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Abstra
tCat
hes of Atlanti
 salmon returning to S
ottish rivers have de
lined steadilysin
e the 1960's and it is highly likely that spawning sto
ks in some lo
ationsare now marginal in their 
apa
ity to replenish juvenile numbers. One method ofenhan
ing salmon produ
tion is to sto
k rivers with ova or fry in order to in
reasethe number of juveniles emigrating. The timing, lo
ation and s
ale of sto
king islikely to a�e
t the size and age of the emigrants, so it is ne
essary to be able topredi
t growth rates in order to develop an eÆ
ient sto
king strategy.A fun
tional growth model for Atlanti
 salmon parr is developed and �tted toele
tro-�shing data from the Girno
k Burn, S
otland. A �tting fun
tion, �(t),is used to estimate the quality of the lo
al environment between years. Furtheradaptations enable the model to predi
t the mean weights, and their variation,for the di�erent age-
lasses of the resident population. It also predi
ts the meanlengths, and their variation, for the migrants from di�erent age-
lasses, and theproportion of ea
h 
ohort that migrates ea
h year.�(t) is derived for di�erent parts of the Girno
k Burn and indi
ates that, afterthe e�e
ts of temperature on growth have been removed, the quality of habitatavailable for juvenile salmon growth in
reases with altitude. A model to esti-mate 
onsumption rates is also developed and integrated into the growth model,allowing the seasonal maximum and minimum feeding periods of the parr to bedetermined.The model 
an be used as a tool for habitat assessment and to develop optimalsto
king strategies, and is part of a larger proje
t to enhan
e salmon produ
tionin S
otland. The appli
ations of this study to the 
onservation and managementof wild Atlanti
 salmon sto
ks is dis
ussed.
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Chapter 1General Introdu
tion
\For many years I have s
ar
ely done anything else either oÆ
ially orprivately, ex
ept to attend to and 
arefully wat
h the interests of theKing of Fish, the great Salmo salar."So wrote Bu
k�eld (1880), a sentiment e
hoed by Jones (1959) many years later.Their fas
ination with the Atlanti
 salmon is one shared with many, as the salmonis a spe
ies that has managed to 
apture the publi
 imagination. This is partly be-
ause of the great variety they exhibit during their life, o

upying several e
osys-tems and embarking on migrations whi
h may be thousands of kilometres long,before returning to their natal rivers to spawn. They have also been hunted forsport for 
enturies, and as the number of salmon �shing rivers de
reases, has ledto the sport be
oming more ex
lusive and of great e
onomi
 value to the regionswhi
h they still inhabit (Anon. 1997).Salmon have always been an important sour
e of food, and the last 30 years hasseen the growth of large s
ale salmon aqua
ulture, whi
h has 
oin
ided with aredu
tion in the 
ommer
ial �shing of wild salmon, in parti
ular the o�-shore�sheries in the North Atlanti
 near Greenland and the Faeroe Island (Parrishet al. 1998). Wild Atlanti
 salmon are still 
onsidered a deli
a
y, but therehave been further and more re
ent redu
tions in exploitation rates by 
oastaland freshwater �sheries. This has been in response to global de
lines in the wildAtlanti
 salmon population (Gross 1998).

1



1.1 Life History of the Atlanti
 SalmonAtlanti
 salmon originally o

urred in all the 
ountries whose rivers 
owed intothe North Atlanti
 O
ean and the Balti
 Sea (Mills 1989). Now, however, thepopulations in some of Europe's major rivers, su
h as those along the northern
oast of 
ontinental Europe from Poland to Fran
e, and in southern England,have disappeared (Parrish et al. 1998). They are still to be found in Europefrom as far north as Norway, Finland and Russia to as far south as Portugaland Spain, and in North Ameri
a from Greenland and Ar
ti
 Canada to NewEngland in the U.S.A. (Folt et al. 1998).The Atlanti
 salmon is an anadromous spe
ies, whi
h means it breeds and spendsthe juvenile stages of its life in freshwater but migrates to the sea for part its adultlife. There are ex
eptions to this general rule, and several nonanadromous land-lo
ked subspe
ies of salmon are known to exist (e.g. S. salar sebago). For thosethat do migrate to sea, salmon from both sides of the Atlanti
 
onverge to similarfeeding grounds in the North Atlanti
, ex
ept for those from the Balti
 rivers,whi
h tend to feed in the Balti
 Sea and East Atlanti
 (Carlin 1969). Salmongenerally spend one or two (rarely three or four) years at sea before returningto freshwater to spawn (Hut
hings and Jones 1998). Those that return after onefull year at sea are 
alled grilse, those that return after more than one year are
alled multi-sea-winter (MSW) salmon.Atlanti
 salmon possess a well developed homing ability enabling many of sur-viving adults to return to their natal rivers to spawn (Mills 1989), whi
h willusually o

ur during autumn, the timing likely to be temperature dependent(Webb and M
lay (1996), Heggberget (1988)). During spawning, the adult fe-males will 
onstru
t a nest into whi
h she will lay her eggs, 
alled a redd. Adultmales 
ompete for the best position along side the females in order to fertilise theeggs (Jones 1959). Also, sexually mature male parr 
ompete amongst themselves,and o

asionally with the adult males, to fertilise ova (Fleming 1996). On
e fer-tilisation has taken pla
e, the female 
overs the redd with gravel, and may go onto 
onstru
t another redd (Fleming et al. 1997). Most adults die shortly afterspawning, (on average 89% of the total, and 78% of the females and 96% of themales (Fleming 1998)), but the survivors, known as kelts, return to the sea, andmay spawn again. 2



The following spring, the eggs hat
h and the young salmon, 
alled the alevins,are born with a yolk sa
 whi
h they live o� whilst in the redd (Gorodilov 1996).On
e this is depleted they leave to redd as fry. The rates of developments ofthe eggs and the time of hat
hing and emergen
e from the redd are thought tobe dependent on temperature (Egglishaw and Sha
kley (1977), Brannas (1986),Jensen et al. (1989), Crisp (1981)).The fry disperse from the redd and seek to establish territories, whi
h they willdefend against intruders. During this time, 
ompetition is severe, and the mor-tality rates at their highest (Egglishaw and Sha
kley 1977), where death mayo

ur through predation or starvation (Gardiner and Geddes 1980). When thefry are about 6.5-7.0 
m in length, they start to develop dark blot
hes along theirsides, known as parr marks, and are now de�ned as parr (Mills 1989).It is within the defended territories that parr and fry 
apture and 
onsume theirfood (Kalleberg (1958), Keenleyside and Yamamoto (1962)). The majority oftheir diet 
onsists of invertebrates 
aptured from the water 
olumn (Allen (1941a),Egglishaw (1967)). They are also able to 
apture invertebrates of terrestrialorigin whi
h fall onto the water surfa
e, as well as being able to forage in thesubstrate for food, (Stradmeyer and Thorpe (1987a), Wankowski and Thorpe(1979a)) and the larger parr have been known to take fry and ova (Egglishaw1967). Rapid growth o

urs during this period, typi
ally when temperaturesex
eed 6-7oC (Allen (1940), Allen (1941b), Allen (1969), Gardiner and Geddes(1980), Cunjak (1988), Elliott (1991)). This period of growth, whi
h may lastfrom spring to autumn depending on altitude and latitude, is 
alled the growingseason.Egglishaw and Sha
kley (1977) found an inverse relationship between salmon frydensity and their lengths at the end of the growing season, whilst Prouzet (1978)found that the growth of fry was density dependent for one stream with a steepgradient, but in another stream with a lower gradient, the biomass was regulatedby emigration. However, in the Mirami
hi River, New Brunswi
k, growth ofsalmon fry was inversely related to population density, but growth of the parrwas not (Randall (1982), Randall and Paim (1982))The juvenile salmon live along side other �sh spe
ies in most rivers, su
h browntrout (Salmo trutta) and brook trout (Savelinus fontinalisMit
hill). Studies look-3



ing at the level of 
ompetition between juvenile wild salmon and brook trout ob-served depression in the growth rates of the salmon (Ma
Crimmon et al. (1983),Gibson and Di
kson (1984)). These studies were 
ondu
ted in habitats whi
hare preferential to brook trout, and the authors 
on
luded that in the preferredsalmon habit, intraspe
i�
 
ompetition within year 
lasses of salmon is moresevere than the interspe
�
 
ompetition from the brook trout. Competition be-tween salmon and brown trout was looked at by Gibson and Cunjak (1986) whofound that the two spe
ies were spatially segregated, and they 
on
luded thatthe two spe
ies were e
ologi
ally 
ompatible and 
ompetition appeared to beminimised by habitat segregation.As winter approa
hes, the juveniles appear to undergo a de
rease in feedingmotivation, and feeding a
tivity is redu
ed or stops (Met
alfe et al. (1986),Met
alfe et al. (1988)). During this time their physiologi
al state 
hanges (Bergand Bremset (1998), Sha
kley et al. (1994)) whi
h 
oin
ides with the youngsalmon 
hanging their habitat. They leave the relatively shallow fast 
owingri�es preferring to spend long periods beneath the substrate (Rimmer et al.(1983), Gibson (1978)), whi
h lasts until the water be
omes warmer the followingspring and they emerge to begin feeding again.It is possible for both male and female anadromous salmon to be
ome sexu-ally mature whilst they are still parr. This is rare for females, (Gibson (1983),Youngson and Hay (1996)) and may be due to the bene�ts (e.g. pre-reprodu
tivesurvival) not being great enough to outweigh the 
osts (e.g. redu
ed fe
undityand 
ompetitive ability) (Fleming 1998). However, early maturation of males is
ommon, and in some populations, up to 100% of males have been estimated tohave matured early as parr during their life history (Fleming 1998). There are
ost involved to the mature male parr (often 
alled pre
o
ious parr) in terms ofgrowth retardation (Myers et al. 1986) and survival (Myers (1984), Berglundet al. (1992)) but a large proportion of the eggs may get fertilised by male parr,estimated at about 11% by Jordan and Youngson (1992) for the Girno
k Burnin S
otland.During the autumn there are large movements of parr (Calderwood 1906), manyof whi
h may be pre
o
ious males (Pye�n
h and Mills 1963), whi
h are in sear
hof adult females (Bu
k and Youngson 1982). It has also been suggested that theautumn migrants may be the forerunners of the following spring migration (Mills4



1989). At this time, they have yet to undergo the physiologi
al adaptation toseawater, 
alled smolting, and maintain their parr-like appearan
e.Smolting o

urs during the spring, after the parr have spent a numbers of yearsin freshwater, the time to smolting generally varies with the latitude from aslittle as 1 year for males in Fran
e (Bagliniere and Maisse 1985) to up to 10 yearsfor some anadromous salmon in the Ungava river of Northern Quebe
 (Powers(1969), Robitaille et al. (1986)). In S
otland, parr tend to smolt after betweentwo and four years in freshwater (Bu
k and Youngson 1982). Symons (1979)points out that, with the ex
eption of the Ungava rivers, average smolt age ofany parti
ular river 
an be estimated from the number of days ea
h year on whi
hwater temperature rea
hes or ex
eeds 7oC. On
e they have left the rivers, theymigrate to their feeding grounds as post-smolts, and begin the marine phase ofthe life.1.2 The Status of Wild Salmon in S
otlandThe wild Atlanti
 salmon of S
otland are an important natural resour
e, bothe
onomi
ally and environmentally. Although salmon are now extensively farmedfor food on the West Coast of S
otland (more than 94% of worldwide Atlanti
salmon population has been estimated to be in aqua
ulture (Gross 1998)), thereare still 
ommer
ial �sheries for wild salmon. However, the main sour
e of revenuefor wild salmon is through sport. In 1995, it was estimated that salmon anglingon the River Dee in S
otland 
ontributed between $5 million and $6 million ayear to the lo
al e
onomy of the Grampian region (Anon. 1997).The salmon also form an important part of the e
osystem of S
otland as they arepreyed upon by a number of animals during all stages of their lives. During thejuvenile phase, older parr and brown trout will eat the fry, and the salmon parrand smolts may be eaten by burbot (Lota lota) and the pike (Esox lu
ius) (Mills(1964), Mills (1989)). As parr and smolts, they are prey to �sh eating birds, su
has sawbill du
ks (Mergus merganser and M. serrator) and the 
ormorant (Pha-la
ro
orax 
arbo) (Mills (1962), Mills (1965), Bla
kwell et al. (1997), Felthamand Ma
Lean (1996), Kennedy and Greer (1988)). They have been found in thestoma
hs of many marine �sh whilst at sea, (See Wheeler and Gardner (1974)),5



and as adults, they are eaten by the grey seal (Hali
hoerus grypus) and the 
om-mon seal (Pho
a vitulina) near estuaries (Rea (1960), Rea and Shearer (1965)).Further up stream, otters (Lutra lutra) are known to feed on the adult salmon(Carss et al. (1990), Hewson (1995)).Part of the MSW adult salmon population are 
alled springers. The springers aresalmon that have been at sea for at least two winters, but return to freshwaterin the spring, as opposed to autumn for the other MSW salmon. The springershave greater 
ommer
ial value, as they extend the �shing season, and is the grouppresently showing the greatest de
line in S
otland (Youngson 1994). The numberof females 
ounted in the Girno
k Burn, a tributary of the River Dee is shownin Fig. 1.1, where the adult population is dominated by springers. There is atpresent mu
h work being 
ondu
ted to identify the reasons for the de
line anddevelop management te
hniques to enhan
e to 
urrent salmon sto
ks.
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Figure 1.1: Number of adult females 
aught at the Girno
k burn from 1966 to1998. Data supplied by FFL.S
otland has a long history of salmon 
onservation, with legislation 
on
erningsalmon in S
otland dating ba
k to the 14th and 15th 
enturies, whi
h involvedprote
ting smolts. Other early legislation was intended to allow salmon a

essto spawning ground and prohibited to killing of �sh during the spawning season(Anon. 1997).The majority of management te
hniques are applied at the freshwater stages ofthe salmon life 
y
le. This is due to the marine phase being hard to manipulate,though exploitation at sea has been redu
ed with the 
losure of many deep sea�sheries in the North Atlanti
, angling organisation buying up deep sea �shing6



permits to prote
t wild sto
ks and international treaties aimed at redu
ing marineexploitation rates (Vigfusson and Ingolfsson 1993).The fate of the returning adults has been improved through attempts to in
reasethe proportion of the population likely to spawn. This may be through the
ontrol of the numbers of predators, su
h as mergansers (Elson 1962), (but thereis debate as to the e�e
tiveness and ethi
s of these measures (Davidson and Bielak1993)), and by restri
ting a
tivities of 
oastal and fresh water �sheries throughthe introdu
tion of quotas (May 1993). The removal of �sh through anglinghas attempted to be minimised by 
apture-release programs, whereby the anglerreleases some or all the salmon whi
h are 
aught (Walker and Walker (1991),Webb (1998)) and also the �shing season in some rivers have been redu
ed (Mills1993).Measures have also been taken to improve the habitat quality of spawning andnursery streams in the hope to improve survival rates and in
rease the 
arrying
apa
ity (Shearer 1993). The range of rivers available to salmon has been in-
reased by the 
onstru
tion of �sh ladders that allow the adults to migrate tootherwise ina

essible parts of the stream. They have been 
onstru
ted wheredams or other water works have impeded to upstream migration of the salmon(Skalski et al. (1996), Gowans et al. (1999)). Attempts to reintrodu
e salmonhave been made in rivers where they were on
e abundant, but have sin
e dis-appeared (M
keon and Stolte 1993). These disappearan
es may have been dueto pollution and the a
tivities of man, so the water quality has been improvedto levels suitable for salmon (Parrish et al. 1998). These methods are aimed atin
reasing the smolt output in the hope of in
reasing the numbers of returningadults.Many enhan
ement strategies involve sto
king rivers where populations have de-
lined below the estimated 
arrying 
apa
ities of the rivers. This may in
ludeplanting out ova or hat
hery reared fry into the rivers (Harris (1978), Kennedy(1988)). Studies have revealed that geneti
 di�eren
es exist between the pop-ulations of di�erent rivers, and among �sh living in di�erent parts of the sameriver system (Jordan et al. 1997). This may due to adaptation to a parti
ularenvironment and introdu
tion of the progeny from di�erent rivers may lower theoverall �tness of the �sh in that part of the river, with lower returned rates forthe sto
ked �sh than the native �sh (Gar
ia de Leaniz et al. 1989).7



EÆ
ient sto
king strategies maximise the smolt output from the numbers ofeggs or fry planted into the river. This requires an understanding of the sto
k-re
ruitment relationship. There is at present debate over the shape of the sto
k-re
ruitment 
urve with some studies suggesting that it is domed shaped (Crozierand Kennedy (1995), Gee et al. (1978)) as proposed by Ri
ker (1954), and oth-ers that it is asymptoti
 (Bu
k and Hay (1984), Jonsson et al. (1998)). Eitherway, both relationships imply that there is an optimal sto
king density giventhat there are limited resour
es. However, these relationships are of limited useas they do not take into a

ount 
hanging environmental 
onditions, whi
h willin
uen
e growth rate and when the parr will smolt.A su

essful sto
king strategy will then require knowledge of when members ofthe population will smolt. This will be determined by how the so
ial and physi
alenvironment of a river e�e
ts the growth rate of the parr. In order to predi
t thegrowth rates of the members of the population, a model for individual growth ofjuvenile parr is required.1.3 Aims and Obje
tivesThe life of the Atlanti
 salmon is very 
ompli
ated, with ea
h parr fa
ing dif-ferent 
hoi
es at di�erent stages of its life. These may be when to migrate, tobe
ome pre
o
ious or where to 
hoose a territory. These 
hoi
es, whi
h e�e
t thedynami
s of the population, invariably depend on the growth rate of the parr(Met
alfe et al. 1990). If we are to understand the dynami
s of the population,then we must �rst be able to understand the growth of the individuals in thepopulation.Growth of the parr will depend on the abioti
 as well as the bioti
 environment.It is also likely to depend on its intera
tions with 
onspe
i�
s within and between
ohorts (its so
ial environment). Thus, density may a�e
t growth through 
om-petition for limited resour
es su
h as territory spa
e. In the wild, su
h e�e
ts arehard to isolate due to the number of other e�e
ts on growth, su
h as temperatureand prey abundan
e. In order to examine growth in the so
ial environment, wemust �rst remove to the e�e
ts of the physi
al environment.An individual based growth model will be used to model the growth rate of the8



juvenile salmon. Whereas a sto
hasti
 model would have the advantage of al-lowing us to model the variability in the growth rate of the whole population,the most probable growth traje
tory is likely to follow that predi
ted by a deter-ministi
 model. This traje
tory would be the one of primary interest to us, aswe would be initially looking at the performan
e of an average individual in the
ohort. It will also be best suited to the type of data that is available, whi
h isexamined in Chapter 2.The model will be designed to predi
t growth rates in the wild of the residentpopulation using fa
tors in the physi
al environment as driving variables. It isalso intended to predi
t the dynami
s of the smolts from ea
h 
ohort. This willallow s
ope for the examination of the so
ial environment on the growth rate,whi
h 
an then be used as a management tool for sto
king rivers.1.4 Stru
ture of the ThesisThe Girno
k Burn, a tributary of the River Dee in S
otland, has been a monitor-ing site for salmon sin
e 1966. Histori
al data sets 
olle
ted there will form thebasis of the data that will be used in this thesis. Chapter 2 provides a des
riptionof the site and methodology, and some exploratory data analysis that will enableus to adopt the most appropriate strategy.A number of growth models exist in the literature and Chapter 3 
ontains areview of these models. A hybrid model is developed from two of these and isparameterised for Atlanti
 salmon reared at satiation in a tank environment.This model is adapted to predi
t the growth rates of wild salmon parr and amethod of �tting the model to the data is developed in Chapter 4. The sensitivityof the input variables on the �t of the model to the data is also examined.Additional data was 
olle
ted at the Girno
k Burn for individuals that weremarked from June 1998 until Mar
h 1999. In Chapter 5, the model was �ttedto this data to test two things. The �rst was whether the model 
ould a
tuallyreprodu
e the observed growth traje
tories of individual wild parr throughout theyear. The se
ond was whether �tting to the model to the weights of individualswas substantially di�erent to �tting to the mean weights of the population.9



Aspe
ts of smolting are in
luded into the growth model in Chapter 6, whi
henables to model to predi
t the weights of the resident parr and lengths of thesmolts. Other aspe
ts of the population are estimated, su
h as the variation ofthe parr weights and smolt lengths, and the proportions of smolts leaving ea
h
ohort at di�erent age-
lasses.The model was then �tted to additional data sets from the Girno
k Burn, inChapter 7. Derived estimates of the growth rates in di�erent parts of the Burnwere then 
ompared.A foraging model to estimate 
onsumption rates is derived in Chapter 8 and is�tted to data 
olle
ted from parr in di�erent streams. The model is �tted tothe data by assuming di�erent 
hara
teristi
s of the prey populations availableto the salmon, su
h as a temperature and seasonally dependent size-frequen
ydistribution of the prey.Chapter 9 
ontains a summary of the work with a des
ription of what this anal-ysis 
an tell us about the salmon population. Improvements to the model aresuggested and future work proposed whi
h would improve the model to make ita more e�e
tive tool for management.
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Chapter 2Data Analysis
2.1 Introdu
tionAtlanti
 salmon are widely distributed a
ross S
otland, among some 400 salmonrivers. Among salmon sport �shermen, these salmon rivers are amongst the mosthighly regarded in the world. Due to the physi
al lands
ape of S
otland, thelonger and more produ
tive rivers tend to be on the East Coast (Anon. 1997).The River Dee is one su
h river, whi
h is about 126km long, 
owing from theCairngorm Mountains to the North Sea at Aberdeen. It has 17 major tributariesand a 
at
hment area of approximately 2,100 km2 whi
h rises to an altitude ofapproximately 1200m (Maizels 1985). It has been des
ribed as perhaps havingthe greatest length of �rst-
lass salmon �shing in Britain (Ashley-Cooper 1987),and between 1952 and 1992 has yielded on average 39% of the total reportedS
ottish rod 
at
h of MSW salmon landed before April (DSFIA 1994).Produ
tion on the River Dee is extensively monitored (Shearer 1985), parti
ularlyat the Girno
k Burn, a tributary of the River Dee. This tributary has been keptfree from �shing and has been a monitoring site sin
e 1966, and is where manystudies have been 
ondu
ted (Bu
k and Youngson (1982), Youngson et al. (1983),Bu
k and Hay (1984), Hay (1987), Armstrong and West (1994), Youngson et al.(1994), Moir et al. (1998)). The majority of the data that will be used in thisthesis are from the Girno
k Burn and were 
olle
ted by FRS1, and 
overs theperiod from 1966 to 1999.1The Fisheries Resear
h Servi
es, The Freshwater Fisheries Laboratory, Faskally, Pitlo
hry,Perthshire, PH16 5LB 11



2.1.1 The Girno
k Burn

Figure 2.1: Map of the Girno
k Burn (Bu
k and Hay, 1984). The part of thestream between the �sh traps and A is the lower se
tion, between A and B is themiddle se
tion, and above B is the upper se
tion.The Girno
k Burn 
ows from a 
at
hment of area 29.77km2 and joins the RiverDee at an altitude of 230m, and about 80km from the sea. The 
at
hment, whi
hrises to an altitude of 570m, 
ontains 32.68 km of streams, with an estimated11.05km to 13.32km being available to wild salmon (Webb and Ba
on 1999).Granite ro
k dominates the geology of the 
at
hment, parti
ularly in the upperpart of the 
at
hment, with s
hist's and other metamorphi
 ro
k being moreextensive in the lower rea
hes (Moir et al. 1998). A map of the burn is shown inFig. 2.1.Heather and `peatlands' (grouse moor) 
omprises 89% of the vegetation, with6% rough grass, 3% 
onifer, 1% broadleaf and mixed woodlands, the remaining1% being of other types. Deer stalking and grouse shooting takes pla
e dur-ing autumn and winter in the upper rea
hes of the 
at
hment, where heather12



dominates. Other �sh, as well as salmon, inhabit the Girno
k Burn, and in-
lude brown trout and sea trout, (Salmo trutta), eels (Anguilla anguilla), brooklampreys (Petromyzon planeri) and minnows (Phoxinus phoxinus) but 
omposeless than 3% of the �sh population. There is little vegetation within the streambut �lamentous algae are widespread in the spring and de
aying leaves settle inthe lower rea
hes. The most 
ommon invertebrates are the larvae of Chironomi-dae and Simulidae, Ephemeroptera (mainly Baetis spp.) and Ple
optera (mainlyLeu
tra spp.) (Bu
k and Hay 1984)The 
limate and 
ow rates in the 
at
hment are highly variable and exhibitstrong seasonality. The 
at
hment re
eives an average of 1100mm of pre
ipitationannually, up to 25% of whi
h falls as snow, with the driest months being fromMayto August (Warren 1985). The river has a mean annual dis
harge of 0.5m3s�1although 
ow between June and August rarely ex
eeds 0.1m3s�1 (Moir et al.1998). The peak 
ow rates o

ur during the spawning season (O
tober andNovember) and the spring, due to snow melt, when the smolts are migratingdownstream.2.1.2 Data Colle
tion at the Girno
k BurnThe Girno
k Burn was 
hosen as a study site for the Dee as it represented whatwas viewed as a typi
al salmon spawning stream of the Dee. Adult salmon foundin the Girno
k are both grilse and MSW salmon, typi
ally 85% of whi
h are 2-sea winter �sh (Moir et al. 1998). The juveniles in the stream emigrate both inautumn, as pre
o
ious males and sexually immature parr, and during the springas smolts, the majority of whi
h leave two or three years after hat
hing (Bu
kand Youngson 1982).The salmon population was monitored using three methods. The �rst was by
ondu
ting �shing surveys in di�erent parts of the burn to assess the resident parrpopulation, whi
h is des
ribed in Se
tion 2.3. The other two were by 
olle
tingdata from an adult �sh trap at the lower end of the burn, whi
h would be ableto 
apture all the adults as
ending the burn in order to spawn, and from a smolttrap, near the adult trap, whi
h attempted to 
apture all the migrating �sh asthey des
ended the burn (Se
tion 2.4). In addition, water temperatures at theburn were monitored and are des
ribed in Se
tion 2.2.13



2.1.3 The 1978 Experimental Manipulation of the Girno
kBurnIn the autumn of 1978, a relatively low number of adult females were 
aught inthe adult trap as they as
ended the burn to spawn. It was de
ided that theseadults should be prevented from spawning above the trap, in order that there beno 
ohort born in 1979. The e�e
t of this `missing 
ohort' on the survival andgrowth rates of previous and future 
ohorts 
ould then be monitored, and wouldbe an indi
ation of how the resident �sh would be a�e
ted by a large 
hange intheir so
ial environment.2.2 Temperature Measurements at the Girno
kBurnRe
ords of water temperatures re
orded at the Girno
k burn �sh trap are avail-able from May 1968 until De
ember 1996. The �rst part of this data set fromMay 1968 until May 1986 was 
olle
ted using a 
ontinuous water temperaturere
order whi
h tra
ed out temperature measurements on rotating paper dis
sthat were 
hanged weekly. These re
ordings were summarised by averaging dailymaximum and minimum temperatures over the whole month. In 1986, the 
on-tinuos re
order was repla
ed by a digital re
order, whi
h took temperature mea-surements every 15 minutes and these temperatures were also summarised intomonthly averages. However, gaps remained in the data set due to me
hani
alfailure of the 
ontinuous re
order. Temperatures for these missing months wereestimated using polynomial interpolation a
ross months. Thus a data set was
ompiled for the mean monthly temperatures from May 1968 until De
ember1996, and the mean annual temperatures are plotted in Fig. 2.2.There is no signi�
ant trend in these estimated annual temperatures, and theonly signi�
ant monthly temperature 
hange with time in years was for April,whi
h in
reased with year (F1;25 = 3:71; P < 0:01). However the general monthlytrends indi
ated that the summer temperatures (Mar
h to August) are in
reasingwhilst the winter temperatures are de
reasing (September to February). This isshown in Fig. 2.3, where the 
oeÆ
ient for the slope of the regressions betweenmean monthly temperature and year are shown with the 95% 
on�den
e intervals.14
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Figure 2.2: Estimated mean annual temperatures at the �sh trap on the Girno
kBurn from 1969-1996.
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Figure 2.3: The values of the slope 
oeÆ
ient with its 95% 
on�den
e intervalsfrom regressions with mean monthly temperature as the predi
ted variable and theyear as a 
ovariate.2.3 Ele
tro-Fishing Data from the Girno
k BurnSamples of the resident parr population were 
olle
ted by ele
tro-�shing. Thisinvolves using an ele
tri
 devi
e to stun �sh so that they 
an be 
aught withease and without 
ausing permanent injury (Jones 1959). The reliability of thesesurveys may be highly variable and depends on the eÆ
ien
y of the equipmentand the 
hara
teristi
s of the environment in whi
h it is used, su
h as the 
ondu
-tivity, turbidity, water velo
ity and water depth (Mills 1989). The ele
tro-�shingmethodology of the surveys on the Girno
k were shown to be reliable throughexperiments involving �shing to extin
tion by R. Chalmers of FRS (unpublisheddata) but there may still be un
ertainty asso
iated with density estimates. How-ever, there is very little reason to believe that even ineÆ
ient ele
tro-�shing wouldbias the sample 
olle
ted with regard to estimates of the parr sizes.The ele
tro-�shing data was 
olle
ted during July and August ea
h year from 1969to 1986 (ex
ept 1980), from the Girno
k Burn, in order to monitor population15



levels. The burn was divided into �ve di�erent habitat types, de�ned a

ordingto substrate type and 
urrent, whi
h are listed in Table 2.1. In 1969 all �vehabitat types were �shed after whi
h �shing in TP was abandoned due to the lownumbers 
aught. After 1977, only T1 and T1A were �shed.Table 2.1: De�nition of the �ve habitat types in the Girno
k Burn.Name Current SubstrateT1 Rather deep and rapid 
owing Boulders and rough stonesT1A Shallow and fast 
owing Small boulders and rough stonesT2 Slow 
owing and rather deep Boulders, 
oarse gravel and siltT3 Median to fast 
ow Gravely spawning areaTP Deep and generally slow 
owingThe burn was also divided into four se
tions based on altitude, 
alled the upper,middle and lower se
tion for the main stem of the Girno
k (see Fig. 2.1), and inaddition, a small tributary, the South Burn was �shed from 1969-71. The areasfor ea
h se
tion and ea
h habitat type within them are given in Table 2.2. From1977 to 1986, �shing was restri
ted ex
lusively to the middle se
tion.Table 2.2: Area of di�erent habitat types within di�erent stream se
tions, in m2,estimated by FRS. T1 T1A T2 T3 TP TotalLower Se
tion 13329 4728 2786 297 208 21348Middle Se
tion 7510 12077 813 4274 686 25360Upper Se
tion 4203 5037 1379 959 474 12052South Burn 3481 4416 1898 258 748 10801Total 28523 26259 6877 5788 2117 69565The age of the salmon 
an be determined by examining s
ale samples from the�sh, and thus its year of birth. As the salmon grow, a ringed pattern is produ
edon the s
ales. The distan
e between the rings depends on the rate of growthof the salmon. Periods where the spa
es between the rings are relatively largeindi
ate summer growth, and the 
onverse for winter growth. S
ale samples 
ana

urately determine whi
h 
ohort a �sh is from. The age of a parr is de�nedby the number of periods when the rings are 
lose together (i.e. the number ofwinters), so a �sh whi
h was born in April and sampled the next February will16



be de�ned as a one year old �sh. If there is some summer growth on the youngestpart of the s
ale (indi
ating the �sh was 
aught when it was growing well) then a`+' is added to the age. Therefore a �sh born in April and sampled the followingSeptember will be de�ned as a `0+' �sh. This notation will be used throughoutthis thesis.The method of ele
tro-�shing has remained the same for ea
h site during everyyear. An area of between 100m2 and 150m2 was �shed three times with stopnets. The age of all �sh 
aught was determined either by inspe
tion or by takings
ale samples. This was straightforward for the 0+ fry as there was a distin
tdi�eren
e in lengths between the largest 0+ and the smallest 1+ parr. The agesof the larger 1+ and all the 2+ and 3+ parr had to be determined by taking s
alesamples. Due to the large numbers of 0+ �sh 
aught, only a small subsamplehad their lengths measured, and these were 
hosen randomly from those 
aught.All the other parr 
aught had their lengths measured.There are gaps in the data set. For 1975 and 1976 there are no lengths availablefor the 0+ and only partial data for the 1+ �sh (only the proportion s
aled). Nosurvey was 
ondu
ted in 1980 due to high 
urrents in the burn (this de
reased thewater 
ondu
tivity and redu
ed the e�e
tiveness of ele
tro-�shing). The missing
ohort from 1979 
aused another gap in the data set.2.3.1 Weight-Length RelationshipsA useful fun
tional growth model would need to predi
t 
hanges in weight beforeit 
ould predi
t 
hanges in length, as the 
onsumption rate would be requiredto have the same units as the �sh weight. No weight measurements were takenduring the ele
tro-�shing surveys in the Girno
k from 1969-1986, so a weight-length relationship was required to provide the link between the data and modelpredi
tions. This relationship is unlikely to be the same for parr throughout theyear due to variations in their biologi
al 
ondition, e.g. over winter weight loss,but it only needs to be 
orre
t when the data measurements are taken (i.e. duringthe periods of the surveys).The form of the weight-length relationship that we shall use will be the allometri

17



relationship of ln(W ) = ln(a) + x:ln(L); (2.1)whi
h has been frequently used for �sh (Manoo
h and Potts (1997), Dul
i
 andKraljevi
 (1996), Petrakis and Stergiou (1995), Potts et al. (1998), Planes et al.(1997)). W is the wet weight (g) and L is the fork length (
m) of the �sh2, with abeing a s
aling 
onstant (also known as the 
ondition fa
tor) and x the exponent(the allometri
 fa
tor).There are two sets of weight-length data available from the tributaries of theRiver Dee. The �rst is from two ele
tro-�shing surveys 
arried out in the middlese
tion of the Girno
k burn on 27th July 1998 and 26th August 1998. Duringea
h of these surveys, two sites were �shed on
e (both of habitat type T1A), andthe weights and fork lengths of all the parr 
aught were measured.In addition to this, data was available from the River Ey, a tributary of the Dee atthe top end of the 
at
hment. It is in a U-shaped valley, where heather moorlanddominates, and the main land use is grouse shooting. An ele
tro-�shing surveywas 
arried out at two di�erent habitat types in the River Ey on 7th August1996. The �rst site was habitat type T1, and the se
ond site was of type T1A. Atboth sites, there was little vegetation in the river and no overhanging vegetation.Ea
h site was �shed three times and had an area of about 100m2. A subsampleof the 0+ �sh and all of the older �sh 
aught were weighed and measured for forklength.Values of ln(a) and x were derived by �tting equation (2.1) to the data the RiverEy, and the two surveys from the Girno
k Burn. The values found and theirstandard errors are shown in Table 2.3.Table 2.3: Parameters for equation.(2.1) to derive a weight-length relationship forjuvenile salmon. The 
oeÆ
ients are shown with their standard errors bra
kets.River Date ln(a) x Sample SizeEy 7/8/96 -4.608 (0.072) 3.046 (0.036) 98Girno
k 27/7/98 -4.734 (0.169) 3.115 (0.078) 72Girno
k 26/8/98 -4.708 (0.155) 3.099 (0.071) 922The fork length is de�ned as the length of the �sh from its snout to the middle (the `fork')of its tail. Other measurements that may be used are total length, e.g. Potts et al. (1998).18



When the site was pla
ed as a fa
tor in the regression model for the Ey data,it was found not to be signi�
ant (F1;95 = 0:0013; P = 0:972). The derivedparameters shown in Table 2.3 and are the same irrespe
tive of habitat type ortributary. Their 
ondition would be expe
ted to 
hange during di�erent timesof the year (e.g. over winter) or during periods of physiologi
al 
hanges (e.g.smolting or early sexual maturation).It was therefore de
ided to 
onvert the length measurements from the Girno
kele
tro-�shing surveys into weights using equation 2.1 with the 
oeÆ
ients fromthe Ey in Table 2.3 for all the parr 
aught in ea
h of the habitat types.2.3.2 Size Di�eren
es of Parr Between Habitat TypesAll parts of the Girno
k Burn that were available to salmon 
ould be 
lassi�edinto one of the habitat types de�ned in Table 2.1. Ea
h of them 
ontained parraged 0+ to 3+, apart from type TP . However, the density estimates variedbetween habitat types, to the extent that �shing was abandoned in type TP afterthe �rst year, and the data 
olle
ted from type TP will be omitted from thisanalysis. From 1978 to 1986, only the two most produ
tive habitat types, T1 andT1A (in terms of numbers 
aught), were �shed. The di�eren
es in the habitattypes may be enough to alter the growth rates of the parr signi�
antly. It istherefore important to know if this is likely to happen, and if so, to what extent.Box plots have been produ
ed in Fig. 2.4 for ea
h age-
lass in ea
h habitat typefor the years 1969-1977. In these plots, the 
entre line represents the medianof the data with the box as the interquartile distan
e (IQD). The error barsextend to the extreme values of the data or a distan
e 1:5�IQD from the 
entre,whi
hever is less. For data having a Guassian distribution, approximately 99.3%of the data would fall within the error bars. The horizontal lines outside of theerror bars are outlying values. These graphs also indi
ate whether the data maybe skewed.A one-way ANOVA was used to test if the variation within habitat types wasgreater than the variation between habitat types. This was shown to be true forthe 0+ (F3;858 = 18:73; P < 0:001), 1+ (F3;4235 = 89:19; P < 0:001) and 2+(F3;2455 = 30:24; P < 0:001) age-
lasses, but not for the 3+ age-
lass (F3;136 =19
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Figure 2.4: Box-plot of the weights of the parr from di�erent age-
lasses dividedinto di�erent habitat types, from 1969-1976. For normally distributed data, ap-proximately 99.3% of the data would fall within the error bars, and the horizontallines outside of the error bars are outlying values.0:78; P = 0:507).The mean weights from the di�erent habitat are similar but there are systemati
di�eren
es a
ross the age-
lasses between the habitat types. These di�eren
esare emphasised in Table 2.4, whi
h shows the mean weights predi
ted by theANOVA with their standard errors. With the ex
eption of the 3+ age-
lass, themean weight of the �sh 
aught in T1 is always the largest, and the smallest �share always 
aught in T2. The �sh 
aught in T1A and T3 tend to be similar inweight for the 0+, 1+ and 3+ age-
lasses and 2+ at T1A being larger than thoseat T3.2.3.3 Size Di�eren
es of Parr Between Stream Se
tionsThe Burn was divided into di�erent se
tions based on altitude, whi
h are given inTable 2.5. Sha
kley and Donaghy (1992) found a signi�
ant relationship between20



Table 2.4: Mean weights for di�erent age-
lass predi
ted using a one-way ANOVAfor the di�erent habitat types �shed from 1969-1976, with standard errors inbra
kets.Age-Class T1 T1A T2 T30+ 1.034(0.023) 0.916(0.038) 0.743(0.031) 0.917(0.025)1+ 6.184(0.044) 5.547(0.126) 4.502(0.107) 5.500(0.046)2+ 12.80(0.088) 11.52(0.278) 10.66(0.269) 11.91(0.103)3+ 17.84(0.526) 16.86(2.026) 15.89(2.220) 18.80(0.785)the length of 1+ parr and altitude in the Dee 
at
hment, so it was important toknow if there were systemati
 di�eren
es between in the weights of parr 
aughtin di�erent se
tions.Table 2.5: The maximum and minimum altitudes of the di�erent stream se
tionof the Girno
k Burn.Stream Se
tion Min. Alt. (m) Max. Alt. (m)Lower 240 285Middle 285 320Upper 320 370The data was divided into di�erent age-
lasses and se
tions and has been sum-marised in the box-plots in Fig. 2.5. The data from the South Burn is not areliable indi
ator of se
tion e�e
ts as it was only �shed in three years and sub-je
t to strong year e�e
ts. There are 
onsistent di�eren
es between the medianweights of parr from di�erent se
tions a
ross the three age-
lasses. The largest�sh are found in the lowest se
tion of the burn, followed by the middle se
tionand then the upper se
tion.A one-way ANOVA was used to test if the variation within stream se
tions wasgreater than the variation between stream se
tions. This was shown to be truefor the 0+ (F2;859 = 161:26; P < 0:001), 1+ (F2;4236 = 351:16; P < 0:001), 2+(F2;2456 = 215:65; P < 0:001) and 3+ (F2;137 = 15:79; P < 0:001) age-
lasses.The mean weight predi
ted using the ANOVA are shown in Table 2.6, and forea
h age-
lass, the mean weight of the parr de
reases with altitude.
21
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Figure 2.5: Box-plot of the weights of the parr from di�erent age-
lasses dividedinto the di�erent stream se
tion, from 1969-1976. For normally distributed data,approximately 99.3% of the data would fall within the error bars, and the hori-zontal lines outside of the error bars are outlying values.2.3.4 The Test Ele
tro-Fishing Data SetThe data 
olle
tion 
an be divided into two parts: that 
olle
ted from 1969-77and from 1978-86. The mean weights of the parr from ea
h age-
lass duringea
h year will depend on whi
h habitat type and stream se
tion the data isfrom. Therefore taking the average weight for all the parr of a parti
ular age-
lass ea
h year is inappropriate if we wish to examine 
hanges in weight a
rossyears. Corre
tion fa
tors 
ould be in
orporated into any analysis, but this wouldin
rease its 
omplexity by the addition of many more parameters.A simpler way to remove the bias would be to remove the data that is 
ausing thebias. The sites that were 
onsistently �shed from 1969-1986 were habitat typesT1 and T1A in the middle se
tion. These are the two most populated habitattypes and the middle se
tion is the most representative of the burn, and ea
hyear was �shed to same number of times. The dates for ea
h of the mean weightswill be taken as the average date for that sample.22



Table 2.6: The means weights predi
ted by the one-way ANOVA between thedi�erent se
tions of the stream with standard errors in bra
kets for the data from1969-1976. Age- Lower Middle Upper
lass Se
tion Se
tion Se
tion0+ 1.262(0.025) 0.911(0.018) 0.657(0.023)1+ 4.796(0.063) 5.354(0.044) 4.796(0.063)2+ 13.89(0.105) 11.93(0.087) 10.49(0.134)3+ 21.55(0.821) 17.83(0.516) 15.25(0.771)The main 
ost in the redu
tion of the data set will be the loss in degrees offreedom and a 
onsequent in
rease in the standard errors of the mean weights.This will be most evident for the 3+ age-
lass where the sample sizes are alreadysmall. However, the samples will be of a 
omparable size to those in the lateryears and the overall data set will be standardised.The test data set that will be used is shown in Fig. 2.6. It 
an be seen thatthere is missing data for the 0+ and 1+ age-
lasses in 1975 and 1976, and forall age-
lasses for 1980. There is also a gap where the missing 
ohort from 1979should be.
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Figure 2.6: Mean weights, with standard errors, of parr from 
ohorts, indi
atedby solid lines, divided into di�erent age-
lasses.
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2.4 Data from the Fish Traps at the Girno
kBurn2.4.1 The Girno
k Burn Fish TrapsThe adult �sh trap was situated 520m upstream from 
on
uen
e of the River Deeand the Girno
k Burn. The trap 
onsisted of a de
e
ting fen
e and a holdingbox that allowed all the as
ending salmon to be 
aught. On
e 
aught, they wereweighed, their fork lengths were measured and s
ale samples taken to determineage. Sex was determined from external se
ondary sexual 
hara
teristi
s. The �shwere then released above the �sh traps and allowed to spawn naturally (ex
eptin 1978).Fish des
ending the burn were 
aught in a modi�ed Wolf trap (Wolf 1950) lo
ated80m upstream from the adult trap. The �sh were sieved out of the stream intoa holding tank, and their fork lengths were measured. S
ale samples were takenfrom every �fth �sh to determine age and �sh > 9
m were tagged. Des
endingkelts were also 
aught in the trap. A fuller des
ription of the �sh traps is given byBu
k and Hay (1984). O

asionally during the autumn spates, the trap be
ame
logged with leaves, with meant that water, and possibly parr did not go throughthe trap as they were able to swim over it. Therefore, for these years, the numberof parr 
aught in the trap provided a lower bound of the total number of migrantsthat autumn.2.4.2 Data from the Adult TrapUltimately, from a management perspe
tive, the most important stage of thesalmon life 
y
le is the adult's freshwater stage. This is when they have theirhighest e
onomi
 value and these �sh will sustain the population.A minimum ova deposition is required to maintain the river at its 
arrying 
apa
-ity, and for the Girno
k, it is estimated that levels of more than approximately200,000 eggs would not result in an in
reased migrant parr population underaverage (environmental) 
onditions (Bu
k and Hay 1984). Estimates of ova de-position (EOD) were 
al
ulated for the Girno
k Burn from a relationship derivedfrom salmon in the Dee by Pope et al. (1961), and are shown in Fig. 2.7. There24
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Figure 2.7: Estimated ova deposition (EOD) above the �sh trap at the Girno
kBurn, with the solid line representing the estimated deposition required to main-tain the Burn at 
arrying 
apa
ity.has been gradual de
line in the EOD over the period when the trap has been inoperation, and in re
ent years has fallen below the estimated 
arrying 
apa
ity.Considering how the population responded to previous periods of low spawningmay enable us to determine how the present population is being a�e
ted.2.4.3 Data from the Spring SmoltsThe main migration period is from February to May, when the migrants be
omesmolts and migrate downstream to the sea. The majority of smolts are three years
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Figure 2.8: The per
entage of the age-
lasses whi
h make up the spring migrationfrom 1968-1994.old, followed by two then four, the per
entages being shown in Fig. 2.8. Ex
ep-tions to this o

ur two years after low egg depositions, as in 1970, 1979, 1984 andthe early 1990's, as 
an be seen in Fig. 2.7. In ea
h migration season, the mean25
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Figure 2.9: Mean lengths of two and three year old spring smolts from 1968-1995with standard errors.lengths of the older smolts are larger, as 
an be seen in Fig. 2.9, with the lengthsof the two and three year olds being highly 
orrelated (r = 0:801; P < 0:001).Typi
ally, two years low EOD, the mean lengths of both two and three year oldspring smolts are larger than expe
ted, and the EOD is negatively 
orrelatedto with lag 2 to the lengths of the two (r = �0:352; P < 0:05) and the three(r = �0:643; P < 0:001) year olds. However, three years after low EOD, thereare no signi�
ant 
orrelations with smolt length.2.4.4 Data from the Autumn ParrDuring the autumn of ea
h year, large numbers of parr are 
aught in the smolttrap as they are moving down stream, whi
h has been 
alled the autumn migra-tion. The autumn migrants will not have developed into smolts, though tagginghas shown that some will migrate to sea the following spring. Estimates of thenumbers of autumn migrants are not as a

urate as for the spring smolts as thetrap 
an be
ome 
logged with leaves. This means that the a

ura
y of the es-timates varies from year to year. However, the sample sizes are large enoughto estimate the mean lengths and the proportion from ea
h age-
lass, whi
h areshown in Figs. 2.10 and 2.11.As with the smolts, the older migrants are the generally larger and 
omprises thelargest proportion of the autumn migration, ex
ept following periods followinglow spawning, when the 1+ dominate. The lengths of the 1+ and 2+ parr are
orrelated with ea
h other (r = 0:397; P < 0:05) and the lengths of the 2+ are26
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Figure 2.10: Mean lengths of 1+ and 2+ autumn migrants whi
h were 
aught inthe smolt trap from 1968-1995 with standard errors.negatively 
orrelated to the EOD in the previous year (r = �0:536; P < 0:01).
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Figure 2.11: Per
entage of di�erent age-
lasses whi
h make up the autumn mi-gration.Both pre
o
ious parr (PP) and non-pre
o
ious parr (NPP) were 
aught in the�sh trap during the autumn migration from the Girno
k Burn. For the years1968-1976, an average of 6.3% (s.e=0.022) of the 1+ and 18.6% (s.e=0.027) of2+ autumn migrants ea
h year were identi�ed as PP. This had risen 
onsiderablyto 26.4% (s.e=0.105) for the 1+ and 47.0% (s.e=0.109) for the 2+ for the years1989-1995, whi
h may be due to the PP migrating in sear
h of females as feweras
end the burn to spawn in later years. Data regarding the pre
o
ity of theautumn migrants was not available from 1977-1988.The lengths of a sample of PP and NPP 
aught in the trap during autumn from1989-1995 were measured. Comparisons within age-
lasses within years revealed27



that the PP were not signi�
antly di�erent in length to the NPP ex
ept in 1989when the 2+ PP were greater (F1;103 = 11:545; P < 0:001).2.4.5 Comparing Data from Spring and AutumnMigrantsApproximately 23 of juveniles that leave the burn during any migration season(de�ned as from September until May), do so during the spring migration, asshown in Fig. 2.12.
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Figure 2.12: Ratio of the numbers of autumn to spring migrants leaving theGirno
k Burn. Ratios are only given for the years where the numbers of autumnmigrants leaving are thought to be reliable, the mean being 0.575.The di�eren
es in the lengths of the autumn and spring migrants from the same
ohorts are shown in Fig. 2.13. The di�eren
e between the 1+ and 2 yr. olds,and between the 2+ and 3 yr. olds is fairly similar and 
onstant, with the springmigrants generally being larger. The only ex
eption being 1979 during the timeof the manipulation of the spawning a
tivities of the salmon. With no femalesabove the trap, large numbers of PP may have migrated in sear
h of females(Bu
k and Youngson 1982). Some of these migrants may have been �sh whi
hwould have otherwise 
hosen to migrate the following spring, as the mean weightof the migrants during autumn 1978 are relatively large, and those during spring1979 relatively small.Over the life of ea
h 
ohort, a number of the members leave at di�erent times.Fig. 2.14 shows what per
entage of the migrants from 
ohorts born from 1968-1977 leave during di�erent migration seasons. Data were not available for later28
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Figure 2.14: Per
entages of migrants from the 
ohorts from 1968-1976 to haveemigrated during di�erent seasons.2.5 Summary and Con
lusionsJuvenile salmon exhibit a great deal of 
exibility in terms of the de
isions theymay take and their response to 
hanges in their environment. Temperature isan important fa
tor in the physiologi
al pro
esses of growth, and as the 
li-mate 
hanges, the growth rate will be a�e
ted (Power and Power (1994), Mangel(1994)). Although the in
reases in summer temperatures at the Girno
k (Fig.29



2.3) have been o�set by de
reases in the winter, the net e�e
t on the growth rateof parr in the wild is not known.Salmon are known to have preferred habitat types (Bult et al. (1999), Heggeneset al. (1999)), with the largest Girno
k parr being found in the faster 
owingwaters with gravely substrates. These types are more suited to the salmons'foraging habits of taking food from the water 
olumn or foraging in the substrate.Altitude may be a surrogate for temperature, as larger parr are found in the lowerparts of the burn. However, these di�eren
es may in part be due to other fa
torsin the lo
al environment. The lower se
tion has more overhanging vegetation somore invertebrates of terrestrial origin are available as food for the salmon if theyfall onto the water surfa
e. There are also higher levels of detritus, whi
h providefood for the invertebrates on whi
h the salmon feed.Ova deposition is negatively 
orrelated with the lengths of the emigrant parr dur-ing autumn and spring, whi
h suggests that in
reased density depresses growth.The s
ale of these so
ial e�e
ts 
annot be assessed without taking into a

ountother environmental e�e
ts su
h as temperature. Also, Ova deposition may be re-lated to temperature (Webb and M
lay 1996). A method of a

ounting for growthdue to temperature is to develop a growth model dependent on temperature and
onsumption as driving variables.Unfortunately, measurements of parr food are unavailable for the Girno
k, sowill need to be inferred from the data via a model. Surrogates for 
onsumptionmay be in the form of limiting quantities su
h as spa
e (territory size), and theseestimates of 
onsumption are likely to 
hange for parr from the di�erent habitattypes and stream se
tions. This would give an indi
ation of the di�eren
es inthe quality of habitat between di�erent parts of the Burn and allow us to assessdi�eren
es in suitability of di�erent parts of the stream for salmon growth.A growth model will have to 
onsider the e�e
ts of migration on the residentpopulation. Migration from the burn o

urs during autumn and spring when alarge proportion of the population leaves the stream. As these �sh leave, therewill be an e�e
t on the mean weight of the population within the stream if thede
ision to migrate is based on the size attained by the parr.The PP are also moving around the burn during autumn. The PP that were30




aught at the trap were similar in length to the NPP migrating at the sametime. The 
ondition, and the weight-length relationship, for the PP is likely tobe di�erent from the NPP, as they are allo
ating resour
es toward reprodu
tionrather than somati
 growth, but this 
annot be 
on�rmed for the Girno
k asthese parr were not weighed. However, given that the lengths of the PP are notnoti
eably di�erent from the NPP, and that a growth model would be �tted topopulation mean weights, derived from the parr lengths, there is no need to treatthe PP di�erently from the other members of the population during the initialstages of the growth model.An energy balan
e model will be developed to determine the environmental e�e
tson the growth of the juvenile parr. It will �rst be tested on parr fed to satiation,then adapted to wild parr where smolting is o

urring in the population. It willthen be used to predi
t the overall dynami
s of the population.
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Chapter 3Growth Models
3.1 Modelling the Growth of FishAn important tool in �sheries management is use of growth models to predi
tthe weight and length of both for farmed and wild �sh. On �sh farms, modelsallow managers to make informed de
isions regarding produ
tion (Seiwarth andSummerfelt (1993), Soderburg (1992)). In the wild, growth models are morefrequently be
oming part of overall management strategies, whi
h aim to improve�sh produ
tion whilst maintaining a balan
ed e
osystem. They have been usedto assess the impa
t of 
hanges to the environment on the growth rate of the �sh(Limburg (1996), Trebitz and Nibbelink (1996)), determine optimum sto
kingdensities �sh (Deangelis et al. (1993), Bre
k (1993)), and suitable feeding regimes(Yang 1998).A model is required for the Girno
k burn, whi
h is able to predi
t the weight andlength of parr given temperature and estimates of initial weight. Juvenile parrlose weight during the winter (Met
alfe and Thorpe 1992) so the model mustbe able to predi
t weight loss as well as gain. In the wild, the biomass of theinvertebrate drift available as food to the parr may 
hange, so the 
onsumptionrate must be able to vary. Rates of 
onsumption and maintenan
e are a�e
tedby both temperature and �sh size, so must be in
luded in the model. Finally, themodel must be parameterised and be appli
able throughout the juvenile phase ofthe Atlanti
 salmon life
y
le.
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3.1.1 Weight Based Empiri
al Growth ModelsThese models assume that the spe
i�
 growth rate, G, is a dependent on weight,W , as in equation (3.1), and a sele
tion of these types of models are shown inTable 3.1. G = dWWdt (3.1)Table 3.1: Growth models based on a
hieved size, where spe
i�
 growth rate,G = dW=Wdt, is a fun
tion of weight, W .Model GyLogisti
 k1(1�W=W1)Gompertz k1(logeW1 � logeW )Monomole
ular k1((W1=W )� 1)Ri
hards [1� (W=W1)k2℄k1=k2�Sour
e: Causton et al. (1978).yW1 asymptoti
 weight; k1 and k2 are 
onstants.They are �tted to data in order to determine the parameters, then used to predi
tthe growth of �sh raised in similar 
onditions (Baker et al. 1991), (S
hnute 1981).However, these models give no insight into the 
auses of growth, or how growthvaries with 
hanges to the environment of the �sh. This problem began to beaddressed by Bertalan�y (1957), whose model took into a

ount di�erent aspe
tsof growth.3.1.2 The Bertalan�y Growth ModelBertalan�y (1957) developed a physiologi
ally dependent growth model that wasused to predi
t weight and length. It was based on the prin
iple that the rate of
hange of weight equals the rate of anabolism less the rate of 
atabolism, su
hthat dWdt = h1W n1 � h2W n2 (3.2)where h1 and h2 are the 
oeÆ
ients for anabolism and 
atabolism, and n1 andn2 are how these quantities s
ale with weight.This model still la
ked any environmental input or dependen
e on rates of food
onsumption and is used more as a des
riptive rather than a predi
tive model,33



e.g. Ismen (1995), Xiao (1994), Chen et al. (1992), Crisp and Beaumont (1995).Changes have been made to the Bertalan�y format, su
h as making the anaboli
and 
ataboli
 rates on dependent uptake and temperature, as well as body weight(From and Rasmussen 1984). Other adaptations have been used to predi
t densitydependent (Lorenzen 1996) and seasonal (Fontoura and Agostinho 1996) e�e
tson growth. The prin
iples of growth proposed by Bertalan�y have been extendedto bioenergeti
 models that take into a

ount more aspe
ts of �sh growth.3.1.3 Bioenergeti
 Growth ModelsBioenergeti
 models for growth take the energy budget of the �sh and divide itup into its 
omponent parts, su
h asCb = Fb + Ub +Rb + Pb (3.3)where Cb is the energy of the food 
onsumed, Fb and Ub are the energy lost infae
es and ex
retion, Rb is the standard, digestive and a
tivity metabolism andPb is somati
 growth and gamete produ
tion (Wootton 1990). Typi
ally, these
omponents are further subdivided in order to predi
t P (see Trans. Am. Fish.So
. 122(5) (1993), Kit
hell et al. (1977), Stewart et al. (1983)). This type ofmodel has also been used to estimate 
onsumption rates (Brodeur et al. 1992),(Sto
kwell and Johnson 1997) and foraging behaviour (Brandt and Kirs
h 1993),(Goyke and Brandt 1993).Due to the number of fa
tors a�e
ting growth that are in
luded in bioenergeti
models, they 
an be
ome very 
omplex. Fun
tions are required for ea
h fa
tor,whi
h in turn may require many parameters. Feedba
k into the system is hard toimplement as the models generally express the whole �sh as 
omposed of materialthat 
an be metabolised, so any weight loss will a�e
t the whole energy equation
ausing a redu
tion in the proposed 
onsumption rate, due to its dependen
e ontotal weight. Weight loss is unlikely to redu
e the 
apa
ity for 
onsumption, asthe parts involved 
annot be metabolised, e.g. mouth parts and bones. Therefore,when suÆ
ient food be
omes available to enable growth, the model is unable tosimulate 
onsumption at its previous maximum rate.
34



3.1.4 A Carbon-Based Fun
tional Growth ModelA model that 
an be used for salmonids is a 
ompensatory growth model byBroekhuizen et al. (1994), with growth measured in units of 
arbon, rather thanenergy. Using units of energy ignores the fa
t that di�erent parts of the �sh havedi�erent energy 
ontent. Energy is assimilated and 
onverted into weight, andas the �sh is not homogeneous, di�erent parts of the �sh will require di�erent
onversion rates. The same problem o

urs when the energy is remobilized.Using 
arbon bypasses these problems, as it is not 
onverted into other forms.This model is able to demonstrate weight loss and 
an easily be adapted forseasonal variations in temperature and food supply. More importantly, it is ableto simulate 
hanges in the behaviour of the �sh as it loses weight so that there isan element of 
ontrol, whi
h is re
e
ted by the health and 
ondition of the �sh.Su
h 
ontrols 
an mimi
 the 
hanges in uptake and metaboli
 rates that mayo

ur at low temperatures or food supply.3.2 The Compensatory Growth Model3.2.1 Introdu
tionCompensatory growth o

urs when an animal undergoes an a

elerated growthrate after the period of starvation, whi
h results in a higher body mass thanwould have o

urred had the starvation not taken pla
e. This has been ob-served for di�erent salmonid spe
ies (Dobson and Holmes 1984), (Miglavs andJohnson, 1989a, b), and the 
ompensatory growth model (CGM) by Broekhuizenet al. (1994) has been used to su

essfully predi
t weight 
hanges in tank rearedsalmonids 
aused by 
y
li
 feeding patterns. It was originally tested on rain-bow trout (On
orhyn
hus mykiss) and Ar
ti
 
harr (Salvelinus alpinus L.) withparameters derived from the literature. This type of model will be suitable forparr, as they lose weight during the winter (Cunjak 1988), (Met
alfe and Thorpe1992), (Berg and Bremset 1998). Salmon parr have been observed to experien
e
ompensatory growth after periods of restri
ted temperature and photoperiod byMortense and Damsgard (1993) and restri
ted temperature and food by Ni
iezaand Met
alfe (1997). 35



The model is based on two 
entral prin
iples, the �rst is that the total �shweight, W , 
an be divided into to two 
omponent materials in terms of 
arbon:those of stru
tural tissue, S, and reserve tissue, R. Stru
tural tissue 
an not beremobilized on
e it has been laid down so will never de
rease, and in
ludes bones,nerves and mouth parts. Reserve tissue 
an be remobilized on
e laid down, and is
onverted into energy to meet the needs of the �sh and in
ludes lipids and partsof the mus
ulature, so R is able to de
rease.The se
ond is that the �sh will seek to maintain a 
onstant ideal ratio betweenR and S. Any e�e
ts from starvation will lead to a de
rease in R but not S,so � = R=S 
an be taken as a measure of health. A healthy �sh will have anideal ratio of �0 and will allo
ate material to R and S in su
h a way as to keep� as 
lose to �0 as possible. SuÆ
iently large de
reases in � from �0 will leadto behavioural 
hanges in the �sh whi
h are its response to starvation. �0 isassumed to be 
onstant, although it may 
hange if parr be
ome sexually matureand allo
ate resour
es to reprodu
tion.3.2.2 Derivation of the CGMThe model assumes that the �sh assimilates material at a rate A and loses ma-terial due to maintenan
e 
osts at a rate of M . The di�eren
e between A and Mis then divided between R and S depending on a fun
tion of �, C(�). The ratesof 
hange of R and S are given in equations (3.4).dRdt = A�M � dSdt dSdt = C(�) [A�M ℄+ ; (3.4)(where [x℄+ denotes maxfx; 0g). C(�) must de
rease when � < �0 and in
reasewhen � > �0. When � = �0, C(�) must remain 
onstant at the value in equation(3.5), C(�) = C0 = 11 + �0 : (3.5)Moreover, C(�) must have an upper limit so that when � is relatively high, allassimilated material will be allo
ated to S. Conversely, there must be a lowerlimit where all assimilated material must be allo
ated to R. Thus C(�) has beende�ned as a fun
tion whi
h varies between 0 and 1 and is given a gradient of C0�(� being the reserve 
ontrol sensitivity), whi
h determines how qui
kly the limits36



are rea
hed. C(�) is de�ned asC(�) = minf1; C0 [1 + �(�� �0)℄+g: (3.6)The assimilation rate is assumed to be dependent on the assimilation eÆ
ien
y,", food supply, � and the maximum uptake rate, Umax. Assimilation eÆ
ien
y isthe proportion of food 
onsumed that ends up as body tissue. It takes into a
-
ount the 
osts of digestion, in
omplete absorption, and spe
i�
 dynami
 a
tion.As tank reared �sh are likely to feed at their maximum uptake rate if there issuÆ
ient food available, the total assimilation rate 
an be de�ned by equation(3.7). A = " minf�; Umaxg (3.7)An important part of the model is to show how a �sh responds to being healthy,hungry or torpid. It assumes that the behaviour of the �sh 
hanges as it losesweight, whi
h a�e
ts both Umax and M . These 
hanges are shown in the modelby the starvation response fun
tions, 
(�) and �(�). UH and MH are de�ned asthe uptake and maintenan
e rates for a healthy �sh, and so Umax and M 
an bewritten as Umax = 
(�)UH M = �(�)MH : (3.8)
(�) and �(�) are step fun
tions whi
h 
hange in value when � passes through
ertain threshold values. When � de
reases below the healthy/hungry threshold,the uptake rate in
reases and M remains the same. Below the hungry/torpidthreshold, both 
osts and uptake rates de
rease. This is to simulate a strategythat the �sh may adopt until food be
omes more abundant. An additional featureof the starvation response fun
tions is when � in
reases from below to above thehungry/torpid threshold, the behaviour remains the same for a small in
rement(�) of � above the threshold. This is intended to simulate observations where the�sh does not immediately resume the 
osts of a hungry �sh. These observationsmay be due to the �sh being unable to 
hange its physiologi
al or behaviouralstate instantaneously, or it might be a 
autious type of behaviour. These twofun
tions are de�ned in Broekhuizen et al. (1994) Table 1.The model states that UH and MH vary as geometri
 fun
tions of body weightand exponential fun
tions of temperature. UH will be dependent on gut and37



mouth parts so will s
ale allometri
ally (with 
onstant �) with S. With thes
aling 
onstant UHO and the 
hara
teristi
 temperature for uptake TA, UH isthus derived as equation (3.9).UH = UHOS�exp� TTA� (3.9)All body tissue will require maintenan
e so MH will s
ale allometri
ally withtotal weight (with allometri
 
onstant �). The s
aling 
onstant is denoted asMHO and the 
hara
teristi
 temperature for maintenan
e TR. This yields theequation (3.10), whi
h 
ompletes the model.MH =MHO(R + S)�exp� TTR� (3.10)3.2.3 Parameterizing the CGM for Salmon ParrThe CGM was developed to predi
t growth rates for tank reared salmonids, and
hanges need to be made in order to apply it to the wild. The de�nition of Agiven by equation (3.7) states that the �sh will eat all food presented to it if� < Umax, otherwise it will feed at Umax. This is a reasonable assumption in atank environment as the parr have no problem �nding food, but in the wild, theyare unlikely to be able to feed at Umax. Ideally, equation (3.7) would be rede�nedto in
lude the type II fun
tional response, derived by Holling (1959) whi
h hasbeen used to estimates 
onsumption rates in wild freshwater �sh (Madenjian andCarpenter 1991), (Sto
kwell and Johnson 1997), (Eby et al. 1995). Unfortunately,there is insuÆ
ient data regarding prey density in the Girno
k Burn for this tobe done.An empiri
al growth model, developed by Elliott and Hurley (1997), has beenused to predi
t growth rates of wild salmon parr. It uses weight and temperatureto determine the spe
i�
 growth rate and was parameterised using data fromAtlanti
 salmon parr. In the next se
tion, this model will be applied to data fromthe Girno
k Burn to assess its e�e
tiveness. Elements of the Elliott and Hurley(1997) model will then be 
ombined with the CGM to 
reate a new growth modelfor Atlanti
 salmon parr. 38



3.3 Elliott and Hurley Growth Model for Juve-nile Atlanti
 Salmon3.3.1 Introdu
tionAn empiri
al growth model derived by Elliott (1975a, b) to predi
t the growthof brown trout, (Salmo trutta L.), has re
ently been modi�ed (Elliott and Hurley(1995), Elliott et al. (1995)). It has also been reparameterized for immaturestone-loa
h, (Barbatula barbatula L.) (Elliott et al. 1996) and juvenile Atlanti
salmon, (Elliott and Hurley 1997). The model assumes that the �sh are feeding tosatiation and growing at their maximum rate for a given temperature. Predi
tionsfrom the model appear to be very good for well-fed tank reared salmon parr grownat 
onstant temperatures.The Elliott and Hurley (1997) (E&H) model 
an be used to simulate growthtraje
tories for di�erent 
ohorts in the Girno
k Burn. Predi
ted weights 
anthen be 
ompared to the estimated mean weights of the resident parr, whi
hhave been derived from ele
tro-�shing data. The quality of the E&H model 
anthen be determined by examining the residuals between the model and the data.The E&H model des
ribes the proportional growth rate, Ge, as in equation (3.11),at a water temperature of T oC and at an instant in time when the live mass ofthe �sh is W grams. Ge � 1W dWdt = 
gW�b � T � T0TM � T0� ; (3.11)where T0 = � TL T � TMTU otherwise (3.12)There are �ve parameters in the model; three asso
iated with water temperatureand two with �sh size. The temperature for optimum growth is set at TM withthe upper and lower temperatures when zero growth o

urs being TU and TL. Themass exponent b is the power transformation of mass that produ
es linear growthwith time and 
g is the growth rate of a 1g �sh at the optimum temperature.Thus in order to predi
t the weight of a �sh at time t using this model, we requireits initial weight at t0 and the water temperatures between t0 and t.39



Table 3.2: Parameters for the E&H juvenile salmon growth modelParameter Symbol Value UnitsWeight exponent b 0:31 dimensionlessMaximum growth rate for 1gm �sh 
g 0:035 d�1gmbOptimum temperature TM 15:9 oCLow temperature limit TL 6:0 oCHigh temperature limit TU 22:5 oC3.3.2 Simulations using the Girno
k dataEle
tro-�shing surveys were 
ondu
ted during the summer from 1968 to 1986,with the ex
eption of 1981. From these re
ords, we have length measurementsof the resident parr at ages 0+, 1+, 2+ and 3+. Older �sh were too rare to bein
luded in the analysis. There are no lengths for the 0+ and 1+ age-
lasses forthe years 1975 and 1976 due to lost data. The weight-length relationship de-rived in Chapter 2 was used to 
onvert the lengths into weights, whi
h were thensummarised into mean weights for ea
h age-
lass in ea
h 
ohort. The tempera-ture data has been summarised into monthly mean temperatures, as des
ribedpreviously.Simulated growth traje
tories were produ
ed using the E&H model with thetemperatures from the Girno
k Burn, the parameters in Table 3.2, and initial�sh weights of 0.15g on the 1st April. The initial weight and starting data arethe nominal birth weights and dates for salmon in the Girno
k Burn (D. W. Hay,pers. 
omm.). Simulations were 
arried out for ea
h 
ohort born from 1968-1986ex
ept for 1979 when adult �sh were prevented from spawning the previous year,whi
h resulted in no 
ohort born that year. Fig. 3.1 shows the simulations withthe estimates of �sh weights from the ele
tro-�shing data, with standard errors.3.3.3 Analysis of the E&H ModelFig. 3.1 shows that there are large dis
repan
ies between the model predi
tionsand the weight estimates from the ele
tro-�shing data. The parameters werederived from well-fed �sh reared in a 
ontrolled environment so the model shouldat least over-predi
t the parr weights and ideally be an upper bound for growthat the given temperature. Nearly all of the predi
ted weights are less than the40
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Figure 3.1: Growth traje
tories for 
ohorts of salmon parr in the Girno
k Burnderived using the E&H model. Data points are the mean weights of ea
h age-
lassfrom ea
h 
ohort, where the �lled 
ir
les are asso
iated with the solid lines andthe open 
ir
les with the dotted lines.observed weights, and many substantially so. Also, the over winter weight losspredi
ted by the model is very large and in some 
ases is roughly equivalent tothe weight gain during the summer. From the data, it 
an be seen that thepredi
tions for the Girno
k are 
learly not realisti
.Elliott & Hurley, (1997) used this model to simulate growth traje
tories of wildparr in the R. Eden, a stream in Northwest England. These simulations did notprodu
e the large winter weight loses seen when using the Girno
k temperaturedata and there was a tenden
y for the weights of the 1+ age-
lass to be under-predi
ted, although the weights of the 2+ age-
lass were over-predi
ted. However,in general, the �t was realisti
, so the model appears to be appropriate for theR. Eden but not the Girno
k Burn. Possible reasons for this are that either theparameters are in
orre
t, the model is stru
turally wrong, or both.
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Figure 3.2: The fun
tion g(T ) as de�ned in equation(3.14).The spe
i�
 growth rate 
an be split into two parts, Ge = f(W )g(T ), wheref(W ) = 
gW�b (3.13)and g(T ) = T � T0TM � T0 (3.14)with the parameters de�ned as above. The fun
tion g(T ) is plotted out in Fig. 3.2and illustrates how Ge is a�e
ted by temperature. When T = TU and T =TL, Ge is zero, and the maximum growth rate will o

ur when the temperatureis at TM . At temperatures below TL or above TU , weight loss will o

ur. InFig. 3.3, we 
ompare the Girno
k temperatures and the Eden temperatures andwe 
an see that more weight loss is predi
ted by the model when temperaturesfrom the Girno
k are used. In the Girno
k, large parts of the year are spent attemperatures that are below that required for growth and, a

ording the E&Hmodel, the �sh is predi
ted to lose weight.Di�erent parameter values would redu
e the weight loss predi
tions and in
reaseoverall growth. Redu
ing TU , TM or TL in
reases weight gain and redu
es weightloss at low temperatures. However, there is lots of eviden
e to suggest the es-timates are reasonable (TM : Wankowski and Thorpe (1979a), Dwyer and Piper(1987), Peterson and Martin-Robi
haud (1989), and TL: Evans et al. (1985), Leeand Power (1976), Jensen et al. (1989)). The mean monthly temperatures in theGirno
k are rarely greater than TM , so the value of TU will have a very small42
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t on weight predi
tions in the Girno
k. The remaining two parameters b and
g are independent of the temperature so if these were 
hanged, Ge would still benegative for temperatures below TL. The weight loss 
an be redu
ed by alteringb and 
, but this will also 
ause the growth rate at temperatures above TL to beredu
ed.The real problem lies within the stru
ture of the model. As the temperaturede
reases from TM , the growth rate will de
rease linearly for a �sh of 
onstantsize. Ge be
omes negative when T = TL and 
ontinues to de
rease until T rea
hesits minimum at 0oC. During periods of 
old temperatures (< 6oC), parr willbe
ome less a
tive and redu
e their metaboli
 
osts (Met
alfe and Thorpe (1992),Cunjak (1988), Gardiner and Geddes (1980)), but there is no su
h me
hanismin
luded in this model, whi
h predi
ts 
ontinued weight loss. Changes need tobe made to the model so that it will no longer produ
e growth traje
tories withlarge weight losses during the winter but still be able to �t the experimentaldata used by Elliott & Hurley to parameterise their model. The CGM does takeinto a

ount these aspe
ts of �sh growth and a new model is 
onstru
ted in the�nal se
tion of this 
hapter, whi
h will 
ombine 
omponents of the E&H and theCGM. This will enable us to 
reate a realisti
 upper bound for the growth of parrin the Girno
k. 43



3.4 Combining Aspe
ts of the E&H model withthe CGM3.4.1 Restru
turing the CGMThe E&H model is not suitable in its present form, but any 
redible model mustbe able to �t the data from Elliott and Hurley (1997) as well as the E&H model isable to. Due to the stru
tural inadequa
ies of the E&H model, the CGM modelwill form the basis of a new model.A well-fed �sh 
an be assumed to have � maintained at its optimum value �0, sothat S = W
=(1 + �0), where W
 is the �sh weight in 
arbon. Rearranging theleft-hand member of (3.4) givesG
 � 1W
 dW
dt = 1W
 (A�M) =W ��1
 [	A �	M ℄ (3.15)where	A � "UH0(1 + �0)� exp� TTA� 	M � W ���MH0 exp� TTR� : (3.16)To harmonise the CGM and the E&H model requires two things. First � = � =1�b is set so that 	A and 	M depend only on temperature and G
 / Ge / W�b.This harmonises the weight s
aling of the two models. Se
ond, two fun
tions,	A(T ) and 	M(T ), are 
hosen su
h that so that	A(T )�	M(T ) = 
g � T � T0TM � T0� : (3.17)Equation (3.17) is 
learly in
ompatible with both 	A and 	M having the formsgiven in equation (3.16). The standard metaboli
 rate (SMR) is often des
ribedas being exponentially dependent on temperature, (Wootton 1990), but this isnot always the 
ase with Umax. Van Winkle et al. (1998), Sto
kwell and Johnson(1997), Lantry and Stewart (1993) and Rand et al. (1993) all use the fun
tion	M for the SMR, but use a fun
tion developed by Thornton and Lessem (1978)to des
ribe how Umax is dependent on temperature. Sin
e the eviden
e for theSMR being exponentially dependent on temperature is stronger than that foruptake, 	M will remain as de�ned in equation (3.16), and have	A = 1(1 + �)� �(T ) (3.18)44



where �(T ) = (1 + �0)� �MH0 exp� TTR� + 
g � T � T0TM � T0��+ : (3.19)The `+' in this equation is there to avoid negative uptake. This leads to a �nalmodel in whi
hdRdt = A�M � dSdt dSdt = C(�) [A�M ℄+ ; (3.20)where C(�) is de�ned by equations (3.5) and (3.6), andA = �(�)S��(T ) M = 
(�)MH0(R + S)� exp (T=TR) (3.21)with �(T ) de�ned by equation (3.19), T0 as de�ned in equation (3.12), and � and
 are de�ned in Broekhuizen et al. (1994) (Table 1).Table 3.3: Main Parameters for the Modi�ed CGM salmon growth modelParameter Symbol Value UnitsWeight exponent � 0:69 dimensionlessMaximum growth rate for 1mg �sh 

 0:155 d�1mgC1��Optimum temperature TM 15:9 oCLow temperature limit TL 6:0 oCHigh temperature limit TU 22:5 oCSMR 
hara
teristi
 temperature TR 12:5 oCSMR at 0oC MH0 0:04 d�1mgC1��Ideal Reserve ratio �0 1:5 dimensionlessReserve 
ontrol sensitivity � 3 dimensionlessThe main parameter values for this model 
an be adopted from Elliott and Hurley(1997) and Broekhuizen et al. (1994). Sin
e the CGM is formulated in termsof 
arbon weight (mgC) and E&H in wet weight (g), the units of 
g must be
hanged from d�1gmb to d�1mgCb, and will be rede�ned as 

. Using the CGMparameters for the SMR, we arrive at the parameter set shown in Table 3.3. Theother model parameters, whi
h govern the behaviour of the starvation/re
overypart of the model, 
an be taken from CGM.Finally, in Fig. 3.4 the weight-s
aled assimilation and basal metaboli
 ratesagainst temperature are plotted. The `
lipping' of the assimilation fun
tion doesnot a
t until T < 2:5oC, whi
h indi
ates that the model reprodu
es all of theregion of E&H's model whi
h is supported their data.45
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Figure 3.4: Weight-s
aled assimilation (A=W �) and weight s
aled SMR (M=W �)for the CGM modi�ed so as to for
e 
omplian
e with the E&H pi
ture of thetemperature dependen
e of growth rate. Parameters taken from Table 3.3 .3.4.2 Parameterizing the CGM/Elliott modelCombining the E&H model with the CGM has guaranteed that, over the temper-ature range of Elliott and Hurley (1997) data, the CGM/Elliott model (CGMe)will reprodu
e their observed growth rates for satiated �sh. This is independentof our 
hoi
es of SMR and the starvation/re
overy responses. However, for themodel to predi
t an upper bound to growth in 
onditions where long-term weightloss o

urs, appropriate values for the SMR and starvation/re
overy parametersmust be obtained.The CGMe requires new parameters for Atlanti
 salmon parr, and the �rst 
hangeis the 
arbon 
ontent of the Atlanti
 salmon whi
h ranges from 11.4-12.5%, witha mean of 11.93% (Carter et al. 1992), from the value of 15% for rainbow troutused by Broekhuizen et al. (1994). The hysteresis in the starvation responsefun
tions will also be dropped from the model. The e�e
t of this on the growthtraje
tories will small as they will only be a�e
ted on
e a year, during the springas they gain weight after the winter. The hysteresis 
an also 
ause numeri
alproblems to o

ur at 
ertain levels of assimilation.46
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Figure 3.5: Mean weights by length 
lass (� s.e.) for �sh 
aught in Catamaranbrook in the autumn and spring of 1992-93 (upper) and 1993-94 (lower).Winter weight loss in Catamaran BrookEle
tro-�shing surveys were 
ondu
ted at a single site in the Catamaran Brook,New Brunswi
k in autumn and spring of the years 1992/93 and 1993/94 (R.A.Cunjak, unpublished data).In ea
h survey, weights and fork lengths were mea-sured for the Atlanti
 salmon parr that were 
aught. In Fig. 3.5 the mean weightof autumn and spring �sh 
lassi�ed by length are shown. The spring �sh of agiven length 
lass are noti
eably lighter than autumn �sh of the same length.To 
on�rm this result, a weight length 
urve was �tted to ea
h data-set (Table3.4), su
h that W = aLb where W is weight, L is fork length and a and b are
onstants. Temperatures in the brook between the autumn and spring surveysare 
ontinuously below the TL = 6oC limit for growth, so this di�eren
e will beassumed to be due to over-winter weight loss.Table 3.4: Weight-length 
oeÆ
ients for the Catamaran brook dataSeason a bAutumn 1992 0.0090 3.081Spring 1993 0.0092 2.990Autumn 1993 0.0108 2.972Spring 1994 0.0095 2.96447



Short term starvation experimentsTwo data sets in whi
h weight loss was measured over short periods of starvationby Carter et al. (1992) and Wainwood et al. (1992) were found in the literature.In the Wainwood et al. (1992) experiment, juvenile Canadian salmon were starvedfor 43 days at a 
onstant temperature of 13ÆC � 1oC. S
ottish juvenile salmonwere used by Carter et al. (1992), and were starved for 30 days with varyingtemperatures of 5� 8ÆC. Details of the results are given in Table 3.5.A starvation-re
overy experimentAnother data set that involved starvation was by Met
alfe and Thorpe (1992).Over a 29 day period, �sh were starved for the �rst 21 days, then fed to satiationfor four days, then starved for a further two days before undergoing a two dayappetite trial. During the trial, the �sh were o�ered food and their growthresponse was noted. By the end of the trial, the �sh were refusing food, whi
hindi
ates that they were fed to satiation. Over the experimental period thetemperature 
hanged from 10:2 � 10:5ÆC at the beginning in 26-27 O
tober to8:3�8:6ÆC by the end in 23-24 November. Estimates of the mean spe
i�
 growthrate per day over this period are given, as well fork lengths of the �sh.Parameterizing weight lossTo form a data set in order to parameterise the starvation response part of theCGMe, weight loss for three representative starting weights (5, 10 and 15 g)was 
al
ulated from the Catamaran brook data for 1992/3 and 1993/4 using thederived weight-length relationships in Table 3.4. The two short-term experimentswere added to this, resulting in the 
omplete data set shown in Table 3.5. TheMet
alfe and Thorpe (1992) experiment was omitted from 
onsideration at thistime, sin
e its results are dominated by the re
overy pro
ess and only tell usabout weight loss indire
tly.In the CGMe, the SMR is related to weight and temperature byM = 
(�)MHOW �exp� TTR� (3.22)48



Table 3.5: The parameterisation data set for SMR and starvation parametersExperiment Start Finish Initial Final TempDate Date Weight (g) Weight (g) ÆCCarter 3 Feb 5 Mar 12.30 (2.03) 11.12 (2.12) 6.2(1.0)Wainwood 5 Mar 17 Apr 20.2 (0.7) 16.9 (1.0) 13(1)13 Nov 3 May 15 12.47 01992/93 13 Nov 3 May 10 7.11 013 Nov 3 May 5 3.60 04 Nov 28 Apr 15 13.00 01993/94 4 Nov 28 Apr 10 8.68 04 Nov 28 Apr 5 4.34 0
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(d)Figure 3.6: Fits to the test dates using best �t parameters in Table 3.6 a)Carterb) Wainwood 
)Catamaran brook 1992/3 d) Catamaran brook 1993/4.where 
(�) = � 1 �=�0 > �2�
L �2 � �=�0 (3.23)This attempt at parameterisation assumes that the weight and temperature s
al-ing are 
orre
t, and treats MH0, �2 and �
L as �tting parameters. Sin
e ananalyti
 solution for the weight traje
tory under starvation 
onditions 
an be ob-tained, an automati
 optimisation by the downhill simplex method (Press et al.1989) was used and the parameters 
onstrained. Constraints of 0:026 � MH0and 0:4 � �2 � 1 needed to be pla
ed on these parameters to ensure the modelstill �tted the Elliott and Hurley (1997) data. The 
onstraint on 0:1 � �
L � 1was set to prevent it from be
oming negative. The best �t values are given inTable 3.6 and the quality of �t is shown in Fig. 3.6.49



Table 3.6: Best �t parameters - attempt 1Error Measure MHO �2 �
L Error (g)Mean Absolute Error 0.0260 0.8580 0.1000 0.3400Root Mean Square Error 0.0260 0.8440 0.1000 0.5001Table 3.6 suggests that the quality of the optimal �t is not very good. Examina-tion of Fig. 3.6 shows that all the experiments are well �tted ex
ept the Wainwoodet al. (1992) experiment, whi
h is the only one not 
arried out at low tempera-ture. This suggests that the temperature s
aling of SMR needs to be adjusted.This is not just a question of adjusting TR, sin
e this 
hanges both the slope ofthe 
urve and its absolute position on the axis. The present SMR will be assumedto be 
orre
t at the lower zero-growth temperature, TL, soM = 
(�)W � �MH0 exp (TL=TR)exp (TL=TRN )� exp� TTRN � : (3.24)TRN , �2, and �
L are now the �tting parameters, with 
onstraints 3:8 � TRN ,0:4 � �2 � 1 and 0:1 � �
L � 1. Downhill simplex �tting gives the resultsshown in Table 3.7. The resulting quality of �t is illustrated in Fig. 3.7 and ismu
h better than the previous attempt, so these new parameters will be used todes
ribe SMR for Atlanti
 salmon parr.Table 3.7: Best �t parameters - attempt 2Error Measure TRN �2 �
L Error (g)Mean Absolute Error 5.2465 0.8601 0.1008 0.1497Root Mean Square Error 4.8720 0.8744 0.1000 0.2685Parameterizing re
overy from starvationWhen the �sh begin feeding after a period of starvation during whi
h they havelost suÆ
ient weight to be
ome torpid, they re
over to a healthy state, givenenough food and time. The fun
tion �(�) shows how uptake 
hanges with the
ondition of the �sh. The form that �(�) takes is�(�) = � 1 �=�0 > �2��L < 1:0 �2 � �=�0 (3.25)The model will be �tted to data from Met
alfe and Thorpe (1992) by varyingthe parameters that are asso
iated with re
overy from starvation. These are50
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(d)(d)Figure 3.7: Fits to the test data set using best �t parameters in Table 3.7 a)Carterb) Wainwood 
)Catamaran brook 1992/3 d) Catamaran brook 1993/4.�, the reserve 
ontrol sensitivity and ��L, the torpid/hungry uptake ratio. Theseparameters were varied individually with the other parameters in the model beingheld 
onstant at their previous values. The errors between the model predi
tionand the data point as the parameters are varied are shown in Table 3.8.Changing the value of � will alter the allo
ation of assimilated material betweenR and S and hen
e a�e
t the rate of re
overy of the �sh. Lower values of � meanmore material is allo
ated to S and re
overy is slower. At a value of � = 1, the�sh remains in a torpid state throughout the period of feeding. Therefore it isuseful to derive the error at this value as any lower values of � would produ
ethe same traje
tory. As � is in
reased, the �sh re
overs from starvation qui
ker,whi
h de
reases the error in the Met
alfe and Thorpe (1992) data. Howeverlarge in
reases in � produ
e in
reasingly smaller de
reases in the error, so onlyat unreasonably high values of � is the error at an a

eptable level.Varying the ��L will produ
e an ex
ellent �t to the data when ��L is 
hangedfrom its original value of 0.8 to 0.42. This implies that when salmon parr are fedto satiation after a period of starvation, their growth rate would be lower thanexpe
ted for rainbow trout, from whi
h the original parameter was derived. The51
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Figure 3.8: Simulation on the data from Met
alfe and Thorpe (1992). The orig-inal value of ��L has been used in one simulation (solid line) and a value of��L = 0:42 for the other simulation. The error bar has been derived from errorsin the estimate of the daily spe
i�
 growth rate.simulations shown in Fig. 3.8 are for original set of parameters and with the newvalue of ��L = 0:42 that will be used in the model.Table 3.8: Errors asso
iated with di�erent parameters when �tting the model tothe data from Met
alfe and Thorpe (1992) starvation-re
overy experiment. Pa-rameters in the model were varied one at a time whilst the others were kept attheir value in the CGM. Errors asso
iated with varying that parti
ular parameterare given below. Parameter Value Error (grams)Original Parameters 0.071� = 100 0.005� = 5 0.01� = 1 0.193��L = 0:42 0.0013.4.3 Fully Parameterised CGMe ModelFinally, reverting to the parameterisations of SMR and the uptake response fun
-tion given in equations (3.23) and (3.25), our 
urrent view of the best modelparameters is summarised in Table 3.9. Simulations using these parameters are52
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Figure 3.9: Simulations from the CGMe with data from the Girno
k Burn. Thesolid lines 
orrespond to the data points with the �lled 
ir
les, and the dotted linesare the growth traje
tories of the 
ohorts with the open 
ir
les.shown in Fig. 3.9 for 
ohorts born in 1968 to 1986 with the ex
eption of 1979,when no 
ohort was born, and the data from the ele
tro-�shing surveys 
ondu
tedon the Girno
k Burn. As expe
ted, the model over-predi
ts the weights of thewild salmon parr and more importantly, over winter weight loss is reasonable.Thus, the 
urrent parameters 
an be viewed as providing a reasonable upperlimit to the growth of juvenile salmon in the Girno
k Burn.Table 3.9: Parameters for the CGMe salmon growth modelParameter Symbol Value UnitsWeight exponent � 0:69 dimensionlessMaximum growth rate for 1mg �sh 

 0:155 d�1mgC1��Optimum temperature TM 15:9 oCLow temperature limit TL 6:0 oCHigh temperature limit TU 22:5 oCSMR 
hara
teristi
 temperature TRN 5:3 oCSMR at 0oC for a healthy 1mgC �sh MH0 0:021 d�1mgC1��Ideal Reserve ratio �0 1:5 dimensionlessReserve 
ontrol sensitivity � 3 dimensionlessThreshold �=�0 for torpidity �2 0:86 dimensionlessTorpid SMR/Normal SMR �
L 0:1 dimensionlessTorpid uptake/Normal uptake ��L 0:42 dimensionless
53



Chapter 4Proto
ols for Fitting the GrowthModel to Freshwater Data
4.1 Introdu
tionThe model derived in Chapter 3 is able to simulate long term growth rates forwell-fed salmon parr given initial weight and water temperatures, and so estimatean upper bound for growth. In the wild, the �sh are unlikely to be feeding tosatiation so the e�e
ts on the growth rate of a limited food supply must bein
luded in the model. These e�e
ts will be represented by a single fun
tion�(t), where t is time. As ea
h 
ohort grows throughout its juvenile phase, �(t)will a

ount for some of the di�eren
es between the growth rates of well-fed andwild parr. In this 
hapter, a method will be developed for dedu
ing �(t) usingele
tro-�shing data from the Girno
k Burn.4.1.1 Individual Observations and AveragesIdeally, measurements of individuals should be used to derive �(t). This is notpossible, as individuals were not identi�ed from one survey to the next for thehistori
al data set. The weights of the �sh sampled from ea
h 
ohort needed tobe summarised in a way that take into a

ount variation in the weights of thepopulation. This was done by deriving the mean with the standard error (s.e.)and the median with the quartile values for ea
h age-
lass in ea
h 
ohort. Fittingthe model to this data assumes that an individual will grow at the same rate as54



the average of ea
h age-
lass. There is eviden
e to suggest that the growth rate ofwild parr is di�erent for di�erent members of the same 
ohort. Ni
ieza and Brana(1993) observed that the smaller members of a 
ohort in
reased their growth rateduring the spring and the larger members de
reased theirs, whi
h resulted in ea
hgroup having similar sizes by the summer. The Girno
k Burn data were 
olle
tedduring the summer and it will be assumed that the growth rates of the individualresident parr are not di�erent from the growth rate asso
iated with the meanlengths from the samples of the 
ohort.The data were 
olle
ted from six ele
tro-�shing surveys spread a
ross the summer.As the mean weight of the �sh 
aught from ea
h age-
lass during the surveys ea
hyear was being used as a summary of an individuals weight, a single date wasrequired to be asso
iated with ea
h mean weight. As di�erent numbers of �shwere measured at ea
h survey, the mean 
apture date was used.4.1.2 Population Stru
ture vs. Average IndividualAs the 
ohorts age, the numbers 
aught from ea
h age-
lass in ea
h sample de-
reases. This is not all due to mortality, as large numbers of parr leave the burnduring autumn and spring. The autumn migrants leave as either normal or pre-
o
ious parr whilst the spring migrants leave as smolts. Therefore, by the timea 
ohort is two years old, there has been some emigration from the populationand when it is three years old most of the �sh from that 
ohort will have died ormigrated. This means that the ele
tro-�shing samples are not a true subsampleof the survivors of that parti
ular 
ohort at ages 2+ and 3+, but only of theresident parr in the stream.Fitting the model through the mean or median weights assumes that the averageweights of all the �sh 
aught are typi
al of the individuals in that 
ohort. Inparti
ular, it does not take into a

ount any size sele
tive e�e
ts on removalfrom the population. Measurements of the lengths of the migratory juveniles areavailable, but for now, we shall 
on
ern ourselves solely with �tting the model tothe ele
tro-�shing data.
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4.1.3 In
orporating �(t) into the Growth ModelThe fun
tion �(t) is intended to indi
ate the di�eren
e between the growth ofparr in the wild and those fed to satiation and will be a fra
tion (between 0 and 1)of the assimilation rate. �(t) = 1 indi
ates that a parr is assimilating material atits maximum rate and �(t) = 0 means that the �sh is not assimilating anything,at time t. The 
hange to the CGMe model, de�ned in Se
tion 3.4, is by 
hangingequation (3.20) todRdt = �(t)A�M � dSdt dSdt = C(�) [�(t)A�M ℄+ : (4.1)This 
hange will only a�e
t the growth rate when the parr are assimilating ma-terial: the rate of weight loss due to metaboli
 
osts remains una�e
ted.4.1.4 The Data SetDi�erent data sets will produ
e di�erent values for �(t), as it is an indi
ation of theenvironmental state within whi
h the parr has grown. The best �tting pro
edureand form of �(t) will be determined using the data from the Girno
k Burn. Thesubset of the Girno
k data sele
ted in Chapter 2 will be used with standard errorsfor the means and quartile values for the medians. Temperature data and theweight-length relationship required for the model have been des
ribed in Chapter2 and the birth weights and dates will be those previously used in Chapter 3.4.2 Fitting the Model to Average Individualswith Time Dependent Temperature4.2.1 Fitting and the use of �(t)The model will initially be �tted to the means and medians of the data set with�(t) = k, where k will have a 
onstant value for all t. In order to �nd the best�t to the data, k will be varied between 0 and 1. The series of 
riteria des
ribedin Se
tion 4.2.3 are used to determine the best �t of the model to the data.
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4.2.2 Method of Deriving a Single Optimal kEstimates of k are most likely to be 0 < k � 1. Values of k < 0 are notappli
able as they lead to a negative assimilation rate. k > 1 will indi
ate thatthe �sh grows better in the wild than in tanks where they are fed to satiation. Asthis is improbable, it might indi
ate that there is a 
aw in the model. The best�t to the data will be the value of k between 0 and 1 whi
h minimise an errorterm. In order to �nd the optimum value of k (the value of k at whi
h the errorterm is minimised), the error was evaluated from k = 0 to k = 1 at in
rements of0.01. This is a robust method and will enable us to see how the error varies withk. The model will initially be �tted to both the mean and the median weightsof the di�erent age-
lasses from the di�erent 
ohorts, in 
ase there is a skeweddistribution of the weights whi
h is able to bias k.4.2.3 Determining the Goodness of Fit of the Model tothe DataRunning the model produ
es a growth traje
tory for ea
h 
ohort. Ea
h 
ohorthas at most four data points, one for ea
h age-
lass from 0+ to 3+, where data isavailable. In order to examine to goodness of �t of the model to ea
h age-
lass,a table of results has been 
omplied. The des
riptions of what ea
h of thesestatisti
s indi
ate in Tables 4.2-4.5 is as follows.The �rst 
olumn is the age-
lass for whi
h the rows of statisti
s apply. These
ond 
olumn is the average of the mean weights for that age-
lass, whi
h 
anbe 
ompared with the average of the predi
ted mean weights in 
olumn three.The range of the predi
tions is in 
olumn four. The absolute mean error is in thenext 
olumn and the per
entage error in sixth, whi
h is the absolute mean errordivided by the observed mean weight multiplied by 100.The 
olumn Sign. same is derived using two-tailed paired t�test between thepredi
ted weights and the observed mean weights. The observed mean weightsfrom ea
h age-
lass approximate a normal distribution so the predi
tions shouldalso form a normal distribution indistinguishable from the observations. A t�testwill be used to test this. The term `Y' indi
ates that the two means 
annot bedistinguished, whi
h is what is required, whereas `N' indi
ates that the means57
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Figure 4.1: Graph showing the RMS error, for di�erent values of k, betweenthe model predi
tion and the mean weights of the di�erent age-
lasses from thedi�erent 
ohorts. There is a global minimum at k = 0:89� 0:005.are signi�
antly di�erent.The �nal 
olumn, labelled Sign. 
orrel., whi
h determines whether the predi
tionsare 
orrelated with the observations, as desired. In this 
olumn, NS means the
orrelation is not signi�
ant, * means it is at P < 0:05, ** means it is at P < 0:01and *** means it is at P < 0:001.4.2.4 Estimating k by Fitting the Model to the Meansand the Median WeightsThe minimum root mean square (RMS) error was 
al
ulated for all likely possiblevalues of k with both the mean and the median data sets. Fig. 4.1 shows howthe RMS error between the model and the data varies with k. A global minimum
an be seen at k = 0:89� 0:005 and there is unlikely to be a minimum at k > 1.A similar pi
ture is produ
ed when the model is �tted to the median weights.Optimum k and the RMS error for the mean and median weights are shown inTable 4.1, and a des
ription of the �t to the two data sets are given in Table 4.2.There is a strong tenden
y for the 1+ and 2+ age-
lasses to be under predi
tedwhilst 3+ age-
lass weights are predi
ted relatively well. Small 
hanges in kprodu
e in
reasingly large 
hanges in the growth traje
tories as time in
reases.58



Table 4.1: The optimum values of k whi
h minimise the RMS error between themodel predi
tions and the observed mean and median weights.k RMS error (g)mean 0.89 3.24median 0.89 3.15Table 4.2: The �t of the model to the observed mean and median weights whenthe optimal value of k is found by minimising the RMS error.Age- Average Predi
ted Range of Mean Abs. % Sign. Sign.
lass Weight (g) Weight (g) Predi
tions (g) Error (g) Error same 
orrel.Fitted to the mean when k=0.890+ 0.82 0.75 0.42-1.38 0.24 29 Y NS1+ 5.35 3.63 2.21-5.30 1.81 34 N NS2+ 12.34 9.26 5.70-13.78 3.28 26 N NS3+ 18.92 20.07 14.41-27.67 3.49 18 Y NSFitted to the median when k=0.890+ 0.79 0.75 0.42-1.38 0.24 30 Y NS1+ 5.17 3.63 2.21-5.30 1.70 33 N NS2+ 12.12 9.26 5.70-13.78 3.13 26 N NS3+ 18.21 20.07 14.41-27.67 3.37 18 N NSThis results in a large 
hange in the error at the 3+ stage and smaller 
hanges inthe error for the 0+, 1+ and the 2+ parr. Therefore, the best �t will be heavilyin
uen
ed by the weights of the 3+ age-
lass.In order to for
e the model to �t the younger age-
lasses better, whose samplesizes and abundan
e are mu
h larger, the �tting pro
edure 
an be altered so thatit would take into a

ount the sample sizes and the spread of the data.4.2.5 Estimating k by Fitting the Model to the Data byMinimising a Weighted Fun
tionTwo weighting fun
tions that take into a

ount the spread of the data and thesample sizes are W1 and W2 in equations (4.2) and (4.3). The RMS error isrepla
ed by the weighting fun
tion, whi
h will be 
al
ulated as k varies. The
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best �t will be the value of k whi
h minimises W1 or W2.W1 =Xj Xi �Pi;j �Di;jei;j �2 ; (4.2)W2 =Xj Xi jPi;j �Di;jjei;j : (4.3)The subs
ript j refers to the 
ohort and i to the age-
lass. When used withthe means, Pi;j represents the predi
ted weight whi
h 
orresponds with Di;j, theobserved mean weight, whi
h has a standard error of ei;j. These fun
tions 
analso be used with the median weights, where ei;j is derived from the quartilevalues, as in equation (4.4) ei;j = Q1i;j �Q3i;j2 : (4.4)where Q1i;j and Q3i;j are the upper and lower quartile values respe
tively andDi;j is the observed median weight.The two fun
tionsW1 andW2 were evaluated for values of 0 < k � 1 at in
rementsof 0.01. The values of k whi
h minimise W1 and W2 for both the means andmedian weights are shown in Table 4.3, with des
riptions of the �t given inTable 4.4. Use of the weighting fun
tions 
hanges the emphasis of the �ttingTable 4.3: Values of k whi
h minimise the weighting fun
tions when applied tothe means and the medians weights. W1 W2mean 0.89 0.90median 0.87 0.89pro
edure. In the 
ase of the means, it has 
aused an in
rease in the value ofk when W2 is used. This is due to an optimum value of k being found that �tsbetter to the age-
lasses with more a

urate means (whi
h have a smaller s.e.),whi
h tend to be the 1+ and 2+ age-
lasses. This e�e
t appears to be o�setwhen W1 is used as the squared term 
reates a bias towards redu
ing the errorsasso
iated with the data points with the larger standard errors, whi
h tend to bethe 3+ age-
lass.The optimal values of k derived when the model is �tted to the medians are lowerthan for the means. This is due to the di�eren
es in the quartile values being60



Table 4.4: The �t of the model to the observed mean and median weights theoptimal value of k is found using the weighting fun
tions W1 and W2.Age- Average Predi
ted Range of Mean Abs. % Sign. Sign.
lass Weight (g) Weight (g) Predi
tions (g) Error (g) Error same 
orrel.Fitted to the mean when k=0.89 using W10+ 0.82 0.75 0.42-1.38 0.24 29 Y NS1+ 5.35 3.63 2.21-5.30 1.81 34 N NS2+ 12.34 9.26 5.70-13.78 3.28 26 N NS3+ 18.92 20.07 14.41-27.67 3.49 18 Y NSFitted to the mean when k=0.90 using W20+ 0.82 0.80 0.43-1.51 0.23 28 Y NS1+ 5.35 4.03 2.43-5.92 1.66 31 N NS2+ 12.34 10.44 6.38-15.62 2.88 23 N NS3+ 18.92 22.83 16.33-31.54 4.96 26 N NSFitted to the median when k=0.87 using W10+ 0.79 0.65 0.38-1.16 0.26 33 N NS1+ 5.17 2.91 1.81-4.20 2.25 43 N NS2+ 12.12 7.19 4.50-10.57 4.93 41 N NS3+ 18.21 15.26 11.04-20.96 3.45 19 N NSFitted to the median when k=0.89 using W20+ 0.79 0.75 0.42-1.38 0.24 30 Y NS1+ 5.17 3.63 2.21-5.30 1.70 33 N NS2+ 12.12 9.26 5.70-13.78 3.13 26 N NS3+ 18.21 20.07 14.41-27.67 3.37 18 N NSrelatively similar in size 
ompared to those of the standard errors. The weightingfun
tions are de�ned as residual divided by eij so is relatively large when thequartiles are used, espe
ially for the larger �sh. Thus the weighting fun
tions areminimised with low values of k whi
h �t the 3+ parr better. As with the means,the squared term in W1 pla
es greater weight on the larger errors whi
h tend tobe the larger �sh, whi
h further redu
es the value of optimal k.The sample size of the 3+ �sh form a small part of the whole data set, yet haveso far had a very in
uential role in �nding optimal k. The next step will beto ex
lude the 3+ data from the �tting pro
edure to assess its in
uen
e anddetermine whether a more satisfa
tory value of k 
an be derived.
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4.2.6 Estimating k by Fitting the Model to only the 0+,1+ and 2+ Age-Class DataAll the data for parr older than 2+ were ex
luded from the data set and the�tting pro
edure was applied to the mean and the median weights as in Se
tion4.2.4. and Se
tion 4.2.5. The di�erent error fun
tions were minimised in orderto derive the optimum values of k shown in Table 4.5, with des
riptions of the�ts in Table 4.6.Table 4.5: Values of k whi
h minimise the weighting fun
tions and the RMS errorbetween the model and the observed mean and median weights when the 3+ datahave been ex
luded. RMS W1 W2mean 0.91 0.91 0.91median 0.91 0.90 0.90Table 4.6: Fit of the model to the observed weights when the 3+ data has beenex
luded from the �tting pro
edure.Age- Average Predi
ted Range of Mean Abs. % Sign. Sign.
lass Weight (g) Weight (g) Predi
tions (g) Error (g) Error same 
orrel.Fitted to the mean when k=0.910+ 0.82 0.85 0.45-1.63 0.24 29 Y NS1+ 5.35 4.46 2.66-6.59 1.55 35 N NS2+ 12.34 11.73 7.11-17.62 2.83 23 Y NS3+ 18.92 25.86 18.43-35.78 7.33 39 N NSFitted to the median when k=0.910+ 0.79 0.85 0.45-1.63 0.24 30 Y NS1+ 5.17 4.46 2.66-6.59 1.54 30 Y NS2+ 12.12 11.73 7.11-17.62 2.80 23 Y NS3+ 18.21 25.86 18.43-35.78 7.68 42 N NSFitted to the median when k=0.900+ 0.79 0.80 0.43-1.51 0.23 29 Y NS1+ 5.17 4.03 2.43-5.92 1.59 31 N NS2+ 12.12 10.44 6.38-15.62 2.83 33 N NS3+ 18.21 22.83 16.33-31.54 5.04 28 N NSThe optimum values of k found have all in
reased in value as a result of theex
lusion of the 3+ data. This is to be expe
ted, as lower values of k are more62



suited to this age-
lass. These rises do indi
ate that the 3+ have an e�e
t onthe values of k, even when fun
tions whi
h dis
riminate against them due totheir small sample sizes are used. However, those e�e
ts are quite small: themeans 
hange from 0.89 and 0.90 to 0.91; medians 
hange from 0.87 to 0.89 andbe
ome 0.90 to 0.91. These small 
hanges probably do not justify omitting theinformation from the 3+ data, as the bias is very small.4.2.7 Determining the Most Appropriate Fitting Pro
e-dure for Estimating kThe �tting pro
edures for k produ
e a narrow range of values, whi
h vary from0.87 to 0.91, none of whi
h provide an adequate �t of the model to the data.They all produ
e systemati
 errors in predi
ting the weights of di�erent age-
lasses, with a tenden
y for the 1+ and 2+ to be under predi
ted or the 3+ to beover predi
ted. The next stage will be to �t a di�erent value of �(t) for ea
h yearin order to indi
ate variation in the assimilation rate between years, by rede�ning�(t) = �y, where y represents the year. This 
an be done only after the 
hoi
esof whether to �t means or the medians and whi
h �tting pro
edure to use hasbeen made.ANOVA tables 
an be produ
ed to test if there are signi�
ant improvements inthe �t of the model to the data for the di�erent methods of deriving optimal k.These would 
ompare the predi
tions when optimal k is derived from the dataand the predi
tions when the default value of k = 1 is used. For ea
h methodan F�statisti
 
an be 
al
ulated, and it was found that the use of k provideda highly signi�
ant improvement to the �t between the model and the data,with P < 0:001 in all 
ases. However, it would be inappropriate to 
ompare thedi�erent F�statisti
s due to their derivation. When the RMS error is minimised,the F�statisti
 is 
al
ulated from the sum of the squares, and when the weightedfun
tions are used, the F�statisti
s is 
al
ulated from the sum of the weightedresiduals. Ea
h of these methods pla
es a di�erent emphases on di�erent aspe
tsof the �t and so produ
e di�erent F�statisti
s. Therefore, other 
riteria will beused to de
ide on the best method.When k is derived by �tting the model to the means and medians of all thedata (Subse
tion 4.2.4), there is a tenden
y for the RMS optimisation pro
edure63



to �t the weights of the 3+ better than the 1+ and 2+ parr. This would beinappropriate as the 3+ form a very small part of the sample size, so simply�tting the data to all the medians or means by minimising the RMS error will bedis
arded. The method of �tting k to only the 0+, 1+ and 2+ data will also bedis
arded, as it ignores an important point on the growth traje
tory. One of theweighting fun
tions will be used, as they take into a

ount the a

ura
y of theestimates of the mean weights.The weighting fun
tion W1 will be biased towards the points with the largesterrors, whi
h are from the 3+ age-
lass. As the sample sizes for these �sh arerelatively small, it would be better to use a �t that was more asso
iated withthe bulk of the data, whi
h are the 1+ and 2+ age-
lasses. Therefore, the W2weighting fun
tion will be used to minimise the error between the model and thedata.Fitting to the mean and the median weights gives di�erent values of k, whi
hare a 
onsequen
e of the spread of the data and the sample sizes. The meansdo not re
e
t the spread of the data as well as the median, but the medians areless in
uen
ed by the sample size. However, as the a

ura
y of the means 
an beestimated well, due to the large sample sizes, the W2 weighted fun
tion �tted tothe means will be used as the preferred �tting pro
edure. Thus, the �nal 
hoi
eis weighting fun
tion W2 �tted to the mean weights of all the age-
lasses.The simulated growth traje
tories estimated with the value of k = 0:90 are shownin Fig. 4.2 (with a des
ription to the �t in Table 4.4). There are still systemati
di�eren
es between the residuals and the data, where the 3+ are under predi
tedand the 1+ and 2+ are generally over predi
ted. The model as it stands doesnot provide a good estimate of the growth rates for wild parr. Using a single
onstant value of �(t) = k assumes that the di�eren
e between the growth rateof wild parr and parr reared when fed to satiation is a 
onstant fra
tion of themaximum assimilation rate. The next step will be to investigate what happensif this fra
tion varies annually.
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Figure 4.2: Simulations produ
ed when �(t)=0.90 in the CGMe with the ele
tro-�shing data summarised into the means with the standard errors for ea
h age-
lassfrom the 
ohorts born from 1968-1986.4.3 Inferring Year Quality from the Model4.3.1 Estimating Annual Values of �yDeriving a 
onstant value of �(t) does not provide a good �t to the observedweights, but an optimal method has been developed to �t the model to the data.This method will be extended and use �(t) = �y, whi
h will be a set of dis
retevalues. Ea
h value will be 
onstant within ea
h year but will vary between yearsso that the value of �y will a�e
t the predi
ted growth rate of all 
ohorts presentin year y.The values for �y will be derived by minimising W2 between the model and theobserved mean weights, using the downhill simplex method of optimisation, asdes
ribed in Appendix A, with the initial 
onditions des
ribed in Subse
tion 4.3.2.The growth model has so far been �tted to the weights of the �sh. As it is a
tuallyestimating growth rates, it will also be �tted to the observed spe
i�
 growth rate(SGR) of parr. This is useful as many growth models, su
h as the E&H model,are designed to predi
t SGR. In addition, we are at the looking dire
tly at thegrowth rates in the population, so �tting to growth rate may provide a better �tto the observed mean weights.The des
riptions of the �ts between the model and the mean weights in Tables4.7-4.10 are the same as previously des
ribed in Subse
tion 4.2.3. The �ts of the65



model to the SGR des
ribed in Tables 4.7 and 4.8 are similar to those des
ribedin Subse
tion 4.2.3. ex
ept they do not apply to weight but to growth in unitsof % day�1.4.3.2 The Fitting Pro
edureThe Downhill Simplex Method of Optimisation (DSO)There will be at least 18 values of �y that need to be found for the data from theGirno
k Burn. The values are not independent, as �sh weight during one yearwill a�e
t their weight the next year, so the method previously des
ribed to �ndk is inappropriate. The DSO will be used as it 
an �nd this number of unknownparameter values more eÆ
iently.The DSO requires a set of initial values of �y and a step size to begin the �ttingpro
edure. The value of k = 0:90 was used as the initial value of �y, for all y,with a step size was 0.01. The value of k = 0:90 was 
hosen as it provided thebest �t of the model to the data in Se
tion 4.2. With these initial 
onditions, theDSO was able to minimise the error between the model predi
tions and the datato produ
e di�erent values for �y for ea
h year.Other initial 
onditions were used in order to see if the DSO would 
onverge tothe same values of �y. It was found that they did not, whi
h meant that theminimum found by the DSO was dependent on the initial 
onditions. The valuesof the error fun
tion, W2, found from ea
h set of initial 
onditions were 
omparedand varied little between them (< 2% from the average value). This indi
atedthat the solutions produ
ed from the di�erent initial 
onditions might have beentending towards the global minimum but that the error surfa
e was either too
at or too rough for it to be rea
hed.Five di�erent sets of initial 
onditions were used (with k=0.88, 0.89, 0.9, 0.91 and0.92 ea
h being the initial 
onditions for all years) to produ
e �ve sets of �y. Asthe �tting pro
edure did not 
onverge to the same minimum for di�erent initial
onditions, then the values of �y asso
iated with the lowest error value may notrepresent the global minimum but it indi
ated the best �t to the data that 
ouldbe found. The growth simulations were then produ
ed using these values of �y.An error term was derived for ea
h value of �y based on the standard error of the66



values derived from the di�erent initial 
onditions. This would give an indi
ationof how a

urately ea
h value of �y was known.4.3.3 Fitting the Model to the Mean Weights by Adjust-ing �yNow that the values of �y are being derived for ea
h year, the data that the modelis being �tted to needs to be de�ned more rigorously. For the simulations in thissubse
tion, the �rst growth traje
tories will start at the time of hat
hing of the
ohort that is born in 1968, whose �rst data point is in 1969, at the 1+ age-
lass.The traje
tory for the se
ond 
ohort will begin at hat
hing in 1969. The value of�69 will therefore be derived primarily from the 0+ and 1+ age-
lass of 1969, butthis value will also a

ount for most of the growth in 1968. This means �68 = �69and that they are not estimated separately.In Table 4.7, the �t to the mean weights is shown. In addition to this is the�t between the observed and the predi
ted SGR between 
onse
utive age-
lassesare shown. The values of �y have been derived by minimising the error fun
tionbetween the predi
ted and the observed mean weights.Table 4.7: Fit of the model to the observed mean weights and SGR when �yis derived by minimising the weighted error between the observed and predi
tedweights. Fit of the model to the mean weightsAge- Average Predi
ted Range of Mean Abs. % Sign. Sign.
lass Weight (g) Weight (g) Predi
tions (g) Error (g) Error same 
orrel.0+ 0.82 0.84 0.48-1.40 0.12 14 Y ***1+ 5.35 4.38 2.94-5.67 1.00 19 N *2+ 12.34 11.83 7.73-14.23 0.96 8 Y ***3+ 18.92 25.73 21.20-28.73 6.81 36 N NSFit of the model to the SGRAge- Average Predi
ted Range of Mean Abs. % Sign. Sign.
lasses SGR SGR Predi
tions Error Error same 
orrel.% day�1 % day�1 % day�1 % day�10+-1+ 0.40 0.36 0.31-0.41 0.05 11 N NS1+-2+ 0.22 0.25 0.21-0.31 0.04 21 N NS2+-3+ 0.11 0.20 0.16-0.26 0.09 87 N NS67



The �t of the model to the data has improved 
onsiderably by the 
hange from�(t) = k to �(t) = �y, with signi�
ant positive 
orrelations between the observedand predi
ted 0+, 1+ and 2+ weights and the absolute mean error lower by a largeamount, as shown by 
omparing Tables 4.7 and 4.4. for ea
h age-
lass. Thereare di�eren
es between the predi
ted and observed weights of the 1+ age-
lass.The �t of the model to the SGR has also been 
al
ulated and it 
an be seenthat the 0+ to 1+ growth rates have generally been under predi
ted, whilst the1+ to 2+ growth rates are over predi
ted. The 2+ to 3+ growth rates are overpredi
ted, as would be expe
ted due to the weighting fun
tion. The model willnext be �tted to the SGR and the �t 
ompared to the table above.4.3.4 Fitting to the SGR by Adjusting �yThe model will be �tted to the SGR by minimising the weighting fun
tion W2in equation (4.3), with Pi;j as the predi
ted SGR and Di;j as the observed SGR.The SGR will have a di�erent error in the weighting fun
tion and fewer datapoints than the mean weights so will produ
e di�erent values for �y. SGR willbe de�ned as SGRi;j = �Wi+1;j �Wi;jti+1;j � ti;j � =�Wi+1;j +Wi;j2 � ; (4.5)where j is the 
ohort, i is an age-
lass andWi;j is the weight of the �sh. t has unitsof days and is the mean date of the survey for age-
lass i in 
ohort j. Therefore,SGRi;j is the SGR between age-
lasses i and i+ 1 of 
ohort j.The �tting pro
edure has to be weighted down so an error term for the SGR isrequired. This will not be straightforward as measurements for individual �sh donot exist. Also the sample sizes vary greatly between age-
lasses so we are unableto use regression to determine the SGR be
ause there will be a bias towards theage-
lasses with larger sample sizes.An error for the SGR between two mean weights was derived from the standarderrors of the mean weights. An upper limit for the error term was 
al
ulatedas the SGR between the point one s.e. below the mean weight of the youngerage-
lass and one s.e. above the mean of the older age-
lass. The lower limitwas the SGR between the point one s.e. above the mean weight of the younger68



age-
lass and one s.e. below the mean of the older age-
lass. This will not be thetrue s.e. of the observed SGR but will be adequate as a weighting fun
tion. Itis determine by the spread of the data and the size of the sample, is similar tothe weighting fun
tion used previously and provides an error that 
an be applied
onsistently and qui
kly a
ross the data set. The upper and lower limits thathave been derived for the SGR are di�erent sizes, so the average of the two wasused as the weight.A new set of �y was derived by minimising the error fun
tion between the pre-di
ted and observed SGR using the same initial values for �y and step sizesas for the means weights. The quality the �t between the predi
tions and theobservations shown in Table 4.8.Table 4.8: Fit of the model to the observed mean weights and observed SGR when�y is derived by minimising the weighted error between the observed and predi
tedSGR. Fit of the model to the mean weightsAge- Average Predi
ted Range of Mean Abs. % Sign. Sign.
lass Weight (g) Weight (g) Predi
tions (g) Error (g) Error same 
orrel.0+ 0.82 0.87 0.19-2.86 0.48 59 NA NS1+ 5.35 6.10 0.80-27.73 3.99 74 NA NS2+ 12.34 15.43 1.88-61.99 10.04 81 NA NS3+ 18.92 30.85 7.08-116.37 20.13 106 NA NSFit of the model to the SGRAge- Average Predi
ted Range of Mean Abs. % Sign. Sign.
lasses SGR SGR Predi
tions Error Error same 
orrel.% day�1 % day�1 % day�1 % day�10+-1+ 0.40 0.35 0.24-0.42 0.05 11 N *1+-2+ 0.22 0.24 0.21-0.30 0.02 11 Y NS2+-3+ 0.11 0.18 0.14-0.26 0.07 62 N NSTable 4.8 shows an improvement in the �t of the model to the data when the SGRis �tted when 
ompared to the �t to the SGR in Table 4.7, as would be expe
ted,but the �t to the means is substantially worse. The paired t�test between theobservations and predi
tions is no longer appli
able due to the unequal varian
ebetween these two quantities, as 
an be shown using an F�test. This 
ase isdenoted as NA in 
olumn seven of Table 4.8.When the model is �tted to the mean weights, the residuals between both the69



observed and predi
ted SGR's and mean weights appear reasonable. This is notthe 
ase when the SGR is used to derive �y, where although the �t to the SGRhas improved, the �t to the mean weights has deteriorated 
onsiderably. Thisdeterioration may be due in part to the loss of a degree in freedom experien
edwhen deriving the SGR but is probably mainly due to the fa
t that the SGR isa relative measure of growth rather than an absolute measure.In view of these results, the model will no longer be �tted to the SGR, butinstead to the mean weights. The next subse
tion will look at how the �t isa�e
ted deriving separate values of �68 and �69.4.3.5 Fitting the Model to the Mean Weights with �68 and�69 Derived SeparatelyThis method of �tting the model to the data is very similar to the previousmethod ex
ept that values for �68 and �69 are derived separately. Therefore �69is primarily dependent on the growth that is produ
ed in 1969. As there is nodata for 1968, �68 is largely determined by the subsequent data for that 
ohort.Note that no value of �y is determined by the data from any single year as thevalues are not independent. This new method has been used to derive the resultsin Table 4.9, by minimising the error fun
tion between the predi
ted and observedweights.Table 4.9: Fit of the model to the observed mean weights when �y is derived byminimising the weighted error between observed and predi
ted mean weights when�68 and �69 are derived separately.Age- Average Predi
ted Range of Mean Abs. % Sign. Sign.
lass Weight (g) Weight (g) Predi
tions (g) Error (g) Error same 
orrel.Fit of the model to the mean weights0+ 0.82 0.86 0.49-1.42 0.13 16 Y **1+ 5.35 4.46 3.18-5.98 0.89 17 N *2+ 12.34 11.99 7.31-14.11 0.80 6 Y ***3+ 18.92 26.23 19.94-29.81 7.31 39 N NSThere is a slight improvement to the �t of the 1+ and 2+ age-
lasses when
ompared to Table 4.7, but there is also a de
rease in the quality of �t to the 0+and 3+. This has to be 
onsidered with the fa
t that there is an extra value of70



�y used in this method.Other data does exist from the ele
tro-�shing surveys from 1969 and 1970, whi
hhas yet to be used, may produ
e a better predi
tions and will be used in the nextsubse
tion.4.3.6 Deriving �y with an Extended Data SetData exists for the four age-
lasses 
aught in 1969 and 1970 but not all of whi
hhas been used previously in predi
ting �y. This has been be
ause the temperaturedata does not extend ba
k beyond 1968, so no 
omplete growth traje
tories (frombirth) for 
ohorts born before 1968 
an be produ
ed and extended forward to thedata for 1969. The following method requires data from the 0+, 1+ and 2+ age-
lasses from 1969 and all four age-
lasses in 1970 to be in
luded in the analysis.The starting weights for simulated growth traje
tories for the 
ohorts born from1967-1969 will be the mean weights of the 0+, 1+ and 2+ age-
lasses from the1969 ele
tro-�shing survey. The 3+ mean weight 
annot be used as it is the onlydata point for that 
ohort. As the data is 
olle
ted during the summer, �69 willbe 
al
ulated for the period from the ele
tro-�shing survey to the end of the year,rather than for the whole year as with the subsequent values of �y. This methodrequires that the reserve to stru
tural tissue ratio be known. During the summer,the �sh are growing at a rate where � = �0, as shown by the model. When thetraje
tories for the 
ohorts born from 1967-1969 are started, it will be assumedthat this is the 
ase.This method �ts to fewer data points as the data from the �rst year (1969) isused as starting points for the traje
tories and so the model is no longer being�tted to this data. The �t of the model to this new data set is shown in Table4.10.Table 4.10 does not produ
e a 
lear di�eren
e from the previous two methodsof �tting to the mean, both in terms of the residuals between the predi
ted andobserved means or 
orrelations.
71



Table 4.10: Fit of the model to the observed mean weights when �y is derived byminimising the weighted error between the observed and predi
ted weights whenthe extended data set is used.Age- Average Predi
ted Range of Mean Abs. % Sign. Sign.
lass Weight (g) Weight (g) Predi
tions (g) Error (g) Error same 
orrel.Fit of the model to the mean weights0+ 0.81 0.87 0.42-1.35 0.15 19 Y **1+ 5.39 4.40 4.07-6.56 0.99 18 N *2+ 12.34 11.97 10.75-13.62 0.85 7 Y ***3+ 18.67 25.71 13.00-22.56 7.04 38 N *
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Figure 4.3: Values of �y derived when minimising the error fun
tion betweenthe observed and predi
ted weights: the open 
ir
les are from the �rst methodoutlined in this se
tion, the �lled diamonds are from the se
ond method and theopen squares are from the third method.4.3.7 Comparison of FitsThe most suitable method of minimising the error between the observed meanweights and the model in order to derive �y needs to be 
hosen. The values of �yfrom the �rst two methods vary little, as shown in Fig. 4.3. Tables 4.7 and 4.872



show that there is little di�eren
e in the quality of �t. When the third method isused, more of the values for �y are di�erent, but the quality of �t is very similar,so it is hard to determine whi
h is the best method on this basis.Tables 4.11 to 4.13 are the ANOVA tables whi
h des
ribe the signi�
an
e of theparameters whi
h have been used to �t the model to the data. They show thatthe improvement by �y has signi�
an
e around the 5% level. The F�values havebeen 
al
ulated from the total weighted devian
e, whi
h is a more robust methodthan using the total sum of the square. However, as the signi�
an
e levels are allsimilar, we require other 
riteria to determine whi
h is the best method.Table 4.11: ANOVA table 
al
ulated from the weighted sum of devian
ies (WSD)using the �tting pro
edure outlined in Subse
tion 4.3.3.d.f. WSD MD F Pk 1 1318.0 1318.0 156.4 < 0:001�y 17 259.4 15.3 1.811 0.0616Residual 40 337.0 8.4Total 58 1914.4Table 4.12: ANOVA table 
al
ulated from the weighted sum of devian
ies (WSD)using the �tting pro
edure outlined in Subse
tion 4.3.5.d.f. WSD MD F Pk 1 1318.0 1318.0 161.5 < 0:001�y 18 278.2 15.5 1.894 0.0474Residual 39 318.2 8.2Total 58 1914.4The third method des
ribed in Subse
tion 4.3.6. has a number of advantagesover the others. The �rst is that the values of �y are derived with as mu
h of thedata as possible so the derivation of values with age-
lasses missing is minimised.The se
ond advantage is that the temperature re
ord required is only from thedate of the �rst mean weight measurement. This will be useful when �tting toother data sets where temperature data may not exist before the ele
tro-�shingsurveys were 
ondu
ted.Therefore, the method of deriving �y that will be
ome the default pro
edure for�tting the model to the mean weights will use the method de�ned in Subse
tion73



Table 4.13: ANOVA table 
al
ulated from the weighted sum of devian
ies (WSD)using the �tting pro
edure outlined in Subse
tion 4.3.6. Note that the d.f. 
hangewhi
h is due to using di�erent starting 
onditions that redu
e the data points used.d.f. WSD MD F Pk 1 1268.1 1268.1 149.2 < 0:001�y 17 270.1 15.9 1.876 0.0520Residual 39 330.6 8.476Total 57 1858.4
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Figure 4.4: Simulations produ
ed with the values of �y derived by �tting the modelto the mean weights with the extended data set (as in Subse
tion 4.3.6). Traje
-tories with broken lines refer to the 
ohorts with open 
ir
les.4.3.6. Fig. 4.4 shows the simulations produ
ed using this method with the data.The overall �t is now 
learly better, as, for the �rst time, it is obvious whi
h
urve �ts whi
h data points and to whi
h traje
tories the few dis
repant pointsshould �t. Table 4.14 shows how the �t of the model has improved as the �ttingpro
edure has developed from the E&H model to the CGMe when �y is used inSubse
tion 4.3.6.4.4 Sensitivity AnalysisVariation of the input variables will a�e
t the values of �y and the extent towhi
h this happens needs to be known. The input variables are approximations,and in order to predi
t �y with suÆ
ient a

ura
y, their e�e
t on �y needs to beknown and understood in order to prevent misleading results. In this se
tion, thefour input variables will be varied, and their e�e
t on �y examined. These are74



Table 4.14: R2 values derived from the �t of the model to the data for the variousmodels used. n represents the numbers of data points to whi
h the R2 value ap-plies. These values were derived by 
orrelating observations with the predi
tions.Age� Class E&H CGMe �(t) = k �(t) = �yR2 n R2 n R2 n R2 n0+ 0.126 14 0.166 14 0.154 14 0.512 131+ 0.104 15 0.001 15 0.001 15 0.242 142+ 0.114 15 0.005 15 0.006 15 0.735 153+ 0.006 14 0.125 14 0.124 14 0.235 15All 0.418 58 0.834 58 0.854 58 0.915 57the temperature, time of hat
hing, the weight-length relationship and the weightat �rst feeding.In order to test the sensitivity of the model to these quantities, how well ea
hof these quantities has been approximated needs to be known. Then the fa
torsoutlined in the previous paragraph will be varied and di�erent values of �y de-rived. These will then be 
ompared to ea
h other in order to see if the magnitudeand the relative values of �y are preserved.4.4.1 Sensitivity of the �y to TemperatureThe model uses average mean monthly temperatures, derived from the maxi-mum and minimum daily temperatures throughout the month. The resolution ofmonthly temperature was taken as the a
tual daily temperatures did not exist forall months. For these months, summaries were available as monthly means whi
hhad previously been 
al
ulated by D.W. Hay using the method above. In orderto have a uniform data set, all monthly temperatures were used and 
al
ulatedusing this method.Subsequent data from the Girno
k (from May 1986 to De
ember 1996) has beentaken by an ele
troni
 measuring devi
e that takes the temperature every 45 min-utes, whi
h 
an be regarded as a 
ontinuous re
ord. From this, more a

urateestimates of monthly mean temperature were 
al
ulated, and these were 
om-pared to estimates made using the previous method. From this, an idea of theerror asso
iated with the original method 
ould be dedu
ed.75
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Figure 4.5: Values of �y with their standard errors when the temperature is low-ered (O) and raised (M) by 0.2oC 
ompared to the original values (Æ).Results from Di�erent Temperature RegimesThe error between approximating the monthly mean by averaging the daily mini-mum and maximum temperatures and by taking the average of the temperaturesin a month when they are measured every 45 minutes was always less than 0:2oCfor ea
h month. Therefore, �y was derived with temperatures raised and loweredby 0:2oC.When the temperatures are varied by �0:2oC, the sets of �y , whi
h are shownin Fig. 4.5, were highly 
orrelated (P < 0:001, R2 > 0:9). This implies that theerror asso
iated with the method of estimating the temperature from the datais not large enough to perturb the relative values of �y suÆ
iently to 
hangetheir pattern. The absolute values of �y do 
hange be
ause lower temperaturesde
rease growth rates whi
h is 
ompensated by an in
rease in �y. A two-wayANOVA with year and temperature regime as fa
tors shows that temperature isa signi�
ant fa
tor. However, the di�eren
es in the average values of �y are lessthan 0.016, whi
h is unlikely to perturb the growth traje
tory by a large amount.4.4.2 Sensitivity of �y to the Weight-Length RelationshipThe weight-length relationship that has been used was derived using data fromthe River Eye is in the form of equation (4.6),W = �L� (4.6)where � and � are 
onstants. Altering the weight-length relationship wouldprodu
e new data sets to whi
h the model 
an be �tted, by adjusting �y.76



Deriving �y with Di�erent Weight-Length RelationshipsFour sets of �y were derived with di�erent 
oeÆ
ients for the weight-length re-lationship. �y was derived with � lowered by one s.e. and in
reased by one s.e.,then with � was lowered by one s.e. and in
reased by one s.e.An additional two sets of �y were 
al
ulated. The �rst used weights 
al
ulatedat the upper 95% 
on�den
e interval of the weight-length relationship, so thatthey all weights in
reased. The se
ond used weights 
al
ulated at the lower 95%
on�den
e interval so they all de
reased.Results Using Di�erent Weight-Length RelationshipsThe six new sets of �y 
ould be 
ompared to the values derived in Se
tion 4.3.and are shown in Fig. 4.6. It was found that all the sets of �y were highly 
or-related (P < 0:001, R2 > 0:8 in all 
ases) with ea
h other. A two-way ANOVAshowed that there were signi�
ant di�eren
es between �y derived with the di�er-ent weight-length relationships. This is be
ause the data to whi
h the model isbeing �tted has 
hanged in a systemati
 way. However, the mean absolute di�er-en
e is very small, being less than 2% of �y derived from the original weight-lengthrelationship. This indi
ates that the error asso
iated with the weight-length re-lation is small enough not to distort the general pattern of the values of �y.4.4.3 Deriving �y Using the Variable Hat
hing WeightsThe initial weight of an emerged hat
hed �sh is 
urrently assumed to be 0.15g. This is the assumed hat
h weight of the live alevins. The initial weight maya�e
t �y, so this will be tested by varying the initial weights and 
omparing theresulting values of �y.Estimates of the emergen
e weights of alevins exist in the literature for Atlanti
salmon. Gunnes (1979) reared Norwegian salmon eggs from fertilisation to emer-gen
e at di�erent temperature regimes and found their weight at hat
hing to varybetween 0.062 and 0.16. Peterson and Martin-Robi
haud (1989) used CanadianAtlanti
 salmon fry that had been raised at various temperatures with initial77
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Figure 4.6: Values of �y with their standard errors when the when di�erent weight-length relationships are used. (a) has the s
aling 
onstant � lowered (�) andraised (�) by one s.e. In (b) the exponent � is lowered (�) and raised (�) byone s.e. For (
) weights were derived using the upper (�) and lower (�) 95%
on�den
e intervals. These were all 
ompared to the original values (Æ).weights of between 0.171 and 0.181 g.The sensitivity analysis requires two extreme sizes of Atlanti
 salmon for thederivation of �y. Based on the sizes above, they will be a lower limit of 0.05 gand an upper limit of 0.2g.Results Using Di�erent Hat
hing WeightThe values of �y derived by using di�erent hat
hing weights are highly 
orrelatedwith (P < 0:001, R2 > 0:895), and a two-way ANOVA, with year and hat
hweight as fa
tors, does not show hat
h weight to be a signi�
ant fa
tor. Thissize of variation in the starting weights does not have a signi�
ant e�e
t on the78
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Figure 4.7: Values of �y with their standard errors when the when di�erent birthweights are used. The O represents �y derived from a low birth weight and M arethe �y derived from a high birth weight. �y derived when birth weight is 0.15g areshown by Æ.derived values of �y.4.4.4 Sensitivity of �y to a Temperature Dependent Emer-gen
e DateA nominal hat
hing date has been used as the starting date for 
ohorts whosegrowth is being predi
ted from birth. A more appropriate starting time may bethe date of emergen
e. After the eggs have hat
hed, the alevins stay in the gravelfor a period, after whi
h they emerge to disperse and feed (Crisp 1981). Duringthe period when they are in the gravel, they are able to survive from nutrimentsfrom a yolk sa
 with whi
h they are born (Brannas 1988). The length of thegrowing season is de�ned from the date of emergen
e and it is possible that itwill have a large in
uen
e on the weight of the �sh at the end of the growingseason (Sha
kley and Donaghy 1992).�y is a measure of year quality, so emergen
e date 
ould one of its 
omponents.Introdu
ing emergen
e date into the model will allow us to see if this is true byjudging the 
hanges of �y, as the variation of �y should de
rease. Therefore, avariable growing season will be introdu
ed into the model.A variety of methods 
an be applied to estimate the time of emergen
e. Egglishawand Sha
kley (1977) 
al
ulated the degree-days from 1stDe
ember to emergen
efor a population of salmon in Shelligan Burn in southern Perthshire, S
otland.This was 
al
ulated as 622 degree-days from eggs fertilised in 1972 to emergen
e79



as fry the following year. This estimate has sin
e been used to estimate emergen
etimes in the River Dee (Sha
kley and Donaghy 1992).Other methods exist to 
al
ulate the time from fertilisation to hat
hing (Crisp1981), hat
h date to emergen
e (Brannas (1988), Jensen et al. (1989)), andfertilisation date to emergen
e (Crisp 1988). These were derived from experimentswhere temperature was regulated.A more 
ompli
ated model exists to predi
t emergen
e period for sea trout, Salmotrutta L. by Elliott and Hurley (1998), but there is insuÆ
ient �eld data fromthe Girno
k to reparameterize and use this model for Atlanti
 salmon.Deriving �y Using Temperature Dependent Emergen
e DatesSpawning usually takes pla
e in the Girno
k during November and 
oin
ides withthe autumn spates. Bu
k and Youngson (1981) and Webb and M
lay (1996)observed that spawning o

urred between 28th O
tober and 20th November.Temperature and estimates of the spawning time are available for the Girno
kso the equation by Crisp (1981) 
an be used to predi
t time from fertilisation tohat
hing, de�ned as D in days, from temperature, T (oC). It is given below as(4.7), log D = �2:6562 log(T + 11) + 5:1908: (4.7)Then equation (4.8), whi
h is taken from Jensen et al. (1989), 
an be used toestimate the time from hat
hing to emergen
e, E,E = 472T�1:27: (4.8)This method has previously been used by Jensen et al. (1991) to estimate time be-tween fertilisation and hat
hing, given temperature re
ords, for Atlanti
 salmon.Equations(4.7) and (4.8) were 
al
ulated for �sh reared at 
onstant temperatures,and in the wild over this period, there are large 
hanges in temperature.D was 
al
ulated �rst by taking a range of dates between fertilisation and anassumed maximum hat
hing date, D0. The average temperature between fertili-sation and ea
h date up to D0 was 
al
ulated and was then used in equation (3.7.)to produ
e a series of values of D. The hat
hing date was taken when D0 = D.80



A similar pro
ess was used to 
al
ulate E. This was repeated for all the yearsfrom 1970-1986 for three di�erent fertilisation dates.Three sets of �y were produ
ed using this method. They 
orresponded to an early,middle and late fertilisation date (1st , 10th and 21st November respe
tively) whi
hprodu
ed emergen
e dates that ranged from 16th April to 23rd June. A fourthset of �y was produ
ed using the method des
ribed by Egglishaw and Sha
kley(1977) whi
h was based on degree-days, whi
h gave emergen
e dates between 2ndMar
h and 1st April.Results Using Di�erent Emergen
e DatesThese simulations represented a large range of starting dates yet produ
ed verysimilar and highly 
orrelated values of �y, whi
h are shown in Fig. 4.8. When
orrelated with ea
h other and the values of �y derived in Subse
tion 4.3.6, P <0:001 and R2 > 0:73. A two-way ANOVA with year and emergen
e date asfa
tors showed that emergen
e date was not a signi�
ant fa
tor for the values of�y.4.4.5 Overall Robustness of the modelThe pattern of �y produ
ed by the original data set has been preserved well forall the simulations in this se
tion. This indi
ates that the model's predi
tionsof �y are robust for the magnitude of measurement error of the input variables.The values of �y from the simulations are shown in Fig. 4.9 and have also beensummarised into mean values with 95% 
on�den
e limits.The model now needs to be tested on data that has more than one data pointfor ea
h 
ohort per year so that we 
an see if the growth traje
tories withinyears represent the growth of the population within years. The assumption thatthe mean growth rate of the population 
an represent the growth rate of anindividual needs to be tested. These will be done using data for individual �shin the Chapter 5.
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Figure 4.8: �y derived from di�erent emergen
e dates. (a) are �y derived fromemergen
e dates based on fertilisation dates and over winter temperatures. �yderived from three fertilisation dates are shown, where O is early, � is mid andM is late. The middle birth date is 
ompared to the original �y (Æ) in (b). (
)
ompares the �y when it is derived from the E&S formula (�) and the originalvalues.
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Figure 4.9: Values of �y derived from the sensitivity analysis and the valuesderived in Subse
tion 4.3.6. (a) S
atterplot of �y, (b) the 95% CI are shown fromall the �y derived in this se
tion and the original values.
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Chapter 5Fitting the Growth Model toData from Individual Parr
5.1 Introdu
tionThe model developed in Chapters 3 and 4 has been used to predi
t the meanweights of di�erent age-
lasses for di�erent 
ohorts. The mean weight of the parrfrom ea
h age-
lass in ea
h year has been used to represent the weights of theindividuals of the population. Also, the growth traje
tories have only been �ttedto the mean weights for parr sampled during the summer. These traje
torieshave been assumed to be appli
able to an individual in that population all yearround.In this 
hapter, we aim to test two aspe
ts of the model. The �rst will be: Howwell 
an the model predi
t the mean weights of the population during monthsbetween summer surveys? The se
ond will be: Is the model able to predi
t thegrowth traje
tories of individual parr?These aspe
ts will be tested using a set of data that was 
olle
ted at approx-imately monthly intervals from summer 1998 until spring 1999. It 
onsists ofele
tro-�shing samples taken in the middle se
tion of the Girno
k Burn. A sele
-tion of parr at ea
h survey were individually marked, so if they were subsequentlyre
aptured at a later survey, they 
ould be identi�ed. This would then give anindi
ation of the growth rates of individual parr over this period.Previously, the model has been �tted to the data by adjusting the fun
tion �(t) =84



�y, an annual step fun
tion whi
h 
hanges at the start of ea
h year. The modelwill now be �tted to the data by adjusting a single 
onstant value of �(t) = �mapplied from June 1998 until Mar
h 1999. This single annual value will make
omparisons between di�erent parr straight forward, parti
ularly for parr only
aptured before or after 1st January 1999 whi
h would have had only one valuewhereas the other parr would have had two. On
e the model has been �tted tothe mean weights and to the individual parr weights, the predi
ted growth rates
an be 
ompared by seeing if �(t) di�ers for individuals and the population.5.2 Data from the Girno
k Burn from 1998-995.2.1 Data from Individual Salmon ParrTen ele
tro-�shing surveys were 
ondu
ted from June 1998 to Mar
h 1999 at twosites in the middle se
tion of the Girno
k Burn. During ea
h survey, salmon parrhad their length and weight measured. Unmarked parr longer than 80mm weremarked using a long lasting panjet marking 
ode that was individually unique.They were often re-
aught at subsequent surveys. S
ale samples were taken todetermine the parr's age, and most of the parr 
aught were from the 1996 or 1997
ohorts. Parr from other 
ohorts 
omprised too small a sample to use. Markedparr 
aptured at the �sh trap during the autumn and spring migrations also hadmeasurements were taken in the same way.5.2.2 Temperature DataThe water temperature over the period of the surveys was measured using a digitalre
order every 45 minutes, whi
h was lo
ated downstream at the �sh trap. There
ordings for ea
h month were summarised into monthly temperatures by takingtheir average. These average monthly temperatures were then used in the model.
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5.3 Fitting the Model to the Population MeanWeights5.3.1 Fitting the Model to the DataA method was required to test whether the growth traje
tories produ
ed by themodel were similar to those that are observed in the wild population. The modelhad previously been �tted to the mean weights during the summer, representedby just one measurement ea
h year. It 
ould now be �tted to mean weights fromthe population sampled on a monthly basis from June 1998 until Mar
h 1999.Three �tting parameters were used. The �rst was the annual year quality es-timator, �(t) = �m, whi
h would be kept 
onstant a
ross all age-
lasses. Theother two were the starting weights for the growth traje
tories of the age-
lasses,denoted W0;97 and W0;96, for the 1997 and 1996 
ohorts respe
tively. The tra-je
tories would start at the time of the measurement of the �rst mean weightfor ea
h age 
lass, whi
h was on 8th June. The starting weights were �tted pa-rameters rather than �xed points from whi
h the traje
tory 
ould start as thereis some un
ertainty asso
iated with ea
h data point. The reserve to stru
turalweight ratio was assumed to be at its ideal value during the summer when thegrowth simulations were started.The parameters were found using the DSO pro
edure and minimising the weightederror fun
tion,W2 des
ribed in equation (4.3). The initial 
onditions for the DSOpro
edure were varied and always 
onverged to the same minimum, and the �ttedparameters are shown in Table 5.1.Table 5.1: Parameters derived from �tting the model to the mean weights of thepopulation by minimising the W2 weighting fun
tion.W0;97 (g) W0;96 (g) �m Mean weighted error4.852 10.016 0.76656 1.26295.3.2 The Predi
ted Mean WeightsThe model has been �tted to mean weights of the population sampled at varioustimes from June until Mar
h, a period that 
overs the autumn migration and86
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Figure 5.1: Fit of the model to the mean weights for the 1996 and 1997 
ohortfrom the ele
tro-�shing surveys. The observations are shown with their standarderrors and the parameters used in the model are those in Table 5.1.the start of the spring migration. Individuals from the marked population werefound to have migrated during this time as they were re
aptured downstream atthe smolt trap. As the older parr form the majority of the migrants, the 1996
ohort will be the one whi
h is most a�e
ted.The data to whi
h the model was �tted, with the standard error of the means,and the predi
tions from the model using the parameters in Table 5.1, are shownin Fig. 5.1. There are two aspe
ts of the 
ohort's mean weights that the model isunable to reprodu
e. The �rst is the de
rease in the mean weights from Septemberuntil De
ember for the 1996 
ohort: the model over predi
ts observed weights.This is not apparent for the 1997 
ohort, where the 
hanges in the mean weightsare predi
ted well. As the spring migration is beginning, the model is able topredi
t the mean weights of the resident parr from the 1996 
ohort on the �naltwo surveys during the 17th and 18th Mar
h but not for the weights for theprevious survey, on the 5th Mar
h. The observed weights of the 1996 
ohortfall between 5th Mar
h and 18th Mar
h 1999 may be due to the larger membersof the population smolting, and the de
rease in the mean weights of the 
ohortduring autumn may be due to the autumn migration.There are no me
hanisms in pla
e in the model to 
ope with the e�e
ts of mi-gration on mean weights of the resident population. If the de
ision to migration87



is based on the growth rate, whi
h it is generally thought to be (Elson (1957),Met
alfe et al. (1990), �kland et al. (1993), Osterdalh (1969)), then this willlower the weight of the resident population, and the model will over predi
t theirweight, whi
h appears to be the 
ase.The se
ond aspe
t that the model fails to predi
t is a large in
rease in the meanweight during the spring. This o

urs between the January and the �rst Mar
hsurvey for the 1996 
ohort, and between the �rst and the �nal two Mar
h surveysfor the 1997 
ohort. Over this period the model predi
ts weight loss due to thewater temperature being less than 6oC. The reasons why these data are �ttedbadly are dis
ussed in Se
tion 5.5.Another large error o

urs between the predi
tion and observation of the meanweights of the 1997 
ohort on 8th June 1998. The model over predi
ts by a largeamount, and the errors of the subsequent predi
tions over the summer for the
ohort are relatively small. As the spring weights are under predi
ted, the periodof rapid growth may last from Mar
h until June. This would indi
ate that thepredi
ted growth rate was too low and that, over this period, �m is too low.5.4 Fitting the Model to Individuals' WeightsThe aim of the model is to predi
t the growth rates of individual parr, and wehave so far assumed that �tting the model to the mean weights of the populationis representative of �tting to the weights of individuals. We will be able to testthis assumption by �tting the model to data from individual parr. During theele
tro-�shing surveys on the Girno
k from 8th June 1998 to 18th Mar
h 1999,124 marked parr were 
aught more than on
e. This meant that we were able to �tthe model to ea
h individual by adjusting �(t) = �i. From these parr, we wouldbe able to 
ompare �m to the values of �i and also examine the distribution ofthe residuals to assess the goodness of �t.
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5.4.1 Derivation of �iApplying the DSO pro
edureA growth traje
tory was �tted to ea
h individual parr whi
h was 
aught at leasttwi
e using the weight at �rst 
apture as a starting point for the traje
tory andadjusting �i to �t the observations. Four di�erent initial values of �i were used inthe �tting pro
edure (�i=0.65, 0.75, 0.85 and 0.95) in order to see if they would
onverge to the same solution. The starting value of � needed to be adjusted forthose parr �rst 
aught late in the season, as the parr 
ould no longer be assumedto be healthy (i.e. � = �0). They were assumed healthy in June, and fromthe parr 
aught in June, � was estimated at the dates of the following surveys.Therefore, as the season progressed, these values of � were used at the start ofthe simulations for newly 
aught parr. The weighting fun
tion 
ould not be usedas there was no standard error asso
iated with ea
h data point, so the RMS errorwas minimised. Using this pro
edure, a value of �i was derived whi
h 
ould beused to produ
e a growth traje
tory for ea
h parr.Using the four di�erent initial 
onditions of �i mentioned above, it was foundthat the DSO did not always 
onverge to a unique solutions. Moreover, the valueof �i for all the parr �rst 
aught after the August survey was highly sensitive tothe initial 
onditions. No parr were �rst 
aught during the September survey, butthose from the O
tober survey required simulations to begin on the 30th O
tober1998, whi
h is six days before the predi
ted assimilation rate be
omes and staysat zero until 12th Mar
h 1999. This means that �i will have little or no e�e
t onthe growth traje
tory over this period, so all parr whi
h were �rst 
aught afterthe August survey were ex
luded from further analysis.Summary of Individual DataWe shall be using the traje
tories �tted to the �nal data set of 71 individual parr.Table 5.2 shows when the parr were �rst 
aught, and the numbers re
aptured atsubsequent surveys, with the dates of all the surveys. Of the 71 parr, 45 were
aught more than twi
e, 26 more than three times, 14 more than four times andseven more than �ve times. The parr whi
h were 
aught the most often tendedto be those whi
h were 
aught the earliest.89



Table 5.2: Summary of the 
apture dates for the parr to whi
h the model was�tted. Date of Number Number of marked Mean numberSurvey �rst 
aught parr 
aught of re
aptures8-Jun-98 23 - 2.43527-Jul-98 37 11 2.32426-Aug-98 11 43 2.27330-Sep-98 0 38 -30-O
t-98 0 16 -15-De
-98 0 15 -29-Jan-99 0 11 -5-Mar-99 0 10 -17-Mar-99 0 11 -18-Mar-99 0 12 -5.4.2 Analysis of �iThe values of �i derived from the individuals ranged from 0.592 to 0.905 and aredisplayed in Fig. 5.2. Ea
h of these histograms represents a di�erent subsampleof parr, whi
h are de�ned by the minimum number of times ea
h parr was 
aught.The values of �i are approximately normally distributed, and as the parr whi
hare 
aught least are removed, the standard deviation of the distribution tends tode
rease, as shown in Fig. 5.3.As the resolution of the data in
reases, the less variation there is in the derivedvalues of �i, and indi
ates that there may be a single `site' value of �i, and theobserved variation is this site value perturbed by experimental error. This 
an betested by looking at the size of perturbations required to produ
e the observeddistribution of �i for the individual parr whi
h were 
aught most often.Error Asso
iated with Re
orded WeightsDedu
ing the size of the perturbation to the data that would produ
e the spread�i whi
h is seen in Fig. 5.2.e. would allow us determine if the spread of �i wasthe result of measurement error or due to another pro
ess. In order to do this,the size of the experimental error needed to be determined.Parr 
aught during the surveys were pla
ed in a holding tank for between half an90
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Figure 5.2: Histograms of �i derived from individual parr. The top histogram(a) is for all 71 individuals, (b) is from parr whi
h were 
aught more than twi
e,(
) from parr whi
h were 
aught more than three times, (d) for parr whi
h were
aught more than four times and (e) is from parr whi
h were 
aught greater than�ve times.hour and three hours before being weighed. During this time, it was possible thatthe parr may have be
ome lighter through eva
uation of the gut. If the parr wasre
aptured on a subsequent survey, and weighed after a di�erent amount of timein the tank, then the level of eva
uation would be di�erent. These di�eren
eswould them produ
e random errors in the data set, so it was important to knowwhat the s
ale of this error was likely to be.91
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Figure 5.3: The standard deviation of di�erent subsamples of �i from the indi-vidual parr. The subsamples are de�ned by the minimum number of times a parris 
aught.There is little literature on the gastri
 eva
uation rates of juvenile Atlanti
salmon. Rates for brown trout and rainbow trout reared at 11oC are 0.437mg.g�1.hr�1 and 0.786mg.g�1.hr�1 respe
tively, are given by Kristiansen (1998) for �shwhi
h were fed and then starved. The weight range of individual marked parrused in the random simulation tests above was 6.5-16.2g, whi
h over a period ofthree hours, equates to 0.0382g and 0.0213g for a 16.2g �sh at 11oC.In addition, some of the marked parr were 
aught and measured at the �shtrap and were remeasured three days later, when, on average, they were 0.483g(SD=0.1169g) lighter. Talbot et al. (1984) observed that it took Atlanti
 salmon(approx. 8g live weight) kept at 9-13oC approximately 60 hrs to eva
uate ameal during a period of starvation. If we assume the weight loss was due to
onstant eva
uation over this period and the parr were not feeding in the �shtrap, then we derive a �gure for eva
uation of 0:022 � 0:036g for a 16.2g parrkept at approximately 3.7oC over three hours. This provides an upper limit forweight loss due to gut eva
uation in the holding tank.92



We shall further assume that the weight loss due to metaboli
 
ost in the tank isnegligible. The parr were weighed on a balan
e with an a

ura
y of 0.1g, whi
hgives an error of �0:05g. This gives a 
ombined estimate of the experimentalerror of approximately < �0:09g for a large parr.The E�e
t of the Perturbations to the Data on �iUsing the data from the seven parr for whi
h were 
aught more than �ve times,the weight at ea
h 
apture was perturbed by a random amount taken from auniform distribution between �0:2g. The model was re�tted to this new dataset, and this pro
ess repeated 50 times for ea
h parr. From the 50 values of �ifrom ea
h of the seven parr, the varian
e was 
al
ulated and 
ompared to thevarian
e of the distribution in Fig. 5.2.e. using an F -test to 
ompare samplevarian
es.It was found that assuming a random error of�0:2g, the varian
e of the simulateddistributions were signi�
antly less than for the distribution in Fig. 5.2.e, and forea
h parr P < 0:001. Further to this, simulations were 
arried out with a randomerror of �1:0g, and the varian
e was signi�
antly less for four of the seven parr(P < 0:01). This indi
ates that the variation in the distribution of �i 
annotbe a

ounted for by random variations of < �0:2, and so 
annot be explainedthrough experimental error alone.Correlating �i with Final Predi
ted WeightThe model may be used to predi
t the weight of the parr at any time, andpredi
ted weights 
an be used as a 
omparison between �sh. The �nal predi
tedweight, WT , will be used as an estimate of the size of a �sh relative to others.Other fa
tors that 
an be asso
iated with ea
h parr are its age-
lass and if andwhen it was 
aught in the �sh trap, implying that it was emigrating. Thesefa
tors may be used to explain some of the variation in �i.A one-way ANOVA was used to look for di�eren
es between the values of �ibetween the age-
lasses, and was found not to be signi�
ant (F1;69 = 0:53; P =0:469).The values of �i 
an be 
orrelated with the �nal predi
ted weights of the parr. As93



�i is a measure of the quality with whi
h the parr grows, it may indi
ate if parrof di�erent sizes grew at di�erent rates. Table 5.3 is the a

umulated ANOVAtable from a regression model whi
h �ts �i with the �nal predi
ted weights of theparr as a 
ovariate and age-
lass as a fa
tor. Although the �t is signi�
ant, itonly explained 20.7% of the varian
e. Whether or not the parr migrated, and theTable 5.3: A

umulated analysis of varian
e table for the �t between �i and thepredi
ted weight from the CGMe model, WT . Age-
lass is a fa
tor and WT is a
ovariate. d.f. SS MSS F -value P % Var.WT 1 0.0266 0.02662 8.51 0.005 9.90Age-Class 1 0.0292 0.02922 9.34 0.003 10.87Residual 68 0.2128 0.00313Total 70 0.2687 0.00384season in whi
h they migrated were other fa
tors used in the regression model,neither of whi
h was signi�
ant.Comparing �(t) from the Mean and IndividualsThe value of �m derived from the mean weights of the population, in Table 5.1was 
ompared to the mean �i from the individuals using a t-test for the di�erentsubgroups of parr. The results are in Table 5.4, and show that �m is not di�erentwhen 
ompared to the mean of di�erent subsets based on the least number oftimes the parr were 
aught.Table 5.4: Results from using a two tailed t-test to look at the di�eren
es between�m = 0:767 and �i. Times Caught n Mean of �i P> 2 46 0.755 0.14> 3 26 0.759 0.51> 4 14 0.754 0.30> 5 7 0.772 0.68
94
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Figure 5.4: Residuals from �tting the model to the individual data summarisedinto means with their 95% CI for parr 
aught more than twi
e (residuals shownare observations-predi
tions).5.4.3 Analysis of the ResidualsThe residuals from all of the parr that were 
aught more than twi
e were 
al
u-lated and indi
ate how well the model �ts to the individual data. Fig. 5.4 showsthe mean raw residuals, 
al
ulated as the predi
tion subtra
ted from the observa-tion, with 95% CI. The tests in Table 5.5 are based on the normalised residuals,whi
h were 
al
ulated from the raw residuals divided by observed weight. Thiswas done so that the predi
tions would not be biased by �sh size, as they 
ontaintwo di�erent age-
lasses. The t-tests in Table 5.5 indi
ate whether the means ofthe normalised residuals are di�erent from zero.Table 5.5: Results from t-tests for the normalised residuals from the model forparr 
aught more than twi
e.No. Date n Mean normalised residual P2 27-Jul-98 8 0.0343 < 0:013 26-Aug-98 31 -0.0075 0.414 30-Sep-98 31 -0.0726 < 0:0015 30-O
t-98 15 -0.0320 0.236 15-De
-98 15 -0.0066 0.517 29-Jan-99 11 0.0166 0.608 05-Mar-99 10 0.0048 0.909 17-Mar-99 11 0.0858 < 0:0110 18-Mar-99 10 0.0806 0.05595



The residuals from survey 2 are all positive and 14/15 from survey 4 are negative.Traje
tories with large residuals 
annot be a

ounted for by individuals with fewdata points, and 
orrelations between normalised residuals and number of times
aught indi
ate that for survey 4, the larger normalised residuals are asso
iatedwith parr whi
h were 
aught the most often (R2 = 0:67; P = 0:011). The patternof these residuals suggest that for the period between survey 1 until survey 3, thevalue of �i is too low, and between survey 3 to 5, it is too high.The predi
ted weights of the parr during the late autumn and winter �t theobserved weights well. Over this period, the assimilation rate is 
lose to or atzero. This indi
ates that the fun
tion for the maintenan
e rate of individuals andthe parameters derived for it are able to predi
t over winter weight loss in thewild.The residuals for the �nal two surveys in Mar
h are both greater than zero, andthe reasons why this might be are dis
ussed in Se
tion 5.5.5.5 Summary and Con
lusions5.5.1 Di�eren
es between the Predi
tions and the Obser-vationsWhen the model is �tted to both the mean weights of the population and theweights for the individuals, it under predi
ts the weights in spring. This is theperiod when the water begins to warm and the parr are able to resume feeding.If the parr were not eating during the winter, then it is likely that they havean empty gut. The model only predi
ts somati
 growth, so the under predi
tionby the model may in part be a result of the gut 
ontents of the parr. A roughestimate of gut 
ontent 
an be derived from six parr, whi
h were 
aught and heldin the �sh trap at the Girno
k for a period of three days. They were weighedon 19th Mar
h and reweighed on 22nd Mar
h, and the mean weight di�eren
eand standard error was 0.48g�0:048 lower after three days, whi
h is enough toa

ount for the signi�
an
e of the residuals of surveys 9 and 10 from zero.If the gut 
ontents are having a large e�e
t on the overall weight in spring, thenthere must be a 
orresponding weight loss when the parr 
ease feeding during96



autumn and over winter. This may be seen as the model over predi
ting the parrweight at survey 4 (30/9/98).However, during Mar
h, the model predi
ts that the parr are still in a torpidstate, where the predi
ted assimilation rate is at a very low level, lower thanits predi
ted metaboli
 rate. Under these 
onditions, the parr are still in thebehavioural state that they adopt to survive over winter and the model predi
tsthat they are losing weight.When the E&H model was �tted to the data for the River Eden by Elliott andHurley (1997) they found that they under predi
ted the weight during spring andover predi
ted during late autumn. This was explained by seasonal 
hanges inappetite (Met
alfe and Thorpe 1992). As the CGMe uses the same fun
tion forthe assimilation rate as the E&H model, the same problem may be o

urring.The CGMe is unable to distinguish 
hanges in appetite, food availability or foodassimilation within years, whi
h have been generalised into the fun
tion �(t).5.5.2 Variation in �iThe variation of �i 
annot be explained by random measurement errors of theappropriate magnitude, whi
h indi
ates that not all the observed variation in �i
an be explained by measurement error around a site value, whi
h is a 
onstantand the average for all individuals. However, a signi�
ant part of the variation
an be explained by the �nal predi
ted weight of the individual parr (Table 5.3),and the �sh that manage to a
hieve higher values of �i are heavier than otherwiseexpe
ted at the end of the surveys.During the surveys, no parr less than 80mm in length were marked. This meantthat as the surveys progressed, a greater proportion of the parr 
aught 
ouldbe marked and the marked individuals be
ame more representative of the entirepopulation. The marked parr that were most frequently re
aptured were thosewhi
h were marked earliest in the season, and the lengths of these parr werebiased high with respe
t to the whole population.The mean value of �i tends to in
rease with frequen
y of 
apture. As boththe residuals and the �t to the mean weights indi
ate, higher values of �i arerequired to �t the period of summer growth. If a �sh was just sampled during97



this period, its value of �i would be high 
ompared to a �sh whi
h was morefrequently sampled after late autumn. This was be tested by 
orrelating theaverage survey date (ASD) with �i, as the ASD 
an be used as a relative measureof when the parr were sampled. The relationship was found to be signi�
ant(r70 = 0:222; P < 0:05) whi
h indi
ates that the variation in �i may be a resultof the size sele
tive marking pro
edure.We are therefore unable to determine if the variation in �i is due to the sizesele
tive marking pro
edure or the variation in the sizes of the individual parr.In order to determine this would require all of the individual parr to be markedat a similar time.5.5.3 Di�eren
es in �(t) Between Data SetsWhen the values of �i are 
ompared to �m, the signi�
an
e of the di�eren
edepends on the number of times the parr are 
aught. It is more appropriate to
ompare �m to the �i for the parr most frequently sampled as these parr 
over alonger time span and are better able to approximate the growth traje
tory overa similar time span. This would imply that �(t) is similar when �tting to meanweights and individual weights. The values of �i vary greatly from those derivedfrom �tting the model to the histori
 ele
tro-�shing data from 1969-86, where theaverage annual value of �y was 0.9127. Three possible reasons why this might beare listed below.The �rst is that the 
onditions for growth within the stream have de
reased overthis period. We are unable to tell if there has been a 
hange in the stream 
ondi-tions, as suÆ
ient data do not exist. However, we are aware that the temperaturepro�le is 
hanging, as shown in Chapter 2, whi
h would alter the 
onditions forgrowth in the Burn. These temperature 
hanges are the largest in the spring,whi
h is the period for whi
h individual data is unavailable. As the model at-tempts to predi
t growth having a

ounted for temperature, there may be otherenvironmental 
hanges (su
h as food or density) whi
h have 
aused a redu
tionin �(t)In 1998/99, �i has only �tted a
ross two age-
lasses and in Chapter 4 it is �tteda
ross four, where the weights of the 1+ age-
lass during the summer were gen-98



erally under predi
ted, whilst the 2+ age-
lass were �tted well. In order for themodel to �t both these age-
lasses equally well for the 1969-86 data would require�y to in
rease in value. It is by �tting to the 3+ age-
lass whi
h prevents thisin
rease, so the relatively low values of �i and �m in 1998/99 
annot be explainedby �tting to just the 1+ and 2+ age-
lasses.The most likely explanation is that the di�eren
es o

ur be
ause �i is �tted onlyto the part of the year that misses the growth spurt during spring. This appearsreasonable as �i is a measure of the average growth potential over a period of time,and if this time period ex
ludes a short but vital part of the growing season, thenit would be expe
ted to be lower than a value whi
h in
ludes the entire growingseason.5.5.4 Improvements to the ModelThe model fails to predi
t the in
rease in weight during the spring and the pre-di
ted growth traje
tories over this period are too low. This would require stru
-tural 
hanges to the model, but individual data do not exist for a suÆ
iently longperiod of time to parameterise su
h a new model, and the ele
tro-�shing datafrom 1969-86 does not 
over this part of the season.When �tting the model for data within years, a variable fun
tion for �(t), allowingit to 
hange on a monthly basis, would seen more appropriate. This would allowfor the 
hanges in 
onsumption throughout the year. However, with the 1969-1986 Girno
k data, there is only one data point per age-
lass per year, so �ttinga variable �m would not be feasible. The values of �i derived for the di�erentage-
lasses do not di�er signi�
antly, so the same value 
an probably be useda
ross all age-
lasses.There are drawba
ks in �tting to the mean weights of age-
lasses rather thanto individual weights, parti
ularly in a population with size sele
tive migration.The model needs to be adapted to a

ount for the e�e
ts of migration on themean weights of the resident parr. This means that a me
hanism needs to beintrodu
ed into the model that will alter the predi
tion of the mean weights ofthe 2+ and 3+ resident parr. This amended model will more a

urately predi
tthe growth of the smaller parr that do not migrate and we shall develop su
h a99



model in Chapter 6.
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Chapter 6Adapting the Model to In
ludeSize Sele
tive Migration
6.1 Introdu
tionThe CGMe model has not been able to �t all the age-
lasses equally well, inparti
ular the 3+ �sh whi
h are always over predi
ted. The 1+ age-
lass is alsobadly �tted, in general being under predi
ted.A major feature of the juvenile life history has yet to be in
luded in the model,whi
h is emigration from the population. Migration from a 
ohort begins duringthe autumn when the parr are approximately 18 months old. There is a lullover winter and few are 
aught in the �sh trap between De
ember and February.There in an in
rease in the number of migrants the following spring, when theparr be
ome smolts, at around 24 months old. The same migration pattern o

ursin the 
ohort the following year.It is un
lear what proportion of the 
ohort migrates during the autumn be
ausenot all of them are 
aught at the �sh trap, but for the years for whi
h good datadoes exist approximately a third leave in autumn and the rest in spring. Theaverage annual per
entage of autumn migrants that are 1+ is 32%, and 65% are2+ parr, the rest (3%) being mostly 3+. Of the spring smolts, an average of 34%leave annually when they are two year olds and 64% when they are three yearolds, the remaining 2% being four and �ve year old �sh.Di�erent fa
tors will a�e
t the season the parr in the Girno
k migrate, su
h as101



the numbers of adult females above the �sh trap, whi
h a�e
ts the numbers ofpre
o
ious parr migrating, or the 
ow rates within the burn (Bu
k and Youngson(1982), Youngson et al. (1983)). The 
riti
al fa
tor whi
h determines the seasonin whi
h the parr migrate appears to be growth rate, and if the parr are too small,they 
an postpone migration until the following year (Met
alfe et al. (1990),�kland et al. (1993)). The result of this behaviour is that the timing of theparr's migration is not dependent on the age of the �sh, but on its size, and thatmigration from the 
ohort is size sele
tive.Therefore, as the 
ohort ages, the mean weights of the resident parr be
ome lessrepresentative of the mean weight of the entire 
ohort. The growth model wasparameterised with juvenile salmon data that ex
luded the e�e
ts of migrationon the population. When the model was �tted to data from wild parr, it was�tted to the mean weights of the resident parr, whi
h may 
hange due to e�e
tsof migration. At present, there is no me
hanism within that model to a

ountfor this.In order to in
lude size sele
tive migration from the population in the model,we must be able to model the variation in the weights within the age-
lasses inea
h 
ohort. Previously, the model has predi
ted 
hanges in the mean weight ofage-
lasses from ea
h 
ohort, and now it will be adapted to predi
t the growthof the weight-frequen
y distribution (WFD) of the 
ohort.The �rst step to modelling the variation in the WFD of the 
ohort will be to�t the model to the data from the 0+ and 1+ summer ele
tro-�shing surveys.There will have been no seaward migration from these age-
lasses as they are toosmall to undergo smolting. Parr from these age-
lasses have been observed in the�sh trap at the Girno
k over the period from 1969-86, whi
h may have been duethem dispersing in sear
h of territories. Fitting to these age-
lasses will indi
atehow the population grows before parr begin to migrate.
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6.2 Modelling the Variation in the Weight ofthe Population6.2.1 Fitting the model to the Quartile Values of the 0+and 1+ DataThe data for ea
h age-
lass within ea
h 
ohort shows that ea
h has a di�erentrange of weights. If we are to assume that the proportion of the 2+ and 3+age-
lasses that migrate is based on WFD of the population, then we must beable to model the a
tual 
hanges in the WFD of the 
ohort, rather than justpredi
ting the mean weight of the resident parr population.We have so far assumed that the initial weight for all the members of a 
ohorthas been 
onstant at 0.15g and that the growth rate of all the members of thepopulation has been the same. We shall now look at the growth rates of thedistribution of the 0+ weights by �tting the quartile values of this age-
lass tothe quartile values of the 1+ age-
lass of the same 
ohort by adjusting �y. Thiswill indi
ate di�eren
es in the growth rate of di�erent parts of the 0+ distribution.Growth simulations were produ
ed with starting weights from the 0+ data. Thesewere the median, upper and lower quartile values of the 0+ WFD. The DSOpro
edure was used to �nd the values of �y, and the initial 
onditions were thevalues of �y found previously in Chapter 4, whi
h were varied between �y � 0:02at in
rements of 0.01. The �tting pro
edure minimised the RMS error as ea
htraje
tory was only being �tted to a single point.The model 
ould only be �tted to 12 
ohorts as this was the number for whi
hdata for the 0+ and 1+ were available, and the values of �y with their standarderrors are shown in Fig. 6.1. Ea
h of the sets of �y from the �ts to the di�erentquartiles are highly 
orrelated, with r > 0:7 and P < 0:01 in ea
h 
ase.6.2.2 Analysis of �y from the Quartile ValuesWhen �tting to the quartile values of the mean weights of 0+ and 1+ parr sampledin the ele
tro-�shing surveys from 1969-1986, the values of �y are not di�erentfor the di�erent quartile values. A two-way ANOVA 
an be used to show that,103
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Figure 6.1: The optimal values of �y derived from �tting the model to di�erentquartile values of the 1+ WFD, with their standard errors.although the between year di�eren
es in �y are signi�
ant (F17;34 = 9:303; P <0:001), the di�eren
es between the values derived for the di�erent quartile valuesare not (F2;34 = 0:839; P = 0:441). This 
an be seen from Fig. 6.1, where thevalues are similar for most years and they are not systemati
ally di�erent basedon the quartiles to whi
h the model was �tted. The mean values of �y with theirstandard deviation are given in Table 6.1 along with the RMS error from the �tbetween the model and the data.Table 6.1: Mean values of �y when the model is �tted to the di�erent quartilevalues of the 1+ WFD, with their standard deviations, in bra
kets, and the RMSerror. Lower Quartile Median Quartile Upper QuartileMean (S.D.) 0.906 (0.112) 0.931 (0.112) 0.925 (0.130)RMS Error 1.34E-03 5.22E-06 5.87E-04The �t to the data is very good as 
an be seen by the RMS errors and for ea
hset of quartile values, 18 parameters are being �tted to 24 data points. Thevalues of �y are not independent and �tting to the mean weights of the 0+ and1+ age-
lasses for ea
h 
ohort will involve two values of �y (i.e. one for the �rstyear and another for the se
ond year). There are also gaps in the data, and someof the values of �y are determined by the data in the pro
eeding or subsequentyears.For the years 1970-4, 1978 and 1982-5, �y is derived when both 0+ and 1+ age-
lasses are present, and when the 0+ and 1+ data are available for these two
ohorts. For these years, there are still not systemati
 di�eren
es between the104



values of �y for the di�erent quartiles. If the values of �y for the di�erent quartileswere found to be systemati
ally di�erent, then this would indi
ate that the WFDof the parr was 
hanging. These results imply that the WFD is not 
hanging forthe 
ohorts between the 0+ and 1+ age-
lasses.6.2.3 The WFD of the 0+ and 1+ ParrIn Chapter 5 we observed that the values of �i were positively 
orrelated withthe �nal predi
ted weights of the parr when derived over the period from June1998 until Mar
h 1999. This variation in �i may be too subtle to be dete
tedwhen �tting to mean weights and when �y is derived over a di�erent period oftime. The variation in the shape of the WFD 
an be examined by 
omparing the
oeÆ
ient of variation (
.v.) of the 0+ and 1+ parr. These have been plotted inFig. 6.2 for the 
ohorts from whi
h the data is available.A two-tailed paired t-test 
an be used to show that the 
.v. from 0+ and the 1+do not vary signi�
antly, (t11 = 2:201; P = 0:184) and so are not systemati
allydi�erent. Although this supports the �ndings that �y should be the same a
rossthe 0+ and 1+ age-
lasses, it does not negate the �nding that �i is 
orrelatedwith size if there is size sele
tive mortality o

urring in the population.
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Figure 6.2: The 
oeÆ
ient of variations for the 0+ and 1+ age-
lasses for whi
hdata is available.Some values of �y derived and displayed in Fig. 6.1 have values of greater than1.0, and for the years 1970 and 1984, the mean values of �y for ea
h quartileare signi�
antly greater than 1.0. This would indi
ate that the parr are growingbetter than the optimal 
onditions of the tank reared parr on whi
h the model105



was parameterised. Ea
h value of �y represents an annual growth index and, aswe have seen in Chapter 5, the model under predi
ts spring growth. In order to
ompensate for this, the value of �y in
reases during the summer. They may alsobe greater than 1 be
ause of size sele
tive mortality. If the smaller members of0+ age-
lass died before the population was resampled at 1+, then the medianweights would 
hange towards that for the larger members of the population.However, the values of �y are a measure of the relative growth of the population.We are unable to determine if size sele
tive mortality is o

urring in the popula-tion, as the appropriate data do not exist. Given that �y appears to be 
onstantover age-
lasses when �tted to the data that is available and that the variation inthe population does not 
hange signi�
antly from the 0+ to 1+ age-
lasses, weshall assume that the di�erent variations in the sizes of the parr within age-
lassesare not due to di�ering growth rates but from the initial WFD of the population.6.3 Fitting the Model to the Data with Thresh-old Weights for SmoltingThe two main periods of migration for any 
ohort will be between the summermeasurements of the 1+ and 2+, and the 2+ and 3+ age-
lasses. If the �sh are toosmall to migrate during the �rst period, they may wait until the following year.This will give the majority of them suÆ
ient time to attain a suitable weight. Inthis se
tion, the model will be adapted to take into a

ount the fa
t that a largeproportion of the population will leave during migration, and that proportionwill be dependent on the distribution of weights of the parr population.6.3.1 Changes to the Model to Allow Size Dependent Mi-grationChanges to the ModelWe shall use the following assumptions to adapt the model to take into a

ountthe e�e
ts of migration on the mean weight of the resident parr in the stream. Weshall de�ne residents as those �sh that are in the stream when the ele
tro-�shingdata is 
olle
ted. The mean weights to whi
h the model is �tted are those of the106



resident parr, and will be denoted byWr(t) at time t. The present model predi
tsthe growth traje
tories of all individuals. We shall assume that this traje
tory,denoted Wp(t) at time t, is the mean weight of the whole population, regardlessof whether members have smolted. Thus we would expe
t Wp(t) to �t to the 0+and 1+ data well, but over predi
t the 2+ and 3+ age-
lasses.We shall assume that migration will take pla
e on a �xed date between 
onse
-utive summers. This date is fairly arbitrary, as we are interested in the e�e
t ofthe migrants on the mean weight of the resident population, whi
h is measuredduring the summer. The date of migration will be set at the 1st April ea
h yearas it is about the peak time of migration.The distribution of the weights of the population about Wp(t) will be assumedto be Gaussian and its 
oeÆ
ient of variation, 
, is 
onstant for the populationat all times.We shall assume that there are two 
onstant threshold weights above whi
h parrwill migrate. These will be denoted by W
1 for the �rst set of migrants froma 
ohort and W
2 for the se
ond set. Therefore, at the migration date, all �shabove the threshold weights will leave the population. The two migration datesare denoted m1 and m2 for the �rst and se
ond migration respe
tively. We 
antherefore dedu
e the mean weight of the resident population at migration, denotedWr(m1) and Wr(m2), given that we know the weight of the whole population atthe migration dates, where Wp(m1) is the mean population weight at the �rstmigration and Wp(m2) is the population weight at the se
ond migration date.Given that we have a 
onstant 
, if we de�ner1 = Wr(m1)Wp(m1) r2 = Wr(m2)Wp(m2) (6.1)then we 
an say that Wr(t) = 8<: Wp(t) t < m1r1Wp(t) m1 � t < m2r2Wp(t) t � m2 (6.2)Note that r1 � r2 to ensure that the parr whi
h migrate at m1 are not `reintro-du
ed' at m2. Fig. 6.3 give a s
hemati
 view of the 
hanges whi
h the 
ohortundergoes. 107
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TimeFigure 6.3: These two diagrams show how the model is �tted to the data whena proportion of the 
ohort migrates at m1 and m2. (a) These fun
tions des
ribethe probability of smolting for the di�erent age-
lasses. (b) The initial WFDof the 
ohort will have a 
oeÆ
ient of variation, 
, and mean weight of 0.15g.As time in
reases and the weight of the 
ohort in
reases, the mean weight of thedistribution will be �tted to the observed 0+ and 1+ mean weights of EFW0+ andEFW1+ at times t0+ and t1+. At timem1, the proportion of the 
ohort of length >W
1 are removed from the resident population, and are assumed to have migrated.The remaining part of the distribution 
ontinues to grow, and the mean weightof the distribution at t2+ is �tted to the observed mean weight of EFW2+. Thedistribution remains un
hanged until the se
ond migration period at m2, whereall parr of length greater than W
2 are removed from the resident population andare assumed to have migrated. The remaining part of the distribution 
ontinuesto grow up to t3+ where its mean weight is �tted to EFW3+, the observed meanweight of the 3+ parr.
108



Fitting with Constant �(t) = kThe model was �rst �tted to the ele
tro-�shing data from 1969-1986 by adjusting
, W
1, W
2, and �(t) = k representing a 
onstant value of �(t) a
ross all years.The DSO was used with a variety of initial 
onditions, and the parameter valueswhi
h minimised the mean weighted error (MWE) shown in Table 6.2. Thetraje
tories are plotted out in Fig. 6.4 and the �t of the model to the di�erentage-
lasses is shown in Table 6.3.Table 6.2: Parameters found from �tting the model to the data by adjusting 
,W
1 , W
2 and k. Also shown is the MWE.k W
1(g) W
2(g) 
 MWE0.933 12.1 19.3 0.568 9.04
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Figure 6.4: Simulations of parr weights produ
ed with the parameters in Table 6.2.Traje
tories with broken lines refer to the 
ohorts with open 
ir
les.In Fig. 6.4, the 
ut-o� point for the three year old migrants 
an 
learly be seen,but is less obvious for the two year olds (these are not a
tual growth traje
toriesfor individuals, but rather the mean weights of the resident population assumingthat migrations o

urs at a spe
i�
 date). The �t to the age-
lasses has notimproved over the model with �y ex
ept for the �t to the 3+ age-
lass, where theper
entage error has de
reased from 38% to 14% (see Tables 4.10 and 6.3).From Table 6.4, we 
an see that the s
ale of the redu
tion in the MWE from�tting with the single parameter and 
ompare it to �tting with �y. Looking at109



Table 6.3: The �t of the 4 parameter model to the mean weights of the di�erentage-
lasses of the ele
tro-�shed parr.Age- Average Predi
ted Range of Mean Abs. % Sign. Sign.
lass Weight (g) Weight (g) Predi
tions (g) Error (g) Error same 
orrel.0+ 0.81 0.73 0.35-1.43 0.26 32 Y NS1+ 5.39 4.57 2.68-7.20 1.61 30 N NS2+ 12.24 11.12 7.50-15.92 2.19 18 N NS3+ 18.92 18.12 14.02-22.25 2.70 14 Y NSthe a

umulated ANOVA table, in Table 6.5, we see that there is not a signi�
antimprovement to the model.Table 6.4: Comparison of the MWE for the di�erent models.Fitted Parameters MWE1 parameter of �(t) = k 10.357Current 4 parameter model 9.03518 parameters when �(t) = �y 5.832Table 6.5: ANOVA table 
al
ulated from the total weighted devian
e from the fourparameter model. R2 = 0:723.d.f. WSD MD F P�(t)=k 1 1268 1268 128 < 0:001W
1; W
2 ; 
 3 75 25 2.35 > 0:05Residual 52 515 9.9Total 56 1858Using the 
ut-o� points for the migration of individuals does have the desirede�e
t of redu
ing the error asso
iated with the least well �tted age-
lass, theannual mean weights of the 3+ parr. We shall now 
ombine these parametersinto a model where we �t �(t) = �y instead of �y = k.Fitting with Annual �(t) = �yThe next stage was to �t the model to the data by adjusting the values of �y aswell as 
, W
1, W
2 . This would involve �tting 21 parameters and was done usingthe DSO. Again, a variety of initial 
onditions were used, and the parameters110



that gave the best �t are in Table 6.6 with the traje
tories shown in Fig. 6.5.This version of the model will be de�ned as SSVN1.Table 6.6: Parameters derived from �tting the model with the new parameters 
,W
1 , W
2 and �y to the data.
 W
1(g) W
2(g) Range of �y MWE0.428 13.761 16.948 0.809-1.042 4.9
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Figure 6.5: Simulations of parr weights produ
ed with the parameters in Table 6.6.Traje
tories with broken lines refer to the 
ohorts with open 
ir
les.The �t of the model to the separate age-
lasses is shown in Table 6.7 and the �tfor the 0+, 1+ and 2+ is as good as formerly, though not better. However, the�t to the 3+ is 
onsiderably improved, as expe
ted.Table 6.7: The �t of the model with the new parameters 
, W
1, W
2 and �y tothe mean weights of the di�erent age-
lasses.Age- Average Predi
ted Range of Mean Abs. % Sign. Sign.
lass Weight (g) Weight (g) Predi
tions (g) Error (g) Error same 
orrel.0+ 0.81 0.92 0.57-1.55 0.17 21 Y **1+ 5.39 4.54 3.35-5.59 0.95 18 N NS2+ 12.34 12.35 7.14-14.93 0.84 7 Y ***3+ 18.92 18.32 15.52-23.31 2.46 13 Y NSTable 6.8 shows that there is not signi�
ant improvement to the �t when �y is usedwith the new parameters. Also, the predi
tions for the 1+ mean weights are stilltoo low and the predi
tions of the 3+ are not 
orrelated with the observations.111



Table 6.8: ANOVA table 
al
ulated from the total weighted devian
e from themodel with the new parameters 
, W
1, W
2 and �y. R2 = 0:853 andMWE=4.88.d.f. WSD MD F Pk 1 1268 1268 161.3 < 0:001�y 17 258 15.2 1.95 < 0:05W
1 ; W
2; 
 3 59 19.7 2.53 > 0:05Residual 35 273 7.8Total 56 1858The model has �tted a 
ommon value for the 
oeÆ
ient of variation (
.v.) for allof the 
ohorts. This value of 0.428 higher than the observed values of the 
.v. forthe 0+ and 1+ age-
lasses in Fig. 6.2, whi
h range from 0.210-0.404 for the 0+parr and 0.189-0.376 for the 1+ parr. Therefore, the variation in the WFD of the
ohort is being over predi
ted. The assumption of a 
onstant 
.v. appears to betoo ridged a 
onstraint given the variation in the observed 
.v. In the followingsubse
tion, we shall look more 
losely at the shape of the WFD to �nd a moreappropriate method of predi
ting its 
hange.6.3.2 Assuming Di�erent WFD's for PopulationFitting the Data with Di�erent WFD'sThe WFD has so far been assumed to be Gaussian for the 0+ and 1+ age-
lasses.The growth of a 
ohort was de�ned by the growth of the mean of a Gaussiandistribution, whi
h be
ame trun
ated at the migration dates de�ned as times m1and m2. We shall 
onsider using di�erent distributions as the starting points forthe 
ohorts.The WFD's of the 1+ age-
lass for whi
h data was available was �tted with threedi�erent probability density fun
tions (PDFs). The PDFs, whi
h were �tted tothe data by minimising the log likelihood fun
tion, were the Gaussian, Gammaand Weibull, ea
h of whi
h are de�ned by two parameters. The Gamma andWeibull PDFs were 
hosen as they were skewed to the right, whi
h would be the
ase for a population with di�erential growth rates and similar initial weights.For ea
h 
ohort, the 1+ data was normalised before the �tting pro
edure began.112



For all of the 
ohorts �tted, the Gaussian provided the best �t to the data,followed by the Gamma then the Weibull. Using the Weibull distribution todes
ribe the spread of the 1+ data was dis
arded as it �tted the data least well.The Gamma and Gaussian distributions would be used to de�ne the WFD of the1+ parr from ea
h 
ohort. For the Gaussian, the spread of the data would bebased on the 
.v. For the Gamma, the spread of the data would be determinedby the shape parameter of the distribution. Due to the missing data for the 1974and 1975 
ohorts, the spread of these 1+ distributions were approximated bytaking the average value from the other 
ohorts.Fitting the Data with a Gaussian Distribution with Variable C.V.The model was re�tted to the ele
tro-�shing data as before but with the following
hanges. Instead of �tting the parameter 
, ea
h 
ohort will have a value of the
.v. determined from the observations. This version of the model will be de�nedas SSVN2.Table 6.9: Parameters derived from �tting the model SSVN2 with the parametersW
1 , W
2 and �y to the data.W
1(g) W
2(g) Range of �y MWE8.81 13.79 0.821-1.080 2.56The parameters whi
h provided the best �t to the data are shown in Table 6.9.Both of the threshold values for smolting have de
reased substantially and thevalues for the MWE has de
reased by 48% in spite of the model being �tted tothe data with one less parameter. The a

umulated ANOVA table in Table 6.10shows that the parameters now a

ount for a signi�
ant amount of the variationbetween the mean weights.The �t of the model to the di�erent age-
lasses are shown in Table 6.11. Thepredi
ted weights of all of the age-
lasses are 
orrelated with the observations andthere are no longer systemati
 di�eren
es between the data and the predi
tions.
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Table 6.10: ANOVA table 
al
ulated from the total weighted devian
e fromthe model SSVN2 with the parameters W
1, W
2 and �y. R2 = 0:923 andMWE=2.55. d.f. WSD MD F Pk 1 1268 1268 317 < 0:001�y 17 258 15 3.75 < 0:001W
1 ; W
2 2 189 95 23.75 < 0:001Residual 36 143 4Total 56 1858Table 6.11: The �t of the model SSVN2 with the new parameters W
1, W
2 and�y to the mean weights of the di�erent age-
lasses.Age- Average Predi
ted Range of Mean Abs. % Sign. Sign.
lass Weight (g) Weight (g) Predi
tions (g) Error (g) Error same 
orrel.0+ 0.81 0.76 0.41-1.23 0.12 15 Y **1+ 5.39 5.15 3.44-6.58 0.26 5 Y ***2+ 12.34 12.39 9.13-15.16 0.77 6 Y ***3+ 18.92 18.27 14.26-23.35 2.05 11 Y *Fitting the Data with Gamma Distribution with Variable Shape Pa-rameterWe have thus far assumed that the WFD of the population is Gaussian. Thedistributions of the 
ohorts will now be assumed to be Gamma, with the averagegrowth traje
tory up to the 1+ data being that of the mean of the Gammadistribution. As smolting o

urs, the distribution will be trun
ated as previously,with the mean of the remaining part of the distribution being �tted to the data.As the 
ohort grows in size, the shape parameter of the distribution will remain
onstant. The �tting pro
edure will otherwise remain the same as for SSVN2.This version of the model will be de�ned as SSVG1.Table 6.12: Parameters derived from �tting the model SSVG1 with the parametersW
1 , W
2 and �y to the data.W
1(g) W
2(g) Range of �y MWE8.22 12.68 0.745-1.102 2.98The parameters whi
h provide the best �t to the data are shown in Table 6.12114



and shows a large improvement over SSVN1 and similar to SSVN2. The variationin the data a

ounted for by the two smolting thresholds is signi�
ant, as 
an beseen from Table 6.13.Table 6.13: ANOVA table 
al
ulated from the total weighted devian
e fromthe model SSVG1 with the parameters W
1 , W
2 and �y. R2 = 0:910 andMWE=2.98. d.f. WSD MD F Pk 1 1268 1268 273 < 0:001�y 17 258 15 3.23 < 0:01W
1 ; W
2 2 165 82.5 17.78 < 0:001Residual 36 167 4.64Total 56 1858The predi
tions from the model and the observations from the di�erent age-
lasses are now 
orrelated, and also the predi
tions and the observations are notsystemati
ally di�erent for any of the age-
lasses.Table 6.14: The �t of the model SSVG1 with the parameters W
1, W
2 and �y tothe mean weights of the di�erent age-
lasses.Age- Average Predi
ted Range of Mean Abs. % Sign. Sign.
lass Weight (g) Weight (g) Predi
tions (g) Error (g) Error same 
orrel.0+ 0.81 0.76 0.24-1.25 0.14 4 Y ***1+ 5.39 5.29 4.07-6.56 0.21 4 Y ***2+ 12.34 12.75 9.64-15.68 1.07 9 Y **3+ 18.92 18.19 14.41-22.09 2.33 12 Y *Determining the Best ModelOf the three models tested in this se
tion, SSVN1 is 
learly the worst as theMWE is the highest and the �t to the age-
lasses the worst in spite of using anextra parameter. The models SSVN2 and SSVG1 both have similar MWE aresigni�
ant improvements over �tting with only �y. In addition, they are able topredi
t the weight well a
ross all age-
lasses.As the model is able to predi
t the WFD of the 2+ and 3+ age-
lasses, we areable to derive an estimate of its variation that 
an be 
ompared to the observed115



variation in the data from the 2+ and 3+ age-
lasses. The 
.v. was 
hosenas a measure of variation, and derived for the 2+ and 3+ observations and thepredi
tions from the two models. The observed and predi
ted 
.v. from themodels for the 2+ and 3+ age-
lasses are plotted in Fig. 6.6.
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Figure 6.6: Predi
ted and observed 
.v. of the 2+ and 3+ age-
lasses. Theobservations are the open squares, the predi
tions from SSVN2 are the 
losed
ir
les, and the predi
tions from SSVG1 are the stars.The predi
tions of the 
.v. for the 2+ are 
orrelated with the observation for bothSSVN2 (r = 0:736; P < 0:05) and SSVG1 (r = 0:588; P < 0:05), but not for the3+. The predi
tions from the model SSVG1 are 
learly systemati
ally lower forboth age-
lasses, whi
h is not the 
ase with SSVN2. This indi
ates that using aGamma distribution would not be appropriate as it underestimates the variationin the weights of the resident 2+ and 3+ parr. Also, the 1+ data are betterapproximated by a Gaussian distribution than by a Gamma, as was seen earlier.As this is the 
ase, we shall model the population using a Gaussian distributionand the model SSVN2 will be used to predi
t other aspe
ts of the population.6.4 Comparing Predi
tions to the Smolt DataOne of the bene�ts of having the threshold weight for smolting is that as well asenabling predi
tions to be made regarding the resident population, predi
tions
an also be made about the migrants. The proportion of the 
ohort that leaves theresident population ea
h year 
an be used to predi
t the mean weight or lengthsof the migrants as well as the variation of the sizes of the migrating population.116



The model 
an also be used to predi
t what proportion of the 
ohort will migrateea
h year.Data from the smolt trap exists whi
h will allow 
omparison between predi
tionsand observations. Unlike the ele
tro-�shing data, whi
h is site spe
i�
, the datafrom the smolt trap is 
olle
ted from the whole of the burn. Also, the estimatesof the proportion of �sh leaving from ea
h 
ohort for the years 1977-1986 arein
omplete. This is due the trap be
oming 
logged with leaves during the autumn,whi
h allows an unknown number of �sh to avoid being 
aught in the trap.However, this data does give us an indi
ation of the population dynami
s and willenable us to see how well the SSVN2 model is able to predi
t these 
hara
teristi
sof the population.6.4.1 Stru
tural Weight-Length RelationshipThe weight-length relationship has so far been used to 
onvert the lengths ofthe parr into weights. The model predi
ts weight, and if we are to 
omparethe predi
tions to the smolts then we require a relationship between the two.Simply 
omparing the predi
ted weights to the observed weights of the smolts isinsuÆ
ient for a number of reasons.The predi
ted weights are for parr, and so 
omparing the two will involve 
om-paring �sh in di�erent physiologi
al states. This will not take into a

ount thephysiologi
al 
ost of smolting, when the parr are under going the 
hanges, in
lud-ing shape, or weight to length 
hanges, whi
h adapt them to living in seawater.We 
an, however, 
ompare the lengths of the smolts with those predi
ted bythe model. This is due to the model 
al
ulating the �sh weight as the sumof the reserve and stru
tural weights. The stru
tural weight (SW) does notde
rease as the �sh loses weight. Using a SW-length relationship will allow adire
t 
omparison between the observed lengths of the smolts and the predi
tedlengths of the migrants from the parr population. The relationship will be of theform in equation (6.3). ln(L) = ln(as) + bsln� W1 + �� (6.3)where W is the predi
ted weight by the model and � is the reserve to stru
turalweight ratio. The 
oeÆ
ients as and bs are derived from the data used for the117



original weight-length relationship in Chapter 2, whi
h was 
olle
ted during Au-gust when the �sh are assumed to be healthy with their reserve to stru
turalweight ratio being at its ideal value of � = 1:5. The 
oeÆ
ients used are those inTable 6.15.Table 6.15: Parameters for the regression used to derive a length from stru
turalweight. The 
oeÆ
ients are shown, with their standard errors in bra
kets.ln(as) bs1.815 (0.0052) 0.324 (0.0038)With this relationship, the predi
ted weights 
an be 
onverted into predi
tedlengths at any time of the year and vi
e versa. Although at smolting the parrmay be losing weight, its stru
tural weight will not de
rease and this 
an be usedto estimate its length.6.4.2 The Observed and Predi
ted Smolt LengthsUsing the data from the smolt trap, the mean lengths of the two year old andthe three year old spring smolts were derived. These have been 
ompared tothe smolt lengths predi
ted for 1 April ea
h year. The observations with theirstandard errors are plotted in Fig. 6.7 with the predi
tions from the SSVN2model.As 
an be seen in Fig. 6.7, the model under predi
ts the data for the two yearold smolts in all years, and over predi
ts in all but two years for the three yearolds. The predi
tions are positively 
orrelated with the observations, but notsigni�
antly. For the two year olds, r = 0:460 with P = 0:073 and for the threeyear olds, r = 0:239 with P = 0:39.6.4.3 The 
.v. of the Smolt LengthsThe predi
ted smolt lengths are derived from the part of the distribution thatemigrates from the 
ohort ea
h year. This part of the distribution has been usedto estimate the 
.v. of the emigrant population, and has been 
ompared to theobserved 
.v. of the smolt lengths in Fig. 6.8.118
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Figure 6.7: Predi
ted and observed mean lengths of the smolts migrating in thespring.
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Figure 6.8: Predi
ted and observed 
.v. of the lengths of the smolts migratingin the spring. The �lled symbols are the predi
tions and the empty ones are theobservations, and the two year old smolts are in Fig. a, the three year old smoltsin Fig. b.The model tends to under predi
t the 
.v. for both age-
lasses. Also the pre-di
tions are not 
orrelated with the observations, for the two year olds (r =0:055; P = 0:838) or the three year olds (r = 0:161; P = 0:566).119



6.4.4 Smolt ProportionsEstimates of the proportion of smolts that migrate ea
h year from ea
h 
ohort
an be made from the data from the Girno
k �sh traps. These estimates varyin their a

ura
y due to the 
hanges in the 
olle
tion pro
edure. For the 
ohortsborn from 1969-1976, the estimates are reliable due to the amount of e�ort putinto 
ounting the numbers of emigrants in the trap. After 1976, estimates of thenumber of autumn migrants are ina

urate with the degree of un
ertainty beingunknown. Therefore, for the 
ohorts born after 1976, the proportion migratingfrom ea
h age-
lass during ea
h year has been estimated from the spring migrantsand the estimates of the average proportions emigrating in autumn for the years1969-1976.

68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
Year of Birth 

0.0

0.2

0.4

0.6

0.8

1.0
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

po
rt

io
n

68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
0.0

0.2

0.4

0.6

0.8

1.0
(a)

(b)

(c)

Figure 6.9: Proportion of ea
h 
ohort predi
ted to leave at ea
h age-
lass for the1+/2yr. old in (a), the 2+/3yr. old in (b) and the 3+/4yr. old in (
). The �lledsymbols are the observations and the empty ones are the predi
tions.
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6.4.5 Summary of Fit to the DataThe predi
tions by the model �t the ele
tro-�shing data well for both the weightto whi
h it is �tted, and the 
.v. of the 2+ and 3+ data whi
h it predi
ts. Thepredi
ted weights are both 
orrelated with the observations and do not system-ati
ally over or under predi
t the observed weights. The same applies to theobserved and predi
ted 
.v. of the 2+ weights, although the predi
tions andobservations of the 
.v. for the 3+ weights are not 
orrelated.The predi
ted smolt lengths at two year olds are smaller than the observationsand the predi
ted lengths of the three year old smolts are greater than theirobservation. The predi
tions are 
orrelated with the two year old observationswhi
h implies the under predi
tion is of a 
onstant amount. The 
.v. of the smoltlengths is under predi
ted for the two and three year old smolts.The predi
ted proportions of the 
ohort smolting show the greatest deviation fromthe predi
tions. Attempting to predi
t 
hara
teristi
s of the smolt population by�tting to the ele
tro-�shing weight alone has failed to produ
e the observed data.The next step will be to �t the model to the entire data set, whi
h will allow usto 
onsider what 
hanges may be ne
essary to 
omplete the model.6.5 Fitting the Model to the Entire Data set6.5.1 Adapting the Model to Fit the Entire Data setIn Se
tion 6.3, the model was �tted to the ele
tro-�shing weights and then usedto predi
t other 
hara
teristi
s of the juvenile population. The use of a thresholdweight for smolting has 
onsiderably improved the �t of the model to the ele
tro-�shing weights as well as giving a good indi
ation of the 
.v. of the age-
lasses.The model has failed to predi
t the lengths of the spring migrants or the 
.v.of their lengths and has failed to give realisti
 predi
tions for the proportion ofthe population smolting. The next step will therefore be to �t the model to thewhole data set in order to see the extent to whi
h the predi
tions of the smoltdata 
an be improved.The model SSVN2 was �tted to data with a new error fun
tion 
al
ulated as the121



total error from ea
h of the di�erent variables. These were the four age-
lassesfrom the ele
tro-�shing data, the 
.v. of the 2+ and 3+ parr, the lengths andthe 
.v. of the two year and three year old smolts and the proportion of migrantsfrom ea
h of the age-
lasses in ea
h 
ohort. The mean absolute error from ea
hvariable was normalised by dividing by the mean observation for that variable,and these were summed to produ
e an overall estimate of the �t of the model tothe data. The 
hange to the model will be de�ned as SSVN3.The errors from SSVN2 and SSVN3 are given in Table 6.16, and are furtherbroken down into the error asso
iated with ea
h of the di�erent data sets. The% 
hange in the error measurement is also given.Table 6.16: Mean proportional error asso
iated with di�erent 
hara
teristi
s ofthe juvenile population when the model is �tted to the data by two di�erent meth-ods. variable Age-
lass SSVN2 SSVN3 % 
hangeTotal 2.9412 2.2540 -23.4EF Weight 0+ 0.1474 0.1899 +28.81+ 0.0493 0.1437 +191.52+ 0.0627 0.0855 +36.43+ 0.1004 0.1075 +7.1Smolt Length 2 0.0753 0.0865 +14.93 0.0486 0.0476 -2.1C.V. of Weights 2+ 0.1557 0.1349 -13.4from EF Data 3+ 0.3692 0.3471 -6.0C.V. of Lengths 2 0.4633 0.5267 +13.7from Smolt Data 3 0.3928 0.3564 -9.3Proportion 2 0.7083 0.0915 -87.1migrating 3 0.3683 0.1331 -63.9Overall, the �t to the entire data set has improved by 23.4%. As the model isno longer being �tted to only the weights of the resident parr, the error beingattributed to these groups has in
reased. This has ensured that the error has,in general, de
reased for other groups, the largest de
rease for the proportionmigrating and the predi
tions and observations are displayed in Fig. 6.10. Thelargest errors are now asso
iated with the 
.v. of the smolt lengths whi
h are stillunder predi
ted as 
an be seen from Fig. 6.11.We attempted to improve the �t to the data further through the introdu
tion122
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Figure 6.10: Proportion of ea
h 
ohort predi
ted by SSVN3 to leave at ea
h age-
lass for the 1+/2yr. old in the upper graph, the 2+/3yr. old in middle and the3+/4yr. old in lower. The �lled 
ir
les are the predi
tions and the empty squaresare the observations.a di�erent smolting threshold ea
h year. This required �tting W
1 and W
2 onan annual basis, and would in
rease the number of �tted parameters from 20 to49. Using the DSO pro
edure to �nd these parameters proved unsu

essful asit either failed to rea
h the 
onvergen
e 
riteria or when 
onvergen
e did o

ur,many of the parameters were un
hanged from their initial values. This suggestedthat the error surfa
e was unsuitable for using the DSO pro
edure. Rather thandevelop a new �tting pro
edure, an alternative strategy of 
hanging the smoltingthresholds was sought.The largest errors are now asso
iated with the 
.v. of the smolt lengths indi
atingthat the spread of the migrants WFD is greater than predi
ted. The variationin the predi
tions 
an be 
hanged using a variable smolting threshold, where theparr have di�erent probabilities of smolting.
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Figure 6.11: Predi
ted and observed 
.v. of the lengths of the smolts migrating inthe spring using the SSVN3 model. The �lled symbols are the predi
tions and theempty ones are the observations, and the 2yr. old smolts are the top graph andthe 3yr. old smolts in lower graph.6.5.2 Introdu
ing a Variable Smolting Weight to the ModelFitting the Model to the DataObservations of the lengths of the smolts indi
ate that there is not an exa
tsmolting length, but a range of lengths at whi
h the parr may 
hoose to migrate.This aspe
t of smolting behaviour 
an be introdu
ed into the model using avariable probability of smolting. We shall assume that for the two periods ofmigration, there is a maximum and a minimum smolting threshold. These willbe de�ned as �2 and �2 for the two year old smolts and �3 and �3 for the three yearold smolts. The �'s will denote the minimum and the �'s will be the maximum.During any single migration season, on the 1st April, all parr with length > �imigrate and all those with length < �i will stay, where i denotes the age of thesmolts. The probability of smolting will in
rease linearly between �i and �i. Thismeans that the distribution of ea
h 
ohort will be divided into parts as indi
atedin Fig. 6.12.Fig. 6.12 shows how the 
ohort would be divided up, given that the 
.v. of theentire 
ohort will remain 
onstant throughout its lifetime. The whole distributionwill grow as di
tated by the model, and proportions of the distribution will leavebased on the values of �i and �i. The model was �tted to the entire data set withthe error fun
tion de�ned for SSVN3. This version of the model will be 
alledSSVN4. 124
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Figure 6.12: These diagrams demonstrate how the 
ohorts are divided up giventhat there is a variable smolting threshold. (a) The probability of smolting willvary between �2 and �2 for the two year olds, and �3 and �3 for the three yearolds. (b) The model will �t the mean of the distribution to the 0+ and 1+ meanweights as before. At m1, a proportion of the 
ohort migrates, from whi
h themean length its 
.v. are 
al
ulated and �tted to the observations of the smolts.The size of this proportion of the 
ohort is used to predi
t how many leave duringthis migration season. At t2+, the mean weight and 
.v. of this distribution is�tted to the observed mean weight and 
.v. of the 2+. At m2, another proportionof the population leaves, from whi
h the lengths and their 
.v. and the proportionsmolting are �tted to the observations of the three year old smolts, and �nally att3+, the mean and 
.v. of this distribution are �tted to the observations from thedata from the 3+ resident parr.The Fit of SSVN4 to the DataThis 
hange to the model redu
es the overall error by 39.7%. The errors as-so
iated with the ele
tro-�shing data have in general in
reased and the largest125



Table 6.17: Comparisons between the errors of the models SSVN3 and SSVN4with the % 
hange in the error.variable Age-
lass SSVN3 SSVN4 % 
hangeTotal 2.2540 1.8573 -39.7EF Weight 0+ 0.1899 0.1952 +2.791+ 0.1437 0.1597 +11.12+ 0.0855 0.0736 -13.93+ 0.1075 0.1358 +23.3Smolt Length 2 0.0865 0.1043 +20.63 0.0476 0.0417 -12.4C.V. of Weights 2+ 0.1349 0.1458 +8.08from EF Data 3+ 0.3471 0.3535 +1.84C.V. of Lengths 2 0.5267 0.3223 -38.8from Smolt Data 3 0.3564 0.1336 -62.5Proportion 2 0.0915 0.0826 -9.73migrating 3 0.1331 0.1092 -18.0redu
tions are through predi
ting the 
.v. of the smolt lengths. The predi
tedand observed 
.v. of the lengths of the smolts are plotted in Fig. 6.13. In spiteof the large improvements, the 
.v. for both age-
lasses are still under predi
ted.However, now the 
.v. of the smolt lengths are 
orrelated for the two year olds(r = 0:524; P < 0:05) but not for the three year olds (r = 0:407; P > 0:05).
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Figure 6.13: Predi
ted and observed 
.v. of the lengths of the smolts migratingin the spring using the SSVN4 model. The �lled symbols are the predi
tions, theempty ones are the observations, and the two year old smolts are the top graphand the three year old smolts in lower graph.The quality of �t to the mean weights for the di�erent age-
lasses of the ele
tro-126



�shing data has de
reased through the su

essive �ts from SSVN2 to SSVN4,at the 
ost of �tting to other parts of the data. Table 6.18 shows the �t of theSSVN4 model to the data for the di�erent age-
lasses, and shows that althoughthe predi
tions and the observations remain 
orrelated, both the 1+ and 3+age-
lasses are generally under predi
ted.Table 6.18: The �t of the model SSVN4 to the mean weights of the ele
tro-�shingdataAge- Average Predi
ted Range of Mean Abs. % Sign. Sign.
lass Weight (g) Weight (g) Predi
tions (g) Error (g) Error same 
orrel.0+ 0.81 0.72 0.4-1.15 0.16 20 Y **1+ 5.39 4.67 3.1-6.4 0.86 16 N *2+ 12.34 12.40 9.3-15.0 0.91 7 Y ***3+ 18.92 16.45 12.9-19.9 2.57 14 N *The 
.v. for the ele
tro-�shing data for the 2+ parr has been �tted well, withthe observations being 
orrelated with the predi
tion (r = 0:763; P < 0:001).However, this is not the 
ase with the 3+ parr (r = 0:151; P > 0:05), and boththe predi
tions and the observations for the 
.v. are shown in Fig. 6.14.
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Figure 6.14: Predi
ted 
.v. of the 2+ and 3+ weights using the SSVN4 modelwith the observations. (a) is for the 2+ and (b) is the 3+. The open squares arethe observations and the 
losed 
ir
les the predi
tion.Although the error asso
iated with the lengths of the smolts are relatively small,the predi
tion for both age-
lasses are not 
orrelated with the observations andare still systemati
ally low for the two year old migrants and generally too highfor the three year olds, as 
an be seen in Fig. 6.15.127
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Figure 6.15: The observed and predi
ted mean lengths of the smolts using themodel SSVN4.The largest single improvements between SSVN2 and SSVN4 has been in �ttingthe model to the proportion smolting from ea
h age-
lass, and the �t is shown inFig. 6.16. The proportions leaving during the �rst migration season have beenpredi
ted well, whereas those leaving the next season have been slightly underpredi
ted, with the proportion leaving later being over predi
ted.The model has attempted to predi
t many aspe
ts of the population. In some ofthe 
ases, the predi
tions have des
ribed the observations well, whilst for othersthe there are systemati
 di�eren
es or the observations are not 
orrelated withthe predi
tions. The reasons why the model may be badly predi
ting di�erentaspe
ts of the population is dis
ussed in the �nal se
tion of this 
hapter.6.6 Summary and Con
lusionsThe SSVN4 variant of the model will be the �nal version that is developed inthis thesis. There are a number of reasons why further developments are unlikely128
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Figure 6.16: Proportion of ea
h 
ohort predi
ted by SSVN4 to leave at ea
h age-
lass for the 1+/2yr. old in the upper graph, the 2+/3yr. old in middle and the3+/4yr. old in lower. The �lled 
ir
les are the predi
tions and the empty squaresare the predi
tions.lead to a signi�
antly greater understanding of the dynami
s of the population.6.6.1 Limitations of the DataThe data to whi
h the model was �tted was 
olle
ted from two sour
es. Thesewere from the ele
tro-�shing surveys and from the smolt trap. The ele
tro-�shingdata has been modelled well with the ex
eption of the 
.v. of the 3+ weights.These observations are highly variable when 
ompared to the observed 
.v. of the2+ and the predi
tions for both the 2+ and 3+ parr, as 
an be seen in Fig. 6.14.This variation may be due to the relatively small sample sizes for this age-
lassthat has a large variation in individual weights. This leads to the mean weightsand the standard deviation being variable and the model is unable to predi
tthem. 129



The data that are 
olle
ted from the smolt trap is from a
ross the whole of theburn. As was shown in Chapter 2, there are di�eren
es in the weights of theresident �sh based on the altitude in whi
h they were measured. This 
ouldimply a similar relationship for the migrating �sh. If this was so, then the modelwould under predi
t the observed variation in the lengths of the smolts.The lengths of the smolts are likely to be a�e
ted by the stream se
tion in whi
hthey lived before migration, and the size of the e�e
t on the mean length would bedependent on the numbers emigrating from the di�erent se
tion. If the lower partof the stream was more produ
tive in terms of the number of smolts produ
edthan the upper se
tion, the model would be expe
ted to under predi
t the lengths.If it were the other way around, then the model would over predi
t.The lengths of the migrants are over predi
ted for the two year olds and underpredi
ted for the three year olds, whi
h suggests there are other fa
tors involvedother than a bias due to the produ
tivity of the di�erent stream se
tions. Amajor part of the migration season o

urs in autumn when many migrants leaveas parr. The model assumes that the growth rates of the autumn emigrantswould be similar to those that did stay and migrated in the spring, if they had ofstayed. The mean lengths of the autumn emigrants are 
onsiderably lower thanfor the spring smolts, and it is not 
lear how their lengths di�er from those that
hoose to migrate the following spring.Larger proportions of the 2+ migrants are pre
o
ious parr than for the 1+ parrand they are not signi�
antly larger than the other members of the autumnmigration are. However, if large numbers of pre
o
ious parr leave the populationduring the autumn, the mean weights of the three year old smolts next springmay be lower. Therefore, the e�e
t of pre
o
ious parr on the mean spring lengthswill be to lower them, and the e�e
t will be stronger for the three year old parr.This will lower the observed mean lengths to whi
h the model has been �tted,and may be a reason why the model over predi
ts the three year old lengths butnot the two year olds.The predi
tions for the age-
lass at whi
h di�erent proportions of the 
ohortmigrate are predi
ted well. However, these observations have been derived withan unknown bias from 1977-1986. When predi
ting the proportion leaving atdi�erent age-
lasses, estimates of the mortality rates have not been in
luded.130



We would therefore expe
t to over predi
t the 3+/four year old proportions andunder predi
t the 1+/two year old proportions.The temperatures that have been used in the model were 
olle
ted at the smolttrap at the lower end of the Burn. These temperatures are likely to be higher thanthose in the middle se
tion of the burn are. The e�e
t of this on the predi
tionsis that the values of �y may have been under estimated. Data exists for di�erentse
tions of the stream, and estimates of the di�eren
es in temperature for thedi�erent parts of the stream 
an be made. In Chapter 7, the SSVN2 model willbe used to predi
t the weights of parr in di�erent parts of the stream assumingthat there are di�eren
es in the water temperatures.6.6.2 Under Predi
ting Spring GrowthThe model has been shown to under predi
t the growth rates of the parr in spring.This is due to the predi
ted growth rate being less than zero for temperatures� approximately 6oC, whereas for these temperatures, growth has been seen too

ur. This would lead to the model under predi
ting spring lengths and the 
.v.of the predi
ted lengths as has o

urred.These under predi
tions in the weights result in the model under predi
ting thereserve to stru
tural weight ratio, �, so that it is too low. In order to make themodel be able to predi
t these large 
hanges in weight would require stru
tural
hanges to the model. This would require a more detailed understanding ofindividual growth rates of the juveniles in the wild.Many of the values of �y are greater than 1 whi
h indi
ates that either the model isunder predi
ting growth at some point during the year or the data with whi
h themodel was parameterised with was not predi
ting maximum growth. It appearsthat assuming that �y is a 
onstant throughout the year may be too simple, butagain, this would require long term individual data too 
orre
t.6.6.3 The Fitting Pro
edureThe DSO is unable to �nd the global minimum for the error fun
tion based on theresiduals from the model. As the model in
reases with 
omplexity, this is likely131



to result in the error surfa
e be
oming less appropriate for the �tting pro
edure.Therefore, although a minimum is found, and we 
an estimate its a

ura
y bythe variation in the parameters derived from di�erent initial 
ondition, how 
losewe are to the true minimum is still unknown.A more sophisti
ated method of �tting is required if a more 
omplex model is tobe used. Only by �nding the true global minimum will we be able to a

uratelyassess how well the model �ts the data.6.6.4 Chara
teristi
s of the So
ial EnvironmentThe fa
tors temperature, weight and �(t) have been used to predi
t growth butare unlikely to be the only fa
tors that a�e
t growth rates. These three fa
torshave been used to des
ribe the e�e
ts of the physi
al environment on the juvenileparr.As was seen in Chapter 2, the lengths of the predi
ted autumn and spring mi-grants are 
losely related to the estimated ova deposition. Further 
hanges to themodel need to involve fa
tors asso
iated with the so
ial environment of the parr.This must in
lude density dependent e�e
ts on the growth rates of individualsand size sele
tive mortality in the population. A me
hanism for 
ompetition issuggested in Chapter 8.However, the model as it is 
an be used to assess the quality of habitat withinthe burn through the derivation of �(t). This index 
an be 
ompared betweendi�erent parts of the burn to determine their suitability for salmon growth. Themodel will be applied to the data from di�erent parts of the burn, whi
h will bethe subje
t of Chapter 7.
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Chapter 7Fitting Model to Di�erent Partsof the Stream
7.1 Introdu
tionThe SSVN2 model (Gaussian WFD, variable 
.v., �tted to the parr data only)is able to predi
t the growth rates of the resident parr by estimating the yearquality given that there is size sele
tive migration within ea
h 
ohort. It hasbeen parameterised with data from both tank reared and wild juveniles, andhas previously been �tted to data from the middle se
tion of the burn using thetemperatures from the �sh trap. The data from the middle se
tion was 
olle
tedat an altitude of approximately 65m higher than the �sh trap. The model willnow be �tted to the mean weights of parr from di�erent altitudes in the burn,but with the same habitat types, with estimates water temperatures at di�erentaltitudes.When 
ompared to the �sh in the middle se
tion of the stream, those in the lowerse
tion are generally larger, and those in the upper are generally smaller (seeChapter 2). If water temperature 
an be estimated using a temperature-altituderelationship, we 
ould attempt to predi
t the di�eren
es between the lengths ofthe �sh from di�erent stream se
tions. If �y is 
onstant a
ross the burn and theresiduals are similar a
ross se
tions, then this indi
ates that to predi
t the growthrate in any part of the stream only requires a temperature-altitude relationship.A further step that 
an be taken is to a
tually �t the model to the ele
tro-�shing133



data from the di�erent se
tions with the temperatures adjusted appropriately.This would result in di�erent sets of �y for the three se
tions. If they are dis-similar, then this may indi
ate that the a
ross year annual e�e
ts on growth aredi�erent between stream se
tions, and the di�eren
es in growth between se
tions
annot be solely attributed to di�eren
es in temperature. This analysis will usea shorter data set from 1969-1976, as this is the only period for whi
h data existfor all three se
tions.7.2 Data outline7.2.1 Summarising the Ele
tro-Fishing DataLengths of parr measured during the summer ele
tro-�shing survey in habitattypes T1 and T1A are available for the years 1969-1976 for the upper and lowerse
tions of the burn, after whi
h only the middle se
tion was �shed. These lengthswere 
onverted into weights using the same weight-length relationship used onthe parr from the middle se
tion, then summarised into means for the parr fromea
h age-
lass in ea
h 
ohort, and their standard errors derived.These new data sets from the upper and lower se
tions were not as 
omplete asthe one from the middle se
tion. No measurements from 3+ parr were re
ordedin the upper se
tion during 1970 or in the lower se
tion during 1971 as none were
aught. Otherwise, the data sets are 
omparable, and form the data to whi
h themodel would be �tted.7.2.2 Deriving a Temperature-Altitude RelationshipThe maximum and minimum altitudes of the three se
tions are given in Table7.1, and the se
tions are shown on the map in Fig. 2.1. Surveys were 
arriedout within ea
h se
tion and the estimated altitude for ea
h se
tion used was theaverage between the minimum and maximum altitudes. This provided a goodapproximation of the mean as ea
h se
tion has a fairly 
onstant gradient.A formula from C. Soulsby (pers. 
omm.) states that water temperature de-
reases at a rate 6oC for every 1000m in
rease in altitude. This has been applied134



Table 7.1: The altitude of the di�erent stream se
tion of the Girno
k Burn.Stream Se
tion Minimum Altitude (m) Maximum Altitude (m)Lower 240 285Middle 285 320Upper 320 370to the se
tions in the Girno
k and the estimated di�eren
es between the tem-peratures at the �sh trap and the di�erent stream se
tions are given in Table7.2.Table 7.2: The di�eren
e in temperatures between the position of the tempera-ture re
order and the average altitude of ea
h stream se
tion 
al
ulated using theformula from C. Soulsby.Stream Se
tion Di�eren
e in temperaturefrom the �sh trap (oC)Lower -0.135Middle -0.375Upper -0.57An additional data set of temperatures were re
orded at a point at the upper endof the middle se
tion from 26/3/81 until 4/12/81. From these re
ords, the maxi-mum and minimum daily temperatures were used to estimate daily temperatures.This is the same method as was used for the �sh trap data. It was found thatthe temperatures from the two re
orders were highly 
orrelated and the meandi�eren
e between the two re
orders was 1:2oC. The mean monthly temperatureswith their s.e. are shown in Fig. 7.1.There are signi�
ant variations between months and there may well be a seasonale�e
t, but given the limited data, we are unable to show this is true so we willassume that there is a 
onstant di�eren
e between the two re
orders all yearround and that temperature 
hanges linearly with altitude over the Girno
k.This relationship states that there will be a de
rease of 14:1oCkm�1 with in
reas-ing altitude. The di�eren
es in temperature between se
tions 
al
ulated withthis formula are shown in Table 7.3.The estimates in Tables 7.2 and 7.3 di�er 
onsiderable, with the C. Soulsby135
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Figure 7.1: Average monthly di�eren
es in temperature between the two temper-ature re
orders on the Girno
k, with standard errors. The dotted line representsthe mean monthly di�eren
e.Table 7.3: The di�eren
e in temperatures between the position of the re
order atthe �sh trap and the average altitude of ea
h stream se
tion 
al
ulated using datafrom an additional re
order.Stream Se
tion Di�eren
e in temperaturefrom the �sh trap (oC)Lower -0.32Middle -0.88Upper -1.34formula being approximately half of the relationship derived from the data. Asthe se
ond relationship has been derived using site spe
i�
 data, it will be usedto estimate the temperature di�eren
es between the se
tions of the burn.In Chapter 4, the sensitivity of the models predi
tions to variations in temper-ature was tested by varying it by �0.2oC. The model was then �tted to theele
tro-�shing data for ea
h of the di�erent temperatures to derive di�erent setsof �y. The values of �y were signi�
antly altered by these temperature variationsalthough they remained 
orrelated (see Fig. 4.5). If �(t) is 
onstant throughoutthe burn, we would expe
t that the 
hanges in temperature are of a suÆ
ient sizeto explain the 
hanges in the mean weights of the resident parr between se
tionof the burn. 136



7.3 Predi
ting Weights in Di�erent Parts of theBurn7.3.1 Using Constant Fitted Parameters A
ross Se
tionsThe SSVN2 model was �tted to the data from the middle se
tion of the burn, and�y for 1969-1976 and the two 
ut-o� points at W
1 and W
2 were derived. Thiswas done using the DSO pro
edure as outlined previously and the parameterswhi
h produ
ed the best �t are given in Table 7.4. The predi
tions made withthese parameters are shown in Fig. 7.2, and the �t to the age-
lasses are given inTable 7.5. This version of the model will be de�ned as SSVN2M.
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Figure 7.2: Predi
ted weights using model SSNV2M and observed mean weightsof the di�erent age-
lasses with their standard errors for the middle se
tion only.Table 7.4: Summary of the parameters derived from �tting the model to the datafrom the middle se
tion with model SSNV2M.W
1(g) W
2(g) Range of �y MWE8.97 13.55 0.977-1.149 1.337In order to test if these parameter values are appli
able a
ross the entire burn,they will be used to make predi
tions of the mean weights for the parr in di�erent137



Table 7.5: Fit of the model to the di�erent age-
lasses when �tted to the datafrom the middle se
tion of the burn from 1969-1976 with model SSNV2M.Age- Average Predi
ted Mean Abs. % Sign. Sign.
lass Weight (g) Weight (g) Error (g) Error same 
orrel.0+ 0.854 0.697 0.164 19.2 Y NS1+ 5.673 5.674 0.002 0.0 Y ***2+ 12.53 12.57 0.222 1.8 Y **3+ 16.95 16.51 1.023 6.0 Y *parts of the stream. Di�eren
es in the predi
tions will be due to the adjustedtemperatures being put into the model, whi
h will be those shown in Table 7.3.Fig. 7.3 shows the observed mean weights of the parr from the upper se
tionof the stream with the predi
tions from the SSNV2M model with the estimatedtemperature from the upper se
tion of the stream. Although some of the meanweights of some of the 
ohorts have been estimated well, su
h as the 1968 and1970 
ohorts, there are systemati
 di�eren
es in the residuals. The predi
tionsfor the 0+ and 1+ are either below or within the s.e. of the observations, andthe predi
tions for the 3+ are either above or within the s.e. of the observations.
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Figure 7.3: The predi
ted mean weights of parr from the upper se
tion using modelSSNV2M and the estimated temperatures in the upper se
tion, with the observedmean weights of the di�erent age-
lasses with their standard errors.138



The predi
tions of the mean weights of the parr from the lower se
tion are shownin Fig. 7.4, whi
h are predi
ted from the SSNV2M model with the estimatedtemperature from the lower se
tion of the stream. Here, the residuals are ingeneral larger, and all predi
tions of the 0+, 2+ and 3+ being lower or withinthe s.e. of the observations.
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Figure 7.4: The predi
ted mean weights of parr from the lower se
tion using modelSSNV2M and the estimated temperatures in the lower se
tion, with the observedmean weights of the di�erent age-
lasses with their standard errors.The above predi
tions of the weights from the di�erent se
tions have been madeusing the same values of �y and the same threshold smolting weights, and thenapplied to ea
h se
tion using the appropriate temperatures. As the temperatureis in
reased, the predi
ted weights of the 0+ and 1+ will also in
rease. This willnot ne
essarily be the 
ase for the 2+ and 3+ parr due to the threshold weightfor smolting. When the weight-frequen
y distribution is trun
ated, the mean ofthe remaining part of the distribution will be di�erent at di�erent temperatures,and for suÆ
iently large temperature di�eren
es and low 
ut-o� points, the meanof the distribution at the higher temperature will be lower than the mean of thedistribution at the lower temperature.When the model is �tted to the di�erent stream se
tions with the di�erent tem-peratures, the �ts for the di�erent se
tions vary, and the MWE between the139



di�erent se
tions are shown in Table 7.6. This means that the parameters thathave been derived for the middle se
tion are not appropriate for the other se
-tions.Table 7.6: The mean weighted error from the �t of the model SSNV2M to thedata from the di�erent se
tions with the di�erent temperatures but same valuesof �y and threshold weights for migration.UPPER MIDDLE LOWER3.986 1.337 4.885As using the same �tted parameters does not provide an adequate �t to all thedata, an alternative approa
h will be used. The model will be �tted to the datafrom the upper and lower se
tions with the di�erent temperatures by adjustingthe �tted parameters of the smolting threshold weights and �y. The values of the�tted parameters between se
tions 
an then be 
ompared.7.3.2 Using Di�erent Fitted Parameters Between Se
tionsThe model was �tted to the data from the upper and lower se
tion as was donefor the middle se
tion in Se
tion 7.3.1. From the �tting pro
edure, a set of �ttedparameters was derived, so that ea
h se
tion had its own unique set of �y valuesand smolt threshold weights.The �t of the model to the data from the upper se
tion of the burn, whi
h willbe de�ned as SSNV2U, is shown in Fig. 7.5, and the �t to the data has improved.The �t of the model to the data from the lower se
tion, whi
h is shown in Fig. 7.6and will be de�ned as SSNV2L, is able to provide good �ts to the 1+ and 2+ age-
lasses, but tends to under predi
t the mean weights of 0+ and 3+ age-
lasses.The 
hanges in the % error for ea
h age-
lass for the two new models are shownin Table 7.7, where, in ea
h 
ase, the least well �tted age-
lass is the 0+ and best�tted is the 1+.The �ts to the upper and lower se
tions are appre
iable improvements. The MWEwhen the model is �tted to the three stream se
tions are shown in Table 7.8, whi
hshows a de
rease in the goodness of �t as the altitude de
reases.The largest problem with the �t of the data to the lower se
tion is the under140



Table 7.7: Mean % errors for ea
h age-
lass derived from �tting the di�erentmodels to the mean weights from the di�erent se
tions of the burn.SECTION MIDDLE UPPER LOWERMODEL SSNV2M SSNV2M SSNV2U SSNV2M SSNV2LAge-Class0+ 0.192 0.151 0.119 0.339 0.3941+ 0.000 0.185 0.016 0.169 0.0012+ 0.018 0.058 0.026 0.127 0.0673+ 0.060 0.155 0.051 0.347 0.181
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Figure 7.5: The observed mean weights with s.e. and the predi
tions from themodel SSNV2U when �tted to the data from the upper se
tion of the burn withthe estimates of the upper se
tion temperatures.predi
tion of the 0+ parr. The growth traje
tories are able to �t the 1+ age-
lass very well, whi
h indi
ates that the growth rate between birth and 1+ istoo low. It is interesting to note that for the 
ohorts born in 1970 and 1971,apart from for the 1+ age-
lass, all of the predi
tions are too low. By looking atFig. 1.1, we see that in the years 1969 and 1970, the number of females 
aught inthe trap were the lowest from 1966-1977, and these were the females that wouldgive birth to the 1970 and 1971 
ohorts.This, however, 
annot explain why all of the 0+ are under predi
ted. One possible141
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Figure 7.6: The observed mean weights with s.e. and the predi
tions from themodel SSNV2L when �tted to the data from the lower se
tion of the burn withthe estimates of the lower se
tion temperatures.explanation may be that the intensity of 
ompetition is greatest in the lowerse
tion of the stream, and by the time of the 0+ 
ensus, a large proportion of thesmaller fry have perished, leaving the larger ones in the stream. This bias would
ause the 2+ and 3+ to be over predi
ted.Table 7.8: The mean weighted error from the �t of the models SSNV2U, SSNV2Mand SSNV2L to the data from the upper, middle and lower se
tions of the burnrespe
tively. The improvements of the �ts 
an be seen by 
omparing this tablewith Table 7.6. UPPER MIDDLE LOWER0.9687 1.337 2.14597.3.3 Variation of Fitted Parameters between Se
tionsVariation in �y between Se
tionsFor the di�erent stream se
tions, a set of the values of �y were derived, and theset whi
h provided the best �t of the models to the data were used to produ
e142



Figs. 7.2, 7.5 and 7.6. The error asso
iated with these sets of �y were derivedfrom using di�erent initial 
onditions of the �tting pro
edure. The values of �yfor the di�erent se
tions with their errors are plotted in Fig. 7.7.
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Figure 7.7: Values of �y from the di�erent se
tions of the stream.A two-way ANOVA with year and stream se
tion as fa
tors 
an be used to showthat a signi�
ant amount of the variation values of the �y's is due to year (F7;14 =9:39; P < 0:001) and the stream se
tion (F2;14 = 10:9; P < 0:0014). Year asa fa
tor a

ounts for 64.7% of the variation and provides an indi
ation of theyears when 
onditions for parr growth were best. The stream se
tion a

ountsfor 21.5% of the variation, with the lower se
tion of the stream providing thelowest vales of �y, whilst the upper se
tion provides the higher values.On the basis of these results, there does not appear to be a single set of valuesof �y that 
an be applied a
ross the burn. Instead, the values of �y from ea
hof the se
tions are 
orrelated with ea
h other1 and �y appears to in
rease withaltitude.1The 
orrelation 
oeÆ
ient between the upper and lower se
tion is r7 = 0:666, betweenupper and middle is r7 = 0:644 and between middle and lower is r7 = 0:931. The 
riti
al valueof r7 below whi
h P < 0:05 is r7 = 0:669.
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Variation in the Smolting Threshold between Se
tionsThe values of the two threshold weights for smolting for the three se
tions weredetermined by the values that produ
ed the best �t to the data. As with �y, theerrors asso
iated with the threshold weights were 
al
ulated from using di�erentinitial 
onditions of the �tting pro
edure. The values with the errors are displayedin Fig. 7.8.
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Figure 7.8: Estimated values of the threshold weights for smolting from the dif-ferent se
tions of the steam with their standard errors.The threshold weights for smolting are 
learly di�erent for the three se
tions.The lowest weights are asso
iated with the upper se
tion, and the middle weightswith the middle se
tion and the highest weights with the lower se
tion.7.3.4 Relating �y to So
ial Environment of the ParrDensity estimates for the juveniles in ea
h age-
lass at ea
h survey were madeduring ea
h the ele
tro-�shing surveys, whi
h approximate the overall strengthof ea
h age-
lass in ea
h se
tion of the stream. As sets of values of �y's for thedi�erent se
tions have been derived, we 
an use the data regarding the so
ialenvironment of the parr to attempt to explain some of the variation in �y.144



The estimated densities for ea
h age-
lass were 
orrelated with the values of �ywhi
h were derived for the three se
tions of the stream, and were found to besigni�
antly negatively 
orrelated for the 0+ (r7 = �0:740; P < 0:05) and the2+ (r7 = �0:667; P < 0:05) age-
lasses in the upper se
tion of the burn but nosigni�
ant 
orrelations were found in the middle or lower se
tion.Further to this, the values of �y were lagged and then 
orrelated with density.When density was 
orrelated with �y�1, there was a signi�
ant 
orrelation for the1+ age-
lass in the upper se
tion (r7 = �0:769; P < 0:05), and when 
orrelatedwith �y�2, there was a signi�
ant negative 
orrelation for the 0+ age-
lass inthe upper se
tion (r6 = �0:748; P < 0:05). The only signi�
ant 
orrelations inthe other two se
tions o

urred with �y�3 for the 1+ age-
lass (middle se
tion,r5 = �0:956; P < 0:01 and lower se
tion, r5 = �0:862; P < 0:05).The 
orrelations were repeated using the biomass of ea
h age-
lass, whi
h was
al
ulated as the produ
t of the density and the mean weight of the parr in thatage-
lass. �y and biomass were found to be signi�
antly negatively 
orrelated forthe 0+ (r5 = �0:928; P < 0:05) and the 2+ (r7 = �0:721; P < 0:05) age-
lassesin the upper se
tion of the burn.When biomass was 
orrelated with �y�1, there was a signi�
ant positive 
orrela-tion for the 0+ in the upper se
tion (r5 = 0:837; P < 0:05). When 
orrelatedwith �y�2, there were signi�
ant negative 
orrelations for the 0+ in the upper se
-tion and the 2+ in the lower se
tion, and when 
orrelated with �y�3, there weresigni�
ant negative 
orrelation for the 1+ in the upper (r4 = �0:953; P < 0:05),middle (r4 = �0:925; P < 0:05) and lower (r4 = �0:954; P < 0:05) se
tions.In addition, the estimated total biomass was 
orrelated with the values of �y andthis was repeated when the data was lagged. No signi�
ant 
orrelations werefound for ea
h stream se
tion and lag. The estimated ova deposition was also
orrelated with �y from the di�erent se
tions with di�erent lags, none of whi
hwere found to be signi�
ant.A 
onsiderable number of 
orrelations were attempted, in parti
ular for the �y andlagged 
orrelation tests, four signi�
ant results were found from 36 
orrelations,and with the �y and lagged biomass tests, six signi�
ant results were found from36 
orrelations. Given that the signi�
ant results were neither 
onsistent a
ross145



age-
lass or se
tion, it is likely that they are due to 
han
e2. All other signi�
antpositive 
orrelations are found in the upper se
tion of the burn.There are 
ompli
ations with this analysis as the values of �y are not independentand it is likely that the densities not either. There are also few data points, with amaximum of 8 values of �y used for ea
h se
tion, with missing data from di�erentage-
lasses in di�erent years. Further and more 
omplex linear models will notbe used to explain the variation in �y due to the limitations of the degrees offreedom available in the data.These 
orrelations show that there may be an inverse relationship between �yand density or biomass in the upper se
tion, but these e�e
ts are undete
table inthe middle and the lower se
tion. Otherwise, the 
orrelations of �y do not appearto be related to biomass and density in any 
lear and 
onsistent way.7.4 Con
lusionsThere are 
lear and systemati
 di�eren
es between the parameters derived forea
h se
tion of the stream. They are 
onsistently di�erent, as are the errors, andtogether form a 
onsistent view of the quality of growth in the di�erent parts ofthe burn.As the altitude de
reases, the �t of the model to the data deteriorates, whi
hmay be an indi
ation of the in
reasing 
omplexity of the life style of the juvenileswhose growth we are attempting to model. This may be a result of in
reases inthe 
omplexity of the e
osystem as the temperature in
reases. The lower partof the burn is more populated with salmon as well as other spe
ies, and thesurrounding vegetation is more diverse. There are a greater number plants withvegetation with over hangs the river, whi
h in
reases the 
arbon input into theburn.Higher values of �y are asso
iated with faster growth after the e�e
ts of tem-perature have been removed. This indi
ates that the lo
al environment for thegrowth of parr is better in the higher part of the stream than the lower part.The higher growth rates in the lower part of the burn 
an be attributed mainly2The 
han
e of getting �4 
orrelations with P < 0:05 from 36 attempts is 10.4% and �6from 36 is 0.8%. 146



to higher temperature.Di�eren
es in �y between se
tions may be due to the lower density and less 
om-petition further upstream. The water is likely to be 
leaner and the proportion ofthe stream suitable for parr higher. In general, habitat quality would be expe
tedto be better in the upper rea
hes of the stream otherwise the adult would notmake the extra e�ort required to get there.Parr smolt at a smaller size in the upper part of the burn. We must bear in mindthat although the 
ut o� point is termed as the threshold weight for smolting,it is a threshold weight for parr leaving the resident population. The smalleremigrants from the upper se
tion 
ould move to the middle se
tion and formpart of the population below the threshold weight there.The di�eren
es in the parameter values a
ross the stream indi
ate that on
e thee�e
ts of temperature have been removed, the growth and behaviour of the parrfrom the di�erent se
tions 
hanges. The parr in the upper se
tion are able togrow better than those in the lower se
tion, and are able to migrate at a lowerweight, whi
h would be ne
essary as there is a shorter growing season at higheraltitudes.�y is a general term that en
ompasses many aspe
ts of feeding, and its valuesderived in Se
tion 7.3.3 range from approximately 0.95 to 1.3. These values sug-gest that the parr are growing at a far higher rate than the theoreti
al maximumgrowth rate predi
ted by the model, and the model does tend to over predi
t theweights of the 0+ parr whilst being able to predi
t the 1+ mean weights relativelywell. These aspe
ts of the model will be dis
ussed further in Chapter 9. �y is aterm for 
onsumption and in Chapter 8, we o�er an alternative theoreti
al modelfor �y based around the Type II fun
tional response (Holling, 1959).
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Chapter 8Fun
tional Response UptakeModel for Atlanti
 Salmon Parr
The temperature dependent growth models developed in the previous 
haptershave been �tted to the data by adjusting the fun
tion �(t). This fun
tion has beenassumed to be 
onstant within years and a
ross age-
lasses. In this 
hapter, weshall further develop �(t) so that it is dependent on the size of the parr and ableto vary within years. These variations will be determined by the 
hara
teristi
sof the invertebrate populations that form the diet of the parr.A foraging model, dependent on the size of the individual parr, the size anddensity of the invertebrate populations and the 
urrent, will be developed toestimate the 
onsumption rate of the parr. This model will then be integrated intothe CGM model (Broekhuizen et al. 1994) and �tted to ele
tro-�shing data, withdi�erent assumptions about the distribution of the stream dwelling invertebrates.8.1 The Foraging Behaviour of Parr8.1.1 Behaviour of the Invertebrate DriftThe food on whi
h the salmon feed is 
omprised of a variety of aquati
 inse
ts,su
h as larvae, pupae, nymphs, and inse
ts of terrestrial origin that have fallenonto the surfa
e of the water (Mundie (1969), Egglishaw (1967), Allen (1940)),and is known as the freshwater invertebrate drift.148



The aquati
 inse
ts live mainly in the substrate and on underwater plants, fromwhi
h they enter the water 
olumn. This is either through their own need tomove in order to settle somewhere else, or through the turbulen
e of the 
urrent(Waters 1969) and it is when they are in the 
urrent that they are available asfood for the salmon.Drift o

urs with diel periodi
ity with observed peaks at sunset and sunrise, withhigh quantities of drift o

urring at night (Mundie 1969). The quantity of thedrift is dependent on fa
tors su
h as the amount of detritus (overhead vegeta-tion, stream plants and algae) within the stream (Egglishaw and Morgan (1965),Egglishaw (1964)) and the 
hemi
al 
omposition of the stream (Egglishaw andMorgan (1965), Egglishaw (1968)). Size of the individual invertebrates in
reasesthroughout the year and seasonal 
hanges in the 
omposition of the bottom faunahas been observed in S
ottish streams (Egglishaw and Ma
kay 1967).Drift is related to produ
tion, with higher drift leading to in
reases in produ
tionand higher growth rates (Waters 1969) although predation by parr does have animpa
t on the quantity of drift.8.1.2 Methods of ForagingSalmon parr must gain a suÆ
ient amount of weight before they are able to mi-grate to sea, whi
h they do by feeding on invertebrates in the stream (Wankowski1981). Parr are sit-and-wait predators, who remain stationary at the fo
al pointof a defended territory from whi
h they make rapid forays to 
apture and 
on-sume their prey. The four basi
 methods by whi
h they feed are des
ribed byStradmeyer and Thorpe (1987a) below.Surfa
e FeedingSurfa
e feeding is the 
onsumption of terrestrial food items that have fallen ontothe surfa
e of the water. The parr will see a food item 
oating on the surfa
ewhi
h it swims towards and eats.Midwater Drift FeedingThis is when is food that is taken from the water 
olumn, whi
h 
ontains mainlybenthi
 invertebrates. This type of feeding 
an happen in a variety of ways:I. Dire
t feeding The salmon atta
ks the prey item with a rapid burst of swimming149



into the 
urrent.IIa Indire
t feeding (a
tive) The salmon will move up into the water 
olumntowards the prey item whi
h it will either atta
k with a rapid movement orignore and return to station.IIb Indire
t feeding (partly passive). This o

urs in two ways. The salmon willdrift downstream with the 
urrent, fa
ing the prey item, whi
h it either atta
kswith a rapid snap or returns to its station. The se
ond method is similar to the�rst ex
ept before it atta
ks the prey, the salmon will turn around and 
apturethe prey item as it moves downstream. This o

urs in higher water velo
itieswith faster moving prey.Head-jerk FeedingPrey items moving in the drift passing 
lose to the �sh are 
aptured with rapidside-to-side snapping movements of the head without body displa
ement su
hthat the �sh does not leave its station.Bottom FeedingThe �sh makes atta
ks from the feeding station and snaps at the prey as it foragesamongst the substrate.These types of foraging methods have been widely observed (Keely and Grant(1995), Wankowski and Thorpe (1979b), Stradmeyer and Thorpe (1987a)) andthis information will be used to derive an estimate of the uptake rate based onthe foraging behaviour of the parr. The predominant method of foraging is whenthe �sh takes food from the water 
olumn, whi
h in
ludes midwater and headjerk feeding.Maximum atta
k distan
es given by Wankowski and Thorpe (1979b) range from1 to 5.8 body lengths, those from Stradmeyer and Thorpe (1987a) are approxi-mately 103
m1. Keely and Grant (1995) give an average atta
k distan
e of about3 body lengths. Any foraging model that is developed must have similar atta
kdistan
es and be dependent on the water velo
ity.1Distan
es in body lengths are not given by Stradmeyer and Thorpe (1987a), but may be6.87-10.3 body lengths based on the size of the parr observed in the study.
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Figure 8.1: With a Type II fun
tional response, the uptake rate will tend to Umaxas the food density tends to in�nity.8.1.3 Modelling Foraging Behaviour in FishHollings Type II Fun
tional ResponseMany foraging attempts are unsu

essful, espe
ially for younger inexperien
edparr, resulting in food being reje
ted or the ingestion of low nutritional foodsu
h as inse
t exuviae (Mundie 1969). Visibility may be poor and the waterturbulent. Danger exists from predators whi
h deters foraging (Met
alfe et al.1987) and 
ompetition exists from 
onspe
i�
s (Symons (1971), Got
eitas andGodin (1992)). Therefore the maximum uptake rate, Umax, is unlikely to beattained. We shall use the Type II fun
tional response (Holling 1959), whoseform is shown in Fig. 8.1 and derivation in Appendix B, to model the uptake rate.This has been widely used for variety of �sh spe
ies (Madenjian and Carpenter(1991), Peterson and Deangelis (1992), Wright et al. (1993), Eby et al. (1995),Sto
kwell and Johnson (1997)) in order to determine uptake.The general form of the Type II fun
tion response is given by equation (8.1) whereU is the uptake rate and � is the rate at whi
h food is found whilst foraging. Inorder to estimate the uptake rate, we must determine expressions for Umax and�. U = Umax 11 + Umax� ! (8.1)151



8.2 A Fun
tional Response Model for SalmonParr8.2.1 Probability of Cat
hJuvenile salmon show a high degree of prey sele
tion based on size (Allen 1941a)and travel di�erent distan
es depending on the size of the prey item (Wankowskiand Thorpe 1979a). Therefore the probability of 
apture of a food parti
le ofsize p at distan
e r from a �sh of length L will be de�ned as P (r; p; L). r will bede�ned as the minimum distan
es of approa
h of the food parti
les perpendi
ularto the 
ow of the water and will have units of �sh body lengths. Although thisis not the a
tual distan
e swam by the �sh in order to 
onsume an item of prey,it indi
ates how 
lose to the �sh the parti
le needs to be in order for it to beatta
ked.Determining P (r; p; L) requires data that will give the probability of food itemsof a parti
ular size being 
aught at a given distan
e. Data sets from Wankowski(1981) and Met
alfe et al. (1986) relating to the atta
k distan
es, whi
h give theprobability of 
at
h and the size of food parti
les, were examined. These studieswith hat
hery reared salmon parr were 
ondu
ted from June to September.Foraging Data SetsData from Met
alfe et al. (1986)A study by Met
alfe et al. (1986) investigated how feeding behaviour was relatedseasonal 
hanges in 
onsumption and used food parti
les that were set at a size tooptimises growth rate (Wankowski and Thorpe 1979a). The data is reprodu
edin Table 8.1 and shows that at distan
es of about one body length distan
e fromstation, the �sh ignored about 80% of the food that drifted passed, with highprobabilities of 
apture only very 
lose to the �sh (< 1 body length). There wereno restri
tions to foraging su
h as the tank size being too small and there wereno deterrents to foraging su
h as predators or 
ompetition. These experimental�sh were mostly head jerk feeding and did not travel far in sear
h of food. We areunable to use this data as it does not a

urately portray the foraging behaviourof wild parr. 152



Table 8.1: Per
entage of parti
les ingested with the atta
k distan
es in terms ofminimum distan
e of approa
h. These are given in absolute and relative terms.% 
aught Min. Dist. (bl)June July August Min. Dist.(
m) June July August67.42 0.4 0.08 0.4 0.1 0.084 0.08220.00 1.3 0.25 1.3 0.31 0.27 0.2720.76 2.6 0.49 2.6 0.625 0.55 0.5311.16 4.5 0.85 4.5 1.1 0.95 0.9211.16 6.5 1.23 6.5 1.56 1.37 1.332.87 8.5 1.60 8.5 2.04 1.8 1.733.37 11.0 2.08 11.0 2.65 2.3 2.25Data from Wankowski (1981)This data set from Wankowski (1981) 
onsisted of four experiments, whi
h at-tempted to determine the size of food parti
les that the �sh preferred. Theexperiments were 
ondu
ted with salmon that had previously been starved forseven days before being presented with di�erent sized food parti
les, and theirresponse and atta
k distan
es were noted. The average atta
k distan
e was 3.64body lengths, whi
h is similar to those found in the wild. These fa
tors enabledus to make use of this data, whi
h is shown in Table 8.2.Determining the fun
tion P (r; p; L)Two fun
tions des
ribing P (r; p; L) were �tted to the data in Table 8.2 in order todetermine the most appropriate form P (r; p; L) should take. The �rst was a oneparameter ellipti
 fun
tion and the se
ond a two parameter dis
ontinuos fun
tion.The term r represented the atta
k distan
e in body lengths and 
 representedthe size of the food parti
le relative to the length of the �sh, su
h that 
 = p=L.One parameter ModelThe fun
tional form for P (r; p; L) that was �rst �tted to the data is shown byequation (8.2). This states that all food is 
onsumed at r = 0 and none atdistan
es greater than the maximum atta
k distan
e D.P (r; p; L) = ( q1� � r2D2 � r � D0 r > D (8.2)153



Table 8.2: Number of food parti
les 
aught and missed at di�erent distan
es fromthe parr and for di�erent sized food parti
le during the feeding trails by Wankowski(1981). r is the atta
k distan
e in terms of �sh body lengths. A, B, C and D arethe four experiment with in
reasing size of food parti
le with whether the food waseaten (E) or missed (M). A B C Dr M E M E M E M E0 - < 1 1 1 0 3 0 0 0 41 - < 2 0 1 0 7 0 5 0 12 - < 3 1 0 0 4 0 3 0 13 - < 4 0 0 0 2 0 2 0 14 - < 5 2 0 0 3 0 7 0 35 - < 6 0 0 0 1 0 4 0 26 - < 7 0 0 2 1 1 1 0 47 - < 8 0 0 1 0 1 1 1 18 - < 9 0 0 3 0 2 1 2 19 - < 10 0 0 2 0 1 1 2 0

Table 8.3: The values of D derived by �tting equation (8.2) to the data in Ta-ble 8.2, for the four food parti
le sizes, by minimising the RMS error, �, for theone parameter model. Experiment 
 D �A 0.013 2.5 0.173B 0.018 7.5 0.137C 0.025 10.06 0.145D 0.051 9.43 0.124
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Figure 8.2: The one parameter model �tted to the data from the four experimentsby Wankowski (1981).Equation (8.2) was �tted separately to the data from ea
h of the four food sizesby adjusting D through minimising the RMS error, �. The values of D and �for the four food sizes are shown in Table 8.3 and the traje
tories from equation(8.2) using these values of D are plotted, along with the data, for the four foodsizes in Fig. 8.2.The values of D in Table 8.3 indi
ate how the maximum atta
k distan
e of theparr varied with the size of the food parti
le. A relationship between D and 
was derived by �tting equation (8.3) to the values in Table 8.3 by minimising theRMS errors. D(
) = [a1 + a2
 + a3
2℄+ (8.3)Equation (8.3) is plotted, along with the data to whi
h it is �tted, in Fig. 8.3,using the 
oeÆ
ients found are in Table 8.4.A quadrati
 was used be
ause it enfor
es an optimal parti
le size. Items smallerthan the optimum have less energy value and are less appealing due to the 
ostinvolved in their 
apture, whi
h in
rease as the atta
k distan
e in
reases. Smaller155
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Figure 8.3: Values of D (denoted by �), from Table 8.3, and the �tted 
urve D(
),whi
h represent maximum atta
k distan
es for all 
. D(
) is a quadrati
, whi
his within the morphologi
al limitations of food size for juvenile salmon (denotedby Æ).Table 8.4: Values of 
oeÆ
ients derived from �tting equation (8.3) to the datain Table 8.3 by minimising the RMS error, whi
h has a minimum value of 0.505body lengths. CoeÆ
ient Valuea1 -11.1a2 1305a3 -17720parti
les are also less visible at greater distan
es. Attempting items larger thanthe optimum means that more time and energy is required for manipulation priorto ingestion and also have a greater 
han
e of reje
tion (Wankowski and Thorpe1979a).The values of 
 at whi
h D(
) = 0 are 
min = 0:0098 and 
max = 0:064. This is in
lose agreement with the morphologi
al natural limits derived from Wankowski(1979). Salmon feed by su
king food and water into their mouths and thensqueezing the water out through the gills. Food parti
les too small will be expelledwith the water. The gill rakers, whi
h �lter the food out, s
ale linearly with parrlength and will retain food of relative size 
 > 0:0083. Upper limits are imposeddue to the internal breath of the mouth. This also s
ales linearly with lengthand the salmon 
an 
onsume parti
les of relative size 
 < 0:068. These values156
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Figure 8.4: Two parameter model �tted to the data from the four experiments byWankowski (1981).are appli
able for parr from approximately 4
m to 20
m in length.Two parameter ModelThe fun
tion in equation (8.4) will be used as the se
ond model with r de�nedpreviously and ah and al being the �tted parameters.P (r; p; L) = minf1; [ah + al:r℄+g (8.4)This model assumes that the parr take all the food within a 
ertain distan
e andas the distan
e of the food parti
le from the �sh in
reases, the probability of
apture rapidly de
reases. The parameter al is the gradient of the slope and ahis the point where this slope would inter
ept the verti
al axis. The model was�tted to the data in Table 8.2 by minimising �, and the parameters that providedthe best �t are given in the Table 8.5 and plotted in Fig. 8.4.The Upper 
ut-o� point is the atta
k distan
e at whi
h the salmon no longer takesall the food presented to it. The Lower 
ut-o� indi
ates the atta
k distan
e atwhi
h no food is a

epted. These 
ut-o� points, along with the �tted parameters157



Table 8.5: Values of ah and al whi
h minimise the mean square error, �, for ea
hexperiment with relative parti
le size and the values of the upper and lower 
ut-o�points.Experiment ah al Upper 
ut-o� Lower 
ut-o� �A 2.50 -1 1.5 2.5 0.167B 7.097 -1.040 5.857 6.818 0.000C 2.079 -0.196 5.051 10.606 0.138D 3 -0.32 6.25 9.375 0.044and �, are shown in Table 8.5.Choi
e of ModelThe �t to the data of the two parameter model is better than for the one param-eter model. However the parameters for the two parameter model do not 
hangein a 
onsistent way so �tting a fun
tion to explain how ah and al are related to
 is likely to be more 
omplex than D(
). The fun
tion D(
) �ts within thenatural 
onstraints that are imposed and is behaviourally 
onsistent. It providesa good relationship between maximum atta
k distan
e and food parti
le size sowe shall use the one-parameter model to des
ribe P (r; p; L).8.2.2 E�e
tive Sear
h VolumeAs the salmon is foraging, it makes most of its atta
ks from the 
entre of itsterritory and food that is available to the salmon will pass through the territory.We shall de�ne the area through whi
h food passes as a semi
ir
le perpendi
ularto the 
ow of water, shown in Fig. 8.5. The radius of this area is D(
) anddependent on the size of the �sh and the food parti
le. Although the whole ofthis area is a

essible to the salmon, food will not be taken from it uniformlybe
ause as r in
reases, P (r; p; L) de
reases.We shall take the e�e
tive sear
h area, As(p; L) as the area that will providefood for the salmon. To derive As(p; L), we shall �rst determine the e�e
tivesear
h area over a small annulus of width d(rL). The area of this annulus
an be approximated by �rLd(rL) so the e�e
tive sear
h area of the annulusis P (r; p; L)�rLd(rL), and the total e�e
tive area sear
hed As(p; L) is the inte-gral over rL in equation (8.5). 158



γ) Water Current Direction

 .

d(rL)

r

r=D(Figure 8.5: This is the shape in whi
h the salmon will forage. All the food that willbe available will pass through the hemisphere perpendi
ular to the 
ow of water.
As(p; L) = Z 1rL=0 P (r; p; L)�rLd(rL); (8.5)As(p; L) represents an area from whi
h an amount of food will be gathered of sizep. To determine As(p; L) over all food parti
le sizes, we integrate over p to giveAT (L) = Z 
maxLp=
minLAs(p; L)dp: (8.6)AT (L) represents the range over whi
h foraging will o

ur and is 
onstrained bythe food size range and foraging distan
e and is shown in Fig. 8.6. It has 
onstantvalue for ea
h size of salmon. We 
an normalise As(p; L) to get an(p; L),an(p; L) = As(p; L)AT (L) : (8.7)We 
an further prove that AT (L) = �L3 where � = 5:479 whi
h is determinedfrom the 
oeÆ
ients ofD(
), with the proof of this in Appendix C. By multiplyingAT (L) by the water velo
ity, we are able to derive the e�e
tive sear
h volume ofthe foraging salmon.
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P(r, p, L)=1

γ

γ

r, D(γ)

minFigure 8.6: The salmons' e�e
tive sear
h area is de�ned by the food parti
le size.As L in
reases the maximum atta
k distan
e in
reases, as well as the absoluteparti
le size range. This will 
auses the food available to s
ale with L3.8.2.3 Biomass Available to the ParrWe need to estimate of the size distribution of the invertebrates available to thesalmon. We shall use the fun
tion �(p) to des
ribe the size-frequen
y distribution,whi
h will give the number of parti
les per unit volume over a given diameterrange of p1 to p2 as R p2p=p1 �(p)dp. In order to estimate the biomass availablebetween p1 and p2 requires the weight-length relationship of the invertebrates,w(p). Therefore the biomass per unit volume, B(p1; p2), of food items of size p1to p2 is B(p1; p2) = Z p2p=p1 �(p)w(p)dp: (8.8)8.2.4 Handling TimeThe handling time per item for a �sh of length L at a temperature T , �(L; T ),is the time between sear
hing whilst a
tively foraging. It is assumed to be de-pendent on temperature, as temperature rises 
an in
rease digestion rates as wellas foraging a
tivity. Salmonids have been observed to have two bouts of feedingduring warm weather be
ause they are able to digest more food. This extra food
an then be allo
ated to growth (Elliott 1973). For salmon, �(L; T ) will involveorientation towards prey, 
apture and ingestion, then return to station where itresumes sear
hing. We shall assume that handling time is independent of food160



parti
le size.The handling time per unit biomass is denoted as �h(L; T ). This is a more usefulterm than �(L; T ) be
ause we will be working in units of biomass. Given �(L; T )and the weight of the food parti
les that are 
onsumed, we 
an estimate �h(L; T ).We shall assume that a �sh of length L will 
onsume parti
les with an averageweight w(
optL), where 
opt = 
min + 
max2 ; (8.9)whi
h enables us to 
al
ulate the biomass handling time for when a �sh is a
tivelyforaging as �h(L; T ) = �(L; T )w(
optL) : (8.10)8.2.5 Full Fun
tional ResponseWe are now able to 
onstru
t our fun
tional response. The e�e
tive volumesear
hed for food parti
les of size p is vAs(p; L) where v is the water velo
ity.The biomass distribution per unit volume is w(p)�(p), so the total food availableto a �sh of length L will be the integral from p = 
minL to 
maxL. With our termfor the handling time we haveU = R 
maxLp=
minL vAs(p; L)w(p)�(p)dp1 + �h(L; T ) R 
maxLp=
minL vAs(p; L)w(p)�(p)dp (8.11)It is 
onvenient to take out the fa
torUmax(L; T ) � 1=�h(L; T ) (8.12)to whi
h the uptake will tend as the food density tends to in�nity. We shallfurther simplify by dividing the top and bottom by vAT (L). This has the e�e
tof normalising the e�e
tive sear
h area and enables us to have one term with v.Thus we 
an de�ne Wh(v; L; T ) � Umax(L; T )vAT (L) (8.13)and Weff(L) � Z 
maxLp=
minL an(p; L)w(p)�(p)dp: (8.14)
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Weff (L) is the e�e
tive biomass of the food population that is available to aforaging salmon of length L and Wh(v; L; T ) is the half saturation food density.Thus we have the formU(v; L; T ) = Umax(L; T )� Weff (L)Wh(v; L; T ) +Weff(L)� (8.15)as the full fun
tional response and will be de�ned as the UFR model.8.3 Applying the UFR modelWe now wish to apply this model to wild Atlanti
 salmon, whi
h are known tofeed less during the winter (Met
alfe and Thorpe 1992). During this period theyexhibit low growth rates whilst in the summer growth rates are higher (Skilbrei1988). In this se
tion, we shall integrate the UFR into the CGM (Broekhuizenet al. 1994) and apply this to ele
tro-�shing data sets from di�erent rivers whilstassuming di�erent distributions for the invertebrate drift.8.3.1 Ele
tro-Fishing Data SetsEle
tro-�shing data sets were found in the literature whi
h were suitable fortesting the UFR model. These data sets gives us the opportunity to apply themodel over both the periods when the salmon undergo rapid growth prior duringthe spring and weight loss during the autumn.Data from Gardiner and Geddes (1980)Mean weight and length measurements from samples of wild salmon parr weretaken in the Shelligan Burn (des
ribed in Egglishaw and Sha
kley (1977)) fromApril 1973 until April 1975. The data for the 1973 
ohort will be denoted asGG73-74 and the data for the 1974 
ohort will be denoted GG74-75, and themean weight measurements will be displayed with their 95% CI. Temperaturesfor this river over these periods are given by given by Egglishaw and Sha
kley(1977) and in the form of the mean weekly water temperatures, whi
h would beused in the model. 162



Data from Randall and Paim (1982)Two further data sets from populations of wild parr were obtained from twosites in a stream in New Brunswi
k, denoted RPL1 and RPC2 over the periodfrom summer 1977 until autumn 1978. Randall and Paim (1982) provide maxi-mum and minimum temperature pro�les at ea
h of the sites with mean weightand length measurements of salmon from emergen
e until 16 months later, andthe error bars for the mean weights will represent �1SE. The series of temper-ature measurements were taken at intermittent times during the year and were
onverted into weekly average temperatures, using linear interpolation, for themaximum, minimum and median temperatures, whi
h would then be used in themodel.8.3.2 Assumptions about Food Abundan
eThe feeding regime was hard to estimate due to la
k of data. It is known thatinvertebrate drift varies seasonally. It was therefore assumed that:i) Biomass parti
le size distribution fun
tion was proportional to temperaturewith a 
onstant lag of one week. This was to give the biomass time to rea
t to
hanges in temperature.ii) The biomass that was available for the �sh to 
onsume was dependent on theweight of the salmon. This meant that as the salmon grew in size, the amount offood that was available for them to 
onsume in
reased. As a �sh grows, its rangeof food parti
le sizes in
rease as will its territory size (Grant and Kramer (1990),Keely and Grant (1995)). Therefore, as they grow, more food is a

essible tothem.We shall be using a uniform food biomass distribution of value �CGM . Thefun
tion used to indi
ate seasonal temperature dependent 
u
tuation in the foodsupply will be de�ned as  (T ),  (T ) = TlagTm (8.16)where Tlag is the temperature from the previous week and Tm is the mean annualtemperature. 163
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Figure 8.7: Growth 
urves at di�erent quantities of food available. The solid linerepresent Umax. The 
urves are superimposed onto the data set GG73-74.This gives our fun
tion for the food available as�(R; S; T ) = �CGM (T )(R + S): (8.17)As �(R; S; T ) has units of mgC:day�1, �CGM will have units day�1.8.3.3 Testing the modelUsing these new environmental parameters and the physiologi
al parameters forAtlanti
 salmon in the CGM, simulated growth traje
tories were derived by al-tering �CGM . In the CGM, the assimilation rate is de�ned asA = " minf�; Umaxg (8.18)and will be 
hanged to use the Type II fun
tional response su
h that A = " Uwhere U is de�ned in equation (8.1). We 
an let Umax be the same as the uptakein the CGM so as the food available in
reases, the uptake will tend to Umax.The data from GG73-74 is shown with the simulated growth 
urve in Fig. 8.7.The values of �CGM are 0.075 for the dashed line and 0.085 for dotted line. These164



values are equivalent to the �sh being o�ered 7.5% and 8.5% 
arbon body weightof 
arbon food weight per day although not all is eaten. The value of the solid lineis the maximum growth that the model 
an predi
t given the 
urrent temperature,when the salmon is feeding at Umax. The defe
ts with these simulations are thatthe growth rates are insuÆ
ient during the spring and autumn and too highduring the winter. These problems will be addressed later but �rst the full UFRmodel will be integrated into the CGM model.8.3.4 Combining the UFR Model with the CGMWe are now in a position to 
ombine our two models by using the ratio of FH=F ,whi
h is the ratio of the food density, F , to the half saturation food density, FH .It appears in both of the CGM asFHF = Umax� (8.19)where Umax� = Umax(T; S) (T )(R + S)�CGM (8.20)and in the UFR as FHF = Wh(v; L; T )Weff(L) (8.21)where Wh(v; L; T )Weff(L) = Umax(L; T )vAT (L) R 
minLp=
maxL an(p; L)w(p)�(p)dp (8.22)We shall assume that the biomass distribution is 
onstant over the range thatwe will be using whi
h will vary a

ording to the temperature. Therefore we
an let w(p)�(p) = �0, whi
h is 
onstant and 
an be taken out of the integralof equation (8.22). an(p; L) has been normalised so will integrate to unity andAT (L) = �L3 whi
h 
an be substituted into equation (8.22). By rede�ning�0�v � �1 and in
luding the term for the temperature dependen
e of �0, we 
anrewrite equation (8.22) as Wh(v; L; T )Weff(L) = Umax(L; T ) (T )�1L3 : (8.23)To inter
hange between equations (8.20) and (8.23) requires a weight-length re-lationship. The stru
tural 
arbon weight to length relationship of the formS = asLbs ; (8.24)165




an be 
onverted to L3 = a
1s1S
1; (8.25)where 
1 = 3=bs and as1 = a
s. This 
an be substituted into equation (8.23).Thus the food available in the UFR is  (T )�UFRS
1, where �UFR � as1�1 andis a 
onstant. �(S; T ) will repla
e the term �(R; S; T ) in the CGM. The termsfor the maximum uptake rates, Umax(L; T ) and Umax(T; S) are inter
hangeable,therefore the only 
hanges that need to be made to the CGM uptake fun
tion areFHF = Umax(S; T ) (T )�UFRS
1 : (8.26)Estimates of the 
oeÆ
ients for the stru
tural weight-length relationship for thedi�erent data sets are given in Appendix D, along with estimates of other fa
torsin the URF model.This will use the 
onstant biomass spe
trum with �UFR having units of mgC1�
.day�1, and varying �UFR 
hanges the quantity of the biomass available passingthrough the foraging area per unit time. Simulations with this type of uptakeare produ
ed in Figs. 8.8 for GG73-74, 8.9 for GG74-75 and 8.10 for RPL1.The values for Umax are the same in both Figs. 8.7 and 8.8. The 
urves in Fig.8.8 are generally smoother due to the independen
e of the uptake on R. Thusuptake will not de
rease due to weight loss, only through la
k of food, and thetwo values of �UFR are 0.085 and 0.095. The values of �UFR are mu
h higher forGG74-75 at 0.175 and 0.165 (Fig. 8.9), and for RPL1 in Fig. 8.10, �UFR = 0:073.This is for the median weekly average temperature. The maximum and minimumtemperature with this value of �UFR are also shown on Fig. 8.10.From observing the 
urves, we 
an see that the uniform food distribution propor-tional to temperature does not appear to be 
orre
t. Although it is likely to be
losely 
orrelated to temperature, assuming that it is dire
tly proportional maybe to simplisti
. We 
an though see that the data 
an be �tted by an appropri-ately varying food availability. This 
an be applied to all the data points ex
eptfor those at the very beginning of the data sets. This will be dis
ussed later. Wewill now attempt to �t the data by using a step fun
tion to des
ribe the fooddistribution.
166
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Figure 8.8: Simulated growth 
urves using the UFR for di�erent quantities offood available (�UFR = 0:085 for the dotted line and �UFR = 0:095 for the dashedline). The solid line represent Umax. The 
urves are superimposed onto the datafrom GG73-74.
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Figure 8.9: The UFR is �tted to the data from GG74-75 with a di�erent temper-atures and value of �UFR. The solid line represents Umax, and the dotted line isthe value of �UFR = 0:165 and the dashed line has the value of �UFR = 0:175.8.3.5 A Step Fun
tion to Des
ribe the Food AvailableThe biomass spe
trum previously used was a uniform distribution proportionalto temperature whi
h s
aled allometri
ally with stru
tural weight. This did notprodu
e adequate results so di�erent type of biomass spe
trum will be examined.The approa
h that will be taken in this se
tion is to assume that the biomassdistribution of food available to the parr is the step fun
tion �1(t; S) = �S(t)S
1,whi
h repla
es the previous fun
tion �(S; T ) used in equation (8.26).The threshold values for the step fun
tion 
hanges are dependent on when therapid bursts of growth begin and end. The values of the step fun
tion alternatebetween a high value 
lose to or at Umax and a low value whi
h will maintain the�sh at a weight that may de
rease, but not allow the �sh to starve. The stepfun
tion was �tted to the data set from GG73-74, RPL1 and RPC2 by hand inFigs. 8.11, 8.12 and 8.13.Fitting the step fun
tion �S(t) to the data has 
onsiderably improved the �t of themodel to the data 
ompared to the previous attempts. For GG73-74 (Fig. 8.11),168



A S O N D J F M A M J J A S O N
MONTHS

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0
M

E
A

N
 W

E
IG

H
T

 (
G

)
Data from RPL1
Median Temperature
Maximum Temperature
Minimum Temperature

Figure 8.10: These simulations have the same parameters as the model for GG74-75 ex
ept for the temperate and �UFR. The three 
urves are those simulated atthe maximum, minimum and medium temperature pro�les, with �UFR = 0:073used on the data set RPL1.
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the �sh are feeding at 
lose to Umax (�S(t) = 9) for the �rst 71 days. After thisin mid September �S(t) = 0:025 until the se
ond threshold during the followingApril when it is in
reased Umax. The temperature at the two thresholds are13:8ÆC and 2:6ÆC.For RPL1 in Fig. 8.12, �S(t) = 0:34 for the �rst 60 days until the �rst thresholdo

urs during September. During the winter until the end of April �S(t) = 0:0005,after whi
h it in
reases to 0.4 until during July when �S(t) is redu
ed to 0.005.This when the �rst migrations o

urs.The graph for RPC2 has similar parameters for the threshold of the 
hanges in�1(t; S). This 
ould be due to the similar average weekly temperature at thesetimes. At the �rst threshold, the temperature at RPL1 is 15:6ÆC and at RPC214:8ÆC. The temperature at the se
ond threshold at RPL1 is 2:4ÆC and at RPC22:0ÆC. The third threshold at RPL1 is 17:1ÆC and at RPC2 is 17:3ÆC.The four values of �S(t) are 0.32, 0.018, 0.48 and 0.005 respe
tively for RPC2in Fig. 8.13. The �rst value is lower than that for RPL1, whi
h is re
e
ted inthe lower growth rates and smaller �sh. The se
ond value is higher, as the �sha
tually gain a small in
rement of weight before the onset of winter. This maybe 
aused by the �sh needing to attain a minimum weight in order to survive thewinter. The next value of �S(t) o

urs during a rapid period of growth wherethe relative weight gain for RPC2 is higher than RPL1. The �nal value of �S(t)is the same as RPL1. This o

urs during the period when the �rst migrationso

ur as some of the parr be
ome smolts. This part of the model has not beenmodi�ed to a

ount for the e�e
ts of migration on the mean weights of the residentpopulation. This will 
ause a redu
tion in their mean weight of those staying,and a possible growth spurt from those that will attempt to migrate (Met
alfeet al. 1988).Although the parameters of the step fun
tion have been set to give the best �t,it does illustrate that some type of dramati
 
hange is o

urring at the thresholdpoints. The temperature at the thresholds after periods of rapid growth duringthe autumn are very high relative to those before rapid growth in the spring.This may be related to the behaviour of the invertebrate drift at these times ofyear. After emergen
e when the fry are small, there will be lots of food items ofthe appropriate size for them to 
onsume. For those that have survived to the170
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Figure 8.11: The CGM with a fun
tional response uptake fun
tion with the dataset GG73-74. A step fun
tion is used to des
ribe the biomass available. The solidline is the simulated growth 
urve.�rst threshold there will be many less of their preferred size. If at this time ofyear the growing season for the invertebrates is over and they have laid their eggsand are dying out before the winter, then this 
ould be re
e
ted in a 
hange infood abundan
e for the salmon.However the biomass spe
trum is unlikely to undergo su
h dramati
 
hangesdes
ribed by the step fun
tion although drift abundan
e does de
rease during thewinter. It has been suggested that even if there is suÆ
ient drift abundan
e forgrowth during the winter, but the parr will ignore this (Met
alfe et al. 1986). Thisis due to insuÆ
ient temperature o

urring to digest the food that is available sorather than risk foraging, the salmon will prefer to be
ome more ina
tive.What we are seeing seems more like a behavioural 
hange that the salmon under-take. During the �rst summer the fry will feed at a very high rate, whi
h has beensuggested to happen in order to build up reserves of tissue that will sustain themthroughout the winter (Met
alfe et al. (1986), Met
alfe and Thorpe (1992)).The timing of the 
hanges in the step fun
tion are likely to be triggered by someenvironmental 
ue other than temperature like photo-period or a 
loser link to171
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Figure 8.12: This is the graph with a step fun
tion on the data from RPL1. Thethree 
urves are for the medium, maximum and minimum average weekly watertemperatures.
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food supply. In order to predi
t su
h thresholds and biomass density values, wemust know their 
auses.8.4 Summary and Con
lusionsThe simulations from the model show that a number of additions and 
orre
tionsmust be made. The �rst is that even when the salmon is feeding at Umax, thereare 
ases where this growth is less than or equal to the observed growth, as inFigs. 8.8 and 8.11. Due to the fun
tional response 
urve, one would expe
t thegrowth at Umax to be an overestimate at the very least, whi
h is not the 
ase.Additional data regarding maximum growth rates of arti�
ially reared parr atdi�erent temperatures from Austreng et al. (1987) was examined. These mea-surements were from fast growing parr from aqua
ulture and it was found thatthe growth rates of these �sh were less than the apparent growth rates of thesalmon parr in the wild.A possible explanation for this may be that the weight-frequen
y distribution ofthe ele
tro-�shing data is positively skewed. If there is size sele
tivity mortalitywithin the population, su
h that the survival rates of the smaller par is less thanfor the larger parr, the larger �sh would survive and go on to be measured in thenext sample. There is at present no mortality e�e
ts in the model.However, the model may not be appropriate for �sh of this size, as at this agethe salmon are still fry and the allometri
 relationships be able to represent thephysiologi
al state of the salmon at this stage of their life. The parameters werederived from �sh that were at the parr stage of their life.Beyond the initial data points, we see that the parr undergo weight loss beforesettling down to fairly steady weight during the winter, whi
h the model wasunable to show with the temperature dependent biomass distribution. The data
ontained the total wet weights of �sh, whi
h would in
lude the gut 
ontent.What we may see happening is that after emergen
e, the fry will 
onsume asmu
h food as it 
an and allo
ate resour
es to its digestive system in order toin
rease its uptake as qui
kly as possible. The result of this behaviour is thatthe faster growing fry will gain a size dependent advantage over its 
onspe
i�
s.173



After this period of rapid growth, it may rea
h a point where it stops feedingand has suÆ
ient quantities of food in its stoma
h and remobilizable tissue for itto survive the winter on a very low diet. Thus the a
tual somati
 growth of the�sh will be di�erent to the measurements that were taken. We must thereforeestimate the gut 
ontents in order to �nd out what proportion of weight that weare predi
ting is a
tually assimilated material.In
orporating parameters that 
hange as the 
ondition of the parr varies mayimprove the model. Most of the parameters are held 
onstant for all sizes andtemperatures. Whilst this may seem unlikely to be true, it is the best that 
anbe a
hieved with limited data. However when data does exist, these 
hanges
an be made. Examples of immediate 
hanges to the model would be a variableto des
ribe the 
arbon-wet weight ratio, whi
h is mu
h lower for smaller �shdue to their higher water 
ontent. The water 
ontent will 
hange during thewinter, in
reasing as the �sh metabolises material (Gardiner and Geddes 1980).Assimilation eÆ
ien
y will also 
hange depending on the amount of food that is
onsumed.Salmon are territorial and on
e having established a territory they will not nor-mally stray very far from it. Any parr that are unable to hold and defend aterritory are likely to die as a result of this. The dire
t 
ause of death is likely tobe predation but this would be due to a la
k of �tness from having no territory.We have seen that as the salmon grow, so will the area in whi
h they forage, aswell as the range of food parti
le size. The number of food parti
les at their pre-ferred food size is likely to de
reases as the salmon grow, so 
ompetition for foodwill be
ome more intense. Food density is a key fa
tor in determining territorysize, although the largest is the length of the parr (Keely and Grant 1995).In the 
urrent model all the environmental parameters ex
ept for temperature arerepresented in a single parameter �CGM ; �UFR or �S(t). This is a 
ombination ofwater velo
ity, biomass size distribution fun
tion. It was held at various 
onstantvalues during the simulations but will have to be examined in its 
omponentparts. Initial estimates of some of these are given in Appendix D.Prey items in the wild, su
h as inse
t larvae have a di�erent shape to the roundfood pellets used in this experiment, being long and thin. Hat
hery reared �shhave been observed to prefer food of this shape, (Stradmeyer et al. 1988) and174



will also prefer wild prey to pelleted food (Stradmeyer and Thorpe 1987b) thoughmaximum atta
k distan
es were not given. This implies that the atta
k distan
esderived from the Wankowski data may be under estimates. However these �shwere starved prior to the Wankowski experiments, and the atta
k distan
es aresimilar to estimates in the wild.The use of a step fun
tion in the model indi
ates that there is a behavioural
hange in the salmon at 
ertain times of year. To examine this behaviour in thewild requires a more detailed a

ount of the drift abundan
e and what are thetriggers for su
h 
hanges. The UFR model requires a wide range of environmentalparameters that are likely to be highly dependent on the mi
rohabitat of the parr.If they 
an be determined, then the UFR will be able to repla
e �(t). This willallow within year variation in the 
onsumption rates and be related to the sizeof the parr. The juvenile growth model will then be in a suitable state in orderto predi
t the growth rates of the parr in the wild.
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Chapter 9General Dis
ussion
9.1 Summary of the CGMe Growth Model9.1.1 Growth ModellingThe model attempts to determine growth rates of juvenile salmon using a numberof fun
tions and driving variables that des
ribe a set of physiologi
al pro
esseswithin the parr that result in 
onsumption being transferred into somati
 weight.Elements of a bioenergeti
s and a semi-empiri
al growth model were 
ombinedinto a hybrid model, whi
h has been 
alled the CGMe, then further adaptationswere introdu
ed to a

ount for the e�e
ts of size sele
tive migration from thepopulation. Be
ause of these 
hanges, other 
hara
teristi
s of the populationdynami
s of ea
h 
ohort 
ould be dedu
ed.In
reased 
omplexity of the model has lead to improvements in the �t of themodel to the data and better des
riptions of the overall dynami
s of the popu-lation. In parti
ular, the addition of an age-dependent variable threshold weightto determine the proportion of the population that would migrate has enabledthe model to predi
t the mean lengths and its variation for the migrants. This isin addition to the mean weights and the variation for the resident parr from ea
hage-
lass within ea
h 
ohort. Su
h improvements 
an not 
arry on inde�nitely,and further developments to the model have been halted due to the quantity andquality of the data that is available.Greater resolution and s
ope of data and will indi
ate stru
tural aspe
ts of the176



model that need to be addressed and whether they are fun
tions des
ribing thephysiologi
al or so
ial behaviour of the parr. Developments 
an then be madeto a

ount for the ina

ura
ies that exist within the model and to derive furtherinsights into the population. A des
ription of the results from the CGMe willbe presented in this 
hapter along an interpretation of these results. Dedu
tionsmade about the so
ial stru
ture and population dynami
s of the juvenile salmon,with their impli
ations, will also be presented.9.1.2 Fun
tions within the ModelThe quantity of 
arbon 
onsumed by an individual 
an be divided into a numberof 
omponents, as des
ribed by equation (3.3) in a typi
al bioenergeti
s model.Broekhuizen et al (1994) used this basi
 format for the CGM with the twoimportant additions of dividing the weight of the parr into stru
tural and reservetissue, and in
luding the starvation response fun
tions. This allowed to modelto des
ribe the observed behaviour of tank reared juvenile salmonids. Similarbehaviour observed in wild salmon parr indi
ated that the model 
ould be appliedto salmon parr but required reparameterization.The E&Hmodel required a me
hanism to prevent over winter weight loss althoughit �tted experimental data very well. This model provided the instantaneousgrowth rate given temperature and �sh weight, and was parameterised using shortterm experimental data from �sh that were fed to satiation and was 
olle
ted overthe summer and autumn.The CGM and E&H model were 
ombined to form the CGMe, whi
h was ableto �t the data from Elliott and Hurley (1997), and additional parameters werefound using data from the literature. It was assumed that the parr, whi
h werefed to satiation, were growing at their maximum rate and that this rate wouldnot be attained in the wild. The fun
tion �(t) was used to indi
ate the di�eren
ebetween the growth rates of wild parr and those fed at satiation, and was assumedto be 
onstant within years but variable between years.The model had been �tted to the mean weights of the population whereas it wasdesigned to predi
t the growth traje
tories of individuals. The variation in thelife history of the juveniles is too great to assume that they follow a single mean177



traje
tory so an age and size dependent smolting threshold was introdu
ed. This
onsiderably improved the �t of the model to the data as the whole 
ohort wasnow being modelled. Given that the growth traje
tories for all the individualswere now being simulated, predi
tions of the behaviour of di�erent groups withinea
h 
ohort (e.g. the spring smolts) 
ould be made.The �nal important addition was the extension of �(t) into the UFR foragingmodel, whi
h allowed uptake to be dependent on foraging behaviour and envi-ronmental variables. It 
ould not be fully implemented into the model as it wasonly partially parameterised but it does provide a me
hanism to a

ount for vari-able growth rates within years, that 
ould not be a

ounted for by temperaturealone.9.1.3 Fitting the Model to the DataThe downhill simplex method of optimisation was used to �t the model to thedata. This method is most e�e
tive when the error surfa
e is suÆ
iently smoothto allow 
onvergen
e to o

ur. If it is not then variation in the initial 
onditionsand the size of the simplex may lead to the DSO being unable to �nd the globalminimum. When the DSO was used to �t the CGMe to the mean weights of thelong term data set, we were unable to determine if the global minimum had beenfound. However, errors asso
iated with the parameter estimates were 
al
ulatedand the parameters from the di�erent initial 
onditions did not vary 
onsiderablygiven the variation in and a

ura
y of the data.Fitting to individual growth traje
tories within years was straightforward withthe DSO pro
edure appearing to 
onverge to unique solutions ea
h time. TheDSO was wholly appropriate and the �t of the model was able to des
ribe insuf-�
ien
ies in the model.Fitting the model to the di�erent se
tions of the stream used many less �ttedparameters and the variation in the derived �(t) was smaller than previously.They were also able to show that there were di�eren
es between the se
tions andthat there is suÆ
ient a

ura
y in the model to distinguish between the qualityof di�erent habitat types.However, as the 
omplexity of the model in
reases, with more parameters being178



used, there is a danger that the results that are being found will 
ontinue tobe
ome less reliable. A more sophisti
ate and a

urate optimisation method willneed to be devised in order to progress in to the development of the model.9.1.4 Interpreting the Results from the ModelThe most important feature of the model is the output whi
h is in the form of�(t). This gives a des
ription of the state of the stream and the environment inwhi
h the parr is growing. A variety of methods of using �(t) have been usedthroughout the thesis and are summarised below.The model has shown that di�erent individuals had their own unique value of�i. These values were signi�
antly 
orrelated with the size of the parr, althoughit was shown that this might have been an artefa
t of the sampling pro
edure.However, given an adjustment in the sampling pro
edure, the di�eren
e in thegrowth rates of di�erent sized parr 
an be found and used to 
al
ulate proportionsof the population that are migrating.This variation in �i means that there is no single value whi
h 
an be applied toall individuals at any site within the stream. It implies that the mi
rohabitatof the parr is an important fa
tor in their growth or that the individuals maybe predisposed to have di�erent growth rates. In
reased resolution of data of allthe �sh in ea
h 
ohort is required, rather than a size sele
tive subset, to betterunderstand the growth of individuals in the wild.The annual values of �y were derived from �tting the model to the mean weights.These may be regarded as an average index of the growth of parr in that partof the stream on
e the e�e
ts of temperature have been removed. The values of�y were seen to in
rease with altitude. This is to be expe
ted as the quality ofhabitat would be expe
ted to improve in the higher parts of the burn.In order for the model to predi
t within year growth, �(t) must be variablewithin years. This has been seen when using data for parr, both individuals andmeans, to predi
t growth within years. The predi
tion of both the individualsand population mean weights within years was de�
ient in the spring, whi
hindi
ates the ne
essity of varying �(t) within years. This was further indi
atedas the values of �(t) are between 0.95 and 1.3 in the �nal versions of the model.179



If Umax is seasonal (as thought by Met
alfe et al (1990)) the E&H model mayonly be appli
able for the parameterisation period. By using the parameterisedUFR model, variation of Umax 
an be introdu
ed into the CGMe.Variation of the input parameters was introdu
ed in the sensitivity analysis andthe values for �(t) remained stable. A suite of models have been developed whi
h
an be applied to di�erent data sets and make predi
tion relating to di�erentaspe
ts of the population dynami
s. The next se
tion will detail 
hara
teristi
sof the population that 
an be dedu
ed using the model.9.2 Population Stru
ture9.2.1 So
ial Stru
tureAdult salmon were prevented from spawning in the Girno
k Burn in 1978, and
onsequently, no 
ohort was born in 1979. This represented a large 
hange inthe so
ial stru
ture of the stream, and was done in order to examine how these
hanges to the population would a�e
t other 
ohorts.In parti
ular, the e�e
t of the 
hanges to the density of the parr on their growthrates needed to be examined. This information 
ould then be used to estimateoptimal sto
king strategies. This 
ould only be done on
e the e�e
ts of tem-perature had been removed from growth, whi
h was one of the obje
tives of themodel. An estimate of the growth potential, �(t) of the resident parr 
ould thenbe made for the year, and this would be examined to see how it 
hanged whenthe 1979 
ohort was absent.Correlation between �y and density or biomass are weak and do not o�er 
on
lu-sive proof of any relationship. Comparisons over the period of low spawning donot show a strong relationship between �y and estimated ova deposition (EOD),whi
h suggests that the so
ial e�e
ts on the growth of the resident parr are small.However, we have seen that ova deposition is negatively 
orrelated with thelengths of the migrants, whi
h suggests that density does depress growth. Thedensity in the so
ial environment does e�e
t the growth of the parr but this isnot apparent in the growth rates of the resident parr. It is apparent in the growthand behaviour of the �sh that are migrating from the population.180



9.2.2 Aspe
ts of MigrationThe model was adapted to predi
t several aspe
ts of the population, in parti
ularthe lengths of the smolts. It was unable to make a

urate predi
tions, with thegreatest deviations from the mean error o

urring during periods pro
eeding lowEOD (see Figs. 1.1 and 6.15). During these periods the lengths were underpredi
ted, whi
h meant that �y was too low.What may be happening is that an ex
ess of good 
onditions is re
e
ted by anin
rease in the mean lengths of the migrants rather than the residents. Larger parrwill migrate whilst those that remain are in a relatively similar size to those whowill remain during years when densities are higher. Therefore, the 
hara
teristi
sof the population that stays are more likely to be di
tated by the 
hara
teristi
sof the stream rather than the so
ial e�e
ts.Alternatively, this homogeneity of the residents may be a re
e
tion of the sam-pling pro
edure that may not have given an a

urate des
ription of the size
omposition of the stream. The larger parr may not have been sampled withinthe habitats on whi
h the model is based (types T1 and T1A) or the larger parrmay have a di�erent habitat preferen
e (see Table 2.4).The smolting thresholds de
rease as altitude in
reases for both the two and threeyear old smolts. This may be a result of the parr attaining a suitable state inwhi
h to smolt, but 
arrying on growing until the time is right i.e. parr will onlysmolt at 
ertain times of the year, irrespe
tive of size.The �t of the model to the resident parr shows that the smolt threshold weightsin
rease with age. This implies that there may be a trade-o� between growthrate and age of smolting. This may be of the form of the in
reased 
han
e ofsurvival given a larger size against the risk of mortality when spending an extrayear in freshwater.9.2.3 Pre
o
ious ParrThe behaviour of the pre
o
ious parr (PP) provides an important 
omponent tothe dynami
s of the population. Little is known of their movement within thestream ex
ept that during autumn they will move in sear
h of spawning females.181



In the Girno
k, when low numbers of adult females were spawning above the trap,the proportions of PP migrating 
ompared to the whole population of migrantsin
reases. This is often followed in the spring by relatively low mean lengths ofthe spring migrants.The growth model groups the PP and the non-pre
o
ious parr (NPP) togetherduring the autumn migration as their lengths are indistinguishable from ea
hother. The same 
annot be said of the weights, as it is likely that they willhave a di�erent weight-length relationship as they allo
ate resour
es towardsreprodu
tion.The 
riterion that enables NPP to be
ome PP is not known and the model hasno spe
i�
 me
hanism to predi
t the dynami
s of the PP and some PP may nevermigrate. To predi
t when they will be
ome pre
o
ious and the e�e
t that thiswill have on their growth and the timing of their migration requires more detaileddata regarding the 
ondition of the PP, both during and before early maturation.9.3 Adaptation and Improvements to the Model9.3.1 Spring GrowthThe model is unable to produ
e a

eptable predi
tions for the 
hange in weightobserved during spring, in the 1+ and 2+ parr. This indi
ated that althoughthe parr may have been growing at their maximum rate when the model wasparameterised, this was not ne
essarily the 
ase throughout the year. The annualvalues of �y are not an indi
ation of the di�eren
e between optimal and wildgrowth, but an index of average annual growth relative to the maximum growthrate attained over the period of the experiments.These under predi
tions may be due to a behavioural or physiologi
al me
hanismthat in
reases growth rates, su
h as a 
hange in the appetite of the parr. Thestarvation response fun
tions in
luded in the model are insuÆ
ient to a

ountthe relatively large in
rease in the growth rate. In addition, the observed growthspurt o

urs when the water temperature is low and the model predi
ts that theparr are a
tually losing weight. A

ounting for these 
hanges is likely to require astru
tural 
hange in the main part of the CGMe or the UFR model. This would182



require additional data and knowledge of the physiologi
al state of the parr, su
has why the parr in
reases its growth so drasti
ally, and the environmental andphysi
al 
ues that trigger this response.One variable that in
reases during spring will be the gut 
ontents of the parr.After the winter during whi
h feeding and digestion rates are low, the parr willhave a lower gut 
ontent than at any other time of the year. As the water warmsand their 
onsumption rate in
reases, a larger proportion of observed weightwill be due to gut 
ontents. A

urate data regarding seasonal 
hanges in the gut
ontents will greatly enhan
e the predi
tions and little data exist for wild salmon.9.3.2 Greater Environment Dependen
eMany environmental variables that have not been in
luded in the model andthe introdu
tion of additional variables may unne
essarily 
ompli
ate the model.There are some important 
hanges that 
an be made whi
h will improve thepredi
tions of the CGMe without a large addition to the 
omplexity of the model.Temperature is the most important driving variable in the model and is 
urrently
al
ulated using linear interpolation between the average monthly temperatures.This temperature resolution may be too low, parti
ularly during the spring andautumn periods when the parr are their most sensitive to temperature 
hanges.This may partially explain why spring growth is under predi
ted, as a few lowtemperatures may give an unrepresentative view of the a
tual 
hanges in tem-perature, and hen
e predi
ted growth, as experien
ed by the parr.Parr from di�erent altitudes will have di�erent growth rates, whi
h is likely tobe due to water temperature being dependent on altitude. As it is impra
ti
al tomeasure water temperature at all latitudes, lo
al variations 
an be 
al
ulated withan altitude-temperature relationship. The model 
an then 
al
ulate the growthrates in di�erent parts of the stream, and if the densities within the stream areknown, then predi
tions of the weight-frequen
y distribution of the stream 
anbe made.The UFR model, whi
h aims to repla
e �(t), is a measure of the 
onsumptionrate of the parr. It requires a large amount of parameterisation, as suÆ
ient datadoes not exist at present for it to be parameterised, and those that it la
ks are183



dis
ussed below.In order for the UFR model to be of any pra
ti
al use, the main fa
tor that isrequired is the annual size-frequen
y distribution of the invertebrate drift withinthe stream. Ideally, this would be spe
i�
 to the mi
rohabitat of the parr, andform of a separate model of invertebrate drift abundan
e. Although mu
h litera-ture does exist regarding the 
omposition and size of benthi
 invertebrates, thiswill be di�erent from the 
omposition in the water 
olumn that is available tothe salmon. However, if a relationship 
ould be derived between the two, thenthe required predi
tions 
ould be made. This would need new data measuringthe drift available to the salmon in both the water 
olumn and the substrate.The 
ow rates will determine how mu
h food passes through the salmons territory,and we have so far assumed the food available is proportional to water velo
ity.The water velo
ity is not uniform with depth, with water 
urrent de
reasing withdistan
e from the surfa
e. Its importan
e will depend upon the magnitude of thedi�eren
es that exist.Flow rates also a�e
t the behaviour of the invertebrates in the stream, and in-
reased 
ow rates will not ne
essarily result in in
reased food availability. There-fore, the quantity of invertebrate drift available to the salmon will be dependenton the 
ow rates and must be in
luded in any predi
tions.The UFR model estimates the 
onsumption rate of the parr. In the simulationsprodu
ed in 
hapter 8, a large number of unknown parameters were 
ondensedinto a single term whi
h was then derived by �tting the model to the data. One ofthese terms was the assimilation eÆ
ien
y. This term may be de�ned as the 
ostsinvolved in the 
apture and digestion of the food, whi
h has yet to be estimated.This may depend on the water temperature and the size of the food parti
le
aptured by the parr but would be best derived from experimentation.More details of the environment of the parr will allow more detail into the modeland allow it to be applied more widely. Parr have di�erent preferen
es to di�erenthabitat types, and migrate between habitat types at di�erent ages as immaturejuveniles. Water velo
ity and substrate are important in habitat sele
tion andtherefore the mi
rohabitat available and its quantity may be an important fa
tor,parti
ularly in regards to the quantity and quality of food passing through thesehabitats. 184



9.3.3 So
ial vs. Physi
al E�e
ts on GrowthThe model has so far been based on driving variables based with the physi
alenvironment of the parr. There are large a�e
ts on growth, whi
h are due tothe so
ial environment of the �sh, whi
h 
an be des
ribed as density dependente�e
ts (Huntingford et al. (1998), Steingrimsson and Grant (1999)). So
iale�e
ts may work on di�erent s
ales, from density dependent mortality asso
iatedwith dispersion from the redd and 
ompetition for territory to the movements ofpre
o
ious parr and the autumn and spring migrations.Ova deposition has been seen to a�e
t the size of the smolts produ
ed in thestream yet there are no me
hanisms with the model to a

ount for these a�e
ts.It is not known if size sele
tive mortality o

urs, although the larger and moredominant juveniles will se
ure the best territories, and for
e other parr to adoptan alternative growth strategy that may extend its time to migration. If sizesele
tive mortality is o

urring, then �tting the model to the mean weights ofea
h age-
lass is an inappropriate method of predi
ting the weight 
hange of theresident parr.A limiting fa
tor on the 
apa
ity of a stream is the quantity and quality ofavailable habitat, and its a

essibility to the parr during di�erent times of itsjuvenile life. A method of in
luding limited territory into the model would beto produ
e a map of the stream based on the potential for growth in di�erentsites and the probability of them being o

upied. This would allow the dispersionfrom the redd to be estimated, and as the parr in
reased in size, this map would
hange as more of the stream be
ame a

essible and as the habitat requirementsof the parr 
hanges. Changes would also o

ur as a result of emigration from theresident population. The growth rates of the parr in di�erent parts of the stream
ould then be 
al
ulated to determine the overall weight-frequen
y distributionof the parr in that part of the stream as well a estimating mortality rates.In order to do this would require a detailed map of the habitat within the streamas well as knowledge of whi
h were preferred by the parr. In order to parameteriseit would require data regarding the densities of the parr in di�erent habitat types.When predi
ting the size of the migrants, it was assumed that on 1 April all theresident parr had a probability of smolting that in
reased with size. An additional185



assumption was that those parr that migrated the previous autumn would havebeen part of the population that migrated in spring. It therefore assumed that thegrowth rates of the spring and autumn migrants were the same. It is not known ifthis is the 
ase, however, when the autumn migrants are large, the following groupof spring migrants are relatively small (see Figs. 2.9 and 2.10). The relationshipbetween the autumn and spring migrants is likely to be a 
omplex one and furtherele
tro-�shing data from individual marked parr is required to determine whetherthe spring and autumn migrants should be predi
ted separately.9.3.4 Extrapolation to the Growth of FryThe parameters for the model have been derived mainly from data regardingthe parr and the growth traje
tories produ
ed by the model have attempted topredi
t growth from birth until smolting. This has meant that there has beena degree of extrapolation and the assumption the parameters will s
ale with thesize of the parr. The salmon are isomorphi
 during the parr stage of their livesbut this 
annot be said of either the smolt stage or the fry stage.Predi
tions regarding smolts have been made using the length rather than weightso any 
hanges in shape (i.e. the 
ondition of the �sh) will not de
rease thelength. However the weights of the fry are predi
ted and the parameters may notbe appli
able at this stage of the juveniles life.The model was used to predi
t the mean weights of populations in the Chapter8 using the CGM . It was seen that even when the uptake rate was set at Umax,the model under predi
ted the growth rates when the salmon were approximatelythree to �ve months old. Two reason for these dis
repan
ies are either the allo-metri
 relationships are invalid for the fry or there are high rates of size sele
tivemortality within the population during this period.Further data would be required to test if the same relationships will hold forthe fry and the parr, and size sele
tive mortality within the population will bedis
ussed in the next subse
tion.
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9.3.5 Modelling Mortality RatesAn important aspe
t of the population dynami
s that has yet to be examined isthe mortality rates within the 
ohorts. The model is 
apable of predi
ting theproportions of parr migrating at ea
h age-
lass from the whole 
ohort, but mor-tality rates must be known if these predi
tions are to be of any use in predi
tingnumber of parr smolting.It has been impli
itly assumed that mortality rates are not size sele
tive and thatthe mean weight of the 0+ parr will transform to the mean weight of the 1+given the assumptions in the model. In the event of size sele
tive mortality rates,this will not be the 
ase. If the mortality rates are higher for the smaller �sh,then the mean weights will be higher than expe
ted. This has been observed tobe the 
ase when predi
ting the mean weights of the 0+ parr.It is widely a

epted that there is high density dependent mortality during andafter dispersion from the redd. For the model to be able to attempt to predi
tnumbers of �sh migrating ea
h year requires the addition of a mortality model.Whether this should be size sele
tive will depend on whether data 
an be gatheredto show this.9.3.6 Modelling The Condition of the ParrDuring the year, the 
ondition of the juveniles 
hange, su
h as during the winterwhen the 
onsumption rate de
reases and they experien
e weight loss. Also, inthe spring, when they begin to feed, they will experien
e an apparent weight gaindue to in
reased gut 
ontents.The majority of the data that has been used has been in the form of lengths
onverted into weights using a weight-length relationship. This relationship will
hange with time, and would be ne
essary to predi
t the �sh lengths at any timeduring the year. This would enable the model to be �tted to the autumn migrantsas well as the spring smolts.Considering the 
ondition of the parr at di�erent times of the year may o�erinsights into whether the males will be
ome PP (as this results in a 
hange in
ondition as resour
es are diverted to the reprodu
tive organs). This may also187



indi
ate whether a parr will migrate, as 
ondition 
hanges during smolting.9.4 Using the Model as a Management ToolThe ultimate aim of this thesis was too develop a model that 
ould be developedinto a tool to aid �sheries management and enhan
e salmon produ
tion. Beloware a series of methods in whi
h the model 
an be used to assess the suitabil-ity of streams and optimise produ
tion by examining the lo
al populations andenvironment.9.4.1 Habitat AssessmentThe environment in whi
h a salmon grows has a very large e�e
t on the growthrate of the parr. The physi
al environment may be de�ned by the substrate typeand the 
urrent or by the altitude. Either way, growth will be a�e
ted, andduring the juvenile stage of the salmons life, di�erent habitats may be preferableto others.The model was �tted to data from di�erent altitudes and it was found that �(t)in
reased with altitude whi
h was done by using di�erent temperatures. Thevalues of �(t) 
an be used as a measure of the quality of the river, and thereforethe likely 
hanges in the sizes of the salmon given 
hanges in temperature 
anbe assessed. The impli
ations for this is that in the event of global warming and
hanges in the long term mean monthly temperatures, as have been observedin the Girno
k, 
hanges in the expe
ted sizes of the �sh, whi
h will determinemigration patterns, 
an be estimated.The model 
an be �tted to data from di�erent rivers and the values of �(t)used as a relative index of habitat quality. When �tted to di�erent altitudes,it was found that �(t) in
reased with altitude and the predi
tions be
ame lessa

urate as altitude de
reased. These values indi
ated that although the parr athigher altitudes grew slower and migrated at a smaller weight, this was due totemperature and the quality of habitat was better than down stream. Comparing�(t) between rivers will indi
ate where that may be spare 
apa
ity (by the highvalues of �(t)) in the river and the more suitable environment in whi
h to sto
k188



�sh.The model 
an be applied to rivers where there are no �sh to determine suitability.An assumed minimum smolt length will need to be determined, su
h that if theparr do not rea
h that weight in a 
ertain time then the river is not viable. Themodel 
an then be �tted to these weights (given that temperature is known) andif �(t) is too low, then turnover is likely to be low. High values will lead to �shmigrating sooner and may mean that the river is more suitable to be sto
ked.9.4.2 Optimising Produ
tionThe sto
king of rivers with arti�
ially reared sto
k is an important aspe
t of�sheries management and one that has re
eived mu
h attention (Verspoor anddeLeaniz (1997), Largiader et al. (1996), Philippart et al. (1994)). There ismu
h un
ertainty as to knowing what the optimal sto
king strategy should be tomaximise the number of smolts given the 
osts that are involved. It is not a
-
epted that sto
king beyond the rivers estimated 
arrying 
apa
ity will maximiseprodu
tion as high densities may redu
e growth rates so severely as to make thesto
king pro
edure une
onomi
.The growth model has shown that variation in ova deposition will have little ifno e�e
t on the resident population, but will produ
e larger smolts. This meansthat although the population as a whole will grow faster, on
e the migrants haveleft, the remaining population will be of a similar size to those that would remainin years when ova deposition is higher.The 
on
lusions that 
an be drawn from this are that the average age of themigrants will be lower when ova deposition is lower. However, this relationship
annot be quanti�ed, as a

urate numbers of emigrants from the population inthe Girno
k is unknown. The proportion of the population migrating at ea
h age-
lass 
annot be estimated until the estimated mortality rates are derived. Thiswould require reliable estimates of the numbers of autumn as well as spring mi-grants from the burn. Without this, the model 
an not determine how in
reasingova deposition 
hanges the number of smolts.The model does make a 
onsiderable 
ontribution to understanding the problemof optimal sto
king densities. It has shown that on
e the e�e
ts of temperature189



have been removed, the mean weights of the parr that stay in the burn remainssteady in spite of large 
u
tuation in the ova deposition. The e�e
t of density onthe growth rates of the parr is only seen in the 
hanges in the lengths of the smolts.During periods when ova deposition is low, followed by years when it is high,the extra 
apa
ity may be a

ounted for by the parr from other 
ohorts. Thise�e
tively means that be
ause of the overlapping age-
lasses, 
ohort whi
h aremore populous are able to take advantage of the spa
es left by the less populous
ohorts. The result of whi
h means that the bene�ts to the resident populationborn in a year of low ova deposition are small.It is possible that the bene�ts of a year when ova deposition is low is gainedduring the period between the summer surveys (i.e. autumn and spring) whi
hallow a proportion of the population to migrate earlier as relatively large smolts.This aspe
t of the growth has not been in
luded in the model (and the model hasbeen seen to predi
t smolt lengths badly) and is a period for whi
h we have littledata. However this analysis appear to indi
ate that the 
apa
ity of the river hasyet to be ex
eeded, and for 
apa
ity to be ex
eeded may require several years of
onsistently high levels of ova deposition.9.4.3 DeeCAMP GISOne method in whi
h the environment of the river Dee 
at
hment is studied andmanaged is through the use of the Dee CAt
hment Management Planning Geo-graphi
al Information System (DeeCAMP GIS). This is funded by a 
onsortiumof interested parties, su
h as the Grampian Regional Coun
il Water Servi
es,S
ottish Natural Heritage, the S
ottish Environmental Prote
tion Agen
y andthe Dee Salmon Fishing Improvement Asso
iation and is based at the Instituteof Terrestrial E
ology (ITE) Ban
hory. One of the aims of DeeCAMP was toidentify areas of the river whi
h were a

essible to salmon and suitable for rear-ing viable salmon populations.DeeCAMP GIS 
ontains many environmental variables whi
h 
an be used toassess the suitability of parts of the stream for salmon rearing. Gradients ofrivers 
an be 
al
ulated to determine whi
h parts of the streams are a

essibleto the salmon. The ina

essible areas 
ould be made a

essible through theintrodu
tion of �sh ladders or the removal of impassable barriers. This would190



only be done if it were thought that a viable population 
ould exist above thebarrier.This requires a method of assessing whether the lo
al environment was suitable.One su
h method 
ould be by sto
king the parts of the burn with trial populationsand by 
ondu
ting surveys of the stream. However, due to the large numberof potential sites, these methods are prohibitively expensive, and a method isrequired to redu
e the number of potential sites.Given the data whi
h are 
ontained within the DeeCAMP GIS, the model 
anbe adapted to be used as a tool to predi
t growth rates and estimate emigrationtimes at the potential sites. This would enable further investigations to be 
on-du
ted and allow sto
king poli
ies to be evaluated. This would then lead to theintrodu
tion, or reintrodu
tion, of salmon to more parts of the river, and hen
ein
rease the overall produ
tion of the Dee.9.5 Con
lusionsThis thesis has seen the development of an individual based model to predi
t thegrowth rates of salmon parr. The model has been applied to a wide range ofdata in a number of di�erent forms and s
enarios, ea
h of whi
h has lead to agreater understanding of the model and improvements to be made. It has thenbeen extended to predi
t wider aspe
ts of the population. Improvements to themodel and appli
ations have been given in the �nal 
hapter that lead us towardsa
hieving the obje
tive of enhan
ing salmon produ
tion in the river Dee.The main deterrent to further progress with the thesis has been the la
k of dataon an individual level, both 
on
erning the growth rates of individuals and mea-surements of the food that they 
onsume. This situation has been realised, andwith the beginning of the data set on individuals in Chapter 5 and plans to mon-itor invertebrates within the stream, promises to explain mu
h of the life of theindividuals.The examination of the sele
tion of, and 
ompetition for, mi
rohabitat by thejuveniles is also an area of great importan
e as it 
an have great impli
ations forthe parrs future life history. Prime lo
ations will lead to in
reased growth rates191



and earlier opportunities to smolt or be
ome pre
o
ious parr. Therefore, eventsfrom dispersion of the redd will have a great bearing on the fate of the parr.The future of salmon resear
h will lie in the small s
ale examination of their life,as it is only by pie
ing together aspe
ts from the individuals will the behaviourof the population be realised. The fas
inating 
omplexity and variety whi
h thesalmon exhibit, and the 
omplexity of their population dynami
s will ensure thatthey will remain the subje
t of mu
h interest and resear
h a
ross di�erent �eldsof s
ien
e for many years to 
ome.
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Appendix AThe Downhill Method ofOptimisation
The downhill methods of optimisation (DSO) is a pro
edure whereby the errorbetween a fun
tion and the data is minimised by altering parameters of thefun
tion, and was developed by Nelder and Mead (1965). The DSO algorithmthat will be used is from Press et al (1989) and is able to parameterise models inthe following way.Estimates of ea
h parameter, along with a step size are spe
i�ed. The pro
edurewill then 
reate a shape, the simplex, whose size and the 
orners are de�ned bythe parameters and the step size. The simplex will have N +1 dimensions, whereN is the number of parameters to be found. The error value is then derived atea
h of the 
orners, whi
h is based on the output from the model and the data.On
e the 
orner with the lowest error value has been determined, the simplexundergoes a transformation about a 
orner, su
h as a re
e
tion, expansion or
ontra
tion, and a new set of errors are derived from the new set of 
orners.This pro
ess is repeated until the 
hange in the error is less than a spe
i�ed
onvergen
e 
riterion.In e�e
t, what the simplex is doing is moving down the error surfa
e, and thenmoving a
ross it to its lowest point. Ideally, the lowest point would be the globalminimum, whi
h would require a fairly smooth error surfa
e.
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Appendix BDerivation of the Type IIFun
tional Response
A population of N individuals 
an be divided into two groups during bouts offoraging. Those that are sear
hing for prey, NS, or handling prey, NH . Theaverage time to handle one biomass of food shall be de�ned as �h. If we let therate at whi
h food is found whilst foraging be �, then we 
an use the expressiondNSdt = NH�h � �NS: (B.1)This is 
onstant when NH = �h�NS and be
ause NH=N -NS we 
an derive N interms of NS, N = NS(1 + �h�) (B.2)The uptake for the population is UN = �NS therefore for an individual it isU = �NS=N and by substitution gives the uptake per individual asU = �1 + �h� (B.3)Umax will o

ur when all the time spent is handling so the most food that 
anbe handled per unit time is 1=�h. We shall de�ne Umax � 1=�h. Therefore if wedivide through by Umax=� we get our desired form,U = Umax 11 + Umax� ! : (B.4)212



Appendix CProof that AT (L) will s
ale withL3
As the length of the salmon in
reases, both the maximum atta
k distan
e andthe ranges of parti
le sizes that are available will in
rease in absolute terms. Ifwe 
onvert our de�nition of AT (L) into absolute units of length (x 
m) this 
anshown. First we note that r = x=L and 
 = p=L, then from our de�nition ofD(p; L) in se
tion 8.2.2. we 
overt it into absolute units of p and L.D(
) = a1 + a2
 + a3
2 (C.1)D(p; L) = a1 + a2 pL + a3 � pL�2 (C.2)for D(p; L):). To �nd the probability of atta
k over all r we must integrateAs(p; L) = Z LD(p;L)rL=0 s1� � r2D2(p; L)��rLd(rL): (C.3)This 
an be rewritten asAs(p; L) = Z LD(p;L)x=0 s1� � x2L2D2(p; L)��xdx; (C.4)whi
h integrates toAs(p; L) = �L2D2(p; L)3 (C.5)= �L23 (a1 + a2 pL + a3 � pL�2)2: (C.6)213



To determine AT we must integrate a
ross 
.AT (L) = Z 
maxLp=
minLAs(p; L)dp; (C.7)= L2 Z 
maxLp=
minL �D2(p; L)3 dp; (C.8)= L2 Z 
maxLp=
minL �3 �a1 + a2 pL + a3 � pL�2�2 dp; (C.9)= �L23 Z 
maxLp=
minL�a21 + 2a1a2 pL + 2a1a3 � pL�2 + a22 � pL�2+ 2a2a3 � pL�3 + a23 � pL�4�dp: (C.10)For simpli
ity we shall rede�nea � �3a21 (C.11)b � �3 2a1a2 (C.12)
 � �3 (2a1a3 + a22) (C.13)d � �3 2a2a3 (C.14)e � �3a23 (C.15)Thus AT (L) = L2 Z 
maxLp=
minL a + b pL + 
� pL�2 + d� pL�3 + e� pL�4 (C.16)= L2 �ap+ b p22L + 
 p33L2 + d p44L3 + e p55L4�
maxLp=
minL : (C.17)= L3(a(
max � 
min) + b2(
2max � 
2min) + 
3(
3max � 
3min)+ d4(
4max � 
4min) + e5(
5max � 
5min)) (C.18)Thus, we shall rede�ne� � a(
max � 
min) + b2(
2max � 
2min) + 
3(
3max � 
3min)+ d4(
4max � 
4min) + e5(
5max � 
5min) (C.19)Therefore AT (L) = �L3, where � = 5:479:214



Appendix DParameters for the UFR Model
There are a number of parameters that are ne
essary in order to implement theURF model. These are outlined and estimated below.The handling time, �(L)A lower estimate for �(L) 
an be derived from a study by Stradmeyer and Thorpe(1987a) who observed 25 
aptures in a 15 minute foraging bout for a wild salmonin a stream with high food density (this is the higher of two estimates given,the other from a stream having lower food density). Thus �(L) = 36 se
ondper attempts. The mean length of the observed �sh is known but due to onlyhaving one point we are unable to dedu
e the relationship between �(L) and L.However, this will in
lude the ingestion of non-nutritional foods su
h as exuviae.This has been observed in the stoma
h 
ontents of 
oho salmon to be up to 35%of the items (Mundie 1969).The water velo
ity, vThe surfa
e 
urrent velo
ities are given in Egglishaw and Sha
kley (1977) of thedi�erent se
tions of the Shelligan Burn studied, whi
h 
an be used to simulatethe data set from Gardiner and Geddes (1980).Total time spent foraging per daySalmon may have more than one feeding period, dependent on temperature orphotoperiod, at dusk or/and dawn, whi
h 
orrespond to the daylight peak a
tivitylevels of the invertebrates in the drift. Between these periods, the salmon are ableto digest their food. They are thought to spend between 10-20% of their timeforaging (Keely and Grant 1995). 215



Salmon Length-Weight relationshipWe are examining two methods of �nding the uptake. One is in the CGM, whi
hhas units of salmon weight the other is the fun
tional response uptake model,whi
h is in terms of salmon length. To make these models inter
hangeable werequire a weight-length relationship. As the stru
tural weight is being used as asurrogate for length, it will be more 
onvenient to have a stru
tural weight-lengthrelationship. To derive this, 
orresponding measurements of total wet-weight andlength were used. These points were taken when the �sh were in their most rapidperiods of growth and assumed to healthy. Using the ideal reserve to stru
turalweight ratio, we were able to dedu
e the stru
tural wet-weight at these points.This was then �tted with the modelS = asLbs : (D.1)The parameters derived from �tting equation (D.1) to the data from Gardinerand Geddes (1980) are:For Stru
tural Wet Weight (g), the residual sum of squares is 0.00272 and theparameters are as = 0:0170 and bs = 2:425 from �ve observations.For Stru
tural Carbon Weight (mgC), the residual sum of squares is 61.429 andthe parameters are as = 2:547 and bs = 2:425 from �ve observations.
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