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Abstra
tAll non-o
eani
 loti
 habitats, 
hie
y streams, rivers, estuaries and fjords, have anet seaward water movement. If individuals from a population have no means ofupstream movement, either through their own a
tions or from some other me
h-anism, then any adve
tion, (no matter how small), will result in that populationbeing moved downstream and eventual removal from the system. Many organismswith little or no swimming ability, however, manage to persist in su
h systems.This phenomenon has been termed the drift paradox.Organisms in a one dimensional domain are 
onsidered initially, using an adve
-tion, di�usion population balan
e equation with exponential in situ growth inthe absen
e of movement. Building upon the results of Speirs and Gurney (2001)new analyti
 results were obtained for an extension to the model whi
h 
onsid-ered the e�e
t of organisms repeatedly transferring between the drift and a stati
benthi
 state, an approximation to the 
ase for benthi
 stream invertebrates. Nu-meri
al modelling, through use of a dis
rete spa
e-time approa
h, was employedto investigate swimming against the 
ow. For 
onstant upstream swimming itwas found possible to use the previously developed analyti
 results with minormodi�
ation. Movement against a time average of prior net water movement wasfound a 
onsiderably less su

essful strategy.Rivers with non-
haoti
 
ow will exhibit a well de�ned verti
al gradient in theirdownstream adve
tion due to bottom fri
tion and vis
osity. This presents thepossibility of a near benthi
 
ow refugia in systems where the upper water 
olumn
ows too fast to allow persisten
e. The refugia 
an only exist, however, so long asverti
al turbulent di�usion does not remove individuals from this region at too fasta rate. Virtually all fresh water organisms meanwhile, have a negative buoyan
y.Semi-analyti
 results were derived to determine the extent to whi
h a 
onstantadve
tion toward the bottom 
ould in
rease the value of `
riti
al' verti
al di�usionat whi
h mixing be
omes too rapid for persisten
e. Results were 
ompared to atwo dimensional version of the dis
rete spa
e-time numeri
al model. Predi
tionsiii



of the extent of a benthi
 refugia were made for the River Meuse Belgium, a river
onsidered to 
ontain a resident population of phytoplankton, using the semi-analyti
 results. Predi
tions of 
riti
al verti
al di�usion were 
ontrasted withhydrauli
 engineering approximations of verti
al turbulent di�usion over a rangeof river dis
harge values.In tidal bodies it is the net adve
tions over a tidal 
y
le that be
ome importantto the issue of persisten
e. Strategi
 representations of both a 
oastal plain es-tuary and a fjord were investigated. Additional parameters be
ome signi�
antin determining the net adve
tion of these systems. In parti
ular the magnitudeand gradient of density di�eren
es 
aused by the intera
tion of fresh water riverruno� and saline 
oastal water. To determine the 
ow �elds for these 
omplexsystems a primitive equation 
uid dynami
s model, the Prin
eton O
ean Model(POM), was used and parti
le tra
king was employed to establish redistributionmatri
es for two dimensional, (x,z), sli
es through these systems. Assuming thatparameters a�e
ting the verti
al movement of organisms relative to the deter-ministi
 
ow �eld are likely to be of greatest signi�
an
e to persisten
e, resultswere investigated for a range of organismal verti
al di�usion believed to bra
ketvalues to be found in the �eld. The degree of persisten
e was re-evaluated on in-trodu
tion of a 
onstant sinking velo
ity and depth dependent growth rate, bothindividually and in 
ombination.
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Introdu
tion
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Chapter 1
The problem of persisten
e; the`Drift Paradox'
1.0.1 The problem of the `Drift Paradox'All non-o
eani
 loti
 habitats, 
hie
y streams, rivers, estuaries and fjords, have anet seaward water movement. If individuals from a population have no real meansof upstream movement, either through their own a
tions or from some other me
h-anism, then any adve
tion, (no matter how small), will result in that populationbeing moved downstream and eventual removal from the system. Many organismswith little or no swimming ability, however, manage to persist in systems withsu
h a 
ontinuous net adve
tion. This phenomenon has been termed the driftparadox, (Hershey, Pastor, Peterson, and Kling 1993). Most obviously, this para-dox applies to organisms living permanently in the water 
olumn, (the pelagi
environment), su
h as free 
oating phytoplankton and zooplankton in estuar-ies and fjords. The issue, however, also a�e
ts bottom dwelling organisms withplanktoni
 developmental stages. A

idental dislodgement or a
tive drift entryof benthi
 spe
ies - parti
ularly stream invertebrates - again means populationpersisten
e in the fa
e of downstream adve
tion must be 
onsidered.

2



1.0.2 Suggested resolutions: streams and riversVarious resolutions to the drift paradox have been put forward. In relation tostreams and benthi
 inse
ts, Waters (1972) proposed that for a given se
tion ofstream, drift represented only ex
ess produ
tion beyond that required to to re-pla
e the lo
al population. This produ
tion hypothesis implies that drifting issimply a sour
e of mortality. In the absen
e of a
tive upstream movement, thiswould require individuals to hold station at all lo
ations at least long enoughto reprodu
e, over inde�nite generations. Any instan
e of total loss of popula-tion from the upstream end of the system would lead to permanent loss fromthat lo
ation. Su
h events are plausible, espe
ially as streams 
an experien
e`
atastrophi
 drift' events where a large fra
tion of the biota are transporteddownstream, (Allan 1995).A more re
ent hypothesis similarly independent of upstream movement has beenproposed by Anholt (1995). Anholt added the idea of density-dependent popu-lation growth to the produ
tion hypothesis. As su
h, areas subje
ted to greaterlosses from drift experien
e a higher rate of population in
rease. Using a strate-gi
 
omputer simulation in whi
h a series of stream segments with lo
al densitydependent growth were linked by random downstream drift events and adultsdispersing randomly both downstream and upstream, he was able to show thatpersisten
e was more likely when density dependen
e was stronger. However,extin
tion almost always o

urred in the absen
e of the random adult dispersal.Although density dependent growth rates may well have the ability to enhan
epersisten
e, the experiment seems to have shown that some degree of upstreammovement is the essential 
omponent for true long term survival.In respe
t to stream inse
ts the idea of adult 
ompensation for downstream driftof larvae was en
apsulated by M�uller (1954, 1982). M�uller suggested that driftentry was primarily behavioural and a response to 
ompetition for resour
esamongst larvae. Drifting allowed 
olonisation of unexploited downstream rea
hes.Washout from the system was avoided by upstream 
ight of adults prior to ovipo-3



sition. M�uller termed this pattern the 
olonisation 
y
le. Various studies suggestthat adults of some stream inse
ts do move upstream, (Williams and Williams1993) and Hershey et al. (1993) 
on
lude that su
h movements 
an be suÆ
ientto 
ompensate for drift. Re
ently, this form of spe
ies persisten
e has been shownto o

ur for other than inse
ts. Mar
h, Benstead, Pringle, and S
atena (1998)were able to demonstrate the 
y
le in tropi
al freshwater shrimps.If the downstream drift and upstream 
ight are viewed as purely deterministi
pro
esses, the 
olonisation 
y
le 
annot, however, ensure population persisten
e.If drift ex
eeds upstream movement then net downstream movement is simplyredu
ed. If there is net upstream movement then the population is still removedfrom the system, only in the opposite dire
tion. Considering the problem at apopulation level, however, with its asso
iated degree of random variability, severalworkers have pointed out that no upstream bias in adult dispersal is ne
essaryfor maintaining populations when fe
undity is high, (Brittain and Eikeland 1988;Allan 1995) or if reprodu
tion or drift is lo
ally density dependent, (Waters 1972;Waters 1981; Allan 1995), there simply exists a requirement for suÆ
ient adultsto 
ompensate for drift. Two re
ent strategi
 studies lend further support to thehypothesis as, while not 
ontradi
ting the above studies they suggest there isevolutionary advantage in both upstream bias to dispersion and exa
t 
ompen-sation of downstream drift. Anholt (1995) found that genotypes with upstreambiased dispersal drove randomly dispersing 
ompetitors to extin
tion. Using theframework developed by Anholt, Kopp, Jes
hke, and Gabriel (2001) 
ondu
tedan invasion analysis in order to determine the evolutionarily stable dispersionstrategy. They 
on
luded that exa
t 
ompensation by the population as a whole,that is a mean net movement of individuals from birth to reprodu
tion of zero,was the optimal strategy.The 
olonisation 
y
le is only appli
able to spe
ies where at least one develop-mental stage is 
apable of over
oming downstream adve
tion. This is 
ertainlynot true of all spe
ies that exist in loti
 systems, obvious examples being riverdwelling phytoplankton, (potamoplankton) and zooplankton. Re
ent studies of4



streams and rivers have fo
used on the fa
t that the 
ow is not uniform. Natural
hannels often 
ontain areas of very low 
ow, whi
h may a
t as refugia for organ-isms, (Re
kendorfer, Ke
keis, Winkler, and S
hiemer 1999). The residen
e timeorganisms 
an a
hieve in these areas is important. Small areas, or those with highex
hange with the main 
ow 
an a
t to redu
e drift by e�e
tively redu
ing theaverage velo
ity of the water body as a whole. The drift paradox is only over
omeon
e the 
hara
teristi
 residen
e time in the refuge allows reprodu
tion.Floodplain habitats have been 
ited as stores of plankton population su
h that
oodplain inundation 
an signi�
antly in
uen
e plankton densities in the river,(Saunders and Lewis 1988). More generally it has been proposed that riverinezooplankton are imports from adja
ent lenti
 areas su
h as the 
ood plain or rivermargins and side 
hannels, (Saunders and Lewis 1989). These areas, however,are probably best 
onsidered as separate subsystems, in the same way as lakesare in general. As with the studies of Waters and Anholt, without a means ofpla
ing some individuals ba
k upstream, studies of short term refugia, (Lan
asterand Hildrew 1993; Robertson, Lan
aster, and Hildrew 1995) fail to resolve theparadox, although for inse
ts with an airborne adult stage they do provide a wayin whi
h the required upstream 
ompensation 
an be redu
ed.With respe
t to the issue of persisten
e, most studies had fo
used on the deter-ministi
 aspe
ts of drift1. This was noted by Speirs and Gurney (2001) who, intheir approa
h to the issue 
onsidered random motion, due both to turbulent wa-ter movement and to the randomly dire
ted movements of individual organisms,as a potential sour
e of upstream re-
olonisation and therefore as a 
andidateme
hanism for population persisten
e. Rather than attempt to approximate agiven system strategi
 models were developed. Models were 
ast in the form ofadve
tion-di�usion equations with the adve
tive term representing deterministi
drift and the di�usive term approximating random motion. Models progressed in
omplexity from a simple one dimensional system with 
onstant adve
tion andpopulation intrinsi
 growth rate through to a two dimensional model in
orporat-1A notable ex
eption is that of Anholt (1995)5



ing the features of bottom fri
tion and shearing, density dependent growth rateand a superimposed tidal os
illation. The one-dimensional linear system allowedsemi-analyti
al results to be obtained with respe
t to the 
onditions required forpersisten
e through di�usion to operate. These results 
ould be 
ontrasted withthose from the more 
omplex s
enarios, whi
h 
ould not be treated analyti
allyand for whi
h a dis
rete spa
e and time simulation strategy was developed. Thisstrategy, whi
h was adopted by this thesis, is des
ribed in 
hapter 3.For rivers, Speirs and Gurney (2001) performed simulations on two dimensionaldomains in
orporating bottom fri
tion and shearing. They 
on
luded that themore 
omplex 
ow environments produ
ed only moderate e�e
ts on the 
on
lu-sions drawn from the simplest (and analyti
ally tra
table) model. All models,however, assumed organismal motion to be unbiased. This may be of parti
ularimportan
e in the verti
al as, in the absen
e of strong organismal random motion,this e�e
tively assumes organisms of neutral buoyan
y with random movementdue to the verti
al 
omponent of turbulen
e. In general, for larger rivers velo
-ity gradients are mu
h greater in the verti
al than they are in the horizontal.Shearing leads to water at greater depths moving more slowly whi
h, as Speirsand Gurney pointed out, introdu
es a form of 
ow refugia and the possibilityof near benthi
 persisten
e. This in turn suggests some form of dire
ted motiontoward the benthos may well enhan
e persisten
e. Work on the investigation oforganismal sinking and its impa
t on persisten
e in this domain are presented in
hapter 7.Prior to this, the one dimensional semi-analyti
 model of Speirs and Gurney(2001) is expanded to 
onsider organisms spending part of their time on or inthe substrate. Speirs and Gurney took a

ount of this fa
tor through a simplemultipli
ation of the adve
tion term by the fra
tion of time spent in the drift. In
hapter 6, however, a new analyti
 solution is obtained from �rst prin
iples.
6



1.0.3 Suggested resolutions: tidal systemsIn systems where tidal 
ows are superimposed upon seaward 
owing river run-o�,(estuaries and fjords), the net 
ross se
tionally averaged 
ow over a tidal 
y
lewill 
orrespond to the 
ross se
tionally averaged 
ow of the river dis
harge. Thepattern of net velo
ities over the length of the system - and verti
ally for the samehorizontal lo
ation - 
an vary 
onsiderably however. The issue of net tidal 
y
lemovement be
omes more 
ompli
ated still in that any parti
le or organism mov-ing within the 
uid experien
es many of these di�erent velo
ity 
y
les. The issuesof residual 
ow patterns and net tidal 
y
le movements are dis
ussed in 
hapter2. These variations present the possibility of di�usive movement through tur-bulen
e, in 
ombination with spatially varying adve
tive 
ows, providing greateropportunities for persisten
e to planktoni
 organisms than in the purely gravitydriven 
ows of streams and rivers.The idea of the net motion in estuaries in itself being suÆ
ient to ensure thepersisten
e of passive organisms has been put forward with respe
t to larvae,(Wolf 1973; Jager 1999). Spe
ies of 
at �sh are even known to spawn in the
oastal o
eans but for the pelagi
 larval phase to migrate into estuaries beforesettling to be
ome benthi
 dwelling. Of more widespread signi�
an
e, almost allestuaries and fjords 
arry signi�
ant populations of phytoplankton spe
ies withno means of swimming and at best only limited buoyan
y 
ontrol.Chen, Shaw, and Wol
ott (1997) redu
ed the 
uid dynami
 equations represent-ing tidal 
ow in a uniform domain to a linear form su
h that analyti
 solutionsfor velo
ities 
ould be obtained. With spe
i�
 
ombinations of bottom drag andverti
al di�usion 
oeÆ
ient they demonstrated how phase and magnitude di�er-en
es between near benthi
 and near surfa
e 
ows 
ould enhan
e the retention oflarval 
rabs. Speirs and Gurney (2001) were able to extend the analyti
al solu-tions to in
lude a river 
ow 
omponent. With this net seaward 
ow in pla
e theirinvestigations found that the underlying requirements for persisten
e in terms ofthe relative magnitude of verti
al di�usion, horizontal di�usion, adve
tion and7



system length were only moderately 
hanged from the 
ase of river 
ow.The analyti
 treatment of the tidal 
ows, however, require the assumption of uni-form density and the absen
e of buoyan
y driven 
ow. As dis
ussed in 
hapter2 density gradients are 
onsidered a very major 
ontributing fa
tor in the net
ir
ulations observed in estuaries and fjords often leading to landward 
owing`
ompensatory 
urrents'. In 
onsidering tidal regimes in this work a numeri
alpa
kage for solution of o
eanographi
 
uid dynami
s equations was employed su
hthat the e�e
t of density variations 
ould be in
orporated. Su
h an approa
h alsoallows the adoption of non-uniform bathymetry, whi
h is ne
essary for investi-gations involving fjords. This pa
kage, the Prin
eton o
ean model, (POM), isoutlined and dis
ussed in 
hapter 5.Results for both neutrally buoyant and negatively buoyant organisms in estuarine
ow with density indu
ed 
urrents as an additional me
hanism for persisten
e are
onsidered in 
hapter 8. Results for the more 
omplex bathymetry of a fjord arepresented in 
hapter 9. Light is essential to the maintenan
e and reprodu
tionof phytoplankton. Given the importan
e of phytoplankton in these two habitats,investigations also 
ontrasted results for when growth rates are uniform overdepth to those where growth rates de
lined in line with attenuation of daylight.Alternative to organismal motion dire
ted ex
lusively toward the benthos is theidea of a
tive verti
al migration. Larvae possess the ability to swim, in the orderof one to several 
m s�1, not enough to swim against tidal 
ows but enoughto in
uen
e their depth in the water 
olumn. An alternative to purely passivetransport allowing 
olonisation was postulated by Creutzberg (1961) and termed`sele
tive tidal stream transport' (STST). In this hypothesis larvae as
end a
tivelyin the water 
olumn during 
ood and return to the bottom when the tide turns.For this behaviour to be most e�e
tive verti
al movements need to be in phasewith the tidal 
y
le, requiring 
ues for timing. Candidate syn
hronising 
ueshave been suggested by Boehlert and Mundy (1988). Field eviden
e for su
hbehaviour has potentially been found for the larvae of some spe
ies, (Christy8



1989). Interestingly, the examples appear to be restri
ted to larvae that will notreprodu
e before the need for persisten
e in planktoni
 form has ended.A more 
ommon form of verti
al migration pattern amongst plankton is a lightdependent diel (24h period) migration. Ex
ept for a few world lo
ations thismigration pattern is not syn
hronised with the main tidal 
onstituent. In mostlo
ations the dominant tidal 
onstituent is the lunar semi-diurnal M2 tidal 
ur-rent. Hill (1995) 
ombined verti
al migration, (in the form of a square wave),with a purely os
illatory and spatially uniform tidal velo
ity. When migrationand tide were out of phase, integration over time led to no net transport overseasonal time s
ales but a basi
ally sinusoidal pattern of displa
ement with am-plitude of up to several kilometres (for modest tidal 
urrents) and a period relatedto the di�eren
e in period between migration pattern and tide. These results arefrom a quite abstra
t model and Hill freely 
on
edes that many fa
tors su
h asthe non-uniformity of tidal 
urrents due to bottom fri
tion and shear, turbulentdi�usion and net 
ir
ulations from density gradients are not represented.

9



Chapter 2
Complex 
ows and simplebehaviours
2.1 Rivers, estuaries and fjordsA simple de�nition of a river is `a 
hannel of 
owing water, whose movementis determined by gravity and is therefore downhill', (Dobson and Frid 1998).A widely adopted de�nition of an estuary, (whi
h also en
ompasses fjords), isthat of Cameron and Prit
hard (1963) who state that `An estuary is a semi-en
losed 
oastal body of water whi
h has a free 
onne
tion with the open sea andwithin whi
h sea water is measurably diluted with fresh water derived from landdrainage.' using these de�nitions, two major di�eren
es are of signi�
an
e to thiswork. Firstly, the mean 
ow of a river is always in one dire
tion if averaged overany time long enough to a

ount for random 
u
tuations. An estuary has boththe uni-dire
tional river 
omponent and an os
illating tidal 
ow. A mean seaward
ow (averaged over the estuary 
ross se
tion) is only seen if the 
ow is averagedover the length of one tidal 
y
le. Se
ondly, the density of rivers is e�e
tivelyuniform whereas the mixing of river water and saline water from beyond themouth of an estuary 
auses variations of salinity, and as a 
onsequen
e density,that 
an a�e
t the tidally averaged mean 
ow patterns.There is an additional form of water body that fails to fall into the above 
at-egories. The rivers feeding estuaries 
an be given a tidal 
omponent while re-10



maining free of salt intrusion. These se
tions of river 
an be 
alled tidal rivers,although they are sometimes referred to as the homogeneous portion, or ho-mogeneous fresh water zone, of estuaries, (Holley, Harleman, and Fis
her 1970;M
Dowell and O'Connor 1977).2.1.1 RiversWhen 
onsidering idealised non-tidal rivers, (those of a uniform 
ross se
tion),the only upstream water movement provided is that of turbulent di�usion. Thedegree of turbulen
e and the length s
ales over whi
h it operates depend on the
hara
ter of river being 
onsidered, and this 
hara
ter variation is often moresigni�
ant between zones of the same river than between rivers. In general ariver system 
an be divided into three zones, (Dobson and Frid 1998). The erosionzone 
omprises mainly headwater streams. Channel slope is steep and sediment isgenerally eroded rather than deposited. The eroding nature of the stream ensuresthat substrate parti
le size is generally large (
obbles and boulders), althoughsometimes the river may have eroded to the bedro
k. The steep slope and 
oarsesubstrate is likely to lead to high turbulen
e and ri�es and rapids are likely tobe present.The se
ond zone is 
alled the sediment transfer zone be
ause gradient is redu
edand sediment is transported with little net loss or gain. In this zone substrateparti
le size is dominated by sand and gravel. The smaller gravitational for
edriving the 
ow and the smoother nature of the substrate will redu
e the degreeof turbulen
e generated in the 
ow and it is more likely that the verti
al pro�lesof velo
ity 
aused by the vis
osity of the 
uid will be
ome apparent.The deposition zone is where a river deposits its sediment load, typi
ally as itapproa
hes the sea. A tidal river is likely to be su
h a zone, or deposition maynot o

ur until a river has already entered an estuary. Conversely, su
h a zonemay o

ur well inland. The substrate again be
omes smoother, being dominatedby �ne silt and a deposition zone has normally been brought about by a further11



redu
tion in river gradient. As su
h, the fa
tors 
ausing turbulen
e are redu
ed
ompared to the sediment transfer zone.Di�usion lengths are generally small in 
omparison to the mean adve
tion for boththe verti
al and horizontal elements of di�usion. However, the horizontal spreadof 
uid elements, and any passive and neutrally buoyant parti
les that travelwith the 
uid, 
an be mu
h greater than that whi
h would result from di�usion.Termed dispersion, this spreading is 
aused by the intera
tion of the randomdi�usive motion and the non-uniform nature of the time averaged velo
ity withina river 
ross se
tion. Bottom fri
tion 
reates non-uniform verti
al pro�les, whileother fa
tors in
lude varying depths a
ross a river transe
t and the in
uen
eof bends. As dis
ussed below, the nature of the spreading 
an be regarded asanalogous to turbulent di�usion. Therefore, su
h e�e
ts 
an be taken into a

ountby the equations des
ribing the motion of parti
les in idealised rivers by retainingthe same form of equation but substituting a mu
h larger 
oeÆ
ient to des
ribethe degree of horizontal spread.2.1.2 Estuaries and fjordsThe de�nition of an estuary given above is a very general de�nition 
overingsystems from shallow, bar-built estuaries to deep, narrow sea fjords (known assea lo
hs in S
otland), and a very wide range of 
ow regimes. Many di�erent
lassi�
ation s
hemes are possible to further sub-divide estuaries into those withsimilar 
hara
teristi
s but most useful to this proje
t is a division based on a
ombination of topography and salinity stru
ture.Topography is used to distinguish sea fjords from drowned river valley estuaries.Fjords are found in areas where river valleys were over-deepened and widened byi
e sheets during the last i
e age. In general fjords are deep, up to several hundredmetres, with a small width-depth ratio, steep sides and an almost re
tangular
ross se
tion1. The interse
tion between fjords, and the mouths of sea fjords are,1Their plan view is also in general re
tangular.12



by 
ontrast, usually shallow at the point where the i
e sheet deposited materialto form sills. Sometimes su
h sills are very shallow 
ompared to the main body ofthe fjord and they 
an also be 
onstri
ted. River dis
harge is small 
ompared tothe total fjord volume, but, as many sea fjords have restri
ted tidal ranges inlandof their mouths, the river 
ow is often large with respe
t to the tidal prism, thevolume between high and low water levels, (Dyer 1973). Drowned river valleyestuaries, also known as 
oastal plain estuaries, were formed when the risingsea waters after the last i
e age 
ooded normal river valleys. The estuarinetopography is still mu
h like a river valley, deepening toward their mouths, butwith maximum depths seldom ex
eeding 30 metres, and usually 
onsiderably less.The width-depth ratio is usually large although not always. River 
ow is generallysmall 
ompared to the tidal prism, (Dyer 1973). There are other estuaries thatdo not �t into these two types of topographi
 des
ription but these are the typesof 
on
ern in this thesis. For 
onvenien
e, from this point 
oastal plain estuariesare simply referred to as estuaries.Salinity stru
ture is important in estuaries as it a�e
ts their 
ow regimes. The
ows in a tidal body tend to be dominated at any one instant by the tidal 
om-ponent of the 
ow itself. Measured at any one lo
ation over a regular tidal periodhowever, a tidal 
ow of invis
id water taking pla
e in a 
hannel of regular 
rossse
tion will have a net 
ow of zero. If a river dis
harge is introdu
ed, the net
ow over a tidal 
y
le at any lo
ation be
omes equal to that of the river. When
onsidering the persisten
e of planktoni
 organisms it is this residual movement,from the same point in one tidal 
y
le to the next, that is important. In addi-tion to the e�e
ts of vis
osity, fri
tion and turbulen
e, salinity stru
ture altersthe simple pi
ture of net 
ows. It does this by introdu
ing di�eren
es in waterdensity that in 
ombination with the a

eleration due to gravity, produ
es newfor
es a
ting in the dire
tion of lower density. While salinity di�eren
es a�e
t 
ur-rents, in their turn 
urrents a�e
t salinity distribution. Given 
onstant for
ingvariables, (
hie
y tidal motion over a tidal period and river dis
harge), however,an equilibrium will be established. Dyer (1973), however, questions whether real13



estuaries ever really establish true steady states as, amongst other fa
tors, tidalregimes are 
omplex, river dis
harge 
onstantly variable and the topography ofan estuary often alters in response to a di�erent 
ow regime.Salt, as well as being important in altering water densities, 
an also be regardedas a passive tra
er. The distribution and movement of salt 
an and is used asan indi
ation of the spread and steady state distribution of other passive andneutrally buoyant parti
les. In terms of their salinity distributions there are fourmain 
lassi�
ations of estuary.Highly strati�ed, `salt wedge' estuariesIn all estuaries the water from river in
ow will tend to 
ow over the top of themore saline (and denser) water in the body of the estuary. Be
ause of the slopingnature of the estuary this tends to form a thin surfa
e 
ow of low salinity overa wedge shaped body of saline water. Fri
tional for
es will tend to drag thetop layer of the salt water seawards and if shear is suÆ
ient internal waves formand break at the interfa
e, 
ausing salt water to be mixed into the fresh water.This pro
ess is known as entrainment. Turbulent for
es, 
aused mainly by tidalmotion, will also mix the layers of lesser and higher salinity. In a highly strati�edestuary, however, the ratio of river 
ow to tidal 
ow is relatively large su
h thatonly minimal mixing due to turbulen
e o

urs and the salinity in the wedge isvirtually 
onstant along the estuary. In general, salt wedge estuaries tend to haverelatively small width to depth ratios. The layer of very rapid 
hange in salinitywith depth is known as the halo
line. Salinity is often the most important fa
torin determining water density, su
h that the halo
line is often 
oexistent with apy
no
line, a layer of rapid density 
hange.The entrainment of salt water into the fresh water heading seawards leads to a
ompensating landward 
ow in the salt wedge. Be
ause the degree of re
ruitment,(entrainment plus turbulent mixing), into the surfa
e seaward 
ow is modest,however, so is the 
ompensatory 
ow. A simple diagram 
hara
terising this type14



of estuary is given in Fig. 2.1The 
ombination of seaward 
ow of less dense water and landward 
ow of moredense water is often referred to as the gravitational 
ir
ulation within the estuary.The removal of denser water from lower down the water 
olumn and the redu
tionin density of remaining water through turbulent mixing 
auses a pressure gradientin the opposite dire
tion to that in the surfa
e layer. It is the horizontal variationin density, 
ombined with the for
e of gravity that 
auses the reverse pressuregradient and so the 
urrents may be referred to as density, as well as gravity,
urrents. Ex
ept in the 
ase of near verti
ally homogeneous and wide estuaries(see below) gravitational 
ir
ulations are distributed verti
ally.Tidal 
ow 
an also be termed tidal a
tion. In terms of strati�
ation the tidalprism is as important as velo
ities generated by the tidal motion at the estuarymouth. A smaller volume of water moving in and out of the estuary provides lessenergy for turbulent mixing and this 
an be 
aused by a small tidal range and/ora steeply sloping bathymetry (M
Dowell and O'Connor 1977, page 15).Partially mixed estuariesAs the tidal 
ow of an estuary in
reases so does its energy. Most of this energyis transferred into turbulen
e whi
h in turn is dissipated by a
ting against thedensity gradients in the estuary. If the turbulent eddies are suÆ
iently strongto mix signi�
ant amounts of water a
ross the halo
line, then the estuary 
anbe 
onsidered partially mixed. The salinity of the seaward surfa
e 
ow is 
on-siderably raised but so too is its volume. This in turn 
auses an in
rease in thevolume of the 
ompensating landward 
ow. In the James estuary, Virginia, USAthe seaward 
ow in the upper layer is 20 times the river 
ow and the 
ompensat-ing in
ow near the bottom is 19 times river 
ow, (Dyer 1973, page 9). This 
owpattern is known as a two layer 
ow system.In a partially mixed estuary the surfa
e salinity in
reases mu
h more steadily15



down the estuary and undiluted fresh water only o

urs very near the head ofthe estuary. Within the more saline water there is also a longitudinal gradientin salinity. Horizontal salinity gradients have be
ome almost linear but in theverti
al there is still a zone of high salinity gradient, often at about mid depth.Fig. 2.2 gives a 
hara
terisation of this type of estuary.Well mixed { verti
ally homogeneous { estuariesWell mixed estuaries o

ur when the tidal 
urrent is mu
h larger than the river
ow. The turbulen
e from velo
ity shear needs to be suÆ
ient to over
ome den-sity strati�
ation. This is normally only possible in estuaries with small 
ross-se
tions. If the width of the estuary is suÆ
iently small that lateral shear isenough to 
reate laterally homogeneous 
onditions, salinity in
reases evenly to-ward the mouth and there is no 
ompensatory 
ow. The salt balan
e, in terms oftidally averaged 
ow, is maintained solely by turbulent ex
hange due to bottomfri
tion or topographi
 irregularities. An intra tidal e�e
t also helps to maintainthe salt balan
e, however. Well mixed estuaries are likely to be subje
t to highbottom fri
tion. This implies the tidal wave is likely to have a large progressive
omponent, that is the maximum of the 
ood and ebb 
ows are likely to 
oin
idequite 
losely to the high and low tide points at di�erent lo
ations along the estu-ary, but these times vary along the estuary. With maximum 
ood o

urring nearhigh water, when the 
ross se
tional area is large, and maximum ebb o

urringnear low water, small 
ross se
tion, there is a larger transport of salt on the 
oodthan on the ebb. Fig. 2.3 gives a 
hara
terisation of this type of estuary.Net upstream 
ows 
an o

ur in a well mixed estuary if it is suÆ
iently wide.The Coriolis for
e, (due to the Earth's rotation), will 
ause horizontal separationof the 
ow. In the northern hemisphere this leads to net seaward 
ow down theright hand side (looking seaward) and a 
ompensatory 
ow along the left handside of the estuary.Dyer (1973) 
ontends that it is diÆ
ult to be sure that verti
ally homogeneous16
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estuaries really exist. Even very well mixed estuaries may still retain small verti
alvariations that may get lost due to imperfe
t data 
olle
tion.FjordsThe 
ow patterns in fjords is generally similar to that in salt wedge estuaries.If they possess the typi
al sill stru
ture at their mouth then, be
ause of therestri
tions of the sill, river 
ow tends to be large 
ompared to the volume ofwater input and extra
ted by the tide. Entrainment is the main 
ause of mixingbetween the fresh water in
ow and the saline water below. This upper layer is
ommonly of virtually 
onstant thi
kness from head to mouth and sometimesthis thi
kness is restri
ted to a depth equal to the sill. Where river dis
harge ishigh, the surfa
e layer is virtually of uniform salinity, but when dis
harge is lowermaximum salinity gradients 
an o

ur at the surfa
e. This 
an also happen nearto the sill. Tidal velo
ities are greater over the sill and the water is less strati�ed.There is generally mu
h stronger verti
al mixing in this region and the 
ir
ulationpattern over the sill 
an be viewed as quite separate to that in the main body ofthe fjord. The in
ow of water into the fjord is 
omposed of a mixture of 
oastalwater and the out
ow water. Fig. 2.4 gives a 
hara
terisation of a fjord.Un
ertainty of 
lassi�
ation and variation within an estuaryThe 
lassi�
ation of estuary types is only very general and the point at whi
h anestuary 
hanges from being highly strati�ed to partially mixed or from partiallymixed to well mixed is somewhat arbitrary. In addition, a given estuary may showtraits of di�erent 
lassi�
ations of estuary at di�erent points along its length,(Dyer 1973). For example, near the head of an estuary where tidal amplitudemay be redu
ed, river 
ow 
an dominate and a salt wedge stru
ture may bepresent. If tidal velo
ities in
rease downstream 
ausing eddy di�usion of salt tobe
ome more a
tive then a partially mixed stru
ture may o

ur.18
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Variations in topography along an estuary 
an a�e
t the 
ow stru
ture. For agiven river dis
harge and tidal for
ing, a large in
rease in width will in
rease thetidal volume to river 
ow ratio. This a
ts in a similar way to a redu
tion in river
ow for an estuary of 
onstant width, leading to a more mixed stru
ture. In
reas-ing the depth with other parameters �xed again in
reases tidal 
ow 
ompared toriver 
ow. The greater depth, however, is likely to de
rease the e�e
tiveness ofverti
al mixing and the river 
ow be
omes more 
on�ned to the surfa
e, therebyin
reasing the degree of strati�
ation.Finally, the 
hara
ter of an estuary 
an 
hange temporally. If an estuary experi-en
es mu
h higher river runo� in one season than in another it 
an be
ome morestrati�ed in nature. The variation in tidal amplitude over the spring, neap tidal
y
le 
an be enough to 
hange an estuary from having a partially mixed 
hara
terto that of a highly strati�ed estuary, (M
Dowell and O'Connor 1977).Classi�
ation using a strati�
ation-
ir
ulation diagramA useful quantitative means of 
lassifying and 
omparing estuaries was developedby Hansen and Rattray (1966). They used two dimensionless parameters to
hara
terise estuaries. Firstly a strati�
ation parameter ÆS=So, de�ned as theratio of the surfa
e to bottom salinity di�eren
e ÆS to the mean 
ross se
tionalsalinity So. se
ondly a 
ir
ulation parameter Us=Uf , de�ned as the ratio of thenet surfa
e 
urrent Us to the net mean 
ross se
tional velo
ity Uf . Net 
urrent,in this instan
e, refers to the 
urrent averaged over a tidal 
y
le. The net mean
ross se
tional velo
ity Uf is e�e
tively the 
ross se
tional average of the river
ow, as without river 
ow net mean 
ross se
tional velo
ity would be zero.A version of the 
lassi�
ation diagram as used by Hansen and Rattray (1966)is shown in Fig. 2.5. This diagram distinguishes four main types of estuary,but further sub-divides types 1 to 3 a

ording to the value of the strati�
ationparameter. Estuaries of Type 1 have net 
ow that is seaward at all depths. Type1a has only slight strati�
ation as would be expe
ted for a well mixed estuary.20



Type 1b, however, 
an have an appre
iable degree of strati�
ation even though nonet upstream 
ounter 
urrent is generated. Maintenan
e of a horizontal salinitygradient is by di�usive e�e
ts alone. In Type 2 estuaries there is a 
ow reversalat depth. Upstream salt 
ux is due to a 
ombination of di�usion and adve
tion.These estuaries �t the pattern of partially mixed estuaries. Type 3 estuaries di�erfrom Type 2 in that adve
tion dominates upstream salt transfer, (a

ounting forover 99%). In Type 3b estuaries, the lower layer is suÆ
iently deep that in e�e
tthe salinity gradient and the 
ir
ulation do not extend to the bottom. Sea fjordsare generally of Type 3b. Type 4 estuaries are the salt wedge type. A verti
al,(and tidally averaged), 
ross se
tion of su
h a 
ow should show a thi
k upper layer
owing over a thin lower layer at the estuary head, graduating to a thin upperlayer 
owing over a thi
k lower layer, with the two layers being little in
uen
ed bythe other. As indi
ated in the �gure, there is a region at the top of the diagrambounded by the 
onditions found for freshwater out
ow over a stagnant salinelayer.The demar
ation between estuary types is again somewhat arbitrary. In parti
-ular Hansen and Rattray note that the transition between Types 3 and 4 haslittle observational or theoreti
al basis. Be
ause of the variation in 
hara
ter ofestuaries over their length, whole estuaries for any given set of 
onditions, (riverdis
harge, tidal 
ow and, potentially, wind mixing), are represented by lines onthe diagram rather than points. It is perfe
tly possible for the line of one estuaryto 
ross 
lass boundaries.Hansen and Rattray (1966) found that Us=Uf was related to the ratio betweenfor
ed river 
ow and the potential for density indu
ed internal 
ir
ulation. Thisratio is known as the `densimetri
 Froude number' and is de�ned byFm = UfqgH��=� (2.1)where g is the a

eleration due to gravity, H is the depth of the estuary, �� is21
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Figure 2.5: Strati�
ation-
ir
ulation diagram, after Hansen and Rattray (1966).the density di�eren
e between river and sea water and � is the mean density ofthe estuary at that point in its length. Fis
her (1976) found that ÆS=So dependsprimarily on a form of Ri
hardson number termed the `estuarine Ri
hardsonnumber' RiE whi
h is de�ned byRiE = g��QF�BU3T (2.2)where QF is the total fresh water dis
harge, B is the width of the estuary and UTis the root mean squared (rms) tidal velo
ity. This form of Ri
hardson numberis a bulk number re
e
ting the 
hara
teristi
s of the whole 
ow. It is essen-tially a 
omparison of the buoyan
y for
e introdu
ed by the river per unit width,(g��QF )=(�B), to the tidal velo
ities, (Dyer 1973). The relationship betweenRi
hardson number and the degree of turbulent di�usion of salt is dis
ussed fur-ther in 
hapter 5.By performing a perturbation solution on a width averaged and nondimension-alised set of governing equations, in
luding the salt balan
e equation, (see se
tion5.2), 
iteNoey:84 found expressions for both Us=Uf and ÆS=So in terms of Fm andRiE as follows 22



ÆS=So � Ri1=3E F 1=15m + terms of higher order (2.3)Us=Uf � Ri1=6E F�29=30m + terms of higher order (2.4)Equation (2.3) implies that any density di�eren
e between the head and mouth ofan estuary will always indu
e some degree of verti
al strati�
ation while Equation(2.4) shows this strati�
ation will always drive a gravitational 
ir
ulation. Theyalso indi
ate, as expe
ted, that for a tidal body with truly homogeneous verti-
al density, gravitational 
ir
ulation 
an not exist. Oey (1984) also 
on
ludedthat Hansen and Rattray's method for determination of the relative importan
eof gravitational 
ir
ulation 
ompared to di�usive for
es in salt transport { andtherefore the transport of any passive and neutrally buoyant parti
le { was re-markably general and appli
able to many estuaries of various shapes.The gravitational 
ir
ulation is best seen by 
onsidering verti
al pro�les of velo
ityaveraged over a tidal 
y
le. If the strati�
ation is suÆ
ient, however, an a
tuallandward 
ow in the verti
al pro�le might be present if 
ows are integrated overthe ebb tide. Fig. 2.6 shows the 
ontrast between verti
al 
ow pro�les for ahighly strati�ed and a well mixed estuary.2.1.3 Plume frontsIn estuaries with pronoun
ed strati�
ation the distin
t band of lower salinitywater moving seaward over more saline water 
an be termed a plume. Theseplumes tend to end in fairly sharp fronts. The fronts are noti
eable as they areasso
iated with marked 
hanges in 
olour or turbidity and perhaps a line of foamor other detritus, (O'Donnell 1993). These are visual eviden
e to the front beinga zone of 
onvergen
e toward whi
h the buoyant water moves and at whi
h itsinks. If river in
ow is relatively modest plumes will only appear for a few hoursduring an ebb tide. If river in
ow is high, the plume front will only appear inthe estuary during the 
ood tide and is swept out through the mouth of the23
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Figure 2.6: S
hemati
 of a strati�ed estuary and a well mixed estuary showing the
ontrast in velo
ity pro�les during A) 
ood tide and B) ebb tide, after M
Dowelland O'Connor (1977).estuary during the ebb tide or even as the 
ood tide 
urrent diminishes from itsmaximum, (Dyer 1987). Garvine (1977), from observations in the Conne
ti
utRiver, 
on
luded that a well developed plume will exist during the ebb tide whenthe ratio of the mean freshwater dis
harge velo
ity to the root mean squared tidalvelo
ity ex
eeds about 0.75 and will be present during a 
ood tide when the ratioex
eeds 2.
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2.1.4 Tidally averaged residual movement: `residual ve-lo
ity'Observed residual 
ows within systems result from os
illatory tidal 
urrents, thee�e
ts of surfa
e wind stress, horizontal density gradients and river dis
harges.As indi
ated earlier, one 
an 
ompute expe
ted `steady' residual velo
ities, that isresidual velo
ities expe
ted to remain 
onstant between tidal 
y
les, by imposingsimilarly steady states on the driving for
es. The residual velo
ities as des
ribedabove are for velo
ities de�ned at a point in spa
e (Longuet and Higgins 1969)UR = 1T Z T0 Vdtwhere T is the duration of the tidal 
y
le. Su
h residual velo
ities are 
alledEulerian residual velo
ities2. Taking a parti
le starting at the point where theresidual velo
ity was measured and determining that its end point 
orrespondsto the dire
tion and magnitude of the UR value after one tidal 
y
le is in
orre
t,however. If the values of UR vary spatially then as a parti
le moves it will samplebrief instan
es of 
ows that 
onstitute many di�erent residual 
urrents. To es-tablish the true residual velo
ity of a parti
le the frame of referen
e must travelwith the parti
le. Su
h a residual movement is known as a Lagrangian residual.As outlined in Chapter 3, determination of persisten
e in this thesis is performedusing a dis
rete spa
e-time approa
h. To apply this approa
h to 
ows experien
-ing tidal for
ing, any method determining the redistribution matrix must supplythe net, or residual, movement of a passive and neutrally buoyant parti
le over theperiod of a tidal 
y
le. A redistribution matrix representing Lagrangian residualmovement will result if the movement over a tidal 
y
le is determined by usinga 
ombination of a 
uid dynami
s pa
kage, (solving 
ow governing equations intheir 
ontinuous form), and a tra
king algorithm.2Euler pioneered the work determining the equations of motion for 
uid using a �xed frameof referen
e. 25



The 
uid dynami
s pa
kage is used to produ
e snap shots of the instantaneous
ow �elds. Tra
king of tra
ers 
ould be in
orporated into the 
uid dynami
sprogram. To allow greater 
exibility, tra
king of parti
les with di�erent 
hara
-teristi
s using the same 
ow �elds, a separate dis
rete time tra
king algorithmwas developed, (see also se
tion 3.3.1). This tra
king algorithm uses small inter-vals, Æt, to update the position of a parti
le, using the snapshots of instantaneous
ow �elds. A new velo
ity to be applied to the parti
le is then determined takinga

ount of the parti
le's new position in time and spa
e.If a ve
tor is drawn from a parti
le's starting position to its �nishing position thenan imaginary velo
ity 
an be 
onsidered. When residual velo
ities are dis
ussedin relation to parti
le movements determined from parti
le tra
king, it is thisimaginary velo
ity related to the Lagrangian residual movement that is being
onsidered.2.1.5 Di�usion versus dispersionTurbulen
e within 
uid 
ows is not yet fully understood and dire
t numeri
almodelling of turbulen
e is very expensive 
omputationally, (Ferziger and Peri
1999). As detailed in 
hapter 4.2.1, a widely pra
tised approa
h to dealing withturbulent motion is to 
onsider it analogous to mole
ular di�usion, the resultof the random movements of a substan
e's mole
ules. Mole
ular di�usion isgoverned by Fi
k's law of di�usion whi
h states that the mass of a substan
e
rossing a unit area per unit time in a given dire
tion is proportional to thegradient of mass 
on
entration in that dire
tion. In one dimension, Fi
k's law
an be stated mathemati
ally as q = �D�C�x (2.5)where q is the mass 
ux, C the mass 
on
entration and D a 
oeÆ
ient of propor-tionality. The minus sign is to indi
ate transport is from high to low 
on
entra-26



tions. Considering the relationship between q and C and applying the law of the
onservation of mass in addition to Fi
k's law gives two more equations knownas di�usion equations. �C�t = D�2C�x2 (2.6)�q�t = �D�2q�x2 (2.7)When 
onsidering the spread of a point sour
e of 
on
entration the pattern of 
on-
entration at subsequent points in time will 
onform to a Gaussian distribution
entred on the starting position. For general di�usion equations, or adve
tion-di�usion equations if a mean adve
tion is super-imposed on the `mass' movement,the 
oeÆ
ient of proportionality, D is known as the 
oeÆ
ient of di�usion. Whendes
ribing the e�e
t of mole
ular di�usion in 
uid 
ows it is known as the 
o-eÆ
ient of kinemati
 vis
osity, � and when the e�e
t of turbulen
e is des
ribedin an analogous fashion to di�usion the 
oeÆ
ient takes the name of 
oeÆ
ientof kinemati
 eddy vis
osity, N . Kinemati
 eddy vis
osity des
ribes the trans-fer of momentum by this pro
ess. Di�usive transport of passive tra
ers 
an be
onsiderably di�erent to that of momentum. This 
an be espe
ially true in theverti
al dire
tion, depending on the degree of density strati�
ation. Thus a third
oeÆ
ient, K, is used 
alled the 
oeÆ
ient of eddy di�usivity.Dispersion arises when a 
uid has adve
tion in a given dire
tion but this adve
-tion has a gradient in a se
ond dimension. Considering a two dimensional river
ow, if the downstream dire
tion is x with adve
tive 
omponent Vx and the 
o-ordinate from river bottom to surfa
e z, then dispersion arises when �Vx=�z 6= 0whi
h, be
ause of bottom fri
tion and the vis
osity of the 
uid itself, is the situa-tion in all rivers and estuaries. The phenomenon arises be
ause a 
uid element inthe river 
ow will move randomly verti
ally (be
ause of mole
ular di�usion andpossibly turbulen
e) and so sample at random all the adve
tive velo
ities. There-fore, if a long enough averaging time is available, the element's time-averaged27



velo
ity be
omes equal to the instantaneous 
ross-se
tional average of all the ve-lo
ities. In other words, after some long enough forgetting time the velo
ity hasbe
ome independent of the 
uid element's initial position and velo
ity. The hor-izontal motion over this period 
an be 
onsidered a series of independent stepsof random length. This makes the motion analogous to mole
ular di�usion andso an adve
tion-di�usion equation should des
ribe the 
hanging mean positionand spread of any parti
les moving with the 
uid. The di�eren
e is that thestep lengths and time steps of the `random walk' are very di�erent to that ofthe di�usion that 
aused the verti
al motion and a di�erent value is required forthe 
oeÆ
ient of proportionality. This 
oeÆ
ient is then termed the dispersion
oeÆ
ient.Flows with velo
ity gradients are often referred to as `shear 
ows' and the me
h-anism of dispersion is often known as the `shear e�e
t', (Fis
her, List, Koh,Imberger, and Brooks 1979). For some simple steady shear 
ows, analyti
 rela-tionships have been derived between the dispersion 
oeÆ
ient, � and the kine-mati
 vis
osity � in laminar 
ows and between � and the eddy di�usivity K inturbulent 
ows. The relationship most dire
tly appli
able to that for a river isgiven for turbulent 
ow down an in
lined plane, where � is given by� = IH2V 02xKz (2.8)where I is a dimensionless integral given byI = � Z 10 V 00x Z z00 1K 0z Z z00 V 00x dz0dz0dz0 (2.9)and V 00x = V 0xqV 02x (2.10)where K 0z � Kz(z0)=Kz, V 0x � Vx(z0) � Vx, an over-bar denotes a 
ross se
tional28



average and z0 � z=H is the dimensionless measure of the distan
e up the water
olumn given that H is the overall water depth. Alternatively, if dimensionalterms are retained in the multiple integral, the dispersion 
oeÆ
ient is given by� = � 1H Z H0 V 0x Z z0 1Kz Z z0 V 0xdzdzdz (2.11)Natural 
hannels tend to have a variation of depth a
ross the 
hannel. This inturn leads to transverse shear. Fis
her (1967) applied the same reasoning thatleads to Equation (2.11) to the transverse dire
tion of river 
ross se
tions andobtained �t = � 1A Z B0 q0 Z y0 1Ky Z y0 q0dydydy (2.12)where A is 
ross se
tional area, Ky an eddy di�usivity in the transverse dire
tionand q0 � HV 0xb represents the deviation of the lo
al 
ow per unit width from themean dis
harge per unit width. He 
on
luded that for rivers with a large width todepth ratio the longitudinal dispersion 
aused by transverse shear, �t, was moresigni�
ant than that 
aused by shear in the verti
al.The problem with estuaries and fjords is that 
ow is not steady but os
illatory.This pla
es limits on the appli
ability of the above equations, the important 
on-sideration being whether the time s
ale of the tidal 
y
le is mu
h greater thanthe time for turbulen
e to di�use a substan
e a
ross the verti
al and transversedistan
es of the estuary. Holley, Harleman, and Fis
her (1970) 
onsidered tidalmean dispersion 
aused by verti
al di�usion, �zT for systems with neutral stabil-ity, that is without strati�
ation. They derived expressions relating this quantityto the value, �z, that would be obtained by using Equation (2.11) and Eulerianresidual velo
ities. They found the relationship redu
ed to a simple fun
tion fortwo ranges of a dimensionless mixing time s
ale � z, namely
29



�zT = 3�z(� z)2 for � z � 0:2 (2.13)and �zT = �z for � z � 1 (2.14)where � z is given by � z = TT z = TKzH2 (2.15)where H is a tidal mean value and T z � H2=Kz 
an be 
onsidered a turbulentmixing time s
ale. They suggested the above equations were appli
able to reason-ably straight 
hannels that were also well de�ned su
h that the 
hannel geometrydoes not vary signi�
antly during a tidal 
y
le. With these assumptions and areasonably wide estuary a turbulent mixing time-s
ale in the transverse dire
tionrelating half width to transverse di�usion 
oeÆ
ient be
omes large and a trans-verse dimensionless mixing time s
ale mu
h less than one. In e�e
t, be
ause ofthe os
illatory nature of the 
ow, dispersion due to transverse velo
ity variationde
reases as estuary width in
reases, and for suÆ
iently wide estuaries this allows
onsideration of dispersion due to verti
al shear and di�usion 
oeÆ
ient only.The above 
on
lusion was rea
hed even though tidal 
ow is understood to intro-du
e new me
hanisms for dispersion, even in homogeneous 
onditions. The �rstme
hanism was termed `tidal pumping' by Fis
her et al. (1979). It des
ribesresidual 
ir
ulation set up by the intera
tion of the os
illating 
ow and the ir-regular bathymetry found in most estuaries. Estuaries with a narrow mouth 
anre
eive a 
ood tide as a 
on�ned jet type 
ow, while the ebb 
ow originates fromall around the mouth. Averaging over a tidal 
y
le shows a net landward 
ow inthe area of the jet but a net seaward 
ow elsewhere. More generally, 
ombinationsof 
hannel geometry and separation at 
orners 
an indu
e large s
ale gyres in the30



residual 
ow. Su
h residual vorti
es 
an be 
reated in the verti
al as well as thehorizontal if the tidal 
urrent 
ows over irregular bottom topography, (Fis
heret al. 1979, page 239). The horizontal separation of 
ow 
aused by the Coriolisfor
e in wide estuaries is also 
onsidered a 
omponent of tidal pumping.A se
ond me
hanism has been referred to as the `storing basin', `tidal trapping' or`dispersion by non-lo
al mixing' me
hanism. It 
onsiders the net mass transport
aused by the variation of 
ross-se
tional shape, salinity and velo
ity at di�erentpoints in the 
ross se
tion during a tidal 
y
le. An illustration of tidal trappingis to 
onsider an estuary with a main 
hannel and a shallow side 
hannel. In themain 
hannel, tidal elevations and velo
ities are likely to not be in phase. This isbe
ause the momentum of the 
ow is suÆ
ient to 
ause the 
urrent to 
ontinue to
ow against an opposing pressure gradient, resulting in high and low sla
k tideslagging behind high and low water respe
tively. The side 
hannel is likely to have
ow with less momentum and a smaller phase di�eren
e. If the 
ood tide 
arriesa pat
h of tra
er up both main and side 
hannel then, as the tide turns, thetidal 
ow will reverse sooner in the side 
hannel and the tra
er it held may wellreturn to the main 
hannel downstream from that part of the pat
h whi
h stayedin the main 
hannel. Winterwerp (1983) determined mixing by the sea beyondthe mouth of an estuary to be important in maintaining the salt balan
e in anestuary. For estuarine water that leaves the estuary on ea
h ebb tide, the moreit is well mixed outside of the estuary mouth, (su
h that the salinity be
omese�e
tively that of the sea water), then the greater the salinity intrusion duringthe next 
ood tide. Whether this last e�e
t 
an be in
luded when 
onsideringanimal persisten
e in an estuary depends on whether the animal is 
onsideredable to survive for any period outside of the estuary.For systems with buoyan
y e�e
ts, gravitational 
ir
ulation 
an be a signi�
antor even dominant me
hanism of dispersion. Several studies have 
on
luded that,even in narrow estuaries, mass transport (and therefore longitudinal dispersion
oeÆ
ients) are determined predominantly by the verti
al gradients in velo
ityand salinity, (Fis
her 1972; Dyer 1974; Dyer 1977; Hughes and Rattray 1980).31



Abraham, Karelse, and Lases (1975), however, 
on
luded that dispersion 
oeÆ-
ients in estuaries are dependent on time and also vary with distan
e along anestuary and this was 
on�rmed by Winterwerp (1983) for longitudinal two di-mensional sli
es of the Rotterdam Waterway. West and Mangat (1986), analyseddata from the Conwy estuary and 
on
luded that on average the dispersion 
o-eÆ
ient was larger on the ebb tide than on the 
ood tide. They suggested thatif buoyan
y e�e
ts are weak, a value for one dimensional dispersion due to bothshear e�e
ts and the se
ondary 
ir
ulation indu
ed by buoyan
y �s
 
ould begiven to a �rst approximation by�s
 � k1B2jVAjH (2.16)In this instan
e H represents the maximum depth along a transverse 
ross se
tionandB represents the half width, while VA is the 
ross se
tionally averaged velo
ity.The term k1 is a 
oeÆ
ient whi
h West and Mangat (1986) suggested 
ould takethe value of k1 = 0:1 during an ebb tide and k1 = 0:025 for the 
ood tide.Equation (2.16) is a simpli�
ation of Equation (2.12) with an empiri
al alterationto take a

ount of strati�
ation. As su
h it requires expli
it 
onsideration ofdomain width. Its derivation was possible be
ause the ratio of transverse di�usion
oeÆ
ient, Ky, predi
ted by Equation (2.12) to that derived from the �eld datawas 
onsistent for ea
h half tidal 
y
le. Unfortunately, a similar approa
h 
ouldnot be applied to Equation (2.11) as it was found that the ratio of predi
tedto measured verti
al di�usion 
oeÆ
ient, Kz, varied throughout ea
h half tidal
y
le.(M
Dowell and O'Connor 1977, page78) 
onsider that predi
ting dispersion 
oef-�
ients for real estuaries with strati�
ation from semi-empiri
al formulae 
an onlyprovide order-of-magnitude estimates be
ause of the unique velo
ity stru
ture ofea
h system. The only way to obtain true dispersion 
oeÆ
ients is from �elddata. Winterwerp (1983), 
onsidering mass transport due to variations in theverti
al only, sets out the 
al
ulation of both a `real time' dispersion 
oeÆ
ient32



�s
z and a 
oeÆ
ient, ~�s
z to be used for tidally averaged adve
tion di�usionequations. In general the value of �s
z averaged over a tidal 
y
le is not equalto ~�s
z, in large part be
ause the dispersion in the tidally averaged adve
tiondi�usion equation impli
itly des
ribes net mass transport by tidal 
ows. Bothvalues 
an be obtained by breaking down velo
ity and 
on
entration terms intoaveraged values and the deviation of a value at a given point from that average.The value of ~�s
z is given by
�Ho ~�s
z �Co�x = DHU tCtE+ U o DHtCtE+HoU 0oC 0o+ DHU 0oC 0tE+ DHU 0tC 0oE+ DHU 0tC 0tE (2.17)Here an over-line denotes a verti
ally averaged quantity and a prime a deviationfrom that verti
al average. The subs
ript o denotes a tidally averaged quantityand the subs
ript t denotes the deviation from this tidal average. An H withno subs
ript is simply the water depth at a given point in time and the angularbra
kets denote tidally averaged produ
ts. The various terms making up Equa-tion (2.17) represent the di�erent me
hanisms of dispersion as follows� HoU 0oC 0o { shear dispersion from the net gravitational 
ir
ulation.� DHU 0tC 0tE { verti
al shear dispersion from the non-steady velo
ity and 
on-
entration pro�les.� DHU 0oC 0tE and DHU 0tC 0oE { shear dispersion from the 
orrelation between thesteady and os
illating 
omponents of the verti
al shear.� DHU tCtE { dispersion by non-lo
al mixing, (tidal trapping).� U o DHtCtE { dispersion by the 
orrelation between the steady and os
illating
omponents of the 
ow.Winterwerp (1983) 
ompared measurements taken from three tidal 
ume exper-iments and from the Rotterdam Water-way. The three 
ume tests represented33



highly strati�ed, partially mixed and well mixed 
onditions respe
tively, whilethe Rotterdam Water-way was found to be highly strati�ed. In all 
ases it wasfound that the three terms representing 
orrelation e�e
ts provided a negligible
ontribution. It was also found that the 
ontribution from the net gravitational
ir
ulation, HoU 0oC 0o in
reased in magnitude as 
onditions be
ame more strati-�ed. In the 
ume tests its 
ontribution went from being less than that from thenon-steady verti
al shear term DHU 0tC 0tE under well mixed 
onditions, to 
om-parable under partially mixed 
onditions to 
onsiderably greater under strati�ed
onditions. Unsurprisingly therefore, the 
ontribution from the net gravitational
ir
ulation was somewhat greater than that from non-steady verti
al shear in theRotterdam Water-way.A more traditional, and mu
h simpler approa
h, of using salinity �eld measure-ments to determine a longitudinal dispersion 
oeÆ
ient, is to use the equationdes
ribing the `salt balan
e' in an estuary��S�x = UfS (2.18)where S is salinity at a point along an estuary, �S=�x the longitudinal gradientand Uf the 
ross se
tionally averaged net velo
ity due to fresh water dis
harge.The equation e�e
tively assumes the salinity pro�le to be in steady state fromone tidal 
y
le to the next su
h that � represents the dispersion, by all relevantme
hanisms, that allows an equal and opposite net tidal 
ux of salinity to theseaward 
ux represented by the term UfS at that lo
ation. Fis
her et al. (1979)point out that Equation (2.18) has been used with salinity values observed at lowsla
k water, high sla
k water or with values averaged over a tidal 
y
le and thatthe result is highly dependent on whi
h approa
h is used. Also, some estuariesdo not 
onform well with the assumption that their salinity distribution is 
y
li
.This latter problem, however, also a�e
ts any estimation made using Equation(2.17).Fis
her et al. (1979) 
ompiled a table of di�erent estuaries and their observed34



dispersion 
oeÆ
ients. Values range from 10m2s�1 to approximately 1000m2s�1with the bulk of values falling in the range 100�300m2s�1. They noted that su
hvalues were 
onsiderably smaller than values observed in even moderately sizedrivers and 
on
luded the reason was the limited ability of shear 
ow to 
ausedispersion in estuaries, as indi
ated by Equation (2.13). Low values, in the range10� 60m2s�1, were generally found in very well mixed or homogeneous portionsof estuaries where shear 
ow dispersion is the dominant me
hanism.
2.2 Planktoni
 animals and behaviour relevantto persisten
ePlankton 
an be de�ned as, (Reynolds 1984)the 
ommunity of plants and animals adapted to suspension in the seaor in fresh waters and whi
h is liable to passive movement by windand 
urrent.As su
h it is distin
t from the `nekton' (e.g. �sh), that have the ability to substan-tially regulate their own distribution through swimming. This is not to say someplankton 
an not swim or otherwise in
uen
e their movement by the surroundingwater to a 
ertain extent, but under normal 
ir
umstan
es they are unable toover
ome adve
tive movements imposed on them by the 
ow.The most obvious form of plankton are those that spend their whole life 
y
le insuspension and whi
h have morphologi
al and behavioural adaptations to survivein the pelagi
 habitat. However, there are animals whi
h spend part or even mostof their life 
y
le in the littoral habitat at the bottom of the water 
olumn. Forexample, the larvae of 
rabs and 
at �sh, (
ommer
ially important spe
ies), areplanktoni
. There are still other organisms that are benthi
 dwellers but whi
h
an be found in the drift for short periods. Although not 
onforming fully with the35



de�nition of plankton given above, they are 
ertainly subje
t to passive movementby the 
urrent when they enter the drift. Many stream invertebrates fall into thislast 
ategory. A 
onsiderable number of �eld studies have measured the numbersof bottom dwelling invertebrates found in the drift. A review of these is given inBrittain and Eikeland (1988).There is mu
h debate as to the reasons for individuals entering the drift. Somestudies support the idea of animals being involuntarily swept into the water
olumn by the rapidly and strongly varying for
es of the near bed turbulent
ow, (Po� and Ward 1991). Other studies3 suggest drift entry is deliberate and
ite many potential triggers in
luding food depletion, (Kohler 1985), predatoravoidan
e, (Pe
karsky 1980; Malmqvist and Sjostrom 1987), density dependen
e,(Corkum and Cli�ord 1980) and indeed redu
tions in 
ow velo
ity as the reasonsfor su
h a
tion, (Minshall and Winger 1968; Po� and Ward 1991; Fonse
a andHart 1996). The reasons are almost 
ertainly di�erent for di�erent taxa. Resultsfrom Degani et al. (1993) indi
ate that many invertebrates may prefer the highlyturbulent 
ows 
hara
teristi
 of the shallow and high velo
ity areas 
hara
teristi
of ri�es in upland streams, while Growns and Davis (1994) des
ribe a number of`
ow avoiders'.Behaviour 
an also be passive or a
tive on
e in the drift. Individuals havebeen found to a
tively redu
e their time in the water 
olumn, (Elliott 1971a;Ciborowski and Corkum 1980). Some studies 
ite 
hanges of behaviour by in-dividuals of a given spe
ies in response to the strength of the 
ow, a
ting tominimise drift time when 
ow is strong but to in
rease drift time and distan
ewhen velo
ities fall below a 
ertain threshold, (Campbell 1985; Allan and Feifarek1989). Even with in-drift behaviour, it seems likely that the rate at whi
h driftingindividuals return to the benthos is strongly dependent on the degree of turbu-len
e, (verti
al mixing), in the 
ow, (Smith 1982; M
Nair, Newbold, and Hart1997). Regardless of the means of drift entry and exit, 
hapter 6 demonstratesthat if rates of drift entry and exit 
an be determined and 
an be 
onsidered ap-3Or results for di�erent taxa within the same study.36



proximately 
onstant, then the 
riti
al 
ow parameters for persisten
e in a givenlength of system 
an be determined semi-analyti
ally.The work of Speirs and Gurney (2001) 
onsidered problems in whi
h organisms
ould e�e
tively be 
onsidered as neutrally buoyant. Persisten
e in the more
ompli
ated 
ow regimes of 
hapters 8 and 9 is also initially 
onsidered for su
horganisms. Su
h 
onsiderations are very instru
tive, not least be
ause it is thenpossible to make 
omparison to results where verti
al movement is also due tofa
tors other than entrainment in the surrounding 
ow. A very simple formof `behaviour' for plankton 
an be 
onsidered that of sinking. There are fewplanktoni
 organisms that are 
onsistently buoyant. Most are often or alwaysmore dense than the water they inhabit, (Reynolds 1984). Phytoplankton areno ex
eption to this general rule. Terminal sinking speeds in quies
ent waterhave been measured for various marine and fresh water diatom phytoplankton.Chapters 8 and 9 investigate whether or not simple, 
onstant sinking 
an enhan
ethe persisten
e of populations in estuaries and fjords. This is appropriate todiatoms as they possess no me
hanism for swimming. Even so, it seems theyare not totally in
apable of in
uen
ing their position in the water 
olumn. Livephytoplankton are able to 
ontrol their density to a 
ertain extent. A number ofstudies have found that several spe
ies of live phytoplankton demonstrate lowersettling velo
ities in quies
ent water than dead or senes
ent individuals fromthe same population, (Reynolds 1984, page 77). In the presen
e of turbulen
e,elimination time from the water 
olumn is also in
uen
ed by the `form resistan
e'of ea
h spe
ies. Those with higher form resistan
e a
hieved longer times in thewater 
olumn. Form resistan
e is a non-dimensional measure of the degree towhi
h an organism's shape in
reases its drag. It is therefore also a measure ofhow readily an organism 
an be entrained by random water movements.If organisms possess a quies
ent settling velo
ity the theory of settling in thepresen
e of turbulen
e implies that turbulen
e will only delay the settling of indi-viduals in the water 
olumn, by a fa
tor dire
tly related to their settling velo
ityand form resistan
e. If only random motion is present in the verti
al, eventual37



settling is inevitable, (Reynolds 1984, page 50). Phytoplankton derive their en-ergy from sunlight. Sinking may enhan
e physi
al persisten
e by transferringindividuals from net seaward 
owing waters into the net landward 
owing 
om-pensating 
urrents but the attenuation of sunlight in water is often quite rapid.The in
uen
e of light dependent growth rates upon both neutrally buoyant andsinking populations is 
onsidered. In this way the e�e
t of both added elementsof realism 
an be assessed independently and in 
ombination.Other forms of phytoplankton possess 
agella whi
h allow them to be
ome motile.It is now well established that phytoplanktoni
 organisms will adjust their posi-tion in a water 
olumn by means of verti
al migration, (Figueroa, Niell, Figueiras,and Villarino 1998). They have been shown to respond to gravity, 
hemi
al andthermal gradients, the magneti
 �eld of the Earth as well as to light. This lastfa
tor 
an stimulate both positive and negative photota
ti
 responses, (Nults
hand Hader 1988), although the basi
 pattern is one of a diurnal migration leadingto maximum 
on
entrations at depth during the night and near the surfa
e duringthe day. For the well strati�ed system they studied, Figueroa, Niell, Figueiras,and Villarino (1998) found the py
no
line was signi�
ant in that only some spe
iesstudied were able to migrate through.Zooplankton are also known to make diurnal migrations, although the patternis in reverse with individuals rising during the night and moving to deeper wa-ter during the day. This behaviour has been found in the open o
ean, fjordsand estuaries. Migration to the surfa
e in estuaries, however, has been seento be inhibited by high strati�
ation. Sampling of the estuarine se
tion of theRiver Test, Southampton, found 
on
entrations of zooplankton just below thelow-salinity surfa
e water at times of high strati�
ation, but zooplankton all theway to the surfa
e when the salinity gradient was not present. In 
ontrolled ex-periments Grindley (1964) showed that Pseudodiaptomus in an estuary migrateddownwards during the day and upwards at night. However, upward movementwas halted by salinities in the range 8.5-19.0 parts per thousand. He suggestedthat at times of normal river run-o� the full migration allowed persisten
e in the38



estuary. At times of river 
ood the animals prevented wash out by their avoidan
eof low salinities.
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Part II
Methodologies
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Chapter 3
Methods for determining thepersisten
e of spatiallystru
tured populations
3.1 Population balan
e equationThe balan
e equation for a spatially stru
tured population represented in 
ontin-uous spa
e and time has the general form (Gurney and Nisbet 1998)�n�t = (� � Æ)n� �Jx�x � �Jy�y � �Jz�z (3.1)where n(x; y; z; t) represents the population density at a point (x; y; z), �(x; y; z; t)and Æ(x; y; z; t) are lo
al per-
apita birth and death rates, and J(x; y; z; t) repre-sents the net 
ux densities of individuals past the position (x; y; z).This thesis is 
on
erned with the possibility for persisten
e provided by the fa
tthat 
uid 
ows with a net adve
tion experien
e shear, turbulen
e and, (in later
hapters), are in
uen
ed by varying topography and salinity. Redu
ing the prob-lem to one dimension in the �rst instan
e, (the x dire
tion), if there were only41



adve
tion present, moving all individuals at the speed Vx past a given point,then the net 
ow rate term would be given by J(x; t) = Vxn(x; t). The mo-tion imparted by turbulen
e is 
onsidered random. Random motions produ
e anet 
ow rate whi
h is proportional to the spatial gradient of any 
on
entration.The 
onstant of proportionality, the di�usion 
oeÆ
ient, when used in relationto population balan
e equations is denoted by �x. The subs
ript denotes thepossibility for 
oeÆ
ients with di�erent values in the other dire
tions for modelsthat 
onsider more dimensions. The net 
ow takes individuals from regions ofhigher density to lower density. The di�usion 
onstant is always regarded as pos-itive by 
onvention, su
h that a net 
ow rate 
aused by solely di�usion be
omesJ(x; t) = ��x�n=�x. Taking the overall net 
ow rate to be a 
ombination ofadve
tion and di�usion, and repla
ing (�� Æ) by p(n), the net per-
apita growthrate, the balan
e (or 
onservation) equation for a population in one dimensionbe
omes �n�t = p(n)n� Vx�n�x + �x�2n�x2 (3.2)where the value of p(n) is now 
onsidered to, potentially, depend on the popula-tion density n.
3.2 Analyti
 te
hnique for 1D problems3.2.1 1D problemSpeirs and Gurney (2001) 
onsidered the 
ase of Equation (3.2) representinga turbulent stream, where the turbulen
e has enabled the water to be
ome wellmixed verti
ally and transversely. The adve
tion velo
ity and di�usion 
oeÆ
ientare also assumed 
onstant throughout the domain. The term �x 
an be 
onsideredanalogous to the 
oeÆ
ient of eddy di�usion seen in the 
onservation equations forpassive tra
ers found in 
uid dynami
s, (for example see Equations (5.9), (5.13)42



and (5.16) that determine the evolution of salinity in a turbulent 3D system).These quantities are not equivalent, however, as the term in Equation (3.2) 
anbe regarded as representing motion indu
ed by 
uid movements but of di�erentmagnitude and/or random movement generated by individuals themselves.The point x = 0 was assumed to represent the sour
e of the river at whi
h water
ontaining zero organisms enters at velo
ity Vx. It was further assumed that noindividuals 
ould pass upstream of the sour
e, so the population 
ux at x = 0 iszero. That is, there exists a re
e
ting boundary given byVxn(0; t)� �x  �n�x!x=0 = 0 (3.3)At the opposite end of the domain (x = L) the river 
ows into an environmentwhi
h the organisms 
an enter but from whi
h they 
an not return. This isrepresented by an absorbing boundary at whi
h the population is always zeron(L; t) = 0 (3.4)If p(n) is assumed to be a 
onstant, that is involving no density dependen
e, thenthe problem de�ned by Equations (3.2) to (3.4) is linear and the only possibilitiesfor the overall population are for exponential growth or de
ay over time, (Gurneyand Nisbet 1998). Following the analysis for the 
ase when di�usion only ispresent, (Gurney and Nisbet 1975), Speirs and Gurney (2001) assumed that afterinitial transients have died away, the solution takes the form of a stati
 spatialpattern with ea
h point in the pattern growing, or de
aying, exponentially withtime. This meant solutions were sought in the formn(x; t) = e�tf(x) (3.5)where � is the long term exponential growth rate and f(x) is the fun
tion de-termining the spatial pattern. For spe
ies whi
h do not exhibit an Allee e�e
t,43



(Allee 1931), p is normally a de
reasing fun
tion of the lo
al population density.Its maximum value is therefore when n is e�e
tively zero. If p(n) is set to thismaximum value, the `intrinsi
 growth rate' denoted by r, the population 
an bethought of as one invading a given system. Be
ause r is a maximum value apopulation whi
h 
an not invade a given system is also in
apable of persisting inthat system after being introdu
ed as a �nite population.Speirs and Gurney (2001) were able to show that solutions are only possible ifthe long term growth rate � is related to r, Vx, �x and the system length L bytan�� LLd� = �VdVx� (3.6)where Ld � q�xr�1; Vd � 2q�xr; � � vuut1� �r � �VxVd�2 (3.7)Intermediate working leading to this result is given in Appendix A. The im-pli
ations for population persisten
e of the above result are 
overed in 
hapter6.3.2.2 112D problemThe method of Speirs and Gurney (2001) 
an be extended to 
onsider the 
asewhere organisms spend some of their time in the drift and the rest resident onor in the benthos. To attain an analyti
 solution organisms are assumed to bestati
 while in their benthi
 `state'. A further simpli�
ation is to assume thatthe times spent in the drift and benthos are independent of the river velo
ity anddi�usion 
oeÆ
ient. If, in addition, organisms are assumed to have exponentialde
ay distributions for the benthi
 and water 
olumn residen
e times then therate of transfer between states are simple 
onstants. The details of this extension44



to the above method are detailed in 
hapter 6, se
tion 6.3.1. Chapter 6 then
onsiders the di�eren
e `
linging' to the benthos makes 
ompared to the s
enarioof individuals permanently in the drift.Failure of solution te
hnique when there is benthi
 movementThe key element to being able to extend the solution te
hnique of Speirs andGurney (2001) to the 
ase when individuals spend time on the bottom is theassumption that these organisms are non-moving while on the bottom. This inturn permits non-trivial solutions in whi
h the population density in the benthos,m(x; t), is a 
onstant proportion of the population density in the drift, n(x; t), atall points. On
e movement is introdu
ed in the benthos then the possibility of a
onstant ratio between m(x; t) and n(x; t) breaks down.
3.3 Numeri
al te
hniquesAs dis
ussed in the previous se
tion, analyti
 solutions 
an be found for the longterm growth rate of a population if the per-
apita growth rate of the populationis assumed to be 
onstant. Su
h solutions provide valuable insights into thelimiting 
onditions for potential persisten
e. Non-linear representations of per-
apita growth rate are more realisti
 of real populations, however, and theirintrodu
tion makes it impossible to apply the analyti
 approa
h so far des
ribed.Analyti
 solutions for 
ertain two dimensional problems are possible, (Ri
hards1996), but the assumptions ne
essary to simplify the problem are quite restri
tive.If realisti
 hydrodynami
s, or other fa
tors, su
h as animal behaviour, are to bein
orporated then it is ne
essary to turn to numeri
al te
hniques. One approa
h isto solve the 
ontinuous version of the equations spe
ifying the model in question.There are a number of distin
t s
hemes that 
an be applied, (�nite di�eren
es,�nite elements, �nite volumes, method of 
hara
teristi
s), and no one s
heme has45



proven the best 
hoi
e for all possible problems. As an alternative to numeri
alsolution of the 
ontinuous model, a dis
rete spa
e-time representation 
an beadopted, as outlined for one dimensional problems in Gurney and Nisbet (1998),with extensions to two dimensional problems des
ribed in Speirs and Gurney(2001).3.3.1 Dis
rete spa
e-time approa
hConsidering a one dimensional model in the �rst instan
e, the domain is dividedinto a 
ontiguous series of equally spa
ed intervals of width �x and the averagepopulation density in quadrant x at time t is denoted by nx;t. This densitydistribution is updated at intervals �t a

ording tonx;t+�t =Xx0 Rx0 ;xBx0 ;t (3.8)The term Rx0 ;x represents a redistribution matrix and Bx0 ;t represents the numberof survivors and des
endants of the population of quadrant x0 at time t who arepresent at time t + �t. In this work all non-linear per 
apita growth rates arerepresented by the logisti
 growth ratep(n) = r �1� nk� (3.9)where k represents the 
arrying 
apa
ity of the population. Therefore, follow-ing (Gurney and Nisbet 1998), Bx0 ;t is equated with the solution to the logisti
equation, so that Bx0 ;t = knx0 ;tnx0 ;t + �(k � nx0 ;t) ; � � e�r�t (3.10)The redistribution matrix must be properly normalised su
h that it produ
es amean displa
ement of Vx�t and a displa
ement varian
e of 2�x�t. That is46



Xx Rx0;x = 1Xx (x� x0)Rx0;x = Vx�tXx (x� x0)2Rx0;x = 2�x�t + (Vx�t)2 (3.11)Speirs and Gurney (2001) used a displa
ed tent distribution to represent Rx0;x.Su
h a distribution is given byRx0;x = � 1� jx� x0 � doxjdmx !+ (3.12)where the + symbol denotes taking the value of the expression on the right handside if it is positive, or zero otherwise. The 
oeÆ
ients �, dox and dmx are 
hosenso that the 
onditions of Equation (3.11) are satis�ed. To 
onform to the 
ondi-tions of Equations (3.3) and (3.4) at the boundaries, the method of images is usedto de�ne an appropriately modi�ed redistribution matrix. Using this te
hniqueto model a logisti
ally regulated population living in a 1D domain, (representinga well mixed river), Speirs and Gurney (2001) demonstrated that this form ofdis
rete spa
e-time model demonstrated good agreement with the results of a
ontinuous model obtained by standard numeri
al methods, but with a 
ompu-tational 
ost approximately two orders of magnitude lower. The 
omparison ofresults is shown in Fig. 3.1.The dis
rete spa
e-time representation 
an be readily generalised to higher di-mensions by denoting position by a ve
tor, p � (x; z), for a verti
al sli
e, orp � (x; y; z) for a full three dimensional model. The domain is now split intoa 
ontiguous series of re
tangular (2D), or 
uboidal (3D) 
ells. Equation (3.8)generalises to np;t+�t =Xp0 Rp0;pBp0;t (3.13)47
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Figure 3.1: Temporal development of a logisti
ally regulated population with anintrinsi
 growth rate of 0:39day�1, being adve
ted along a 1 km river with a ve-lo
ity of 0:001ms�1. Upper frames have �x = 0:06m2s�1. Lower frames have� = 0:25m2s�1. Right hand frames show the time history of average populationdensity. Left hand frames show the spatial distributions at t = 0 and the predi
teddistribution at t = 50days. Solid lines represent the 
ontinuous time numeri
almodel implementations, 
ir
les represent the dis
rete model. Dis
rete model: dis-pla
ed tent redistribution matrix (3.12), �t = 0:1day. From Speirs and Gurney(2001), with permission.The lo
al growth fun
tion is still given by Equation (3.10). In a 2D system with
onstant rates of adve
tion and di�usion, the requirements on the redistributionmatrix be
ome Xp Rp0;p = 1Xp (x� x0)Rp0;p = Vx�tXp (x� x0)2Rp0;p = 2�x�t+ (Vx�t)2Xp (z � z0)Rp0;p = Vz�tXp (z � z0)2Rp0;p = 2�z�t+ (Vz�t)2 (3.14)where Vz�t and 2�z�t are the mean displa
ement and displa
ement varian
e inthe verti
al respe
tively. 48



For su
h a system the generalisation of the displa
ed tent distribution is given byRp0;p = � 1� jx� x0 � doxjdmx � jz � z0 � dozjdmz !+ (3.15)The 
oeÆ
ients �, dox, dmx, doz and dmz are 
hosen so that the 
onditions ofEquation (3.14) are satis�ed. Speirs and Gurney (2001) used a re
ursive bi-linearinterpolation algorithm to determine these 
oeÆ
ients for ea
h run using a new
ombination of model parameters. This satis�ed a penalty fun
tion imposed onea
h of the 
onditions in turn, repeating the exer
ise if satisfying one 
onditionre-invalidated a previously satis�ed 
ondition, until all penalty fun
tions weresatis�ed simultaneously. For this work the parameters were found by making useof a NAG software library routine and 
ombining separate penalty fun
tions forea
h of the 
onditions of Equation (3.14) in to one overall penalty fun
tion. Thatis if  1,  2,  3,  4 and  5 are de�ned as
 1 = Xp Rp0;p � 1 2 = Xp (x� x0)Rp0;p � Vx�t 3 = Xp (x� x0)2Rp0;p � [2�x�t + (Vx�t)2℄ 4 = Xp (z � z0)Rp0;p � Vz�t 5 = Xp (z � z0)2Rp0;p � [2�z�t+ (Vz�t)2℄ (3.16)then the NAG routine is used to minimise 	, where	 =  21 +  22 +  23 +  24 +  25 (3.17)This approa
h was found to work most eÆ
iently if the 
omponent penalty fun
-tions,  1 et
., were weighted a

ording to the relative magnitudes of the righthand sides of the separate 
onditions shown in Equation 3.14.49



Spa
e dependent displa
ed tent distributionsThe parameters of a displa
ed tent distribution are dependent on the velo
itiesand di�usion 
oeÆ
ients found at the point in spa
e and time at whi
h it is tobe applied. For work 
onsidering a 2D domain of a weakly mixed river, velo
itiesand di�usion 
onstants are 
onsidered 
onstant in time but river velo
ity varieswith depth. In this instan
e a unique tent distribution is required for ea
h depthrepresenting a 
ell 
entre in the model. If z0 represents the verti
al 
omponent ofthe sour
e 
ell position ve
tor, then the formula for ea
h tent be
omesRp0;p = �(z0) 1� jx� x0 � dox(z0)jdmx(z0) � jz � z0 � doz(z0)jdmz(z0) !+ (3.18)and ea
h tent is subje
t to the 
onditions as in Equation (3.14), but with auniform value of Vx now repla
ed by Vx(z0).Speirs and Gurney (2001) showed how use of tent distributions 
ould be extendedto tidally driven habitats. In su
h habitats the deterministi
 
ow �elds varywith time and it is therefore expe
ted that the redistribution matrix Rp0;p alsobe
omes time dependent. If, however, the update in
rement, �t is set equal toone tidal 
y
le, Rp0;p then represents the residual motion over one tidal 
y
le. It isne
essary to ignore the spring-neap 
y
le, but if this is done Rp0;p be
omes time-independent. Assuming a tidal period of 12 hours, this is the size required forthe update in
rement of the population model. Speirs and Gurney (2001) foundthat results obtained from simulations of the river s
enarios, (using �t = 0:1day),were weakly a�e
ted by the in
rease in timestep.With �t set equal to the tidal period the population model is de�ned by Equation(3.13) while ea
h redistribution matrix is given by
Rp0;p = �(x0; z0) 1� jx� x0 � dox(x0; z0)jdmx(x0; z0) � jz � z0 � doz(x0; z0)jdmz(x0; z0) !+ (3.19)50



and the 
oeÆ
ients of ea
h redistribution matrix are 
hosen so thatXp Rp0;p = 1Xp (x� x0)Rp0;p = �x(x0; z0)Xp (x� x0)2Rp0;p = 2�x�t + (�x(x0; z0))2Xp (z � z0)Rp0;p = �z(x0; z0)Xp (z � z0)2Rp0;p = 2�z�t + (�z(x0; z0))2 (3.20)In the above equations, �x and �z represent the x and z 
omponents of the netdispla
ement of a neutrally buoyant parti
le, starting at position (x0; z0), overexa
tly one tidal 
y
le. In other words they are Lagrangian residual movements,as outlined in se
tion 2.1.4. These values are derived by performing parti
letra
king on su
h a parti
le using a fourth order Runge-Kutta algorithm and snapshots of instantaneous 
ow �elds. The x and z 
omponents of velo
ity in the 
ow�elds 
an be de�ned by an analyti
 solution of a simpli�ed set of 
uid dynami
equations, or via numeri
al solution of the full equations. These two means ofdetermining the velo
ity �elds are des
ribed in 
hapters 4 and 5 respe
tively.The �x and �z values are very likely to be di�erent for ea
h 
ell used in a model.Potentially a unique tent distribution is required for ea
h 
ell. Appli
ation of tentdistributions in a tidal situation also relies on organismal di�usion being divor
edfrom the 
ow �elds in that its appli
ation is una�e
ted by the lo
ations and move-ments of the tra
ked parti
le during a tidal 
y
le. The issue of dispersion 
ausedby an intera
tion of adve
tive and random motion at sub-tidal times
ales raisesdoubts about the validity of di�usion imposed only at the end of deterministi
tra
king. This is 
ertainly the 
ase if the 
ow �elds are strongly divergent. Itwould again be true if animal behaviour in the form of rea
tion to 
hanges in the
ow �eld or some other fa
tor, (su
h as salinity), were to be modelled. A further51




ompli
ation arises when the bathymetry is no longer straight sided. The methodof images at a re
e
ting boundary, e�e
tively folding the distribution about theboundary, be
omes 
ompli
ated.Redistribution matri
es from parti
le tra
kingTo a

ommodate s
enarios where the use of displa
ed tent distributions is less
onvenient or inappli
able, the work of this thesis also generated redistributionmatri
es obtained from parti
le tra
king. In its simplest form the parti
le tra
kingalgorithm uses the same dis
rete spatial representation of the domain as thepopulation model. From the 
entre of ea
h 
ell the program tra
ks a spe
i�ednumber of parti
les, N , over �t, the time step used for the population model.Assuming velo
ities within the domain 
an vary with spa
e and time, parti
letra
king is performed over timesteps, Æt, mu
h smaller than those used for thepopulation model. The average velo
ity over ea
h period Æt is obtained usinga fourth order Runge-Kutta algorithm. In the same way as parti
le tra
kingused to produ
e the most general form of displa
ed tent distribution, the valuesof instantaneous velo
ity used by the Runge-Kutta algorithm were derived fromsnap shots of 
ow �elds, de�ned either by solution to a simpli�ed set of 
uiddynami
 equations, or via numeri
al solution to the full set of equations. Be
ausea parti
le's position at any parti
le tra
king timestep is unlikely to 
oin
ide witha velo
ity data value position, instantaneous velo
ity values are interpolated inspa
e. If the timesteps Æt are smaller than the time gaps between snap shotvelo
ity data �les the instantaneous velo
ity values are also interpolated in time.Organismal di�usion is added at the end of ea
h tra
king timestep by assumingit is a white noise velo
ity with power spe
tral density p2�x;p2�z, that is thedispla
ement varian
es over the time interval Æt are de�ned as 2�xÆt and 2�zÆtin the x and z dire
tions respe
tively.
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In this approa
h Rp0;p is given byRp0;p = number of tra
ks from p0 to pnumber of repetitions, NThere is additional 
omputing overhead in the need to run the parti
le tra
kingprogram, 
ompared to generating displa
ed tent distributions. On
e a redistribu-tion matrix is 
ompleted, however, the population model runs exa
tly as before.Indeed, whereas the population model must handle any tent distributions thatattempt to pla
e population beyond re
e
ting boundaries, the population modelusing a redistribution matrix from a parti
le tra
king program is free from su
hissues, as they have been dealt with by the tra
king algorithm.Regardless of how the redistribution matrix is formed, if investigating the e�e
tof parameters that do not alter the spatial redistribution of population, the redis-tribution matrix only need be formed on
e and its 
al
ulation 
an be 
onsidered`o� line'. The most important parameter in this respe
t is the per-
apita growthof the population, either through 
hanges in the intrinsi
 growth rate, or thewhole growth regime. Overall, use of a tra
king algorithm 
ombined with a dis-
rete population model 
an still be more 
omputationally eÆ
ient than numeri
alsolution of the partial di�erential equations.In Fig. 3.2 the numeri
al solutions to a 
ontinuous model representing a logis-ti
ally regulated population, as shown in Fig. 3.1 are reprodu
ed from (Speirsand Gurney 2001). Super-imposed on these results are ones obtained using par-ti
le tra
king and the dis
rete spa
e-time population model. The dis
rete modelis able to mat
h the 
ontinuous model very 
losely. The approximation is bet-ter than that a
hieved using the displa
ed tent redistribution matrix while using
omparable, or even greater values of �t. Use of parti
le tra
king performs better
lose to the boundaries.A good mat
h of the 
ontinuous solution was obtained over a range of values for�t and interval size �x. With � = 0:06, a �t value of 6hrs � 0:1r�1 workedwell. With � = 0:25, the peak values of the population distribution 
ould only be53
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Figure 3.2: Temporal development of a logisti
ally regulated population with anintrinsi
 growth rate of 0:39day�1, being adve
ted along a 1 km river with a ve-lo
ity of 0:001ms�1. Upper frames have �x = 0:06m2s�1. Lower frames have� = 0:25m2s�1. Right hand frames show the time history of average populationdensity. Left hand frames show the spatial distributions at t = 0 and the predi
teddistribution at t = 50days. Solid lines represent the 
ontinuous time numeri
almodel implementations, 
ir
les represent the dis
rete model. Dis
rete model: re-distribution matrix from parti
le tra
king. Upper frames: �x = 6m, �t = 6hrs,Parti
les tra
ked per 
ell 10000; Lower frames: �x = 6m, �t = 2hrs, Parti
lestra
ked per 
ell 12000; All frames Æt = 30s.repeated with �t = 2hrs. This is possibly due to the higher relative densities ofthe latter 
ase, su
h that population growth within an update in
rement is morelikely to be a�e
ted by the non-linear growth term.As would be expe
ted, the �delity of the dis
rete model is a�e
ted asN is redu
ed.In Fig. 3.3 the lower frames show runs with �x, �t and �x values as used in theupper frames of Fig. 3.2 but with de
reasing values of N .Conditions requiring 
orre
tions to di�usion 
oeÆ
ientsGurney, Speirs, Wood, Clarke, and Heath (2001) identi�ed a sour
e of potentialerror when using parti
le tra
king to form redistribution matri
es, dependingon the 
ombination of 
ell size, di�usion 
oeÆ
ient and update in
rement, �t.54
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Figure 3.3: Logisti
ally regulated population with an intrinsi
 growth rate of0:39day�1, being adve
ted along a 1km river with a velo
ity of 0:001ms�1,�x = 0:06m2s�1. �t = 6hrs. Upper frames: Parti
les tra
ked per 
ell 10000,�x = 6m(
ir
les), 10m(blue), 20m(green); Lower frames: �x = 6m, Parti
lestra
ked per 
ell 10000(
ir
les), 1000(red), 500(blue), 100(green).Considering the x dire
tion only, and assuming a population is only subje
t todi�usion, the redistribution matrix is required to satisfyXx (x� x0)2Rx0;x = 2�x�t (3.21)If we name the di�usion 
oeÆ
ient used by the tra
king algorithm, �T , then thetra
king operation produ
es a distribution of parti
le positions at �t whi
h isnormal with a zero mean and varian
e 2�T�t. Rx0;xj represents the fra
tion ofthe tra
ked ensemble whose �nal position lies in the 
ell 
entred at (j � 12)�x,where �x represents the 
ell size. Therefore, in the limit of a very large ensembleRx0;xj = 1p4��T�t Z j�x(j�1)�x exp � x24�T�t! dx (3.22)The value of �T should be su
h that when the 
omponent parts of the redistribu-tion matrix given by Equation (3.22) are summed, they satisfy Equation (3.21).55



By de�ning y � x=LD where LD � p2�x�t and � � �T=�x, and 
ombiningEquations (3.21) and (3.22) the problem be
omes one of 
hoosing � su
h that1 = 1p2�� Xx  x� x0LD !2 Z j �xLD(j�1) �xLD exp � y22�! dy (3.23)Solving Equation (3.23) for � numeri
ally allows the appropriate value of � tobe applied for any given 
ombination of �t, �x and desired �x. Gurney et al.(2001) showed that for �x < 0:1LD no 
orre
tion to the target di�usion 
onstantis ne
essary. For the approximate range 0:1LD � �x � 3:5LD, tra
king withthe target di�usion 
onstant produ
es redistribution matri
es whi
h imply ex
essdi�usion, that is � is a number less than one. On
e the normalised 
ell sizeex
eeds 3:5LD the situation is reversed, with use of the target di�usion 
onstantprodu
ing matri
es whi
h underestimate the required di�usion.Gurney, Speirs, Wood, Clarke, and Heath (2001) went on to 
onsider situationswhere parti
les are subje
t to both 
onstant adve
tion and di�usion. The 
or-re
tion fa
tor � was 
al
ulated from Equation (3.23), that is as if there were zeroadve
tion. It was found that for �x < 1:5LD both the adve
tion and di�usionwere rendered a

urately, (errors < 1%), by the 
orre
ted tra
king pro
ess. Avalue of �x=LD of up to 2 
ould be used for an error of approximately 10% butif the ratio of 
ell size to di�usion length were larger, error in
reased rapidly andbe
ame sensitively dependent on adve
tion velo
ity.The upper frames of Fig. 3.3 shows results for the 
ase where �x = 0:06m2s�1and �t = 6hrs, with the bla
k line showing the solution to the 
ontinuous model.The 
ir
les represent the result using �x = 6m, giving �x=LD � 0:1. The greenline represents the result using an un
orre
ted value of �x and �x = 20m, giving�x=LD � 0:4.
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Chapter 4
Analyti
ally derived 
ow �elds
4.1 Equations of motion for a Newtonian vis-
ous 
uidThe equations of motion for a 
uid are given by a 
ombination of a 
onservationof mass, or 
ontinuity equation, and a 
onservation of momentum equation. If anassumption of in
ompressibility is used, together with that of 
onstant density,then the 
onservation of mass equation 
an be written as�v1�x1 + �v2�x2 + �v3�x3 � r � v = 0 (4.1)where x1; x2; x3 represent the Cartesian axes, v1; v2; v3 are the 
omponents ofvelo
ity along the x1, x2 and x3 dire
tions, v is the velo
ity 
omponents in ve
torform and r� is known as the divergen
e operator.The momentum equation states that for an elementary volume of 
uid, the prod-u
t of its mass and a

eleration equals the total for
e a
ting upon it, that is�DvDt = �F +r � � (4.2)57



where the `body for
e', F is the for
e per unit mass a
ting on the body of the
uid and the `stress tensor', � is a tensor quantity whose elements, �ij, representthe for
e per unit area a
ting in the j dire
tion on a surfa
e with its normal inthe i dire
tion. The term r � � is used in the sense that(r � �)i = ��i1�x1 + ��i2�x2 + ��i3�x3 (4.3)A Newtonian vis
ous 
uid is de�ned su
h that�ij = �pÆij + � �vj�xi + �vi�xj! (4.4)where � is the 
oeÆ
ient of absolute vis
osity of the 
uid. It is a quantitydes
ribing the amount of random mole
ular motion within the 
uid, (and as su
his a property of the 
uid). The term Æij is the Krone
ker delta whi
h takes thevalue zero unless i = j in whi
h 
ase it is unity1. If we assume the absolutevis
osity to be 
onstant then the equation of motion for a 
omponent of velo
ity
an be written as
�DviDt = �gi � �p�xi + � ��xj  �vj�xi + �vi�xj!�DviDt = �gi � �p�xi + � ��xi  �vj�xj!+ ��2vi�x2j (4.5)where it is assumed the body for
e is given by F = (g1; g2; g3). A repeated j suÆxdenotes summation over the three dimensions. Thus�2�x2j = �2�x21 + �2�x22 + �2�x23 � r2where r2 is known as the Lapla
ian operator. Also1Here, the stress tensor is symmetri
, that is �ij = �ji.58



�vj�xj = r � vBut for an in
ompressible 
uid r � v = 0 so that Equation (4.5) be
omes�DviDt = �gi � �p�xi + ��2vi�x2j (4.6)and the momentum equation for all three dimensions be
omes�DvDt = �F�rp+ �r2v (4.7)Equation (4.7) is a form of what are known as the Navier-Stokes equations, thisparti
ular form assuming 
onstant vis
osity and density. If the only body for
e
omes from a uniform gravitational for
e, su
h that F = (0; 0; g) Equation (4.7)
an be simpli�ed by de�ning a modi�ed pressure P � p � �gz su
h that theequation be
omes DvDt = �1�rP + �r2v (4.8)where � is known as the kinemati
 vis
osity and is de�ned as� = �� (4.9)
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4.1.1 Transfer of momentum and shear stressesIf we take the x 
omponent of the Navier-Stokes momentum equations we 
anwrite it as follows
�DVxDt = �g1 � �p�x + � "�2Vx�x2 + �2Vx�y2 + �2Vx�z2 #�DVxDt = �g1 � �p�x + ��x  ��Vx�x !+ ��y  ��Vx�y !+ ��z  ��Vx�z ! (4.10)The quantities ��Vx=�y and ��Vx=�z are known as shear stresses2 as they gen-erate for
es parallel to the dire
tion of 
ow being 
onsidered due to the gradient,or shear, of the velo
ity in the se
ond dimension. Shear stresses and the resultantshearing of 
ow �elds are important in relation to bottom fri
tion and the verti-
al gradient in horizontal velo
ity su
h fri
tion 
reates in 
ombination with thevis
osity of the 
uid. Sheared 
ow is one me
hanism for the dispersion of passivetra
ers. The for
es o

ur be
ause of the transfer of momentum between planesparallel to the dire
tion of motion, due to mole
ular di�usion. Shear stressesare denoted using the stress tensor terminology �ij where the se
ond subs
riptdenotes the dire
tion of the for
e while the �rst subs
ript denotes the dire
tionof the momentum 
ux. So, for example�zx = ��Vx�z (4.11)

4.2 Turbulent 
owIn turbulent 
ow the velo
ity ve
tor is 
onsidered to be 
omprised of a mean
omponent denoted by an over-s
ore and a 
u
tuating 
omponent denoted by aprime, (Nunn 1989), su
h that the instantaneous velo
ity ve
tor is given by2��Vx=�x is a normal stress. 60



v = �v + v0 (4.12)Importantly, the mean of the 
u
tuating part of any individual velo
ity 
ompo-nent, (if taken over a suÆ
iently long time), is zero, but the mean of the produ
tof any two 
u
tuating velo
ity 
omponents is not zero.4.2.1 Equations of motion for turbulent 
owTo derive these equations the substantive derivative is �rst 
ast in a di�erentform as follows DviDt = �vi�t + vj �vi�xj = �vi�t + ��xj (vivj)� vi �vj�xj (4.13)For an in
ompressible 
uid the last term be
omes zero su
h that the substantivederivative be
omes DviDt = �vi�t + ��xj (vivj) (4.14)Writing the Navier-Stokes equations for the instantaneous velo
ity 
omponentsgives
�( ��t(�vi + v0i) + ��xj [(�vi + v0i)(�vj + v0j)℄) = � ��xi ( �P +P 0)+ �r2(�vi+ v0i) (4.15)This may be expanded and rearranged to show how the new Navier-Stokes equa-tions in
orporate those for the mean motion and those for the 
u
tuations, asfollows � h��vi�t + ��xj (�vi�vj)i+� h�v0i�t + ��xj (�vjv0i + �viv0j + v0iv0j)i 9>=>; = 8><>: � � �P�xi + �r2�vi��P 0�xi + �r2v0i (4.16)61



The momentum equations are expe
ted to govern the motion of the 
uid on anaverage basis as well as instantaneously (Nunn 1989), and taking a time averageof Equation (4.16) leaves only one surviving turbulen
e quantity, v0iv0j su
h thatthe equation be
omes� "��vi�t + ��xj (�vi�vj + v0iv0j)# = �� �P�xi + �r2�vi (4.17)As far as the a

eleration of the mean 
ow is 
on
erned the turbulent 
u
tuationquantities 
an be 
onsidered additional shear and normal stress terms, whi
h isillustrated by an alternative form of the above result�D �viDt = �� �P�xi + �r2�vi � ��xj (v0iv0j) (4.18)Equations (4.18) are known as the Reynolds equations and the last term on theright hand side represents the Reynolds stresses. In all but virtually laminar
ows these Reynolds stresses are orders of magnitude greater than those due tomole
ular di�usion. A strategi
 simpli�
ation to working with turbulent 
ow 
anbe made by 
onsidering the modelling of Reynolds stresses to be analogous tomole
ular vis
osity and then ignoring the latter on the basis of its mu
h smallere�e
t. To show this the Reynolds equation for the x dire
tion 
an be 
onsideredand written in the following form
�DVxDt = ��P�x + ��x  ��Vx�x � �V 02x !+ ��y  ��Vx�y � �V 0xV 0y!+ ��z  ��Vx�z � �V 0xV 0z!(4.19)It is now possible to de�ne eddy vis
osity su
h that, for example�V 0xV 0y = �N �Vx�y (4.20)and the appropriate shear stress term from Equation (4.19) 
an be written62



��y (�yx) = ��y  ��Vx�y � �V 0xV 0y! = ��y "(�+N)�Vx�y # (4.21)If it is then argued that the stresses due to mole
ular vis
osity 
an be ignoredthis leads to Equation (4.19) be
oming�DVxDt = ��P�x + ��x  N �Vx�x !+ ��y  N �Vx�y !+ ��z  N �Vx�z ! (4.22)where N is known as the 
oeÆ
ient of eddy vis
osity. In pra
ti
e N is nota 
onstant but varies with the magnitude of the velo
ity ve
tor and is not as
alar be
ause the turbulent 
u
tuations upon whi
h its de�nition is based aredire
tional and likely to vary throughout the 
ow. If these two assumptions aremade however, then the momentum equations for turbulent 
ow be
ome exa
tlyequivalent to the Navier-Stokes equations but with N repla
ing �. In pra
tise the
oeÆ
ient is split into three 
omponent parts, Nx, Ny andNz. Numeri
al s
hemes,su
h as the Prin
eton O
ean Model, (POM), des
ribed in 
hapter 5 do 
al
ulatetime varying values of these 
oeÆ
ients based on theories involving the gradientsof the time averaged velo
ity 
omponents. In subsequent equations dealing withturbulent 
ows the mean nature of the time averaged terms is 
onsidered impli
itand the over-line is omitted.If 
onsidering passive tra
ers within the 
ow, the des
ription of the 
on
entrationof tra
er over time and spa
e 
an be performed by use of an equation analogousto the momentum equation. Di�usive movement of tra
ers by turbulen
e hasbeen found from experiment to be similar but not equivalent to the spreadingof momentum in 
ows of near uniform density. Therefore new 
oeÆ
ients arede�ned, (Kx, Ky and Kz), whi
h are known as the 
oeÆ
ients of eddy di�usion.The ratio of eddy vis
osity 
oeÆ
ient to eddy di�usion 
oeÆ
ient is known asthe Prandtl number. Its value is often taken to be 1, although the value 
anmove well away from unity in the presen
e of density strati�
ation, as des
ribedbelow. In the analyti
al population models and dis
rete spa
e-time simulationsthe `di�usion' 
oeÆ
ients used represent a potential mixture of 
uid 
ow and63



organismal indu
ed di�usive movement. They might also be representing disper-sion rather than pure di�usion. They are therefore given the separate notationof �x; �y; �z.In general the Navier-Stokes equations, in laminar or turbulent form, 
an onlybe solved analyti
ally for spe
ial 
ases. Otherwise numeri
al methods must beemployed. For initial investigations of persisten
e in adve
tive environments,however, valuable insights 
an be gained using analyti
 
ow regimes derived fromstrategi
 simpli�
ations to the problem. These are 
onsidered after spe
ial fo
usis given to the verti
al 
omponent of turbulen
e.
4.3 Verti
al turbulent eddy vis
osity and di�u-sionIt will be seen in later se
tions and 
hapters that the value of the verti
al 
om-ponent of turbulent eddy vis
osity is an important 
onsideration in relation toprodu
ing Lagrangian residual movements from the analyti
 treatment of tidal
ows presented in se
tion 4.5. If it is 
onsidered that an animal has a randommovement not very di�erent to that for a passive tra
er, that is a movementalmost solely determined by water movement, then the value of verti
al eddydi�usivity is very signi�
ant for analyti
 population persisten
e results in two di-mensional river 
ow. Finally, when produ
ing a transition matrix for the dis
retetime population model from solutions to the 
uid dynami
 equations and parti-
le tra
king, di�usion must be imposed at ea
h tra
king timestep to prevent alltra
ks following the same path. The verti
al eddy di�usivity values that wouldbe expe
ted from the type of 
ow being 
onsidered provide an obvious guide tothe verti
al di�usion 
oeÆ
ient, �z, to be applied in the tra
king program.For a two dimensional 
ow, referring to Equation (4.20), the verti
al eddy vis-
osity Nz is related to the shear stress �zx by64



�zx = �V 0xV 0z = Nz dVxdz (4.23)For steady 
ows, (rivers), values for the verti
al 
omponent of eddy vis
osity
an be dedu
ed after establishing a se
ond relationship between the shear stressand velo
ity pro�le. In 
lassi
al hydrauli
 theory this is done by making use ofPrandtl's mixing length 
on
ept, whi
h des
ribes the average distan
e travelledby a blo
k of 
uid in turbulent 
ow before it suddenly a
quires the velo
ity ofthe 
ow at a di�erent lo
ation, (Smith 1975). This theory suggests the followingrelationship between the shear stress and the velo
ity gradient�zx = K 0�l2 �����dVxdz ����� dVxdz (4.24)where l is the mixing length and K 0 is a 
onstant of proportionality. If it isassumed that1. Near the bed the shear stress is 
onstant and equal to the stress on the beditself. That is �zx = �zxo = 
onstant.2. The s
ale of the turbulen
e is proportional to the distan
e from the bed.That is (K 0)1=2l / z where z represents distan
e from the bed.then (K 0)1=2l 
an be repla
ed by �z where � is a 
onstant known as von Karman's
onstant. Experimental determinations have 
on
luded that the value of � isabout 0.40 or 0.41. Using these assumptions and a value of von Karman 
onstantof 0.4 Equation (4.24) 
an be re-
ast asdVx = s�zxo� 10:4 dzz (4.25)The quantity q�zxo=� has the dimensions of velo
ity and is known as the fri
tionor shear velo
ity and is given the symbol Uf or U�. Solving Equation (4.25) gives65



Vx = 2:5s�zxo� ln� zC� (4.26)The 
onstant of integration, C, depends on the ratio between the height of rough-ness elements at the bed and the thi
kness of a laminar sub-layer whi
h is presentin all turbulent 
ows. For natural rivers and estuaries the roughness elements al-most always proje
t beyond the sub-layer, (dynami
ally rough 
ow), and for su
h
ow C is dependent only on the height of roughness proje
tions, rp. The rela-tionship is found from experiment to be C = rp=30 su
h that Equation (4.26)be
omes Vx = 2:5U� ln 30zrp ! (4.27)Some o
eanographi
 
al
ulations, in
luding those represented within the Prin
e-ton O
ean Model, (POM), express Equation (4.26) in the formVx = 2:5U� ln� zzo� (4.28)where zo is known as the roughness parameter. If dynami
ally rough 
onditions
an be assumed for the 
ow then zo is a
tually related to the size of roughnesselements3 in the bed by zo = C = rp=30.Maintaining the assumption that shear stress is 
onstant up the water 
olumn,then given that U� = q�zxo=� = 0:4z(dVx=dz) and using Equation (4.23), (�zxo =�z(dVx=dz)), it 
an be seen that3For the relationships zo = C = rp=30 and C = rp=30, rp only represents the a
tual physi
alheight of roughness proje
tions if those roughness proje
tions are distributed in a uniformmanner, (Smith 1975). If the spread of proje
tions is uneven, or the grains vary in size, then an`equivalent roughness height' is employed. There is, however, no de�nite 
orrelation betweengrain size and equivalent roughness height, (Chanson 1999, page 235)
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Nz = �0:4U�z (4.29)if Nz is to represent the turbulent equivalent to dynami
 vis
osity ornz = 0:4U�z (4.30)if nz is to represent the turbulent equivalent to kinemati
 vis
osity. In otherwords eddy vis
osity in
reases linearly with distan
e above the bed, regardlessof velo
ity pro�le. For a gradient 
urrent, su
h as rivers, where 
ow is due togravity alone, U� 
an be 
al
ulated from the relationU� = qgHS (4.31)where g is a

eleration due to gravity, H the total depth of the water and S theslope of the water surfa
e. Using this result the verti
ally averaged value of theeddy vis
osity 
oeÆ
ient is found to benz = �6U�H � 0:0667U�H (4.32)Laboratory studies of steady 
ow have found that the verti
al eddy vis
osity doesnot in
rease linearly with depth but has a magnitude whi
h is roughly paraboli
in shape with a maximum at approximately half depth and values of zero atbed and surfa
e, (M
Dowell and O'Connor 1977, page 65). An improvement onEquation (4.30) that allows reprodu
tion of this shape is given bynz = 0:4U�zq1� z=H (4.33)Equation (4.33) is a
hieved by assuming the distribution of shear stress is linearover the depth of the 
ow rather than 
onstant, while retaining a logarithmi
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velo
ity pro�le as des
ribed by Equation (4.27) or (4.28).The additional 
ompli
ation in 
onstant-density tidal 
ow, (as found when tryingto determine longitudinal dispersion), is the unsteady nature of the 
ow. Tur-bulen
e will be 
aused predominantly by bottom shear stress su
h that it 
ouldbe expe
ted possible to utilise Equation (4.30) or (4.33) but U� will vary from amaximum at maximum 
ood and ebb to virtually zero at sla
k tide. Engineeringstudies have often used the average value of U� over a tidal 
y
le, (Fis
her, List,Koh, Imberger, and Brooks 1979).In general, in shear 
ows the verti
ally averaged horizontal velo
ity, U , is founda distan
e 0:4H from the bed. Equation (4.27) or (4.28) 
an therefore be usedto determine a relation between the shear velo
ity and the mean velo
ity for agiven 
ow. As shear velo
ity is a diÆ
ult quantity to measure a formula usingthe verti
al mean velo
ity in its pla
e was suggested by Bowden (1967), namelynz = 0:0025HU (4.34)at the mid depth of the verti
al 
ross se
tion. If the tidal average value for Uis used then the tidally averaged value of nz at a horizontal lo
ation has beenderived using the verti
al average of the Eulerian residual velo
ity at that point.The value of the verti
al eddy vis
osity and di�usivity 
an be 
onsidered equal fora homogeneous estuary. Lewis (1987) 
onsiders that in general a value for thesequantities in su
h estuaries is of the order 0:01m2s�1. M
Dowell and O'Connor(1977) quote a range for su
h 
oeÆ
ients of 0:01 � 0:1m2s�1 for maximum in-stantaneous values and for tidally averaged values of 0:001� 0:01m2s�1.The pi
ture is 
ompli
ated further when density strati�
ation is taken into a
-
ount. A stable verti
al density gradient 
an redu
e turbulent ex
hange, or, if itis suÆ
iently strong, extinguish turbulen
e altogether. Any mixing now must be
aused by velo
ity shear at the py
no
line, (Dyer 1973). The Ri
hardson num-ber, Ri, is a 
omparison of the stabilising for
es of the density gradient to the68



destabilising in
uen
es of velo
ity shear. It is de�ned asRi = �g� ���z = �U�z !2 (4.35)For Ri > 0 strati�
ation is stable, for Ri = 0 it is neutral su
h that there is nodensity gradient in the verti
al and Ri < 0 signals instability, su
h that denserwater over-lies lighter water and gravitational for
es will exist to overturn thisphenomenon, thereby in
reasing turbulen
e. The point at whi
h strati�
ation issuÆ
ient to 
hange turbulent 
ow to laminar 
ow is generally taken to o

ur atRi = 0:25 for uniform 
ow. Flow is non-uniform in tidal 
ows, however, andthe transition is believed to o

ur at higher Ri. Field observations in the MerseyNarrows led to an empiri
al relationship between the verti
al eddy vis
osity inhomogeneous 
onditions, No and that in the presen
e of density strati�
ation, N ,namely hNi = hNoi (1 + aRi)b (4.36)where the 
onstants a; b were found to be 10 and �1=2 respe
tively, (M
Dowelland O'Connor 1977). The <> bra
kets indi
ate a tidally averaged value. Equa-tion (4.36) indi
ates a redu
tion in momentum transfer of 60% for Ri = 0:5 and86% for Ri = 5. Di�erent quantities are used to represent the 
oeÆ
ients ofeddy vis
osity and eddy di�usivity of s
alars partly be
ause �eld work and lab-oratory experiments have shown that strati�
ation redu
es the verti
al transferof salt faster than momentum. Equation (4.36) 
an be used for eddy di�usivityof salt, K, as well as momentum but the 
onstants a; b 
hange to 3:33 and �3=2respe
tively. An Ri value of �ve leads to a 74 fold redu
tion in salt di�usion.The value of the Ri
hardson number also 
hanges 
ontinuously in an estuary.When tidal 
urrents are at their maximum, 
onditions might be roughly neutralin their surfa
e and bottom layers while the halo
line has stable 
onditions. TheColumbia River has Ri values rea
hing 5 at mid-depth. At those points in time69



when tidal 
urrents are diminished, however, it is possible for the whole water
olumn to be stable, (Dyer 1973).Fis
her, List, Koh, Imberger, and Brooks (1979) suggest that for a strati�edestuary the value of K 
an range between 1=10 and 1=100 the value of Ko duringa tidal 
y
le.
4.4 `Steady' turbulent 
ow: RiversAnalyti
 expressions for river 
ow are possible if the mean motion of the wateris 
onsidered. The nature of the 
uid 
ow is 
hara
terised by two ratios, theReynolds number and the Froude number. The Reynolds number, Re, representsthe ratio of inertial for
es to vis
ous for
es and is given byRe = V̂RH� (4.37)where V̂R represents the verti
ally averaged river velo
ity, H is the depth of theriver and � is kinemati
 vis
osity. As inertial for
es dominate vis
ous for
es
ow 
hanges from laminar to in
reasingly turbulent. For wide 
hannels, 
ow isde�nitely laminar for Re < 500 and turbulent for Re > 2000, with a transitionaryband between, (Smith 1975). The Froude number, Fr, is de�ned byFr = V̂RpgH (4.38)where g is the a

eleration due to gravity. The Froude number represents theratio of inertial for
es to gravitational for
es. If Fr < 1 
ow is designated as sub-
riti
al or tranquil 
ow. Where Fr = 1 
ow is 
riti
al and when Fr > 1 
ow issuper-
riti
al4. Generally, 
ow in streams and rivers under non-
ood 
onditions4Super-
riti
al 
ow is also known as shooting or streaming 
ow, (Davis and Barmuta 1989)
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are either sub-
riti
al-turbulent or super-
riti
al-turbulent, (Davis and Barmuta1989).4.4.1 1D 
ow: well mixed riverThe most basi
 representation of a steady 
ow with a signi�
ant mean 
omponentin only one dire
tion, the x dire
tion say, is to state that Vx = 
onstant. Althoughit appears a gross over-simpli�
ation this representation of 
uid 
ow is reasonablewhen 
onsidering highly energeti
 shallow streams and rivers.When the depth of the water body is equal to or less than three times the heightof the substrate roughness, or ro
ks and/or boulders extend all the way throughthe 
ow, lo
al 
ow is very dependent on individual substrate elements and verydiÆ
ult to determine even numeri
ally. Su
h 
ows are often 
hara
terised bysuper-
riti
al `white water' 
ommon in shallow ri�es, (Davis and Barmuta 1989).Su
h 
ows, however, still possess a mean motion whi
h, be
ause of the vigorousmomentum mixing 
aused by the high turbulen
e, is more or less uniform overthe depth.4.4.2 2D 
ow: weakly mixed riverIn deeper and more tranquil rivers, (those in the sub-
riti
al regime), turbulen
eis not enough to 
ause an approximately uniform verti
al pro�le of horizontalmomentum. To approximate the 
ow of su
h systems it is therefore importantto a

ount for the verti
al velo
ity pro�le 
aused by vis
ous for
es preventingmovement at the substrate and, (ex
ept in a laminar boundary layer), turbulentdi�usion mixing momentum between di�erent water depths. A logarithmi
 pro�le
an be established through the method of solving for Vx from the equation forbottom shear stress as detailed in se
tion 4.3. This, however, requires stipulationof the roughness of the bed in some form. An alternative approa
h is to 
onsidera simpli�ed form of the momentum equation.71



If the horizontal 
omponent of a steady two dimensional, (x,z), 
ow is 
onsidereduniform in the x dire
tion and all non-linear terms of the substantive derivativeare ignored Equation (4.22) redu
es to1� �P�x = Nx� �2Vx�z2 (4.39)For rivers the pressure gradient is a result of the slope of the free surfa
e, �, su
hthat Equation (4.39) be
omesg ���x = nx�2Vx�z2 ; nx = Nx� (4.40)Appendix B shows that if a no slip 
ondition is applied at the bottom then thehorizontal velo
ity at any depth is given byVr(z) = VR  1� � zH �2! (4.41)where VR is the velo
ity at the river surfa
e, H is the river depth and z thedistan
e below the free surfa
e. Determining the verti
ally averaged velo
ity, V̂R,reveals it is exa
tly two thirds the value at the surfa
e, su
h that Equation (4.41)
an also be written as Vr = 3V̂R2  1� � zH �2! (4.42)Extensive measurement in rivers has shown the mean velo
ity, V̂R to reside at adistan
e approximately 0:4H from the bed, (Smith 1975, page 34). To 
he
k thisrepresentation of the horizontal velo
ity we 
an set Vr = V̂R in Equation (4.42)and solve for z. This gives z = Hq1=3 su
h that V̂R o

urs at a distan
e fromthe bed of H(1�q1=3) � 0:4226H.
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4.5 Tidal estuaryIn general, the time and spa
e dependent 
ow-�elds whi
h result from 
ows expe-rien
ing tidal for
ing 
an only be determined numeri
ally. However, Chen, Shaw,and Wol
ott (1997) developed an analyti
 solution for a strategi
ally simpli�edtwo-dimensional, (x,z), representation of a tidally driven system. This solutionwas adapted by Speirs and Gurney (2001) to in
lude a river out
ow 
omponentand was used to model persisten
e of passive organisms.4.5.1 Linearised momentum equationThe model is spe
i�ed by a linearised version of the equation for the 
onservationof momentum (Equation 4.22), for the x-
omponent of momentum. It assumesturbulent 
ow, adopting a 
onstant 
oeÆ
ient of eddy vis
osity in the pla
e ofmole
ular vis
osity. The only fa
tor a�e
ting the pressure gradient is 
onsideredto be the horizontal variation in free surfa
e elevation, �, su
h that1�rP = g ���x (4.43)The momentum equation therefore be
omes�Vx�t = �g ���x + nx  �2Vx�z2 + �2Vx�x2 ! (4.44)where nx is the 
onstant 
oeÆ
ient of turbulent eddy vis
osity. It is then furtherassumed that, be
ause Vx 
hanges mu
h more slowly with x than with z, thatthe term �2Vx=�x2 
an be omitted, giving a �nal momentum equation of�Vx�t = �g ���x + nx�2Vx�z2 (4.45)The 
ontinuity equation is de�ned as 73



�Vx�x + �Vz�z = 0 (4.46)The verti
al velo
ity at the benthos is zero at all times, and so the rate of 
hangeof the lo
al surfa
e elevation, ��=�t � Vz(�) 
an be gained by integrating �Vz=�zup the water 
olumn. This gives���t = Z ��H �Vz�z dz = � Z ��H �Vx�x dz (4.47)where H is the depth below the mean free surfa
e. Equation (4.47) uses a verti
alaxis with the origin at the mean free surfa
e and de�ned positive skyward, anda verti
al velo
ity de�ned positive skyward, as is the 
onvention in hydrauli
s.Speirs and Gurney (2001) reversed the positive dire
tion in the verti
al, (whilemaintaining the same origin), su
h that the equation for surfa
e elevation be
omes���t = �Vz(��) = � Z H�� �Vx�x dz (4.48)The analyti
 solution for the two 
omponents of velo
ity are a
hieved by assumingthe variation in surfa
e elevation is not signi�
ant in 
omparison to the meandepth of the system. Then � << H, and Equation (4.48) be
omes5���t = � Z H0 �Vx�x dz = �H�Vx�x (4.49)Boundary 
onditions for the Speirs and Gurney (2001) version of the model spe
-ify that at the landward end of the system, (x=0), the only velo
ity present isthat from the river. The seaward end, (x=L) 
ontains a linear 
ombination ofthis river 
ow and a sinusoidal tidal 
omponent, so thatVx(0; 0; t) = VR; Vx(L; 0; t) = VR + VT 
os 2� tT 8t (4.50)5This result applies whether the assumption � << H is applied to Equation (4.47) or (4.48).74



where T is the tidal period.To allow in
lusion of the river 
ow, a no slip boundary 
ondition was set atthe bottom of the domain by Speirs and Gurney (2001)6 and a zero wind-stress
ondition applies at the mean free surfa
e su
h that�Vx�z �����z=0 = 0; Vx(x;H; t) = 0 8t (4.51)Given these boundary 
onditions solutions to Equations (4.45) and (4.49) are
Vx = VR  1� � zH �2!+ VT  sin kxsin kL!<��1� 
osmz
osmH� exp�i2� tT �� (4.52)and
Vz = VT  k 
os kxsin kL !<��exp�i2� tT �� �H � z + sinmz � sinmHm 
osmH �� (4.53)where k = 2�T 1pgH ; m = (1� i)p2 s 2�Tnx (4.54)Intermediate working is 
ontained in appendix B.The work of this thesis makes use of Equations (4.52) and (4.53) in order toprovide the velo
ities for a parti
le tra
king algorithm, as des
ribed in se
tion3.3.1. This in turn allows determination of the Lagrangian residual movementover a tidal 
y
le. When 
onsidering persisten
e of planktoni
 organisms, 
owsof most interest are those that, at depth, generate landward residual movement.6Chen, Shaw, and Wol
ott (1997) used a linear drag law for the bottom boundary 
ondition.If river 
ow was to be in
luded, however, then to maintain a linear momentum equation, a noslip 
ondition must be used. 75



When tra
king was applied to the solutions generated from Equations (4.52) and(4.53) it was found that su
h landward `
ows' only prove signi�
ant for tidal 
owsthat, in turn, generate variations in surfa
e elevation that 
an not be 
onsideredinsigni�
ant 
ompared to the mean depth of the system.When the free surfa
e rises above its mean value, both horizontal and verti
alvelo
ities for any point a given distan
e from the benthos will be 
al
ulated as ifthat point were a greater proportion of the distan
e toward the free surfa
e thanis a
tually the 
ase. When the free surfa
e falls below its mean value the situationis reversed. For a given volume of 
ow, the verti
ally averaged horizontal velo
itywill de
rease for a rising free surfa
e and in
rease for one whi
h is falling. Near thebenthos these e�e
ts are expe
ted to be dominated by the bottom drag. Be
auseof the no slip 
ondition at the bottom and the drag, (
aused by the eddy vis
osity),horizontal velo
ities near the benthos are small. The bottom drag also 
auses thevelo
ity gradient, �Vx=�z to be greatest near the bottom boundary. This gradientbe
omes small a relatively short distan
e from the boundary, and the shape of thevelo
ity gradient 
urve would only be modestly a�e
ted by variations in surfa
eelevation. Also, the e�e
tive and a
tual positions of a parti
le relative to thebenthos stay the same. Further up the water 
olumn the bottom drag e�e
tredu
es and then stops.The verti
al velo
ity at any depth, Equation (4.53), is obtained by di�erenti-ating Equation (4.52) and then integrating up to the required depth. Arti�-
ially high landward 
ows - during periods when the surfa
e elevation should beabove its mean level - lead to greater than desired absolute values of �Vx=�x,(as Vx(0; �; t) = VR 8t), and in
reased values of verti
al velo
ity. When sur-fa
e elevation is below its mean, seaward 
ows lower than the true value lead tosuppressed verti
al velo
ities.There is also a dis
repan
y between a parti
le tra
ked from an initial positionat or 
lose to the water surfa
e and the value of the free surfa
e as 
al
ulatedfrom Equation (4.49). A parti
le whi
h moves above the mean free surfa
e level76



re
eives a verti
al velo
ity 
al
ulated by integrating �Vx=�x up to its given alti-tude. The movement of the surfa
e elevation, ��=�t, is only 
al
ulated using anintegration up to z = 0. The movement of the parti
le be
omes greater than thatof the free surfa
e and if both quantities are rising, the parti
le will rise above thefree surfa
e. In the work of Speirs and Gurney (2001) only deterministi
 tra
kswere performed (ignoring the issue of the free boundary) and the resultant resid-ual movements used as the basis for determining parameters for displa
ed tentdistributions, whi
h are des
ribed in se
tion 3.3.1. Using a population model witha time step equal to the tidal period, if the free surfa
e was assumed at its meanlevel at t = 0, it was only ne
essary to ensure parti
les were beneath the meanfree surfa
e at the end of the tra
king run. It was anti
ipated that in
orporatinganimal behaviour into a tidal system 
ould render use of displa
ed tents impra
-ti
able or impossible. The alternative is to in
orporate the random motions ofanimals into the tra
king algorithm. Su
h random movement 
an pla
e parti
lesover boundaries in a non-physi
al manner at ea
h tra
king timestep. As a 
on-sequen
e 
he
king parti
le position against the free boundary at ea
h timestepmust be performed and it be
omes more important to gain a true representationof the variation of the free surfa
e with time.4.5.2 Sigma 
o-ordinatesA modi�
ation to this analyti
 approa
h uses a form of sigma 
o-ordinate in theverti
al, adapting the true sigma 
o-ordinate system developed for the Prin
etonO
ean Model, (Blumberg and Mellor 1987). Blumberg and Mellor (1987) de�nethe instantaneous depth by D(x; t) = H(x) + �(x; t) (4.55)They then de�ne a new depth variable
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� = z � �D (4.56)This depth variable always has a value of zero at the free surfa
e (z = �) and -1at the bottom (z = �H). For the work in this thesis a new depth measure, z� isde�ned as follows z� = ��H (4.57)This new depth variable always has a value of zero at the free surfa
e (z = �)and H at the bottom (z = �H). To be 
onsistent with the work of Speirs andGurney (2001), z� is de�ned positive toward the benthos.The de�ning equations of the model, (Equations 4.45 and 4.46) be
ome�Vx�t = �g ���x + H2D2nx�2Vx�z2� (4.58)and �Vx�x + HD �Vz�z� = 0 (4.59)for the 
ontinuity equation. The 
hanges required for boundary 
ondition equa-tions are 
ontained in Appendix C. This appendix also 
ontains details of howthis new approa
h allows a new, and more self 
onsistent, means of 
al
ulatingthe rate of 
hange of surfa
e elevation with time.Use of Existing Solutions for Vx and VzThe expression (H2=D2)nx 
ould be 
onsidered to represent a 
oeÆ
ient of eddyvis
osity that varies as overall water depth varies. In other words a new term�E(x; t) 
ould be substituted for (H2=D2)nx. Attempting to take a

ount of the78



new time and spa
e dependen
e of the eddy vis
osity term, however, leads toa se
ond order di�erential equation in z� for the depth dependent part of thehorizontal velo
ity, (as was the 
ase for the altitude version of the model), butwhi
h now in
ludes the variation of surfa
e elevation with time, as shown inAppendix C. Rather than attempting to solve this more 
ompli
ated equationthe existing analyti
 solutions for Vx and Vz were adopted, but with verti
al
o-ordinate of the parti
le taken as the value in z�. The disadvantage to thisapproa
h is outlined below.In 
ontrast to the 
ase using a 
onventional altitude measure in the verti
al, whenthe free surfa
e rises or falls from its mean value, a parti
le a given distan
e fromthe benthos maintains the proportions of its distan
e above the benthos and itsdistan
e below the free surfa
e. When use of Equation (4.52) is made however,this has the e�e
t of determining the velo
ity as if the parti
le were 
loser to thebenthos than is a
tually the 
ase for a raised free surfa
e and as if it is furtherfrom the benthos for a free surfa
e below the mean level. Be
ause of the steepvelo
ity gradient near the benthos, parti
les in the shear 
ow region of the domaingain a higher than desired horizontal velo
ity as the free surfa
e falls and a lowerthan desired horizontal velo
ity as the free surfa
e rises.Returning to Equation (4.58), this repla
es nx by H2D2nx, whi
h implies that whenthe free surfa
e rises the eddy vis
osity term redu
es and vi
e versa. At thesame time when the free surfa
e is above its mean z� > z in terms of the distan
erepresented by a single unit. For a velo
ity gradient that in physi
al terms remainsthe same this implies �Vx�z� > �Vx�z by a fa
tor D=H. The e�e
t is again reversedwhen the free surfa
e falls below the mean level. The shear stress restri
tinghorizontal velo
ity at any depth in the model is given by HDnx �Vx�z� . Thus thetwo e�e
ts of the 
hange of 
o-ordinate do not a�e
t this for
e a
ting on a 
uidelement. If the fa
tor HD is not in
luded however, for a free surfa
e above themean the shear stress will be at an elevated value and given the fa
t Vx is zeroat the benthos this 
auses the Vx value to be redu
ed.79



4.5.3 Comparison of analyti
 solutions to those from a
uid dynami
s pa
kageTo de
ide whether the `altitude' or `sigma' 
o-ordinate version of the analyti
solution following Chen, Shaw, and Wol
ott (1997) provided the better approxi-mate 
ow �elds, residual 
ows produ
ed by ea
h version were 
ompared to outputgained from a 
uid dynami
s pa
kage, the Prin
eton O
ean Model, (POM), whi
his des
ribed in the next 
hapter. In its full form the POM pa
kage in
orporatestemperature and salinity as additional state variables and the e�e
ts of the varia-tion of these quantities on the momentum equations. For the 
omparisons of thisse
tion it was possible to disable these terms within the momentum equations. Inaddition, the non-linear momentum terms 
ould be eliminated and the 
oeÆ
ientof verti
al eddy vis
osity 
ould be made a �xed value, rather than one determinedby a turbulen
e 
losure s
heme. Unlike the analyti
 solution horizontal di�usionhad to be retained in order to prevent numeri
al instability and high frequen
ywaves persisting in the 
ow �elds7. The form of the momentum equation in the xdire
tion, in Cartesian 
o-ordinates, as used by POM for these 
omparisons was�Vx�t = �g ���x + nx�2Vx�z2 + Fx (4.60)where Fx represents the horizontal di�usion and is given by Fx = ��x [2AM �Vx�x ℄and where AM is the 
oeÆ
ient of horizontal kinemati
 eddy vis
osity.To remove as many 
onfounding e�e
ts as possible, initial 
omparison was madefor 
ows with no river 
omponent. Fig. 4.1 shows Lagrangian residual "velo
i-ties" obtained when VT = 0:3. Plot a) shows the result using 
ow �elds generatedby the Chen solution and a Cartesian verti
al 
oordinate while plot b) gives theresult from the modi�ed Chen solution with sigma verti
al 
oordinate used when
al
ulating horizontal velo
ities. Plots 
) and d) show residual velo
ities derived7In the analyti
 solution it is possible to pi
k the trial solution su
h that only the fundamentalmode is represented. 80



using 
ow �elds output from POM. To drive the POM model an open boundary
ondition has to be spe
i�ed at the seaward end of the domain. For the purposesof this 
omparison a velo
ity `in
ow' 
ondition was used with the velo
ities forea
h boundary 
ell being spe
i�ed by the analyti
 solution at that point in spa
eand time. Be
ause POM utilises a time splitting te
hnique,8 values for verti
allyaveraged velo
ity must be supplied as well as those for individual depths. Forplot 
) the verti
ally averaged velo
ity was determined by integrating the ana-lyti
 solution over the latest depth determined by the POM model. Velo
itiesfor separate 
ells were determined after 
onverting the 
urrent sigma value atwhi
h the 
ell velo
ity is de�ned to an absolute altitude. For plot d) the sigmaimplementation to the analyti
 solution was imposed at the boundary. Verti
allyaveraged velo
ity was determined ignoring variation in sea surfa
e elevation andthe lo
ations for de�ning 
ell velo
ities were 
onverted from full sigma 
oordinatesto a s
ale running between zero at the free surfa
e and H at the bottom.The resulting residual velo
ities using POM 
ows 
an be seen to be a mu
h
loser qualitative mat
h to the results obtained using an analyti
 solution withsimple Cartesian verti
al 
oordinate. This is true for POM 
ows using eithertype of boundary 
ondition for
ing. Exa
t agreement was never expe
ted, �rstlybe
ause of the need to retain horizontal di�usion terms in the POM solutionand se
ondly be
ause the POM model does not use a no slip 
ondition at thebottom boundary but, (as detailed in the following 
hapter) a version of the 'lawof the wall' together with a bottom roughness parameter to determine the velo
itypro�le near the bottom.On
e a domain is determined for a POM simulation velo
ities outside of thatdomain are unde�ned. To ensure the simulations for these 
omparisons werebeing driven by the 
orre
t velo
ities at the 
orre
t lo
ation, the open boundary ofthe POM simulation was pla
ed at the same lo
ation as the absorbing boundary8The model performs 
al
ulations to determine the verti
ally averaged and density inde-pendent aspe
t of the 
ow separately and then feeds the results of these 
al
ulations to 
odeperforming the full baro
lini
 
al
ulations at longer time intervals.81
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Figure 4.1: Residual velo
ity plots derived using 
ow �elds from a) Solution afterChen, Shaw and Wol
ott (1997), using Cartesian verti
al 
oordinate; b) Solutionafter Chen, Shaw and Wol
ott (1997), using � verti
al 
oordinate; 
) Prin
etonO
ean Model, (POM), with boundary 
ondition supplied by `Chen' velo
ities; d)POM, with boundary 
ondition supplied by semi-sigma `Chen' velo
ities. VT =0:3, VR = 0:0.of the theoreti
al domain. This meant that residual velo
ities 
ould only bedetermined by starting parti
le tra
ks from the low tide point in the tidal 
y
leand 
onsequently residual velo
ities 
an only be determined for starting positionsup to the approximate low water mark. Parti
le tra
king using the analyti
solutions are not subje
t to these restri
tions as velo
ities remain de�ned beyondthe absorbing boundary. For 
onsisten
y, residual velo
ity tra
ks were de�nedonly to low water mark in all 
ases. More signi�
antly, it 
an be argued thata logi
al in
onsisten
y o

urs if the region beyond the seaward boundary of thedomain is 
onsidered absorbing at instan
es of 
ompleted tidal 
y
les but notduring a tidal 
y
le.The true obje
tive in this thesis is to 
onsider the possibilities of persisten
e whenthere exists in the domain a net 
ow in one dire
tion. It was therefore importantto be 
ertain the Cartesian form of the analyti
 solution still represented thebetter of the analyti
 
ow �elds on
e river 
ow had been introdu
ed. Fig. 4.2shows residual velo
ities obtained when VT = 0:3 and VR = 0:005. The analyti
82



z 
(m

)

x (km)0 10

0

5

a)

z 
(m

)

x (km)0 10

0

5

b)

z 
(m

)

x (km)0 10

0

5

c)

z 
(m

)

x (km)0 10

0

5

d)

Figure 4.2: Residual velo
ity plots derived using 
ow �elds from a) Solution afterChen, Shaw and Wol
ott (1997), using Cartesian verti
al 
oordinate; b) Solutionafter Chen, Shaw and Wol
ott (1997), using � verti
al 
oordinate; 
) Prin
etonO
ean Model, (POM), with boundary 
ondition supplied by `Chen' velo
ities; d)POM, with boundary 
ondition supplied by semi-sigma `Chen' velo
ities. VT =0:3, VR = 0:005.solution with Cartesian verti
al 
oordinate 
an still be seen to be the best mat
hto either of the POM implementations.The river 
ow open boundary 
onditions must be imposed at ea
h end of thePOM domain. The analyti
 solution determines a �xed verti
al pro�le of rivervelo
ity and assumes no variation in water height whereas the height at ea
h openboundary varies. In these simulations the proportions of velo
ities assigned to
ells remained 
onstant but their absolute value was allowed to 
hange su
h thata 
onstant volume of water was input and extra
ted at river and seaward endsrespe
tively.4.5.4 Comparison with full `primitive equations' solutionTo obtain the analyti
 
ow solutions a number of simplifying assumptions hadto be made. As des
ribed in the next 
hapter, the assumption that horizontal83



di�usive terms are unimportant 
an be justi�ed via s
aling arguments and areused in simplifying numeri
al o
eanographi
 
ow models su
h as POM. It wasalways expe
ted that density variations would signi�
antly alter 
ows. The mainsour
e of density variation, espe
ially in shallow water, is due to salinity variation.Flows derived from the analyti
 solution 
ould be 
onsidered as representing thosefrom tidal rivers, or a very well mixed portion of an estuary in whi
h the verti
alpro�le of salinity is almost 
onstant.The redu
tion of the momentum equation to a linear form and the stipulation of a
onstant verti
al eddy vis
osity 
oeÆ
ient, however, is only performed be
ause ofthe diÆ
ulty in solving non-linear di�erential equations. To determine the di�er-en
e in residual velo
ity 
aused by introdu
tion of the non-linear terms residualvelo
ities arising from 
ow with VT = 0:3 and VR = 0:005 was determined using
ows from a POM run in
orporating these 
omponents. As su
h the momentumequation, (in the x dire
tion), now being solved by the POM model be
omes�Vx�t + Vx�Vx�x + Vx�Vz�z = �g ���x + nx(z)�2Vx�z2 + Fx (4.61)As detailed in 
hapter 5 o
eanographi
 pa
kages su
h as POM still retain a fewkey simplifying assumptions. The 
uid dynami
s equations 
ontaining these as-sumptions are known as the `primitive equations'.The verti
al dependen
e of the verti
al eddy vis
osity 
oeÆ
ient is determined bya turbulen
e 
losure algorithm within the POM pa
kage as outlined in the next
hapter. To avoid over pres
ription of the open boundary 
ondition, a sinusoidalsurfa
e elevation is pres
ribed. The verti
ally averaged horizontal velo
ities arethen 
al
ulated from the 
ontinuity equation but the depth dependent horizontalvelo
ities are allowed to be determined from a radiation 
ondition, (given thattheir average must be 
onsistent with the verti
ally averaged value). For a givenvalue of VT and VR, the parameters spe
ifying the surfa
e elevation in the POMmodel were taken from the results for surfa
e elevation of the semi-sigma analyti
solution. Fig. 4.3 shows the 
omparison to residual velo
ities derived from the84
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Figure 4.3: Residual velo
ity plots derived using 
ow �elds from a) Solution afterChen, Shaw and Wol
ott (1997), using Cartesian verti
al 
oordinate, VT = 0:3,VR = 0:005; b) POM, with in
lusion of non-linear terms in momentum equa-tion and 
oeÆ
ient of verti
al eddy vis
osity 
al
ulated from pa
kage's turbulen
e
losure s
heme. Boundary 
onditions supplied by spe
i�ed river velo
ities at land-ward end and surfa
e elevation at seaward end.Cartesian analyti
 solution for VT = 0:3, VR = 0:005, (the same result as displayedin Fig. 4.2, frame a)).From Fig. 4.3 it 
an be seen the 
ompensatory 
ow seen in the `Chen' solutionis absent on
e the non-linear terms are introdu
ed. After also performing 
om-parisons where only the non-linear 
omponents of the adve
tion were introdu
ed,the essential di�eren
e appears to be due to the stru
ture and magnitude of the
oeÆ
ient of verti
al eddy vis
osity.Chen, Shaw, and Wol
ott (1997) used a drag law 
ondition in the formnx�Vx�z = rVx(bot) = �o (4.62)where r is the fri
tion 
onstant and Vx(bot) the velo
ity at the bottom. A nor-malised parameter for bottom fri
tion was then de�ned as � � r=(!H) where! = 2�=T and T is the tidal period. A value of � = 0:5 implies r � 3� 10�4ms�185



for the depth used in their simulations of 4m and a tidal 
y
le of 12:42hr. Thisbottom fri
tion value was 
ombined with a value for nx of 2:25�10�5m2s�1, 
ho-sen 
hie
y to allow their 
hosen 
hara
teristi
 depth for di�usion, zd � (nx=!)1=2,to equal 0:4m. This value falls outside of the range normally asso
iated with ahomogeneous tidal system. The linearised equations are based on similar workperformed by Prandle (1982). Prandle de�ned the bottom boundary 
onditionto be 83�k ���Vx���Vx(bot) = �o (4.63)where Vx is the depth averaged velo
ity. Comparing results from the linearisedequations to �eld data Prandle (1982) derived a relationship between the 
onstantk and nx as follows nx = kVxH (4.64)Assuming the value of �o to be the same in equations (4.62) and (4.63) this givesa relationship between nx and r asnx = 3�rH8 (4.65)For r = 3 � 10�4ms�1 and H = 4 this relationship would give nx � 1:4 �10�3m2s�1, and the s
ale depth for di�usion be
omes zd � 3:16m. Combininga lower than expe
ted value of verti
al di�usion 
oeÆ
ient with a given fri
tionparameter allows shearing of the longitudinal 
ow, (due to bottom fri
tion), whileredu
ing the transfer of momentum, (
aused by the eddy vis
osity), that wouldwork to redu
e this shearing.The value of nx � 1:4 � 10�3m2s�1 is more in line with �eld study estimates of
oeÆ
ients in real systems. The values of verti
al di�usion 
oeÆ
ient determinedby the POM pa
kage vary with position and point in the tidal 
y
le. Values86



during periods of high tidal 
ow were in the region of 1�10�3�2:5�10�3m2s�1.It is unlikely the POM model is over-predi
ting verti
al eddy vis
osities (anddi�usivities) as in a 
omparison with laboratory data, Bur
hard, Petersen, andRippeth (1998, page 10553) found the model to under represent this quantity atintermediate depths for homogeneous 
ow.4.5.5 Signi�
an
e of buoyan
y e�e
ts.The literature on the general 
ir
ulation of estuaries suggests that buoyan
y ef-fe
ts, due to salinity di�eren
es between the river in
ow and sea water at oppositeends of the system, are very signi�
ant. This has proved to be the 
ase in thisinvestigation. Fig. 4.4 shows a run set up as for Fig. 4.3, frame b) with the ex
ep-tion that the river in
ow is given a salinity 2psu lower than any water drawn infrom the seaward end of the system. The resultant residual velo
ities are 
learlyvery di�erent to the 
ase when density was homogeneous and although 
omplex,there is also eviden
e of 
ir
ulations that 
ould also be expe
ted to enhan
e per-sisten
e. A di�eren
e in salinity of 2psu between river and sea water is mu
h lowerthan the normal di�eren
e in salinities between fresh water runo� and sea water,(whi
h 
an be as mu
h as 35psu). This di�eren
e was used to demonstrate thefa
t that only small variations in salinity 
an have a dramati
 e�e
t. For exam-ple, the Mersey Narrows has been observed to show the 
lassi
 residual velo
itypatterns of a partially mixed estuary. Salinity di�eren
es of 1psu were measuredbetween top and bottom and it was estimated verti
al salinity di�eren
e wouldrange between 0.5psu and 2.0psu, (Bowden and Sharaf El Din 1966).The 
omplexity of the patterns seen in Fig. 4.4 is thought to be for two reasons.Firstly the value of bottom fri
tion is 
onsidered to be rather high. It was avalue that worked well when the obje
tive was to mat
h the residual velo
itiesof the analyti
 solution. A value two orders of magnitude smaller is felt moreappropriate for the shallow systems being modelled and with the high verti
alresolution available from the model (espe
ially in 
omparison to when the same87
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5Figure 4.4: Residual velo
ity plots derived using 
ow �elds from POM, with in-
lusion of non-linear terms in momentum equation and 
oeÆ
ient of verti
al eddyvis
osity 
al
ulated from pa
kage's turbulen
e 
losure s
heme. Boundary 
ondi-tions supplied by spe
i�ed river velo
ities at landward end and surfa
e elevationat seaward end. Salinities between in
ows at landward and seaward ends di�erby 2psu.number of depth layers are being used to model the deep o
ean). Se
ondly, lowersalinity water is input a
ross the full depth of a re
tangular domain. Buoyan
ye�e
ts are generated all the way down to the maximum 5m depth at the landwardend of the system. Compensatory 
ow from denser water is for
ed to move deeperas it approa
hes the river end. The 
hara
teristi
 wedge shape of the denser water,
aused in large part by systems that be
ome deeper as they move seaward, is notable to form. The greater realism enabled by a sloping bottom was 
onsideredimportant in modelling systems with salinity e�e
ts and domains with slopingbathymetry were adopted when using the 
uid dynami
s pa
kage.
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Chapter 5
Computational 
uid dynami
sapproa
h to deriving 
ow �elds:POM
All analyti
 solutions to 
uid dynami
 equations require simplifying assumptionsin order to solve the di�erential equations. Hopefully, the assumptions still allowvalid solutions to be obtained for a restri
ted s
enario. In some 
ases, even 
on-sidering a restri
ted s
enario, the assumptions ne
essary may produ
e solutionswhi
h la
k signi�
ant features in the 
ow. In the last 
hapter it was seen that theanalyti
 solution, (following Chen, Shaw, and Wol
ott (1997)), for a tidally drivenestuary in
luding river 
ow but with 
onstant density di�ered from the solutionobtained from a 
omputational 
uid dynami
s (CFD) pa
kage, (the Prin
etonO
ean Model or POM), on
e the restri
tion of a linearised momentum equationhad been removed. More importantly the CFD pa
kage was required to inves-tigate persisten
e in s
enarios too 
omplex to obtain analyti
 solutions. Theses
enarios 
an be 
onsidered tidal systems involving non-uniform bathymetry, tidalsystems involving non-uniform density that then a�e
ts body for
es, or systems
ombining both these two aspe
ts.

89



5.1 Key assumptions made in o
eanographi
 CFDpa
kagesIn general, o
eanographi
 CFD pa
kages use as their starting point the full setof Navier-Stokes equations (Nunn 1989, pages 181{183) and apply simplifyingassumptions that lead to a set of equations known as the primitive equations.Temperature and salinity are important to o
eanographi
 
ows as they both af-fe
t density. The variation of density, as applied to the body for
e term of themomentum equations for 
uid elements is an important driver of 
ows. As a 
on-sequen
e temperature and salinity 
onservation equations are in
orporated intothe models. These equations 
an be 
onsidered analogous to the 
onservation ofmomentum equation but for s
alar quantities. They re
eive the same simplifyingassumptions as applied to the momentum equation.5.1.1 Boussinesq approximationIn the work deriving analyti
 
ow �elds the density of the water was assumed tobe 
onstant. For the primitive equations variations in density are ignored when
onsidering 
onservation of mass, (the 
ontinuity equation), and the horizontal
omponents of the momentum equations. The simpli�
ation is justi�ed on thegrounds that the variations in horizontal a

elerations for a given for
e, due tomass variations with density are too small to be signi�
ant (averaging over anentire o
ean the dis
repan
y is at most 3%, (Pond and Pi
kard 1983)) Within theverti
al 
omponent of the momentum equation density is again assumed 
onstantfor the a

eleration terms. This 
omponent also 
ontains, however, the gravitybody for
e, �g. Even though the variation in density over the depth of an o
eanis small 
ompared to the average value, its e�e
t through this term is 
apable ofgenerating signi�
ant 
urrents, (Mellor 1996) and so a
tual in situ values mustbe used when 
al
ulating the pressure �eld.
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In e�e
t this approximation is su
h that variations in density are negle
ted when
onsidering the inertia of the 
uid but not when 
onsidering its weight. This isre
e
ted in the use of a 
onstant density term in the horizontal 
omponents ofthe POM momentum equations (Equations 5.4 and 5.5), but a variable in situdensity term in the verti
al 
omponent of the momentum equations (Equation5.6). The approximation is known as the Boussinesq approximation after themathemati
ian who �rst suggested its use.5.1.2 Hydrostati
 approximationThe hydrostati
 approximation uses a s
aling argument. For o
eans the horizontals
ale of the domain is normally orders of magnitude greater than the verti
als
ale. If H is taken to represent the approximate depth and L to represent theapproximate length s
ale, then the s
ale of the horizontal variations of quantities(that is terms involving �=�x or �=�y) are taken to be of the order O(1=L) andthe s
ale of verti
al variations is taken as O(1=H). From the 
ontinuity equation,�Vx=�x+�Vy=�y+�Vz=�z = 0, the s
ales of the verti
al and horizontal velo
ities
an also be related by wo = uoO(H=L) where wo represents the order of theverti
al velo
ity and uo the order of horizontal velo
ities. If the z 
omponent of themomentum equation has this s
aling applied and all terms of order � O(1=L2) or� O(1=toL), (where to is the 
hara
teristi
 time s
ale), are ignored this 
omponentof the momentum equation redu
es to (Mellor 1996, pages 31{32)�p�z = �g�+ �o "O u2oL !+O(uofo)# (5.1)where fo represents the order of magnitude of the Coriolis for
e. The gravitybody for
e, �g is left unaltered for the same reason as in the Boussinesq approxi-mation. The pressure gradient term �p=�z is also left unaltered. This is be
auseotherwise the three 
omponents of velo
ity 
ould be determined independent ofthe 
ontinuity equation, whi
h generally 
ould then not be satis�ed(Mellor 1996).91



To obtain values of the pressure for insertion into the horizontal 
omponents ofthe equation of momentum Equation (5.1) 
an be integrated with respe
t to z andthen di�erentiated with respe
t to x or y. The last part of the s
aling argumentthen notes that the s
aling asso
iated with this integration and di�erentiationpro
ess is su
h that the quantities in the square bra
ket of Equation (5.1) aremultiplied by H=L and if this ratio is suÆ
iently small they may be negle
ted.Thus the z 
omponent of the momentum equation �nally redu
es to�p�z = �g� (5.2)This is the same as the hydrostati
 equation for a 
uid at rest, whi
h explains thename given to the approximation. This approximation is not restri
ted to o
eanappli
ations but 
an be applied to any situation where the verti
al distan
e overwhi
h velo
ities 
hange signi�
antly is mu
h less than the horizontal distan
es.It e�e
tively states that the a

eleration and vis
ous/turbulent terms that e�e
tthe verti
al 
omponent of velo
ity are unimportant in a thin layer.5.1.3 Boundary layer approximationsThe s
aling arguments that lead to the hydrostati
 approximation 
an also be ap-plied to the horizontal 
omponents of the momentum equation. Taken 
olle
tivelythe resulting simpli�
ations are known as the boundary layer approximations asthey are only valid if the 
uid involved has a verti
al depth mu
h less than itshorizontal extent1. For the horizontal 
omponents the s
aling e�e
tively simpli-�es the terms related to the Coriolis a

elerations and eliminates terms relatedto horizontal di�usion. In most appli
ations, however, the horizontal di�usionterms have to be reinstated. This is be
ause the grid spa
ing required to a
hievea reasonable program run length do not allow suÆ
ient horizontal resolution to1Whi
h in atmospheri
 
uid dynami
s is only true of the boundary layer region 
lose to theearth's surfa
e. 92



fully des
ribe the 
ow and di�usion has to be used to represent the e�e
ts ofthose unresolved 
ow patterns.
5.2 Outline of POM pa
kageAs its name implies the Prin
eton O
ean Model, POM, was developed at Prin
e-ton University and is des
ribed fully by Blumberg and Mellor (1987). The modeluses the full set of primitive equations des
ribing 
onservation of mass, momen-tum, temperature and salinity using the hydrostati
 and Boussinesq approxima-tions. To be 
onsistent with the literature des
ribing POM, notation is altered inthis se
tion su
h that U , V and W repla
e Vx, Vy and Vz as the three 
artesian
omponents of velo
ity. Following Blumberg and Mellor (1987) the equations are:the 
ontinuity equation �U�x + �V�y + �W�z = 0 (5.3)the Reynolds momentum equations�U�t + �U2�x + �UV�y + �UW�z � fV = � 1�0 �P�x + �(�uw)�z + Fu (5.4)�V�t + �UV�x + �V 2�y + �V W�z � fU = � 1�0 �P�y + �(�vw)�z + Fv (5.5)

�g = ��P�z (5.6)the integral of the hydrostati
 equationP = Patm + �0g� = g Z 0z �(x; y; z0)dz0 (5.7)the 
onservation equations for temperature and salinity (the mean temperatureand salinity equations) 93



�T�t + �UT�x + �V T�y + �WT�z = ��z (�w�) + FT (5.8)�S�t + �US�x + �V S�y + �WS�z = ��z (�ws) + FS (5.9)and an equation of state � = �(T; S) (5.10)The equation of state is that given by Fofono� (1962). The terms FU , FV , FTand FS are related to small s
ale mixing pro
esses not dire
tly resolved by themodel and parameterised as horizontal di�usion. These terms are given by:FU = ��x  2AM �U�x !+ ��y "AM  �U�y + �V�x !# (5.11)
FV = ��y  2AM �V�y !+ ��x "AM  �U�y + �V�x !# (5.12)
FT;S = ��x  AH �(T; S)�x !+ ��y "AH �(T; S)�y # (5.13)The horizontal kinemati
 eddy vis
osity, AM , 
an be given a 
onstant value, or
an be 
al
ulated a

ording to Smagorinsky (1963)AM = C�x�y12 ���5v + (5v)T ��� (5.14)where C is a user spe
i�ed 
onstant, (the Smagorinsky 
onstant), and12 ���rv + (rv)T ��� = 24 �U�x !2 + 12  �V�x + �U�y !2 +  �V�y !2351=294



The eddy vis
osity 
oeÆ
ient is therefore related to the spatial variation in ve-lo
ity values and the 
ell sizes. The advantage of this form of formulation is thatas 
ell size be
omes smaller and/or 
ows be
ome more homogeneous the value ofeddy vis
osity is automati
ally redu
ed. The 
oeÆ
ient of s
alar di�usivity, AH isregarded to be a �xed ratio to AM with AM=AH known as the turbulent Prandtlnumber, (Mellor and Yamada 1982). For isotropi
 turbulen
e the 
onstant Cshould be in the region 0.04, Ferziger and Peri
 (1999). Ferziger and Peri
 (1999,pages 270-271) 
ite several problems with the use of the Smagorinsky s
heme.The Smagorinsky 
onstant 
an be a fun
tion of Reynolds number and it shouldbe redu
ed 
lose to solid boundaries. Su
h e�e
ts are probably unimportant ino
ean basin s
ale 
al
ulations but the work of this thesis involves 
ows of higherReynolds number and it was found that the simpler approa
h of using a 
onstantvalue of AM 
ould provide the same qualitative 
ow �elds while being more likelyto ensure numeri
al stability.In the verti
al, the Reynolds stresses, uw and vw, and the turbulent heat andsalt 
uxes, w� and ws, are evaluated using the level 212 
losure model of Mellorand Yamada (1982) where �(uw; vw) = KM ��z (U; V ) (5.15)
�(w�; ws) = KH ��z (T; S) (5.16)KM and KH represent verti
al eddy vis
osity and verti
al di�usivity of heat andsalt respe
tively. They are given by(KM ; KH) = lq(SM ; SH) (5.17)SM and SH are stability fun
tions given in Mellor and Yamada (1982), while lrepresents the turbulen
e ma
ros
ale, (des
ribing the size of the largest turbulent95



eddies) and q2 is twi
e the turbulen
e energy2. The 
losure model used adds twomore prognosti
 equations to the model whi
h des
ribe the evolution of q2 andq2l.5.2.1 Boundary 
onditionsRemaining in the 
artesian representation of the model, boundary 
onditions atthe free surfa
e are given by:W = U ���x + V ���y + ���t (5.18)1�0 (�0x; �0y) = KM ��z (U; V ) (5.19)
QT = KH �T�z (5.20)
QS = KH �S�z (5.21)
q2 = 1�0 j�0jB2=31 (5.22)

q2l = 0 (5.23)Equation 5.18 is the 
ondition for Equation 5.3. Equation 5.19 gives the 
ondi-tions for the momentum equations 5.4 and 5.5, where �0 = (�0x; �0y) is the windstress ve
tor and �0 the surfa
e water density. Equations 5.20 and 5.21 relate to2The quantity q 
an be des
ribed as the turbulen
e intensity, (Bur
hard, Petersen, andRippeth 1998). 96



equations 5.8 and 5.9, where QS is the surfa
e salinity 
ux and QT is the surfa
eheat 
ux. Boundary 
onditions at the bottom are given byW = �U �H�x � V �H�y (5.24)where H represents the bottom topography.1�0 (�Hx; �Hy) = KM ��z (U; V ) (5.25)
q2 = U2fB2=31 (5.26)
q2l = 0 (5.27)In addition the normal gradient of temperature and salinity are set to zero at thebottom boundary. The term Uf is a shear velo
ity term whose value is determinedfrom the bottom shear stresses (�Hx; �Hy). The bottom stresses are determined bymat
hing velo
ities with the logarithmi
 `law of the wall'. This means, (assuminghorizontal 
ow in the x dire
tion only for simpli
ity), that the bottom stress isgiven by �Hx = �0CDjUbjUb (5.28)with the value of the drag 
oeÆ
ient CD given byCD = �1� ln(zb=z0)��2 (5.29)Here zb represents the height of the lowest de�ned velo
ity grid point above thebottom and Ub represents the velo
ity at that point, � is the von Karman 
onstant97



and the term z0 is known as the `roughness parameter'. When equations (5.25),(5.28) and (5.29) are used together they produ
e a verti
al velo
ity pro�le nearthe bottom boundary of the formU(z) = �Hx�Uf ln(z=z0) (5.30)where here z denotes the distan
e away from the bottom boundary.5.2.2 Mode splittingThe dynami
s of 
oastal 
ir
ulation 
ontain both the propagation of fast movingexternal gravity waves and slow moving internal gravity waves. Cal
ulations in-volving external waves, those determining the verti
ally integrated volume trans-port between 
ells and subsequently the free surfa
e elevations, must use a timestep suÆ
iently small that no wave will traverse a whole 
ell in that time. If
al
ulations a�e
ted only by the internal gravity waves, those dealing with theinternal verti
al stru
ture of the 
ow, 
an be 
al
ulated separately these 
al
u-lations 
an be 
al
ulated using longer timesteps. The POM model a
hieves thisby a te
hnique known as mode splitting. The volume transport equations areobtained by integrating the verti
ally stru
tured equations over the depth, elim-inating the verti
al stru
ture. These equations are known as the external modeequations, the unintegrated equations the internal mode equations. This te
h-nique implies that open boundary 
onditions must be supplied for both verti
allyintegrated velo
ities and velo
ities at individual 
ell depths.5.2.3 Sigma 
oordinatesThe POM model makes use of �-
oordinates for the verti
al. This 
oordinatesystem repla
es points in spa
e de�ned in the verti
al a

ording to an altitude onthe z 
artesian axis by a position de�ned relative to the positions of the bottom98



and free surfa
e. Be
ause the deepest � 
oordinate is always de�ned at thebottom this system is referred to as a bottom following 
oordinate system. Thereason for adopting this 
oordinate system is that when a model is 
ast in �nitedi�eren
e form, a smooth representation of the bottom topography is obtained. Itis also relatively easy to in
orporate a bottom boundary layer as well as a surfa
eboundary layer. By 
ontrast, it is diÆ
ult to model bottom boundary layers ina z-level model, (Mellor, Hakkinen, Ezer, and Pat
hen 1999). The ability to beable to 
ope with signi�
ant topographi
al variability is important when dealingwith estuaries and sea lo
hs. Resolving bottom boundary layers is also importantin modelling su
h systems, (Oey, Mellor, and Hires 1985a; Oey, Mellor, and Hires1985b)3. The horizontal eddy vis
osity (applied to the momentum equations)and di�usion (applied to s
alar quantities) in a numeri
 model in order to ensure
omputational stability 
an be 
onsidered as a sour
e of error, espe
ially if theirvalues are that mu
h greater than 
ould be 
onsidered justi�ed in reality. Use of�-
oordinates has been found to make models 
apable of operating with smallerpres
ribed values of horizontal di�usion, and, unlike z-level models, they are
apable of a

epting di�usion 
onstants 
al
ulated dynami
ally and related tovelo
ity values, su
h that in areas of low velo
ity these 
onstants take smallvalues (Mellor, Hakkinen, Ezer, and Pat
hen 1999).The set of equations 5.3 to 5.17 is therefore transformed using the relationship� = z � �D ;D � H + � (5.31)where � is the free surfa
e elevation and H is the depth below mean sea level.At the free surfa
e � = 0 (z = �) and at the bottom � = �1 (z = �H). Thedistan
e between levels at whi
h values are 
al
ulated for variables remain in�xed proportion to ea
h other independent of elevation or depth.3When topography is steep and the verti
al resolution 
oarse, errors in the pressure gradientsresult from the use of sigma 
oordinates (Mellor, Ezer, and Oey 1994; Mellor, Oey, and Ezer1998). However, use of a similarly 
oarse z-level model 
an lead to errors in the barotropi

omponent of the 
ow (Bell 1997). 99



The transformation leaves the U and V 
omponents of velo
ity with the samephysi
al meaning as for 
artesian 
oordinates. However, the 
artesian verti
al ve-lo
ity,W is transformed to !, whi
h physi
ally represents the velo
ity 
omponentnormal to sigma surfa
es. The transformation from ! to W isW = ! + U  ��D�x + ���x!+ V  ��D�y + ���y!+ ��D�t + ���t (5.32)The full set of the Equations (5.3) through (5.23), on
e 
onverted to take a

ountof sigma 
oordinates 
an be found in (Blumberg and Mellor 1987).5.2.4 Open lateral boundary 
onditionOpen lateral boundary 
onditions are an important and diÆ
ult 
omponent ofa CFD pa
kage. In e�e
t they are being used to spe
ify the environment, (interms of velo
ities, turbulent energy, salinity and temperature), exterior to thedomain. In this work domains were always assumed to run East, West with theNorth and South boundaries 
losed. In POM the q2 and q2l terms are 
onsideredto be 
al
ulated with suÆ
ient a

ura
y at the boundaries even after negle
tingadve
tion terms su
h that spe
i�
ation of exterior values be
omes unimportant.Temperature e�e
ts were not 
onsidered in this work and for the strategi
 studiesundertaken realisti
 but approximate estimates of salinity were suÆ
ient. Theseexternal values are used with an `upstream adve
tion' boundary 
ondition of theform �S�t + U �S�x = 0 (5.33)Velo
ity boundary 
onditions were more problemati
. For the 
omparison withthe analyti
 solution, after Chen, Shaw, and Wol
ott (1997), to a tidally driven
ow both the external, verti
ally integrated, velo
ity and the internal, verti
allystru
tured, velo
ities 
ould be spe
i�ed by the solution to the analyti
 equations100



at the boundary. For problems where no kind of analyti
 solution exists this 
annot be done. As the studies are strategi
 it is also not possible to drive the modelvia �eld data. In these 
ir
umstan
es the usual approa
h is to spe
ify the surfa
eelevation, (Blumberg and Mellor 1987). The external mode velo
ities were thendetermined from appli
ation of the verti
ally integrated form of the 
ontinuityequation. No information is available to determine the pro�le of the internalvelo
ities so a radiation 
ondition was applied of the form�U�t + 
i�U�x = 0 (5.34)where 
i represents the phase speed of the fastest internal waves It was 
al
ulatedusing Orlanski's s
heme, (Orlanski 1976).Although radiation 
onditions require no knowledge of desired boundary velo
i-ties, in 
ases where substantial in
ows are required as well as substantial out
owsthey 
an 
ause numeri
ally valid, yet nonphysi
al baro
lini
 stru
tures interiorto the boundary, (Mellor 1998). To test for this phenomenon, a version of POMwith the same simpli�
ations used to provide the 
omparison to the analyti
 tidalsolution in se
tion 4.5.3 was implemented, but with the open boundary drivenin the manner des
ribed above, the surfa
e elevation being assumed sinusoidalbut with an amplitude provided by output from the analyti
 solution. Fig. 5.1shows residual velo
ities over a tidal 
y
le resulting from use of 
ows from thismodel 
ompared to those from the POM model with analyti
ally de�ned velo
ityboundary 
onditions. The anti-
lo
kwise rotation in residual displa
ements seenat the seaward end of frame b) is known to be a 
onsequen
e of the radiationboundary 
ondition be
ause of the general agreement in residual velo
ity patternbetween the result shown in frame a) and that given by using 
ows from the an-alyti
 solution. Comparison of frames a) and b) also suggest that the pattern ofresidual velo
ities are possibly not seriously a�e
ted away from the open lateralboundary. Fig. 5.2 shows the result of extending the POM domain to double thelength of the domain being 
onsidered for persisten
e experiments.101
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Figure 5.1: Residual velo
ity plots derived using 
ow �elds from a) Prin
etonO
ean Model, (POM), with boundary 
ondition supplied by `Chen' velo
ities; b)POM, with boundary 
ondition supplied by sinusoidal surfa
e elevation. Surfa
eelevation set to mat
h those of a surfa
e tidal velo
ity of VT = 0:3. No river 
ow.
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Figure 5.2: Residual velo
ity plots derived using 
ow �elds from a) and 
) POM,with boundary 
ondition supplied by sinusoidal surfa
e elevation. Surfa
e eleva-tion set to mat
h those of a surfa
e tidal velo
ity of VT = 0:3; b) Prin
eton O
eanModel, (POM), with boundary 
ondition supplied by `Chen' velo
ities. Frame 
)displays the whole of the extended domain used to distan
e open boundary e�e
tsfrom the area for study, frame a) shows the resulting residual velo
ities suppliedto a tra
king algorithm if the domain's absorbing boundary is assumed to be athalf POM domain length. No river 
ow.102



z 
(m

)

x (km)0 10

0

5

a)

z 
(m

)

x (km)0 10

0

5

b)

Figure 5.3: Residual velo
ity plots derived using 
ow �elds from a) Prin
etonO
ean Model, (POM), with boundary 
ondition supplied by `Chen' velo
ities; b)POM, with boundary 
ondition supplied by sinusoidal surfa
e elevation. Surfa
eelevation set to mat
h those of a surfa
e tidal velo
ity of VT = 0:3. In both 
asesriver 
ow is given by VR = 0:005 and there is in
lusion of non-linear terms inthe momentum equation.Residual velo
ities over the whole POM domain give an overall pattern mu
h asin frame b) of Fig. 5.1. However, if residual velo
ities are only 
onsidered in thelandward half of the domain, (frame a), Fig. 5.2), the resulting set have a pat-tern suÆ
iently similar to those generated using the pres
ribed in
ow boundaryvelo
ities (frame b), Fig. 5.2), to expe
t the qualitative nature of any persisten
eexperiments to be una�e
ted.The extent of non-physi
al 
ow generated by radiation lateral boundary 
ondi-tions is dependent upon the 
hara
ter of the 
ow within the domain. Fig. 5.3shows the 
omparison between residual velo
ities generated by the same two typesof lateral boundary 
ondition - operating on the same standard domain length -on
e a river 
ow, (VR = 0:005), and the non-linear 
omponents of the momen-tum equation are introdu
ed. The only di�eren
es that now appear 
on
ern thestrength of the seaward 
owing 
omponents of residual movement. In general, theonly means of determining whether an open boundary has 
aused non-physi
al
ow features, and the extent of su
h features, is by visual inspe
tion of the 
owpatterns or residual velo
ities. 103



5.3 Flow �elds solved solely by CFD pa
kagesThe POM pa
kage is 
apable of three dimensional modelling. All runs 
ondu
tedin this study, however, were 
on
erned with two dimensional, (x,z) verti
al sli
es.As su
h the `steering' e�e
t of the Coriolis for
e 
ould not be 
onsidered and sothis for
e was disabled.5.3.1 Eliminating unwanted buoyan
y e�e
tsBuoyan
y e�e
ts are e�e
tively 
hanges to a 
ow �eld, (as derived assuminguniform density throughout the 
uid), 
aused by variations in density. Thesevariations 
an be 
aused by temperature and salinity. To isolate the e�e
t ofsalinity variations it was desired to remove any e�e
ts due to temperature. Thetemperature �eld 
ould be made steady by setting initial values and altering the
ode to e�e
tively eliminate Equation (5.8). In the absen
e of outside for
es thestati
 stability of a 
uid is determined by the buoyan
y frequen
y (or Brunt-V�ais�al�a frequen
y), N2. If N2 is positive a 
uid is stable, N is real and has thedimensions of frequen
y. It 
an be interpreted as giving the speed with whi
ha pa
ket of water, moved verti
ally from its resting position, would return tothat position. If N2 is negative the water is unstable and any displa
ement ofa water pa
ket will tend to be ampli�ed by the verti
al density variation. WithN2 = 0 the 
uid 
an be thought to be neutrally stable. The buoyan
y frequen
yis de�ned as N2 = g�dTdz + C�1p g2�2T � g�dSdz (5.35)where T is in situ temperature, Cp is the spe
i�
 heat 
apa
ity at 
onstant pres-sure of the 
uid, � the 
uid's 
oeÆ
ient of expansion and � = ��1(��=�S)p;T .Assuming salinity to be 
onstant eliminates the �nal term. The temperaturesused in POM are potential temperatures �, de�ned by104



���z = �T�z � dTadz (5.36)Here, Ta is the adiabati
 temperature, whi
h has a verti
al pro�le assuming
hanges in hydrostati
 pressure 
hange the temperature of the water with noheat transfer. The adiabati
 temperature pro�le is de�ned as, (Tritton 1988)dTadz = �C�1p g�T (5.37)If the potential temperature is assumed 
onstant throughout the domain then�T=�z = dTa=dz and substituting this ba
k into Equation (5.35) gives (stillassuming no salinity variation)N2 = g���C�1p g�T + C�1p g2�2T = 0 (5.38)Therefore, in the absen
e of salinity e�e
ts a uniform potential temperature �eldensures neutral stability and models were run with su
h.5.3.2 Buoyan
y, turbulen
e, verti
al mixing and POMOne of the important features of buoyan
y is the degree to whi
h it 
an make adomain strati�ed. As dis
ussed in se
tion 4.3, strati�
ation, whi
h 
an be repre-sented by the gradient Ri
hardson number, has an important e�e
t on the extentto whi
h turbulen
e 
an ex
hange momentum and s
alar quantities. The POMmodel 
al
ulates the stability fun
tion values in its turbulen
e 
losure routinefrom a 
ombination of empiri
ally derived 
onstants and a form of Ri
hardsonnumber.In real systems, when strati�
ation has eliminated turbulent di�usion of salt,verti
al transfer of salt a
ross a halo
line is still possible. The pro
ess is thatof entrainment, the one way pro
ess whereby salt water is transported from a105



low turbulen
e salt layer into a higher turbulen
e fresh layer by the breakingof internal waves 
reated at the fresh/saline interfa
e. The POM turbulen
e
losure model is unable to simulate entrainment. For suÆ
iently high Ri
hardsonnumber the value of the 
oeÆ
ient of verti
al di�usivity, KH falls to zero. As ameans to over
ome this, the POM model in
orporates a 
onstant, `UMOL', thatrepresents a minimum or `ba
kground' level of di�usion (and eddy vis
osity).Alternatively, a minimum value for the turbulent kineti
 energy 
an be spe
i�edwithin the 
losure s
heme algorithm itself, (Bur
hard, Petersen, and Rippeth1998). If 
omparing the model to �eld data for a strati�ed system either of theserepresentations of internal wave breaking 
an be tuned in order to mat
h thethi
kness and gradients of the strati�ed region.In strategi
 studies, 
hoi
e of this 
onstant 
an be an important fa
tor in de-termining the degree of strati�
ation displayed by the resultant 
ow regime. Inregions where the Ri
hardson number is high the 
al
ulated value of verti
al dif-fusivity will fall away to zero leaving the degree of salinity mixing di
tated bythe ba
kground value alone. This in turn in
uen
es the speed with whi
h strat-i�
ation is broken down away from the sour
e of buoyan
y, (Garvine 1999, page1899).5.3.3 Tidal estuary with salinity driven buoyan
y e�e
tsFigures 5.4 and 5.5 illustrate the di�eren
es the enhan
ed di�usion from a higherUMOL value 
an make. They represent the Lagrangian residual velo
ity from twoPOM runs using identi
al parameter values ex
ept for the value of the ba
kgrounddi�usivity. In Fig. 5.4 the value of UMOL is set at 2:0� 10�5m2s�1. This valueof ba
kground di�usion is suÆ
ient to enhan
e the mixing of lower, more salinewater with the fresh water in
ow but without breaking down the basi
 strati�ednature of the 
ow. The seaward residual movement in the upper portion of thesystem and the 
ompensating landward residual movement in the lower region areboth 
onsiderably enhan
ed over a salt wedge system experien
ing only minimum106
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7Figure 5.4: Residual velo
ity plot derived using 
ow �eld from POM, usingfull primitive equations. Open boundary 
ondition supplied by sinusoidal sur-fa
e elevation, tidal range �1m. River 
ow has per unit width dis
harge ofQf = 4:17 � 10�3m2s�1. Sea water at 35psu, river water at 0psu. Ba
kgrounddi�usivity 2:0� 10�5m2s�1.entrainment, as expe
ted from a partially mixed estuary, (see se
tion 2.1).In Fig. 5.5 the value of UMOL is set at 2:0� 10�4m2s�1. At this value of ba
k-ground di�usivity mixing is suÆ
iently strong to have broken down strati�
ation
ompletely before the seaward boundary of the system has been rea
hed, su
hthat the seaward end of the system is virtually homogeneous. At the bound-ary between the strati�ed and homogeneous se
tions downwelling takes pla
e asobserved in real estuaries, (Dyer 1987). The strati�ed portion of the estuarystill experien
es upper seaward and lower landward residual movements but thehomogeneous se
tion 
ontains only weak seaward residual movement.The s
aling arguments of the boundary layer approximations apply to the motionof s
alars su
h as salinity as well as to the velo
ity of the water itself. This in turnimplies that horizontal di�usion of salinity 
an be omitted. Di�usion of horizontalvelo
ity was retained 
hie
y to ensure numeri
al stability of the solutions. Thesame requirement was not ne
essary with respe
t to salinity and in fa
t in
lusionof di�usion of salinity had a tenden
y to undermine stability. Therefore horizontal107
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7Figure 5.5: Residual velo
ity plot derived using 
ow �eld from POM, usingfull primitive equations. Open boundary 
ondition supplied by sinusoidal sur-fa
e elevation, tidal range �1m. River 
ow has per unit width dis
harge ofQf = 4:17 � 10�3m2s�1. Sea water at 35psu, river water at 0psu. Ba
kgrounddi�usivity 2:0� 10�4m2s�1.di�usion of salinity was omitted for this work.5.3.4 FjordWork 
entred on retention of organisms in fjords were performed using two di-mensional, (x,z) verti
al sli
es along a `strategi
' representation of a fjord. Inother words, while no attempt was made to reprodu
e the sub-surfa
e topogra-phy, (bathymetry), of a spe
i�
 fjord, key features 
ommon to most fjords werereprodu
ed. The main body of the fjord is 80m deep, a value representative ofS
ottish sea lo
hs. The seaward end of the fjord rises steeply to a sill of relativelyshallow depth, (30m). Beyond the sill the depth in
reases again in a region rep-resenting the 
oastal sea, and this is where the open boundary is situated. Atthe landward end of the system the bathymetry again rises relatively steeply to ashallow se
tion where fresh water river in
ow is inje
ted. It is 
ommon for fjordsto have their main fresh water in
ow at the head of the system. To have a main108



body of fjord similar in length to the 
oastal plane estuary, while a

ommodatingthe additional features of sill, 
oastal sea and river se
tion, the overall length ofthe domain in
reases to approximately 25km.Spin-up and quasi-steady 
onditionsBe
ause of steady for
ing, (
onstant river in
ow volume and salinity, 
onstantsalinity of water beyond the open boundary and tidal elevation as a regular sinewave), a tidally averaged steady state 
an be expe
ted for both 
oastal planeestuary and fjord simulation. The nature of this steady state 
an not be known apriori and it takes a number of tidal 
y
les for it to be rea
hed. A standard wayto determine whether the density stru
ture of the system has been fully formed isto re
ord the domain averaged and tidally averaged salinity over su

essive tidal
y
les. The `spin-up' of the model is 
omplete when this averaged value 
easesto vary, that is whenDSE = 1T Z T0 �Z Z S dxdz � [Z (H + �)dx℄�1� dt = 
onstant (5.39)When modelling large and 
omplex real systems a
hieving a density stru
turethat mat
hes re
orded data, by driving the system using for
ing parameters fromthe same data period, 
an take many 
y
les. Galperin and Mellor (1990) regardedthe density stru
ture of the Delaware Bay and River system to have be
ome fullydeveloped only after 2 months of simulated 
ows. With the mu
h simpler andsmaller, (in terms of physi
al size represented), strategi
 estuarine systems under
onsideration for 
hapter 8 spin-up periods 
ould be 
onsiderably redu
ed. Forthe fjord runs, however, spin-up time was mu
h more 
omparable to those 
itedfor real systems. Enhan
ed seaward 
ow near the surfa
e takes time to rea
hthe open boundary. This is espe
ially true of the longer fjord system. Further,the large deep body of the fjord is only weakly 
onne
ted to the tidal for
ing,(the main sour
e of 
ow). Even after net seaward surfa
e 
urrents have be
omeestablished a
ross the domain, the full pattern of Lagrangian residuals 
ontinues109



to evolve.This se
ond 
onsideration is illustrated by �gs. 5.6 and 5.7. Ea
h �gure showsresidual velo
ities from 
ow �elds using the same run parameters but taken atdi�erent times from the simulation start. In Fig. 5.6 
ow �elds were taken duringtidal 
y
le 40. The surfa
e residual 
ow is well established and movements in thebody of the lo
h seem well established. However, Fig. 5.7, with residual 
ows
al
ulated using 
ow �elds taken during tidal 
y
le 80 shows the formation, inthe body of the fjord, of a distin
t landward 
ow just beneath the surfa
e 
ow.Comparison of these two �gures also shows large di�eren
es in 
ow seaward ofthe sill. Flows in this region, however, were not in
luded in the determinationof when 
ows were stable enough for persisten
e 
al
ulations. This was be
auseof the un
ertainty of the validity of 
ow patterns near the open boundary andbe
ause the fo
us of this thesis was persisten
e of organisms within the body ofthe fjord. To this end the domains of the parti
le tra
king program and �naldis
rete time-spa
e population program only extended a 
ertain distan
e beyondthe sill.As a minimum requirement, POM was run until DSE varied by less than 1% ofits value, but also a re
ord was kept of horizontal velo
ities at and adja
ent tothe open boundary. A model was judged ready when the salinity 
riteria wasmet and 
ows at the boundary appeared to be in a reasonably steady 
y
le.An illustration of variation in open boundary 
ows during spin-up of a fjord isgiven in Fig. 5.8. The model is set up with tidal elevations, river dis
hargeand ba
kground verti
al di�usivity as employed in Figs. 5.6 and 5.7. Althoughoutputs for three 
ells are plotted the values are very similar su
h that only onetra
e appears evident. The degree to whi
h this remained true was in itself usedas an indi
ation of the model remaining numeri
ally stable. Fig. 5.8 also shows
learly the high frequen
y os
illations present at the start of simulation runs that,to be dampened out, require the use of non-zero horizontal eddy vis
osity values.
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Figure 5.8: Horizontal velo
ity at open boundary as a fun
tion of time. Tra
esare for velo
ity at the open boundary and for two 
ells adja
ent to open boundary.There is eviden
e of low frequen
y, (wave length of several tidal 
y
les), variationin 
ows still present at the point where Lagrangian residuals were derived. Thise�e
t be
omes more pronoun
ed as river dis
harge is in
reased and is presumablydue to the greater energy being input to the system. Fig. 5.8 shows it 
learly asthe run presented had the strongest dis
harge used with the fjord bathymetry.The two layer residual 
ow pattern demonstrated in Fig. 5.7 might therefore bequite fragile. Su
h patterns are 
ited for real fjords and these runs were intendedto give a strategi
 representation of movements in a fully developed fjordi
 
ow�eld. Additionally, Dyer (1973) doubts if tidal systems ever establish a trueequilibrium. Indeed su
h an equilibrium is only theoreti
ally possible in thiswork be
ause of the simpli�
ation to both a 
onstant tidal 
y
le, (ignoring thespring/neap 
y
le), and river in
ow, together with the omission of the transiente�e
ts of winds. Residual movements were 
al
ulated when further 
omputationale�ort for 
ow �eld spin-up was 
onsidered ex
essive, although a run with riverin
ow stronger than that used for �gures 5.6 to 5.8 was abandoned as it appearedto be
ome in
reasingly unstable with time.112



Part III
Persisten
e of Passive and A
tiveOrganisms
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Chapter 6
1D systems: well mixed rivers
6.1 Passive organisms permanently in the driftAs des
ribed in Chapter 3, a balan
e equation for organisms in a one dimensionalsystem, whose population grows with a lo
al per-
apita growth rate, p(n), andwhi
h is subje
t to an adve
tion Vx and di�usion with 
oeÆ
ient �x 
an bewritten as �n�t = p(n)n� Vx�n�x + �x�2n�x2 (6.1)For passive organisms the quantity Vx 
an be 
onsidered dire
tly related to themean velo
ity of the water in the system and �x dire
tly related to the water's
oeÆ
ient of eddy vis
osity. They are not the same however, as even small organ-isms will possess an inertia that suppresses their movement relative to the wateraround them.
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6.1.1 Linear systemSpeirs and Gurney (2001) investigated the possibility for persisten
e in su
h asystem by 
onsidering populations where p(n) always equalled r, the intrinsi
growth rate and where the system was bounded by a re
e
ting boundary at theupstream end and an absorbing boundary at the downstream end. As shown inAppendix A they found that solutions were only possible if the following relationheld tan�� LLd� = �VdVx� (6.2)where Ld � q�xr�1 Vd � 2q�xr � � vuut1� �r � �VxVd�2 (6.3)From Equation (6.3) Ld represents the r.m.s. di�usive dispersal distan
e organ-isms 
an be expe
ted to travel in the time a population with per-
apita growthrate r in
reases in size by a fa
tor pe or � 65%, and Vd represents the equivalentvelo
ity of this movement. The term � gives the long term growth rate of theoverall population. It is obtained by �rst solving Equation (6.2) numeri
ally todetermine �, and then using the third expression in (6.3) to solve for �. Thislong term growth rate 
an take positive and negative values, the former indi
atingpopulation persisten
e and the latter washout from the system. The boundarybetween persisten
e and washout is therefore given when � = 0. By setting� = 0 in Equation (6.3) and ba
k-substituting for � into a rearranged form ofEquation (6.2) Speirs and Gurney (2001) derived an expression for the 
riti
allength, L
, at whi
h, for given values of the other parameters, the population ison the threshold of washout
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L
Ld = 24vuut V 2dV 2d � V 2x 35 ar
tan24�vuutV 2d � V 2xV 2x 35 (6.4)As Vx tends to zero L
=Ld tends to the value �=2, a result gained for popula-tions experien
ing di�usion but no adve
tion (Gurney and Nisbet 1998)1. As Vxtends toward the value of Vd the 
riti
al length goes to in�nity. Therefore, for agiven intrinsi
 growth rate and a given di�usion 
onstant, �x, only systems withadve
tion rates that satisfy Vx < 2q�xr (6.5)have the potential to sustain a persistent population. A 
orollary of the resultsfor L
 is that a 
riti
al velo
ity, V
, for the system 
an be seen to tend to zeroas the ratio L=Ld tends to �=2, implying no persisten
e is possible if life timedi�usive length be
omes suÆ
iently large 
ompared to overall system length. AsL be
omes large 
ompared to the value of Ld then the 
riti
al velo
ity tendstoward Vd.For a system of given length and a population with given per-
apita growth rate rand adve
tive displa
ement Vx, all the possible 
ombinations of L=Ld and Vx=Vdthat 
an be obtained from variation in the di�usion 
oeÆ
ient �x lie on thestraight line given by VxVd = 12 �VxLr� LLd (6.6)Fig. 6.1 shows 
ontours of 
onstant �=r in the L=Ld against Vx=Vd plane. Su-perimposed are straight lines produ
ed from Equation (6.6) but using di�erent1This 
riti
al length was �rst dis
overed by Skellam (1951), who 
onsidered a reprodu
ingpopulation subje
t to di�usion in a domain running from �xb � x � xb and with absorbingboundaries at ea
h end. Skellam found that persisten
e was only possible if xb � �2p�xr�1(
onverting to notation used in this text). This result was one of a number 
on
erning repro-du
ing populations experien
ing di�usion. 116
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onstant �=r de�ned by Equation (6.2), with the valuesof �=r as marked. Dotted line: set of �=r values made a

essible by varying thedi�usion rate with Vx=Lr = 0:434. Dashed line: set of �=r values a

essible withVx=Lr = 0:222. From Speirs and Gurney (2001), with permission.values of Vx=Lr. If this ratio is suÆ
iently small, Fig. 6.1 shows that there existsa range of di�usion 
oeÆ
ient values over whi
h persisten
e is possible for thepopulation. As this ratio be
omes larger, however, the �nite range of possible �xvalues be
omes progressively smaller. Speirs and Gurney (2001) determined tographi
al a

ura
y the marginal 
ase where persisten
e is just possible, (dottedline), whi
h gives a further inequality required for persisten
eVxLr < 0:434 (6.7)
6.1.2 Non-linear systemSpeirs and Gurney (2001) modelled the same system but with a 
onstant lo
alper-
apita birth rate repla
ed by one obeying the logisti
 equation, that isp(n) = r �1� nk� (6.8)117



They used the dis
rete spa
e-time model des
ribed in se
tion 3.3.1 with dis-pla
ed tent distributions providing the redistribution matrix. Be
ause the �xedper-
apita growth rate is 
onsidered to represent the intrinsi
 growth rate ofa population, the linear analysis developed 
onditions for the persisten
e of aninvading propagule and it was argued that for populations with p(n) made a de-
reasing fun
tion of density, no system in whi
h an invading propagule 
ould notgrow 
ould show a persistent population. Results using the non-linear growthterm supported this assumption. Combinations of the ratios L=Ld and Vx=Vdfrom whi
h the linear analysis predi
ted washout lead to washout in the non-linear model and equally 
ombinations leading the linear analysis to predi
t apersistent population did lead to results of persisten
e.In 
ases of persisten
e a reprodu
ing population, (
ited at some point along thedomain), would have some proportion of its total spread in the upstream dire
tionfast enough to over
ome adve
tion, that is, part of the population is physi
allymoved upstream. A steady in
rease with time in population density in the regionof the river sour
e results until the requirement of zero 
ux at the boundary,
oupled with the eventual e�e
ts of density dependen
e, 
reate a steady statedensity de
reasing toward the river sour
e so that di�usive movement upstreamexa
tly balan
es adve
tion downstream. Population density also falls away, (to-ward zero), as the seaward, absorbing boundary is approa
hed. As the boundaryis approa
hed ever fewer 
ontributions to population are available from down-stream.
6.2 SwimmingIn this se
tion the same 
uid dynami
s as in Se
tion 6.1 are assumed, that is a
onstant value of adve
tion, Vx, and di�usion 
oeÆ
ient, �x. In order to dis
ussthe e�e
t of swimming it is useful to 
onsider the movement of individuals as arandom variable within a statisti
al distribution. The displa
ement of a passiveparti
le over a time, � , is a normally distributed random variable with a mean of118



Vx� and standard deviation p2�x� . Its 
oeÆ
ient of variation is thereforeC(�) = p2�x�Vx� (6.9)Re-arranging Equation (6.5) we see thatVxr�1 < q4�xr�1 (6.10)If one takes � = r�1 then C(r�1) � Cg be
omes the 
oeÆ
ient of variation of thenet displa
ement of the organism over a generation. Substituting the inequalityof Equation (6.10) into Equation (6.9) gains a 
ondition on Cg for persisten
eCg � C(r�1) > p2�xr�1p4�xr�1 = 1p2 (6.11)6.2.1 Swimming against the average 
urrentIf an organism is assumed to swim upstream at a steady speed Vs, then therandom part of its dispersal is un
hanged but the average downstream velo
ityis redu
ed to Vx � Vs. The 
oeÆ
ient of variation of the average organismaldispla
ement over a generation is thusCo(r�1) = p2�xr�1(Vx � Vs)r�1 (6.12)From Equation 6.11 we have potential persisten
e if and only if Co(r�1) > 1=p2.If Cw is de�ned as the 
oeÆ
ient of variation of 
uid elements within the 
owthen Co(r�1)=Cw(r�1) is given byCo(r�1)Cw(r�1) = VxVx � Vs = 11� Vs=Vx (6.13)119



So the persisten
e 
ondition for the 
oeÆ
ient of variation of the 
uid elementdispla
ement over the generational time be
omesCw(r�1) > 1p2 �1� VsVx� (6.14)Equation 6.14 suggests swimming velo
ities small 
ompared to Vx have essentiallyno e�e
t on population persisten
e, while animals that 
an swim at velo
ities
omparable to the average water velo
ity require almost no di�usion to persist.From Equation 6.12 it 
an be seen that modelling swimming against the average
urrent is e�e
tively the same as modelling a passive organism, but for an averagewater velo
ity redu
ed by the amount Vs.Removing the logisti
 regulation from the model means long term populationgrowth reverts to being exponentially in
reasing or de
reasing. The in
uen
e ofthe ratio Vs=Vx 
an then be seen by 
omparing the long term growth rate, �, toVs=Vx. Fig. 6.2 shows these values of �, normalised by dividing by the intrinsi
growth rate, for a 
ase in the absen
e of behaviour of marginal non-persisten
e,(Vx = 0:001ms�1, �x = 0:06m2s�1 and r = 0:39day�1).To show how this behaviour 
an e�e
t the distribution of a logisti
ally regulatedpopulation and its average population density, Fig. 6.3 takes the same marginallynon-persistent s
enario, in the absen
e of behaviour. The initial population andthat after 50 days is shown in frame a) while the time history of the average pop-ulation density is shown in frame b). Lower frames show the e�e
t of introdu
ingVs values of 0:1Vx, 0:5Vx and 1:0Vx. Even for a value of Vs = 0:1Vx a 
onsiderablee�e
t 
an be seen on both population distribution and the long term averagedensity.
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Figure 6.3: Logisti
ally regulated population with an intrinsi
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ted along a 1km river with a velo
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urrent with
onstant velo
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6.2.2 Swimming against the instantaneous 
urrentThe term instantaneous 
urrent is a
tually used to de�ne, in this 
ontext, the
uid movement averaged over some time, � , a time 
onsiderably shorter than thetime required for the mean motion of the 
ow to dominate the size and dire
tionof movement. It is assumed that an organism, with a maximum swimming speedof Vs, swims against this instantaneous 
urrent, whi
h it mat
hes to within anormally distributed error ". It is further assumed that " has a mean of zeroand a standard deviation equivalent to a di�usion 
onstant �s. If the passivedispla
ement an organism would experien
e in the time � is W , then the 
ondi-tional probability density fun
tion for the organism's fa
ultative displa
ement, s,relative to the water movement in the same period is given by the Gaussianp(sjW ) = G�s; s(W );q2�s�� (6.15)where s(W ) = � WjW j min(jW j; Vs�) (6.16)Let Wr be the resultant displa
ement over the period � . This is given byWr = W + s (6.17)Any 
ombination ofW and s satisfying the restri
tion s = Wr�W gives the samevalue of Wr. Integrating the produ
t of the probabilities of getting s for a givenvalue ofW , andW over all possible values ofW therefore gives the un
onditionalprobability density fun
tion for the resultant displa
ement. That isp(Wr) = Z 1�1 p(W )p((Wr �W )jW )dW (6.18)122



The value of p((Wr�W )jW ) is given by Equation (6.15) withWr�W substitutedfor s, while p(W ) is given byp(W ) = G(W;Vx�;q2�x� ) (6.19)The values of �s, Vs and � need to be de�ned with 
onsideration to ea
h other.If we wish to investigate 
hanges in long term growth rate with 
hanges in Vs, itis reasonable to assume that over any period of averaging, � , the average errorin an organism's swimming speed will be some �xed per
entage of it's maximumswimming speed, Vs. This in turn requires �s to vary with Vs, rather than remaina �xed value. The root mean square distan
e of error in a time � is p2�s� . Apseudo velo
ity 
an be obtained from1�q2�s� = s2�s� (6.20)If a single, �xed value of �s is assumed, this pseudo velo
ity is una�e
ted bythe value of Vs. As Vs is redu
ed, a greater proportion of possible errors in theswimming speed be
ome 
omparable to the notional maximum swimming speeditself. Eventually Vs be
omes dominated by the swimming error.Equation (6.20) shows that the velo
ity error is a�e
ted by the value given to � .The value to be 
hosen for � is a mute point. The large size of even plankton in
omparison to water mole
ules and their individual di�usive movements guaran-tees some averaging in the response to water movements. A reasonable averagingtime, however, is diÆ
ult to determine. If the value of � is 
hanged for any rea-son, then �s must be 
hanged if one wishes to maintain the same relationshipbetween q2�s� and any given value of Vs.Taking the same values of Vx, �x and r that gave marginal non-persisten
e inthe absen
e of behaviour, (as in se
tion 6.2.1), a � value of 0:1r�1 was 
hosenand values of �s were 
hosen su
h that p2�s� = 0:1� Vs� 8 Vs. Fig. 6.4 shows123



numeri
al solutions to Equation (6.18) for Vs values of 0:0, 0:1Vx, 0:5Vx and 1:0Vx.The pdf displayed when Vs = 0:0 is, of 
ourse, the same as that in the absen
e ofbehaviour. Fig. 6.4 also shows the result for the pdf obtained from the parti
letra
king, population model 
ombination. Parti
les were tra
ked from one 
ell,(well away from the boundaries), for the period � . The population model wasthen run for a single timestep (again equal to �) with an initial population of 1in the same start 
ell and no population growth. This �gure shows the resultsobtained for the 
ase where Vs = Vx, �x = 1 and N = 60000.As dis
ussed in relation to Equation (6.20), for a �xed value of di�usion 
on-stant, the e�e
tive velo
ity of di�usion in
reases as the time interval 
onsideredde
reases. This implies that as the averaging time � is redu
ed, an organism isrequired to have a greater swimming speed in order to neutralise the di�usive wa-ter movement. Fig. 6.5 shows the e�e
t of varying � while maintaining Vs = Vx.The x-axis denotes Wr=� , a measure of velo
ity of the resultant movement. Asexpe
ted, as � redu
es, the pdf be
omes more spread, showing in
reasing propor-tions of water movement that have not been 
ounter-a
ted by swimming.6.2.3 Swimming against a moving averageA problem with the model of swimming against the instantaneous 
urrent asde�ned so far is that it requires an organism to instantaneously gauge the netwater movement over the forth
oming period � and swim a

ordingly; in e�e
tto predi
t the displa
ement due to water movement. A more realisti
 model
an be 
onsidered one in whi
h the organism swims against a moving averagebuilt up over previous time. The overall averaging period remains � , but themoving average is 
omposed of smaller timesteps. It is 
onvenient to make these
omponent timesteps, Æt, equal to the individual timesteps of the parti
le tra
kingprogram. If # represents the fra
tion of maximum swimming distan
e representedby the root mean squared di�usive distan
e of swimming error, this fra
tion needsto hold true over the period � . This gives the following relationship between �s124
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of the water movement by the organism. For 
omparison the solid line shows theresult obtained by swimming against the average 
urrent, (as seen in Fig. 6.2).Both models of swimming against an instantaneous 
urrent show signi�
antlyless improvement in �=r values as swimming speed in
reases relative to wateradve
tive velo
ity.The relatively poor performan
e of swimming against the instantaneous, pre-di
ted, 
urrent is underlined by re-
onsidering Fig. 6.4. This shows how theupstream region of the pdf, (negative values of Wr), is more e�e
tively redu
edthan the downstream region. The animal swims against both downstream andupstream 
urrents. Upstream 
urrents are on average smaller (be
ause of thenet downstream adve
tion) and so the animal is better at resisting them. Inter-estingly, by 
omparison, swimming against a moving average appears not only amore realisti
 model of behaviour, but also to a
hieve greater improvements inpersisten
e.
6.3 Clinging to the benthos: No fa
ultative move-ment in benthos or water 
olumn6.3.1 Extension of analyti
al solution to a 112D problemSe
tion 3.2.1 and Appendix A des
ribes the method for a semi-analyti
 deter-mination of the long term growth rate of a population in a one dimensionaladve
tion, di�usion system. It was found possible to extend this te
hnique tosolve for a system as before but with the addition of a benthi
 state and 
onstantrates of transfer between benthos and water 
olumn.To attain an analyti
 solution organisms are assumed to be stati
 while in theirbenthi
 `state'. A further simpli�
ation is to assume that the times spent in thedrift or in the benthos are independent of the river velo
ity, or more a

urately127



the organismal adve
tion and di�usion 
oeÆ
ient used for organisms when theyare in the drift. If, in addition, organisms are assumed to have exponential de
aydistributions for the benthi
 and water 
olumn residen
e times then the rate oftransfer between states are simple 
onstants. With these assumptions the single
ontinuity equation, (Equation 3.2), be
omes a 
oupled pair�n�t = p(n)n� �n+ �m� Vx�n�x + �x�2n�x2�m�t = p(m)m+ �n� �m (6.22)where m(t,x) represents population density in the benthos at time t and point x,� is the rate of transfer from benthos to drift and � is the rate of transfer fromdrift to benthos. As in the previous theory, it is only possible to derive analyti
solutions if the per 
apita growth rates are 
onstants. In the following solution itis assumed p(n) = p(m) = r.If the population in the benthos assumes the same long term spatial pattern asthat in the drift, then the population density in the benthos at all points is a
onstant multiple of the population in the drift at the same lo
ation. That ism = �n where � is the 
onstant of proportionality. With no movement in thebenthos the boundary 
onditions for this problem remain as in Equations (3.3)and (3.4).To simplify the problem the following s
aled terms are introdu
edT � t=t0 where t0 = r�1X � x=x0 where x0 = Ld � p�xr�1! � �=�0 where �0 = r� � �=�0 where �0 = r� � Vx=V0 where V0 = Vd � 2p�xr 128



Substituting these s
aled terms into Equation (6.22) yields a simpli�ed set ofequations
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�n�T = n� �n+ !m� 2� �n�X + �2n�X2 (6.23)�m�T = m� !m+ �n (6.24)with boundary 
onditions 2�n(0; T )� �n�X �����X=0 = 0 (6.25)
n(l; T ) = 0 (6.26)where l � L=Ld. Using the assumption m = �n solutions were sought of the form

n = e�T f(X)m = �n (6.27)where � = �=r is the s
aled long term growth rate. Ba
k-substituting intoEquations (6.23) and (6.24) and dropping the (X) notation gives�f = f � �f + !�f � 2� dfdX + d2fdX2 (6.28)and �� = � + � � !� (6.29)Using the relationship ��+!� = �(1��) from equation (6.29) in equation (6.28)gives 130



0 = (1� �)(1 + �)f � 2� dfdX + d2fdX2 (6.30)Appendix D shows that the general solution to this problem should be in theform f(X) = Ae�X 
os kX +Be�X sin kX (6.31)where � � � and solutions are only possible iftan kl = �k� (6.32)where k = s(1� �)�1� �1� �� !�� �2 (6.33)Converting equation (6.32) ba
k to dimensional form givestan�� LLd� = �VdVx� (6.34)where � is given by� = vuut�1� �r � 1 + �� + �� r!� �VxVd�2 (6.35)or � = vuut�1� �r � 1 + �r�r + �r � 1!� �VxVd�2 (6.36)
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Obtaining values of the s
aled long term growth rate �With parameters l and � �xed, equation (6.32) 
an be satis�ed by an in�nite seriesof values for k. From equation (6.33), however, it 
an be seen that negative valuesof k will always have a positive equivalent of the same magnitude. Be
ause allother parameters, (in
luding � and !), are held �xed this must be derived usingthe same value of �.Con
entrating on positive values of k, we investigate the relationship between kand �. Squaring k, to remove the square root, and di�erentiating with respe
t to� we obtain dk2d� = ��1� �! + �� 1��  �(1� �)(! + �� 1)2!= �1� �! + �� 1  1 + 1� �! + �� 1!= �1� �!(! + �� 1)2 (6.37)The produ
t �! is always positive, as is any term squared. Therefore dk2=d�is negative for any value of � showing that the maximum possible value of � isobtained from the smallest permissible value of k2 and, given the relationshipbetween positive and negative k values, the smallest positive value of k.The above suggests k = 0 provides the maximum possible � value. However,substituting k = 0 ba
k into the general solution given by equation (6.31) meansthat the right hand boundary of the system requires thatAe�l = 0 (6.38)This 
an only be satis�ed if A = 0, whi
h in turn implies f(X) = 0 8X and weare not interested in systems 
ontaining zero population density.With k = 0 ex
luded, the next value for positive k in whi
h the straight line132



�k=� 
uts the 
urves for tan kl is in the region �=2 < kl < �.Be
ause determining k involves a quadrati
 in �, it is possible for two values of � tosatisfy equation (6.32) for the single value of k of interest. As we are interested inthe largest possible long term growth rate we simply need to 
onsider the larger ofthe two roots. If we substitute $ � (1��) into Equation 6.33 then the quadrati
for obtaining the roots of � be
omes�$2 +$(! + � + �2 + k2)� !(�2 + k2) = 0 (6.39)Whi
h has roots given by
$ = (1� �) = 12(! + � + �2 + k2)� 12q(! + � + �2 + k2)2 � 4!(�2 + k2)� = 1� 12(! + � + �2 + k2)� 12q(! + � + �2 + k2)2 � 4!(�2 + k2) (6.40)6.3.2 E�e
t of ex
hange rates on proportions of popula-tion in drift and benthosSigni�
ant relationships between the s
aled long term growth rate �, the s
aledsinking and re-suspension rates � and !, and the 
onstant of proportionalitybetween benthi
 and drifting population density at any point, �, 
an be seenfrom 
onsideration of Equation (6.29). Gathering all terms involving � to oneside gives � = �(! + �� 1) (6.41)As � � 0 this implies �(! + �� 1) � 0 (6.42)133



As � � 0, two 
ases must be 
onsidered. If � > 0 then the following relation holds
! + � � 1� � 1� ! (6.43)If ! > 1, � 
an be
ome negative and therefore the dimensional long term growthrate � 
an be
ome negative. If ! = 1 then from Equation (6.43) � � 0 and if! < 1 then � > 0.If � = 0 then nothing 
an be inferred about the relationship between ! and � fromEquation(6.42). However, the trial solution of Equation (6.27) and the O.D.E. ofEquation (6.30) 
an be seen to 
ollapse down to the 
ase when all organisms arepermanently in the drift and the long term growth rate 
an be determined as inse
tion 6.1If ! is set to zero then Equation (6.41) be
omes� = �(�� 1) (6.44)As � � 0 and � � 0 and the maximum possible value for � is one, this implies that� = 0 also. Further � = 1, that is the long term growth rate equals the intrinsi
growth rate and/or � = 0. These results are reasonable if it is remembered thatpopulation in the benthos grows exponentially with no density dependen
e andwithout being subje
ted to any form of dispersal. With the rate of re
ruitmentto the drift equal to zero any population in the benthos at a point x will grow atthe intrinsi
 growth rate. To obtain a value of � less than one there 
an be nopopulation in the benthos, that is � must be zero.The value of � for any given 
ombination of �, l, �, and ! is again found fromEquation (6.29), that is 134



� = �! + �� 1 (6.45)If we de�ne N = n+m then using Equation (6.45), N 
an be expressed as
N = n�1 + �! + �� 1�N = n ! + �� 1 + �! + �� 1 ! (6.46)and the proportions of total population made up of individuals from the drift andthe benthos be
omes nN = ! + �� 1! + �� 1 + �mN = �! + �� 1 + � (6.47)If � = 1 then � = �=! su
h that m = (�=!)n, n = (!=�)m andnN = !! + �mN = �! + � (6.48)It is shown in se
tion 6.3.3 that the proportions of Equation 6.48 
an be predi
tedfrom a non-spatial Markov pro
ess with two dis
rete states (Cox and Miller 1990).More generally, � 
an be found by solving for � �rst, or by substituting for � fromEquation (6.40), giving

� = �(! � 1) + 1� 12(! + � + �2 + k2) + 12q(! + � + �2 + k2)2 � 4!(�2 + k2)� = �!2 � 12(� + �2 + k2) + 12q(! + � + �2 + k2)2 � 4!(�2 + k2) (6.49)135
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rease. This e�e
t 
an be seen in Fig. (6.8) whi
hshows graphs of m=N against � for the single value ! = 1:0 but for di�erent
ombinations of � and l. The 
ase equating to no horizontal movement in thesystem is also represented via a dashed 
urve. The values for � � Vx=Vd and137



l � L=Ld represent points on a straight line taken through Fig 6.1, (not drawn).As � in
reases and l de
reases we move to progressively lower values of �=r and,as expe
ted, the 
urves of Fig. (6.8) diverge from that equating to no horizontalmovement in the system. Thinking in physi
al terms, low values of ! and lowvalues of � equate to a population allowed a greater 
han
e to grow in the benthoswithout entering the drift, but with a higher 
han
e of being washed out of thesystem if entrained.6.3.3 Comparison to a two dis
rete state Markov pro
essThe assumptions about residen
e times and movements between the drift andbenthi
 states that allow an analyti
 solution to the problem of benthi
 
linging
an also be used as the basis of a statisti
al approa
h for assessing the proportionof population in ea
h state.Assuming exponential de
ay distributions for the benthi
 and water 
olumn res-iden
e times allows these distributions to have no 'memory'. If in addition themovement of the population in the drift is ignored and the population in driftand benthos is 
onsidered uniformly spread then the problem has 
eased to bespatial. It 
an now be dealt with as a Markov pro
ess with two dis
rete states(Cox and Miller 1990).The two states are that of being in the benthos (labelled state 0) and being inthe water 
olumn (state 1). Let the mutually independent and random residen
etimes in the benthos, fTb1; Tb2; :::g, and those in the water 
olumn fTw1; Tw2; :::gbe exponentially distributed with mean values of Tb and Tw respe
tively. Therates of transition between states are 1=Tb = � and 1=Tw = �. Given that anorganism is in state 0 at time t the probability of a transition to state 1 in theinterval (t; t+ Æt) is given by
138



p(S(t+ Æt) = 1jS(t) = 0) = �Æt+O(Æt2) (6.50)where S is the re
ord of the state of the organism.Now let pb(t) be the probability of being in the benthos at time t and pw(t) theprobability of being in the water 
olumn at the same point in time. The rates of
hange of these two probabilities are given by
p0b(t) = ��pb(t) + �pw(t);p0w(t) = ��pw(t) + �pb(t) (6.51)If the initial probabilities pb(0) and pw(0) = 1 � pb(0) are spe
i�ed, then thesolution to Equations 6.51 are given by

pb(t) = �� + � + (pb(0)� �� + �) e�(�+�)t;pw(t) = �� + � + (pw(0)� �� + �) e�(�+�)t (6.52)From Equation 6.52 it is 
lear that as t ! 1, then independently of the initial
onditions, the probability distribution tends topb = �� + � ; pw = �� + � (6.53)Therefore, for a population in the one dimensional domain, regardless of whatproportion are 
onsidered to start in the water 
olumn, after a time large 
om-pared with 1=(� + �), all organisms will have the same probability, �=(� + �)of being in the water 
olumn. With respe
t to investigating persisten
e throughsimulation, Equation 6.52 shows that the time-dependent terms vanish if pb(0) =pb; pw(0) = pw. Thus, if ea
h parti
le tra
ked to form the redistribution matrix139



starts in the water 
olumn with probability pw and in the benthos with proba-bility pb = 1� pw then { if ex
hange rates are suÆ
iently high in 
omparison tointrinsi
 growth { we 
an e�e
tively assume the proportion of time spent in thewater 
olumn to equal pw during the simulation.6.3.4 E�e
t of retention in the benthos on 
riti
al velo
ityThe previous se
tions show that with transition rates, � and �, suÆ
iently high,the proportions of population found in the drift and benthos 
losely approximatethose predi
ted by Equation (6.53). This equation suggests that with Vx and �x
onstant throughout the domain, and with organisms non-moving in the benthosand a
ting as passive parti
les in the water 
olumn, the e�e
t of transitions be-tween the benthos and water 
olumn is analogous to 
onsidering passive parti
lespermanently resident in the water 
olumn but subje
t to adve
tive water velo
ityof �=(� + �)� Vx and di�usion 
onstant of �=(� + �)� �x. With this assump-tion the 
oeÆ
ient of variation of the average organismal displa
ement over ageneration be
omes Co(r�1) = p2�xpwr�1pwVxr�1 ; pw � �� + � (6.54)As in the 
ase for swimming against the average 
urrent potential persisten
e ispossible i� Co(r�1) > 1=p2. In this 
ase Co(r�1)=Cw(r�1) is given byCo(r�1)Cw(r�1) = 1ppw (6.55)so for persisten
e we have the inequalityCw(r�1) > ppwp2 (6.56)Using the same assumption a predi
tion 
an be made regarding how the amount140



of time spent in the benthos a�e
ts the 
riti
al water velo
ity, V
, at whi
h per-sisten
e be
omes impossible. For passive organisms permanently in the water
olumn the relationship was found to beV
 = 2q�xr (6.57)If the organism spends the fra
tion, pw, of time in the water 
olumn this rela-tionship be
omes
pwV
(pw) = 2qpw�xrV
(pw) = 2qp�1w �xr (6.58)The relationship between V
 and V
(pw) is thereforeV
(pw)V
 = 1ppw ; V
(pw) = V
ppw (6.59)Plotting log(V
(pw)=V
) against log(1=ppw) gives a straight line with slope �0:5.This predi
ted relationship is shown as the bla
k line of Fig. (6.9). The otherlines show the 
al
ulated results for di�erent values of l � L=Ld. As the lengthof the system in
reases relative to the di�usion length the results more 
loselyapproximate the predi
ted relationship. With L=Ld = 10 this agreement be
omesvery 
lose ex
ept for high values of pw.For any given value of L=Ld the same line in Fig. (6.9) is obtained by 
hoosingany value of � or ! and then varying the other s
aled rate of state 
hange in orderto a
hieve the desired value of pw via use of Equation (6.47) with � set to zero.This assumes pw = n=N , that is the proportion of time an individual spends inthe drift is equivalent to the proportion of population found in the drift at anyone time. 141



0.0001 0.0010 0.0100 0.1000 1.0000
0

1

10

100

pw

V
c(

p w
)/

V
c

red:      l=10
green:    l= 5
blue:     l= 1
magenta: l= 0.1

Figure 6.9: Graph of the ratio of 
riti
al velo
ities (that for individuals spendingtime in the benthos against the maximum possible for passive parti
les found per-manently in the drift), against the proportion of the long term population foundin the drift. Bla
k line is the relationship predi
ted by Equation (6.59). Colouredlines are results for systems with di�erent values of l � L=Ld and V
(pw) deter-mined from Equations 6.47 and 6.40.The advantage in terms of persisten
e gained from time spent in the benthos isillustrated by the fa
t that even for a value of L=Ld = 0:1 non zero values ofVx are possible. By 
ontrast Speirs and Gurney (2001) found that for passiveparti
les permanently in the drift, it was not possible to a
hieve persisten
e foran L=Ld value less than �=2.6.3.5 Appropriateness of exponential residen
e timesThe above theory is based on exponential residen
e times for both the drift andbenthi
 states of individuals. The literature is very un
lear as to the timing andreasons for benthi
 animals to enter the water 
olumn. Exponential residen
etimes in the water 
olumn, however, is supported by theory and observations.With regard to benthi
 residen
e times, there has been 
onsiderable debate on142



whether drift entry is passive, (as the result of hydrologi
al displa
ement), or a
-tive, (Wilzba
h 1990). Po� and Ward (1991) 
ompared between day di�eren
esin drift density and drift rate of indigenous benthi
 inse
ts for three ri�es, (refer-en
e, experimentally in
reased 
ow, experimentally de
reased 
ow), in the upperColorado River. They found in
reased drift rates following 
ow redu
tion for sev-eral taxa in
luding Baetis (may
ies), Simuliidae, (bla
k
ies) and Bra
hy
entrusameri
anus, (
addis
y). This was 
onsidered indi
ation of a
tive drift joining asredu
tion in 
ow rate and velo
ity would be enough to redu
e the mean shearstress a
ting on the stream bed. For Baetis spp. several authors have reporteda
tive entry into the drift under 
onditions of low velo
ity, (Minshall and Winger1968; Corkum, Pointing, and Ciborowski 1977; Corkum 1978; Ciborowski 1983;Allan and Feifarek 1989). Drift density and rate results for other spe
ies - themay
ies Paraleptophlebia heteronea and Ephemerella infrequens and the 
addis-
y Lepidostoma ormea - seemed to suggest passive re
ruitment to be at least asigni�
ant 
omponent to these spe
ies' rate of entry to the drift. Statzner, Gore,and Resh (1988) 
ite results of laboratory experiments, performed on variousma
ro-invertebrates, to determine the maximum velo
ity that 
ould be with-stood before individuals were swept into the drift. For 
addis
ies, may
ies andstone
ies the velo
ities were well beyond what would normally be en
ountered innatural streams, lending support to a
tive drift entry.Su
h results do not provide the means to determine a rate of entry to the wa-ter 
olumn and the situation is 
ompli
ated further by the fa
t that 
on
i
tingresults, 
on
erning benthi
 (and drift) a
tivity, have been reported, even withinspe
ies, (Wilzba
h 1990). Statzner, Gore, and Resh (1988) 
on
lude that most�eld experiments, and indeed many laboratory experiments, are un-repeatableand not 
omparable be
ause too few hydrauli
 
hara
teristi
s are measured. Tofully 
hara
terise the hydrauli
 
onditions a
ting on benthi
 invertebrates mea-surements are required of mean velo
ity, depth, substratum roughness and tem-perature, the last used to determine the kinemati
 vis
osity of the water. Most�eld studies by 
ontrast provide only mean velo
ity and/or mean dis
harge and143



stream order. These last two measures are not so useful. Those hydrauli
 param-eters that seem to most signi�
antly 
orrelate to benthi
 population distributions
an vary 
onsiderably for the same dis
harge or stream order.With regard to residen
e times in the water 
olumn, Smith (1982) 
onsideredparti
les/individuals of negative buoyan
y introdu
ed to a 
olumn of 
ompletelystati
 quies
ent water 
olumn of depth H. It is then assumed that the terminalsinking velo
ity Vs of ea
h parti
le is a
hieved instantaneously and that parti
leswill 
ontinue to sink at speed Vs until they hit the bottom. The settling time fora parti
le initially at the top of the water 
olumn, t0, is therefore H=Vs.If a large number of parti
les are spread homogeneously through the water 
ol-umn, at a 
on
entration n0, these parti
les will then settle in times in the range0 � t0. At any intermediate time t less than t0 the proportion of the originalsuspension that has settled is given by n0Vst=H, and the proportion left in thewater 
olumn is therefore n0 � n0Vst=H.It is now assumed that at time t the 
olumn is instantaneously and homogeneouslymixed, su
h that parti
les still in suspension are evenly mixed throughout thewater 
olumn. Parti
les already on the bottom are 
onsidered prote
ted frommixing, a not unreasonable assumption given that turbulent 
ows have a laminarsub-layer. If the new 
on
entration over the water 
olumn is labelled nt then itsvalue is given by nt = n0(1� Vst=H) (6.60)If there are many instantaneous mixings { m say { in the time t0 rather than one,the periods of quies
en
e be
ome t0=m and the population remaining after the�rst and se
ond mixings be
ome
nt0=m = n0(1� Vst0=mH); n2t0=m = n0(1� Vst0=mH)(1� Vst0=mH) (6.61)144



The population density after the mth mixing (at time t0) be
omesnt0 = n0(1� Vst0=mH)m (6.62)Sin
e t0 = H=Vs Equation (6.62) simpli�es tont0 = n0(1� 1=m)m (6.63)As m be
omes large, Equation (6.63) tends towardsnt0 = n0(1=e) (6.64)where e is the natural logarithmi
 base.The above theory then, suggests exponential residen
e times with � being givenby � = 1=t0. In turn this gives � in terms of the sinking speed and overall depthas follows � = VsH (6.65)This result does not need a large number of mixing events within the time t0 tohold true, (Reynolds 1984), and fully developed turbulent 
ow in rivers 
an be
onsidered to have a very large number of mixing events within the timeframeneeded for planktoni
 settling. Even in 
ows where the water 
olumn might passbetween periods of turbulent and laminar 
ow, su
h as in tidal bodies at periodsof sla
k tidal 
ow, settling rates are likely to resemble the pattern for a turbulentwater 
olumn rather than one whi
h is quies
ent. Experiments on three spe
ies ofkilled phytoplankton gave results that mat
hed the time for 95% elimination fromthe water 
olumn predi
ted from Equation (6.64) to a good degree, (Reynolds1984, page 76). Elimination time was however in
uen
ed by the `form resistan
e'145



of ea
h spe
ies. Those with higher form resistan
e a
hieved longer times in thewater 
olumn. Form resistan
e is a non-dimensional measure of the degree towhi
h an organism's shape in
reases its drag. It is therefore also a measure ofhow readily an organism 
an be entrained by random water movements.The theory of Smith was developed with a view to explaining phytoplankton
on
entrations. In the shallow and turbulent streams 
onsidered 
apable of be-ing represented by the one dimensional modelling approa
h of this 
hapter ben-thi
 dwelling mi
rophytes2 do o

ur but phytoplankton are absent, (Horne andGoldman 1994). Of 
onsiderable interest in upland streams, however, are in-vertebrates. In drift samples of swift 
owing temperate streams, the inse
t taxaEphemeroptera, Simuliidae, Ple
optera, and Tri
hoptera are usually of most quan-titative importan
e, (Brittain and Eikeland 1988). Applying the above theory tothese larger and more dense organisms requires 
onsiderably more faith in theidea of instantaneous mixing. Perhaps remarkably then, most studies of inver-tebrate drifting times and distan
es have demonstrated �xed proportions of ani-mals remaining in the water 
olumn settle to the bottom for ea
h unit of time (ordistan
e) that passes. Higher stream adve
tions, as well as moving individualsfurther per unit time, in
rease drift distan
es by redu
ing the rate of settlement,but the general pattern remains the same, (Madsen 1968; M
Lay 1970; Elliott1971a; Ciborowski and Corkum 1980; Lan
aster, Hildrew, and Gjerlov 1996).Elliott (1971a) also observed that live animals were able to settle more qui
klythan dead individuals, and that there were di�eren
es in settling rates betweenlive spe
imens from di�erent spe
ies. This suggested behavioural di�eren
es assettling rates did not vary amongst dead animals. However, the exponential rateof return to the benthos over time still held true. It seems that for settlingat least exponential residen
e time in the water 
olumn is not only 
onvenientmathemati
ally but also the truest representation of reality.2Interestingly, one study at least has shown that benthi
 diatoms have sele
tively emigratedfrom experimentally darkened 
umes by altering their buoyan
y or form resistan
e to in
reasetheir likelihood of entrainment into the 
ow, (Bothwell, Suzuki, Bolin, and J. 1989).146



Chapter 7
2D river systems
This 
hapter 
onsiders persisten
e in a model formulation that sets out to des
ribethe 
ir
umstan
es in a deep river with modest 
ow rates. As shown in AppendixB, the horizontal velo
ity, Vr, in a uniform 
hannel of depth H at a depth z belowthe surfa
e is given byVr(z) = VR  1� � zD�2! = 32 V̂R  1� � zD�2! (7.1)where VR represents the velo
ity of the water at the free surfa
e, (z = 0), and V̂Rthe depth averaged or mean velo
ity. The horizontal adve
tion of any organismat any depth, Vx(z), 
an be 
onsidered a fra
tion, ", of the water velo
ity at thatdepth. In a river system the long-term average water movement 
an be 
onsideredparallel to the bottom of the 
hannel as 
an the adve
tive dispersal of planktoni
organisms. Di�usive dispersal on the other hand 
an a
t both in the horizontaland the verti
al although rates of hydrodynami
 mixing 
an be several orders ofmagnitude lower in the verti
al than in the horizontal, (Reynolds 1994b).
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7.1 Passive organisms permanently in the driftTo understand how the verti
al gradient in adve
tion and verti
al di�usion in
u-en
e the story of persisten
e, (as determined from the one dimensional analysis),Speirs and Gurney (2001) initially 
onsidered the limiting 
ase when verti
al dif-fusion is set to zero. Apart from enabling analysis this representation 
an besupported by the di�eren
e in mixing rates 
ited above and { leaving aside thepremise of passive organisms for a moment { from the argument that any be-haviour is likely to be more su

essful in de
oupling verti
al water movementfrom individual motion. The e�e
t of the assumption is to di
tate that anymembers of a population starting at a depth, z will live out their lives at thesame depth, as will their des
endants. The problem therefore be
omes a set ofun
oupled one dimensional systems as 
onsidered in the previous 
hapter. Theadve
tion velo
ity of the population in a layer is given byVx(z) = "32 V̂R  1� � zD�2! (7.2)From the one dimensional analysis inequality (6.7) implied that for a system oflength L and a population with intrinsi
 growth rate r, washout will o

ur ifVxLr > 0:434 (7.3)Ba
k-substituting for Vx into Equation (7.2) gives a 
riti
al depth above whi
hwashout is assured, that is washout o

urs ifz < z
 � Hs1� 0:289 Lr"V̂R (7.4)Speirs and Gurney (2001) found that if the average value of Vx in the water
olumn was set at the 
riti
al level spe
i�ed by inequality (6.7), z
 = 0:58H su
hthat persistent population is restri
ted to the bottom 42% of the water 
olumn.148



This is 
onsistent with the verti
ally averaged value of the velo
ity pro�le residing0:4H from the bottom, as dis
ussed in se
tion 4.4. The persistent zone diminishesrapidly as the average value of Vx, the e�e
tive dis
harge rate of the organisms,in
reases.7.1.1 Criti
al verti
al di�usion 
oeÆ
ientSpeirs and Gurney (2001) used populations with exponential growth rates to
onsider the e�e
t of non-zero verti
al mixing, the 
oeÆ
ient for verti
al di�usionbeing represented by �z. The e�e
t of su
h mixing was di�erent between systemsallowing persisten
e at all depths when �z = 0 and systems where washout o

ursnearer the free surfa
e. If the rate of organismal adve
tion at the surfa
e stillallows persisten
e, verti
al mixing exports population from the faster growing(and more densely populated) lower layers to the upper layers where greateradve
tion removes individuals more qui
kly and 
auses slower overall populationgrowth. The average per-
apita loss rate over the depth of the water 
olumn asa whole is in
reased and overall system population growth is redu
ed, but it isimpossible for the system to obtain a negative long term growth rate.In systems where the adve
tion in upper layers is suÆ
ient to 
ause washout inthe absen
e of verti
al di�usion, it was found suÆ
iently high values of �z would
ause the overall growth rate to be
ome negative, leading to washout of theentire population. Thus, in su
h systems there exists a 
riti
al verti
al di�usion
oeÆ
ient �z
 that represents the limiting amount of di�usion for population topersist in the system as a whole.To form an analyti
 estimate for this di�usion 
oeÆ
ient the deeper region of wa-ter allowing persisten
e in the absen
e of verti
al di�usion was e�e
tively treatedlike a one dimensional system as in the previous 
hapter, with the layer at the
riti
al depth z
 a
ting as the absorbing boundary. The intrinsi
 growth rate wastaken to be the per-
apita growth rate over the whole of this deeper region. Fromthe one dimensional analysis, it was found that when only di�usion is present,149



the ratio of the system length (represented here by H�z
) to the di�usion lengthmust ex
eed �=2 for persisten
e, that isH � z
p�zr�1 > �2 (7.5)Rearranging for �z and ba
k substituting for z
 from Equation (7.4) gives anupper bound for �z�z < �z
 � 4rH2�2  1�s1� 0:289 Lr"V̂R!2 (7.6)The length of a system that provides the threshold between population persisten
eand washout for a given value of di�usion or, in 
ases with adve
tion present, agiven 
ombination of adve
tion and di�usion values, 
an be 
alled the 
riti
alsystem length, L
. If investigating the 
riti
al value of di�usion 
oeÆ
ient forgiven values of system length and adve
tion, the system length 
an still be thoughtof as the 
riti
al length for the point at whi
h the di�usion equals its 
riti
al value.
7.2 E�e
t of sinkingPhytoplankton that have a density greater than water and no means of a
tivelyswimming will sink. This is true of a whole 
lass of phytoplankton, the diatoms.This form of movement is not behaviour in itself although there is 
onsiderableeviden
e to indi
ate su
h non-buoyant algae use various means to 
ontrol therate of sinking, for example through alteration of their own density, (Reynolds1984). The sinking velo
ity, Vs, is also known as the terminal velo
ity be
auseif the algae were to fall through still water it would initially a

elerate beforerea
hing a steady (terminal) velo
ity at the point where the for
e 
ausing themotion (the density di�eren
e between the algae and the surrounding water)is balan
ed by the drag for
e resisting motion. The drag for
e depends on adimensionless quantity 
alled the drag 
oeÆ
ient, CD whi
h in turn is dependent150



on the parti
le Reynolds Number Rep � Vsd=� where d represents the diameterof the parti
le and � is kinemati
 vis
osity. This Reynolds number is the ratiobetween the inertial for
es being exerted on the 
uid by the falling parti
le tothe vis
osity of the 
uid. For Rep < 0:1 the 
ow around the parti
le is entirelylaminar and for Rep < 0:5 it 
an be assumed laminar to an error within 10%,(Reynolds 1984). Most phytoplankton generate parti
le Reynolds numbers lessthan 0.1 and the laminar nature of the 
ow around them means their sinkingvelo
ity 
an be estimated using a modi�ed version of the Stokes equation for theterminal velo
ity of a sphere, namelyVs = 118gd2(�s � �) 1�� (7.7)where �s is the density of the algae, � that of the surrounding 
uid, g is a

eler-ation due to gravity and � the dynami
 vis
osity. The term � is known as the
oeÆ
ient of form resistan
e whi
h takes a

ount of the shape of the algae (fora sphere � = 1), whi
h means the term d represents the diameter of a spherehaving the same volume as the a
tual shape in question. Any adaptive me
ha-nisms adopted by phytoplankton to alter their sinking speed 
ompared to thatof an inert parti
le of the same density and shape 
an be a

ounted for, if themagnitude of their e�e
t is known, by adjusting the value of �. Importantly thevalue Vs, in water bodies with homogeneous density, remains 
onstant and is arelatively simple addition to the the previous theory while potentially having asigni�
ant e�e
t on persisten
e.7.2.1 In
orporating sinking into estimation of 
riti
al ver-ti
al di�usion 
oeÆ
ientThe estimation of 
riti
al verti
al di�usion 
oeÆ
ient employed by Speirs andGurney (2001) made use of the fa
t that in a one dimensional system in the ab-sen
e of adve
tion the ratio of the 
riti
al length of that system to the population151



di�usion length will be L
=Ld = �=2. On
e a settling velo
ity is introdu
ed thisratio is no longer known a-priori. From their work on the linear 1D problem withadve
tion toward the absorbing boundary Speirs and Gurney (2001) derived anequation for determining this ratio, namelyL
Ld = 24vuut V 2dV 2d � V 2x 35 ar
tan24�vuutV 2d � V 2xV 2x 35 (7.8)When estimating 
riti
al verti
al di�usion, the domain of interest is that foundbelow the 
riti
al depth and the sinking velo
ity is a velo
ity away from theabsorbing boundary. The e�e
t of this on the results of the one dimensionalanalysis must be 
onsidered, espe
ially as there is now the prospe
t that solutionsfor adve
tion velo
ities suÆ
ient to allow the general solution to the populationequation to have real roots may be obtainable.If the analysis of the one dimensional linear system is re-worked with �z repla
ing�x and Vz repla
ing Vx su
h that Vz = �Vs then the working of Appendix A 
ane�e
tively be left un
hanged.Case where V 2s < 4�r(1� �=r) = 4�(r � �)With Vz = �Vs the equation to be satis�ed for valid solutions of long termpopulation growth rate istan�� LLd� = � Vd(�Vs)� = +VdVs� (7.9)with �, Ld and Vd de�ned as before. As for the 
ase with adve
tion toward theabsorbing boundary, with the parameters of the problem �xed, Equation (7.9)
an be satis�ed by an in�nite series of values for �, but the smallest non zerovalue provides the solution with the maximum long term growth rate. Potentialsolutions for �L=Ld, however, now lie between 0 and �=2. Sin
e tan �� LLd�!1as �! �Ld=2L a solution to Equation (7.9) for 0 < � < �Ld=2L is assured if152



dd� �VdVs��������=0 > dd� �tan�� LLd��������=0 (7.10)Di�erentiating the left hand side givesdd� �VdVs��������=0 = VdVs (7.11)and the right hand sidedd� �tan�� LLd��������=0 = LLd se
2 �� LLd������=0 = LLd (7.12)therefore a solution is assured if VdVs > LLd (7.13)The equation for the 
riti
al length of the system, when � = 0, be
omesL
Ld = 24vuut V 2dV 2d � V 2s 35 ar
tan 24+vuutV 2d � V 2sV 2s 35 (7.14)This equation is de�ned for 0 < jVsj < Vd and as expe
ted has a maximum valueof �=2 when Vs = 0. As jVsj ! Vd then L
=Ld ! 1. Therefore, with jVsj < 2p�r
riti
al system length values are su
h that1 < L
=Ld < �=2 (7.15)The inequality for persisten
e in the deeper region of the river, previously givenby Equation (7.5) is now given byH � z
p�zr�1 > 24vuut V 2dV 2d � V 2s 35 ar
tan 24+vuutV 2d � V 2sV 2s 35153
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Figure 7.1: Chara
teristi
 
urve for Vd=Vs against (H � z
)=p�zr�1 � L
=Ld.Dashed line shows line of equality between the two ratios.H � z
p�zr�1 > 2664vuuut 11� �VsVd�23775 ar
tan2664+vuuuut1� �VsVd�2�VsVd�2 3775 (7.16)Values of the right hand side of inequality (7.16) are known for when Vs = 0 andVs = Vd, but for intermediate values it is ne
essary to treat the inequality as anequation and solve numeri
ally. Fig. 7.1 shows the 
hara
teristi
 
urve for Vd=Vsagainst H � z
=p�zr�1 � L=Ld, with a dashed line showing the line of equalitybetween the two ratios. As expe
ted, it shows that solutions to Equation (7.9)are found when Vd=Vs > L=Ld.Case where V 2s > 4�(r � �)The inequality V 2s > 2p�r(1 � �=r) de�nes when the general solution to thepopulation balan
e equation has real roots. Appendix A gives the boundary 
on-ditions, written in terms of s
aled variables, to be satis�ed under these 
onditions,namely �AB = � �  � +  (7.17)154



and �AB = exp[2 l℄ (7.18)where � here represents Vz=Vd, l � L=Ld,  � q�2 � (1� �) and A and B arearbitrary 
onstants. If the s
aled velo
ity term �s is de�ned su
h that �s = Vs=Vd,given the relationship between Vs and Vz then � = ��s. Substituting for �s inEquation (7.17) gives �AB = (��s)�  (��s) +  = �s +  �s �  (7.19)With  > 0 Equation (7.19) requires �A=B > 1 as does Equation (7.18). With < 0 Equations (7.19) and (7.18) are again 
onsistent. Therefore, unlike in the
ase where adve
tion is toward the absorbing boundary, there is no in
onsisten
ybetween the boundary 
onditions at either end of the system.Equating boundary 
onditions and substituting ba
k in dimensional terms givesVsVd +r�VsVd �2 + �r � 1VsVd �r�VsVd�2 + �r � 1 = exp 2642 LLdvuut�VsVd�2 + �r � 1375VsVd +	VsVd � 	 = exp � LLd 2	� (7.20)As jVsj is su
h that V 2s > 2p�r(1��=r) and � � r, 	 is restri
ted to the range0 < j	j � Vs=Vd. The left hand side of Equation (7.20) goes to in�nity when	 = +Vs=Vd and to zero when 	 = �Vs=Vd, while the right hand side remains�nite between these limits. Therefore, Equation (7.20) is always satis�ed when	 = 0 but also both a positive and negative value of 	 must satisfy Equation(7.20) if 155



dd	 0� VsVd +	VsVd � 	1A������	=0 < dd	 �exp � LLd2	�������	=0 (7.21).When 	 = 0 so too is  and the absorbing boundary 
ondition di
tates thate�T f(l) = 0 where f(l) � A exp[(� �  )l + B exp[(� +  )l℄. This implies thatA = �B and in turn that f(X) = A exp[�l℄� A exp[�l℄ = 0 8X, that is 	 = 0is a solution only possible for zero population in the system.Di�erentiating the left hand side of inequality (7.21) and evaluating at 	 = 0gives 2VsVd �VsVd �	�2 �������	=0 = 2VsVd �VsVd�2 = 2VdVs (7.22)and performing the same to the right hand side gives2LLd exp � LLd 2	�����	=0 = 2LLd (7.23)Therefore solutions are assured if VdVs < LLd (7.24)whi
h is the exa
t reverse of the 
ondition for the low sinking velo
ity 
ase.Looking at Equation (7.20) it 
an be seen that on setting 	 to a negative value,the expressions on both sides are the re
ipro
al of when 	 is positive and ofequal magnitude. Thus, for a positive value of 	 satisfying Equation (7.20), thenegative value of equal absolute value will also satisfy the equation and both rootsare given by the same value of long term growth rate.An expression for the 
riti
al length 
an be obtained, as before, by setting � = 0and rearranging Equation (7.20) as follows156
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Figure 7.2: Chara
teristi
 
urve for Vd=Vs against (H � z
)=p�zr�1 � L
=Ld.Dashed line shows line of equality between the two ratios.L
Ld = 12r�VsVd�2 � 1 ln2664 VsVd +r�VsVd�2 � 1VsVd �r�VsVd�2 � 13775 (7.25)The new inequality for persisten
e in the weakly mixed river is given by requiringthat the left hand side of Equation (7.25) ex
eed the right hand side and repla
ingL
 by H � z
.Chara
teristi
 
urve for 
riti
al di�usion 
oeÆ
ientAs has already been seen, the term H�z
, whi
h is determined by the horizontal
ow parameters of the river and intrinsi
 growth rate of the population under
onsideration, represents a boundary layer adja
ent to the bed of the river withinwhi
h persisten
e is possible in the absen
e of verti
al di�usion. When investigat-ing values of verti
al di�usion 
oeÆ
ient that will remove suÆ
ient individualsfrom this layer to make overall population persisten
e marginal, it is 
onvenientfor simplifying notation to regard H�z
 � L
, even though stri
tly H�z
 is onlya 
riti
al length on
e �z = �z
. For any given value of L
 and Vs it is possible todetermine the 
riti
al value of the verti
al di�usion 
onstant, �z, by �rst realising157



that Vs=Vd / 1=p�z / L
=Ld. Therefore, holding Vs and L
 �xed while varying�z produ
es a straight line. If & is the slope of the line its value is given by
& = Vs2prp�z2 � Vs2prp�z1 = L
pr�1p�z2 � L
pr�1p�z1& = Vs2rL
 (7.26)where �z1 and �z2 are two arbitrarily 
hosen values of �z. The 
riti
al verti
aldi�usion 
oeÆ
ient, �z
, is that value whi
h 
auses Equation (7.14) or (7.25) tobe satis�ed for the given values of Vs and L
. If the value of L
=Ld at whi
h thiso

urs is named ��z then Vs2p�z
r = &��z = Vs2rL
��zq�z
 = 2rL
2pr��z�z
 = rL2
�2�z (7.27)The expression �z
=rL2
 is a dimensionless expression involving �z
. This ex-pression equals 1=�2�z whi
h is itself a fun
tion of the dimensionless term &. A
hara
teristi
 
urve for the system involving �z
 
an therefore be obtained fromplotting �z
=rL2
 against & � Vs=2rL
.Fig. 7.3 shows this 
hara
teristi
 
urve. The region represented by Vs valuesgiving 
riti
al di�usion values derived from Equation (7.14) is a very small fra
tionof the total 
urve. When Vs=Vd ! 1 so too does L
=Ld whi
h in turn means theslope variable & also tends to one. The minimum value of �z
 is given whenVs = 0. It is known that when Vs=Vd = 0 then L
=Ld = L
=Ld = �=2 su
h thatL
prp�z
 = �2 ) �z
 = 4rL2
�2 (7.28)158
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Figure 7.3: Chara
teristi
 
urve relating 
riti
al verti
al di�usion 
oeÆ
ient tosinking velo
ity.Fig. 7.4 shows 
urves of long term growth rate against verti
al di�usion 
oeÆ
ientfor a population growing exponentially. Domain dimensions, adve
tion rate andhorizontal di�usion 
oeÆ
ient and population intrinsi
 growth rate were made thesame as those used by Speirs and Gurney (2001) to test the estimate of 
riti
alverti
al di�usion 
oeÆ
ient for neutrally buoyant parti
les. The 
omparison isnot exa
tly the same as Speirs and Gurney (2001) used a logisti
 growth rate and
ompared equilibrium mean densities to �z, but they found non-linear e�e
tsto be small. The �gure shows the good predi
tion of �z
 when sinking speed iszero. The additional two 
urves 
orrespond to values of the dimensionless variableVs=2rL
 of 1.0 and 10.0 for this system and it 
an be seen that as sinking speedin
reases the predi
tion of the 
riti
al verti
al di�usion 
oeÆ
ient be
omes lessa

urate. This is believed to be be
ause the assumption made that the end of theverti
al system represented by the 
riti
al depth is an absorbing boundary beyondwhi
h no population returns is progressively violated as sinking speed in
reases.An improved, but more 
ompli
ated estimate of �z
 is presented below.
159
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Figure 7.4: Curves of long term growth rate against verti
al di�usion 
oeÆ
ientfor a population growing exponentially with r = 0:39day�1, in a 1km long and 2mdeep river with V̂R = 0:002ms�1. Individuals are adve
ted at the water velo
ityand di�use horizontally with 
onstant �x = 0:25m2s�1. Curves are for sinkingspeeds of Vs = 0ms�1 (neutrally buoyant organisms), Vs = 7:4 � 10�6ms�1 andVs = 7:4 � 10�5ms�1. Dashed lines indi
ate estimated values of 
riti
al verti
aldi�usion 
oeÆ
ient for these sinking speeds.7.2.2 Revised estimation of 
riti
al verti
al di�usion 
o-eÆ
ientThe pre
eding estimation of the 
riti
al verti
al di�usion 
oeÆ
ient, by assumingan absorbing boundary at the 
riti
al depth, e�e
tively assumed the long termgrowth rate, �, above the 
riti
al depth to equal �1. In reality, in the absen
eof verti
al di�usion the long term growth rate will be a smooth fun
tion, redu
ingwith in
reasing altitude to a negative but �nite value at the water surfa
e. Unfor-tunately, assuming � to be a linear fun
tion of depth, and applying the methodof Appendix A, leads to an ordinary di�erential equation but with non-
onstant
oeÆ
ients and the form of the solution 
ould not be found. A less optimal but160



more tra
table approa
h was to 
onsider the regions above and below the 
riti
aldepth to ea
h have a separate and 
onstant value of per-
apita growth rate.The domain being 
onsidered now runs the length of the water 
olumn with are
e
ting boundary at either end. It is still possible to have an overall growthrate of zero as the region above the 
riti
al depth re
eives a negative per-
apitagrowth rate. If the long term growth rate in the boundary region between the bedand the 
riti
al depth is labelled �br, and that in the surfa
e region �sr, then theproblem be
omes one of two adve
tion-di�usion equations whi
h are independent,ex
ept that they share a 
ommon boundary 
ondition at Z+ = H � z
, where Z+is de�ned positive upwards from the bed and with origin at the bed. The twoequations are given by �n�T = �brn� Vz �n�Z+ + �z �2n�Z2+ (7.29)and �n�T = �srn� Vz �n�Z+ + �z �2n�Z2+ (7.30)As before s
aling is used to help simplify the problem. In this instan
e it is asfollowst � T=t0 where t0 = ��1br .z+ � Z+=z0 where z0 = Lbd = q�z��1br .vz � Vz=v0 where v0 = Vbd = 2p�z�br.This leads to the s
aled equations�n�t = n� 2vz �n�z+ + �2n�z2+ (7.31)161



and �n�t = �sr�brn� 2vz �n�z+ + �2n�z2+ (7.32)Trial solutions are assumed of the form
n = e�ztf(z+) for z+ below the 
riti
al depthn = e�ztg(z+) for z+ above the 
riti
al depth (7.33)where �z represents the s
aled long term growth rate for this verti
al problem.Ba
k-substituting these trial solutions into Equations (7.31) and (7.32) leads to0 = (1� �z)f � 2vz dfdz+ + d2fdz2+ (7.34)and 0 = (�sr�br � �z)g � 2vz dgdz+ + d2gdz2+ (7.35)We now have two ordinary di�erential equations with 
onstant 
oeÆ
ients. TheseO.D.E.s will have solutions of the form

f(z+) = Ae
1z+ +Be
2z+g(z+) = Ce
3z+ + Ee
4z+ (7.36)where A;B;C;D are arbitrary 
onstants and the 
s are given by the roots of theauxiliary equations

2 � 2vz
 + (1� �z) = 0 for f(z+)162




2 � 2vz
 + (�sr�br � �z) = 0 for g(z+) (7.37)For f(z+), 
1 and 
2 are given by
1 = vz �  
2 = vz +  (7.38)where  � qv2z + �z � 1. For g(z+), 
3 and 
4 are given by
3 = vz �  2
4 = vz +  2 (7.39)where  2 � qv2z + �z � �sr�br .Boundary 
onditionsAt the river bed, (z+ = 0), there is a re
e
ting boundary requiring no 
ux at theboundary. That is 2vzf(0)� dfdz+ �����z+=0 = 0 (7.40)At the top of the water 
olumn, z+ = h where h � H=q�z��1br , is anotherre
e
ting boundary requiring2vzg(h)� dgdz+ �����z+=h = 0 (7.41)At the interse
tion of the split domain, z+ = l
 � (H � z
)=q�z��1br , the 
urvede�ning population density along the domain must be 
ontinuous. That is, werequire a single value for the population density. This requires163



e�ztf(l
) = e�ztg(l
)f(l
) = g(l
) (7.42)A 
ontinuous population 
ux is also required, implying2vzf(l
)� dfdz+ �����z+=l
 = 2vzg(l
)� dgdz+ �����z+=l
 (7.43)The term 2vz is 
onstant throughout the domain and given the requirement ex-pressed in Equation (7.42) this implies 2vzf(l
) = 2vzg(l
). This in turn impliesthat dfdz+ �����z+=l
 = dgdz+ �����z+=l
 (7.44)Solutions satisfying the boundary 
onditionsAppendix E shows how, on substituting in the general form of the solutions tof(z+) and g(z+) into the boundary 
ondition equations, it is possible to eliminatetwo of the arbitrary 
onstants (A;B;C;D), using the fa
t that all boundary
onditions must be satis�ed simultaneously. It is then shown that a solution existssatisfying all boundary 
onditions if a value of �z 
an be found that satis�es oneof the following two equations.vz �  vz +  = e2 l
 + 1vz +  � (7.45)h(vz +  )2e2 l
 � (vz �  )2i[(vz +  2)2 � e2 2(d�l
)(vz �  2)2℄ � he2 2(d�l
)(vz �  2)� (vz +  2)i
� kvz = tan kl
 + (7.46)164



h2k + v2z�k2vz tan kl
i[(vz +  2)2 � e2 2(d�l
)(vz �  2)2℄ h(vz �  2)e2 2(d�l
) � (vz +  2)iwhere k � q1� �z � v2z .Equation (7.45) is for sinking speeds that satisfy V 2s > 4�z(�br��z), while Equa-tion (7.46) is that whi
h needs to be satis�ed when V 2s < 4�z�br(1� �z=�br) =4�z(�br��z). The se
ond equation 
omes about be
ause for these lower sinkingspeeds the roots to the auxiliary equation are 
omplex. The two regions of sink-ing speed value are equivalent to those for the 
ase where the 
ontinuity equationwas solved with one 
onstant value of intrinsi
 growth rate, the value �br simplyrepla
ing r in the inequalities. In ea
h 
ase the term on the left hand side ofthe equation and the �rst term on the right hand side form the equivalent to theequations to be satis�ed for the single growth rate 
ase.The term �z is 
ontained within the terms  and  2. If the length and depth of thesystem are known, along with the horizontal adve
tion and di�usion 
oeÆ
ientthen it is possible to determine the 
riti
al depth. If the 
onstant boundaryregion and surfa
e region per-
apita growth rates, �br and �sr, are also de�nedthen on setting �z = 0 the only variable that 
an be used to satisfy either of theabove equations is l
 whi
h in turn provides an estimate for the 
riti
al di�usion
oeÆ
ient through the relationship l
 � (H� z
)=q�z��1br . Determination of �z
values is performed via a NAG penalty fun
tion minimisation algorithm.Values for �br and �srThe values of the boundary region and surfa
e region per-
apita growth rates,�br and �sr, must be related to the values of long term growth rate at ea
h ver-ti
al depth in the system assuming no verti
al di�usion. The best relationship,however, was un
lear. To 
onsider this problem an algorithm was produ
ed todetermine the long term growth rates at �nely spa
ed verti
al intervals for anygiven 
ombination of system length and depth, intrinsi
 growth rate, r and hor-165



izontal di�usion 
oeÆ
ient �x, using the value of horizontal adve
tion derivedfrom Equation (7.2), (with " = 1), and the analyti
 result for the one dimen-sional adve
tion-di�usion equation outlined in Appendix A. Three possibilitieswere 
onsidered1. Making �br and �sr the means of the � values determined below and abovethe 
riti
al depth respe
tively.2. Considering that the long term growth rate at the 
riti
al depth is zero,setting �br = �(Z+ = 0)=2 and �sr = �(Z+ = H)=2.3. Setting �br and �sr equal to the � values at the bed and water surfa
erespe
tively.Fig. 7.5 shows the value of �z
 predi
ted using these three methods to providevalues for the per-
apita growth 
onstants. The domain and horizontal di�usion
oeÆ
ient are as used in the previous se
tion, sinking speed is zero, and thereare two 
ow regimes. The left hand panel has V̂R = 0:002 while the right showsresults using double the mean 
ow speed. Predi
tions as given by Speirs andGurney (2001) are also shown. The �gure shows that using � values from theextreme ends of the water 
olumn gives the highest predi
ted 
riti
al verti
al dif-fusion value. With other parameters held 
onstant, as the horizontal adve
tionis in
reased the negative long term growth rate at the water surfa
e be
omes agreater magnitude while the positive value at the bed is una�e
ted. Criti
al ver-ti
al di�usion 
oeÆ
ient predi
tions therefore be
ome more pessimisti
 
omparedto results from numeri
al runs. Depending on 
ow 
onditions, predi
tions usingeither of the averaging approa
hes for the growth rate parameters 
an produ
eresults more ina

urate than the predi
tion from the mu
h simpler method ofSpeirs and Gurney (2001). Using � values from the extremes of the water 
ol-umn 
an 
ause an over-estimate in 
riti
al verti
al di�usion 
oeÆ
ient. This is thesituation for neutrally buoyant parti
les, however, and this method is only soughtto improve predi
tions for non-zero sinking speeds, where (as shown below) there166
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Figure 7.5: Estimates of 
riti
al verti
al di�usion 
oeÆ
ient, (verti
al lines).In both frames L = 10km, H = 2m and �x = 0:25. In the left hand frameV̂R = 0:002 and in the right hand frame V̂R = 0:004. Solid lines: estimates using� values at extreme ends of water 
olumn for �br and �sr; dashed lines: estimatesusing (endvalues)=2; dot-dashed lines: estimates using 
al
ulated means of �values below and above 
riti
al depth; dotted lines: estimates derived from formulaof Speirs and Gurney (2001).is still a modest degree of more pessimisti
 predi
tion as sinking speed in
reases.Therefore, this option was the one 
hosen for subsequent investigations.Criti
al depth revisitedThe determination of the 
riti
al depth in the previous theory relied on turninginequality (7.3) into an equation and substituting for Vx. As demonstrated in Fig.6.1 this value of Vx providing the 
riti
al depth is the absolute maximum valuepossible, derived when the relationship between system length, intrinsi
 growthrate and horizontal di�usion 
oeÆ
ient is at an optimum for persisten
e. If therelationship between these values departs from the optimum the value of Vx=Lrthat gives the 
riti
al depth will redu
e. This in turn requires the 
onstant foundin Equation (7.4), (0:289), to be redu
ed. If the 
onstant is not altered then
al
ulation of the 
riti
al depth 
an be
ome impossible as the term inside thesquare root of Equation (7.4) be
omes negative. It is not known how to adjust167



the 
onstant found in inequality (7.3) by analyti
 means. To investigate the issueof boundary region and surfa
e region growth rates, (as des
ribed above), a simplenumeri
al routine to determine long term growth rates at �nely spa
ed heightsup the water 
olumn was employed. This program has very low 
omputationaloverhead and 
an be used to make an a

urate determination of the true 
riti
aldepth.Old and new estimates of 
riti
al verti
al di�usion 
oeÆ
ientFig. 7.6 shows the new predi
tions for 
riti
al di�usion 
oeÆ
ient 
ompared tothe estimates of the previous se
tion. The numeri
al results are the same asthose shown in �g. 7.4. It 
an be seen that the new estimates still be
ome morepessimisti
 as sinking speeds in
rease but not to the same extent as the earlierestimates. Therefore, the advantage of employing the modi�ed method in
reasesas expe
ted sinking speed in
reases. The values of sinking speed represented withFig. 7.6 are well within the range expe
ted for water living plankton. Reynolds(1984) states the sinking speed of Stephanodis
us astraea, a large freshwater di-atom, to be approximately 2:5 � 10�5ms�1. Benthi
 living invertebrates 
an beexpe
ted to have greater sinking speeds.7.2.3 Chara
teristi
 
urves for 
riti
al di�usion 
oeÆ
ientWhen the 
riti
al verti
al di�usion 
oeÆ
ient was estimated by only 
onsideringthe region of water 
olumn up to the 
riti
al depth, it was seen that the rela-tionship between �z
 and the sinking velo
ity Vs 
ould be des
ribed by a single
hara
teristi
 
urve. To make the di�usion and velo
ity terms non-dimensionalrequired use of the intrinsi
 growth rate r and the length of the water 
olumn upto the 
riti
al depth, L
 � H � z
. The value of the 
riti
al depth, and thereforeof L
, was derived by using a �xed relationship between the intrinsi
 growth rate,horizontal adve
tion and horizontal system length at whi
h persisten
e be
omes168
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Figure 7.6: Estimates of 
riti
al verti
al di�usion 
oeÆ
ient for a system withL = 10km, H = 2m, �x = 0:25 and V̂R = 0:002. Sinking speed Vs = 0:0ms�1(top frame); Vs = 7:4� 10�6ms�1 (middle frame); Vs = 7:4� 10�5ms�1 (bottomframe). Solid verti
al lines: estimates using two segment verti
al `domain' and� values at extreme ends of water 
olumn for �br and �sr; dashed verti
al lines:estimates derived assuming single segment verti
al domain up to 
riti
al depth,(as des
ribed in se
tion 7.2.1).marginal. In other words, L
 is �xed by those parameters of the system that mightneed to be altered to mat
h di�erent horizontal 
ow 
hara
teristi
s and/or dif-ferent domains. Altering these independent parameters alters the lo
ation alongthe 
hara
teristi
 
urve for a given value of Vs.Re-
onsidering Equations (7.45) and (7.46) they are fun
tions of�  � pvs + �z � 1 = f(vs) or k � q1� (vs + �z) = f(vs) { given thatdetermining �z
 requires �z = 0.�  2 � qvs + �z � �sr=�br = f(vs;�sr=�br).� l
 � (H � z
)=q�z
��1br .� h� l
 � H=q�z
��1br � (H � z
)=q�z
��1br = z
=q�z
��1br .169



It is still true that vs � Vs=Vd / 1=p�z / l
 � L
=Ld, but the relationshipbetween �z
 and Vs will now also depend upon the ratio between the per-
apitagrowth rates 
hosen for the boundary region and surfa
e region and, through theterm h� l
, the ratio of the distan
e up to the 
riti
al depth to the overall depthof the system. Fig 7.7 shows families of 
urves of �z
=�brL2
 against Vs=2�brL
.These non-dimensional terms are the same as used in the previous 
hara
teristi

urve ex
ept that �br has repla
ed r. This is not a signi�
ant di�eren
e. It is theratio of surfa
e region to boundary region growth rate that determines the 
urveto be used rather than the a
tual value used to s
ale the diagnosti
 variables. Thedi�erent frames show 
urves for di�erent values of j�srj=�br while ea
h 
urve of agiven frame is that established on using a di�erent ratio of (H � L
)=H � z
=H.The use of j�srj is simply to allow the ratio of growth rates to be expressed as apositive number, given that all systems of interest have a negative value of �sr.For a given ratio of j�srj=�br there exists a minimum ratio z
=H beyond whi
hsolutions 
an not be found with �z = 0, implying persisten
e is possible forany value of �z at ratios smaller than this minimum. Above a 
ertain value ofz
=H the 
urves be
ome very 
lose and the relationship between �z
 and Vs 
ane�e
tively be 
onsidered as represented by a single 
urve. It 
an be seen, however,that the value of z
=H at whi
h this e�e
t is seen to happen varies 
onsiderablyas the value of j�srj=�br is altered.One 
hara
teristi
 whi
h does seem robust from inspe
tion of Fig. 7.7 is the fa
tthat the s
aled 
riti
al di�usion value does not in
rease appre
iably until thes
aled sinking velo
ity rea
hes unity.
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Figure 7.7: Curves of �z
=�brL2
 against Vs=2�brL
 for di�erent ratios ofj�srj=�br. In ea
h frame 
urves are for di�erent values of z
=H. Going fromtop to bottom z
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ould be obtained.
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7.2.4 Attempted appli
ation to real river systemData on river phytoplankton, (potamoplankton) populations has been 
olle
tedfor a number of years for the river Meuse. This river has its sour
e in Fran
eand then runs through Belgium and the Netherlands before entering the NorthSea. The total length of the river is 885 km. Data on phytoplankton growthand biomass is mainly available at a distan
e 530 km from the sour
e, with someother measurements between 480 km and 620 km, the Belgian se
tor of the river,(Everbe
q, Gosselain, Viroux, and Des
y 2001).The one dimensional adve
tion-di�usion equation assumes no re
ruitment of indi-viduals at the upstream end of the system. Des
y, Gosselain, and Evrard (1994)predi
t no signi�
ant phytoplankton biomass 
loser than 200 km to the sour
e.The downstream absorbing boundary has been taken as the lo
ation 620 kmfrom sour
e as beyond this point no data is available. Although this 
hoi
e ofdownstream boundary is somewhat arbitrary, the solution be
omes in
reasinglyinsensitive to the length of the system as the ratio L=�x in
reases. A systemlength of 420 km should make 
al
ulations very insensitive to 
hanges in thesystem length value.The dis
harge and morphology of the river Meuse 
hanges in the 420 km stret
hbeing 
onsidered. The river re
eives in
ows from several signi�
ant tributaries.The analyti
 solutions, however, require uniform values of adve
tion velo
ity anddi�usion 
oeÆ
ient. For
ing a single value of dis
harge, depth, and thereforemean velo
ity, for the whole domain length is an obvious sour
e of error. Themethod here, however, is only intended as a rough order of magnitude predi
tor,so the whole domain is assumed to have the dis
harge as measured 570 km fromthe sour
e, as well as the river morphology at that lo
ation. It is true that alongthe Belgian se
tion, the river is regulated for navigation. Also fortunate is thefa
t the tributaries to the river Meuse 
arry little or no phytoplankton, su
h thatinput of phytoplankton from the tributaries need not be 
onsidered, (Everbe
qet al. 2001). 172



Des
y, Servais, Smitz, Billen, and Everbe
q (1987) 
al
ulated the growth rateof the phytoplankton 
ommunity in the river and found it to peak a little above0:7d�1. They 
on
luded that growth in this eutrophi
ated river was never nutrientlimited. The phytoplankton is dominated in the spring and early summer (beforethe impa
t of zooplankton grazing) by the diatom Stephanodis
us hantzs
hii.A study of growth rate in 
ulture also found the intrinsi
 growth rate for S.hantzs
hii to be r = 0:7d�1, (Swale 1963).Estimation of �xNo measured values for the longitudinal dispersion 
oeÆ
ient, �x are available.Two formulas are available to estimate this value however. One is by Fis
her1,(Fis
her, List, Koh, Imberger, and Brooks 1979)�x = 0:011 V̂ 2r B2HU� (7.47)where V̂r is the mean river velo
ity, B is the width of the river at its surfa
e, His the mean depth and U� is the fri
tion velo
ity given by U� = pgHS where g isthe a

eleration due to gravity and S is the slope (gradient) of the water surfa
e.This slope 
an normally be taken as equivalent to the gradient of the river bed.The se
ond is by M
Quivey and Keefer (M
Quivey and Keefer 1974)�x = 0:05937 QSB (7.48)where Q is the dis
harge of the river. Both equations require the slope of the riverto be provided. If a slope is not provided it 
an be 
al
ulated from the Manningequation (Chapra 1997)1Equation (7.47) is a simpli�ed version of Equation (2.12), using assumptions about thevalues of 
ertain parameters from typi
al rivers.173



V̂r = 1nmanR2=3S1=2e (7.49)where R is the hydrauli
 radius of the river, given by A
=Pw where A
 is the 
rossse
tional area and Pw the wetted perimeter, Se is the slope of the energy gradeline2 and nman is the Manning roughness 
oeÆ
ient. Manning roughness 
oef-�
ients have been determined experimentally for various open 
hannel surfa
es.For the river Meuse 
omparison the most appropriate values are those of 0.030 for
lean and straight natural stream 
hannels or 0.040 for 
lean but winding naturalstream 
hannels, (Chow 1959). The Manning formula 
an be substituted into the
ontinuity equation and re-arranged to provide a relationship between river slopeand dis
harge S = �QnmanA
R2=3 �2 (7.50)Thus a reasonable relationship between dis
harge, width, depth and slope 
an bemaintained even when slope is not given and only single, mean values of widthand depth are provided.The dis
harge of the river Meuse 
an be broadly split into a period of summerdis
harge, with values of 30 � 80m3s�1 and winter values of 200 � 800m3s�1.Signi�
ant phytoplankton 
ounts only o

ur for the lower range of dis
harge.Table (7.1) shows values of river slope, and �x provided by Equations (7.47)and (7.48) for values of dis
harge between 30 and 80 m3s�1 and for width anddepth values given at the re
ording site (120m and 6m respe
tively). A Manningroughness 
oeÆ
ient of 0.030 was assumed due to the regulation of the river.It 
an be seen that the estimates of �x from Equations (7.47) and (7.48) di�erby three orders of magnitude or more. Generally, ea
h method is expe
ted topredi
t re
orded values to within a fa
tor of �ve (Chapra 1997). The problem2By assuming that the 
ow is steady and the 
ross se
tion 
onstant, the energy slope ismade equal to the 
hannel slope. 174



Table 7.1:Q V̂R S U� �x Eqn (7.47) �x Eqn (7.48)30.0 0.042 1:627� 10�7 3:09� 10�3 15.055 91226.240.0 0.056 2:893� 10�7 4:12� 10�3 20.095 68406.550.0 0.069 4:520� 10�7 5:16� 10�3 24.380 54724.760.0 0.083 6:509� 10�7 6:19� 10�3 29.397 45603.970.0 0.097 8:860� 10�7 7:22� 10�3 34.397 39088.680.0 0.111 1:157� 10�6 8:25� 10�3 39.433 34209.2stems from the fa
t the estimation of M
Quivey and Keefer is sensitive to the
ow's Froude number, Fr, given by V̂R=pgH. A more general form of Equation(7.48) is �x = 0:66 Û3ttĈ3 Q2SB (7.51)where Û3tt represents the mean travel time velo
ity of a tra
er and Ĉ3 the adve
tivevelo
ity. Equation (7.48) assumes Ĉ=Ûtt = 1:79 whi
h is true for Fr = 0:2 anddoes not vary mu
h for higher Froude numbers up to a limit of Fr = 0:5. Forsmaller Froude numbers, however, the ratio varies rapidly, greatly a�e
ting thepredi
tion of �x. M
Quivey and Keefer (1974) provide a 
urve for reading morea

urate values of Ĉ=Ûtt, down to a value of Fr = 0:1. For the dis
harges and
hannel dimensions used here, however, the Froude number varies from 0.0055 to0.0145 and as su
h estimation of the 
orre
t ratio of Ĉ and Ûtt is very un
ertain.Equation (7.47) appears mu
h less sensitive to 
hanges in 
hannel dimensions andriver slope. Equation (7.47) was therefore 
onsidered the preferred method forobtaining �x estimates.Table 7.2 shows the results 
al
ulated using �x estimates from this equation forj�sj=r, z
=H, the value of �z
 
al
ulated when Vs = 0 and when Vs = 2:5 �10�5ms�1, the value obtained from use of Equation 7.6 and an estimate of theverti
ally averaged verti
al di�usion 
oeÆ
ient that would be found in the river.175



Table 7.2:Q �x j�sj=r z
=H �z
 �z
 �z
 �zVs = 0 Vs = 2:5� 10�5 Eqn 7.53 U�H=1530:0 15:055 7:135 0:8058 7:49� 10�6 2:37� 10�5 4:46� 10�6 1:24� 10�340:0 20:095 9:835 0:8344 5:03� 10�6 1:73� 10�5 3:24� 10�6 1:65� 10�350:0 24:380 12:558 0:8534 3:74� 10�6 1:38� 10�5 2:54� 10�6 2:06� 10�360:0 29:397 15:270 0:8672 2:96� 10�6 1:16� 10�5 2:08� 10�6 2:48� 10�370:0 34:397 17:992 0:8778 2:43� 10�6 1:00� 10�5 1:77� 10�6 2:89� 10�380:0 39:433 20:694 0:8862 2:06� 10�6 8:85� 10�6 1:53� 10�6 3:30� 10�3This last value is an approximation used by hydrauli
 engineers of�z = U�H15 (7.52)The term �b=r was taken to equal one in all 
ases. Equation 7.6 was not useddire
tly be
ause of the diÆ
ulty highlighted in se
tion 7.2.2. Instead the 
riti
aldepth was determined from the numeri
al s
heme used to 
al
ulate the value of �for many sli
es within a river and Equation 7.6 was substituted by the following�z
 = 4r(H � z
)2�2 (7.53)These results are shown in graphi
al form in Fig. 7.8From Fig. 7.8 and table 7.2 it 
an be seen that none of the estimates of �z

ome 
lose to mat
hing or ex
eeding the estimate of the value to be found in theriver given by Equation 7.52. Se
tion 4.3 however des
ribed how measurementsof verti
al di�usion have shown its magnitude to be roughly paraboli
 su
h thatthe di�usion 
oeÆ
ient 
an be represented by the equation�z = 0:4U�Z+q1� Z+=H (7.54)176
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Figure 7.8: Curves of �z
 against river dis
harge as estimated for the river Meuse,Belgium, 
ompared to estimate of verti
ally averaged verti
al di�usion 
oeÆ
ient.Left hand frame; estimates of �z
 when Vs = 0, (red line), Vs = 2:5� 10�5ms�1,(green line) and estimate from Equation 7.53, (blue line). Estimate of the ver-ti
ally averaged verti
al di�usion 
oeÆ
ients, (from Equation 7.52) given by thebla
k line. Right hand frame; ratio of �z
 values to �z value from Equation (7.52).This means the verti
al di�usion in the river must be smaller than the estimatesof �z
 for at least some distan
e from the river bed. Fig. 7.9 shows plots of depthfor this new measure of 
ow refuge region, labelled L�, against river dis
harge forthe three estimations of �z
 performed. The left hand frame gives a
tual distan
esin metres while the right hand frame shows the ratio of L� to the assumed overalldepth of the river.Fig. 7.9 gives a poor indi
ation of potamoplankton persisten
e in the river Meuse.Even with a sinking speed likely to be slightly greater than that for the primaryspe
ies being 
onsidered in this instan
e the right hand frame suggests that per-sisten
e is only guaranteed for organisms that spend their time in a region nearthe bottom that represents less than 0.5% of the overall water depth.Fig. 7.10 shows how the two non-dimensional quantities, (Vs=(2�brL
) and �z
=(�brL2
)),used to form the graphs of Fig. 7.7 vary with river dis
harge. The 
on
lusionfrom Fig. 7.7 was that sinking 
ould start to have a signi�
ant e�e
t on the
riti
al verti
al di�usion determined if its s
aled value be
ame greater than one.177



The values shown in Fig. 7.10 are just beyond this level, and indeed �gures7.8 and 7.9 do indi
ate sinking has made some di�eren
e. Figures 7.8 and 7.9also indi
ate the relative bene�t of sinking to be
ome less as river dis
harge in-
reases whereas the s
aled values for sinking speed and tolerable di�usion bothin
rease with dis
harge in Fig. 7.10. This is be
ause the greater dis
harges lead tosmaller values of L
, suÆ
iently so that �z
 values a
tually de
rease as dis
hargein
reases. When 
omparing �z
 values to values of �z from Equation (7.52) itmust also be remembered that values of �z in
rease with dis
harge.
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Chapter 8
Tidal estuaries
8.1 Passive organisms permanently in the drift8.1.1 Results using analyti
ally derived 
ow �eldsSpeirs and Gurney (2001) investigated a population that grows logisti
ally in theabsen
e of adve
tion and di�usion, using the two dimensional population modeloutlined in se
tion 3.3.1 and 
ow �elds provided by the adaptation to the analyti
solution of Chen, Shaw, and Wol
ott (1997) des
ribed in se
tion 4.5 and appendixB. The domain had a 
onstant depth below mean sea surfa
e of 5m. A typi
alexample of the Lagrangian residual velo
ities for this system is as shown in Figs.4.1 through 4.3 and is reprodu
ed here in Fig. 8.1Speirs and Gurney (2001) found that 
ompared to a system with the same river
ow and no tidal motion a small amount of tidal motion led to an in
rease indomain average population density. Contour plots of the steady state populationdistributions showed that landward residual 
ow, as seen in �g. 8.1 moved the
entre of population landward in the deeper water of the domain.It was found, however, that if tidal velo
ities were in
reased further average pop-180
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x (km)0 10

0

5Figure 8.1: Residual velo
ity plots derived using 
ow �elds from solution afterChen, Shaw and Wol
ott (1997), as modi�ed by Speirs and Gurney (2001).ulation was redu
ed until it fell to well below the value obtained without tidalmotion. Again, the reason 
ould be found from investigation of the residual velo
-ities. As 
an be seen from Fig. 8.1 there is is an upward 
omponent to the residualmovement toward the landward end of the domain whi
h takes population intothe region of high seaward residual motion. As tidal velo
ity in
reases both thisupward movement and the magnitude of the seaward `
ow' in the upper layersin
reases. Above a 
ertain level of tidal motion, although the 
entre of deeperpopulation is moved further landward, an in
reasing proportion is being adve
tedinto the surfa
e layers and transported a
ross the seaward boundary. At a tidalvelo
ity representative of a real system, (the Ythan estuary in N.E. S
otland),this e�e
t was enough to 
ause the population to wash out of the system.Speirs and Gurney (2001) 
on
luded that for tidal systems with 
onstant density,near bottom residual 
ows had little e�e
t on the break-point between persisten
eand washout for passive parti
les. As supporting eviden
e to this 
on
lusion allparameters were �xed with the ex
eption of the intrinsi
 growth rate, r. The
riti
al growth rate at whi
h the population is at the point of su�ering washout181



was determined and found to be very similar to the value estimated for a non-tidalsystem with the same river 
ow. Equation (7.6) was used to determine the valuefor the non-tidal system. As a further 
he
k the intrinsi
 growth rate was set ata �xed value, (suÆ
ient for persisten
e at small organismal verti
al dispersion)and the verti
al di�usion value �z altered until its 
riti
al value was established.Again Equation (7.6) was used to 
ompare this value to that obtained in thenon-tidal situation and again the values obtained were similar.8.1.2 E�e
t of adopting CFD derived 
ow �eldsSe
tion 4.5.3 dis
ussed 
on
erns over the validity of the analyti
 
ow results {at least in shallow systems { and therefore the Lagrangian residual movementsgenerated by these solutions. Sin
e the ability to generate these residual velo
itiesusing the Prin
eton O
ean Model, (POM), had been developed it was 
onsideredfurther investigations should be 
ondu
ted using this te
hnique. The 
on
lusionfrom se
tion 4.5.3 that in shallow systems with homogeneous density, Lagrangianresidual landward 
ow is not generated led to 
on
entration on systems withsalinity di�eren
es. Finally, as use of a 
uid dynami
s pa
kage no longer restri
tsinvestigation to domains of 
onstant depth, and as virtually all estuaries deepenas they approa
h the sea, a sloping bottom was in
luded. To give a degree of
ontinuity with the work using analyti
 
ow �elds the same length of domain wasretained and the average depth over the length remains at 5m.Two 
ow regimes were 
onsidered. One 
an be regarded as having a net 
ir
u-lation typi
al of partially mixed estuaries. The se
ond regime starts as partiallymixed at the head of the domain but in
orporation of more intense eddy di�usionleads to the system gaining the 
hara
ter of a well mixed estuary by the time itrea
hes the seaward boundary. Lo
ations of di�erent points along the domain onthe Hansen and Rattray strati�
ation-
ir
ulation diagram are shown in Fig. 8.2.
182
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Figure 8.2: Strati�
ation-
ir
ulation diagram, after Hansen and Rattray (1966),with results marked for the two 
ow regimes used. Results were taken for fourlo
ations from the head of the domain to the seaward boundary as indi
ated.Problem of longitudinal dispersion in tidal estuariesIf the random movement of animals is to be represented as analogous to Fi
kiandi�usion then random di�usion and multiple repetitions must be built into theparti
le tra
king algorithm that 
reates the redistribution matrix, Rp0;p, for thedis
rete time population model. The timesteps of the tra
king model are mu
hgreater than the times
ales of turbulent water movement, but mu
h less than the�nal timestep of the population model of one tidal 
y
le (assumed to equal 12hours in this work). In the horizontal this poses a problem be
ause the longitu-dinal spread, (and landward movement), of a 
ohort of individuals 
an dependmu
h more on di�usion 
arrying di�erent individuals onto divergent adve
tivepaths than on the distan
e of di�usive travel itself. As dis
ussed in the introdu
-tion, this requires a 
oeÆ
ient of dispersion di�erent to, and usually mu
h largerthan, the 
oeÆ
ient representing turbulent di�usion.Previously, one-dimensional longitudinal dispersion 
oeÆ
ients have been ob-tained by trial and error adjustment when �tting a model to a set of �eld data,(West and Mangat 1986). Obviously, this is not possible using strategi
 modelsand se
tion 2.1.5 outlined the un
ertainty in determining longitudinal dispersion183




oeÆ
ients from anything other than �eld measurements. When 
onsidering twodimensional verti
al sli
es along a domain, longitudinal dispersion is 
hie
y theresult of intera
tion between the adve
tive 
ow �eld and verti
al di�usion. Se
-tion 4.3 dis
ussed how for estuaries, and espe
ially for strati�ed estuaries, theestimation of the 
oeÆ
ient of verti
al di�usivity, Kz 
an also be un
ertain. Thisis partly be
ause the value of Kz is expe
ted to vary throughout the tidal 
y
le asthe dominant form of adve
tion, (the tidal 
ow) varies from maximum 
ood andebb values to nothing at sla
k water. The parti
le tra
king 
ode was 
onstru
tedin su
h a way that it is possible to adopt the values determined for the 
oeÆ
ientof verti
al di�usivity from POM, (KH), for the same times and lo
ations as thevelo
ity data, as the value required for the parti
le tra
king verti
al di�usivity,�z. It was felt that for 
omputational speed, and 
on
eptual simpli
ity, adoptionof a single, 
onstant value of �z was preferable. It is not 
lear however, whatvalue �z should take.To explore these ideas, the POM velo
ity data to be used for population runswas used to tra
k large ensembles of parti
les from sele
ted start lo
ations using awide spread of values of �z. The range of values for verti
al di�usivity of a tra
er,Kz is 
onsidered to be in the range 0:0001 � 0:01m2s�1 for a strati�ed estuary,with the value in a neutrally buoyant estuary 
apable of rea
hing 0:1m2s�1, (seese
tion 4.3). The upper limits of these ranges were used as the upper limits of in-vestigation for �z for homogeneous and strati�ed estuary 
ow. Lower values werealso investigated in 
onsideration of the fa
t that even small phytoplankton havea size, and inertia, mu
h greater than a true tra
er. If their random movementis passive, it is likely to be that mu
h less than that for a true tra
er. Initiallythe value of the tra
king program horizontal di�usion 
oeÆ
ient, �x was kept atzero.Fig. 8.3 shows the results from four lo
ations sele
ted from the run demonstrat-ing a front in the Lagrangian residual movement. These start positions are shownin Fig. 8.4, the letters 
orresponding to those above the frames in Figs.8.3, 8.5and 8.6. It 
an be seen from Fig. 8.3 that use of only a verti
al di�usion 
oef-184



10
-7

10
-6

10
-5

10
-4

10
-3

10
-210

-8
10

-7
10

-6
10

-5
10

-4
10

-3
10

-2
10

-1
10

0
10

1
10

2

10
-7

10
-6

10
-5

10
-4

10
-3

10
-210

-8
10

-7
10

-6
10

-5
10

-4
10

-3
10

-2
10

-1
10

0
10

1
10

2

10
-7

10
-6

10
-5

10
-4

10
-3

10
-210

-8
10

-7
10

-6
10

-5
10

-4
10

-3
10

-2
10

-1
10

0
10

1
10

2

10
-7

10
-6

10
-5

10
-4

10
-3

10
-210

-8
10

-7
10

-6
10

-5
10

-4
10

-3
10

-2
10

-1
10

0
10

1
10

2

Value of vertical diffusion coefficient used in particle tracking program (m
2
s

-1
)

Im
pl

ie
d 

di
sp

er
si

on
 c

oe
ff

ic
ie

nt
s 

fr
om

 s
pr

ea
d 

of
 tr

ac
ke

d 
en

se
m

bl
e 

(m
2 s-1

)

a) b)

c) d)

Figure 8.3: Dispersion 
oeÆ
ients implied from the spread of an ensemble of par-ti
les tra
ked using POM generated 
ow �eld against verti
al di�usion 
oeÆ
ientimposed in the tra
king algorithm. Solid 
urve represents horizontal dispersion
oeÆ
ient; dashed 
urve represents verti
al dispersion 
oeÆ
ient.�
ient produ
es spread of the ensemble in the horizontal, implying a dispersion
oeÆ
ient, (as would be used in a one dimensional adve
tion di�usion equation),orders of magnitude greater than the verti
al di�usion 
oeÆ
ient used. Thisdemonstrates the presen
e of dispersive me
hanisms within the 
ow. The valuesof implied dispersion 
oeÆ
ient in
rease in line with the in
rease in �z value useduntil the latter be
omes suÆ
ient for the ensemble to be
ome well mixed over thedepth of the system over the period of a tidal 
y
le. The 
onsequen
es resultingfrom rapid di�usion over the depth of the water 
olumn at high values of verti
aldi�usion 
oeÆ
ient 
an be seen in se
tion 8.1.3.For a system varying in depth from 7 to 3 metres, as in Fig. 8.4, the longitudinaldispersion peaks for an imposed verti
al di�usion in the range 1 � 10�4 to 1 �10�3m2s�1. The lower value in this range 
orresponds to the lower value quotedfor verti
al turbulent di�usion 
oeÆ
ients in strati�ed estuaries. Taking this valueas a �xed value for the verti
al di�usion 
oeÆ
ient in the tra
king program aninvestigation was then made of the e�e
t of using di�erent values of horizontal185
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Figure 8.4: Lagrangian residual movements over a tidal 
y
le 
al
ulated fromPOM derived 
ow. Tidal range �1m; VR = 0:003125ms�1, (Qf = 4:167 �10�3m2s�1); UMOL = 2:0 � 10�4m2s�1. Letters indi
ate starting positions forensemble tra
king experiments.dispersion 
oeÆ
ient, �x. The results are presented in Fig. 8.5, using the samesele
tion of starting positions as before. The dotted horizontal line in ea
h framerepresents the value of longitudinal dispersion 
oeÆ
ient implied from the runusing the same value of verti
al di�usion 
oeÆ
ient and zero horizontal 
oeÆ
ient.If the horizontal 
oeÆ
ient value for the parti
le tra
king program is set to lessthan the value implied by the dispersive me
hanisms of the adve
tive 
ow the �nalimplied value remains mu
h the same. As �x is made larger than the implied valueobtained from dispersive me
hanisms the 
oeÆ
ient implied by the �nal spread ofthe ensemble rises to mat
h �x. It is now the 
ase that the 
oeÆ
ient imposed onthe tra
king program has 
aused di�usion to dominate dispersion in terms of the�nal spread of parti
les. If a smaller value of verti
al di�usion 
oeÆ
ient is used,suÆ
iently small to 
ause smaller horizontal spreading from dispersion, then thepoint at whi
h imposed di�usion takes over from dispersion as the main spreadingme
hanism in the horizontal also redu
es. The verti
al dispersion 
oeÆ
ientimplied by the �nal spread of parti
les is essentially una�e
ted by any variation186
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Figure 8.5: Dispersion 
oeÆ
ients implied from the spread of an ensemble ofparti
les tra
ked using POM generated 
ow �eld and a tra
king algorithm verti
aldi�usion 
oeÆ
ient of 1:0� 10�4, against horizontal di�usion 
oeÆ
ient imposedin the tra
king algorithm. Solid 
urve represents horizontal dispersion 
oeÆ
ient;dashed 
urve represents verti
al dispersion 
oeÆ
ient.in imposed horizontal di�usion.In light of the relationship between verti
al di�usion rate and horizontal disper-sion rate in strati�ed tidal bodies the persisten
e of organisms was investigatedover a range of values for the population model verti
al 
oeÆ
ient �z, leavingthe horizontal 
oeÆ
ient �x set at zero. Although these investigations are non-organism spe
i�
 it was hard to imagine a planktoni
 organism that 
ould 
reatehorizontal random movements with a di�usion 
oeÆ
ient greater than the dis-persion 
oeÆ
ients indi
ated by Fig. 8.3. The implied horizontal di�usion is alsobeyond expe
ted horizontal turbulent di�usion values, (M
Dowell and O'Connor1977, page 65), espe
ially during periods of slower tidal 
ow. This approa
h
onveys the advantage of redu
ing the number of independent variables by one.Further, verti
al di�usion and dispersion in estuaries are 
onsidered virtuallyequivalent su
h that �z 
an be regarded as the result of short duration, randommovements alone. 187
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Figure 8.6: Dispersion 
oeÆ
ients implied from the spread of an ensemble of par-ti
les tra
ked using POM generated 
ow �eld against verti
al di�usion 
oeÆ
ientimposed in the tra
king algorithm. Solid 
urve represents horizontal dispersion
oeÆ
ient; dashed 
urve represents verti
al dispersion 
oeÆ
ient. Case of tidal
ow in neutrally buoyant system.To show that the strati�ed system being used for Figs. 8.3 and 8.5 produ
esgreater dispersion than a system without salinity, (or temperature), variation {a homogeneous or neutrally buoyant system { the same experiment using onlya verti
al di�usion 
oeÆ
ient in the tra
king program was applied to 
ow �eldstaken from a system with uniform temperature and salinity. The results are shownin Fig. 8.6. It 
an be seen that the implied horizontal dispersion 
oeÆ
ients arean order of magnitude or more less than those obtained with the strati�ed system.The 
ow �eld for Fig. 8.6 is the same as that whi
h provided the residual velo
ityplot of Fig. 5.5. Starting positions were at the same depths and longitudinallo
ations as in the strati�ed system.Di�usion 
oeÆ
ient 
orre
tionThe 
orre
tion fa
tor for the di�usion 
oeÆ
ient used in a parti
le tra
king pro-gram given by Equation (3.23) was not used. The ratio of 
ell width in the188



verti
al to verti
al di�usion length, �z=p2�z�t, where �t is the timestep of thepopulation model, (12 hrs), remains less than 0.1 down to values of �z of ap-proximately 1�10�5m2s�1. At the minimum value used for full population runs,(1 � 10�6m2s�1), the ratio is approximately 0.3. At this ratio the di�eren
e inresultant di�usion between 
orre
ted and un
orre
ted tra
king is moderate. Thee�e
t of use of Equation (3.23) in a two dimensional 
ow �eld with time varyingadve
tion is un
ertain while use of un
orre
ted 
oeÆ
ients is 
onsidered not tohave made a signi�
ant di�eren
e to the results presented in the next se
tions.8.1.3 Estuary with sloping bathymetry and salinity gra-dientsTaking the system with residual 
ows as represented by Fig. 8.4 it might beexpe
ted that persisten
e is possible regardless of verti
al di�usion/dispersion dueto the 
ir
ular pattern of the residual 
ows behind the front. This expe
tationwas tested for two intrinsi
 growth rates. The �rst r = 0:39day�1 � 4:5 �10�6s�1 is the same growth rate used in 
hapters 6 and 7 and is representative ofphytoplankton. The se
ond, r = 0:026day�1 � 3:0� 10�7s�1 is the same growthrate as that used by Speirs and Gurney (2001) in their work on a tidal estuaryand is loosely based on the growth rates for a mysid shrimp. The results areshown in Fig. 8.7 whi
h displays normalised domain mean density as a fun
tionof �z.For smaller values of verti
al dispersion 
oeÆ
ient results are as anti
ipated.In
reases in �z 
ause little di�eren
e to the overall long term population densitya
hieved. However, as verti
al mixing in
reases further, population mean densityde
reases rapidly and eventually 
onditions of washout o

ur.The explanation for this surprising result requires re-
onsideration of the theory ofshear dispersion introdu
ed in se
tion 2.1.5. Taylor's theory of shear 
ow disper-sion is only appli
able if the 
ow regime remains 
onstant for a time `mu
h longer'189
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Figure 8.7: Mean population density in a tidal estuary, (with residual velo
itiesas shown in Fig. 8.3), as a fun
tion of the population verti
al mixing rate �z.Curves are for population intrinsi
 growth rates of 0:39day�1 (4:5�10�6s�1) and0:026day�1 (3:0� 10�7s�1) as indi
ated.than the `forgetting time'. This forgetting time is the time required for randommotions to have enabled a parti
le to sample all lo
ations in a 
ross se
tion suÆ-
iently for its lo
ation to have be
ome independent of its initial lo
ation, and itsmean velo
ity to have be
ome independent of its initial velo
ity. The horizontaldispersions experien
ed by parti
les in the strati�ed tidal regimes of this 
hapterare not 
aused solely by shear dispersion for values of �z that allow persisten
e.Instead, parti
les experien
e both the upper net seaward and 
ompensating netlandward 
ows for extended periods through ea
h 
ood and ebb half tidal 
y-
le. If �z be
omes suÆ
iently large, however, parti
les 
an experien
e 
ow at alldepths suÆ
iently qui
kly in 
ontrast to the temporal 
hange in 
ow regime thatan approximation to shear 
ow dispersion results. When this o

urs the meanmovement of parti
les be
omes equal to the depth averaged adve
tion of the 
owover the 
ood and again over the ebb. This mean movement over a tidal 
y
le be-
omes the depth averaged river 
ow. Fig. 8.8 shows this e�e
t taking pla
e. Thethree frames display 
ontour plots of the long term population within the domain.With very low verti
al mixing, frame a), population density is high everywhere1.1Interestingly, the front in the residual 
ow is re
e
ted by a slight de
rease in population190



At a value of �z where domain averaged density starts to de
line, frame b), pop-ulation density starts to redu
e toward the landward (and more shallow) end ofthe domain. This is expe
ted to be due to the shallower depths allowing 
ompletesampling of all depths for smaller verti
al mixing. With a further slight in
reasein verti
al di�usion 
oeÆ
ient, frame 
), population mean density falls sharply.The redu
tion in population density has progressed to greater depths and regionsnear the landward boundary now 
ontain no population at all.

density. 191
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Figure 8.8: Contours of population density in a tidal estuary, with residual ve-lo
ities as shown in Fig. 8.3) and population intrinsi
 growth rate of 0:39day�1(4:5 � 10�6s�1). Frame a), verti
al mixing rate �z = 1:0 � 10�6m2s�1; Frameb), verti
al mixing rate �z = 1:0 � 10�3m2s�1; Frame 
), verti
al mixing rate�z = 1:0� 10�2:8m2s�1. 192



To investigate a system where the residual movements over a tidal 
y
le do notseem to represent su
h a 
losed system, the persisten
e of populations subje
t tothe residual 
ows represented by Fig. 8.9 was investigated. These Lagrangianmovements were obtained with the same tidal elevation and river 
ow parameters,but with a smaller degree of ba
kground verti
al eddy vis
osity. The resultant
ows 
an be 
onsidered a 
lassi
 example of those from a partially mixed estuary,with residual movements mu
h greater than the a
tual 
ow of the river water.Again, mean long term population density was 
onsidered for a range of ver-ti
al di�usion 
oeÆ
ient values while the horizontal dispersion 
oeÆ
ient wasretained at zero. The results are shown in Fig. 8.10. As might be expe
ted inthis 
ow regime, very small values of verti
al di�usion 
oeÆ
ient lead to pop-ulation washout. Over su

essive tidal 
y
les, individuals starting in the lowerwater regions are 
arried toward the landward boundary and then out throughthe seaward boundary, while washout for individuals starting higher up the water
olumn o

urs sooner. Greater values of �z allow parti
les resident in the upperlayers (experien
ing net seaward movement) to be di�used to lower regions expe-rien
ing net landward movement. This overall delay in net seaward movement isonly suÆ
ient for suÆ
iently high intrinsi
 growth rates. For the lower of the twointrinsi
 growth rates 
onsidered, washout o

urs over the whole range of verti
aldi�usion.The `phytoplankton' growth rate is suÆ
iently high, however. The long termpopulation distribution for one of the �rst viable �z values is shown in frame a)of Fig. 8.11. Mean population density in
reases as this phenomenon in
reases,frame b). As for the initial 
ow regime, however, there exists a threshold in �zvalues after whi
h persisten
e be
omes rapidly more diÆ
ult and then impossible;frame 
).
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Figure 8.10: Mean population density in a tidal estuary, (with residual velo
itiesas shown in Fig. 8.8), as a fun
tion of the population verti
al mixing rate �z.Curve is for population intrinsi
 growth rates of 0:39day�1 (4:5� 10�6s�1).
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Figure 8.11: Contours of population density in a tidal estuary, with residual ve-lo
ities as shown in Fig. 8.8) and population intrinsi
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8.1.4 Depth dependent growth ratesIf the population being 
onsidered is supposed to be that of phytoplankton, thenthe assumption of uniform growth rate 
ould be a signi�
ant sour
e of error. Thedependen
e of phytoplankton on in
ident light for photosynthesis and redu
tionof light levels with depth is well do
umented, eg (Sverdrup 1953).Considering the distribution of light in the water 
olumn �rst, �eld studies haveshown light intensities to redu
e exponentially with depth. The rate of thisexponential de
ay is given by an attenuation (or extin
tion) 
oeÆ
ient ". Thatis I(z) = Io exp(�"z) (8.1)where Io is the light in
ident on the surfa
e and I(z) is the amount of light left atdepth z below the surfa
e. If the light intensity values I are expressed as a per-
entages, (that is Io = 100%), then " gives the redu
tion in ln I(z) over a depthin
rement of one metre. The attenuation 
oeÆ
ient varies for di�erent spe
tralwavelength blo
ks but an overall 
oeÆ
ient 
an be de�ned for the range of wave-lengths used in photosynthesis (photosyntheti
ally a
tive radiation or PhAR).The overall attenuation 
oeÆ
ient is made up of the 
omponents "w, the e�e
tof the water, "p, that attributable to inert suspended parti
ulate matter and "a,shading produ
ed by the algal biomass itself, (Reynolds 1984).To retain the logisti
 growth rate equation and in
orporate light dependen
y,relationships must be determined between light attenuation and the intrinsi
growth rate, r, and 
arrying 
apa
ity k. This 
an be done by re-formulatingthe logisti
 growth equation in terms of gross `growth' rates and loss or `death'rates. The intrinsi
 growth rate is the net per-
apita growth of a population inthe absen
e of density dependen
e. As su
h it 
an be formulated as
196



r = �o � Æo (8.2)where �o and Æo are density independent growth and death rates. In a systemwith no adve
tion or di�usion the rate of 
hange of population density n withtime 
an be written as dndt = �n� Æn (8.3)where � = �o � �1n, Æ = Æo + Æ1n and �1 and Æ1 are density dependent terms.Substituting for � and Æ in Equation (8.3) givesdndt = (�o � Æo)n� (�1 + Æ1)n2dndt = (�o � Æo)n0�1� n(�o�Æo)(�1+Æ1)1A (8.4)Equation (8.4) 
an be seen to be the logisti
 equation with r = �o�Æo as expe
tedand the 
arrying 
apa
ity k = r=(�1 + Æ1).For plants, this form of the logisti
 equation 
an be satis�ed by regarding �o =�N , where � is the slope of a linear fun
tional response and N is the total amountof bound and unbound nutrient in the system, (Gurney and Nisbet 1998). Theterm � 
an be regarded as proportional to the light intensity, while the amountof nutrient remains 
onstant. Therefore, an equation for a depth dependent valueof �o 
an be formed analogous to Equation (8.1)�o(z) = �ojz=0 exp(�"z) (8.5)In turn, this gives a relationship between the intrinsi
 growth rate and the lightintensity of 197



r(z) = �ojz=0 exp(�"z)� Æo (8.6)The 
arrying 
apa
ity is related to the intrinsi
 growth rate and therefore must
hange as r 
hanges. If the value of r at the surfa
e is labelled ro and the value ofk at the surfa
e is set equal to one, then (�1+Æ1) = ro. Thus the depth dependentvalues of 
arrying 
apa
ity, k(z) are given byk(z) = r(z)=ro (8.7)Be
ause density dependen
e is built into the logisti
 equation, self shading shouldnot be in
luded in the attenuation 
oeÆ
ient. The value of " in this work istherefore a 
ombination of "w and "p only.The term Æo 
an be 
onsidered attributable to various fa
tors in
luding predation.It is therefore perfe
tly possible for r to be
ome negative at greater depths. Therelationship between r and k shows that k will be
ome negative whenever r isnegative and zero when r is zero. The 
ase when r = k = 0 produ
es 0=0in the logisti
 equation so it is ne
essary to repla
e the exa
t solution with anapproximation and determine behaviour in the limit. Sensible behaviour fromthe dis
rete time solution to the logisti
 equation should also be 
he
ked for thesituation when r and k are negative.As stated in se
tion 3.3.1 the dis
rete time solution to the logisti
 equation isgiven by Bx;t = knx;tnx;t + �(k � nx;t) ; � � e�r�t (8.8)With r = k = 0 this gives 0=0. When jrj is very small jr�tj � 1 and e�r�t 
anbe represented by the �rst two terms of its Ma
laurin series without signi�
anterror. Therefore e�r�t 
an be represented by 1 � r�t. Substituting this newexpression into Equation (8.8), along with r=ro in pla
e of k gives198



Bx;t = (r=ro)nx;tnx;t + (1� r�t)((r=ro)� nx;t)Bx;t = rnx;tronx;t + r � ronx;t � r2�t + r�tronx;tBx;t = nx;t(1 + �tronx;t)� r�t (8.9)As r ! 0 Equation (8.9) tends toBx;t = nx;t1 + �tronx;t (8.10)To be biologi
ally sensible Bx;t 
an not be negative. This is assured as all terms onthe right hand side are positive. So long as �tronx;t � 0, however, then Bx;t � nx;twith the two terms be
oming equal when the population density be
omes zero.When r and k are negative, �R and �K say, Equation (8.8) be
omes
Bx;t = �Knx;tnx;t + eR�t(�K � nx;t)Bx;t = Knx;tnx;t (eR�t � 1) +KeR�tBx;t = Knx;t (eR�t � 1) +KeR�t � nx;t (8.11)Again all terms on the right hand side are positive ensuring Bx;t remains positive.As eR�t > 1 for jRj > 0 the term K=[nx;t �eR�t � 1�+KeR�t℄ < 1 and Bx;t � nx;t,as would be expe
ted for a negative intrinsi
 growth rate.Gurney and Nisbet (1998) list ba
kground light attenuation 
oeÆ
ients ("w+ "p)for four di�erent sea lo
hs. Three lo
hs have the same value of 0:22m�1, whileone is more turbid with a 
oeÆ
ient of 0:48m�1. In 
omparing results obtainedusing depth dependent growth rate, " 
an be taken as one of these two values, roneeds to be equal to the 
onstant intrinsi
 growth rate used before and the valuefor k is determined for all depths from Equation (8.7). If a depth zr
 is 
hosen199



for the point at whi
h r(z) = 0 then the remaining parameters, Æo and �o 
anbe determined as follows. Substituting for �o from Equation (8.2) into Equation(8.6) gives r(z) = (ro + Æo) exp(�"z)� Æo (8.12)r(z) = 0 at z = zr
 giving Æo = ro exp(�"zr
)1� exp(�"zr
) (8.13)�o 
an then be found from Equation (8.2).Gross photosyntheti
 rate in phytoplankton generally falls to zero when the in-
ident light falls in the range 0:5 � 3%Io and a `euphoti
 depth' zeu is de�nedas 1%Io, (Reynolds 1984). Using this de�nition, from Equation (8.1), zeu 
an begiven as zeu = ln(Io)=" (8.14)The values of zeu obtained for given values of " are the maximum sensible values ofzr
 that 
an be 
hosen for that value of attenuation 
oeÆ
ient. This 
riti
al depthvalue 
an be assumed to be one obtained in the absen
e of predation. De
reasingvalues of zr
 
an be interpreted as representing in
reasing rates of predation.Fig. 8.12 repeats the same graph of mean population density against verti
aldi�usion 
oeÆ
ient for a population with intrinsi
 growth rate of 0:39day�1, (4:5�10�6s�1) as shown in Fig. 8.10 but with additional 
urves showing the e�e
t ofdepth dependent growth rate. The left hand frame shows 
urves for " = 0:22 andthe right hand frame those where " = 0:48. In ea
h frame zr
 has been set toequal zeu, 7m, (the depth of the deepest part of the system) and 3:5m, (the middepth). It 
an be seen that even with " = 0:22 and zr
 set to its maximum sensible200
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Figure 8.12: Mean population density in a tidal estuary, (with residual velo
itiesas shown in Fig. 8.8), as a fun
tion of the population verti
al mixing rate �z.Curves are for 
onstant population intrinsi
 growth rates of 0:39day�1 (4:5 �10�6s�1) (bla
k line); r = 0:39day�1 at the surfa
e with r(z) = �ojz=0 exp(�"z)�Æo and zr
 = zeu (red line); zr
 = 7m (blue line) and zr
 = 3:5m (green line). Lefthand frame: Light attenuation 
oeÆ
ient, " equals 0:22m�1; right hand frame:" = 0:48m�1.value the redu
tion in mean population density is marked. The redu
tions when" = 0:48 
ould be des
ribed as dramati
.Although the redu
tion in mean population density brought about by the in-trodu
tion of depth dependent growth rate is large, the overall pattern remains
onsistent. If an organism allows itself to be moved in a di�usive manner to a
ertain extent, then persisten
e be
omes possible, whereas near total avoidan
e ofrandom motions leads to washout. Too great a degree of random verti
al motion,however, is sub-optimal and there is an in
reasing risk that washout will againo

ur.This is at least true when zr
 is set greater than 3:5m. At this value, eventhough the transition from net seaward to net landward 
ow o

urs at a depth ofaround 2m, persisten
e has been made impossible in the 
ase of higher attenuation
oeÆ
ient and is only very marginal in the 
ase for 
learer waters. This suggests201



persisten
e relies on population surviving, and quite probably growing, in thedeeper regions 
loser to the seaward boundary. Fig. 8.13 shows how the pattern ofdistribution of population density is not altered by transition to depth dependentgrowth rates. Rather, 
on
entrations are simply redu
ed. Frames a), b) and 
) allshow distributions for a verti
al di�usion of �z = 1:0�10�4m2s�1 but frame a) isthat for uniform growth, frame b) that for growth when " = 0:2m�1; zr
 = 20:9mand frame 
) that for " = 0:48m�1; zr
 = 7m. It should be noted that to makethe frames of this �gure more readable, the minimum 
ontour and the 
ontourstep size has been altered for ea
h frame.
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Figure 8.13: Contours of population density in a tidal estuary, with residualvelo
ities as shown in Fig. 8.8), population intrinsi
 growth rate of 0:39day�1(4:5 � 10�6s�1) and verti
al mixing rate of �z = 1:0 � 10�4m2s�1. Frame a),uniform growth. Frame b), attenuation 
oeÆ
ient " = 0:22m�1 and zr
 = 20:9m.Frame 
), attenuation 
oeÆ
ient " = 0:48m�1 and zr
 = 7:0m.203



8.2 Verti
al motion toward the benthos8.2.1 Uniform in situ growth rateAs in the 
onsideration of a verti
ally heterogeneous river the e�e
t of a 
onstantrate of sinking is investigated. As mentioned in 
hapter 7 a number of spe
ies ofphytoplankton are known to be negatively buoyant and have no means of swim-ming. Su
h phytoplankton are an important 
omponent of many estuaries andfjords. To link with 
hapter 7, the same sinking velo
ity, Vs, is used as in se
tion7.2.4. This represents a maximum re
orded value for freshwater phytoplanktonspe
ies but there are marine spe
ies with higher values, (Reynolds 1984).Using the 
onstant intrinsi
 growth rate of 0:39day�1 (4:5�10�6s�1) the graph ofnormalised, (and domain averaged), long term population density against verti
aldi�usion 
oeÆ
ient, (as shown in Fig. 8.10), is 
ompared to the result whensinking is present in Fig. 8.14. The former is given by a solid line and the lattera dotted line. The overall pattern 
ould be regarded as remarkably similar. Theonly region where results are qualitatively di�erent is that for whi
h �z values aresmallest. There has been a shift from washout to moderate persisten
e. Giventhe pattern of the residual 
ows, it seems surprising that organisms with a sinkingvelo
ity should persist less well for any values of �z, espe
ially as in situ growthrates are 
onstant throughout the domain.A more signi�
ant result of sinking is that persisten
e is now possible with thelower of the 
onsidered intrinsi
 growth rates, 0:026day�1. The 
urve of popu-lation density is shown by the dashed line. The lower growth rate is intendedto be representative of organisms as large as small shrimp. Zooplankton arelikely to have either signi�
antly greater sinking speeds, or swimming ability.Even amongst motile phytoplankton swimming speeds are estimated to rea
h1:0� 10�3ms�1, (Reynolds 1994b, page 153).If organisms possess a quies
ent settling velo
ity the theory of settling in the204
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Figure 8.14: Mean population density in a tidal estuary, (with residual velo
itiesas shown in Fig. 8.8), as a fun
tion of the population verti
al mixing rate �z.Curves are for population intrinsi
 growth rates of 0:39day�1 (4:5 � 10�6s�1)with organisms neutrally buoyant (solid line); sinking with a velo
ity of Vs =2:5�10�5ms�1 (dotted line). The same sinking velo
ity and intrinsi
 growth rateof 0:026day�1 (3:0� 10�7s�1).presen
e of turbulen
e implies that turbulen
e will delay the settling of individualsin the water 
olumn, (by a fa
tor dire
tly related to their settling velo
ity), butif only random motion is present in the verti
al eventual settling is inevitable,(Reynolds 1984, page 50). As a 
onsequen
e one might expe
t 
ontour plotsof the long term distribution of population density to show strong 
on
entrationtoward the benthi
 boundary. Fig. 8.15 shows this to be only partially true. This�gure shows frames of population distribution when the intrinsi
 growth rate is0:39day�1.The strong landward bias to 
ow nearer the benthos 
onveys population towardthe head of the estuary. Close to the re
e
ting boundary net 
ow tends tobe verti
ally upwards, but this adve
tion is 
ounter balan
ed by the downwardadve
tion of sinking. Strong 
on
entrations therefore form at the head of theestuary. It is thought the fa
t only modest domain mean populations are a
hievedin the region of �z values where there was no persisten
e previously is due tothis fo
using of individuals and density dependen
e. The result when �z =205



1:0 � 10�6m2s�1 is shown in frame a). The same explanation seems to a

ountfor the small range of values of �z for whi
h the domain mean population densityis redu
ed in the presen
e of sinking. Frame b) shows a 
ontour plot from thisrange, when �z = 1:0 � 10�4:4m2s�1. The adve
tive 
omponent to organismalverti
al movement does seem to delay the onset of 
omplete mixing and resultantwashout. Frame 
) of Fig. 8.15 takes the same �z value of 1:0 � 10�3:6m2s�1as used in frame b) of Fig. 8.11. In the 
ase of verti
al sinking, the density ofpopulation 
an be seen to be more 
on
entrated both toward the benthos, (to amodest degree), and toward the landward end of the domain.
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ities as shown in Fig. 8.8), population intrinsi
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al mixing rate �z = 1:0�10�4:4m2s�1;Frame 
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al mixing rate �z = 1:0� 10�3:6m2s�1.207



8.2.2 Sinking and depth dependent growth rateGiven the results from se
tion 8.1.4 and those for organisms with sinking velo
itybut uniform growth, it is intriguing as to the e�e
t of sinking and light dependentgrowth 
ombined. Light restri
tions on growth led to sharp redu
tions in overallpopulation density. Sinking, however, did lead to gains in persisten
e, but for thehigher intrinsi
 growth rate only to small gains, and then for only some values ofverti
al di�usion 
oeÆ
ient. Perhaps most interesting is whether the ability topersist at very low values of �z provided by sinking 
an be maintained.The left hand frame of Fig. 8.16 repeats the left hand frame of Fig. 8.12 thatshows results for the 
ase of neutral buoyan
y given uniform growth and threevalues of zr
 when the attenuation 
oeÆ
ient " = 0:22m�1. The right hand framegives the results when sinking is in
luded. With sinking present, the patternof persisten
e against verti
al di�usion again remains mu
h the same whethergrowth is 
onsidered uniform or light dependent. In turn this leads to gains inpersisten
e at low di�usion rates. The e�e
t is most marked when the growthredu
tion with depth is most severe.Fig. 8.17 makes a similar 
omparison to that of Fig. 8.16 but for the 
ase wherethe attenuation 
oeÆ
ient equals 0:48m�1. Again, the same form of relationship
an be seen between mean density 
urves when 
omparing between depth de-pendent growth and uniform growth and when 
omparing between sinking andneutrally buoyant organisms subje
t to the same growth regimes. The great-est di�eren
e when sinking is present again o

urs for the smallest value of zr
.Indeed, the situation has been 
hanged from one of extin
tion at all values ofverti
al di�usion to a �nite region of di�usion 
oeÆ
ients where persisten
e isse
ured.It is believed the in
reasing advantage of organisms possessing sinking as redu
-tion in r with depth be
omes more severe is due to the same me
hanism thatallows persisten
e with uniform but mu
h lower intrinsi
 growth rate. A greaterproportion of population be
omes part of a gyre like pattern of motion that is208



restri
ted to the upper, and more shallow, part of the domain. If growth is suf-�
ient for density dependen
e to take e�e
t this 
an be
ome a disadvantage, asseen in Fig. 8.14. Here, however, growth rates are being suppressed by otherfa
tors.
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Figure 8.16: Mean population density in a tidal estuary, (with residual velo
itiesas shown in Fig. 8.8), as a fun
tion of the population verti
al mixing rate �z.Curves are for population intrinsi
 growth rates of 0:39day�1 (4:5 � 10�6s�1).Results for uniform growth rates and for values of zr
 as indi
ated. Attenuation
oeÆ
ient " = 0:22m�1 in all 
ases. Left hand frame, (solid lines) for neutrallybuoyant organisms; Right hand frame, (dotted lines), for organisms with sinkingvelo
ity of Vs = 2:5� 10�5ms�1.
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Figure 8.17: Mean population density in a tidal estuary, (with residual velo
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Chapter 9
Strategi
 fjord
9.1 Ratios of tidal in
ow to river dis
hargeIn 
hapter 8 the river dis
harge into the system was 
hosen as mu
h to allow the
omparison of two very di�erent residual 
ow patterns as any other reason. Forthe work on fjords it was possible to 
onsider the appropriateness of the ratio ofriver dis
harge to tidal in
ow thanks to a 
omprehensive survey of S
ottish sealo
hs performed by Edwards and Sharples (1986). Edwards and Sharples re
ordedphysi
al dimensions and other statisti
s pertinent to o
eanographi
 work, in
lud-ing �gures for annual fresh water dis
harge and total annual tidal in
ow. Thelatter value, (with units ofm3year�1), was determined from the following formulainflow = 490� tiderange� (hwarea+ lwarea)=2 (9.1)where the 
onstant is derived from the fa
t that there are approximately 700semidiurnal tides per year and study of tidal tables for North West S
otlandshowed the mean tidal range in a year to be about 70% of the spring tidal range,(the term `tiderange' represents spring tidal range). In the strategi
 simulationsperformed in this work the tidal range is 
onsidered 
onstant and only a two211



dimensional sli
e is 
onsidered su
h that the term (hwarea + lwarea)=2 
an berepla
ed by the length of the fjord. This length was taken as the distan
e fromthe inner edge of the sill region to the point at whi
h the river 
ow is inje
ted.A per unit width in
ow value ,(in m2s�1), 
an then be obtained frominflow = tiderange� lengthT (9.2)where T is the tidal period. Edwards and Sharples ranked 109 sea lo
hs a

ordingto this `freshtideratio'. With the tidal range of these strategi
 simulations retainedas, 2m � �1m, the river dis
harge used in 
hapter 8 gives a ratio of � 0:0055.This equates to values obtained for sea lo
hs ranking 76th to 87th in the leaguetable and is similar in value to lo
hs ranking as high as 69 and as low as 98. Withthe dis
harge value used by Speirs and Gurney (2001) in their investigation oftidal regimes the ratio be
omes � 0:022, equal to sea lo
hs ranked 16th and 17thand similar to those from rank 15 to 19. The river dis
harge to tidal 
ow ratiosrepresented by these two in
ows 
over the majority of the range found in S
ottishsea lo
hs.Two additional runs were 
ondu
ted. One in
reased the river dis
harge to tidalin
ow ratio to 0:1, greater than all but one sea lo
h, and the other redu
edthe ratio to 0:002, lower than all but two lo
hs. The run with higher dis
hargeshowed no sign of settling to a quasi steady state. A more steady 
y
le 
ouldprobably have been for
ed through adjustment of parameters su
h as imposedhorizontal di�usion or bottom fri
tion but this would 
ompromise the ability tomake 
omparisons between systems where the only di�eren
e is supposed to beone of river in
ow. Fig. 9.1 shows the Lagrangian residual movement obtainedusing the river dis
harge as in Speirs and Gurney (2001), while Fig. 9.2 showsresidual 
ows when river 
ow was redu
ed to give the freshtideratio of 0:002.These residual movements are used in the remainder of this 
hapter.
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y
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al
ulated fromPOM derived 
ow. Tidal range �1m; VR = 0:003125ms�1, (Qf = 4:167 �10�3m2s�1); UMOL = 2:0� 10�5m2s�1.
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Figure 9.3: Strati�
ation-
ir
ulation diagram, after Hansen and Rattray (1966),with results marked for the two 
ow regimes used. Results were taken for fourlo
ations; the point at whi
h the riverine se
tion feeds into the body of the fjord,the upstream and downstream lo
ations at whi
h the fjord basin is at its deepestand the lo
ation of the sill.The overall pattern of residual movement was found to alter subtly between theextremes of river dis
harge 
onsidered. With higher river dis
harge there is a
lear indi
ation of a two layer 
ow regime in the near surfa
e region of the fjord,(Fig. 9.1). This seems absent in the 
ase of low river 
ow, (Fig. 9.2). Fig.9.3 shows the lo
ation of these two 
ow regimes on the Hansen and Rattraystrati�
ation-
ir
ulation diagram. Both results show the regimes to be of type 3as would be expe
ted of fjords. As mentioned in se
tion 2.1.2 a typi
al fjord isexpe
ted to be of type 3b. The system with the higher river 
ow 
onforms tothis expe
tation very well. The lower strati�
ation indi
ated for the 
ase of lowerriver dis
harge is be
ause the river 
ow was insuÆ
ient to form a well de�nednear surfa
e bra
kish layer. The diagram 
learly shows how the di�eren
e betweensurfa
e and verti
ally averaged net velo
ity is greatly redu
ed in the region of thesill, indi
ating the breaking down of buoyan
y driven near surfa
e 
ows in thisregion by greater levels of turbulent mixing.
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9.2 Passive organisms permanently in the drift9.2.1 Persisten
e relative to verti
al di�usionDi�usion 
oeÆ
ient 
orre
tionTo tra
k parti
les over the mu
h deeper domain represented by the fjord butkeep within the memory 
onstraints of available 
omputers it was ne
essary toin
rease verti
al 
ell height from 0:1m to 1m. The 
riterion for a

urate repre-sentation of intended di�usion established by Gurney et al. (2001), namely that�z=p2�z�t � 0:1 is only satis�ed down to values of �z � 1:0�10�2:8m2s�1. Atthe lowest value used to investigate persisten
e, 1:0� 10�6m2s�1, this ratio be-
omes roughly 3:4. Between these values, if this non-steady 
ow regime behavesin a similar manner to the 
ase with no adve
tion, un
orre
ted parameter valuesused in the parti
le tra
king program are likely to lead to over-representation ofverti
al di�usion. An algorithm developed by Gurney et al. (2001) was used toprodu
e 
orre
ted 
oeÆ
ient values. This only 
orre
ts exa
tly for the 
ase withno adve
tion. Individually tuned 
orre
tions for regimes with 
onstant adve
tionare possible but in this 
ase the adve
tions 
hange with time and spa
e and arenot known a priori. As stated in se
tion 3.3.1 
on�den
e in the 
orre
tion towithin a 10% error are possible up to a 
ell to di�usive distan
e ratio of 2. Verti-
al di�usion was still likely to be represented with error > 10% for target valuesof 1:0 � 10�5:8 and 1:0 � 10�6m2s�1. These values were omitted for the fjordwork.Domain averaged population densitiesPhytoplankton and zooplankton that 
ould be regarded as passive are importanttrophi
 levels within fjords. Su
h plankton are unlikely to exhibit intrinsi
 growthrates of as low as 0:026day�1 however, (O'Doherty 1985), so only the higher ofthe two growth rates 
onsidered previously, (0:39day�1), is 
onsidered in this215
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Figure 9.4: Mean population density in a tidal fjord, (with residual velo
ities asshown in Figs. 9.1 and 9.2), as a fun
tion of the population verti
al mixing rate�z. Curves are for population intrinsi
 growth rate of 0:39day�1 (4:5� 10�6s�1).se
tion. Fig. 9.4 shows a plot of domain averaged population density againstverti
al di�usion rate for residual movements over a tidal 
y
le as shown in Figs.9.1 and 9.2. Most planktoni
 life that 
an live in saline fjords 
an also survivein the 
oastal sea. It is also 
onsidered legitimate for planktoni
 organisms to be
arried into su
h bodies from outside of the sill region. Therefore, when tra
kingorganisms to generate the redistribution matrix, tra
ks were started between thesill region and open boundary to allow for organisms to be washed into the fjordregion. Also, the boundary at whi
h organisms were 
onsidered washed out duringtra
king was set between sill and open boundary. The extent of this extendedtra
king region 
an be seen from the population 
ontour plots used in this se
tion.In determining the results for domain averaged population density, however, onlythe domain found inside of the fjord sill was in
luded.It 
an be seen from Fig. 9.4 that persisten
e is strong for all values of di�usion
oeÆ
ient 
onsidered and for both river dis
harges. At higher di�usion rates pop-ulation is virtually at the 
arrying 
apa
ity throughout the domain and the di�er-en
e between river dis
harges has be
ome irrelevant. At lower levels of di�usionthere is a modest di�eren
e in persisten
e between the regimes. What di�eren
es216



do exist in long term population pattern between results for low and high verti
aldi�usion and river dis
harge are shown by Figs. 9.5, 9.6 and 9.7 whi
h show
ontours of long term population density for the 
ases of �z = 1:0 � 10�5m2s�1and �z = 1:0� 10�2m2s�1. It should be remembered that 
ells between the silland seaward open boundary were not in
luded in the determination of domainaveraged population densities.Fig. 9.5 
on�rms the idea that population is almost uniformly at the 
arrying 
a-pa
ity. There is 
lear indi
ation, however of a large gyre or eddy formation at theseaward end of the fjord behind the sill. This feature extends to the deepest partof the fjord. The �gure shown represents the result for the higher river dis
hargebut plots for the 
ase of lower river dis
harge showed no signi�
ant di�eren
es forthose values of verti
al di�usion where the domain averaged population densitieswere 
onvergent.In Fig. 9.6, whi
h shows the 
ase for high river dis
harge but low verti
al di�usion,densities 
an be seen to redu
e in the surfa
e layers { as might be expe
ted { andin the regions 
lose to where the bathymetry drops toward the middle basin.In the 
ase of the same low value of di�usion and also low river dis
harge, Fig.9.7, redu
tions in population density 
an be seen to be slightly less in the upperregions of the water 
olumn. There is, however, a sizeable region with a nearabsen
e of population at the landward end of the fjord basin.
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Figure 9.5: Contours of population density in a tidal fjord, with residual ve-lo
ities as shown in Fig. 9.1), population intrinsi
 growth rate of 0:39day�1(4:5 � 10�6s�1) and verti
al mixing rate of �z = 1:0 � 10�2m2s�1. Contourintervals 0.1.
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9.2.2 Depth dependent growth rateThe very high domain averaged population 
on
entrations shown in Fig. 9.4would suggest in themselves that depth dependent growth rates are likely to havea big impa
t on the results for persisten
e. The deepest part of the fjord regionis over ten times as deep as the deepest part of the estuary domain 
onsidered inthe previous 
hapter. The degree of redu
tion, however, depends on the extentto whi
h population in the upper regions depends on supply from deeper regions.Fig. 9.8 shows the domain averaged population densities obtained using depthdependent growth rate and light attenuation 
oeÆ
ient, " = 0:22m�1. For thedepth dependent growth rate, the depth for zero intrinsi
 growth rate, zr
 was setequal to the `euphoti
 depth' zeu, su
h that predation 
an essentially be 
onsideredabsent. Even so e�e
ts on persisten
e are so dramati
 a logarithmi
 s
aling hasbeen employed for the normalised population density and for only a fra
tion of thefull range. For higher river 
ow persisten
e is only possible for verti
al di�usion
oeÆ
ients above 1:0 � 10�3m2s�1 and then it is only marginal. Washout andextin
tion of population was slow in the other 
ases. After a population modelrun representing one year very small �nite population densities were still present,but they were subje
t to a steady de
rease in all 
ases. This was 
on�rmed byrunning the simulations for two years. A dotted line is in
luded in Fig. 9.8to distinguish between results that indi
ated persisten
e and those where thepopulation was still slowly de
aying.The 
ase for low river 
ow is very similar with the ex
eption of a persistentpopulation in one narrow window of lower verti
al di�usion. Fig. 9.9 showsthe long term population distribution for a verti
al di�usion from this region,(�z = 1:0 � 10�3:4m2s�1). Non-zero population is found throughout the fjordbut there is a small 
on
entration found in the near surfa
e region just inside ofthe sill. A 
on
entration 
an also be seen, however, at the upstream end of thedomain used to introdu
e the river 
ow. It should be noted that 
ontours in Fig.9.9 are at values an order of magnitude smaller than those of previous 
ontour220
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Figure 9.8: Mean population density in a tidal fjord as a fun
tion of the popu-lation verti
al mixing rate �z. Results are for population intrinsi
 growth rateof 0:39day�1 (4:5� 10�6s�1), light attenuation 
oeÆ
ient, " equals 0:22m�1 andzr
 = zeu = 20:9m, (intrinsi
 growth rate 
riti
al depth equalling euphoti
 depth).Left hand frame; residual movements as in Fig. 9.1, right hand frame; residualmovements as in Fig. 9.2. Dotted lines indi
ate split between results for persis-ten
e and results where population was still de
lining after two years.plots.
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 growth zr
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The small levels of persisten
e seen for higher verti
al di�usion 
oeÆ
ients seemsdue to the fa
t the random movement of individuals manages to repeatedly trans-fer suÆ
ient numbers between the large s
ale eddies { both at the head of thefjord and toward the sill region { and the upper layers. Fig. 9.10 illustrates thee�e
t for when the �z value equals 1:0 � 10�2:6m2s�1. Contour plots were verysimilar between high and low river 
ow. This latter result suggests that in thepresen
e of only small values of verti
al di�usion, the near surfa
e and and deeperwaters are weakly linked. Population in regions suitable for growth are subje
t towashout while that in the deeper gyres dies out. If 
onne
tion between the twois in
reased, (by in
reasing verti
al di�usion), then ea
h region 
an re-supply theother, so long as the redu
tion (and transition to negative) intrinsi
 growth rateis not too rapid. This was 
on�rmed by setting zr
 = 10m. This led to extremelylow values of persistent population at high values of verti
al di�usion, (approxi-mately an order of magnitude smaller than the values for persistent populationin Fig. 9.8). For the 
ase of higher river 
ow extin
tion o

urred for all othervalues of �z. For the smaller values of �z allowing persisten
e under 
onditions oflower river 
ow the situation was the same. In all 
ases the reason for persisten
e
learly be
omes one of retention in the shallow riverine se
tion of the domain.Fig. 9.11 is used to illustrate this situation. It 
ould be argued that this no longerrepresents persisten
e in the fjord itself. The light attenuation 
oeÆ
ient used,(" = 0:22m�1), is the lower of the two values 
ited by Gurney and Nisbet (1998)for S
ottish sea lo
hs. The higher value has asso
iated with it a euphoti
 depthof zeu = 9:6m.
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e. Light attenuation 
oeÆ
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 growth zr
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9.3 Verti
al motion toward the benthos9.3.1 Uniform in situ growth rateIn the setting of a 
oastal plain estuary, a 
onstant sinking speed proved ad-vantageous 
ombined with very small verti
al di�usion. In that 
ase, however,there was a 
lear two layer residual movement that extended the whole depth ofthe system. In the 
ase of the fjord domain, sinking that is not mu
h modi�edby turbulent di�usion 
an be expe
ted to take near surfa
e organisms below theregion of two layer 
ow. Given the 
ir
ular, or gyre like residual movements inthe body of the fjord, (for both 
ow regimes 
onsidered), it is un
lear how overallpersisten
e will be a�e
ted, at least in the absen
e of depth dependent growthrates.Fig. 9.12 
ontrasts the results for neutrally buoyant organisms with those sub-je
t to the 
onstant downward verti
al velo
ity used previously of Vs = 2:5 �10�5ms�1, in terms of domain mean population density against verti
al di�u-sion. At high di�usion rates the long term populations are virtually identi
al. Atlower values sinking proves detrimental.The reason is shown 
learly in Figs. 9.13 and 9.14 whi
h display population
ontours for the 
ase of �z = 1:0 � 10�5:4m2s�1. Neither random di�usion oradve
tive 
urrents have prevented the downward velo
ity from removing individ-uals from the surfa
e region of the fjord. The greater di�eren
es displayed for the
ase of lower river 
ow seem due to population be
oming absent in the middleof the fjord basin. It is not obvious from inspe
tion of Fig. 9.2 why this shouldbe the 
ase. In
reasing verti
al di�usion steadily redu
es the signi�
an
e of thedownward adve
tive 
omponent. Contour plots, (not shown), for organisms withsinking but in the presen
e of high verti
al di�usion appeared very similar to thatshown in Fig. 9.5.
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Figure 9.12: Mean population density in a tidal fjord as a fun
tion of the popula-tion verti
al mixing rate �z. Curves are for a uniform population intrinsi
 growthrate of 0:39day�1 (4:5 � 10�6s�1). Bla
k lines show 
ase for neutral buoyan
y.Red lines show 
ase for sinking velo
ity of Vs = 2:5�10�5ms�1. Left hand frame;residual movements as in Fig. 9.1, right hand frame; residual movements as inFig. 9.2.
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Figure 9.14: Contours of population density in a tidal fjord, with residual ve-lo
ities as shown in Fig. 9.2, population intrinsi
 growth rate of 0:39day�1(4:5 � 10�6s�1), sinking velo
ity of Vs = 2:5 � 10�5ms�1 and verti
al mixingrate of �z = 1:0� 10�5:4m2s�1.9.3.2 Depth dependent growth rateGiven the results for depth dependent growth from se
tion 9.2.2 and that the onlysigni�
ant di�eren
e introdu
ed by a sinking velo
ity was removal of populationfrom the near surfa
e regions in se
tion 9.3 the prospe
ts for persisten
e whenthese two attributes are 
ombined is not en
ouraging. If a light attenuation
oeÆ
ient of " = 0:22m�1 is employed and zr
 made equal to zeu as before,then persisten
e at high values of verti
al di�usion 
oeÆ
ient is again possiblefor the same reasons as in the 
ase for neutrally buoyant parti
les. Surprisingly,in the 
ase of higher river dis
harge, persisten
e also just be
omes possible forsmaller di�usion values. The results for long term population densities whendepth dependent growth is used { 
ontrasting the 
ases with and without sinking{ is shown in Fig. 9.15.For all 
ases of persisten
e at verti
al di�usion values� 1:0�10�3m2s�1, the samepattern of long term population emerges. Population is sustained in the riverinepart of the domain and in the gyre like residual 
ow toward the landward end226
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Figure 9.15: Mean population density in a tidal fjord, (with residual velo
itiesas shown in Fig. 9.1), as a fun
tion of the population verti
al mixing rate �z.Curve for population intrinsi
 growth rate of 0:39day�1 (4:5� 10�6s�1), sinkingvelo
ity Vs = 2:5� 10�5ms�1, light attenuation 
oeÆ
ient, " equals 0:22m�1 andzr
 = zeu = 20:9m, (intrinsi
 growth rate 
riti
al depth equalling euphoti
 depth).of the fjord basin. Di�usive movement is probably enabling population ex
hangebetween the two regions. An example of the population distributions observed isgiven in Fig. 9.16.The pattern and s
ale of persisten
e is not mu
h 
hanged between the neutrallybuoyant 
ase and the 
ase for sinking. It was anti
ipated that introdu
tion of a
riti
al depth for intrinsi
 growth of 10mmight produ
e results as for se
tion 9.2.2with the only sour
e of persisten
e being retention of population in the riverinese
tion of the domain. This did indeed prove to be the 
ase. The 
on
lusiondrawn is that with the ex
eption of retention of organisms in that part of thedomain representing a river, no me
hanism was dete
ted that allowed persisten
eand did not involve 
ir
ulation in the deeper part of the fjord.
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Chapter 10
Overview and Dis
ussion
This thesis has dealt with 
ow regimes split into four basi
 
ategories and 
onsid-ered one or more basi
 persisten
e issues for ea
h. The approa
h, on the whole,has been very strategi
. An obvious way forward is to apply the methods devel-oped to 
omprehensive data sets for given spe
ies or groups of spe
ies in givenhydrodynami
 systems. Finding su
h data is non-trivial in that both reliablehydrodynami
 and biologi
al data must be obtained and the two data sets needto be re
orded at the same time, or at least at times when abioti
 
onditions arevery similar. Even retaining a more strategi
 approa
h, there are many addi-tional issues that 
an be addressed. The remainder of this 
hapter dis
usses theresults obtained from 
hapters 6, 7, 8 and 9 in turn and 
onsiders a few of thepossibilities for future work.
10.1 1D systemsIt was found that if a 
onstant swimming velo
ity was introdu
ed against thedeterministi
 adve
tion the results regarding key inequalities to be satis�ed forpersisten
e, as derived by Speirs and Gurney (2001), 
an still be applied with avery minor adjustment, namely the subtra
tion of the swimming velo
ity from229



the adve
tion term. Swimming against a time averaged history of previous net
ow, as 
onsidered in se
tion 6.2.3, was shown to be less su

essful. The reasonis be
ause net 
uid element movements, (
onforming to a Gaussian distributionwith downstream mean), 
an be upstream as well as downstream. Upstreammovements are smaller on average, however, and the swimming velo
ity requiredto 
ompletely 
ompensate for them is more often within the maximum attributedto the organisms of the population.From a hydrauli
 point of view the one dimensional population models developedseem most appli
able to low order shallow streams. The shallow water depthand the size of substrate elements relative to water depth means the e�e
ts ofturbulen
e are likely to overwhelm verti
al gradients in adve
tion. Traditionally,pelagi
 plankton have been thought to be virtually absent from headwaters andmidrea
hes of streams, eg (Vannote et al. 1980). Most studies of stream planktonhave been lake outlet studies whi
h re
orded rapid downstream de
lines in plank-ton numbers, (Brown, Limbe
k, and S
hram 1989). This would point to limitedappli
ability of the initial semi-analyti
 treatment of organisms permanently inthe drift. Brusso
k, Brown, and Dixon (1985) however, suggested that zooplank-ton 
ould persist in some abundan
e in free 
owing streams if they possessed adistin
t ri�e-pool geomorphology. Brown, Limbe
k, and S
hram (1989) studiedthe �rst �ve orders of a gravel bed stream, (the Illinois River, Arkansas), andfound an `abundant, diverse zooplankton 
ommunity 
omparable to that of lo
alreservoirs'. This river was of pool-ri�e form and population was 
on
entratedin the pools, with density and abundan
e espe
ially high when 
ow through thepools was < 0:02ms�1. As would be expe
ted from the one dimensional analysisthe study found an inverse relationship between plankton density and observed
ow rate in the pools.If the pools of su
h a system were not suÆ
iently deep to suggest use of the twodimensional model the one dimensional model 
ould be used for ea
h individually.One adjustment ne
essary might be the alteration of the upstream boundary toa

ount for import of individuals from further upstream. The same 
ould be230



done for individual ri�e se
tions. If the horizontal dispersion 
oeÆ
ient, �x wastreated as a �tting parameter, the model of se
tion 6.1 
ould be made to mat
hthe overall population density of planktoni
 spe
ies over the system length for agiven system averaged 
ow rate. If used in this way, however, the model is nolonger attempting to determine whether representations of turbulent or randommotion 
an predi
t persisten
e in any realisti
 fashion. Population distributionwould also not be 
orre
t. Brown, Limbe
k, and S
hram (1989) found densitiesin the ri�es to be mu
h less than in the immediately pre
eding pool su
h thata su

ession of population peaks 
an be expe
ted for the overall system. Thissuggests the need for a series of 1D domains linked by 
ommon boundaries. Thepossibility of analyti
 solutions to su
h a system has not been investigated. It isalso possible that more than just a slow down in overall 
ow rate is responsible forstrong persisten
e in the pools. Verti
ally non-uniform adve
tive 
ow patterns
aused by the deepening of the pool and its rise to a lip at the downstream end
ould be signi�
ant. If so, 2D numeri
al 
ow simulations would probably be theonly way to model the situation.The variant of one dimensional model in
luding `
linging' to the benthos is po-tentially more widely appli
able. Many invertebrates live on or amongst thesubstrate. Their persisten
e does not seem dependent on a pool-ri�e stru
tureand indeed some spe
ies are 
ited as preferring regions of higher velo
ity andturbulen
e. Se
tion 6.3.5 showed that although there is no �rm eviden
e forexponential residen
e times in the benthi
 state, the existen
e of exponential res-iden
e times in the water 
olumn are supported by both theory and �eld data.What this model 
an not represent are spe
ies whi
h have a nekton develop-mental stage su
h as stream inse
ts. Here it seems some form of model of the
olonisation 
y
le still needs to be applied. In turn this requires use of a stagestru
tured model. The 112D model 
ould still be useful however, in that it pro-vides a semi-analyti
 solution to the aquati
 stages of the life 
y
le, while takinginto a

ount the intermittent nature of drift events. A problem that would needto be resolved is that both analyti
 models use the intrinsi
 growth rate, r, to231



non-dimensionalise the problems. For a stage stru
tured model the growth rateduring the aquati
 phase is zero. It is feasible to use a nominal non-zero growthrate 
onsidered suÆ
iently small not to overly in
uen
e the population distribu-tion at the end of aquati
 stages. Otherwise an alternative form of s
aling mustbe sought. In either 
ase, the proportion of individuals in the water 
olumn 
ouldbe 
onsidered as represented by Equation (6.53) (using the Markov theory). TheMarkov theory takes no a

ount of population growth and 
losely approximatesthe result from the 112D solution if ex
hange rates are high 
ompared to the in-trinsi
 growth rate. An estimate of the proportions of spe
ies found in drift andbenthos is more likely to be available from �eld data than rates of drift entry andexit. Equation (6.53) allows determination of these latter parameters.Non-inse
t loti
 and benthi
 dwelling stream invertebrates seem less well studiedthan stream inse
t larvae. There is eviden
e of their o

urren
e in the drift,however, dire
tly from net sampling studies, (Allan et al. 1988; Bergey andWard 1989).The analyti
 tra
tability of the 112D model depends on the assumption of nomovement in the benthi
 `state'. This assumption is probably valid if 
onsideringvery small animals su
h as harpa
ti
oid 
opepods. Other spe
ies, su
h as Gam-marus spe
ies of amphipod have had signi�
ant upstream movements measured, (Elliott 1971b; Mar
hant and Hynes 1981). Su
h upstream movements havealso been measured for inse
t larvae, (Elliott 1971b; Hayden and Cli�ord 1974),although other studies have 
on
luded movements to be random, (Hart and Resh1980). These upstream movements were not 
onsidered enough to 
ompensatefor downstream drift but raise the issue of whether results obtained from thesemi-analyti
 treatment are robust enough to be able to ignore the magnitudeof upstream movement reported. Performing this test requires use of a form ofthe dis
rete spa
e-time simulation. This 
ould be non-trivial be
ause the prob-lem 
an be
ome `sti�' as the mean residen
e time in the water 
olumn is madeshorter. A simulation model of this problem was developed to test simulationresults against the analyti
 results for the 
hange in 
riti
al velo
ity with 
linging232



but no benthi
 movement. As the rate of return from the water 
olumn wasin
reased, it was found only very small timesteps, 
oupled with long periods ofsimulated time 
ould reprodu
e the analyti
 results.
10.2 2D river systemsThe longitudinal adve
tion in larger rivers has a verti
al pro�le as dis
ussedin se
tions 4.3 and 4.4. For organisms with no dire
ted movement, Speirs andGurney (2001) found the inequalities required for persisten
e gained from theone dimensional model to be little a�e
ted by expli
it 
onsideration of depth.After modi�
ation to the determination of 
riti
al verti
al di�usion 
oeÆ
ient,this 
on
lusion remained the same for neutrally buoyant organisms. When asteady sinking speed, Vs, was introdu
ed the value of 
riti
al verti
al di�usiononly in
reased signi�
antly on
e Vs > 2�brL
, that is greater than twi
e theprodu
t of the growth rate at the benthos and the depth of water below the 
riti
aldepth, (the depth from the surfa
e at whi
h persisten
e be
omes impossible inthe absen
e of verti
al di�usion).For a given stret
h of river, the verti
al gradient in downstream adve
tion is likelyto be mu
h greater than any longitudinal gradient. In the assumption downwardmovement would be the 
hief means by whi
h planktoni
 organisms might showenhan
ed persisten
e relative to results from the one dimensional analysis, hor-izontal swimming was not 
onsidered. If a 
onstant horizontal swimming speedis assumed, however, the results of 
hapter 7 
an still be applied, with the pro-viso that in doing so adve
tions near the benthos be
oming upstream must beignored. If this is 
onsidered a

eptable then a swimming speed will have thee�e
t of raising the 
riti
al depth toward the surfa
e and produ
e a less negativegrowth rate at the surfa
e layer. It should be remembered that �br was taken asthe long term growth rate at the benthos and that this growth rate was used forall depths up to the 
riti
al depth. The value of �br then is the value obtainedwhen adve
tion is zero. With a 
onstant swimming speed the net horizontal ad-233



ve
tion will be rendered zero at some point between the benthos and the new
riti
al depth. Using the long term growth rate at this point for �br would seemto remain as reasonable an assumption as in the absen
e of swimming.One issue with respe
t to this work is whether the value of �x asso
iated withea
h verti
al sli
e of the domain should represent horizontal di�usion or the over-all horizontal dispersion of tra
ers asso
iated with the river. The fa
t that theoriginal theory of shear 
ow dispersion is based on movements of parti
les betweendi�erent verti
al layers, as represented by Equation (2.11) of se
tion 2.1.5 suggeststhe �x value should simply represent horizontal di�usion. On the other hand,the equation derived by Fis
her for dispersion 
aused by the transverse variationsin 
ow, Equation (2.12), makes no use of the verti
al gradient in the horizontaladve
tion, Vx. If Fis
her's 
on
lusion, (assuming a large width to depth ratio forthe river), that dispersion 
aused by transverse shear dominates that 
aused byverti
al shear is a

epted, this suggests use of dispersion 
oeÆ
ient values for �xis most appropriate. Su
h dispersion 
oeÆ
ients in this work were derived usingEquation (7.47), whi
h 
an be derived from Equation (2.12) after making someassumptions about parameter values for typi
al rivers, (Fis
her et al. 1979).The attempt to apply the derivation of 
riti
al verti
al di�usion 
oeÆ
ient to areal river system, the river Meuse, gave predi
tions orders of magnitude smallerthan an estimate of the expe
ted verti
ally averaged value, �z, given the samevalues of shear velo
ity. If a paraboli
 verti
al pro�le is assumed for the inten-sity of verti
al di�usion the heights of `
ow refuge' within whi
h the value of�z remains less than the estimated value of �z
 was found to be very small forall river dis
harges 
onsidered. This was both in absolute terms and as a pro-portion of the total river depth. It is true that a single depth and width wasused for all dis
harge values. Various studies, (empiri
al and theoreti
al), have
on
luded that river width and depth 
hange with river dis
harge a

ording topower fun
tions of dis
harge. A table of di�erent studies and the 
oeÆ
ients andexponents derived are given by Knighton (1984, page 100). Deriving width anddepth relationships from su
h equations allows the possibility for higher horizon-234



tal dispersion 
oeÆ
ients from Equation (7.47). Although the general pattern ofdepth and width alteration with dis
harge are 
onsistent between studies, the 
o-eÆ
ients and exponents used are not. Further, they are highly dependent on thesediment 
hara
teristi
s of the river and these were not known. Unless the valuesof �x were to rise 
onsiderably the basi
 pessimisti
 nature of �z
 fore
ast is un-altered. Results for �z
 were derived with the �x values taken as �ve times their
al
ulated value1. Ex
ept for the 
ase of lowest river dis
harge, (where resultsindi
ated no limit on �z value), results were still nearly an order of magnitudesmaller than the verti
ally averaged �z value. Additionally, the river slope val-ues 
al
ulated are small in 
omparison to those generally asso
iated with rivers,(Morisawa 1985; Chapra 1997). Smaller slope values lead to higher �x estimatesif other variables remain the same.There does seem growing eviden
e for potamoplankton populations that are resi-dent in rivers rather than the result of importation from lenti
 sour
es. Reynoldsand Glaister (1993) found populations of pelagi
 phytoplankton in the middlerea
hes of the river Severn, Shropshire in
luding Stephanodis
us spe
ies. Al-though nutrient levels were only 
onsidered enough for `moderate' phytoplanktondevelopment, re
orded downstream in
reases in population density were greaterthan 
ould be predi
ted from assumption of the population at the river headbeing adve
ted at the mean river 
ow rate and growing exponentially at its in-trinsi
 growth rate. Moreover, Reynolds (1994a) argues that �eld data suggestsphytoplankton 
an not be 
ushed from a river as fast as Fi
kian models predi
t,(in
luding use of dispersion 
oeÆ
ients). Other authors have 
on
luded that su
hmodels 
onsistently underestimate, sometimes substantially, the a
tual 
learan
etimes of tra
ers from parti
ular river rea
hes, (Ben
ala and Walters 1983). Thework of 
hapter 7 is based on a Fi
kian model, or at least a series of su
h modelstaking their horizontal adve
tion value from the appropriate point on the verti
alvelo
ity pro�le.An alternative type of model for determining longitudinal transport and disper-1Equation (7.47) is expe
ted to predi
t �x to within a fa
tor of �ve.235



sion is the `aggregated dead zone' model, (Wallis, Young, and Beven 1989), whi
hattempts to take the aggregate e�e
t of areas of non-
owing water (dead or stor-age zones) that exist within what 
an be 
onsidered part of the main 
hannelitself. Su
h zones have been identi�ed in the �eld, with enhan
ed 
on
entrationsof planktoni
 algae, (Reynolds, Carling, and Beven 1991). Beer and Young (1983)suggested that dead zone dispersion dominated turbulent shear 
ow dispersion.No study is known of, however, that attempts to 
ombine the theory of aggregateddead zones with the me
hanism of turbulent di�usion for upstream movements.It is, therefore, a possibility for future study.A modi�
ation to the 
urrent approa
h that 
ould be adopted to see if it improvedpredi
tive ability would be to e�e
tively turn the simulation on its side. Insteadof depth, the transverse dimension of the river is 
onsidered along with domainlength. Many 1D domains di�erentiated verti
ally are repla
ed by 1D domainsarranged a
ross the transverse dire
tion of the river. Mean adve
tions at givenpoints along the velo
ity pro�le are then repla
ed by estimates of depth averagedadve
tion given a transverse pro�le of river velo
ities. It is well known thatvelo
ities vary a
ross the transe
t of rivers and te
hniques have been establishedto map these values. Fis
her (1967) used su
h methods to establish his equationfor determining longitudinal dispersion 
oeÆ
ients from transverse di�eren
esin 
ow. The study by Reynolds, Carling, and Beven (1991) found persistentlyhigher 
on
entrations of planktoni
 algae very 
lose to the bottom of a stret
h ofthe river Severn but bigger and more important 
on
entrations toward one bank.Near shore regions with slow 
ushing rates were also 
onsidered to be of vitalimportan
e in a study of river zooplankton, (Re
kendorfer, Ke
keis, Winkler,and S
hiemer 1999).
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10.3 Tidal estuariesThe investigation of tidal estuaries used two sets of 
ow 
onditions that produ
edvery di�erent residual 
ow 
hara
teristi
s. In the �rst, all strati�
ation in thesystem was broken down by internal turbulen
e part way toward the seawardboundary. This produ
ed a frontal stru
ture in Lagrangian residual movements.In the se
ond the residual 
ow patterns are very mu
h what 
an be expe
tedfrom a partially mixed estuary. It was found that for neutrally buoyant andpassive organisms persisten
e was possible in both systems up to a maximumlimit of verti
al di�usion. This was true for two 
ases thought to bra
ket thebulk of planktoni
 intrinsi
 growth rates. For the system with frontal stru
turethere seemed no lower bound to magnitude of verti
al di�usion that allowedpersisten
e. This was not true for the partially mixed estuary whi
h requiredsome degree of verti
al di�usion to allow persisten
e.Beyond a 
ertain limit of verti
al di�usion 
oeÆ
ient, population was progres-sively removed from the shallow end of the system. This is believed to be due toparti
les be
oming suÆ
iently evenly distributed over the shallower depths of thesystem as the tidal 
y
le evolves, that they attain the depth averaged net 
ow inthe system whi
h is always seaward in the presen
e of river 
ow. The same phe-nomenon was re
orded for parti
les given a 
onstant sinking speed and neutrallybuoyant parti
les. It is, however, thought unlikely to be an issue in real systems.Firstly, in the system investigated the e�e
t only be
ame apparent for organis-mal verti
al dispersion 
oeÆ
ients above 1� 10�3m2s�1. This value is at the topend of tidally averaged values of verti
al di�usion 
oeÆ
ient observed in estuarieswith strati�
ation and, depending on the degree of strati�
ation, potentially stillhigh for instantaneous values, (see se
tion 4.3).It is also probable that even organisms as small as phytoplankton will have aninertia that prevents their random 
hanges in velo
ity being as rapid or highmagnitude as for the surrounding water2. Both fa
tors suggest the values of �z2Indeed, this non-
omplete entrainment is believed bene�
ial in that it enhan
es nutrient237




ausing losses in mean population density are unlikely to o

ur. Additionally,the phenomenon results from a 
ombination of verti
al mixing and water 
olumnheight. The system investigated here is relatively shallow for an estuary. It isbelieved deeper systems would not demonstrate the same behaviour unless thevalue of �z were in
reased to less realisti
 values. Finally, simulations were per-formed with no spe
i�
ation of horizontal di�usion 
oeÆ
ient as it was 
onsideredthis would normally be dominated by dispersion due to non-uniform adve
tive
ows. If rapid verti
al mixing eliminates su
h dispersion, there is still s
ope forturbulent di�usion to restore some upstream movement.Introdu
tion of a sinking velo
ity to organisms had an interesting e�e
t. In thepartially mixed estuary, 
on
entration of organisms in upstream regions wherenet 
ow is 
hie
y verti
ally upwards 
ould a
tually lead to density dependen
eredu
ing overall population levels 
ompared to the 
ase for a neutrally buoyantpopulation. Where sinking did demonstrate an advantage is at very low valuesof verti
al di�usion 
oeÆ
ient. Here sinking 
ould repla
e di�usive motion as themeans to break out of the upper, and seaward bound, deterministi
 residual 
owpattern.In
orporation of depth dependent intrinsi
 growth rate produ
ed a surprisinglylarge di�eren
e in overall population densities. If the appropriate abioti
 lightattenuation 
oeÆ
ients for a system are similar to those for west 
oast of S
otlandsea lo
hs, it seems results for phytoplankton population levels in systems with anaverage depth as little as 5m must take a

ount of this phenomenon.An obvious and interesting extension to work in both fjord and 
oastal plain es-tuary domains is the in
orporation of verti
al migration. Sele
tive tidal streamtransport, STST, is the easiest to in
orporate into the dis
rete spa
e-time sim-ulation methodology. It is probably only appli
able to estuaries. If modellingthe larval phase of animals it is appropriate to use a growth rate of zero. Inthis 
ase the approximation for the dis
rete time solution of the logisti
 equationuptake by allowing fresh medium to pass over the 
ell surfa
e, (Reynolds 1984, page 18).238



developed in se
tion 8.1.4 
an be employed. The 
urrent `sinking velo
ity' 
on-stant 
an be 
aused to 
hange sign a

ording to the phase of the tidal 
y
le. Amore sophisti
ated approa
h would be to 
hange the dire
tion of this movementfor ea
h individual tra
k dependent on whether the horizontal velo
ity being ex-perien
ed was 
urrently landward or seaward. This allows for phase di�eren
esin di�erent parts of an estuary, but also raises the possibility of organisms nearthe bottom moving upwards during the ebb phase in highly strati�ed systems.It would be relatively straitforward to develop the tra
king program to in
ludedata on salinity and or temperature if 
hanges in these quantities were 
onsideredmore appropriate 
ues.One would expe
t STST behaviour to lead to all population being 
on
entratedat the head of the system. Larvae do
umented to possibly show su
h behaviourare only pelagi
 for a �nite period before reverting to a benthi
 lifestyle. Theyalso tend to enter the estuarine habitat from spawning grounds in the 
oastalsea. A test of the appropriateness of this behavioural theory would be to initiatea 
ohort of individuals near the seaward end of a domain, (mat
hed in length,depth, slope and tidal 
hara
teristi
s to a do
umented system), and to re
ord the�nal longitudinal positions of individuals after a time thought to represent theirpelagi
 phase.The in
orporation of a `ba
kground' di�usivity in POM to over
ome the e�e
tiveshutting down of the turbulen
e 
losure s
heme in regions of high Ri
hardsonnumber is not ideal. This number is added everywhere in the domain, regardlessof the strati�
ation. Too high a value for this 
onstant may lead to arti�
ially highvalues of turbulen
e in regions where the turbulen
e 
losure s
heme has otherwisemade an a

urate estimate. One possibility is to in
orporate more spe
ialised 
odewithin the turbulen
e 
losure s
heme to parameterise mixing in the py
no
line,(Kantha and Clayson 1994). It is not known, however, whether this would makemu
h di�eren
e to the persisten
e results, qualitatively or quantitatively.
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10.4 FjordsA single strategi
 
hara
terisation of a fjord was used to investigate persisten
efor su
h systems. The same tidal range used for investigation of 
oastal plainestuaries was employed. Two river in
ows were used to give as wide a rangeof in
ow as possible within limits de�ned by 
onsideration of the ratio of freshwater dis
harge to tidal in
ow in real systems. Given the depth of this systemattention was fo
used on the higher of the planktoni
 intrinsi
 growth rates usedin this work, 
onsidered representative of organisms with the least swimmingability. It was found that if in situ growth was allowed to be uniform very strongpersisten
e was possible for both 
ow regimes over all values of imposed verti
aldi�usion 
onsidered.If depth dependent growth rates were introdu
ed, however, long term populationdensities were 
ut dramati
ally. Using the same light attenuation 
oeÆ
ients asused in the 
ase for a plain estuary, persisten
e in the body of the fjord wasonly possible for the lower 
oeÆ
ient and if predation was assumed very low orabsent. Even then, this was only true for 
ertain values of verti
al di�usion. TheLagrangian residuals for the 
ase with higher river dis
harge had indi
ated thepresen
e of a two layer residual 
ow in the surfa
e region of the fjord. It wassurprising therefore that use of a 
riti
al depth for intrinsi
 growth rate set justbelow this feature did not indi
ate it to have any e�e
t on retention. Instead, withthe ex
eption of retention of organisms in that part of the domain representingthe river at the head of the system, no me
hanism was dete
ted that allowedpersisten
e and did not involve 
ir
ulation in the deeper part of the fjord.Introdu
tion of a 
onstant sinking velo
ity did not show any signs of obviousbene�t. In the 
ase of uniform growth long term domain averaged populationdensities were either unaltered or sinking led to a redu
tion. Sinking 
aused noqualitative di�eren
e to the e�e
t of depth dependent growth rate on persisten
e.Although the present investigation found a la
k of a me
hanism, (based on resid-240



ual 
uid motion), a
ting in the near surfa
e to aid retention, it is too early to
on
lude they do not exist within fjords. Two parameters whose variation hasyet to be 
onsidered are sill depth and tidal range. Although of the same basi
format, the bathymetry of fjords varies 
onsiderably. It is possible, (for S
ottishsea lo
hs at least), for sills to be less than half the depth used in this study, whileothers are deeper. Turbulent mixing of water relies on kineti
 energy. The kineti
energy transported into a fjord basin by the tide is dependent on the 
ombina-tion of the tidal range and the 
ross se
tional area of the outer sill, (Edwards andSharples 1986). It is therefore possible for the kineti
 energy supply for turbulentmixing to be varied independently of the ratio of freshwater runo� to tidal in
ow.This study used a two dimensional verti
al sli
e along what was taken to be the
enterline of the fjord. One possibility is that retention of photo-autotrophi
organisms relies to some degree on horizontal 
ow patterns. Fjords often be-
ome more narrow in the region of their sills. The head of a fjord is often thatmu
h wider than the main river feeding it. These features o�er the possibility ofhorizontal gyres.It is possible, however, that more 
omplex `behaviour' than 
onstant sinking (orno behaviour) is required for phytoplankton retention, although it 
ould still bethat organisms do not need to be a
tive. The e�e
ts of depth and salinity di�er-en
es ensure the density of water in su
h systems in
reases with depth. Organismsnegatively buoyant in the `fresh' surfa
e 
ow will see their relative density to thesurrounding 
ow redu
e with depth. This e�e
t would be espe
ially marked for
ows whi
h develop a marked py
no
line. Indeed, studies have indi
ated thatsubsurfa
e biomass maxima tend to o

ur within the py
no
line and at densitydis
ontinuities, (Syvitski, Burrell, and Skei 1987, page 214).To represent 
orre
tly the full extent of strati�
ation and the steepness of thedensity gradient at the py
no
line it may be ne
essary to in
lude the e�e
ts ofsurfa
e heating. Temperature e�e
ts were ex
luded from this work in order toremove the possibility of 
onfounding joint e�e
ts. Dyer (1973) 
onsidered that241



for estuaries and fjords as a whole temperature would have a relatively smallin
uen
e on densities. In fjords warming of surfa
e waters during summer 
anhelp to stabilise the bra
kish layer3, (Syvitski et al. 1987). When using POM,however, on
e buoyan
y frequen
y has be
ome suÆ
ient to redu
e values for eddydi�usion from the turbulen
e 
losure s
heme to below the spe
i�ed ba
kgroundlevel, it is this latter parameter that determines the stability of strati�
ation.The e�e
t of diurnal migration on persisten
e in deeper systems is intriguing. Thiswould require slightly greater modi�
ation to the present dis
rete time modellingapproa
h than STST migration mentioned above. The parti
le tra
king program
ould be run over two tidal 
y
les in
luding a sinking speed during the �rst and arising speed during the se
ond. However, the time step of the resultant populationmodel, one whole day, may well be too long not to in
uen
e results. If this werethe 
ase, two redistribution matri
es would be required from the parti
le tra
kingprogram, one for sinking and one for rising. The population model would thenneed to alternate between transition matri
es.A more fundamental problem is that the above approa
h assumes a 
onstantphase between the migration 
y
le and the tidal 
y
le. Any longitudinal bias innet tidal 
y
le movement would then be assumed to 
ontinue for the durationof the population model run. The phase di�eren
es between these two 
y
lesare known to 
hange throughout the year. The work of Hill (1995) using simplesine waves for tidal velo
ity and square waves for migration showed sinusoidalpatterns of horizontal displa
ement with no net displa
ement over seasonal times
ales.This 
ompli
ation does not prevent the tidal 
y
le being regarded as of 
onstantduration, (and indeed the dominant M2 tide has a steady period of 12.42 hours).If the varying tidal magnitudes of the spring-neap 
y
le are still ignored use ofa single set of 
ow �elds is still possible. The issue then seems to be
ome oneof how many transition matri
es are required, ea
h representing di�erent phase3Surfa
e 
ooling in winter has the opposite e�e
t. It mixes surfa
e water downwards through
onve
tion. 242



di�eren
es between migration and tide.
10.5 Modelling in three dimensionsWhen 
onsidering `behaviours' potentially signi�
ant to planktoni
 retention insystems, it is remarkable how mu
h 
an be investigated at the strategi
 levelwithout the need to 
onsider a domain in three dimensions. If variation of theadve
tive and/or di�usive 
omponents of 
ow are of primary 
on
ern in only oneof the axes perpendi
ular to net 
ow, modelling in three dimensions 
an probablybe avoided. As 
onsidered in se
tion 10.2, in large rivers 
ow refugia may be moresigni�
ant in terms of shallow areas at the sides rather than near the benthos.If variation in depth averaged adve
tion a
ross the transverse of the domain is
onsidered to dominate e�e
ts from the verti
al velo
ity pro�le, the problem 
anbe investigated by a two dimensional model.In the 
ase of fjords, a two dimensional model 
an again be used to see if featuressu
h as horizontal gyres in the lee of areas of rapid 
ow, (su
h as the sill or pointof river in
ow), are important near surfa
e me
hanisms for the retention of or-ganisms. Results be
ome potentially less robust in this 
ase however. Signi�
antfeatures of the residual 
ows 
reated in a horizontal domain may not be retainedon in
lusion of the third dimension, espe
ially if depths are non-uniform.A move to three dimensional modelling would allow in
orporation of transversemixing and shear e�e
ts into the longitudinal dispersion of populations over atidal 
y
le within estuaries and fjords. Also these bodies 
an be
ome suÆ
ientlywide for the Coriolis for
e to be
ome signi�
ant. The Coriolis for
e tends tode
e
t 
urrents to the right in the Northern hemisphere and left in the South-ern hemisphere. As mentioned in 
hapter 2, in wide estuaries this 
an lead to atransverse residual 
ir
ulation, whi
h in the Northern hemisphere is a 
ounter-
lo
kwise rotation when looking seawards. The 
on
lusion that very well mixed,(near homogeneous), estuaries la
k retentive me
hanisms 
ould 
hange if the 
ir-243




ulation indu
ed by the Coriolis for
e, 
oupled with realisti
 transverse mixing
oeÆ
ients, led to enhan
ed persisten
e. The Coriolis for
e is also likely to beimportant in wide fjords. The onset of su
h e�e
ts is a 
ombination of domainwidth, latitude and the velo
ity of water in the system, as determined by theRossby radius of deformation.In the POM model it is a simple task to in
orporate and spe
ify the magnitudeof the Coriolis for
e. POM also in
orporates a representation of fri
tion at lat-eral boundaries su
h that transverse velo
ity shear e�e
ts will automati
ally bepresent, although this representation, des
ribed as `half slip' is relatively 
rude.The e�e
t of bottom fri
tion and the resulting verti
al pro�les of turbulen
e andvelo
ity, however, are represented as a

urately as possible, (within the limitsimposed by reasonable 
omputational 
ost). The redu
ed momentum of nearshore 
ows therefore, should be represented well if the domain 
ross se
tion ismade more shallow moving away from the 
entre line. This should introdu
e amore realisti
 element of transverse shear as well as allowing the possibility ofrepresenting tidal pumping.
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Appendix A
Exponential growth in awell-mixed river
Solutions are sought to the balan
e equation�n�t = rn� Vx�n�x + �x�2n�x2 (A.1)with boundary 
onditions at the left and right ends of the domain ofVxn(0; t)� �x  �n�x!x=0 = 0 (A.2)and n(L; t) = 0 (A.3)To simplify the problem the following s
aled terms are introdu
edT � t=t0 where t0 = r�1X � x=x0 where x0 = Ld � p�wr�1245



! � �=�0 where �0 = r� � �=�0 where �0 = r� � Vw=V0 where V0 = Vd � 2p�wrSubstituting these s
aled terms into Equations (A.1) to (A.3) yields�n�T = n� 2� �n�X + �2n�X2 (A.4)with boundary 
onditions
2�n(0; T )� �n�X �����X=0 = 0 (A.5)n(l; T ) = 0 (A.6)where l � L=Ld.Solutions are sought in the formn(x; t) = e�T f(X) (A.7)where � is the s
aled long term growth rate. Ba
k-substituting into Equation(A.4) gives

�f = f � 2� �f�X + �2f�X20 = (1� �)f � 2� dfdX + d2fdX2 (A.8)This is a se
ond-order ordinary di�erential equation with 
onstant 
oeÆ
ients,whi
h has the general solution 246



f(X) = Ae
1X +Be
2X (A.9)where A;B are arbitrary 
onstants and 
1 and 
2 are given by the roots of theauxiliary equation 
2 � 2�
 + (1� �) = 0 (A.10)su
h that 
1 = � �  ; 
2 = � +  ;  � q�2 � (1� �) (A.11)
A.1 High velo
ity 
ase: 
1, 
2 and  realIf the s
aled velo
ity is high enough to ensure that�2 > (1� �) (A.12)then 
1, 
2 and  are real. To satisfy the left hand boundary 
ondition requires�AB = 2� � 
22� � 
1 = � �  � +  (A.13)while mat
hing the right hand boundary 
ondition requires�AB = exp[(
2 � 
1)l℄ = exp(2 l) (A.14)If  > 0 then Equation (A.14) requires (�A=B) > 1 while Equation (A.13) re-quires (�A=B) < 1. If  < 0 the inequalities are reversed. The in
ompatibility ofrequirements (A.13) and (A.14) means that when the velo
ity satis�es inequality247



(A.12) there is no solution of the form (A.7) whi
h 
an satisfy both boundary
onditions.
A.2 Low velo
ity 
ase:  imaginary; 
1 and 
2
omplex 
onjugatesIf inequality (A.12) is violated  is imaginary and 
1 and 
2 are 
omplex 
on-jugates su
h that they 
an be expressed as a 
ombination of real and imaginaryparts 
1 = � � ki; 
2 = � + ki; k � q(1� �)� �2 (A.15)The general solution of Equation (A.8) 
an be rewritten asf(X) = Ae�X 
os kX +Be�X sin kX (A.16)where � � �.Mat
hing the left hand boundary 
ondition now requiresA(2� � �)� kB = 0! AB = k� (A.17)while mat
hing the right hand boundary requires�AB = tan kl (A.18)A solution mat
hing both boundary 
onditions is therefore one for whi
htan kl = �k� (A.19)248



Converting Equation (A.19) ba
k into dimensional form givestan�� LLd� = �VdVx� (A.20)where � is the dimensional form of k su
h that� � vuut�1� �r �� �VxVd�2 (A.21)
A.3 Obtaining values of the long term growthrate �If parameters l and � are �xed, Equation (A.19) 
an be satis�ed by an in�niteseries of values for k, any for whi
h the straight line �k=� 
uts the 
urves fortan kl. From Equation (A.15), however, it 
an be seen that negative values of kwill always have a positive equivalent of the same magnitude and with � �xedthis must be derived using the same value of �. Also from Equation (A.15) it
an be seen that the maximum possible value for � is obtained from the smallestpossible value for k. This suggests that k = 0 provides the maximum s
aled longterm growth rate. Substituting k = 0 ba
k into the general solution given byEquation (A.16), however, means that the right hand boundary of the systemrequires Ae�l = 0 (A.22)This 
an only be satis�ed if A = 0, whi
h in turn implies 8X; f(X) = 0, that isa system 
ontaining zero population. The smallest non-zero value for k thereforegives the maximum possible value for � and will be found in the region �=2 <kl < �. The a
tual interse
tion is easily found by a bise
tion algorithm.249



Appendix B
Analyti
 Solution for 
ow in aTidal River
A solution is sought for a two dimensional 
uid 
ow, with horizontal velo
ity, Vxand sea surfa
e elevation, �, des
ribed by the following equations.�Vx�t = �g ���x + �e�2Vx�z2 ; ���t = � Z H0 �Vx�x dz (B.1)The solution must satisfy the following 
ow boundary 
onditions at the landward(x = 0) and seaward (x = L) ends of the systemVx(0; 0; t) = VR; Vx(L; 0; t) = VR + VT 
os 2� tT 8t (B.2)where T is the tidal period, and 
onditions of zero wind stress at the mean freesurfa
e and zero slip at the bottom�Vx�z �����z=0 = 0; Vx(x;H; t) = 0 8t (B.3)This problem is 
ompletely linear. As su
h the solution 
an be a superposition of250



the 
ow generated by the river, (Vr), and that generated by the tide, (Vt). Theriver input is 
onstant, su
h that the 
ow generated is steady (independent oftime) and uniform (independent of x). A solution is therefore sought of the formVx = Vs(z) + Vt(x; z; t) (B.4)The surfa
e elevation 
an also be split into that asso
iated with the river 
ow, (�r),and that asso
iated with the tidal 
ow, (�t). From Equations (B.1), the assump-tion that the river generated 
ow is steady and uniform implies that ��r=�t = 0.Su
h 
ow also implies that ��r=�x = �H 0, where H 0 is a 
onstant. This is
onsistent with Equations (B.1) if�2Vr�z2 = g�e �Vr�x = �gH 0�e (B.5)The general solution of Equation (B.5) is Vr = A + Bz � (gH 0=2�e)z2, whereA and B are arbitrary 
onstants. To satisfy the top boundary 
ondition on Vx,(Equation B.3), B = 0. To ensure Vr(0) = VR, A is set equal to VR. To satisfy these
ond element of Equation (B.3), H 0 must be set su
h that H 0 = 2�eVR=(gH2).This gives a �nal solution for Vr ofVr = VR  1� � zH �2! (B.6)The equations for Vt and �t be
ome�Vt�t = �g��t�x + �e�2Vt�z2 (B.7)and ��t�t = � Z H0 �Vt�x dz (B.8)251



To solve this equation it is assumed that the solution is the sum of a term whi
his independent of z, (Vt0), and a z dependent term, (Vt1). If the z-dependen
eof Vt1 is separable and the x and t dependen
e of Vt1 and Vt0 is the same, thenVt1 = Vt0�(z), and the general form of the solution for Vt is given byVt = Vt0�(z) (B.9)Substituting this form of the general solution into Equations (B.7) and (B.8)yields ��Vt0�t = �g��t�x + �eVt0�2��z2 (B.10)��t�t = �H ���Vt0�x (B.11)where �� represents the average value of � over the water 
olumn. Di�erentiatingEquation (B.10) with respe
t to time and ba
k substituting for ��t=�t leads to��2Vt0�t2 = gH ���2Vt0�x2 + �e�Vt0�t �2��z2 (B.12)Now, a trial solution is assumed of the formVt0 = ei!teikx where k2 = !2gH (B.13)This allows Equation (B.12) to be written in the form!2(�� ��) = �i!�e�2��z2 (B.14)De�ning �0 � �� ��, this be
omes 252



�2�0�z2 = i !�e�0 (B.15)whose generi
 solutions are of the form �0 = eimz wherem2 = �i !�e ! m =+�  1� ip2 !s !�e (B.16)There is now a full generi
 solution to the tidal velo
ity 
omponent, Vt, namelyVt = 	1e+�i!te+�ikx(1 + 	2e+�mz) (B.17)where 	1 and 	2 are arbitrary 
onstants and m and k are de�ned as above.
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Appendix C
Analyti
 Solution for 
ow in aTidal River: Semi-sigmaCoordinates
With the introdu
tion of semi-sigma 
oordinates into the 
uid 
ow equationspresented in Appendix B, the momentum equation be
omes�Vx�t = �g ���x + H2D2�e�2Vx�z2� (C.1)and the 
ontinuity equation takes the form�Vx�x + HD �Vz�z� = 0 (C.2)Boundary 
onditionsThe landward and seaward boundary 
onditions on Vx� 
an simply be stated as
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Vx�(0; z� = 0; t) = VR; Vx�(L; z� = 0; t) = VR + VT 
os 2� tT 8t (C.3)and that at the bottom as Vx�(x; z� = H; t) = 0 8t (C.4)For the free surfa
e 
ondition we note that (with both z� and z de�ned positivetowards the benthos)
z� = ��H = ���z � �D �H = zH + �HD�z��z = HD (C.5)so HD �Vx��z� �����z�=0 = 0�Vx��z� �����z�=0 = 0 (C.6)This new free surfa
e 
ondition has the bonus that it applies to wherever the freesurfa
e sits at any point in time rather than simply to the mean free surfa
e level.To implement the new version of the model, new top and bottom boundary
onditions on Vz are required. At the bottom 
ow is for
ed to be
ome parallelto the bottom, while at the free surfa
e the boundary 
ondition implies that thesurfa
e rises and falls in response to 
ow whi
h is not parallel to the free surfa
e,so that Vz(x;�H; t) = �Vx(x;�H; t)�H�x (C.7)255



Vz(x; �; t) = Vx(x; �; t)���x + ���t (C.8)The new bottom boundary 
ondition, (Equation C.7), is 
onsistent with the re-quirement from the initial version of the model that the verti
al velo
ity is zeroat all times be
ause Vx� is required to be zero at the bottom.The new top boundary 
ondition for Vz, (Equation C.8) is also 
onsistent withthe non-sigma version for the same reason. With Vx(x;�H; t) = 0 the equationfor ��=�t, Equation (C.13) below, 
an be written as���t = �Vx(x; �; t)���x � Z ��H �Vx�x dz (C.9)Ba
k substituting for ��=�t into Equation (C.8) givesVz(x; �; t) = � Z ��H �Vx�x dz (C.10)whi
h is the exa
t equivalent of Equation (4.47) given that ��=�t � Vz(�) in thenon-sigma version.One dis
repan
y between the two versions of the model is that ��=�t � Vz(�)does not hold in the sigma version. In the non-sigma version ��=�t 
an be
omezero when ��=�x 6= 0. This is only possible however when there is steady river
ow but no tidal 
ow. The gradient ��=�x 
aused by steady river 
ow (seeAppendix B) is very small for the river velo
ities of interest in this work and thedi�eren
e is not 
onsidered signi�
ant.New 
ontinuity equationThe utility of this new depth measure 
an be seen on
e the 
ontinuity equationis re-de�ned in terms of the surfa
e elevation and a verti
ally averaged horizontalvelo
ity as des
ribed below. 256



Starting with the 
ontinuity equation as de�ned in Equation (4.46), this impliesthat Vz(x; z; t) = Vz(x;�H; t)� Z z�H �Vx�x dz (C.11)Following Blumberg and Mellor (1987) the top and bottom boundary 
onditionsof Equations (C.7) and (C.8) are imposed on Vz. Ba
k substituting Equation(C.7) into Equation (C.11) givesVz(x; z; t) = �Vx(x;�H; t)�H�x � Z z�H �Vx�x dz (C.12)and ba
k substituting Equation (C.12) into Equation (C.8) in turn gives���t + Vx(x; �; t)���x + Vx(x;�H; t)�H�x + Z ��H �Vx�x dz = 0 (C.13)To simplify Equation (C.13), a verti
ally averaged horizontal velo
ity is de�nedÛ � 1D(x; t) Z �(x;t)�H(x) Vxdz (C.14)from whi
h it is noted that��x (DÛ) = Vx(x; �; t)���x + Vx(x;�H; t)�H�x + Z ��H �Vx�x dz (C.15)Comparing Equations (C.15) and (C.13) shows that���t = � ��x (DÛ) (C.16)Comparing the relationship between horizontal velo
ities de�ned using the threeverti
al 
o-ordinate systems of z, � and z�, namely257



U(x; �; t) � Vx(x;D� + �; t) � Vx�(x;��H; t) (C.17)and noting that
� = z � �D ! d�dz = 1Dz� = ��H ! dz�d� = �H (C.18)from this 
omparison it 
an be seen that Û 
an be written as

Û � Z 0�1 U(x; �; t)d� � � 1H(x) Z 0H(x) Vx�dz� � 1H(x) Z H(x)0 Vx�dz� (C.19)Expanding Equation (C.16) a

ording to those elements dependent on x gives���t = �(H�Û�x + ��Û�x + Û ���x) (C.20)The Û term 
an be found by integrating the right hand side of Equation (4.52)between zero and H and dividing by H. The �Û=�x terms are given by the righthand side of Equation (4.53) evaluated at z = 0 and divided by H. If initialvalues of � are assumed at t = 0, 
al
ulation of � for any point in time or spa
ebe
omes possible. In this work the ��=�x term was found by 
entral di�eren
ing.A look-up table was 
onstru
ted of surfa
e elevations at ea
h of the 
ell 
entresfrom whi
h parti
les were tra
ked, with values for ea
h tra
king timestep withinthe tidal period.This form of the equation for the rate of 
hange of surfa
e elevation with time,(unlike Equation 4.49), does not break 
ontinuity for non-zero � values in as mu
has the rate of 
hange of surfa
e elevation with time is always internally 
onsistentwith the velo
ities being 
al
ulated within the water 
olumn and the depth of258



water, D, over whi
h these velo
ities are allowed to exist. It is still true, however,that the velo
ities are 
al
ulated making the assumption that � remains zero.Given the new form of the 
ontinuity equation this is equivalent to assuming that��=�t = ��(HÛ )=�x.Unsolved equation for Vt using z� 
o-ordinatesIn solving for Vt we wish to follow the same pro
edure as in Appendix B andtherefore di�erentiate the equivalent of Equation (B.10) with respe
t to time.The momentum equation for Vt is now in the form�Vt�t = �g��t�x + H2D2�e�2Vt�z2� (C.21)and this leads to
��2Vt0�t2 = gH ���2Vt0�x2 +H2�e�2��z2� " ��D �Vt0D2� � �D�t + ��Vt0 �Vt0D2� � �Vt0�t #��2Vt0�t2 = gH ���2Vt0�x2 +H2�e�2��z2� "�2Vt0D3 ���t + 1D2 �Vt0�t #��2Vt0�t2 = gH ���2Vt0�x2 + H2D2�e�2��z2� "�2Vt0D ���t + �Vt0�t # (C.22)Substituting from the trial solution of Equation (B.13), namely Vt0 = ei!teikxwith k2 = !2=gH, gives

(i!)2Vt0� = gH ��(ik)2Vt0 + Vt0H2D2�e�2��z2� "i! � 2D ���t #�!2� = �!2 ��+ H2D2�e�2��z2� "i! � 2D ���t #!2(�� ��) = H2D2�e�2��z2� " 2D ���t � i!# (C.23)and de�ning �0 � �� ��, and re-arranging leads to259



�2�0�z2� = 24 D2!2H2�e� 2D ���t � i!�35�0 (C.24)
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Appendix D
Exponential growth in awell-mixed river: Transferbetween drift and benthos
It should be remembered it is assumed organisms stay in the drift and benthoswith exponentially distributed residen
e times and that they are motionless whilein the benthos.This problem 
an be de�ned as a 
oupled set of partial di�erential equations�n�t = rn� �n+ �m� Vw�n�x + �w �2n�x2 (D.1)�m�t = rm� �m+ �n (D.2)Boundary 
onditions are, (as for the 
ase of parti
les permanently in the drift),that of zero 
ux at the left hand boundaryVwn(0; t)� �w �n�x �����x=0 = 0 (D.3)261



and an absorbing boundary at the right hand end of the systemn(L; t) = 0 (D.4)To simplify the problem the following s
aled terms are introdu
edT � t=t0 where t0 = r�1X � x=x0 where x0 = Ld � p�wr�1! � �=�0 where �0 = r� � �=�0 where �0 = r� � Vw=V0 where V0 = Vd � 2p�wrSubstituting these s
aled terms into Equations (D.1) and (D.2) yields a simpli�edset of equations �n�T = n� �n+ !m� 2� �n�X + �2n�X2 (D.5)�m�T = m� !m+ �n (D.6)with boundary 
onditions 2�n(0; T )� �n�X �����X=0 = 0 (D.7)
n(l; T ) = 0 (D.8)where l � L=Ld. 262



In seeking a trial solution it is assumed that the solution, after initial transientshave died away, will take the form of a stati
 spatial pattern whi
h s
ales ex-ponentially with time and that the population in the benthos will be a timeindependent proportion of the population in the drift. That is we seek solutionsof the form
n = e�T f(X)m = �n (D.9)where � is the 
onstant of proportionality between m and n and � is the s
aledlong term growth rate. Ba
k-substituting into Equations (D.5) and (D.6) gives�f(X) = f(X)� �f(X) + !�f(X)� 2� dfdX + d2fdX2 (D.10)and �� = � + � � !� (D.11)Using the relationship between �� + !� = �(1 � �) from equation (D.11) inequation (D.10) we obtain0 = (1� �)(1 + �)f � 2� dfdX + d2fdX2 (D.12)With this trial solution boundary 
onditions be
ome2�f(0)� dfdx �����x=0 = 0 (D.13)

f(l) = 0 (D.14)263



In a similar manner to the 
ase for a permanently water borne parti
le we are leftwith a se
ond order linear O.D.E. with 
onstant 
oeÆ
ients. This has solutionsof the form f(X) = Ae
1X +Be
2X (D.15)where 
1 and 
2 are given by the roots of the auxiliary equation
2 � 2�
 + (1� �)(1 + �) = 0Therefore

1 = 2� �q4�2 � 4(1� �)(1 + �)2= � �q�2 � (1� �)(1 + �)= � �  
2 = 2� +q4�2 � 4(1� �)(1 + �)2= � +q�2 � (1� �)(1 + �)= � +  where  � q�2 � (1� �)(1 + �).
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D.1 High velo
ity 
ase: 
1, 
2 and  realFor 
1, 
2 and  to be real we require�2 > (1� �)(1 + �) (D.16)To satisfy the left hand boundary 
ondition we require
2�(Ae
10 +Be
20)� (A
1e
10 +B
2e
20) = 02�(A+B)� (A
1 +B
2) = 0�AB = 2� � 
22� � 
1�AB = � �  � +  (D.17)To satisfy the right hand boundary 
ondition requires

Ae
1l +Be
2l = 0�AB = e(
2�
1)l�AB = e2 l (D.18)If  > 0 the left hand boundary 
ondition requires �A=B < 1; the right handboundary 
ondition requires �A=B > 1.If  < 0 the left hand boundary 
ondition requires �A=B > 1; the right handboundary 
ondition requires �A=B < 1.Thus, when the s
aled velo
ity satis�es inequality (D.16) there is no solution ofthe form (D.9) whi
h satis�es both boundary 
onditions.
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D.2 Low velo
ity 
ase:  imaginary; 
1 and 
2
omplex 
onjugatesWith 
1 and 
2 as 
omplex 
onjugates they 
an be expressed as a 
ombination ofreal and imaginary parts

1 = � � ki
2 = � + kiwhere k � q(1� �)(1 + �)� �2, and the general solution of equation (D.12) 
anbe written as f(x) = Ae�x 
os kx +Be�x sin kx (D.19)where � � �.The left hand boundary 
ondition therefore requires that

0 = 2�e�0(A 
os k0 +B sin k0)�[e�0(�kA sin k0 + kB 
os k0) + �e�0(A 
os k0 +B sin k0)℄0 = 2�A� kB � �AAB = k� (D.20)The right hand boundary requires that
0 = e�l(A 
os kl +B sin kl)0 = 1 + BA tan klAB = � tan kl (D.21)266



A solution mat
hing both boundary 
onditions is one for whi
htan kl = �k� (D.22)where k = s(1� �)�1� �1� �� !�� �2 (D.23)Converting equation (D.22) ba
k to dimensional form givestan(� LLd ) = � VdVw� (D.24)where � is the dimensional form of k su
h that� = vuut(1� �r ) 1 + �� + �� r!� �VwVd �2 (D.25)or � = vuut(1� �r ) 1 + �r�r + �r � 1!� �Vw�d �2 (D.26)
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Appendix E
Exponential growth in a verti
alwater 
olumn split at the 
riti
aldepth
Expressed in terms of s
aled variables this problem 
onsists of two adve
tion-di�usion equations, one for the region below the 
riti
al depth of the system�n�t = n� 2vz �n�z+ + �2n�z2+ (E.1)and one for the surfa
e region between the 
riti
al depth and the water surfa
e�n�t = �sr�brn� 2vz �n�z+ + �2n�z2+ (E.2)On substituting trial solutions of the form

n = e�ztf(z+) for z+ below the 
riti
al depthn = e�ztg(z+) for z+ above the 
riti
al depth (E.3)268



these equations be
ome the following O.D.E.s0 = (1� �z)f � 2vz dfdz+ + d2fdz2+ (E.4)and 0 = (�sr�br � �z)g � 2vz dgdz+ + d2gdz2+ (E.5)These are both se
ond-order ordinary di�erential equations with 
onstant 
oeÆ-
ients, whi
h have the general solution
f(z+) = Ae
1z+ +Be
2z+g(z+) = Ce
3z+ + Ee
4z+ (E.6)where A;B;C;D are arbitrary 
onstants and the 
s are given by the roots of theauxiliary equations


2 � 2vz
 + (1� �z) = 0 for f(z+)
2 � 2vz
 + (�sr�br � �z) = 0 for g(z+) (E.7)that is 
1 = vz �  ; 
2 = vz +  (E.8)where  � qv2z + �z � 1 and
3 = vz �  2; 
4 = vz +  2 (E.9)269



where  2 � qv2z + �z � �sr�br .As outlined in the main text boundary 
onditions are two for zero 
ux, one atthe river bed 2vzf(0)� dfdz+ �����z+=0 = 0 (E.10)where z+ is a s
aled distan
e de�ned positive upwards from the bed and withorigin at the bed, and zero 
ux at the water surfa
e2vzg(h)� dgdz+ �����z+=h = 0 (E.11)where h is the s
aled total water depth. At the 
riti
al depth, z+ = l
 � (H �z
)=q�z��1br , are two 
onditions. Firstly a requirement that the 
urve de�ningpopulation density along the domain be 
ontinuous
e�ztf(l
) = e�ztg(l
)f(l
) = g(l
) (E.12)Se
ondly that there is a 
ontinuous population 
ux2vzf(l
)� dfdz+ �����z+=l
 = 2vzg(l
)� dgdz+ �����z+=l
 (E.13)whi
h, be
ause of the requirement of Equation (E.12) and the fa
t 2vz is 
onstantleads to dfdz+ �����z+=l
 = dgdz+ �����z+=l
 (E.14)
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E.1 High velo
ity 
aseIf vz � Vz=2p�z�br is suÆ
iently large that v2z > 1� �z and v2z > �sr=�br � �zthen the 
s and  s are real. Substituting the general form of solution for f(z+)and g(z+) into the boundary 
onditions gives�AB = vz �  vz +  (E.15)
�Ce
3hEe
4h = vz �  2vz +  2 (E.16)

Ae
1l
 +Be
2l
 = Ce
3l
 + Ee
4l
 (E.17)and A
1e
1l
 +B
2e
2l
 = C
3e
3l
 + E
4e
4l
 (E.18)Relating the three boundary 
onditionsRe-arranging Equation (E.15) we obtainA = �B
1
2 (E.19)Re-arranging Equation (E.16) we obtainC = �Ee
4he
3h 
3
4 (E.20)271



Substituting the results from Equations (E.19) and (E.20) into Equation (E.18)we obtain
�B
1
2
1e
1l
 +B
2e
2l
 = �Ee
4he
3h 
3
4
3e
3l
 + E
4e
4l
B
2 [
22e
2l
 � 
21e
1l
 ℄ = E
4 "
24e
4l
 � e
4he
3h
23e
3l
# (E.21)Considering the �rst of the boundary 
onditions at the 
riti
al depth, (EquationE.17), provides �AB = 1e
1l
 �e
2l
 � CBe
3l
 � EBe
4l
� (E.22)Substituting for C from Equation (E.20) and for B from Equation (E.21) into theabove leads to�AB = 1e
1l
 24e
2l
 + e
3l
 � Ee
4h
3e
3h
4 � 
4 h
22e
2l
 � 
21e
1l
iE
2 h
24e
4l
 � e
4he
3h
23e
3l
i�Ee
4l
 � 
4 h
22e
2l
 � 
21e
1l
iE
2 h
24e
4l
 � e
4he
3h
23e
3l
i35�AB = e2 l
 + 1e
1l
 24e2 2he
3l
 � vz �  2vz +  � h
22e
2l
 � 
21e
1l
i[
24e
4l
 � e2 2h
23e
3l
 ℄�e
4l
 � vz +  2vz +  � h
22e
2l
 � 
21e
1l
i[
24e
4l
 � e2 2h
23e
3l
℄35�AB = e2 l
 + e2 2h � vz �  2vz +  � h
22e2 l
 � 
21i[
24e2 2l
 � e2 2h
23 ℄� vz +  2vz +  � h
22e2 l
 � 
21i[
24 � e2 2h
23e�2 2l
 ℄�AB = e2 l
 + h
22e2 l
 � 
21i[
24 � e2 2h
23e�2 2l
 ℄ � "vz �  2vz +  e�2 2he�2 2l
 � vz +  2vz +  #�AB = e2 l
 + 1vz +  � h(vz +  )2e2 l
 � (vz �  )2i[(vz +  2)2 � e2 2(h�l
)(vz �  2)2℄ �he2 2(h�l
)(vz �  2)� (vz +  2)i (E.23)272



Equation (E.23) is a modi�ed form of the equation stating that the populationdensity at z+ = l
 is 
ontinuous that only involves the 
onstants of integration Aand B. The boundary 
onditions at z+ = 0 and z+ = h and the 
ondition thatthe 
ux of population is a 
ontinuous fun
tion at z+ = l
 were used to form therelationships between the 
onstants of integration that allowed elimination of the
onstants C and D. For a given domain and 
ow 
onditions the right hand side ofEquation (E.23) 
onsists of known quantities ex
ept for �z, (
ontained within  and  2). Therefore, a solution that satis�es all the boundary 
onditions has beenfound if a value of �z 
an be found whi
h allows the right hand side of Equation(E.23) to equal the right hand side of Equation (E.15). That is if
vz �  vz +  = e2 l
 + 1vz +  � h(vz +  )2e2 l
 � (vz �  )2i[(vz +  2)2 � e2 2(h�l
)(vz �  2)2℄� he2 2(h�l
)(vz �  2)� (vz +  2)i (E.24)Che
k on validity of Equation (E.24)Considering the region of the water 
olumn from the bed to the 
riti
al depth,the di�eren
e in the solution to the 
urrent problem and the one des
ribed inAppendix A is that a lo
al per 
apita growth rate of �br repla
es the intrinsi
growth rate r and the region beyond the 
riti
al depth is not assumed to have anin�nitely large negative per-
apita growth rate. If the assumed growth rate forthe upper layer is set to �1 and �br repla
ed by r then Equation (E.24) should
ollapse ba
k to the same form found in Appendix A, namelyvz �  vz +  = e2 l
 (E.25)where vz is the equivalent of � and l
 the equivalent of l of the original equation.Substituting dimensional terms into the expression for  as 
urrently de�nedgives 273



 = vuut Vz2p�z�br!2 + �z�br � 1 (E.26)On repla
ing �br with r this be
omes the dire
t equivalent of the expression inAppendix A, remembering that Vx and Vz are just any velo
ity de�ned positive inthe dire
tion of X;Z+ in
reasing. Therefore the left hand side and the �rst termon the right hand side of Equation (E.24) is dire
tly equivalent to the 
onditionfound in Appendix A. What remains is to show that the remainder of Equation(E.24) redu
es to zero.The terms vz,  and e2 l
 are all �nite. Therefore, ex
ept when  = �vz, theexpression h(vz +  )2e2 l
 � (vz �  )2ivz +  is always �nite. For the ex
eptional 
ase when  = �vz, 
onsideration of Equation(E.26) shows this would require �z = r. The only way this 
ould o

ur would beif there were no losses at the absorbing boundary, and this in turn would requirean in�nitely large sinking velo
ity. The above expression is multiplied by theexpression he2 2(h�l
)(vz �  2)� (vz +  2)i[(vz +  2)2 � e2 2(h�l
)(vz �  2)2℄whi
h we 
an label 	. On setting �br = r and �sr = �1 the term  2 be
omes
 2 = vuut Vz2p�zr!2 + �zr � (�1)r 2 = 1 (E.27)As  2 !1 then 274



lim 2!1	 = he 2(� 2)� ( 2)i[( 2)2 � e 2(� 2)2℄lim 2!1	 = � 2(e 2 + 1)� 22(e 2 � 1)lim 2!1	 = 1 2lim 2!1	 = 0 (E.28)
E.2 Low velo
ity 
aseAs stated earlier, for the 
s and  s to be real requires v2z > 1 � �z and v2z >�sr=�br��z. As this work involves �nding the maximum value of �z that allows�z to remain non-negative it is useful to restri
t 
onsiderations to those involvingnon-negative values of �z. The problem 
an be further restri
ted by only 
on-sidering systems that 
ontain a 
riti
al depth, su
h that �sr is always negative.As �br is always positive then v2z > �sr=�br � �z is guaranteed. For the systemsunder 
onsideration, the roots 
3 and 
4 will always be real.In 
ontrast it is possible, for systems of interest, for the inequality v2z > 1� �z tofail, in parti
ular, when �z = 0 and jVzj < 2p�z�br. In these instan
es the roots
1 and 
2 be
ome 
omplex 
onjugates and the roots 
an be written as


1 = � � ki
2 = � + kiwhere � � vz and k � q1� �z � v2z . The general solution of f(z+) in the lowerregion of the domain 
an then be written asf(z+) = Ae�z+ 
os(kz+) + Be�z+ sin(kz+) (E.29)275



If this new form of the general solution is substituted into the boundary 
onditionof Equation (E.10) we obtain
2vz(Ae�0 
os k0 +Be�0 sin k0)�(A[e�0 ��k sin k0 + 
os k0� �e�0℄+B[e�0 � k 
os k0 + sin k0� �e�0℄) = 02vzA� vzA� kB = 0AB = kvz (E.30)The boundary 
onditions at z+ = l
 expressed by Equations (E.12) and (E.14)now have the formAe�l
 
os kl
 +Be�l
 sin kl
 = Ce
3l
 + Ee
4l
 (E.31)and

A[vzevz l
 
os kl
 � kevz l
 sin kl
℄+B[vzevzl
 sin kl
 + kevzl
 
os kl
℄ = C
3e
3l
 + E
4e
4l
 (E.32)Using the results from Equation (E.30) and from Equation (E.20) to ba
k-substituteinto Equation (E.32) the relationship between the 
onstants of integration B andE now be
omes
Bevz l
 "2k 
os kl
 + v2z � k2vz sin kl
# = E
4 "
24e
4l
 � e
4he
3h
23e
3l
# (E.33)Considering again the 
ondition for the population density to be a 
ontinuousfun
tion of depth and solving to obtain �A=B again gives276



�Ae�l
 
os kl
 = Be�l
 sin kl
 � Ce
3l
 � Ee
4l
�AB = 1e�l
 
os kl
 �e�l
 sin kl
 � CBe
3l
 � EBe
4l
� (E.34)Substituting for C from Equation (E.20) and for B from Equation (E.33) gives
�AB = 1e�l
 
os kl
 "e�l
 sin kl
 + e
3l
B � Ee
4h
3e
3h
4 � EBe
4l
#�AB = 1evzl
 
os kl
 24evzl
 sin kl
 + e
3l
 � Ee
4h
3e
3h
4 � 
4evz l
 h2k 
os kl
 + v2z�k2vz sin kl
iE h
24e
4l
 � e
4he
3h
23e
3l
i�e
4l
E � 
4evzl
 h2k 
os kl
 + v2z�k2vz sin kl
iE h
24e
4l
 � e
4he
3h
23e
3l
i 35�AB = tan kl
 + "2k + v2z � k2vz tan kl
# "
3e2 2h � 1[
24e2 2l
 � e2 2h
23 ℄�
4 � 1[
24 � e2 2he�2 2l

23 ℄#�AB = tan kl
 + h2k + v2z�k2vz tan kl
i[
24 � e2 2(h�l
)
23 ℄ h
3e2 2(h�l
) � 
4i (E.35)Substituting for 
3 and 
4 gives a �nal relationship of
�AB = (E.36)tan kl
 + h2k + v2z�k2vz tan kl
i[(vz +  2)2 � e2 2(h�l
)(vz �  2)2℄ h(vz �  2)e2 2(h�l
) � (vz +  2)iSo, via the same arguments used for the 
ase with higher absolute values of vz,we know a solution has been obtained that satis�es all boundary 
onditions if

� kvz = tan kl
 + h2k + v2z�k2vz tan kl
i[(vz +  2)2 � e2 2(h�l
)(vz �  2)2℄� h(vz �  2)e2 2(h�l
) � (vz +  2)i (E.37)277



Che
k on validity of Equation (E.37)As for the 
ase with higher absolute adve
tion, we set �br = r and �sr = �1 tosee if Equation (E.37) redu
es to an equivalent form of the 
ondition for solutionsas that found for the problem of a domain with lo
al per-
apita growth rateequalling r and an absorbing boundary, as des
ribed in Appendix A, with in this
ase the absorbing boundary at z+ = l
. The term vz obtains the same meaningas for the higher velo
ity 
ase whi
h has already shown it to be equivalent tothe term � used in Appendix A. With vz � � then the term for k here is alsoequivalent to the same term used in Appendix A. It remains to show that the�nal term of Equation (E.37) redu
es to zero.The expression previously labelled 	 is again present in this �nal term and thiswill tend to zero as �sr ! �1. The remaining expression present is"2k + v2z � k2vz tan kl
#The terms k, vz and l
 are all �nite, meaning the expression is also �nite ex
eptwhen tan kl
 = 1. To deal with this one 
ase Equation (E.37) is re-
ast in theform
� kvz = sin kl

os kl
 + "2k +  v2z � k2vz ! sin kl

os kl
#� h(vz �  2)e2 2(h�l
) � (vz +  2)i[(vz +  2)2 � e2 2(h�l
)(vz �  2)2℄(E.38)Multiplying through by 
os kl
 and vz Equation (E.38) be
omes

�k 
os kl
 = vz sin kl
 + h2kvz 
os kl
 + �v2z � k2� sin kl
i�h(vz �  2)e2 2(h�l
) � (vz +  2)i[(vz +  2)2 � e2 2(h�l
)(vz �  2)2℄ (E.39)tan(kl
) = 1 when kl
 be
omes any odd multiple of �=2 su
h that 
os kl
 = 0and sin kl
 = �1. Substituting these values into Equation (E.39) gives278



0 = �vz + h0� �v2z � k2�i� [0℄0 = vz (E.40)Therefore, for any value of vz other than zero the redu
tion to the 
ondition for asolution of the previous theory has been a
hieved. The 
ase where vz is also the
ase where tan(kl
) =1! kl
 = j��=2 (where j is an odd number). As before,maximum values of �z are given by the smallest possible value of kl
 so kl
 = �=2is the value of interest. In seeking a 
riti
al verti
al di�usion 
oeÆ
ient we require�z = 0. With �z = 0 and vz = 0, k = 1 . This implies that l
 = �=2. Substitutingba
k in dimensional terms shows that when vz = 0 the 
riti
al verti
al di�usion
oeÆ
ient is given by (D � z
)q�z
��1br = (D � z
)p�z
r�1 = �2 (E.41)This is the same relationship for �z
 found from the one segment equations.
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