendix C

Proof that Ap(L) will scale with
15

As the length of the salmon increases, both the maximum attack distance and
the ranges of particle sizes that are available will increase in absolute terms. If
we convert our definition of A (L) into absolute units of length (x c¢m) this can
shown. First we note that » = z/L and v = p/L, then from our definition of

D(p, L) in section 8.2.2. we covert it into absolute units of p and L.

D(y) = a1+ ayy+azy? (C.1)
2
D(p,L) = a1+ ag% + a3 (%) (C.2)

for D(p, L).). To find the probability of attack over all r we must integrate

A(p. L) = / LLDO(p’L) \/ - (%)mm(m. (C.3)

This can be rewritten as

LD(p,L) 72
As(p, L) = /x\:O 1— <W>ﬂ—xdx, (C4)

which integrates to

rL2D?(p, L
As(p, L) % (C.5)
L? 2
_ %(al + a2% + ag (%) )2, (C.6)
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To determine A; we must integrate across 7.

’YmazL
ait) = [ AL (©7)
p:"/minl/
'Ymaa:L D2 L
= L2/ wdp, (C.8)
p:7minL 3
’YmamL T 2 2
p p
— J2 - =z (-) d C.9
/p%mL?) <a1+a2L+a3 I ) D, (C.9)
7.‘.L2 "/mazL 2 2
=3, (““2“1“2%”“1“3 (7) +a (%)
3 4
v 2w (5) 4 (5)" o (©.10)

For simplicity we shall redefine

a = §a1 (Cl].)
T
b = 52@1@2 (C12)
c = g(2a1a3 + a3) (C.13)
d = g2a2a3 (C14)
e = gag (C.15)
Thus
Ymaz L 2 3 4
Apr(L) = L? b2 (3) d (3) (3) C.16
r(L) /p%mLaJr 7 telg) tidlg) Telz (C.16)
2 3 4 5 'Ymaa:L
_ 72 p p p p
= L [ap+bi+63L2+d4L3+e5L4] ; (C.17)
P="Ymin
b c
= L3(a(,)/maw - P)/mm) + 5(77%1(1:1: - fygzm) + 5(71?;10,1 - Vgun)
d e
+ Z(’yﬁww - ’yﬁun) + g(’ygww - f)/gzm)) (C18)
Thus, we shall redefine
_ b 2 € 3 3
& = a’(f)/maa: - f)/mm) + E(Vmaw - ’ymzn) + g(f)/maa: - f)/mm)
d e
+ Z(’yﬁww - ’yﬁun) + S(f)/gzaa: - f)/gzm) (Clg)

Therefore Ar(L) = aL?, where o = 5.479.
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Appendix D

Parameters for the UFR Model

There are a number of parameters that are necessary in order to implement the

URF model. These are outlined and estimated below.

The handling time, 7(L)

A lower estimate for 7(L) can be derived from a study by Stradmeyer and Thorpe
(1987a) who observed 25 captures in a 15 minute foraging bout for a wild salmon
in a stream with high food density (this is the higher of two estimates given,
the other from a stream having lower food density). Thus 7(L) = 36 second
per attempts. The mean length of the observed fish is known but due to only
having one point we are unable to deduce the relationship between 7(L) and L.
However, this will include the ingestion of non-nutritional foods such as exuviae.
This has been observed in the stomach contents of coho salmon to be up to 35%
of the items (Mundie 1969).

The water velocity, v

The surface current velocities are given in Egglishaw and Shackley (1977) of the
different sections of the Shelligan Burn studied, which can be used to simulate
the data set from Gardiner and Geddes (1980).

Total time spent foraging per day

Salmon may have more than one feeding period, dependent on temperature or
photoperiod, at dusk or/and dawn, which correspond to the daylight peak activity
levels of the invertebrates in the drift. Between these periods, the salmon are able
to digest their food. They are thought to spend between 10-20% of their time
foraging (Keely and Grant 1995).
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Salmon Length-Weight relationship

We are examining two methods of finding the uptake. One is in the CGM, which
has units of salmon weight the other is the functional response uptake model,
which is in terms of salmon length. To make these models interchangeable we
require a weight-length relationship. As the structural weight is being used as a
surrogate for length, it will be more convenient to have a structural weight-length
relationship. To derive this, corresponding measurements of total wet-weight and
length were used. These points were taken when the fish were in their most rapid
periods of growth and assumed to healthy. Using the ideal reserve to structural
weight ratio, we were able to deduce the structural wet-weight at these points.
This was then fitted with the model

S = a,L". (D.1)

The parameters derived from fitting equation (D.1) to the data from Gardiner
and Geddes (1980) are:

For Structural Wet Weight (g), the residual sum of squares is 0.00272 and the
parameters are a; = 0.0170 and by, = 2.425 from five observations.

For Structural Carbon Weight (mgC), the residual sum of squares is 61.429 and

the parameters are a, = 2.547 and by = 2.425 from five observations.
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