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ABSTRACT

The aim of the work reported is the formulation, analysis and
application of analytically and computationally tractable age-
structured models of laboratory insect populations. The simplified
case of two developmental stages (immature and adult) is considered
under different competition regimes. Both constant (Ch. 2 and 3)

and differential (Ch. 4) aging are considered.

In Chapter 2 a general delay-differential equation describing
the population dynamics of adults under two competition regimes is
derived. The biological constraints upon the form of the functions
in the equation are specified, and results on local stability,
boundedness of solutions, and deterministic persistent fluctuations
established. Useful relationships with difference equations are
explored, and standard bifurcation results on the latter are shown
to aid the analysis of the former. The results are illustrated

by examining two models of the general type.

In Chapter 3 a particular delay-differential equation model is
fitted to some classic data on the Australian sheep blowfly Lucilia
cuprina (Wied). It is established that the quasi-periodic "cycles"
in adult population numbers are deterministic persistent fluctuations,
and that the gualitative differences in breeding patterns observed
between different experiments (different competition regimes) are the

result of a "humped" adult recruitment functioen.

In Chapter 4 general equations for a differentially aging two
developmental-stage population are derived, and from thesze a single
integro-differential equation for the adult population dynamics

under "adult-only" competition is extracted. It is shown how the



choice of a gamma distribution with a shift in origin (matching
well some observed maturation period distributions) makes local
stability and numerical analyses straightforward. The behaviour
of constant and distributed maturation period models is compared,
and conclusions drawn about the occasions when the approximation
(the former) is sufficient, and when the full distributed model
(the latter) is required. The results and conclusions of the

Case Study, Chapter 3, are justified in the light of this comparison.
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NOTATION:

In the order: Roman lower case, Roman upper case, Greek, Subdivisions
in order: single symbols, symbols with sub/superseripts, symbols
including arguments, i.e. functions. Where relevant, the equation

number where the notation is first used (or is defined), is given.

a age
e parameter in gamma distribution (Equation (&4.4.9))

d "seramble" parameter (Equation (2.7.14))

da infinitesimal age-interval = dt

dr infinitesimal immatu;e stage—duration interval = dt

ds infinitesimal adult stage-duration interwval = dt

dt infinitesimal time-interval

e 2.71828...

h parameter related to larval food supply (Equation (3.4.3))
i i2 = -

jsk integers

m constant per capita adult death rate (Equation (2.7.1))

P integer order of gamma distribution (Equation (4.4.9))

r time—to—date spent in immature developmental stage

s time-to—date spent in adult developmental stage

t time

v parameter in difference equation analogue of Model (I)

(Equation (2.7.10))

x dummy age or time wvariable
c, parameter in recruitment function of Model (II) (Equation (2.7.14))
g, parameter controlling decline in per capita adult fecundity

(Equation (3.3.3))

n coherence number (Equation (3.5.3))



positive constants
t' scaled time = t/T

f(a,t) age-density of individuals in the population at time t:
constant aging

fA{s,t} stage-duration density of adults at time t; differential aging

fI{r,t) stage-duration density of immatures at time t; differential
aging

g(x;b) gamma distribution of integer order p, origin at x = 0

n(t) small perturbation of adult population from equilibrium
(Equation (2.4.2))

u(a) normalised weighting function, with respect to age.
(Equation (4.1.1))

w(r) unnormalised distribution of maturation periods
(Equation (4.4.1))

P parameter related to per capita fecundity

Q maximum per capita fecundity (Equation (3.3.3))

T dominant period of either quasi-cycles, or persistent
fluctuations (Equation (3.5.2))

AD adult population size at which total future recruitment rate is

at a maximum

ﬁI number of new adults introduced at start of experiment

Amax maximum adult population size observed after the transient
has passed

Amin minimum adult population size observed after the transient
has passed

A lower bound on persistent fluctuations (Equation €1.5.5))

Au upper bound on persistent fluctuations (Equation (2.5.4))

AL adult population at time t in discrete time

AT adult pepulation size at a turning point (Equation (2.5.3))

A* adult population steady state (Equation (2.4.1))

B maximum value of B(t)

max

LLIH YU—YL: assymptotic maximum amplitude of scaled equation
(Equation (2.7.11))



Ale)
B(t)
D, (t)
D (t)
F('r')
G{At}
H{x)
I(t)

K(t r(r fP}
M{t)

R(t)

S,(a)

Uj(t'}

parameter related to maximum per capita fecundity in
Model (I) (Equation (2.7.2))

parameter related to maximum per capita fecundity in
Model (II) (Equation (2.7.14))

maximum future recruitment rate (Equation (2.5.2))
Emaxfﬁﬂ (Equation (2.7.4))

average egg-to-adult survival under adult-only competition
(Equation (3.3.2))

{TIKTZ}I(1+TIfT2} {(Equation (4.7.6))
ﬂIfﬂﬂ
Aax'%o

Amin”’ﬂ

a/Ay

Aylbo

ﬁtfﬁﬂ

&*!ﬁc

adult population at time t¢

total birth rate at time t

total adult death rate at time t

total immature death rate at time t

a non-linear function . {(Equation (4.1.1))
generative function, discrete time (Equation (2.6.3))
Heaviside step function at x = 0 (Equation (4.4.8))

immature population at time t
asymptotie value of - pt/ot {(Equation (4.5.5))

total maturation rate (out of immature stage) at time t,
M(t) = R(t)

total recruitment rate (into adult stage) at time t

probability of survival to age a under conditions of immature-
cohort competition; constant aging (Equation (3.4.2))

Vj{t}iEmax (Equation (4.7.4))



vj(t} one of p+] auxilliary wariables {(Equation (4.6.2))

Y(t) ﬁ{t}fﬂg

o partial derivative of D, (4) at A = A% (Equation (2.4.3))

Y -1 times partial derivation of B(A) at A = A%, discrete
time (Equation (2.6.4))

At small discrete time interval (Equation (2.6.1))

£ small parameter (Equation (2.7.12))

E ﬁ+{T1f12}tanﬁ (Equation (A2.17))

g tanf = w/c (Equation (A2.6)

A eigenvalue of solution to perturbation equation. A = —p+iw

u real part of A (Equation (2.4.6))

] 3.14159...

p partial derivative of R(A) at A = A*; constant aging
(Equation (2.4.3));= S, times partial derivative of B{A)
at A = A*, differential aging (Equation (4.5.4))

o standard deviation of g(x;p) (Equation (4.7.1)

T mean maturation period

W imaginary part of A (Equation (3.5.2))

ﬁF Feigenbaum's delta (Equation (2.7.13))

EL minimum feasible 6, given TIHTE and p (Appendix 2)

EU maximum feasible 8, given T]sz and p {(Appendix 2)

v eritical maFuration period, at ?hich instability first occurs;
constant aging (Equation (2.4.5))

Ti minimum maturation period; differential aging (Equations (4.4.7))

T2 mean of g(x;p) (Equations (4.4.10)-(4.4.11))

B(-,t) per capita fecundity (age or stage duration specific)
ﬁlb,t} B(*,t) under conditions of adult-only competition

Eib,t} B(-,t) under conditions of immature-cochort competition

S T



§(a,t) age-specific per capita death rate for the entire
population; constant aging (Equation Al.1))

ﬁA{',t} per capita adult death rate (age or stage-duration specific)
61{*,t} per capita immature death rate (age or stage-duration specific)

glr,t) per caEita stage—duration specific maturation rate;
differential aging

Wir) observed frequency distribution of maturation times
(Equation (4.4.4))
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CHAPTER 1: INTRODUCTION

1.1 AGE STRUCTURE AND POPULATION DYNAMICS

In virtually any animal population there will be present, at
any one time, individuals of a variety of different ages. Age
dictates, to a great extent, the significance of an individual in
a population: many of the important characteristics of an animal,
such as fecundity, body size, growth rate and mortality, can be
strongly age-dependent. In particular, it is generally true that
an individual passes through some juvenile period, before becoming
sexually mature and breeding according to a pattern that is
characteristic of the species. There is a vast variety of animal
'life histories' ranging from those who breed once and then die, to
those who breed more or less continually throughout most of their
adult lives (a brief discussion of life history types is to be
found in CHARLESWORTH (1980, Ch. 2); KREBS (1978, Ch. 10) contains
many examples). Clearly, no single model, or class of models, could
hope to describe the age-dependent effects upon population dynamics
of all the possible life histories, so that if simple tractable
population models incorporating some age-structure are sought, they
must of necessity suffer from a restrietion in range of application.
Just as importantly, if the model construction is to be more than
a mathematical exercise, appropriate data on a given population and

its controlling mechanism must be available for model testing.

The difficulties of trying to understand the effects of age-
structure on the dynamics of a field population are compounded by

interactions (often age-specific themselves) between species and

L



environmental variation, to the extent where the separation of
dynamic features due to age-effects from those due to other causes
is exceedingly difficult. In contrast, within the closed and
controlled environment of the laboratory, age-structure effects can
be investigated more or less in isolatien, provided that an
experimental animal is used which has a short generation time

(in order that population data over a large number of generations
can be collected in a relatively short time), and which can be readily
aged. For these reasons, laboratory populations of insects, many
of which have gratifyingly short generation times, and readily
identifiable stages in the life-history (SOUTHWOOD 1966), have

been among the chief sources of data on age-structure effects on
population dynamics (most notably, the work of NICHOLSON (1950,

1954, 1957, 1960) on the Australian sheep blowfly, Lucilia cuprina

Wied.)). It is natural therefore that models of laboratory age-
structured pupulafinns should be particularly applicable to insect
populations, and indeed the models developed and analysed in this

thesis are explicitly insect population models.
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1.2 MODELS INCORPORATING AGE-STRUCTURE

In Chapters 2 and 3 I shall be considering single-species
models where the assumption is made that the length of the juvenile
stage is the same for all individuals. This reflects a very
general assumption that underlies almost all age-structure population
models, namely that all individuals age uniformly. In Section (1.2.1)
I shall briefly discuss these 'uniform aging' models, and then in
Section (1.2.2) consider those few attempts at age-structure modelling
when aging occurs at a different rate for each individual, a topic

I return to in Chapter 4.

1.2.1 Uniform Aging

Historically there have been a number of approaches to the
modelling of a uniformly aging population, based on a variety of
continuous and discrete age/time formalisms. GOODMAN (1967) discusses
the relationships between the various approaches in some detail while
CHARLESWORTH (1980, Ch. 1) carefully sets out a number of alternative
formulations, and NISBET & GURNEY (1982, Ch. 3) compare continuous and
discrete time formalism, so that there is little need to go into detail
here. However, the following is necessary background to Chapters 2

and 3.

The assumption of uniform aging allows all the age-structure models
to be derived from a recurrence relation and a renewal condition. The
recurrence relation describes the movement of individuals through the
age-structure in small age and time steps, conditional upon survival,
while the renewal condition is an integral equation (or the discrete time

equivalent) defining the total birth rate as the sum of contributions

stk s



from the fertile age-classes. Manipulating these two equations
in different ways produces all the continuous and discrete time

formalisms.

In continuous time, the age and time interval of the
fundamental recurrence relation goes to zero, and a partial
differential equation (equation Al.l) is obtained. The age-
structure problem was first stated in this form by McKENDRICK
(1926) (and later, independently, by von FOERSTER (1959)), but
the earliest complete formulation was that of SHARPE & LOTKA
(1911), and LOTKA (1925), who went directly from the recurrence
relation to an integral equation, implicitly using the solution
to the McKENDRICK equation en route, The two forms are completely
equivalent, but historically, demographers have preferred the
integral equation approach (c.f. POLLARD, 1973). For ecological
population modelling the direct use of the McKENDRICK equation
has become increasingly popular (e.g. SINKO & STEIFER 1967;
AUSLANDER OSTER & HUFFAKER 19?&_; STREIFER 1974; OSTER 1976),
with various simplifying assumptions permitting reduction of the
partial differential equation to less complex balance equations
(c.£. OSTER 1976). The differential equation models so widely
used in the ecological literature are (if correct) in fact examples

of age-structure equations simplified to the point where age-

structure is ignored,

In discrete time age-structure models, the age and time step in
the original recurrence relation remains finite, and so becomes the
basic unit of age and time, i.e. there are a series of "age classes"

through which individuals pass in "jumps'". The common expression

a1 %S



given to discrete time models is either a matrix equation, generally
considered to date from LESLIE (1945, 1948), (but see POLLARD 1973,
Ch. 4), or else high order difference equations (c.f. CHARLESWORTH
1980, Ch. 1). However, all discrete time age-structure models are
approximations to a continuous time system (not only because their
common ancestors are the recurrence relation and renewal condition
mentioned above, but also because of the fundamental truth that time
really is continuous on any ecological timescale), becoming exact
only when breeding in the real population occurs at exactly and
evenly spaced intervals, The main rationale for the use of the
discrete time approximations is that they are computationally very
much more tractable than the continuous time, exact equations, and
simplifying assumptions can produce models whose analysis is
trivial, the extreme case being the simple first order difference
equations so common in ecological population modelling (e.g. MAY

& OSTER 1976; VARLEY GRADWELL & HASSELL 1973, and references
therein). However, there seems little reason to use such
approximations if amalytically and computationally tractable

exact equations can be obtained. For this reason, delay-differential
equations have been popular choices as population models (e.g.
CASWELL 1972; ROSS 1972; MAY 1973; 1974a, 1981; CHOW 1974; MAY
CONWAY HASSELL & SOUTHWOOD 1974; MAYNARD SMITH 1974, Ch. 33
BEDDINGTON & MAY 1975; STIRZAKEP 1975; TAYLOR & SOKAL 1976;

KAPLAN & YORKE 1977; OSTER 1976; OSTER & IPAKTCHI 1978: GURNEY
BLYTHE & NISBET 1980; NISBET & GURNEY 1982, Ch. 2 & 8), but those
are usually used on an ad hoc basis, being rarely derived (MAYNARD

SMITH 1974, OSTER 1976, PEREZ MALTA & COUTINHO, 1978, GURNEY BLYTHE
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& WISEET 1980 and NISBET & GURNEY 1982, Ch. 8 being notable
exceptions). A worrying feature is that the most common ad hoc
delay-differential equation is the so-called "time-delayed
logistic" (e.g. JONES 1962a, b; AUSLANDER et al 1974; MAY
1974a, Ch. 4). This equation was originally formulated by
HUTCHINSON (1948) to describe, in a general way, the effects of
delayed density-dependent regulation upon a growing population,
and apparently can only be derived from the exact age-structure
equations (i.e. The McKENDRICK (1926) equation and renewal
condition) by removing all age-structure, and introducing an
arbitrary time lag (see the derivation in AUSLANDER et al 1974)!
Whatever its wmerits in other contexts, the time-delayed logistic

is thoroughly inappropriate in age-structure modelling.

In Chapter 2 I derive from first principles (for the
simplified case where there are just two developmental stages -
immatures and adults - under certain resource competition regimes)
a single delay-differential equation describing changes in the
adult developmental class. I show that this delay-differential
equation is readily analysed, and fit (in Ch. 3) a specific
example to some of NICHOLSON's (1954) experimental results.
GURNEY NISBET & LAWTON (1983), in a forthecoming publication,
extend the derivation to include an arbitrary number of
developmental eclasses, each with a characteristic length and

competition regime.
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1.2,2 Differential Aging

In all the models described so far, and in those examined in
Chapters 2 and 3, all individuals in the population are assumed to
age uniformly, so that the duration of a developmental stage is the
same for all. Clearly in the real world this is not the case, as
all biological features display a natural variation between individuals
(BEGON (1983) discusses this variation at length, but even a cursory
glance at published experimental results suffices to make the point

abundantly clear).

Attempts to incorporate this natural variation into age-structure
models have not met with great success. Explicit differential aging
in the form of a forward diffusion term in McKENDRICK's (1926)
equation has been suggested (OSTER & TAKAHASHI 1974; AUSLANDER et al
1974; OSTER 1976), but little appears to have been accomplished as
regards model development and analysis. The most common approach
has been to assume that there is some distribution of durations of
a particular developmental stage (the immature stage) and simply
insert this into a delay-differential equation to generalise the
results of the latter (e.g. MAY 1973, 1974a; MACDONALD 1978).
Unfortunately, the equations so produced are almost invariably
inappropriate to age-structure modelling, as I show in Chapter 4
(although of course the same equations can express other biological
processes, as they were originally formulated to do (e.g. VOLTERRA
1927))., and so most of the published work, performed on generalisations
of the "time-delayed logistic", is of no relevance here (e.g. MAY
1973, 1974a, KAZARINOFF WAN & van den DRIESSCHE 1978; BARCLAY &

van den DRIESSCHE 1975, CUSHING 1977, to choose a few). LEWIS (1972,

= T



1977) has produced analytically tractable integral equation models,
describing the flow of individuals through a "process" the duration
of which is randomly distributed, and CUSHING (1980) investigates an
integral equation model that incorporates (amongst other things) a
distributed gestation period (although neither author chooses to
include the effects of mortality during the distributed duration
stage). Apparently no analytically and computationally tractable
general mode of a differentially aging population has ever been
formulated, and in Chapter 4 I attempt to do so, using an integro-
differential equation formalism as the natural generalisation of

the delay-differential equations of Chapter 2 and 3.
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1.3 SOLUTIONS OF AGE-STRUCTURED MODELS

In Chapters 2-4 I shall be using delay-differential and integro-
differential equations to describe the adult population dynamics of
laboratory insect populations. As I shall show (Appendix 1 and Ch. 4),
these equations are derived from partial differential equations like
the McKENDRICK (1926) equations, and as such they have two solutions:
one describing the dying off of individuals already present at the
initial time, the second that of individuals born after that time
(see SINKO & STREIFER 1967, and NISBET & GURNEY 1982, Ch. 3 for
example). As a result, the complete future solution of the delay-
or integro-differential balance equation requires an "initial history"
of population numbers prior to the initial time that is itself a
valid solution to the balance equatien. For a laboratory population
started by introducing a number of individuals into an empty apparatus
{a cage, say), clearly there is no contribution from individuals
older than the experiment, and the initial history is zero individuals
for all past time. This leaves but one solution to be considered
during the analytic and numerical treatment of the population models,

which greatly increases their tractability.

Solving differential and delay-differential equations numerically
is straightforward, provided a suitable algorithm and adequate computing
facilities are available. The numerical analysis in Chapters 2 and 4
was performed using the UCSD PASCAL program SOLVER (MAAS, NISBET &
GURNEY 1982) which utilizes a modified predictor-corrector algorithm,
on a Western Digital Microengine. The older numerical analysis of
Chapter 3 was performed on a Data General NOVA minicomputer using the

program IVPS, a precursor to SOLVER.
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CHAPTER 2 CONSTANT MATURATION PERIOD: GENERAL RESULTS

2.1 INTRODUCTION

In this Chapter I consider the dynamics of a laboratory insect
population subdivided into two developmental classes, the immatures
and the adults. With uniform aging and an "age-triggered" transition
between classes, the length of time spent by any individual as an
immature before transition to adulthood is constant - that ig, there

is a constant "maturation period", T.

In Section (2.2) and Appendix 1 I deal with model formulation,
and state the assumptions which permit the reduction of the modelling
problem to the solution of a single delay-differential equatiom
describing adult population dynamics. The biological constraints
upon the forms of the functions in this general delay-differential
equation are specified in Section(2.3) and rigorous results on stability,
persistent fluctuations, and bounds of solutions are established

(Sections (2.4) and (2.5)).

Some relationships between the delay-differential equation which
I derive and simple first-order difference equations are explored
in Section (2.6), and I show how some results on bifurcation in the
latter can aid the analysis of the former. The results of some
numerical analysis of two exemplary models are presented in Section

(2.7).

An account of the work detailed in this Chapter has been published

(BLYTHE NISBET & GURNEY 1982).
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2.2 MODEL FORMULATION

The continuous time expression of the dynamics of a two
developmental class, closed laboratory population must be of the

form

I(t) = B(t) - M(t) - D, (t) (2.2.1)
Aft) = R(t) - Dﬂft} (2.2.2)
where (") denotes é% » I(t) and A(t) are the total numbers of

immatures and adults, respectively, and DI{t} and D&(t} are their
respective total death rates. M(t) is the total maturation rate

out of the immature class, and R(t) the total recruitment rate into the
adult class (M(t) and R(t) will be considered to be equal). In
general, equation (2.2.1) and (2.2.2) will be rather intractable
integro-differential equations (see Ch. 4), but by making certain
assumptions about the biology of the organisms concerned, and about
the manner in which they interact under conditions of competition

for food, it is possible to extract a tractable general equation

for adult population dynamics.

I will assume that the instantaneous adult death rate, Dﬁ{t],
and birth rate, B(t), are functions of the adult population size
A(t) only; and that competition occurs either in the adult develop-
mental class only, (all adults competing equally) or in some
immature age-class (all individuals of the same age competing). In
Appendix | I show, given these assumptions and a constant sex ratio,
that the instantaneous adult recruitment rate R(t) is a function

only of the size of the adult population at time t-T,

.



R{t) = R(A(t-T)) (2.2.3)

(where T is the length of the maturation period). Hence the equation
for the adult dynamics (2.2.2) is decoupled from that for the immature
dynamics (2.2.1), and involves functions only of past and present

adult population sizes:

At) = R(ACE=D)) = D, (A(E)) (2.2.4)

With appropriate choices of recruitment and death functionms,
equations like (2.2.4) are applicable in many contexts: specific
population models have been examined by MAYNARD SMITH (1974 Ch. 3),
BEDDINGTON & MAY (1975), TAYLOR & SOKAL (1976), OSTER & IPAKTCHI (1973),
PEREZ et al (1978) (who alsc look at local stability of the non-linear
equation), GURNEY BLYTHE & NISBET (1980), and MAY (1981), for example,
whilst MACKEY & GLASS (1977), and GLASS & MACKEY (1979) use similar
equations in the context of physiological control. Here, however,

I shall be concerned only with adult population dynamics under the

competition regimes stated.

DB



R(A), D(A)

A

Fig. (2.1) - General forms for the recruitment (R({A)) and death
(Dﬁ{A}} rate funections under conditions of scramble

competition.
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2.3 REALISTIC RECRUITMENT AND DEATH FUNCTIONS

The functional forms of R(A(t-T)) and D(A(t)) specify the
dynamics of the adult age-class in terms of responses to past and
present population sizes., I will now identify the general features
of these responses under different resource competition conditions,
acting either in the adult age-class, or in some pre—adult cohort,
with or without an Allee effect (the existence of a threshold
population size, below which the population cannot sustain itself:
MAY (1973)). It is useful to consider competition due to resource
limitation in terms of classic "scramble" and "contest" behaviour,

defined here as

Scramble: when available resources are partitioned equally amonst

all individuals.

Contest: when a certain number of individuals are maintained at

the expense of the rest.

When competition occurs in the adult age-class, if the per
capita mortality between birth and sexual maturity is constant
(Eq. (Al.100), then the rate of recrultment at time t is
proportional to the birth rate at time t-T, The birth rate will
clearly be zero when the adult population size is zero, and under
"scramble" competition will tend towards zero ;gain for large
population sizes (as the per capita share of the limited resources
decreases), with some maximum birth rate occurring at an intermediate
population size, so that a "humped" relationship exists between birth

rate and population size as shown in Fig. (2.1). For "contest"

= 25 =



R(A), D(A)

A

Fig. (2.2) - General forms for the recruitment (R(A)) and death
(DA(A}} rate functions under conditions of contest

competition,
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competition amongst adults, the unrestricted maintenance of a
certain number of individuals, regardless of population size,
ensures that there is no falling off of the birth rate for large

population sizes greater than a certain value (see Fig. (2.2))..

If competition occurs amongst members of some cohort of pre-
adult individu&ls, then the per capita offspring production of the
adults can be expected to be constant, at the physiologic-
ally defined maximum value. Thus the response to competition is
best considered in terms of survival to adulthood of members of
the competing cohort. Under conditions of "scramble" competition,
it is clear that the number of individuals surviving to adulthood
will be zero when the cochort is empty, or when there are so many
individuals of the competing age as to leave none with sufficient
resourcesegven to stay alive, It is reasonable to postulate that
for cohort sizes between these extremes there will be a region
where the total numbers surviving to adulthood has a maximum. Hence
there is again a "humped" function, relating the rate of recruitment
to the adult population and the size of the earlier, competing,
cohort. For "contest" competition, the number of individuals from
the competing age—cohort surviving to adulthood will not decrease
at large cohort sizes (as some individuals will always get sufficient
resources), but will remain at some maximum value. If density-
dependence does not affect individuals at earlier ages, then the
probability of survival from birth to the critical age can be taken
to be a constant, so that the general form of the relationship
between rate of recruitment to the adult population, and competing

cohort size, is also the form of R{A(t-T)). Hence R{A(t-1)) for

=3 =



A

Fig. (2.3) - Scramhle competition when there is an Allee effect.
There are two steady state solutions, one of which

(the lower) is always unstable.

- 28 =




"scramble" competition is again a "humped" function (Fig. (2.1)},
whilst for "contest" competition R(A(t-1)) is characterised by a
sustained maximum value (Fig. (2.2)). These functional forms are
consistent with those traditionally used in difference equation
formulations of "scramble" and "contest" competition (see HASSELL,

1978, Ch. 2, for example).

The adult death rate function, DAEﬁ(tJ}, is likely to be of
relatively simple form, being zero at zero population, and rising
continuously at greater population sizes. However, in general it
is to be expected that there is greater density dependence in
the per capita death rate (and hence more curvature of D, (a(t))
under conditions of "contest" competition, (see Fig. (2.2)). I
will show in section (2.4) that the characteristic shapes for
R(A{t-T)) and DA{A{t}} under "contest" conditions effectively

preclude the appearance of persistent deterministic fluctuations.

An Allee effect can be readily incorporated into Eq. (2.2.4)
by introducing a threshold inte R{A(t-T1)) for some small value of
A(t-T), such that when the adult population falls below this threshold
value, the number of offspring surviving to attain future maturity
will be toc small to maintain the population (see Fig. (2.3)).
For the sake of simplicity I will devote most attention to results
for cases where an Allee effect is absent, except where these results
would be radically altered or veided by the existence of such a

population response.
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Fig. (2.4)

R(A), D(A)

gradient = ¢

gradient =0

A

Interpretation of the two parameters a and p in the

linearised equation (2.4.2). The two straight lines
are tangential to the death and recruitment functions

at the steady state A*,
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2.4 LOCAL STABILITY, AND PERSISTENT FLUCTUATIONS

If the population size A(t) attains a value at which it remains
constant for a period at least as long as the delay in the system (1),
then it will not thereafter change (in the absence of external
perturbations). This constant value is known as the steady state
solution, A®, and is clearly, from Eq. (2.2.4), a solution of the
equation

R(A®) = DA{A#} (2.4.1)

The fate of small perturbations n around A* (i.e. where

A = A* + n) is studied using the linearised equation

n(t) = -on(t) + pn(t-1), (2.4.2)

where

[an&{A(tJ)
o = (2.4.3)

dA(t)

_ [8R(ACE-T))
» and p = [ gA(t-T) ]£=ﬁ*

A=A*
For Eq. (2.2.4) o and p are geometrically interpretable as the gradients
of R(A(t-T)) and Dﬁ{A(tJ}, respectively, at the steady state (see

Fig. (2.4)).

The behaviour of Eq. (2.4.2) is well known (e.g. EL'SGOL'TS 1966;
DRIVER SASSER & SLATER 1973; MAYNARD SMITH 1974, Appendix to Ch. 3;
NISBET & GURNEY 1982, Ch. 2) and is summarised in Fig. (2.5). When
there is no Allee effect, the smallest possible steady state occurs
when DA(A{t}] is tangential to R(A(t-T)) (normally to the left of the
peak in R(A(t-T)), i.e. p = @, so that the region of interest lies

below the line p/o = 1. Beyond the local stability boundary the

=
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Fig. (2.5) - Behaviour of the linearised equation (2.4.1) in
(oT,pT)-space. From the constraints on the delay-

differential equation & > 0, and P can have any wvalue.
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population dynamics are controlled by non—-linearities in the
recruitment and death functions, and the locally linear analysis
merely indicates divergent oscillations. KAPLAN & YORKE (1977)
studied a general delay-differential equation similar to Eq. (2.2.4),
but with a purely decreasing delayed function, and were able to prove,
given suitable initial conditions, that if the linear analysis
indicates this oscillatory local instability in the feasible region,
then the corresponding behavicur in the non-linear equation will be
limit cycles. I extend this result to the more biologically realistic

model, Eq. (2.2.4), as follows.

It is clear from Fig. (2.5) that oscillatory local instability
in Eq. (2.4.2) can only occur if p < 0. From the definition
equation (2.4.3) it is clear that only those steady states lying on
the right-hand, or falling, arm of R(A(t-T)) can become unstable in
this manner. In the neighbourhood of such a steady state, equation
(2.2.4) is equivalent to some member of KAPLAN & YORKE's (1977)
general family, provided that fluctuations are of small enough
amplitude. Thus, in the unstable region, but close to the local
stability boundary, the solutions of Eq. (2.2.4) are small amplitude
limit eyeles. However, as soon as the amplitude of these limit
cycles inereases te the point where the minimum lies below the
peak in the recruitment function, KAPLAN & YORKE's (1977) results

become inapplicable, and more complex behaviour may occur.

Numerical studies using Eq. (2.2.4) with various "humped" R({A(t-T))
(see section (2.7)}) support this argument, and it is now well known

(MACKEY & GLASS 1977; OSTER & IPAKTCHI 1978; GLASS & MACKEY 1979;

- 33 -



GURNEY BLYTHE & NISBET 1980; MAY 1981) that when the fluctuation
minimum crosses well below the peak in R(A(t-T)), the simple limit
cycles may be replaced by a pattern of complicated (and possibly
chaotic) behaviour (see Chapter 3). The existence of such behaviour
means that although these fluctuations have bounds (see Section (2.3)),
they cannot be called "limit cycles" any longer, and I shall refer to
them as "presistent fluctuations" which may or may not be formally

periodic.

The conditions for oscillatory local instability in the linear
Eq. (2.4.2) are readily identified (for the full stability equations,
see MAYNARD SMITH 1974, Appendix to Ch. 3, or NISBET & GURNEY 1982,
Ch. 2). From Eqs. (2.4.1) and (2.4.3), the values of A*, o and p
do not depend on T, but only upon the formsof R(A(t-T)) and Dﬂ(A{t}),
and each A* defines a single & and p. These values, given
general T, in turn define a straight line in {at,pT)-space of the

form

Bow B,
= z constant (2.4.4)

so that varying T, with A* held constant, merely moves the state-
defining point in (at, pT )-space along such a line (eg. the line pt/at = -1
in Fig. (2.5)).  Also, examination of the linearised stability equations
(NISBET & GURNEY 1982, p. 42) reveals that the local stability boundary
tends asymptotically with increasing T to the line -p/a = 1, so that if
-p/@ < 1, then no value of T will destabilize A*, whereas if -p @ > 1,

then there will be a finite delay sufficient to ensure instability.
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The value of this critical delay, T.» at which a potentially
unstable steady states will actually destabilise (stability for ﬂfT<TE,
instability for T > Tc}; can be calculated from the equations for

the local stability boundary in (aT,pT)-space (EL'SGOL'TS 1966), as

cos= ! (a/p)
B et (2.4.5)
{pﬂ_mz}i

Hence, recalling the definitions of o and p, the conditions for the
appearance of deterministically persistent fluctuations as solutions
to Eq. (2.2.4) are that in the neighbourhood of some A%, the
(delayed) recruitment rate function must be falling faster than the
{(undelayed) death rate function is rising, and that the delay must be
"long enough". A comparison of Figs. (2.1) and (2.2) reveals that
the first of these conditions can be fulfilled for some "scramble",
but never for "contest" competition, so that persistent fluctuations
would not be observed in the.latter case. Furthermore, under
"contest" conditions 8R(A)/2A remains positive, i.e. above the line
p =0 in Fig. (2.5) so that convergence is always of the non-
oscillatory kind. This in turn implies that sustained quasi-cycles
(bursts of coherent cycles, separated by periods of incoherent,
noisy behaviour; see NISBET & GURNEY 1976, 1982 Ch. 7) will not be

found under "contest".

It is also of interest to note what this stability analysis
tells us about cases where there is an Allee effect. Here there is
a lower steady state which, from Figs. (2.3) and (2.5), must be
locally unstable, and where R(A(t-T)) rises faster than does D&{E{t}}.

It follows from the stability equations for Eq. (2.4.2) (NISBET &

TR T



GURNEY 1982, p. 42) that the rate of the exponential divergence
from this unstable steady state, u, is given by the (real)

solution to

UT

U = —o+pe u>0 (2.4.6)

from which it can be found, by differentiation with respect to T,

that

j_.i';_-' - I+Eu12§1 W,a, T > 0. (2.4.7)

From Eqs. (2.4.6) and (2.4.7) it is clear that as T increases to
infinity, u decreases monotonically and asymptotically to zero.

Hence a long time delay will increase the length of time a population
will spend in the neighbourhood of an unstable steady state that is
due to an Allee effect, a feature previously demonstrated by BEDDINGTOIN
& MAY (1975) for a particular equation of type (2.2.4) in which the function

has an Allee effect.
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2.5 BOUNDEDNESS OF SOLUTIONS

If a population trajectory has a local maximum or minimum (denoted
by AT} at some time t, then setting dA(t)/dt = 0 in Eq. (2.2.4) gives

the relation

R{A(t-T)) = D&{ET} {2.5.1)

Further, R(A(t-T)) is by definition positive, and is bounded above,

so that
0 € R(A(L-T)) & Rmax’ {2.5.2)

where Rmax is the maximum value of R(A(t-T)), and so is the asymptotic
value of the recruitment function for "contest", and the value at the
hump maximum for "scramble" (see Figs. (2.1) and (2.2)). Thus for any

local maximum or minimum, AT,

0¢ D,(A) € Ry (2.5.3)

X

so that there is both a (zerc) lower bound and an upper bound on Ape
In the persistent fluctuation regime, which can exist only if
competition is of "scramble" type, the maximum value attained once
the transient behaviour has passed must be a turning point, so that

there is an upper bound to solutions of Eq. (2.2.4), AU' given by

D () =R (2.5.4)

In addition to this rigorously established upper bound, there appears
to be a non-zero lower bound. I have not managed to prove this, but
numerical studies of several models strongly suggest that as the delay

tends to infinity, so the dominant period of the fluctuations tends to

R



a limit of 27 (a result rigorously true on the local stability boundary,
where WT = 7 as T + %, so that the dominant period, 2w/w + 2T). At this

limit, because of the "square" form of solutions to Eq. (2.2.4) (see
Fig. (2.6) and section (2.6)), the absolute minimum population value
attainable (AL} must occur at a time T after AU, and so be a solution

of

D,(A) = R(a) (2.5.5)

This lower bound is particularly significant when there is an Allee
effect, since then extinction can be expected when the lower bound of
fluctuations around the upper steady state reaches the lower unstable
steady state. Using Eq. (2.5.5), the critical parameter values for
a given model which will cause the population to become extinct for

long enough T (i.e. large enough fluetuations) can be found.
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2.6 RELATIONSHIPS WITH DIFFERENCE EQUATIONS

I now investigate the relationship between delay-differential
population equations and the simple first-order difference equations
commonly used in population biology. The obvious discrete time
analogue of (2.2.4) is a difference equation with two distinct

"delays", namely

A e
t+At € _
A T RO - D@, atie)

where the "long" delay T is some integer multiple of At. Difference
equations of the form have been widely studied in the fisheries
literature (e.g. CLARK 1976, GOH 1980), and have occasionally been
used for insect population models {elg. READSHAW & CUFF (1980)).
However it is not with equation (2.6.1) that I am here concerned, but
rather with a much less obvious analogue, which derives from the fact
that as the time delay T in the delay-differential equation (2.2.4)
becomes very long, this equation has solutions related to those of a
simple first-order difference equation with only one delay. This is
because, in the limit of large T, the solution of (2.2.4) resembles

a sequence of "steps" of duration T (see Fig. (2.6)). At the end of
each "step” the population trajectory is essentially flat, and thus

the population sizes at the end of successive "steps" are related by
R(AH) =D,(A) (2.6.2)

which is obtained by setting dA(t)/dt = 0 in Eq. (2.2.4). Equation
(2.6.2) can readily be rearranged to give the first-order difference

equation
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At+T = G{At}, ﬂI >0 (2.6.3)

where I will eall tht} the "generative function", as it specifies the
net reproduction from one generation teo the next; AI is the initial

population size. Normally, if Dﬂiﬁ(t}} is monoteonic and not "excessively"
non—-linear, and R(A(t-T)) is "humped", then G{ﬁt} will also be humped

(see Fig. (2.7)). The fact that the difference equation (2.6.3) is
closely related to a delay-differential equation like equation (2.2.4),
when dA(t)/dt is small was recognized by OSTER & IPAKTCHI (1978) and by
MAY (1981); however, without knowledge of the asymptotic, "steplike"

behaviour of the delay-differential equation, they were unable to fully

exploit the relationship.

MAY & OSTER (1976) have examined the behaviour of Eq. {2.6.3) with
"humped" G{ﬁtj in some detail, and I shall restrict myself to mentioning
those results which I intend to use. Mot surprisingly perhaps, (2.6.3)
has the same values for steady state, and for upper and lower bounds,
as the analogous delay-differential equation (2.6.4). Further, it is
clear from the above formulation of (2.6.3) that the conditions for
local instability in the difference equation are equivalent to those

already derived for (2.2.4) in the limit of large T, namely

N R M -
5 = > 15 {2.5-*‘3}

where =y is defined as the gradient of G{At} at A* (see Fig. (2.7)).

It will usually be true of "humped" G(ﬁt} that progressive steepening

=Y ¥



Fig.

A t+1

(2.7) -

G(A)

?.'\-

(%74@

gradient = -Y

At

General "one-humped" shape for the generative fynction,
G{At}, in Eq. (2.6.3) with normalised delay. =y is
the gradient of the tangent to the generative function

at the steady state A%,
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at A* using some variable parameter will cause an infinite series

of bifurcations to appear, the first being when (2.6.4) is just
satisfied, and a two-point cycle appears, subsequent ones occurring,

over rapidly decreasing ranges of parameter walues, as Zk-pcint.

cycles (k = 2, 3, . . .) develop, until beyond some critical steepness

in the generative function, "chaotic" solutions appear. This

critical steepness can be found for any particular model using a

rapidly converging algorithm described in Appendix A of MAY & OSTER (1976)
MAY (1976) quotes a few mathematically entertaining examples which behave
differently, while ALLWRIGHT (1978) gives an additional (sufficient)
condition on the form of G{At} that ensures period doubling and

"chaos". However, the forms that produce different behaviour are
sufficiently perverse that for modelling purposes, period doubling

can be loosely regarded as being "normal" in equations of this type.

In section (2.7) I show that normally the existence of bifurcations

in the solutions of a delay-differential equation can be predicted,

if the analogous first-order difference equation exhibits period

doubling behaviour.
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2.7 NUMERICAL EXAMPLES AND ILLUSTRATIONS

I will now illustrate the results on stability and boundedness
of solutions, and on relationships with difference equations, using
two equations of type (2.2.4). I will examine the behaviour of one in
some detail, and then use the other to test the generality of this
behaviour. Throughout, I will use one of the simplest possible

functional forms for the death rate function,
D,(A(t)) = mA(t), m >0, (2.7.1)

where m is the density-independent per capita death rate in the adult
population. This permits concentration upon differences in the
precise form and structure of the recruitment functions, which, as

persistent fluctuations are to be considered, are both of "scramble"

type.
2.7.1 Model (I)

For the first model, I choose the equation that I use in the

Case Study (Chapter 3), namely

A(t) = B, A(t-T)exp (-A(t=1) /A ) ~mA(t) (2.7.2)

where PI is related to the maximum possible per capita fecundity.
Equation (2.7.2) has rather cursorily been fitted to some of
NICHOLSON's (1950, 1954, 1957, 1960) blowfly data by OSTER (1976) and
OSTER & IPAKTCHI (1978), and more comprehensively by GURNEY BLYTHE

& NISBET (1980), and NISBET & GURNEY (1982, Ch. 8). The direct
discrete-time analogue of (2.7.2) (i.e. of the form (2.6.1)) has

been fitted to the same data by READSHAW & CUFF (1980).

T



future recruitment rate, R(Y)

population ¥

Fig. (2.8) - The normalised recruitment function for Model (I)

(=), and Model (II), d = 3  ———
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Equation (2.7.2) has the advantage of having A., the population
size at which the total future recruitment rate is at a maximum,
represented explicitly. It is advantageous to scale A(t) in terms

of ﬁﬂ (Y = A!Aﬂ}, so that (2.7.2) becomes

Y(t) = P,Y(t-T)exp(-¥(t-1)) - m¥(t) (2.7.3)

As the peak height of R(Y¥(t-T)) is to be considered, and as I intend

to compare models, it is more convenient to consider the controlling
- L] o)

parameter space of (2.7.3) in terms of R o Rmaxfﬁﬂ’ the scaled

rate of future total recruitment), m and T, rather than use Pl' For

(2.7.3),

R' = P, o (2.7.4)

so that, substituting this into Eq. (2.7.3), Model (I) becomes,

Y(t) = R'  Y(t=T)exp(l - Y(t~1)) - m¥(t) (2.7.5)

(see Fig. (2.8)),Model (I) has a steady state solution, when

leax S

Y =1+ in {R'm /m), (2.7.8)

ax

and evaluation of the partial derivatives in Eq. (2.4.2) yields the

general condition for potentially unstable steady states (-p/a > 1)

R'maxfm > e, £2:7437)

or equivalently, Y* > 2. Fig. (2.9) shows the full local stability
boundary, in the controlling (R'mﬂxT, mT)-space, calculated parametrically

from the linearised stability equations.
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Unfortunately, the behaviour in the persistent fluctuation
region of parameter space cannot be simply characterised
analytically, and it is usually necessary to resort to extensive
numerical analysis. It is at this point that the methods outlined
in sections (2.5) and (2.6) become useful. By considering the
case where the delay is "infinite" and population trajectories
"step-like", the discrete-time analogue of Model (I) can be constructed,
and some insight into the dynamics of the continuous-time equat_iun
gained through study of the simple difference equation. Following

the route of section (2.6), equation (2.7.5) becomes

-t = i

0==r — Yt_Texp{l Yt_T} th, (2.7.8)

which can be rearranged to give
- " —

Yt+T (R maxfm) Ytexp(I Yt}, (2.7.9)

the difference equation analogue of Model (I). Note that by setting
. _ B + A

R maxﬁm exp(v = 1), this equation becomes

Yt+T = Ytexp{v = Yt}’ (2.7.10)

which is a scaled version of a model with an impressive pedig;ee in
population dynamics (MAY 1974b, 1975, 1976; MAY & OSTER 1976; these
contain further references). A wealth of information on the dynamics
of (2.7.4), a portion of which is summarised in Table (2.1), is

available from these and other socurces.

The series of values of R'maxfm which define the boundaries of

behaviour in the discrete-time equation (2.7.9) (see Table (2.1))
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Table (2.1) Dynamic Behaviour of the Difference Equation

Analogues of Model (I) and Model (II) (d=3)

Range of values of R' /m for which the
max
two equations exhibit the stated type

of behaviour.

MODEL (I) MODEL (II)
Type of behaviour
(Eq. (2.7. 9)) (Eq. (2.7.22)
0.368 - 1.000 0.667 = 1.000 Stable overdamped
1.000 - 2.718 1.000 - 2.000 Stable underdamped
2.718 - 4.600 2.000 - 4.829 Unstable: 2-point cycles
4.600 - 5.238 4.829 - 7,958 b-point ecyeles
5.238 - 5.392 7.958 - 9.217 8-point cycles
5.392 - 5.433 9.217 - 9.718 l6—point cycles
or longer
5.433 9,712 Chaotic solutions

a Not calculated exactly.
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represent the asymptotic positions of the boundaries of corresponding
behaviour in Model (I) as T -+ =, In Fig. (2.10) I have plotted the
approximate positions of some of the bifurcation boundaries for Model
(I), obtained by taking a series of transects of increasing T through
(R‘maxj, mT)~space. These boundaries (where period-doubling occurs
in solutions of the delay-differential equation) are approximately the
same shape as the local stability boundary, as might be expected, and
they all approach their asymptotic walue of R'maxfm rather quickly,

as T is increased. Thus, for any steady state which cannot produce
chaotic solutions, the normalised formal repeat period (i.e. period/

delay) can be determined when T is very large, from the behaviour of

the analogous difference equatiom.

I now examine the relationship between fluctuation amplitude and

length of delay.

L., EY. -7% (2.7.11)

calculating YU and YL according to Eqs. (2.5.4) and (2.5.5), so that
Llim is the predicted asymptotic (as T+®) amplitude for fluctuations

in the non-linear region for the scaled equation (2.7.5). Fig. (2.11)
is a plot of the fluctuation amplitude (maximum - minimum), as a
proportion of Llim against length of delay as a multiple of the critical

delay {Tc from Eq. (2.4.5)); a number of points worthy of note arise

from consideration of this figure.

First, note that fluctuation amplitudes approach the asymptotic
value, Llim' as T increases, and with one exception in Fig. (2.11),

eventually become wery close to this value. This exception is the
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result (see Fig. (2.11a)) for R'maxj!m = 4,14, where the amplitude
reaches about 95% of Llim quite quickly, but is unable to exceed
this value. This will be true for a very small range of values

of R'mafomT in each bifurcation "zone", where the fluctuation
minimum has fallen well below the peak maximum, but where the next
bifurcation has not occurred. In all other cases examined the
asymptotic limit is eventually closely approached, taking a
progressively larger Tch value to do so as R’maxTImT increases.

A smooth rise in amplitude to the asymptotic wvalue, as T increases,
is typical of solutions to equations of KAPLAN & YORKE's (1977)
general family, and the similar behaviour for Model (I), with small
amplitude limit cycles appearing just after the local stability
boundary, and growing until the fluctuation minimum falls below the

peak in R(¥(t-T)), confirms the argument of section (2.4).

A second point of interest in Fig. (2.11) is the curious variation
in fluctuation amplitude in those transects passing through more than
one behavioural region. What happens is best described by "following"
such a transect (that for whiech there are just 2 bifurcations, say)
as T is increased (see Fig. (2.11b)). Immediately after the first
bifurecation (T = Tc} the amplitude rises swiftly, until the depression
of future population by (present) values well below the maximum in the
recruitment function causes first a decrease, and then a levelling off
in amplitude to occur. Amplitude stays approximately constant until
T}Tc = b, when the second bifurcation occurs and there is an increase

towards the asymptotic limit, L . When there are three bifurcations

lim
(see Fig. (2.11c)), exactly the same pattern appears: initial growth

followed by decline and levelling off at a reduced value, for the first

i e



two bifurcations, and approach to the asymptotic limit after the
third, For the transect where R'mﬂfomI * 14.7 (see Fig. (2.114)),
which passes into the chaotic region, there is a long (and possibly
infinite) series of bifurcations, with each of which, except for

the last, there is an associated growth, decline and levelling ;ff
of fluctuation amplitude, occurring over a progressively decreasing
range of THTC, and effecting a similarly decreasing change in the

size of the observed amplitude.

At this point I will remark upon the fact that there are two
parameters {R'maxfm, and f}, each of whieh has the characteristic
that continuous increase will lead to the occurrence of a succession
of bifurcations, with the range of parameter wvalues between each
successive bifurcation being progressively smaller. FEIGENBAUM
(1978, 1979) has recently shown that for recursive relations of the

form

Yj+1 = EG(Yj}, >0, j=0,1,2... (2.7.12)

exhibiting an infinite bifurcation sequence, the range of values of
€ for each bifurcation will decrease according to a convergent

progression to a universal value, ﬁF, given by

. (e =gy
_ lim " Tk+] k =
GF 2 Ts = 4,66920... (2.7.13)

(Ek+2 TS

where k is the number of bifurcations in the sequence. It is clear

that Eq. (2.7.9) is of the appropriate form, and that R maxfm can be

expected to converge to ﬁF. This does indeed appear to happen -

.



300

200 [~

100

50 +

HI
max?'

10 |~

0.2 0-3 0-5 1 2 3 5 10

m

Fig. (2.12) - Contours of equal normalised dominant period
[~ }s T/T, in the persistent fluctuation

i ; _
region of (R maxT’mT} space for Model (I).

P o



the first part of the sequence can be followed in Table (2.1).
However, it is also quite clear that T is not a parameter of type

€, and it is not therefore surprising to find that the sequence

of ranges of T for the cases considered, do not appear to converge
according te Feigenbaum's EF sequence. There is little, tharefore,
that can be said about behaviour when a large number of bifurcations

have occurred, and I shall not dwell on this point.

In Fig. (2.12) I have plotted contours of the normalised dominant

period (T/T) in the persistent fluctuation region of (R‘m xT,mTJ-SpaCE

&
for Model (I). It is clear that T/T varies with both Y* and T. TFor
small Y*, increasing the delay T causes a smooth and rapid decrease in
T/T towards an asymptotic value of 2T. When Y~ is larger, this
decline is not quite so rapid, but the asymptotic limit is the same,
and for very large steady states, there is in faet an initial increase
in the normalised dominant period, but again when T becomes much
longer, the limiting wvalue of T/t = 2 is approached. This change
of behaviour with the size of the steady state does not appear to
be associated with the bifurcation sequence in the solution, except
inasmuch as the simplest pattern occurs at the smallest (unstable)
Y*, It should be noted that when "following" a transect along a
line of constant ¥* (and hence constant R;axfm) that crosses a
number of bifurcation boundaries, there is no abrupt change in the
normalised dominant period at these boundaries - the formal repeat
period of course doubles at each bifurcation, but curves of T/t
against T are continuous.

This description of the behaviour of Model (I) in the non-linear
regime seems to be quite self-consistent, and readily explicable in
terms of what is understood of the dynamic processes involved. I will

now examine the behaviour of the second equation.
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2.7.2 Model (II)

I will first briefly examine the local stability properties of
an equation with a rather more generalised recruitment function than
that in Model (I), and then select a specific case chosen so as to
make the recruitment functions of the two models as similar as
possible, in order to compare behaviour. The delay-differential

equation I have chosen is

. ch(thT}
A(t) = ————————mA(t), (2.7.14)

1+cﬂﬁ{t~1}d
where P2 is again a parameter related to the maximum possible per
capita fecundity, and d essentially controls the rate of decline of
R(A(t-T)) after the peak (i.e. a "scramble" parameter). The
increased generality introduced by the extra parameter means that
in this case the peak positiom, ﬁﬂ, does not appear explicitly in

the recruitment function, but is given by

Ay = [;G(d—}}]"xd. (2.7.15)

Again, A(t) is scaled in terms of ED(Y - A!AD), standardising

the two models, so that (2.7.14) becomes

PIY(t-T}

Y(t) = - mY¥(t), (2.7.16)

14Y (e-1) 9/ (a-1)
and if the scaled maximum future recruitment rate (Rmaxfﬁﬂ},

g w=p 921 (2.7.17)
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is again used as a model parameter, then Models (I) and (II)

have a common parameter space, and (2.7.16) becomes

) R' __¥Y(t-T)
Y(t) = [dfl] e ‘“’a"d - mY(t) £ (2.7.18)
1+Y(t-1) "/ (d-1)
which has the steady state solution
v = QR jm-1) + 0]/ (2.7.19)
max . nee
and (potential) instability condition (-=p/o > 1)
R'  /m> |91 (2.7.20)
max d-2]. e

There is an interesting result to be extracted from this elementary
analysis of the local stability of the general equation (2.7.18). It
is evident from Eq. (2.7.18) that the recruitment function is "humped"
for all d > 1; however, according to Eq. (2.7.20) instability cannot
occur, regardless of the length of the time delay, unless d > 2.

This simply reflects the asymptotic behaviour of this cheoice of
R{Y(t—1)): for large ¥, R(Y) falls off as Ylud, and for d < 2 it is
quite clear that the condition -p/a > | cannot be satisfied with the

given linear death rate, Eq. (2.7.1).

For the detailed comparison between Models (I) and (II), I choose
a value of d which allows close matching of the shapes of the two
recruitment functions; a value of d = 3 produces a curve sufficiently
similar to that for Model (I) (see Fig. (2.8)). The example equation

for Model (II) is therefore

T 100



) 1.5R' _ ¥(t-1)
T(t) = - my(t). ' B
140.5¥ (t-1)?

The local stability boundary for this equation eppears, with that for
Model (I), in Fig. (2.9). It is immediately clear that the two models
behave rather similarly for small Y*, but that for larger steady states
the local stability boundaries diverge, with Model (II) being the more
stable (larger Tc required). This difference reflects the form of

the recruitment functions in Fig. (2.8), for the two curves are very
similar for steady states up to about two or three times the peak
value, but their asymptotic behaviour is quite differént, with (II)

falling off rather less rapidly than (I), and so being more stable.

To locate the boundaries of behaviour in the persistent fluctuations
regime, I again make use of the methods of section (2.6), and derive

the discrete-time analogue of model (II}, namely

1.5(R'  /m)Y
Y, = Lt S {2.7:22)
1+ G.SYz

This equation has received rather less attention than (2.7.10), but
a slightly more general form is mentioned by MAY & OSTER (1976,
Table 1), and its local stability properties are briefly considered

by MAYNARD SMITH (1974, Ch. 4).

Table (2.1) lists the boundaries of behaviour for Eq. (2.7.22),
and it is clear that they are acceptably similar to those for the
other difference equation analogue of Model (I), although the latter

is a little more unstable. Numerical analysis indicates that the
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boundaries in Model (Il) bear the same relationship to the asymptotic
value, as given by the discrete-time equation (2.7.22) as is to be
found with Model (I) and its difference equation analogue. It only
remains then to demonstrate that the details of fluctuation amplitude
and period variations in the two models are sufficiently similar in
order to conclude that the properties observed in Model (I) are robust
against changes in the detailed form of the recruitment function. 1In
Fig. (2.13) I have plotted fluctuation amplitude against length of delay
for a transect through the common parameter space. The transect is that
for R'mﬂfomI = 14.7, and enters the chaotiec regions of behaviour of
both models, for long enough delay. While the results are certainly
not identical (and it would be more than a little surprising if they
were), they agree very closely upon the absolute amplitudes produced,
and upon the appearance of the successive bifurcations, with Model (II)
being again the more stable of the two. Clearly the general pattern of
amplitude variation with delay length holds true for both models, even
in the most intensely non—linear regimes, and it is safe to say that,
within the bounds of experimental uncertainty, the qualitative predictions
of the two models are wirtually indistinguishable. As the death rate
function, D(A(t)) is likely to be a much smoother function than R({A(t-T))
(see section (2.3)), it might be expected that wariations in its
specific form, and in the degree of non-linearity it possesses, would not
alter the qualitative features of the general pattern of dynamic
behaviour outlined above. This point is not pursued here, but some very
cursory and superficial investigations indicate that this conclusion is
a valid one.

The behaviour I have described is not, of course, generic for

all "one-humped" functional forms of recruitment (see the example in
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ALLWRIGHT 1978, for example), but on the basis of the detailed
comparison between Models (I) and (II), and of some rather more
cursory examinations of other "one-humped" forms for R(A(t-T)), I

feel that I can say with some confidence that any sensible choice

of analytic "humped" function can be used for the recruitment function
in population equations of type (2.2.4), without introducing too many

misleading model-specific effects.
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2.8 DISCUSSION AND CONCLUSIONS

I have briefly stated the general conditions under which it is
possible to express the dynamics of a population of mature adults

using the delay-differential equation
A(t) = R(A(t-T)) - D, (A(t)) (2.8.1)

The use of Eq. (2.8.1) as a population model brings a number of
advantages, being principally that there is no loss of the biologically
important "fine detail" effects (discussed in detail in Ch. 3), as
there is with discrete generation difference equation models, and at
the same time that much of the burden of analysis, which goes with

the use of models having more completely specified age-structure can

be avoided, for the given competition regimes, when there is a constant

maturation period.

I have examined the local stability properties of (2.8.1), and
proposed a number of "tools" which can be used to simplify its
analysis. The simple linear analysis of section (2.4) can be used
to find the local stability boundary, and then the analogy with simple
first-order difference equations can be exploited to locate the
asymptotic position of the other bifurcation boundaries, so that
for long enough "delay" T the formal repeat time is known in multiples
of the dominant period (which approaches 2T as T becomes very long).
(It should be emphasized that the linear analysis does not provide
any useful information about any bifurcation after the first despite

certain claims to the contrary (e.g. PEREZ et al (1978)), a point
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made abundantly clear by OSTER & IPAKICHI's (1978) Fig. 11, and

that without the methods of section (2.6), the only road to knowledge
about the persistent fluctuation behaviour of (2.8.1) away from the
local stability boundary is very extensive numerical analysis.)
Furthermore, upper and lower bounds for the population size, after
the transient has passed, can be calculated, and hence again for

long enough T, the approximate wvalues of the absolute maximum and
minimum excursions which are to be found in a given solution are

known.

These "tools" should be particularly useful for helping to
discover model-specific behaviour, so that a number of alternative
models can be quickly and simply investigated, and any that departs
from the general expected pattern, or is radically different from
the others, can be eliminated without having to undertake lengthy
numerical analysis on all of them. Of course, there are not
sufficient tools available, exact or approximate, to do more than
sketch some of the patterns of non-linear behaviour for (2.8.1),
and if a full investigation of a particular equation is desired,
as is the case in the following chapter, then there is little

recourse but extensive numerical analysis.
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CHAPTER 3  CASE STUDY: Modelling Laboratory Populations of

Lucilia cuprina

3.1 INTRODUCTION

Some thirty years ago A.J. Nicholson performed a series of
elegant laboratory experiments (BRILLINGER, GUCKENHEIMEER, GUTTURP
& OSTER 1980 report 145!) using as his experimental animal the

Australian sheep blowfly Lucilia cuprina (Wied.) (NICHOLSON 1950,

1954, 1957, 1960). He maintained cultures of L. cuprina for
extended periods of time (typically more than a year) under wvarious
resource supply regimes, and recorded the numbers present in,
usually, one or two developmental classes, every second day. Portions
of the resultant data have been widely reproduced in the literature,
and considerable attention has been paid to the guasi-periodic
fluctuations of population numbers evident in many of Nicholson's
cultures (e.g. CLARK, GEIR, HUGHES & MORRIS 1967; VARLEY et al
1973, Ch. 2; AUSLANDER et al 1974; MAY 1974a, Ch. 4; MAYNARD
SMITH 1974, Ch. 3; HASSELL LAWION & BEDDINGTON 1976; OSTER 1976,
1981; OSTER & IPAKTCHI 1978; BRILLINGER et al 1980; CHARLESWORTH

1980, Ch. 1; GURNEY, BLYTHE & NISBET (1980, 1981); POOLE 1980;

READSHAW 1981, READSHAW & CUFF 1980; WNISBET & GURNEY 1982, Ch. 8).

The models which have been used to attempt to reproduce the
observed quasi-periodic behaviour have been of many types, and vary
from simple discrete-generation first-order difference equations
(e.g. VARLEY et al 1973, Ch. 2), through delay-differential equations

of assorted form (e.g. MAY 1974a,Ch. &; MAYNARD SMITH 1974, Ch. 3;
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OSTER 1976), to many-parameter full age-distribution models (e.g.
OSTER & GUCKEWHEIMER 1976) and purely statistical description
(e.g. POOLE 1980; OSTER 1981). There has been little success
however in producing simple, realistic and testable models capable
of producing a reasonable quantitative fit to any of Nicholson's
results, or of explaining the observed characteristics of the
"eycles". In this Chapter,I present a delay-differential equation
model of type (2.2.4) which goes some way towards achieving both.
An account of this work has been published by GURNEY BLYTHE &
NISBET (1980), and appears in more complete form in NISBET &

GURNEY (1982, Ch. B).

g~
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3.2 MODELLING OBJECTIVES

Clearly, as the general equation developed in Chapter 2 is
strictly applicable only where either adults alone compete, or whose
competition occurs only amongst immature individuals of exactly the
same age, a particular model can only be tested against data derived
from experiments set up under these two competition regimes. In
particular, I can make use of NICHOLSON (1954) results for adult-
only competition (see Fig. (3.1(a)). Here, the Larvae had excess
protein, in the form of liver, but the adults had a restticted

! added), although water and sugar

supply (0.5 g ground liver day™
were plentiful. Hence the adults competed equally amongst them-
selves for the protein te produce eggs, while the larvae did not
compete for anything, i.e. "adult only" competition. Although
Nicholson did not, apparently, perform any experiments where "within
cohort" competition occurred, it was hypothesised (GURNEY BLYTHE &
NISBET 1980) that this could be used to approximate the "larval

food limited" experiments (Fig. (3.1(b,c)) - 50 g day™ ' and 25 g day™!

liver added, respectively). This approximation has subsequently

been justified, a point I shall return to in section (3.6).

While a simple strategic model such as Eq. (2.2.4) cannot be
expected to provide a statistically "good" fit to the data, it must
be capable of identifying and illuminating the important processes
controlling the dynamics of the experimental population, 1In
particular the mechanism preducing the "cycles" in population
fluctuation has to be identified, together with the controls on

cyele characteristiecs (such as period and amplitude), and the
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qualitative features of the fluctuations made accessible to under-
standing (specifically, the difference in breeding behaviour between
the two regimes: there are two well-separated generations per

cycle for the larval food-limited case (Fig. (3.1(b and ¢))), but
only one, rather smeared, generation per cycle in Fig. (3.1(a)).

To do so, a particular choice of model, of the general type (2.2.4)

must be chosen - that is, specific functions for R(A(t-T)) and

DA{A(t)) must be found.

s s



3.3 ADULT COMPETITION

Despite the protein limitation in NICHOLSON's (1954) experiment
(Fig. (3.1(a))), adults were provided with a surfeit of water and
carbohydrates (in the form of sugar). L. cuprina adults can survive
on a carbohydrate diet alone (ROBERTS & KITCHING 1974; GILMOUR 1961),
so that little density—dependence in the per capita adult death rate
is to be expected. Hence I assume a constant per capita death rate,

m, as in the previous chapter, so that
DA{t) = mA(t), m=>0 (3.3.1)

From Appendix | (Eq. (Al.|4)), the recruitment rate is given by

R{t+1) = SlMt}EI{A{t)} (3.3.2)

where 5] is the average fraction of eggs laid which survive to become
adults, and El{ﬂ(t}} is the per capita fecundity. The competition
between adults is clearly of "scramble" type, so that B,(*) must
decrease with increasing A(t) (see section (2.3)). Because of its

analytic simplieity, I choose the fynction
B (a(t)) = Qexp(-A(t)/gy) Qug, > 0 (3.3.3)

to specify the decline in B]{-}. Q is the maximum per capita

fecundity, and g controls the decrease of El{‘}. GURNEY et al
(1983) have shown that Eq. (3.3.3) does indeed give an acceptable
fit to NICHOLSON's (1954, 1957) data. Thus a good approximation

to the future recruitment rate;
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R(t+T) = 5,0a(t)exp (-A(t) /g) (3.3.4)

so that &g is revealed as being the value of A(t) at which the
future recruitment rate is at a maximum i.e. gy = Aﬂ {c.f. section

(2.7)). Noting that

max Rmax 0
(3.3.5)
= SHQE

I can write down the full delay-differential equation model, for

"adults only" competition, as

At) = R o A(t=Texp (1-A(E=1) /A ) ~mA(t) (3.3.6)

which is of course Model (I) of Chapter 2.

o



3.4 IMMATURE COHORT COMPETITION

As by definition the adults do not compete, adult per capita
death rate should be truly density—independent, so that Eg. (3.3.1)
holds, and per capita fecundity should not in this case decline with
increasing adult population, but rather should remain at about the
physiologically maximum value, Q. Hence, from Eg. (A1.19), the

total future recruitment rate must be given by

R(t+T) = qa(n)sz{qaft}} (3.4.1)

where 52(-} is the probability of an individual in the competing cohort
surviving to maturity, and is a decreasing function of QA(t). It is
reasonable to assume that for small enough QA(t), 52{-} tends towards
its "excess food" value, ;s so that I am free to choose a function

decreasing from 5, to zeroc as QA(t) increases. I choose

SE(Qﬁ(t}} = Siexp('QA[t}fh} h>0 (3.4.2)

where h is a parameter related to the larval food supply. Clearly

then future recruitment is given by

R{t+T) = SIQA{t} exp(-QA(t) /h) (3.4.3)
so that, defining Aﬂ Z h/Q, and recalling Eq. (3.3.5), the adult

population balance equation becomes

AlL) = R'__ A(t=T)exp(1-A(t=T) /A mA(t) (3.4.4)

o)

once again. Hence the same equation can be used to model "adult
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only" and "within cohort" competition, although clearly the parameters
ernax and au must bear slightly different interpretations in the two

competition regimes.
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3.5 MODEL BEHAVIOUR

Much of the analysis of Eq. (3.4.5) was performed in section
(2.7) and need not be repeated here. However, it is necessary to

reduce the number of free parameters in the model, to facilitate

numerical analysis. By scaling Y h!ﬁﬂ and R*m =R /A

ax max ~0?
as in Chapter 2, but also defining t' = t/71, Eq. (3.4.5) reduces

to

Y(t') = R DY(t'-Dexp(1=Y(t'=1)) - m)¥(t") (3.5.1)

which is completely controlled by the parameter groups RTmaxT and
mT, praviding the natural parameter space for plotting boundaries
of behaviour used in Ch. 2. Fig. (3.2) illustrates the behaviour
of (3.5.1) in {R'maxT, mT)-space, showing regions where solutions
are overdamped, underdamped, or are persistent fluctuations. The
curves in Fig. (3.2) were computed by transforming the relevant

boundaries in (aT,pT)-space.

Now, in a laboratory system with constant environment, there
are only two mechanisms whereby the quasi-periodic fluctuations
of Fig. (3.1(a-¢)) could have arisen. Either they are the result
of a deterministic, underdamped system being perturbed by
demographic stochasticity (i.e. "endogenous resonant quasi-cycles"
(NISBET & GURNEY 1982, Ch. 7)) or else they are similarly perturbed
true deterministic persistent fluctuations. Thus both the

"underdamped" region, and the "unstable" region of {leaxT’ mT) space
(Fig. (3.2)) must be examined, and the quasi-periodic fluectuations

arising therein suitably characterised,
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3.5.1 Quasi-cycles

The expected pattern of behaviour of quasi-cyecles is the
appearance of bursts of relatively coherent eyelie behaviour,
interspersed with periods of incoherent noise (NISBET & GURNEY
1982, Ch. 7). The period of quasi-—cycles themselwves (T) will be
very close to that of the damped oscillations, in the underlying

underdamped system (op.cit.), and thus to a good approximation,

T 2
R {3.5.2)
{(here T is normalised with respect to the delay, T; Wr is the
normalised frequency of the damped oscillation). The amplitude

of quasi-ecyeles is not computable, but another characteristic,

the coherence number (n ) can be estimated. Defining n, as the

number of cycles required for the amplitude of the damped oscillations
of the underdamped region to fall by a factor of e, then to a good

approximation (op.cit),

WT

e = Twar (3.5.3)

where UT is the normalised real part of sclutions to linearised
equation (2.4.2) which controls the damping. Fig. (3.3) shows
contours of normalised period (T/T) and coherence number (nc} for
equation (3.5.1). By estimating T/T and n, for the real
population fluctuations of Nicholson's experiments, fitted wvalues
of R;axT and mT can be derived from Fig. (3.3) under the Quasi-
cycle hypothesis, and compared with the real wvalues to test that

hypothesis.
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TABLE 3.1

Fluctuation characterisation of Nicholson's (1954) data.

Experiment T/t n,
Adult Competition 2.6 £ 0.1 2-5
Larval Competition 2.3 £ 0.1 2=5

(50g day~")

Larval Competition 2,37 £ 0.03 2-5

(25g day™")

/A

max’  min

36 £ 17

17 = 26
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From Fig. (3.1), and NICHOLSON (1954), the length of the
immature stage, i.e. T, is 14.8 * 0.4 days, and so the normalised
cycle periods (measured from Fig. (3.1), and divided by T) are
as given in Table (3.1), for the three experiments. Empirically
it has been shown (NISBET & GURNEY 1982, Ch. 7) that the number
of complete cycles appearing during one of the coherent "bursts"
will be two to three times the coherence number as given by Eq.
(3.5.3). Only six or seven "cycled'are visible in any of the sets
of experimental results (Fig. (3.1)), so clearly a, is not greater

than two for any of them. An upper limit to n. is not so forth-

o
coming, but given the lack of sensitivity of R‘maxT values to
changes in n in the region of parameter space dictated by the

responses of T/T given in Table (3.1), the estimated range

2 < n, < 5 (3.5.4)

seems perfectly reasonable. The shaded area in Fig. (3.2) indicates
the region of parameter space delineated by the intersection of the
ranges of T/t and n, for the adult only competition experiment.

For the sake of clarity I have not marked the corresponding regions
for the other two experiments. In Table (3.2) I have tabulated the
values of R'mﬂxr and mT defining all three regions, that is, those
fitted parameter values which the blowfly populations would have to

have if the observed fluctuations are of quasi-cycle type.
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TABLE 3.2 Fitted parameter values under the two hypotheses

Persistent Fluctuation Quasi-Cycle
Hypothesis Hypothesis
" i ]

Experiment RmaxT mT RmaxT mT
Adult Competition 55+26 2.9:0.5 B.6xl.6 3.0%0.7
Larval Competition| 63%18 5.5%¢1.6 17%6 7.5+3.0

(50g day=')

Larval Competition| 140%92 4.720.7 12+2 4.8+0.8

(25g day~')




3.5.2 Deterministic Fluctuations

Deterministic, persistent fluctuations can be characterised by

a dominant period, which, unlike the formal repeat period, varies

smoothly throughout the unstable region of parameter space (see Ch. 2).

Thus the values of T/T used in section (3.5.2), and appearing in

Table (3.1), are estimates also of the dominant period under the

persistent fluctuations hypothesis. In this case I will also

characterize the fluctuations by the relative amplitude. A fA .
max' min

(the ratio of maximum to minimum observed population size). Imn

Fig. (3.4) I have plotted contours of T/T and A /A . for fluctuations

max' min

in the unstable region of {leaxT’ mT)—space.

The measured values of A /A . and T/T for Nichelson's data
max’  min
appear in Table (3.1), and, using these values, I have identified
the regions of {R'maxT,mI}—space required for the observed "cycles"

to be of "persistent fluctuation" types (see the shaded areas in

Fig. (3.4)).

The two sets of fitted parameter values, under the two hypotheses,
appear in Table (3.2). In all three experiments, the fitted normalised
death rates (mt) are virtually indistinguishable betwesen the two
hypotheses, whereas the fitted values of R;axj are very different.

Thus by estimating mT and (particularly) RﬁaxT from the original data,

it should be possible to differentiate between the two hypotheses.
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Characterisation of persistent fluctuation behaviour
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the persistent fluctuation hypothesis.
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3.6 TESTING THE MODEL

I can obtain estimates of the tiue values of mr in the adult
food-limited case (Fig. (3.1(a)) and the 25g day'l larvae food-
limited case, as follows. It is clear from observation of these
two data sets that egg-laying was at a minimum when the adult
population was at the peak of each cycle, so that at a time
T(= 14.8 £ 0.4 days) later, recruitment to the adult population
must have been at,or cleose to, zero. Thus in the last section of
the falling arm of each eycle the delay-differential equation

(3.4.5) reduces to

A(t) = - mA(t) (3.6.1)

which of course has the solution

A(t) = exp(-mt). (3.6.2)

Hence, plotting In{A(t)) against t (Fig. (3.5)), I can estimate m.
The estimated mT wvalues for the two experiments are given in
Table (5.3] (without information on reproductive behaviour, I
cannot estimate mT for the third experiment). Comparison with
the fitted wvalues in Table (3.2) confirms the conclusion that it
is not possible to differentiate between them on the basis of

death rates.

I can also estimate R;axT for the adult competition case. If
B(t) is the total rate of egg-production, then clearly (from Appendix

1 and Eq. (3.3.3))
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Fig. (3.5) - Estimating the Per capita death rate, m, from the adult

competition experiment of Fig. 3.1(a). Cycles 1, 3,

- and 5 are denoted by 8 cycles 2, 4,6 and 7 by 0.
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(50 g day™1)

Larval Competition
(25g day™')

TABLE 3.3 Estimated Parameter Values
3 1
Experiment RmaxT
Adult Competition 48 = 11 4.0 0.5
Larval Competition = 4.0 + 0.6

o




B(t) = QA[t]exp(—A[t}!ﬂE) (3.6.3)

Hence, if Emax (the maximum total birth rate),

B ™ Qane*l (3.6.4)

and from Eq. (3.3.5),

1 - -1
R' o= S;Q (3.5.5)

so therefore

T -

o EIBmafo (3.6.6)

]

Thus by measuring (from Fig. (3.1(a))), the maximum total egg-laying
rate {Bmax} and the adult population size at which it occurs (Aﬂ},
and using the mean egg-to-adult survival probability S|{= 0.91,
NICHOLSON 1954), a range of leaxT values for the population in

adult-only competition experiment can be found (Table (3.3)).

It is immediately eclear that the estimated true R'maxT (48 = 11)
is compatible with the persistent fluctuation hypothesis
{R'maxr = 35 % 26), but not with the quasi-cycle hypothesis
(leaxT =8.5% 1.,7), and I conclude that the "cycles" observed
in Fig. (3.1(a)) are of persistent fluctuation type. Examination
of Fig. (3.4) indicates that the dominant period of the persistent
fluctuation observed under adult competition is controlled almost
exclusively by the normalised death rate, mT, whereas the amplitude

is controlled by both leaxT and mT in some complicated manner, as

expected from the conclusions of section (2.7).



Before turning to the results of the larval-food limited
experiments (Fig. (3.1)(b,c)), I must consider briefly the
justification for using a cohort-competition model. At the time
of initial formulation (1979) the assumption that "within-cohort"
competition was a reasonable approximation to the true immature
competition regime was untestable. Recently however, GURNEY
et al (1983) have shown that models incorporating uniform competition
among all immatures - an obvious, strong alternative possibility -
are incapable of producing eyclie fluctuations with periods greater
than 2T. As the cohort—-competition model discussed in this
chapter does predict cycles of long period, and, more importantly,
the experimental data of Nicholson (Fig. (3.1) (b,c)) is characterised
by cycles with periods greater than 21, there is strong evidence that
not only is vniform competition ruled out for Wicholson's larwval
competition experiments, but that either cohort-competitors or some
other form of asymmetric competition (the presence of some particularly
advantaged or disadvantaged group) is occurring. LAWTON & HASSELL
(1981) have recently shown that asymmetric competition is the norm
in at least two-thirds of all well-documented cases of interspecific

insect competition, so it should not be suprising if intraspecific

competition is also often asymmetric.

Unfortunately, although the assumption that cohort competition
is occurring in Nicholson's larval-food limited experiments (Fig.
(3.1)(b,c)), is justified, the lack of egg-laying data for these
experiments prevents me from estimating R'maxt’ and thus differentiating

between quasi-cycles and persistent fluctuations. However, given that

- &7 =



the adult competition eyclic fluctuations (Fig. (3.1)(a)) are

almost certainly of the latter type, there would have to be a very
great change in the system dynamics indeed if the larval-competition
"eycles" are to be of quasi-cyeclic type. Very tentatively, therefore,
I suggest that the quasi-periodic fluctuations observed in Fig. (3.1)

are probably all of determinstic persistent fluectuation type.



3.7 FINE STRUCTURE - THE SEPARATION OF GENERATIONS

Apart from the mathematically interesting, but biologically
not greatly relevant, details of pe:icd—d;ubling, there are other
features of the dynamics of the delay-differential '
equation which are of biological importance. In Fig. (3.6) I
have plotted four realisations of Eq. (3.5.1) for different points
in (R;axT’ mT)-space, in order to illustrate the wide range of
behaviour of which the model is capable, and to make qualitative
comparisons with the experimental data. The solid line is (scaled)
adult population, and the dashed line is the future recruitment rate
(on a different scale, for clarity). The increasing complexity
of the solutions (in the order (a)-(d)) is only partly a result of
the pericd-doubling (the last solution shown, (d), is chaotie).
The more important feature is the effect of the "humped" future
recruitment curve, as discussed in Ch, 2. As adult population varies,
so does R(T+T1), so that if (a) hmin > ﬁﬂ {the peak position for
R(t+T)) both A(t) as R(t+1) will exhibit in the cycles, like KAPLAN
& YORK's (1977) system. Once the amplitude of the A(t) cycle is
such that Amin.{ ﬁﬁ (Fig. (3.6(b))), then R(t+T) will show a slight
decrease, which will in turn effect the future adult population size.
The result is that breeding behaviour can continue throughout the
cyele, and there is only one generation per cycle, but with a certain
amount of fine structure becoming evident. Increasing the adult
population fluctuation amplitude further decreases Amin further
below AD, so that the resultant decrease in future recruitment at
low population densities becomes pronounced, and each cycle now

produces two bursts of eggs, which manifest as two separate
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Future Recrultment Rate, and Adult Papul ation
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lal il

Fig. (3.6) - The qualitative features of the persistent fluctuatiens

predicted by equation (3.5.1) (— Y normalised

adult population, ¥(t) (-———---) normalised future
recrui tment R{Y{t}}fﬁu. The line (—— —) is ¥(t) = 1.0
i.e. A(t) = A, the position of the peak in R(A).

(3) - (d) represent solutions with different parameter

values, and are referred to in the text.



generations entering the adult population in the future (Fig. (3.6(c))).
When ﬁmin becomes very small, the breeding behaviour is very complicated,

with multiple bursts of eggs per cycle being possible (see Fig. (3.6(d))).

The solutions shown in Fig. (3.6(b) and (d)) have R;axr and mT
values corresponding approximately to the centres of gravity of the
shaded areas in Fig. (3.4) for the adult competition and the 50 g day™!
larval food limited case, respectively. The predictions of the
equation agree qualitatively well with the experimental results, in
that separation of generations occurs for the latter case, but not for

the former.
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3.8 CONCLUSIONS

The model used to examine the population dynamics of L. cuprina
in NICHOLSON's (1954) experiment thus providesa reasonable
qualitative fit to the data, and revealsthat the "cycles" observed
by Nicholson are almost certainly deterministic persistent
fluctuations, perturbed by demographic stochasticity. The
normalised dominant period of these fluctuations is predominantly
controlled by the parameter group mT, whereas the amplitude is

strongly affected by all the model parameters.

Of considerable interest are the results on the appearance of
discrete generations in "cycling" populations, due entirely to
density effects, and the presence of a hump in the recruitment
function. This mechanism allows delay-differential equation
models to bridge some of the gap between continuous and discrete-

‘time modelling.

The general results, and the comparison of models, of Ch. 2
give reassurance that the features of the model used here, and the
conclusions reached, are not model specific (to be precise, not

controlled by the details of the functions chosen for R(Y) and

D, ().



CHAPTER 4&: DISTRIBUTED MATURATION PERIOD

4.1 INTRODUCTION

In this Chapter I return to the problem of incorporating
differential aging into a population model. As in Chapters 2 and
3, I shall consider a laboratory population with just two developmental
stages (immatures and adults), and shall therefore express differential
aging by introducing variation among individuals in the "transit time"
through the immature stage. The conventional expressions of adult
population dynamics where there is such individual variation in the

maturation period is anm equation of the form

A{t} = F{A{t]JJ ufa)A(t-a)da) (4.1.1)
o

where F(-) is some generally non-linear functiecn, and ufa) is a
nermalised weighting function (e.g. MAY 1974a; OSTER 1976;
MACDONALD 1978). I shall demonstrate in section (4.2) that a
rigorous derivation does not lead to Eg. (4.1.1), but rather to an
equation which is more obviously the generalisation of the delay-

differential equations of Chapters 2 and 3.

After developing an appropriate formalism for modelling
laboratory insect populations with "distributed" maturation period,
under conditions of adult-only competition (4.3), I show how a
general weighting function, that fits experimental data reasonably
well, can permit a full local stability analysis to be performed,
and make numerical analysis relatively simple (4.4 - 4.6), Finally,

{(4.7) I compare the stability and persistent fluctuation behaviour



of models with constant and distributed maturation period,
in an attempt to discover when the former type of model is an
acceptable approximation, and when the more complete

specification of the latter is required.

4.2 FORMULATION OF THE GENERAL EQUATIONS

In order to aveoid the pitfalls that beset the user of ad hoc
models such as Eq. (4.1.1), it is necessary to start from first
principles. As I discussed in Chapter 1, the fundamental equations
describing the constant aging process are a recurrence relation
(for movement through the age-structure) and a renewal condition
(for the birth rate), and it seems natural to loock for a similar
appreach for differential aging. To simplify matters, I shall
again divide the population into two developmental classes
(immature and adults), so that an individual is born at the
beginning of the immature stage, and (assuming that it survives)
matures at some later time, entering the beginning of the adult
stage. This suggests that there is a recurrence relation and
a renewal condition for each developmental stage, and I shall

now attempt to formulate these.

Clearly it is quite possible for two individuals that were born
at time t to be in different developmental stages at some time t+x

" of an individual is not

in the future. Because of this, the "age
a good indication of its functional "place" in the population, and

instead I shall use the "time-to-date" spent in the immature, and

in the adult developmental stages (the "stage-durations"), denoted
=4
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by r and s, respectively. Hence I can denote by EI(r,t}dr and
fﬁis,t}ds the numbers of immatures and of adults in the small
stage-duration intervals (r,r+dr) and (s,s+ds), respectively, at
time t, and by GIEr,t} and ﬁﬁ{s,t} the respective immature and.
adult per capita death rates. I shall also define a per capita
"maturation rate", ¢(r,t), such that ¢(r,t)dr is the average
fraction of immature in the stage-duration interval {r,r+dr)

who mature into adults at time t.

Given the above definitions, it is easy to construct the
two required recurrence relations., If I define infinitesimal
stage-duration and time intervals dr, ds and dt, chosen for
convenience to be equal, then the transitions between time - and

stage-duration intervals are given by

£, (r,t+dt)de = {1—¢{r-dt,t)dt}{l-ﬁI(r-dt,t)dn}fI(r—dt,t)d: (4.2.1)

rs 5 > 0

£, (s,t+dt)dt = {i—ﬁﬂfs—dt,t}dﬂ‘fﬂ(S“dt,tJdt (4.2.2)

which, upon Taylor expansion of all functions to first order terms,
neglecting higher order terms as dt + 0, yield up a pair of partial
differential equations similar to the McKENDRICK (1926) equation:

afl{rpt) BfI{q,t)
v + pe = ¢fr:t}f1(1‘,t} - 5I(r,t:lf1{r,t} (4.2.3)

r, >0

_B_Efk(s't} X 3fﬁ(s,t}

ot os

-ﬁ&(s,t}fﬁ{s,t} (4.2.4)
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The renewal conditions are likewise simple to formulate. It is
clear that the total maturation rate out of the immature population
at time t (which is equal to the total recruitment rate into the
adult population) in the total of the maturation rates of immatures

at all r, i.e.

M(t) = R(t) = fﬁ{D,t}
= J¢(r,t}f1(r,tJdr (4.2.5)
o

If I denote by B(s,t) the per capita fecundity of adults of stage-

duration s, then clearly the total birth rate at time t is given by
oo

B(t) = fI(ﬂ,t} - J B(s,t}faﬁs,t}ds (4.2.8)
0

By integrating over all r and s in Eqs. (4.2.3) and (4.2.4),
respectively, and defining the total numbers of immaturesand adults

at time t as

I(t) = £ (r,t)dr (4.2.7)
and

Alc)

"

O O~

£, (s, t)ds (4.2.8)

respectively, then I regain the balance Eqs. (2.2.1) and (2.2.2),

namely

B{t) - M({t) - DI{t} (4.2.9)

{i{t}

ACE)

R(t) - Da{t} (4.2.10)

i B



(assuming no individuals achieve infinite r or s), where

DI{t} = J ﬁI(r,t}fI{r.t}dr (4.2.11)
4 A
and o
DA(E} = J Gifs,t}fA{s,t)ds (4.2.12)
0

are the total immature and adult death rates, as before.

Scant progress can be made in analysing the general integro-
differential Eqs. (4.2.9) and (4.2.10), so I shall return to
the consideration of a particular laboratory competition regime
(that of adult-only competition) and try and extract analytically

and computationally tractable equations.



4.3 ADULT COMPETITION

The assumptions which reduce the general Eqs.

(4.2.11) and

(4.2.12) to a description of adult-only competition are identical

to those of Chapters 2 and 3, with one addition.

As before, the

per capita death rate is density-independent for the immatures, but

density-dependent for the adults, and the per capita fecundity is

likewise a function only of adult density.

per capita maturation rate is a function of the immature stage-

duration, r, alone. Hence,

and

DI{t} J Gi{r}fI{r,t}dr,
o

D, (t) DA{A(t}] = §,(a(t))a(e),

B(t) = B(A()) = B, (A(t))A(L),

M{t) = R(t) = J ¢{r]f1{r,t}dr
Q

In addition, the

(4.

(4.

(4.

given Egs. (4.3.1) - (4.3.4) the solution to the immature partial

differential Eq. (4.2.3) is simply

r
£, (r,t) = B(A(t-1))exp{- J[q:(x)hﬂlix}].ﬂr} L

]

(4.

which, provided that the experiment to be modelled was started by

the introduction of some new adults at t =0 intoan empty cage, is

the only solution required.

)

3.2)

3.3)

3.4)

3.5)



Substituting (4.3.5) into (4.3.4) gives

M(t) R(t) = J w(r)B(A(t-r))dr (4.3.68)
o]

L]

. |
oeml-| v 0]ar), (4.3.7)
0

where wir)

a result closely related to those of LEWIS (1972, 1977) who studied

integral "flow" equations.

Thus the equation describing the adult population dynamics
(Eq. (4.2.10)) is decoupled from that for the immature dynamics

(Eq. (4.2.9)), so that
AL = J w(t)B(A(t-r))dr - D, (A(t)) (4.3.8)
o

is the true generalisation of Eq. (2.2.4), for adult-only competition.

It is clear that Eq. (4.3.8) is not a special case of Eq.
(4.1.1) the conventional "distributed-delay" equation. Indeed,
as no single equation is capable, apparently, of fully characterising
the population dynamics when there is immature competition and a
distributed maturation period, and as Eq.(4.1.1) can only be a correct
deseription of adult-only competition when the per capita fecundity
is constant and the function F(*) involves no cross-multiplication
of "delayed" and "undelayed" terms, all extensions of the time-
delayed logistic are automatically ruled out as rigorous age-structure
models (e.g. MAY 1974a; OSTER 1981), whatever their merits in

describing other processes (e.g. VOLTERRA 1927; MACDONALD 1978).



The original modelling problem has now been reduced to
making Eq. (4.3.8) analytically and computationally tractable,
without loss of realism. The density-dependent total birth and
death rates B(-) and Dg{-] produce no new difficulties, so I

shall concentrate upon w(-), the weighting function.
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4.4  THE WEIGHTING FUNCTION

The details of the definition of w(r) are not, at first sight,
encouraging. Even if explicit functions for ¢(:) and 61(*} are
known Eq. (4.3.7) will still produce what is likely to be a
spectacularly intractable weighting function. Consider however a cohort

of eggs,laid at some time t-r; then the biological meaning of the

expression
r
w(r)dr = ¢(r)dr expl- J [@(x) + 52(x51dx} (4.4.1)
o
is quite straightforward and unambiguous. From section (4.2),

$(r)dr is the proportion immatures in the stage-duration interval
(r,r+dr) who mature during that interval. The exponential term
in (4.4.1) is simply the probability of surviving unmatured to a
time r after birth. Combining these two definitions, Eq. (4.4.1)

can be rewritten as

; o N
wlr)dr = Number actuallylm?turlng in L?tﬂ?ﬁ?l (rlr dr)
Initial cohort size

(4.4.2)

Integrating over all r in Eq. (4.4.2) gives the relation

wir)dr = — g 1 (4.4.3)

= -
J Total number ever maturing
5 Initial cohort size

which is precisely the quantity S, of Chapters 2 and 3, i.e. the

1
average number of the original eggs which survive to achieve maturity.

A comparison of Eqs. (4.4.2) and (4.4.3) suggests that a-functionm

Y{r) can be defined, such that



=5'—- w(r)dr (4.4.4)
1

Y(r)dr

Number actually maturing during interval {r, r+dr)

Total number ever maturing

(4.4.5)

In other words §(r) is the frequency distribution of maturation
periods, and is thus, 1like Sl, easily experimentally measurable.
Clearly the recruitment function in Eq. (4.3.8) can now be

written as

Rit) = JS]¢(r]E{H{t-r]}dr (4.4.6)
o

with no loss of generality. By carefully choosing a function for
Y(r), it is possible, as I show in sections (4.5) and (4.6) to extend
the results of LEWIS (1977) and MACDONALD (1978), and to make the
adult population balance Eq. (4.3.8) both analytically and
computationally tractable. If the exercise is to have any value

for practical modelling, however, the weighting function defined

by such a choice must accuratelyreflect the variation in the

maturation period observed in real populations.

In Fig. (4.1)(a,b), I have plotted the experimentally observed

w(r) for two insect species: (a) the blowfly Phaenicia sericata

(ASH & GREENBERG 1975) and (b) the damselfly Pyrrhosoma nymphula

(LAWTON 1970, and 1982 pers. comm. ). The general pattern of

such w(r) is summarised in Fig. (4.1){(c):- there is some minimum
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maturation period T,, after which all individuals mature according to

some distribution of maturation periods, with mean T This is of

7"
course by no means universal. However, a reasonably regular
distribution, starting at some r = Tl' is sufficiently common that
it can be considered usual. In fact, the w(r) depicted in Fig.
(4.1)(a,b) represent rather extreme examples of the pattern:

P. sericata has an extremely short T , followed by a broad,

1
asymmetrical distribution, while for P. nymphula T is very long,
and the distribution of emergence times relatively narrow and
much more symmetrical. The choice of Y(r) must produce a w(r)
capable of these extreme curves, and any intermediate examples.

I choose a function which has the minimum maturation period T

specified by a shift in origin, and the distribution described by

a standard general probability density function:

wir) = Sl g{r—T];p} H{r—Tl} (4.4.7)
0 > <0

where H(x) =gl (4.4.8)
| " x=20

is the Heaviside step function, and

cp+] -cx
X e c > 0, p 2 (4.4.9)

g(x;p) =
p!

the general gamma distribution of integer order p (strictly speaking,
the Erlang distribution). The mean maturation period is cbtained

by adding the mean of g(x;p) to T,, i.e.

1’
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(4.4.10)

where

g, = BXL (4.4.11)

There are not usually any simple explicit analytic functions for
¢(*) and GI(-} which, when substituted inte Eq. (4.3.7) give
exactly some member of the family of curves Eq. (4.4.7). However,
it is possible to get arbitrarily close to any such curve by
judiciously choosing ¢(-) and GI{'}, and the reverse process
(choosing p and either ¢(:) or GI(-)} produces plausible forms

for the unspecified function.

In Fig. (4.1)(a,b) I have plotted curves of w(r), as given
by Eq. (4.4.7), for the experimental data shown, fitted using a
crude method of moments technique, with p taken to the nearest integer.
Clearly, despite the great differences between the observed
distributions, the "shifted gamma" form for w(r) produces a
reasonable fit to both. The gamma distribution itself is a common
choice when a smooth continuous function, with a peak of adjustable
width is required (e.g. LEWIS 1977; CUSHING 1977, 1980; MACDONALD
1978); however, to give a reasonable fit to real data either the
distribution must be truncated (see SWICK 198| for example), or
else very large values of p must be used, to keep the probability
of maturation at small r at a minimum. In neither case is the
numerical analysis particularly easy. Using the gamma distribution,
shifted to r = Tl (first suggested by MACDONALD (1978, p25)), the
local stability analysis is only mérginally more complicated, and

the numerical analysis is greatly facilitated, as I shall show in

the following sections.
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4.5 LOCAL STABILITY ANALYSIS

Before I can consider local stability, I require a formal
definition of the steady-state solution to the integro-differential
Eq. (4.3.8). I shall call A*3 0 a steady-state solution if,‘
given a history A(t) = A* for -= < t ¢ 0, the subsequent solution
is also A(t) = A* (0 <t £ 0). Clearly, if A(t) = A* over all

time, then dA(t)/dt = 0 over all time, and Eq. (4.3.8) reduces to

I w(r)B(A*)dr = DA{A*) (4.5.1)
[#

so that A* is revealed as any non-negative solution of

EIB{A*} = DA(ﬁ*). (4.5.2)

The steady state in the distributed maturation period system is thus
identical with that of the constant maturation period system

(see Eq. (2.4.1)).

The fateof small perturbatians n around A* can be examined
in exactly the same manner as in Ch. 2, by substituting A = A%*+n
into Eq. (4.3.8), and expanding to terms of first order. The

resulting linear equation is
]
ﬁ{t) = —=n(t) + p J g{r—rl;p}H{r-rlln{t-r)dr
¢ (4.5.3)

using the weighting function of Eq. (4.4.7) (some of the local
stability analysis can of course be performed for general w(r),

but not enough to be of much assistance), and where
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_ o, ace)) [ Beaten)
o = _-_é-ﬁ-{-t‘.-]-“ o and g =8 e i, (fb.E.ﬁ}

@ 1s exactly the same as for the constant maturation period equation
of Ch. 2, namely the gradient of the death rate function at A%. o}
is identical in wvalue to the adult-only competition recruitment

function gradient at A* of Ch. 2 (Eq. (2.4.3)).

Appendix 2 contains a full local stability analysis of Eq. (4.5.3)
for general p and T i.e. for any possible shape of weighting function
permissible under Eq. (4.4.7). The results of the analysis are
closely related to those of sections (2.4): there are now four
controlling parameter groups, two of which (ar and pT) have direct
counterparts in the constant maturation period system, and two of
which {TIHTE and p) are related to the shape of the weighting function.
The local stability boundary in (ot,pT)-space, for a given 'r].f'rz >0
and p 2 |, bears a strong resemblence to the discrete—-delay boundary,

and tends, as t + ®, some straight line (see Fig. (4.2)) of the form

- 2 K(T,/T,P) (4.5.5)
where K(*) + 1 as the weighting function tends towards a delta-function
(i.e. as TlfT2 and/or p + = (see Eq. (42.21))). Thus, given T]h’2 and
p. if Q -pt/at < K(+), then there will be no T large enough to
destabilize (4.5.3), whereas if -pt/ar > K(-), then there exists a
finite T sufficient to cause instability, exactly as in the constant
maturation peried case (Ch. 2). Here however there is no simple

analytic expression for Tes and it must be calculated by solving

Egqs. (A2.15) and A2.16).

= N7 -



There is a special case of w(r), as given by Eq. (4.4.7),
for which the local stability boundary does not behave according
to Eq. (4.5.5), namely when TJXT2 =0andp=1, i.e. the

broadest possible weighting function, with its origin at r = 0.

Here the local stability boundary has the equation

-oT = (2 + at)? (4.5.6)

(I have used the Routh-Hurwitz criteria (MAY 1974a; NISBET & GURNEY
1982, Ch. 4) for the sake of clarity; the same results can be obtained
using the methods of Appendix 2). Eg. (4.5.6) is clearly of
quadratic form, and so does not tend to any straight lineasT =+ =.

On the contrary, any straight line through the origin with gradient
-pT/at > 8 will cross the local stability boundary twice in the
feasible region of (ar,pT)-space, i.e. not only is the system
destabilised for "long enough'" T, but it is also restabilised for
some 'very long" T (both values may be found as the roots of Eq.
{4.5.6), solwing for T given, o and p). Numerical analysis confirms
this result which is unusual, to say the least, with van den
DRIESSCHE (1983) (for an epidemiological model with a distributed-
duration immune phase) and SALEEM (1983) (for an age-structure model
with age-dependent fecundity) having the only other examples of

which I am aware where restabilisation at large delay occurs. In
this case at least, the restabilising effect is almost certainly a
purely mathematical artefact, and of no biological significance, as
for any TI.-"T2 > 0 or any integer p > | the asymptotic behaviour of

the local stability boundary is given by Eq. (4.5.5).



4.6 NUMERICAL ANALYSIS

The final advantage of the choice of the weighting function
Eg. (4.4.7) is that numerical analysis is greatly facilitated.
The unshifted gamma distribution is the basis of MACDONALD's(1978)
"linear chain trick", which allows an integro-differential equation
of the form (4.1.1) to be recast as a system of ordinary differential
equations. Although his result does not apply to the age—structure
equation (4.3.8), the extension of MACDONALD's(1978) technique is
not difficult (in fact MACDONALD suggests 1978, p25 - (4.4.7) as
a possible alternative weighting function, but does not make use
of it). The important criterion for a weighting function is
"degeneracy', i.e. an integral equation can be replaced by a set
of differential equations if the weighting function satisfies the

condition

de{r} 3! . dkwizl » q, constants (4.6.1)

dr k=p T gt

(FARGUE 1973; MACDONALD 1978, pl5.)

In Appendix 3 I show that (4.4.7) possesses the correct
properties, and demonstrate how, by defining p+] arbitrary new

variables,

?j{t) = J s(r-T,;p+1—j}B(A{t-r)}dr s J= 1,2..p+1 (4.5.2)
T

1

the integro-differential Eq. (4.3.8) (with w(r) given by (4.4.7)),

can be rewritten as the system of p+2 equations,
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]

At) $,V,(t) - D, (A(t))

c(V

Vj{t} j+l(t)-vj{t}} s 3=1,2...p (4.6.3)

-

Vo (®

c(B(A(t=T)) =V, (t])

(recalling that ¢ is a constant from Eq. (4.4.9)). Thus there are P
linear, and one (possibly) non-linear, ordinary differential equationms,
and one usually non-linear delay-differential equation. The numerical
analysis of the system of Eq. (4.6.3) thus requires initial values
(i.e. at t = 0) for all p+2 variables, and an initial history

(-1 £ t < 0) for A(t), all of which must be compatible wiFh the
history and initial values required for a direct solution of the
integro-differential equation itself. Fortunately, for a laboratory
experimental setup, all these values are forthcoming. It will be
recalled that the experiment is initialised by the introduction of

a number of new adults into an empty "cage'" at time t = 0. Thus

it is clear that A(t) = 0 for -= £ t < 0, and that there is some
positive initial wvalue A(D) = AI. It is clear from Eq. (4.6.2)

that, given A{t) = 0 in the range of r cuveréd by the integral, then
all the variables would be zero also. Thus the specification of

the system (4.6.5) is completed by the initial values and history

A(t) =0 3 - £ t <0

A(D) = AI =0 (4.6.4)

UE(G} =0 , i l;2005p + 1

e (U T )



4.7 CONSTANT V. DISTRIBUTED MATURATION PERIOD MODELS

Given that the local stability and numerical analysis of
distributed maturation period models is now relatively straight-
forward, it is possible to systematically assess the differences
between models where a full distribution is specified, and those
where the constant maturation period approximation is used., TFirst
I shall make use of the results of section (4.5) to find out how
narrow a distribution must be before the local stability properties
are indistinguishable from those of the constant maturation period
system, and then I shall, using a particular model, compare the
persistent fluctuation behaviour of the two systems. Finally, I
shall consider the consequences for modelling, and attempt to
indicate when a full distribution is required in a model, and when

the approximation is sufficient,

I shall occasionally make use of the quantity

o/t = [(1 + T /1,)/p*1] (4.7.1)

where T = JE:TIQ is the standard deviation of the gamma distribution
Eq. (4.4.9), and T is the mean maturation period. gft is a
convenient approximate measure of the degree to which a given
distribution differs from the broadest case on the one hand

(T!,I'T2 =0, p=1: 0/t =1//2), and from the constant maturation
period of exactly T on the other {TIKTE and p infinite,

gft = 0).



4.7.1 Local Stability Behaviour

In Fig. (4.2) I have plotted the local stability boundary of the
distributed maturation period system for wvarious T!ITz and p, and
of the constant maturation period Eq. (2.2.4), in (at,pT)-space (at
Fig. (2.5)). Fig. (4.2)(a) shows the boundaries when Tlsz = 0.2,
with 1 € p £ 10 (i.e. 0.589 3 o/T > 0.251). 1It is clear that even
for quite large p (p = 10; the distribution is quite narrow), there
is considerable disparity between the results of the constant and
the distributed maturation period system. In Fig. (4.2)(b), T, ;‘12=1.{]
(i.e.the average maturation period is twice the minimum), and here the
agreement between the two systems is not unreasonable, even for
fairly low p, but is certainly not exact. However when TI.FT2 = 5.0
(Fig. (4.2)(c)) even the broadest of distribution {p=1, i.e.
g/T = 0.118) has an associated local stability boundary that is
extremely close to that of the constant maturation period system,
and for greater p the different curves becomes visually indistinguishable.
For values of TI}'T2 > 5.0, thé same pattern holds - no value of p
produces a local stability boundary significantly different from that

of the constant maturation period system.

Thus, it would appear that for a maturation period distribution
with TIJ"T2 greater than "about 5", the local stability properties are
not significantly different from those predicted by the constant
maturation approximation, regardless of the value of p. For T]fTE
much smaller than about 5, the details of the distribution shape
begin to matter, and only a very narrow peak (p very large) can
produce a local stability boundary close to the constant maturation

period boundary. In terms of Eq. (4.7.1), it would appear that if
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o/T € 0.12 then the local stability propertiesare adequately predicted
by the approximation, but that by the time o/T is much more than twice

this value, the complete distribution should not be ignored.

4.7.2 Persistent Fluctuations

Persistent fluctuations in solutions to the integro-differential
Eq.: (4.3.8) have the same upper bound (numerically) as that proved
for the delay-differential equation of Ch. 2 (see section 2.5), and,
likewise seem to have the same lower bound, but to further investigate
differences in the predicted behaviour of the two systems, I must

resort to numerical analysis of some particular model or models.

I chose the birth and death rates of the delay-differential

equation of Ch. 2 ("Model I") and Ch. 3, i.e.

B(t) = QA{t}eXPf-A{t}fﬂﬁ) (4.7.2)
D,(t) = mA(t) (4.7.3)

Substituting Eqs. (4.7.2) - (4.7.3) into Eq. (4.6.3), and scaling

Y Z A/, t'"= /T, U= vamax (4.7.4)

with ¢ = (p+1)/T (Eq. (4.4.11)) produces the set of p+2 scaled

equation for the distributed maturation system,

= Tl =



‘:I(t’} = ]:R'max'rjul{t‘} - [m'r] Y(t")

Ui = @ U4T /1) Wy (6 = U (E) G=l,2eep (4.7.5)

Y ] i " _ = r - ]
Upep (€1 = (p+1) O+t /7,) (¥(e'-T Jexp (1-¥(t'~T,)) Useq (21D
where
T.JT
= i
Ty =i T $3i7:5)
| B
which is of course the generalisation of
(") = [E'maxi]Y{t'-1]expil—Y(t‘—l}}-{mI]Y{t*} (4.7.7)
the constant maturation equation of Chs. 2 and 3. The initial

history and initial values required to fully specify the problem

are

Y{t') =0 -'1.‘i s t'" <0

Y(0) = YI = ﬁﬂAI >0 (4.7.8)

Uj{ﬂ] =0 j=1,2...p+l

By choosing points in the common {R'ma T,mT)-space, and varying

x
the parameters T]fT2 and p (as in section (4.7.1)), I can assess the

importance of the details of the distribution of maturation periods

upon the behaviour of (4.7.5) in the persistent fluctuation regime,
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and compare that behaviour with that of the approximation, Eq. (4.7.7).
The first point I choose is leaxT = 47.8, mT = 4.0, where the
solution to Eq. (4.7.7) is periodic, but with some "fine structure",

in the form of a double peak in each oscillation (Fig. (4.4)(d)).

In Fig. (4.3)(a-c) I have plotted some solutions to Eq. (4.7.5),

with the same leaxT and mT. I have chosen to keep p=1 and wvary
T].r"l:2 alone. It isclear that as T]frz is increased, the behaviour

of (4.7.5) tends rapidly towards that of the limiting case, Eq.(4.7.7) .
At Tl!'r2 = 3.0 (ot = 0.177; Fig. (4.3)(a)), although the fine
structure! predicted by the constant maturation period approximation

is absent, there is close agreement between the dominant periods

and amplitudes. At TIITZ = 5.0 @/1 = 0.118, Fig. (4.3)(b)) the
solution shows fine structure, and by the time T]f'l‘2 = 10.0

(o/t = 0.064, Fig. (4.3)(ec)), the difference between the constant

and the distributed maturation period models is unlikely to be
experimentally detectable. By keeping TIITE constant, and varying

P, the same kind of approach to the limiting case is observed.

Second, I choose the point R'meT = 51.5, mT = 6.0 where
Eq. (4.7.7) predicts chaotic fluctuations (Fig. (4.4)(d)). I
shall alter TIITZ once more, the time keeping p fixed at 2. For
TIITE = 5.0 (o/T = 9.62 x iﬂ-z;Fig. (4.4(a)) the solution to
(4.7.5) is characteristic of a system that has undergone two
bifurcations (i.e. the repeat period is twice the dominant fluctuation
period), and while the fluctuation amplitude is reasonably well
predicted by Eq. (4.7.7) (see Fig. (4.3)(a,d)), there is an
appreciable difference between the periods of the two solutionms,

and clearly fine structure is ill-represented. At TIJ’T2 = 5.0
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@/t = 5.25 x 107%; Fig. (4.4)(b)) a third bifurcation has occurred,
with its associated period doubling; here both the maximum
amplitude and the dominant period of the solution to Eq. (4.7.5)
are well approximated by the constant maturation period system,
and there is fair agreement between the transient behaviour
predictions of the two equations (see Figs. (4.4)(b,d)). Fig.
(4.4) (c) shows the solution of Eq. (4.7.5) when TI;’T2 = 15.0

(o/T = 3.05 x 1072); it is clear that the behaviour is very
complicated, and does in fact appear to be chaotic, i.e. no repeat
period was observed. Although the maximum amplitudes, dominant
periods and transients of the distributed and constant maturation
period equation solutions are in close agreement the approximation

does not predict details of fine structure with any great accuracy.

It would seem, therefore, that the pattern of behaviour in
the persistent fluctuation region of parameter space is too
complicated for a single value of O/T to be able to indicate the
accuracy of the approximation Eq. (4.7.7), as it was for the
local stability boundary. However, the gross fluctuation
characteristics (dominant period and maximum amplitude), which
are probably principally controlled by RTmaxT and mT, are well
predicted by the approximation, even for quite broad distributions,
and the fine structure of solutions to the distributed maturation
period system, although rather more sensitive to changes in
TIKTZ and p 1is, when relatively uncomplicated, quite well

predicted by the constant maturation period approximation.

=13



4.8 DISCUSSION AND CONCLUSIONS

It is clear that the formulation of tractable models incorporating
differential maturation, even for the simple two developmental stage
population dealt with here, presents problems of analysis as yet
unsurmounted, in the general case. Only for the restricted competition
regime of adult-only competition has it so far been possible to
extract ananalytically and computationally tractable integro-
differential equation model. The conventional ad hoc "distributed-
delay" models can only under the most restricted and specific
conditions be considered as accurate, and must in general be regarded

as inappropriate to age-structure modelling.

Through the judicious choice of a general weighting function,
I was able to extend the work of LEWIS (1977) and MACDONALD (1978},
showing that a full local stability analysis can be performed for
the general "adult-only competition" integro-differential equations,
and that the numerical analysis of any particular model is

relatively straightforward.

The results of sections (4.7.1) and (4.7.2) suggest that the
amount of confidence that can be placed in a delay-differential
equation model, as an approximation to a full distributed maturation
period system, largely depends upon what is to be investigated.

The local stability properties of the 'Histributed" system, and
the gross fluctuation characteristics (i.e. the dominant period,
and the observed maximum amplitude) of solutions can be estimated
with zconsiderable accuracy, even when the true distribution is

not particularly close to being a delta-function at T; the

| e T 1



details of the fine structure of solutions, and the relationship
between the dominant and the repeat period (the period-doubling
behaviour), however, are much less accuratly approximated, except

where they are both thoroughly uncomplicated.

This is rather less worrying than it might at first appear, for
two reasons. Firstly, while the period-doubling behaviour of
various population models has received a great deal of attention
(e.g. MAY 1974b, 1975; MAY & OSTER 1976; PEREZ et al 1978), there
is no evidence to suggest that bifurcations after the first have much
biclogical significance: their importance is largely mathematical,
as an aid to charting the behaviour of a particular model, or class
of models, as in Ch. 2. Thus, provided that the dominant periods,
and the maximum amplitudes, of the approximation and of the
"distributed" system solutions are very close, the details of the
formal repeat time are unimportant. Secondly, and not unrelated,
is the problem of initial value dependence. In the "chaotie"
regime, the details of a given solution to a difference, delay-
differential, or integro-differential equation will depend upon
the initial value(s) (e.g. MAY 1975; OSTER 1981;: MAY & OSTER
1976); also, for model parameter values taking the system close
to some bifurcation, the transient part of the solution can be
very long, and will of course be highly initial value dependent.

It follows that, again, only the gross fluctuation characteristics
of solutions to either the constant or distributed maturation

period systems can be relied upon to be accurate in detail. The

existence and the magnitude of fine structure is determined by
density effects (Ch. 3, and OSTER & IPAKICHI 1978), and the
details of the distribution of maturation periods are secondary

influences.
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It is natural to ask what these results indicate about the
accuracy of delay-differential (constant maturation period) equations,
as approximations to full distributed maturation period models ué
insect populations, and in particular how the results and conclusions
of the Case Study (Chater 3) are affected. In an attempt to at
least partially answer the first part of that question, I have
compiled Table (4.1), the values of TIIT2 and Tofa few insect species
under various experimental conditionms. There is clear evidence of
variation not only in the mean maturation period with temperature
and humidity, as might be expected (MACKERRAS 1933; CHAPMAN 1969),
but also of the shape of the distribution around this mean, as revealed
by variations in TIITE. Even if the (usually unknown) values of p
which could be used to fit the original distributions were all
uniformly high, there is a sufficient range of values of TIIT2
(from about one to about fifteen for the laboratory experiments)
that for some at least of the cases in Table (4.1) - those with
small T]!Tz - a delay-differential equation is likely to be quite
inappropriate, while for others - large'ﬁfrz = the approximation

would be perfectly satisfactory.

Unfortunately, NICHOLSON (1950, 1954, 1957, 1960) did not
publish any details of the natural variation in maturation period

that would permit a reconstruction of w(r), or even an estimate of

TI_!'T2 and p. The only information of this sort for Lucilia cuprina
of which I am aware is due to MACKERRAS (1933), who examined the
life-histories of several species of blowfly. Some blowflies were
kept in cubicles in an insectory, where the temperature, humidity

and sunlight were '"'quite similar to those prevailing outside"
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{p 353); the mean temperature was thus about 20%¢. The length

of the maturation period of L. cuprina in the insectory varied
between 14 and 21 days, with the mean delay at 17 days. Cage
experiments at a temperature of 20 - 22°C produced L. cuprina

with a range of maturation periods of only 14 - 16 days

(MACKERRAS (1933) does not quote a mean value for these
experiments). Increasing temperature reduced the maturation
period, so that at BDOC, L. cuprina could mature in only 11 days.
In the insectory, therefere, ‘rl,f'i:2 = 4,17, and the fairly centrally
placed mean suggests a reasonable degree of symmetry in the
distribution, and hence a moderatelylarge value of p, assuming

that the shifted gamma distribution gives an acceptable fit.

For the cage experiments, although the mean is not known, obviously
T, < 2 days, so that Tlsz > 7, and is quite likely to be at least
twice this value, depending on the value of p, which is unfortunately
quite unknown. While it would be dangerous to try and apply
MACKERRAS's (1933) results too directly to the blowflies used by
NICHOLSON (1954, 1957), under, no doubt, substantially different
experimental conditions (certainly at a higher temperature: Zﬁnc},
it can be inferred with reasonable safety that neither TIHTZ or

p is likely to be small and that they both could well be quite
large. If so, then the results of sections (4.7.1) and (4.7.2)
indicate that the delay-differential equation model of Chapter 3
should be substantially correct as regards the local stability
behaviour, the gross fluctuation characteristics, and the
qualitative features of the fine structure of solutions, and thus

that the conclusions of Chapter 3 still stand.
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CHAPTER 5 CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK

In this final Chapter I shall discuss the results and
conclusions of the previous Chapters, and consider their
implications, both in particular and in general, for the

modelling of laboratory imsect populations.

The objectives of the work reported in this thesis were
the formulation, analysis and application of analytically and
computationally tractable models of laboratory insect populations,
when some accowrt is taken of the population age-structure. The
fulfilment of these objectives has met with considerable success.
In Chapter 2 I developed a formalism for the study of populations
undergoing constant aging, whereby under certain competition
regimes, a single delay-differential equation encapsulates the
adult population dynamiecs. A great deal of the behaviour of
solutions to this equation can be studied analytically, and its
numerical analysis is straightforward, given adequate computing
facilities. In Chapter 3 I fitted such an equation to some of
the classic data of NICHOLSON (1950, 1954, 1957, 1960), for
laboratory populations of the sheep blowfly Lucilia cuprina, with
considerable success, thereby gaining insight into the mechanisms
producing the observed cyclic fluctuations in insect numbers. In
Chapter 4 I managed to generalise the constant-aging approach of
Chapter 2 and 3, and produce an equation which, under restricted
competition conditions, describes the adult population dynamics
of a differentially aging population, and which is both analytically

and computationally tractable,
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In general, the results presented in the foregoing Chapters
are encouraging, and (it is hoped) useful. The occasions when these
simple delay-differential and integro—differential equations can
be used appropriately are now well defined, and all approximations
clearly stated, which should prevent the kind of inadvertent
misapplication that has led to the prevalence of the time-delayed
logistic model. Any particular delay-differential equation model
of the general type dealt with in Chapter 2 can be examined analytically,
using the result on bounds, and on the asymptotic positions of
bifurcation boundaries, to detect model-specific behaviour. Likewise,
the results of Chapter 4 on distributed maturation period equations
permit the testing, for a given model, of the effects of
differential aging, and hence of the validity of the constant-
aging approximation. While the local stability and numerical
analyses of the distributed maturation period system are only
marginally more difficult than those for the delay-differential
equation approximation (so that if necessary accurate modelling
is still possible), the full range of "tools" developed in
Chapter 2 not as yet been extended to aid the analysis of the
differential-aging system. The results and conclusions of
Chapters 2 and 4 support those of Chaper 3, the case study -
neither the precise functions used (for R(-) and DA{-)) in the
delay-differential equation, nor the assumption of a constant
maturation time should in this case make any significant

difference to the dynamic behaviour of the fitted model.
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At this point it is worth, I think, commenting upon one or
two of the very general assumptions that I have made, throughout
the thesis. First is the question of sex. I have not
differentiated between the sexes in the population, so that all
the vital rates (i.e. death, maturation, fecundity) have been
given per individual, rather than per male or female. Clearly
this is admissible only when there is no significant systematic
difference between the death and maturation rates of the two
sexes, and where the sex ratio is constant (so that the fecundity
per adult is a constant fraction of the fecundity per adult female).
I have no data on sex wvariation in per capita death rates, but can
produce some for differences in maturation period, mostly from the
sources listed in Table (4.1). CORBET (1952) (the damselfly

Pyrrhosoma nymphula), BREWER & BACON (1975) (the Carrion Beetle

Silpha ramosa), and MERTINS (1981) (the Odd Beetle Thylodrias
contractus), for example, found no significant difference between
male and female mean maturation periods in the species they studied.
However, STRONG & MEAD (1975), and PARTIDA & STRONG (1975) found
simplex, and T. variabile, respectively), males took significantly
(statistically) less time to reach maturity than did females.

In the blowfly Lucilia cuprina, according to MACKERRAS (1933), in

a typical three-day span of emergences in cage experiments, the
males tend to predominate on the first day, and the females on

the third, with about equal numbers of both sexes on the second,
indicating a slight difference in the mean maturation period between

the sexes, but one that is almost certainly insufficient to alter
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the conclusions of Chapter 3. The adult sex ratio of many of

these species is very close to being 1:1 (e.g. Lucilia cuprina

(MACKERRAS 1933), and Trogoderma simplex {STRGHG_& MEAD 1975),

or is at least approximately constant (e.g. Pyrrhosoma nymphula
(CORBET 1952)), so that per capita and per female fecundities

would not be incompatible.

Clearly, for some populations the sexually undifferentiated
models of Chapters 2-4 are perfectly acceptable, but for others
they could well be gross misrepresentations. The modelling of
this latter type must involve an explicit two-sex formulation.
While a considerable number of two-sex models have been produced,
(see e.g. POLLARD (1973, Ch. 7) or CHARLESWORTH (1980)), these,
usually formulated as matrix or integral equation systems, suffer
from the same limitations of analytic and computational tractability
as I discussed in the Introduction for age-structure models without
SEeX. The development of two-sex versions of the constant—-aging,
and (especially) the differential-aging population equations of
Chapters 2 and 4, respectively, remains a not inconsiderable

task for the future.

Perhaps a more pressing problem arises from the assumption
that the population under study has only two developmental stages,
the first of which contains individuals who either do not compete
(the "adult-only" competition regime), or who compete only with
individuals of exactly the same age (the "within-cohort" competition
of Chapters 2 and 3). For the constant aging case, GURNEY et al

(1983) have recently extended the formalism to permit an arbitrary

S b



number of developmental stages, within each of which all
individuals are functiomally identical, and compete with one
another accordingly. An intriguing wvariation on this theme
permits the duration of each stage to be controlled by explicit
or implicit time-dependence - essentially by involving some
critical "physiological age" which must be reached before
maturation out of a stage is possible (NISBET & GURNEY 1983).
While this could admirably cater for the variation in the

length of the mean maturation period of insects with environmental
factors (see Table (4.1)), or indeed with population density, it
offers no aid in describing the variation in the shape of the
observed distribution (characterised by T]sz and p, in my
approximation). There is thus as yet no way to produce
analytically and computationally tractable population models
incorporating density-dependence in the immature stage of a
differentially aging population, much less develop the stage-—
duration regulation mechanisms of NISBET & GURNEY (1983). This

too must be left for future work.

It is clear that many interesting problems of model
formulation and analysis arise when the simplifying assumptions
of a "sexless", two-developmental stage population are
inappropriate. Nonetheless, I believe that the models and
results presented in this thesis provide potentially useful
tools for modelling many laboratory populations of insects,
and that the results of the case study of Chapter 3, justified
and reinforced by the details of the maturation period
distribution and sex ratio discussed elsewhere in the thesis,

provide strong supportive evidence for this belief.
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APPENDIX 1 DERIVATION OF THE DELAY-DIFFERENTIAL EQUATION OF
CHAFTERS 2 AND 3.

Let the age density for the population be f(a,t), such that
f(a,t)da is the number of individuals aged between a and
a + da, at time t. Then, if there is no immigration or
emigration, the age-structured population dynamics are controlled
by the McKENDRICK (1926) equation (see NISBET & GURNEY (1982, ch. 3)

for a derivation) and renewal conditionm,

9f(a, t) df(a,t)
+ = - 6{a,t}f{a1t) (A1.1)
at da
and
B(t) = £{0,t) = J B(a,t)f(a,t)da (A1.2)
(]

where 8(a,t) is the age-specific per capita death rate, B(a,t) is
the age specific per capita fecundity, and B(t) the total birth
rate. With a constant maturation period (i.e. length of immature
developmental stage) T, and a constant sex ratio, the total

immature and total adult populations at time t are

I(t) = | £(a,t)da (A1.3)

O

and

o

A(t) = J £(a,t)da (A1.4)
T

respectively. The general solution to Eq. (Al.1) is
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a
f(a,t) = £(0,t-a)exp{- J §(x,t+x—a)dx} t > a {A1.5)
o]

and, if the laboratory population is assumed to have been started
at time t = 0 by "innoculating" an empty cage with adults, then
the initial history and initial values required for the system to

be fully specified are

I(t) =0 5 t &0
Alt) = 0. , t <0 {41.6)

A(D) = AI >0

Adult Competition

Assuming that fecundity depends only on the adult population

size, A(t), then the renewal Eq. (Al.2) becomes

£(0,t) = B(t) = BI(A{t}]h{t} (Al1.7)

Per capita death is assumed to be density-dependent but age-
independent in the adult developmental class, and density-

independent in all others, i.e.

GI{a} D£a<T

8(a,t) = (A1.8)
Gﬂ{ﬁit}} T % &
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When a = T, and given (Al.8), the solution (Al.5) becomes

T
f(1,t) = B(t-T) exp {hJ GI{x}dx} i R (A1.9)
)

The exponential term is a constant (which I will call SI} with

respect to t, so that
£(t,t) = SJB(t-T} (A1.10)

Integrating across the age ranges 0 + T, and T = © in (Al.1), the

pair of balance equations (c.f. (2.2.1) and (2.2.2) are obtained:

I(t) = B(t)~£(T,£)-D, (t) (A1.11)

AGE) = £(1,8) = D, (A())

where »

ﬂl{t} = J ﬁI(a}f{a,t}da (A1.12)
and o

Dﬁ(ﬂft}} = ﬁ&[A(t]}A{t} (al.13)

Combining Egs. (41.7) and Al.10) permits the definition

M(t) = R(t) = £(1,t) S, B(A(t-T))

R(A{t-T)) (A!.Iﬁﬁ
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so that the adult population equation decouples from the immature

equation, to give Eg. (2.2.4):

A() = R(A(E=T)) = D, (A(t)) (Al.15)

Competition within pre-adult cohorts

Per capita fecundity is again age-independent, and may or may

not be density-dependent, so in general

E(0,t) = B(t) = Bz(ﬁft}}ﬁft] (Al.16)

When the pre-adult per capita death rate is density-dependent within

a given cohort, then

EI{f(a,t}) s 0gac<rT

6(a,t) = (A1.17)
6ﬁ{A(t}] 5 TS a
The solution, Eq. (Al.5) for a = T, is then
T
f(T,t) = £(0,t-T)exp{- J f(x,t+x-T)dx (A1.18)
o

COLEMAN (1978) has proved, under assumptions identical with those
used here, that this exponential is a function only of £{0,t-1),

so that

£(T,t) = £(0,t-1)8, (£(0, t-1))
= B(t-1)8, (B(t-1)) (A1.19)
= R(A(t-T)) {A1.20)
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in my notation. Proceeding exactly as before for DI{t} and
Dﬁft}, the adult equation again decouples from the immature

equation in (Al.11), and the result is, again, Eq. (2.2.4),

ACt) = R(A(E-T)) - D, (A(£)) (A1.21)



APPENDIX 2  LOCAL STABILITY OF THE DISTRIBUTED MATURATION PERIOD

EQUATIONS

Assume a solution to Eq.(4.5.3) of the form

n(t) = elt . A==+ iw (AZ.1)

Substituting this into its Eq. (4.5.3) gives
ol
B =Air
a+A=p g{r‘TI;}'ﬁ}Hfr-Tl)e dr (A2.2)
0
The integral in Eq. (A2.2) is equivalent to the Laplace Transform

of the shifted gamma distribution; hence (A2.2) becomes

(WILLIAMS 1973; MACDONALD 1978)

» p+l
8 + A= pe M —5-—+—i (A2.3)
(c+)P
so that the stability equation from the Eq. (4.5.3) is
p+l .
(a + l}[i + %] = pe T (A2.4)
At the local stability boundary, p=0 i.e. (AZ.4) has
imaginary roots, hence,
w P -iwTt
(o + iw){l + i E} = pe I (A2.5)

To reduce Eq. (A2.5) to parametric equation for the local stability

boundary, I follow an idea of MACDONALD's (1978). First, set
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tanf = 2 (A2.6)
c
so that
(c+iw) (cosB+isind)Pt! = E(cosE}P+](cosmTI—isianlj (A2.7)
or
- p+l
(a+iw) (cos[(p+1) 6] +isin[(p+1)6]) =p {cost) B(coswt ~isinwr )
(A2.8)
Equating real and imaginary parts in Eq. (A2.8), and dividing
through by cos(p+1)8 gives the pair of simultaneous equations
0o - mtanDﬁpH]E:[ = pcnsml{cusE]PH;’cusE{pH}ﬂ (42.9)
w + utan[fpﬂ}fﬂ = —psinut, (EDEB]PH.’EDSE'FH}E] (A2.10)
which, after a little manipulation, give
a = ~w (AZ2.11)
tan[ (p+1)8+ut !] :
—u
- (A2.12)
+]1
(cosdP sin[(p+1)8+wt, ]
Recalling that w = étanf = {PH”TE’ (A2.11)-(A2.12) become
o= -t (D“E.af;? 2 (A2.13)
+1 =
2 tan[{p+1)(e+ % tang)]
1y
pe-sl (1) eind (42.14)
2

-
(c0s0) P sin[(p+1) (94— ranty]
2



Multiplying through both equationsby T (scales « and p), and
recalling that T = T, + T, i.e. T,J’T2 = T]!Tz + 1, Eq. (A2.13)

- (A2.14) become, finally

or = = (] + TIITE} {p+1)tand (AZ.15)
tan [{pﬂ}t_‘,]
(p+1)sinb
PT = =(1+T./1.) — (AZ.16)
12 (¢GEG]P+13in[Kp+I}i]
where
L = E+{T|f12}tanﬁ (AZ.17)

Equations (A2.15)-(A2.17) are thus the parametric equations for the
local stability boundary of Eq. (4.5.5) in (at,pT) -space, given

the parameters (TIITEJand p.  For population modelling, only

at > 0 is of interest (c.f. Ch. 2), so, for solutions with )

in the first quadrant, Eq. (A2.15) indicates that
/2 < (p+l)g < 7 (42.18)

i.e. (from (A2.17)),

ﬁ;";ﬁ <8+ (1,/1,)tang < —{Pfl} (A2.19)

where solving for the upper and lower limits in (A2.19) gives

the upper {BU} and lower {GL} limits of § for which the parametric
equations (A2.15) - (A2.16) give solutions with gr > 0. Fig. (4.1)
in the text illustrates local stability boundaries, with various

T]h'2 and p.
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I showed in Ch. 2 that the local stability boundary for the
constant maturation period, delay-differential equation tends, as

T + =, to the straight line

= 8L ury (A2.20)

From Eq. (A2.15)-(A2.16) for the distributed maturation period

system,

pT =] =

- PT _ = K(1,/T.,p) (A2.21)
ar (cosE}P+1cos[Ip+1}§] L'

As T + o, s0 § + Bu’ so that in the limit the local stability

boundary tends to the straight line;

pT 1

I 4 U Uy (A2.22)
ot (cnsBU}p+]

which approaches the discrete delay result (Eg. (A2.20)) as TIITE

and/or p becomes large.
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APPENDIX 3  THE "LINEAR CHAIN TRICK" FOR DISTRIBUTED MATURATION
PERIOD

The adult population balance equation can be written

ACE) = 5,V () = D, (A(t)) (43.1)

where ﬂI{t} is the first in a series of p+| auxiliary variables,

'i.?j (t) = J g{r-‘rl;p+l-j}E{.ﬁ.{t-r})dr, i=1,2...p*1 (A3.2)
T
!

Differentials with respect to time,

dv. (t) -
dt = Jg{r_T];p-ﬂ-—-j} EE(EE}E 2Y dr, j=1,2...p+1 (A3.3)
T
|
=-Jg(r—T1;p+I—j] Egiééf:zll-dr, j=1,2...p+1 (A3.4)
L
r=m 5
3g(r-T1,;p+1-j)
= - [%{r-T!;p+l—j}B{A{t~r{} + [ = B(A(t-T))dr
r='rE Tl
(A3.5)
Now if k 3 1, g(0;k) = 0 and
GBGR). o o (gxsk-1) - g(x5k)) (A3.6)
Also, g(0;0) = ¢ and
ii..g.{i‘_;l_u.}_ = - cg(x;0) (A3.7)

dx
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Finally g(e;all k) = 0. Hence Eq. (A3.5) becomes

dv. (t) ¢
——%E—P'= c J g(r-t;p~j)B(A(t-r)})Xr-c J g(r=T;p+1=-])B(A(t-r))dr
% ]
i=1,2...p
(A3.8)

av_, (t) i
~—EEE———- = cB[A{t—TI}} - e J g{r-rl;ﬂ}E(A(t-r}}dr (A3.9)

T

]
Recalling the definition of Eq. (A3.2), the integrals in Egq.
(A3.8)-(A3.9) are replaced by various V _(t), so that the full
]

description of the population dynamics is the system of p+2

equations
AL - 5 v, (6) - D, (AD))
di;:t} = eV, (0 = V.(t), j=1,2...p (A3.10)
dv ;i(t} = c(B(A(t=T, )=V, ()

- Tan .
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Nicholson’s blowflies revisited
W. 8. C. Gurney, S. P. Blythe & R. M. Nisbet

Department of Applied Physics, University of Strathelyde, Glasgow G4 ONG, UK

A simple time-delay model of laboratory insect populations which postulates a *humped’ rela tionship between future adulr
recruitment and current adult population gives good quantitative agreement with Nicholson's classic blowfly data and
explains the appearance of narrow ‘discrete’ generations in cycling populations.

NUMEROUS elementary ecology texts use as illustrative exam-
ples of oscillatory population fluctuations, data drawn from the
comprehensive and elegant experiments performed by Michol-
son'” on laboratory cultures of the sheep blowfly Lucilia
cuprina; in these, the population was regulated by the rate of
food supply to either the adult population (Fig. 1a) or the larval
population (Fig. 15, ¢). Notwithstanding their popularity as
alleged examples of oscillatory behaviour, the large, guasi-
periodic population fluctuations observed by Nicholson are still
very imperfectly understood. It is clear from the work of May-
nard Smith® and May* that a combination of high fertility and
long development delay must be primarily responsible, and the
discrete-time model developed by Varley, Gradwell and
Hassell’ further suggests that a degree of ‘overcompensation’ in
the controlling density dependence may be important,
However, beyond these rather generalized insights progress has
been slight. Despite a variety of more or less sophisticated
attempts*®, no theoretical model has yet yielded a truly satis-
factory quantitative fit to the time history of even a single
culture, still less has it been possible to formulate a comprehen-
sive framework within which the various subtly different
experimental results can be systematically inter-related.

In this article, we seek to formulate a model capable of
providing such a framework, but as an initially less grandiose
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target we shall try to answer a number of specific questions about
Nicholson's blowfly data. First, we must identifly the class of
mechanism which produces the quasi-periodic fluctuations: are
they self-sustaining limit cycles perturbed by experimental
uncertainty and demographic stochasticity, or are they true
quasi-cycles’ driven by demographic or environmental stochas-
ticity? Second, we wish to know what determines the period and
amplitude of the cycles. Lastly and perhaps most interestingly,
we wish to understand the observed patterns of breeding
activity; specifically, why the two discrete generations per cycle
observed in the larval food-limited case (Fig. 1b) occur at
uneven time intervals, and why in the adult food-limited case
(Fig. 1a) they merge into a single, almost continuous period of
reproductive activity,

The time-delayed logistic model

If it is to be capable of answering questions about the form and
timing of generations, our model clearly cannot simply assume
that generations are discrete; rather, it must make the initial
assumption of overlapping generations and its d ynamics must be
such as to cause the spontaneous appearance of clearly marked
discrete generations in the appropriate conditions. This implies
that it must be formulated in terms of a differential, rather than a
difference, equation. Probably the simplest single-species
continuous time model capable of generating cyclic or guasi-
cyclic fluctuations is the time-delayed logistic

dN (1) [_N{I-TD}]
Pt (1)

May"* showed that this model gave an acceptable gross fit to the
adult population data shown in Fig. 1a with a delay time Tp of
about 9 days, a value which he argued compared acceptably with
the observed delay time. However, there are several serious
objections to the time-delayed logistic model both in Beneral
and as a specific explanation of Nicholson’s data. First, close
examination of the life history data® shows that the appropriate
experimental value of Tp, is 14.8+0.4 days, which implies that
the discrepancy between ‘best fit' and experimental values is
worryingly large compared with the confidence interval in the
best fit value (£0.5 days). Second, the model “mixes up time-



lagged and not time-lagged contributions™ (R. M. May, personal
communication) in a way which makes it a very poor paradigm
for biological phenomena. However, even more serious than
either of these objections is the fact that the time-delayed
logistic model is entirely incapable of predicting two bursts of
reproductive activity per adult population eyele. It is thus strue-
turally incapable of explaining the results obtained by Nicholson
in the larval food-limited regime.

A more realistic model

We now formulate an improved continuous time model of an
insect population growing in an isolated laboratory culture. As
the experimental data which will serve as the primary quan-
titative test of the model are mainly based on observations of
adult population as a function of time, we begin by writing down
a balance equation for the population of sexually mature adults,
N{t). The experimental conditions clearly preclude any
immigration or emigration and thus the rate of change of N must
simply be the difference between the total adult death rate (D)
and the rate of recruitment to the adult population (R). If we
assume that the per capita adult death rate has a time- and
density-independent value &, then

eN-R-D=R-sN @

dr
The adult recruitment rate, R, should be evaluated by writing
down analogous balance equations for all the life history stages
of the species concerned. However, we can evade the resulting
complexity (and increase the generality of our model) with the
aid of three simplifying assumptions: (1) the rate at which eggs
are produced depends only on the current size of the adult
population; (2) all eggs which develop into sexually mature
adults take exactly Tj, time units to do so; (3) the probability of a
given egg maturing into a viable adult depends only on the
number of competitors of the same ape. Together, these
assumptions imply that the rate of recruitment at time ¢ can only
be a function of the size of the adult population at time = Tq

R=R(N(r-To)) (3)

so that the entire population dynamic can be expressed by a
single delay-differential equation

%L R(N(r=Tgl)=8N(1) (4)
Although the recruitment rate function R{N) can in principle be
subject to experimental measurement, we wish our model to act
as a paradigm for a rather larger class of similar models as well as
provide a detailed fit to Nicholson’s data, and we therefore seek
rather to write down an appropriate algebraic form for R(N).
We consider first those experiments in which the only limiting
factor is the rate at which food is supplied to the adult popu-
lation, Here, egg to adult survival may reasonably be expected to
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be density independent, so that the rate of adult recruitment at
time ¢ will be directly proportional to the rate at which eggs were
being laid at time t — T, Provided that the population sex ratio
remains reasonably constant, it seems plausible to suppose that,
in the presence of excess food, the total rate at which eggs are
produced by a population of N adults will be directly propor-
tional to N. However, when food is supplied at a limited rate,
intraspecific competition will clearly act to reduce the average
per capita fecundity of the members of large populations to well
below its physiological saturation wvalue. Indeed, where
competition is of the ‘scramble’ type', it seems highly likely that
very large populations will require the whole of their restricted
food intake for physiological maintenance and will thus produce
no offspring at all. Clear experimental evidence of such an effect
can be found in Fig. 1a, which shows that in Nicholson's adult
food-limited culture the total egg production rate drops to zero
at high populations. Any plausible functional form for R{N)
must therefore go to zero as N becomes either very large or very
small. In addition, it seems likely that most recruitment curves
will display a single maximum (see Fig. 2) at an intermediate
population whose size is determined by the available resources.
We therefore choose to represent R(N) by a simple function
which displays all these properties

R(N)=PN exp{-N/Ny} (5)

where P is the maximum possible per capita egg production rate
{corrected for egg to adult survival) and Ny is the population size
at which the population as a whole achieves maximum
reproductive success,

In experiments in which the controlling factor is the rate of
food supply to the larval population, the situation is at first si ght
entirely different. Here, the adults are always provided with
excess food and thus always produce eggs at their physiclogical
maximum rate, However, competition among the larvae now
makes egg to adult survival highly density dependent, and
indeed, Nicholson’s batch culture experiments strongly suggest
that when an age class is very large, none of its members will
actually pupate suecessfully. Thus, within the limitations of our
assumption that egg to adult survival is affected only by
competition within a given age class, we can use equation (5) to
describe recruitment in both the adult food-limited and the
larval food-limited cases.

The dynamics of our model are thus always described by

dN {1
dr

which has a single non-trivial stationary state
N*=Np In (P/5) )

=PN{t=Tplexp{—Nli—Tp)/Nol-8N(1)  (6)
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It can easily be shown that the local stability of the steady state
and the qualitative properties of the fluctuations about it are
entirely controlled by the two quantities PT, and 5T, and in
Fig. 3 we show the disposition in the PT,/8T, plane of the
various regions of qualitatively different behaviour. Because we
seek to understand Auctuations which are at least quasi-
periodic, we shall restrict our detailed analysis to the
stable/underdamped (damped oscillatory) and locally unstable
regions.

If the parameters of our deterministic model are in the stable/
underdamped region, we would expect the demographic sto-
chasticity present in a real system to induce quasi-cyclic popu-
lation fluctuations consisting of bursts of relatively coherent
cycles whose period is close to the deterministic natural period,
interspersed with short periods of incoherent noise’. If we
describe the return of an underdamped system to its deter-
ministic equilibrium by a coherence number n,, defined as the
number of cycles over which the amplitude of the transient is
reduced by a factor ¢, then it is found empirically® that when such
a system is executing driven quasi-cycles, each burst of coherent
cycles contains an average of roughly 3a. cycles. Thus, in Fig. 4
we characterize the quasi-cyclic behaviour of our model in the
stable/underdamped regime by plotting contours of constant
normalized cycle period ( T/ Tp) and constant coherence number
ne on the appropriate part of the PTo/87y plane.

For model parameters in the locally unstable region, the exact
solution of equation (6), which can be obtained by numerical
integration, takes the form of a self-sustaining oscillation. For
some parameter values this is a simple limit cyele, whereas for
others it is a more complex cycle or is even formally aperiodic. In

Fig. 15 all cases, however, a spectral analysis of the solution reveals a
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single clearly marked dominant period (T). We have therefore
characterized the solutions in this region by the ratio of this
dominant period to the development delay ( T/ T ) and the ratio
of maximum to minimum population observed during the cycle
(Mmaxd Nmial. In Fig. 5 we plot contours of these quantities in the
appropriate part of the PT5/8T plane.

An experimental test

As a quantitative test of our model, we now determine the
parameter values which give the best fit to the gross charac-
teristics (T/ Tp and Naa/ Npie or 1) of the fluctuations in the
adult population of Nicholson's blowfly cultures, and then
compare these best fit values with independent experimental
estimates of the same quantities. We restrict our attention to the
adult food-limited case (Fig. 1a), because only here do the data
allow ws to make an accurate independent estimate of the
maximum per capita fecundity (P).

There is no simple test which will tell us a prieri whether the
fluctuations shown in Fig. 1a are self-sustaining limit cycles or
driven guasi-cycles, so we must delermine the best fit
parameters under both hypotheses. If we assume that the
fluctuations are of limit cycle type, then our guantitative
characterization requires us to measure the maximum to mini-
mum population ratio Np../Nme and the normalized cycle
period Tf Ty ; quasi-cyclic fluctuations we characterize by T/ Tp
and the coherence number n.. Examination of Fig. 1a combined
with our previous identification of the correct value of the delay
Tp as 14.8+0.4 days reveals that these quantities lie in the
ranges

2.5<(T/Tp)<2.7; 29<(Napu/Nan)<53; 2<n. <5 (8)
which enables us to infer from the contour maps given in Figs 4
and 5 that the best fit values of the controlling parameters PTp
and 8T for the limit-cycle hypothesis are

PTp=15070 &Tp=29x0.5 (9a)
and for the quasi-cycle hypothesis

PTp=235+45 8Tp=3.0x£07 {9h)

Although the best fit values of 8Ty required under the two
hypotheses are essentially indistinguishable, it is clear that the
appropriate values of PT, differ by more than a factor of 6.
Thus, an independent estimate of the maximum per capita
fecundity P will provide a clear a posteriori test of the mechanism
underlying the observed cycles. We can easily obtain such an
estimate from the egg-laying rate data in Fig. la by recognizing
that, because the adult population minima are clearly below the
maximum of the total reproduction curve, the value of P is
simply given by

Maximum rate of egg-laying
population producing maximum reproduction

Pe'= (10)

The value of P thus inferred from Fig. 1a is in the range 7.4 per
day < P < 11.4 perday, so that our final independent estimate of
the controlling parameter PTy is

PTo=130+£30 (11}

which is clearly compatible with the value required under the
limit cycle hypothesis and absolutely incompatible with the
quasi-cycle hypothesis. This, together with the fact that an
independent estimate of 8T, is in good general agreement with
the values required under both hypotheses, gives us consider-
able confidence that the Auctuations observed by Nicholson in
the adult food-limited case are of limit-cycle type.

Separate generations in cycling populations

Qur rather simplistic initial characterization of the non-linear
behaviour of equation () in the limit-cyele region in fact
conceals a wealth of complexity, for the formal repeat period of
the cycles can often be many times the empirically observed
dominant period. The gen eral pattern is very similar to that seen
by Mackay and Glass® and May' in equations of similar struc-
ture; close to the local stability boundary the solution is a simple

limit-cycle with period T, but moving deeper into instability
produces a number of successive doublings of the repeat time
until a region is reached where the solution is formally aperiodic
{chaos). Beyond the chaotic region we again see cyclic Quctua-
tions.

These variations in the fine structure of the adult population
fluctuations, although mathematically fascinating, are likely to
be hard to identify experimentally in the presence of realistic
levels of experimental uncertainty. However, the accompanying
variations in the predicted pattern of reproductive activity are
not only sufficiently dramatic to be easily identified experi-
mentally, but also provide a clear explanation of Nicholson's
observation that, in certain experimental circumstances, breed-
ing oecurred in quasi-discrete ‘generations’ but that in others it
was much more nearly continuous. The mechanism by which
separation of generations can occur in our model is illustrated in
Fig. 6. When the minimum adult population in the trough of the
cycle (Np,) is greater than the population size at which maxi-
mum total reproduction occurs, N, then breeding activity
(R(N)} is essentially continuous with one broad peak per cycle
(Fig. 6a). When M. isslightly less than N, (Fig. 6b), the pattern
is still much the same but the reproduction rate peak now has a
distinctive ‘double-humped’ shape. However, when N, « Ny,
the pattern changes dramatically. In simple cases such as Fig. bc,
each adult population peak generates two narrow discrete
generations, whereas in more complex cases such as Fig. 64,
when the adult population variation is only quasi-periodic, the
generations are also very variable in size.

We have tested the plausibility of this mechanism as an
explanation of Nicholson’s observations by comparing the
patterns of breeding activity predicted by our model with best fit
parameters determined from the adult population fluctuations
shown in Fig. 1a and 5. For the adult food-limited case (Fig. la),
we predict a single double-humped peak per population eycle,
whereas in the larval food-limited case (Fig. 15), we predict that
breeding should take place in clearly distinguishable generations
occurring at uneven time intervals. Itis clear from the egg-laying
rate and pupal population data given in Fig. 1a and b, respee-
tively, that this strongly marked qualitative change is indeed
observed experimentally.

Conclusions

The model described above provides a satisfying qualitative fit
to Nicholson's blowfly data, and its extreme simplicity thus
allows us to deduce that the observed fluctuations arise from the
combination of a long development delay with a single-humped
total reproduction curve. Moreover, it seems clear that any
model containing these two generic features must behave in a
generally similar way, so that our picture of the way in which
discrete generations may be spontaneously maintained in cye-
ling populations should in fact be rather generally applicable.

This model may thus be the prototype of a family of models
which will unify the hitherto diverse ‘discrete generation’ and
‘overlapping generation’ views of insect population dynamics
and lead to a clearer understanding of the uneven timing of
insect generations both in the constant environment of the
laboratory and in the variable environments encountered in the
field. However, considerable further development will be
required before we can fully assess the potential of the frame-
work provided by such models to elucidate the subtle systematic
differences in behaviour between various populations. As the
range of technically feasible modifications is immense, we
strongly believe that further development can only be done
efficiently in conjunction with a comprehensive experimental
programme.

One of us (5.B.) received an NIED postgraduate grant during
this work,
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The glass bead game

THE gap between theoretical and applied
ecology seems to be widening. Indeed it is
difficult to escape the worrying conclusion
that some theoreticians are playing a
version of Hermann Hesse's Das Glas-
perlen Spiel" or that they have little feeling
for or understanding of biclogical prob-
lems. A particularly good example is the
recent article by Gurney e al® which
attempts to provide a theoretical model to
explain the oscillatory behaviour of
laboratory populations of blowflies.

After reaching the esoteric conelusion
that the blowfly cycles are “self-sustaining
limit cycles™ rather than “*driven gquasi-
cycles”, the authors proceed to use their
model to explain the ‘double-humped’
nature of the cycles in terms of minimum
population size (Nn.) in relation to the
size at which the population achieves
maximum reproductive success (V). The
mathematics are correct, but in their zeal,
the authors fail to notice Nicholson's own
explanation of the ‘double-hump’
phenomenon (see Fig. 3 legend in ref. 3).
He says “the lack of a clear inverse rela-
tion between the various low adult densi-
ties and the number of eggs produced is
due to the fact that adults are mostly senile
as the adult minima are approached, near
the minima many are newly emerged and
incapable of laying eggs, and subsequently
highly  fertile  young  individuals
dominate’. In other words, the fact that
breeding occurred in ‘guasi-discrete’
generations is probably almost entirely a
consequence of age-specific variation in
the reproductive performance of the adult
blowflies. As Gurney er al. ignore this
variation their model must be seen as
artefactual and spurious—a product of the
‘mame’.

Of less importance, but still worrying, is
the promotion of ‘‘a satisfying qualitative
fit" in the conclusions to *“‘good quan-
titative agreement™ in the abstract, and
the failure to refer to similar published
work™®, In contrast, Readshaw and Cuff’
have published a biologically realistic
model of Nicholson's results which
includes readily identifiable parameters.
An age-specific version of the model
would undoubtedly simulate the ‘double-
hump' but the data are not yet available.

I. L. READSHAW
CSIRO, Division of Entomology,
PO Box 1700,
Canberra City, ACT 2601,
Australia
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GURNEY ET AL REPLY—Readshaw
raises three scientific objections to the
model described in our recent article'. We
shall deal with these in turn.

The question of the nature of the
mechanism responsible for the observed
cycles is very far from ‘esoteric’. Any
moderately repetitive fine structure
exhibited by a limit-eycle type of fluctua-
tion carries readily extractable dynamic
information, whereas the fine structure of
a driven quasi-cycle is mainly ‘noise’
which only serves to obscure our view of
the underlying population dynamic, Thus
our judgement that detailed investigation
of the fine structure of the eyeles observed
by Nicholson is a worthwhile exercise
hinges on our unambiguous demon-
stration that they are limit cycles,

It is clear from our work that if average
future recruitment bears any kind of
humped relationship to current adult
population then eyeles which have minima
well below the population size at which
maximum overall reproductive success is
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Fig. 1 Numerical solutions of Readshaw
and Cuff's model equation® nir+1)=
D8nir)+ Rinlt—r)). a, Adult food-lim-
ited case: R =10n when n-2171; R=
1,795-0.503n when 171-In-13,569;
R =0 when ai-3,569. r=15 days. b,
Larval food-limited case: R =10n(l-
expi0.154-109.9/n}iwhenn = T714; R =
0 when n:-714. =13 days. ¢, Adult
food-limited case with modified para-
meters: R =249 when n-:1600; R=
1.795-0.503n when 600 < n -2 3569: R =
0 when r >~ 3,569, =15 days.

achieved, must be accompanied by a “dis-
crete generation’ pattern of breeding
acti\rit)lr. A clear implication of Nichol-
L% . o
son's™" batch culture results displayed in

Readshaw and Cuff's paper® is that just
such a relationship exists for Lucilia
cupring, and there is thus no shred of
evidence for their ex cathedra statement
that the double-humped cgg-laying rate
curves observed by Nicholson are entirely
the product of the age structure-depen-
dent fecundity changes noted in Fig. 3
legend of ref. 3. However, such effects do
provide a very plausible explanation of the
observation that in four out of seven cycles
shown the second peak of the double
hump is considerably higher than the first,

The final objection of Readshaw is the
claim that the fine structure predicted by
our model must be *spurious and artefac-
tual’ because their *biologically reason-
able’ model predicts a limit cycle with no
fine structure. This claim has no sound
basis. Their model is effectively identical
o ours except in the details of the
functional form chosen for the recruit-
ment rate function. In both experimental
regimes considered the form chosen has a
single hump with a maximum at a popu-
lation size (M) comfortably in excess of
the observed minimum population and
thus there seems every reason to suppose
that careful numerical analysis will reveal
that their model predicts population
cycles with a fine structure very similar to
that shown in Fig. 6 of our paper'. Figure
la, b shows that this is indeed the case.
Furthermore, in the adult food-limited
case (Fig. 1a) note that there is no direct
experimental evidence for the value of N,
implied by the paramcters chosen by
Readshaw and Cuff (171) and indeed that
this value is considerably below the value
of 600 that may be deduced from Nichol-
son's data (see Fig. 3 of ref, 3). If we
abandon the attempt to force Readshaw
and Cufl’s piecewise lincar approximation
to the recruitment function to fit the
behaviour of the population as N = 0 and
instead place the maximum of the curve
somewhere near the correct value (Fig.
te), then the structure predicted by their
model becomes very strong indeed.

We conclude that the wvery simple
mechanism proposed in our original arti-
cle captures much of the spirit of the
population dynamics underlying Nichol-
son’s blowfly cycles and is thus a
contribution to narrowing (rather than
widening) the gap between theoretical and

applied ecology. W. S. C. GURNEY
5. B. BLYTHE
R. M. NISBET
Depariment of Applied Physics,
University of Strathelvde,
Gearge Street, Glasgow G4 ONG, UK
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