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Abstract

All non-oceanic lotic habitats, chiefly streams, rivers, estuaries and fjords, have a
net seaward water movement. If individuals from a population have no means of
upstream movement, either through their own actions or from some other mech-
anism, then any advection, (no matter how small), will result in that population
being moved downstream and eventual removal from the system. Many organisms
with little or no swimming ability, however, manage to persist in such systems.

This phenomenon has been termed the drift paradox.

Organisms in a one dimensional domain are considered initially, using an advec-
tion, diffusion population balance equation with exponential in situ growth in
the absence of movement. Building upon the results of Speirs and Gurney (2001)
new analytic results were obtained for an extension to the model which consid-
ered the effect of organisms repeatedly transferring between the drift and a static
benthic state, an approximation to the case for benthic stream invertebrates. Nu-
merical modelling, through use of a discrete space-time approach, was employed
to investigate swimming against the flow. For constant upstream swimming it
was found possible to use the previously developed analytic results with minor
modification. Movement against a time average of prior net water movement was

found a considerably less successful strategy.

Rivers with non-chaotic flow will exhibit a well defined vertical gradient in their
downstream advection due to bottom friction and viscosity. This presents the
possibility of a near benthic flow refugia in systems where the upper water column
flows too fast to allow persistence. The refugia can only exist, however, so long as
vertical turbulent diffusion does not remove individuals from this region at too fast
a rate. Virtually all fresh water organisms meanwhile, have a negative buoyancy.
Semi-analytic results were derived to determine the extent to which a constant
advection toward the bottom could increase the value of ‘critical’ vertical diffusion
at which mixing becomes too rapid for persistence. Results were compared to a

two dimensional version of the discrete space-time numerical model. Predictions
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of the extent of a benthic refugia were made for the River Meuse Belgium, a river
considered to contain a resident population of phytoplankton, using the semi-
analytic results. Predictions of critical vertical diffusion were contrasted with
hydraulic engineering approximations of vertical turbulent diffusion over a range

of river discharge values.

In tidal bodies it is the net advections over a tidal cycle that become important
to the issue of persistence. Strategic representations of both a coastal plain es-
tuary and a fjord were investigated. Additional parameters become significant
in determining the net advection of these systems. In particular the magnitude
and gradient of density differences caused by the interaction of fresh water river
runoff and saline coastal water. To determine the flow fields for these complex
systems a primitive equation fluid dynamics model, the Princeton Ocean Model
(POM), was used and particle tracking was employed to establish redistribution
matrices for two dimensional, (x,z), slices through these systems. Assuming that
parameters affecting the vertical movement of organisms relative to the deter-
ministic flow field are likely to be of greatest significance to persistence, results
were investigated for a range of organismal vertical diffusion believed to bracket
values to be found in the field. The degree of persistence was re-evaluated on in-
troduction of a constant sinking velocity and depth dependent growth rate, both

individually and in combination.
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Introduction



Chapter 1

The problem of persistence; the
‘Drift Paradox’

1.0.1 The problem of the ‘Drift Paradox’

All non-oceanic lotic habitats, chiefly streams, rivers, estuaries and fjords, have a
net seaward water movement. If individuals from a population have no real means
of upstream movement, either through their own actions or from some other mech-
anism, then any advection, (no matter how small), will result in that population
being moved downstream and eventual removal from the system. Many organisms
with little or no swimming ability, however, manage to persist in systems with
such a continuous net advection. This phenomenon has been termed the drift
paradox, (Hershey, Pastor, Peterson, and Kling 1993). Most obviously, this para-
dox applies to organisms living permanently in the water column, (the pelagic
environment), such as free floating phytoplankton and zooplankton in estuar-
ies and fjords. The issue, however, also affects bottom dwelling organisms with
planktonic developmental stages. Accidental dislodgement or active drift entry
of benthic species - particularly stream invertebrates - again means population

persistence in the face of downstream advection must be considered.



1.0.2 Suggested resolutions: streams and rivers

Various resolutions to the drift paradox have been put forward. In relation to
streams and benthic insects, Waters (1972) proposed that for a given section of
stream, drift represented only excess production beyond that required to to re-
place the local population. This production hypothesis implies that drifting is
simply a source of mortality. In the absence of active upstream movement, this
would require individuals to hold station at all locations at least long enough
to reproduce, over indefinite generations. Any instance of total loss of popula-
tion from the upstream end of the system would lead to permanent loss from
that location. Such events are plausible, especially as streams can experience
‘catastrophic drift’ events where a large fraction of the biota are transported

downstream, (Allan 1995).

A more recent hypothesis similarly independent of upstream movement has been
proposed by Anholt (1995). Anholt added the idea of density-dependent popu-
lation growth to the production hypothesis. As such, areas subjected to greater
losses from drift experience a higher rate of population increase. Using a strate-
gic computer simulation in which a series of stream segments with local density
dependent growth were linked by random downstream drift events and adults
dispersing randomly both downstream and upstream, he was able to show that
persistence was more likely when density dependence was stronger. However,
extinction almost always occurred in the absence of the random adult dispersal.
Although density dependent growth rates may well have the ability to enhance
persistence, the experiment seems to have shown that some degree of upstream

movement is the essential component for true long term survival.

In respect to stream insects the idea of adult compensation for downstream drift
of larvae was encapsulated by Miiller (1954, 1982). Miiller suggested that drift
entry was primarily behavioural and a response to competition for resources
amongst larvae. Drifting allowed colonisation of unexploited downstream reaches.

Washout from the system was avoided by upstream flight of adults prior to ovipo-



sition. Miiller termed this pattern the colonisation cycle. Various studies suggest
that adults of some stream insects do move upstream, (Williams and Williams
1993) and Hershey et al. (1993) conclude that such movements can be sufficient
to compensate for drift. Recently, this form of species persistence has been shown
to occur for other than insects. March, Benstead, Pringle, and Scatena (1998)

were able to demonstrate the cycle in tropical freshwater shrimps.

If the downstream drift and upstream flight are viewed as purely deterministic
processes, the colonisation cycle cannot, however, ensure population persistence.
If drift exceeds upstream movement then net downstream movement is simply
reduced. If there is net upstream movement then the population is still removed
from the system, only in the opposite direction. Considering the problem at a
population level, however, with its associated degree of random variability, several
workers have pointed out that no upstream bias in adult dispersal is necessary
for maintaining populations when fecundity is high, (Brittain and Eikeland 1988;
Allan 1995) or if reproduction or drift is locally density dependent, (Waters 1972;
Waters 1981; Allan 1995), there simply exists a requirement for sufficient adults
to compensate for drift. Two recent strategic studies lend further support to the
hypothesis as, while not contradicting the above studies they suggest there is
evolutionary advantage in both upstream bias to dispersion and exact compen-
sation of downstream drift. Anholt (1995) found that genotypes with upstream
biased dispersal drove randomly dispersing competitors to extinction. Using the
framework developed by Anholt, Kopp, Jeschke, and Gabriel (2001) conducted
an invasion analysis in order to determine the evolutionarily stable dispersion
strategy. They concluded that exact compensation by the population as a whole,
that is a mean net movement of individuals from birth to reproduction of zero,

was the optimal strategy.

The colonisation cycle is only applicable to species where at least one develop-
mental stage is capable of overcoming downstream advection. This is certainly
not true of all species that exist in lotic systems, obvious examples being river

dwelling phytoplankton, (potamoplankton) and zooplankton. Recent studies of



streams and rivers have focused on the fact that the flow is not uniform. Natural
channels often contain areas of very low flow, which may act as refugia for organ-
isms, (Reckendorfer, Keckeis, Winkler, and Schiemer 1999). The residence time
organisms can achieve in these areas is important. Small areas, or those with high
exchange with the main flow can act to reduce drift by effectively reducing the
average velocity of the water body as a whole. The drift paradox is only overcome

once the characteristic residence time in the refuge allows reproduction.

Floodplain habitats have been cited as stores of plankton population such that
floodplain inundation can significantly influence plankton densities in the river,
(Saunders and Lewis 1988). More generally it has been proposed that riverine
zooplankton are imports from adjacent lentic areas such as the flood plain or river
margins and side channels, (Saunders and Lewis 1989). These areas, however,
are probably best considered as separate subsystems, in the same way as lakes
are in general. As with the studies of Waters and Anholt, without a means of
placing some individuals back upstream, studies of short term refugia, (Lancaster
and Hildrew 1993; Robertson, Lancaster, and Hildrew 1995) fail to resolve the
paradox, although for insects with an airborne adult stage they do provide a way

in which the required upstream compensation can be reduced.

With respect to the issue of persistence, most studies had focused on the deter-
ministic aspects of drift!. This was noted by Speirs and Gurney (2001) who, in
their approach to the issue considered random motion, due both to turbulent wa-
ter movement and to the randomly directed movements of individual organisms,
as a potential source of upstream re-colonisation and therefore as a candidate
mechanism for population persistence. Rather than attempt to approximate a
given system strategic models were developed. Models were cast in the form of
advection-diffusion equations with the advective term representing deterministic
drift and the diffusive term approximating random motion. Models progressed in
complexity from a simple one dimensional system with constant advection and

population intrinsic growth rate through to a two dimensional model incorporat-

LA notable exception is that of Anholt (1995)



ing the features of bottom friction and shearing, density dependent growth rate
and a superimposed tidal oscillation. The one-dimensional linear system allowed
semi-analytical results to be obtained with respect to the conditions required for
persistence through diffusion to operate. These results could be contrasted with
those from the more complex scenarios, which could not be treated analytically
and for which a discrete space and time simulation strategy was developed. This

strategy, which was adopted by this thesis, is described in chapter 3.

For rivers, Speirs and Gurney (2001) performed simulations on two dimensional
domains incorporating bottom friction and shearing. They concluded that the
more complex flow environments produced only moderate effects on the conclu-
sions drawn from the simplest (and analytically tractable) model. All models,
however, assumed organismal motion to be unbiased. This may be of particular
importance in the vertical as, in the absence of strong organismal random motion,
this effectively assumes organisms of neutral buoyancy with random movement
due to the vertical component of turbulence. In general, for larger rivers veloc-
ity gradients are much greater in the vertical than they are in the horizontal.
Shearing leads to water at greater depths moving more slowly which, as Speirs
and Gurney pointed out, introduces a form of flow refugia and the possibility
of near benthic persistence. This in turn suggests some form of directed motion
toward the benthos may well enhance persistence. Work on the investigation of
organismal sinking and its impact on persistence in this domain are presented in

chapter 7.

Prior to this, the one dimensional semi-analytic model of Speirs and Gurney
(2001) is expanded to consider organisms spending part of their time on or in
the substrate. Speirs and Gurney took account of this factor through a simple
multiplication of the advection term by the fraction of time spent in the drift. In

chapter 6, however, a new analytic solution is obtained from first principles.



1.0.3 Suggested resolutions: tidal systems

In systems where tidal flows are superimposed upon seaward flowing river run-off,
(estuaries and fjords), the net cross sectionally averaged flow over a tidal cycle
will correspond to the cross sectionally averaged flow of the river discharge. The
pattern of net velocities over the length of the system - and vertically for the same
horizontal location - can vary considerably however. The issue of net tidal cycle
movement becomes more complicated still in that any particle or organism mov-
ing within the fluid experiences many of these different velocity cycles. The issues
of residual flow patterns and net tidal cycle movements are discussed in chapter
2. These variations present the possibility of diffusive movement through tur-
bulence, in combination with spatially varying advective flows, providing greater
opportunities for persistence to planktonic organisms than in the purely gravity

driven flows of streams and rivers.

The idea of the net motion in estuaries in itself being sufficient to ensure the
persistence of passive organisms has been put forward with respect to larvae,
(Wolf 1973; Jager 1999). Species of flat fish are even known to spawn in the
coastal oceans but for the pelagic larval phase to migrate into estuaries before
settling to become benthic dwelling. Of more widespread significance, almost all
estuaries and fjords carry significant populations of phytoplankton species with

no means of swimming and at best only limited buoyancy control.

Chen, Shaw, and Wolcott (1997) reduced the fluid dynamic equations represent-
ing tidal flow in a uniform domain to a linear form such that analytic solutions
for velocities could be obtained. With specific combinations of bottom drag and
vertical diffusion coefficient they demonstrated how phase and magnitude differ-
ences between near benthic and near surface flows could enhance the retention of
larval crabs. Speirs and Gurney (2001) were able to extend the analytical solu-
tions to include a river low component. With this net seaward flow in place their
investigations found that the underlying requirements for persistence in terms of

the relative magnitude of vertical diffusion, horizontal diffusion, advection and



system length were only moderately changed from the case of river flow.

The analytic treatment of the tidal flows, however, require the assumption of uni-
form density and the absence of buoyancy driven flow. As discussed in chapter
2 density gradients are considered a very major contributing factor in the net
circulations observed in estuaries and fjords often leading to landward flowing
‘compensatory currents’. In considering tidal regimes in this work a numerical
package for solution of oceanographic fluid dynamics equations was employed such
that the effect of density variations could be incorporated. Such an approach also
allows the adoption of non-uniform bathymetry, which is necessary for investi-
gations involving fjords. This package, the Princeton ocean model, (POM), is

outlined and discussed in chapter 5.

Results for both neutrally buoyant and negatively buoyant organisms in estuarine
flow with density induced currents as an additional mechanism for persistence are
considered in chapter 8. Results for the more complex bathymetry of a fjord are
presented in chapter 9. Light is essential to the maintenance and reproduction
of phytoplankton. Given the importance of phytoplankton in these two habitats,
investigations also contrasted results for when growth rates are uniform over

depth to those where growth rates declined in line with attenuation of daylight.

Alternative to organismal motion directed exclusively toward the benthos is the
idea of active vertical migration. Larvae possess the ability to swim, in the order

! not enough to swim against tidal flows but enough

of one to several cm s~
to influence their depth in the water column. An alternative to purely passive
transport allowing colonisation was postulated by Creutzberg (1961) and termed
‘selective tidal stream transport’ (STST). In this hypothesis larvae ascend actively
in the water column during flood and return to the bottom when the tide turns.
For this behaviour to be most effective vertical movements need to be in phase
with the tidal cycle, requiring cues for timing. Candidate synchronising cues

have been suggested by Boehlert and Mundy (1988). Field evidence for such

behaviour has potentially been found for the larvae of some species, (Christy



1989). Interestingly, the examples appear to be restricted to larvae that will not

reproduce before the need for persistence in planktonic form has ended.

A more common form of vertical migration pattern amongst plankton is a light
dependent diel (24h period) migration. Except for a few world locations this
migration pattern is not synchronised with the main tidal constituent. In most
locations the dominant tidal constituent is the lunar semi-diurnal M, tidal cur-
rent. Hill (1995) combined vertical migration, (in the form of a square wave),
with a purely oscillatory and spatially uniform tidal velocity. When migration
and tide were out of phase, integration over time led to no net transport over
seasonal time scales but a basically sinusoidal pattern of displacement with am-
plitude of up to several kilometres (for modest tidal currents) and a period related
to the difference in period between migration pattern and tide. These results are
from a quite abstract model and Hill freely concedes that many factors such as
the non-uniformity of tidal currents due to bottom friction and shear, turbulent

diffusion and net circulations from density gradients are not represented.



Chapter 2

Complex flows and simple
behaviours

2.1 Rivers, estuaries and fjords

A simple definition of a river is ‘a channel of flowing water, whose movement
is determined by gravity and is therefore downhill’, (Dobson and Frid 1998).
A widely adopted definition of an estuary, (which also encompasses fjords), is
that of Cameron and Pritchard (1963) who state that ‘An estuary is a semi-
enclosed coastal body of water which has a free connection with the open sea and
within which sea water is measurably diluted with fresh water derived from land
drainage.” using these definitions, two major differences are of significance to this
work. Firstly, the mean flow of a river is always in one direction if averaged over
any time long enough to account for random fluctuations. An estuary has both
the uni-directional river component and an oscillating tidal flow. A mean seaward
flow (averaged over the estuary cross section) is only seen if the flow is averaged
over the length of one tidal cycle. Secondly, the density of rivers is effectively
uniform whereas the mixing of river water and saline water from beyond the
mouth of an estuary causes variations of salinity, and as a consequence density,

that can affect the tidally averaged mean flow patterns.

There is an additional form of water body that fails to fall into the above cat-

egories. The rivers feeding estuaries can be given a tidal component while re-
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maining free of salt intrusion. These sections of river can be called tidal rivers,
although they are sometimes referred to as the homogeneous portion, or ho-
mogeneous fresh water zone, of estuaries, (Holley, Harleman, and Fischer 1970;

McDowell and O’Connor 1977).

2.1.1 Rivers

When considering idealised non-tidal rivers, (those of a uniform cross section),
the only upstream water movement provided is that of turbulent diffusion. The
degree of turbulence and the length scales over which it operates depend on the
character of river being considered, and this character variation is often more
significant between zones of the same river than between rivers. In general a
river system can be divided into three zones, (Dobson and Frid 1998). The erosion
zone comprises mainly headwater streams. Channel slope is steep and sediment is
generally eroded rather than deposited. The eroding nature of the stream ensures
that substrate particle size is generally large (cobbles and boulders), although
sometimes the river may have eroded to the bedrock. The steep slope and coarse
substrate is likely to lead to high turbulence and riffles and rapids are likely to

be present.

The second zone is called the sediment transfer zone because gradient is reduced
and sediment is transported with little net loss or gain. In this zone substrate
particle size is dominated by sand and gravel. The smaller gravitational force
driving the flow and the smoother nature of the substrate will reduce the degree
of turbulence generated in the flow and it is more likely that the vertical profiles

of velocity caused by the viscosity of the fluid will become apparent.

The deposition zone is where a river deposits its sediment load, typically as it
approaches the sea. A tidal river is likely to be such a zone, or deposition may
not occur until a river has already entered an estuary. Conversely, such a zone
may occur well inland. The substrate again becomes smoother, being dominated

by fine silt and a deposition zone has normally been brought about by a further
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reduction in river gradient. As such, the factors causing turbulence are reduced

compared to the sediment transfer zone.

Diffusion lengths are generally small in comparison to the mean advection for both
the vertical and horizontal elements of diffusion. However, the horizontal spread
of fluid elements, and any passive and neutrally buoyant particles that travel
with the fluid, can be much greater than that which would result from diffusion.
Termed dispersion, this spreading is caused by the interaction of the random
diffusive motion and the non-uniform nature of the time averaged velocity within
a river cross section. Bottom friction creates non-uniform vertical profiles, while
other factors include varying depths across a river transect and the influence
of bends. As discussed below, the nature of the spreading can be regarded as
analogous to turbulent diffusion. Therefore, such effects can be taken into account
by the equations describing the motion of particles in idealised rivers by retaining
the same form of equation but substituting a much larger coefficient to describe

the degree of horizontal spread.

2.1.2 Estuaries and fjords

The definition of an estuary given above is a very general definition covering
systems from shallow, bar-built estuaries to deep, narrow sea fjords (known as
sea lochs in Scotland), and a very wide range of flow regimes. Many different
classification schemes are possible to further sub-divide estuaries into those with
similar characteristics but most useful to this project is a division based on a

combination of topography and salinity structure.

Topography is used to distinguish sea fjords from drowned river valley estuaries.
Fjords are found in areas where river valleys were over-deepened and widened by
ice sheets during the last ice age. In general fjords are deep, up to several hundred
metres, with a small width-depth ratio, steep sides and an almost rectangular

cross section!. The intersection between fjords, and the mouths of sea fjords are,

! Their plan view is also in general rectangular.
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by contrast, usually shallow at the point where the ice sheet deposited material
to form sills. Sometimes such sills are very shallow compared to the main body of
the fjord and they can also be constricted. River discharge is small compared to
the total fjord volume, but, as many sea fjords have restricted tidal ranges inland
of their mouths, the river flow is often large with respect to the tidal prism, the
volume between high and low water levels, (Dyer 1973). Drowned river valley
estuaries, also known as coastal plain estuaries, were formed when the rising
sea waters after the last ice age flooded normal river valleys. The estuarine
topography is still much like a river valley, deepening toward their mouths, but
with maximum depths seldom exceeding 30 metres, and usually considerably less.
The width-depth ratio is usually large although not always. River flow is generally
small compared to the tidal prism, (Dyer 1973). There are other estuaries that
do not fit into these two types of topographic description but these are the types
of concern in this thesis. For convenience, from this point coastal plain estuaries

are simply referred to as estuaries.

Salinity structure is important in estuaries as it affects their flow regimes. The
flows in a tidal body tend to be dominated at any one instant by the tidal com-
ponent of the flow itself. Measured at any one location over a regular tidal period
however, a tidal flow of inviscid water taking place in a channel of regular cross
section will have a net flow of zero. If a river discharge is introduced, the net
flow over a tidal cycle at any location becomes equal to that of the river. When
considering the persistence of planktonic organisms it is this residual movement,
from the same point in one tidal cycle to the next, that is important. In addi-
tion to the effects of viscosity, friction and turbulence, salinity structure alters
the simple picture of net flows. It does this by introducing differences in water
density that in combination with the acceleration due to gravity, produces new
forces acting in the direction of lower density. While salinity differences affect cur-
rents, in their turn currents affect salinity distribution. Given constant forcing
variables, (chiefly tidal motion over a tidal period and river discharge), however,

an equilibrium will be established. Dyer (1973), however, questions whether real
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estuaries ever really establish true steady states as, amongst other factors, tidal
regimes are complex, river discharge constantly variable and the topography of

an estuary often alters in response to a different flow regime.

Salt, as well as being important in altering water densities, can also be regarded
as a passive tracer. The distribution and movement of salt can and is used as
an indication of the spread and steady state distribution of other passive and
neutrally buoyant particles. In terms of their salinity distributions there are four

main classifications of estuary.

Highly stratified, ‘salt wedge’ estuaries

In all estuaries the water from river inflow will tend to flow over the top of the
more saline (and denser) water in the body of the estuary. Because of the sloping
nature of the estuary this tends to form a thin surface flow of low salinity over
a wedge shaped body of saline water. Frictional forces will tend to drag the
top layer of the salt water seawards and if shear is sufficient internal waves form
and break at the interface, causing salt water to be mixed into the fresh water.
This process is known as entrainment. Turbulent forces, caused mainly by tidal
motion, will also mix the layers of lesser and higher salinity. In a highly stratified
estuary, however, the ratio of river flow to tidal flow is relatively large such that
only minimal mixing due to turbulence occurs and the salinity in the wedge is
virtually constant along the estuary. In general, salt wedge estuaries tend to have
relatively small width to depth ratios. The layer of very rapid change in salinity
with depth is known as the halocline. Salinity is often the most important factor
in determining water density, such that the halocline is often coexistent with a

pycnocline, a layer of rapid density change.

The entrainment of salt water into the fresh water heading seawards leads to a
compensating landward flow in the salt wedge. Because the degree of recruitment,
(entrainment plus turbulent mixing), into the surface seaward flow is modest,

however, so is the compensatory flow. A simple diagram characterising this type
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of estuary is given in Fig. 2.1

The combination of seaward flow of less dense water and landward flow of more
dense water is often referred to as the gravitational circulation within the estuary.
The removal of denser water from lower down the water column and the reduction
in density of remaining water through turbulent mixing causes a pressure gradient
in the opposite direction to that in the surface layer. It is the horizontal variation
in density, combined with the force of gravity that causes the reverse pressure
gradient and so the currents may be referred to as density, as well as gravity,
currents. Except in the case of near vertically homogeneous and wide estuaries

(see below) gravitational circulations are distributed vertically.

Tidal flow can also be termed tidal action. In terms of stratification the tidal
prism is as important as velocities generated by the tidal motion at the estuary
mouth. A smaller volume of water moving in and out of the estuary provides less
energy for turbulent mixing and this can be caused by a small tidal range and/or

a steeply sloping bathymetry (McDowell and O’Connor 1977, page 15).

Partially mixed estuaries

As the tidal flow of an estuary increases so does its energy. Most of this energy
is transferred into turbulence which in turn is dissipated by acting against the
density gradients in the estuary. If the turbulent eddies are sufficiently strong
to mix significant amounts of water across the halocline, then the estuary can
be considered partially mixed. The salinity of the seaward surface flow is con-
siderably raised but so too is its volume. This in turn causes an increase in the
volume of the compensating landward flow. In the James estuary, Virginia, USA
the seaward flow in the upper layer is 20 times the river flow and the compensat-
ing inflow near the bottom is 19 times river flow, (Dyer 1973, page 9). This flow

pattern is known as a two layer flow system.

In a partially mixed estuary the surface salinity increases much more steadily
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down the estuary and undiluted fresh water only occurs very near the head of
the estuary. Within the more saline water there is also a longitudinal gradient
in salinity. Horizontal salinity gradients have become almost linear but in the
vertical there is still a zone of high salinity gradient, often at about mid depth.

Fig. 2.2 gives a characterisation of this type of estuary.

Well mixed — vertically homogeneous — estuaries

Well mixed estuaries occur when the tidal current is much larger than the river
flow. The turbulence from velocity shear needs to be sufficient to overcome den-
sity stratification. This is normally only possible in estuaries with small cross-
sections. If the width of the estuary is sufficiently small that lateral shear is
enough to create laterally homogeneous conditions, salinity increases evenly to-
ward the mouth and there is no compensatory flow. The salt balance, in terms of
tidally averaged flow, is maintained solely by turbulent exchange due to bottom
friction or topographic irregularities. An intra tidal effect also helps to maintain
the salt balance, however. Well mixed estuaries are likely to be subject to high
bottom friction. This implies the tidal wave is likely to have a large progressive
component, that is the maximum of the flood and ebb flows are likely to coincide
quite closely to the high and low tide points at different locations along the estu-
ary, but these times vary along the estuary. With maximum flood occurring near
high water, when the cross sectional area is large, and maximum ebb occurring
near low water, small cross section, there is a larger transport of salt on the flood

than on the ebb. Fig. 2.3 gives a characterisation of this type of estuary.

Net upstream flows can occur in a well mixed estuary if it is sufficiently wide.
The Coriolis force, (due to the Earth’s rotation), will cause horizontal separation
of the flow. In the northern hemisphere this leads to net seaward flow down the
right hand side (looking seaward) and a compensatory flow along the left hand

side of the estuary.

Dyer (1973) contends that it is difficult to be sure that vertically homogeneous
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Figure 2.1: Schematic of a salt wedge estuary, together with net tidal cycle char-
acteristic salinity and velocity profiles.
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Figure 2.2: Schematic of a partially mized estuary, together with net tidal cycle
characteristic salinity and velocity profiles.
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estuaries really exist. Even very well mixed estuaries may still retain small vertical

variations that may get lost due to imperfect data collection.

Fjords

The flow patterns in fjords is generally similar to that in salt wedge estuaries.
If they possess the typical sill structure at their mouth then, because of the
restrictions of the sill, river flow tends to be large compared to the volume of
water input and extracted by the tide. Entrainment is the main cause of mixing
between the fresh water inflow and the saline water below. This upper layer is
commonly of virtually constant thickness from head to mouth and sometimes
this thickness is restricted to a depth equal to the sill. Where river discharge is
high, the surface layer is virtually of uniform salinity, but when discharge is lower
maximum salinity gradients can occur at the surface. This can also happen near
to the sill. Tidal velocities are greater over the sill and the water is less stratified.
There is generally much stronger vertical mixing in this region and the circulation
pattern over the sill can be viewed as quite separate to that in the main body of
the fjord. The inflow of water into the fjord is composed of a mixture of coastal

water and the outflow water. Fig. 2.4 gives a characterisation of a fjord.

Uncertainty of classification and variation within an estuary

The classification of estuary types is only very general and the point at which an
estuary changes from being highly stratified to partially mixed or from partially
mixed to well mixed is somewhat arbitrary. In addition, a given estuary may show
traits of different classifications of estuary at different points along its length,
(Dyer 1973). For example, near the head of an estuary where tidal amplitude
may be reduced, river flow can dominate and a salt wedge structure may be
present. If tidal velocities increase downstream causing eddy diffusion of salt to

become more active then a partially mixed structure may occur.

18



Fresh water —_

sdlinity

depth

Figure 2.3: Schematic of a well mized estuary, together with net tidal cycle char-
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Figure 2.4: Schematic of a sea fjord, together with net tidal cycle characteristic
salinity and velocity profiles.

19



Variations in topography along an estuary can affect the flow structure. For a
given river discharge and tidal forcing, a large increase in width will increase the
tidal volume to river flow ratio. This acts in a similar way to a reduction in river
flow for an estuary of constant width, leading to a more mixed structure. Increas-
ing the depth with other parameters fixed again increases tidal flow compared to
river flow. The greater depth, however, is likely to decrease the effectiveness of
vertical mixing and the river flow becomes more confined to the surface, thereby

increasing the degree of stratification.

Finally, the character of an estuary can change temporally. If an estuary experi-
ences much higher river runoff in one season than in another it can become more
stratified in nature. The variation in tidal amplitude over the spring, neap tidal
cycle can be enough to change an estuary from having a partially mixed character

to that of a highly stratified estuary, (McDowell and O’Connor 1977).

Classification using a stratification-circulation diagram

A useful quantitative means of classifying and comparing estuaries was developed
by Hansen and Rattray (1966). They used two dimensionless parameters to
characterise estuaries. Firstly a stratification parameter 65/S,, defined as the
ratio of the surface to bottom salinity difference 0.5 to the mean cross sectional
salinity S,. secondly a circulation parameter U /Uy, defined as the ratio of the
net surface current U, to the net mean cross sectional velocity Uy. Net current,
in this instance, refers to the current averaged over a tidal cycle. The net mean
cross sectional velocity Uy is effectively the cross sectional average of the river

flow, as without river flow net mean cross sectional velocity would be zero.

A version of the classification diagram as used by Hansen and Rattray (1966)
is shown in Fig. 2.5. This diagram distinguishes four main types of estuary,
but further sub-divides types 1 to 3 according to the value of the stratification
parameter. Estuaries of Type 1 have net flow that is seaward at all depths. Type

la has only slight stratification as would be expected for a well mixed estuary.
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Type 1b, however, can have an appreciable degree of stratification even though no
net upstream counter current is generated. Maintenance of a horizontal salinity
gradient is by diffusive effects alone. In Type 2 estuaries there is a flow reversal
at depth. Upstream salt flux is due to a combination of diffusion and advection.
These estuaries fit the pattern of partially mixed estuaries. Type 3 estuaries differ
from Type 2 in that advection dominates upstream salt transfer, (accounting for
over 99%). In Type 3b estuaries, the lower layer is sufficiently deep that in effect
the salinity gradient and the circulation do not extend to the bottom. Sea fjords
are generally of Type 3b. Type 4 estuaries are the salt wedge type. A vertical,
(and tidally averaged), cross section of such a flow should show a thick upper layer
flowing over a thin lower layer at the estuary head, graduating to a thin upper
layer flowing over a thick lower layer, with the two layers being little influenced by
the other. As indicated in the figure, there is a region at the top of the diagram
bounded by the conditions found for freshwater outflow over a stagnant saline

layer.

The demarcation between estuary types is again somewhat arbitrary. In partic-
ular Hansen and Rattray note that the transition between Types 3 and 4 has
little observational or theoretical basis. Because of the variation in character of
estuaries over their length, whole estuaries for any given set of conditions, (river
discharge, tidal flow and, potentially, wind mixing), are represented by lines on
the diagram rather than points. It is perfectly possible for the line of one estuary

to cross class boundaries.

Hansen and Rattray (1966) found that U,/U; was related to the ratio between
forced river flow and the potential for density induced internal circulation. This

ratio is known as the ‘densimetric Froude number’ and is defined by

Fpm L (2.1)

VIHAp/p

where ¢ is the acceleration due to gravity, H is the depth of the estuary, Ap is
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Figure 2.5: Stratification-circulation diagram, after Hansen and Rattray (1966).

the density difference between river and sea water and p is the mean density of
the estuary at that point in its length. Fischer (1976) found that 6S/S, depends
primarily on a form of Richardson number termed the ‘estuarine Richardson

number’ Rig which is defined by

~ 9ApQF

= 2.2

where QO is the total fresh water discharge, B is the width of the estuary and Uy
is the root mean squared (rms) tidal velocity. This form of Richardson number
is a bulk number reflecting the characteristics of the whole flow. It is essen-
tially a comparison of the buoyancy force introduced by the river per unit width,
(9ApQr)/(pB), to the tidal velocities, (Dyer 1973). The relationship between
Richardson number and the degree of turbulent diffusion of salt is discussed fur-

ther in chapter 5.

By performing a perturbation solution on a width averaged and nondimension-
alised set of governing equations, including the salt balance equation, (see section
5.2), citeNoey:84 found expressions for both Uy /U and §S/S, in terms of F,,, and

Rip as follows
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0S/S, ~ Ri%gF#w + terms of higher order (2.3)

UgJUp ~ Ri}E/Gngg/w + terms of higher order (2.4)

Equation (2.3) implies that any density difference between the head and mouth of
an estuary will always induce some degree of vertical stratification while Equation
(2.4) shows this stratification will always drive a gravitational circulation. They
also indicate, as expected, that for a tidal body with truly homogeneous verti-
cal density, gravitational circulation can not exist. Oey (1984) also concluded
that Hansen and Rattray’s method for determination of the relative importance
of gravitational circulation compared to diffusive forces in salt transport — and
therefore the transport of any passive and neutrally buoyant particle — was re-

markably general and applicable to many estuaries of various shapes.

The gravitational circulation is best seen by considering vertical profiles of velocity
averaged over a tidal cycle. If the stratification is sufficient, however, an actual
landward flow in the vertical profile might be present if flows are integrated over
the ebb tide. Fig. 2.6 shows the contrast between vertical flow profiles for a

highly stratified and a well mixed estuary.

2.1.3 Plume fronts

In estuaries with pronounced stratification the distinct band of lower salinity
water moving seaward over more saline water can be termed a plume. These
plumes tend to end in fairly sharp fronts. The fronts are noticeable as they are
associated with marked changes in colour or turbidity and perhaps a line of foam
or other detritus, (O’Donnell 1993). These are visual evidence to the front being
a zone of convergence toward which the buoyant water moves and at which it
sinks. If river inflow is relatively modest plumes will only appear for a few hours
during an ebb tide. If river inflow is high, the plume front will only appear in

the estuary during the flood tide and is swept out through the mouth of the
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Figure 2.6: Schematic of a stratified estuary and a well mized estuary showing the
contrast in velocity profiles during A) flood tide and B) ebb tide, after McDowell
and O’Connor (1977).

estuary during the ebb tide or even as the flood tide current diminishes from its
maximum, (Dyer 1987). Garvine (1977), from observations in the Connecticut
River, concluded that a well developed plume will exist during the ebb tide when
the ratio of the mean freshwater discharge velocity to the root mean squared tidal
velocity exceeds about 0.75 and will be present during a flood tide when the ratio

exceeds 2.
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2.1.4 Tidally averaged residual movement: °‘residual ve-

locity’

Observed residual flows within systems result from oscillatory tidal currents, the
effects of surface wind stress, horizontal density gradients and river discharges.
As indicated earlier, one can compute expected ‘steady’ residual velocities, that is
residual velocities expected to remain constant between tidal cycles, by imposing
similarly steady states on the driving forces. The residual velocities as described

above are for velocities defined at a point in space (Longuet and Higgins 1969)

Un = L [ vd
= _ t
R T/o

where T is the duration of the tidal cycle. Such residual velocities are called
Eulerian residual velocities?. Taking a particle starting at the point where the
residual velocity was measured and determining that its end point corresponds
to the direction and magnitude of the Ug value after one tidal cycle is incorrect,
however. If the values of Uy vary spatially then as a particle moves it will sample
brief instances of flows that constitute many different residual currents. To es-
tablish the true residual velocity of a particle the frame of reference must travel

with the particle. Such a residual movement is known as a Lagrangian residual.

As outlined in Chapter 3, determination of persistence in this thesis is performed
using a discrete space-time approach. To apply this approach to flows experienc-
ing tidal forcing, any method determining the redistribution matrix must supply
the net, or residual, movement of a passive and neutrally buoyant particle over the
period of a tidal cycle. A redistribution matrix representing Lagrangian residual
movement will result if the movement over a tidal cycle is determined by using
a combination of a fluid dynamics package, (solving flow governing equations in

their continuous form), and a tracking algorithm.

2Euler pioneered the work determining the equations of motion for fluid using a fixed frame

of reference.
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The fluid dynamics package is used to produce snap shots of the instantaneous
flow fields. Tracking of tracers could be incorporated into the fluid dynamics
program. To allow greater flexibility, tracking of particles with different charac-
teristics using the same flow fields, a separate discrete time tracking algorithm
was developed, (see also section 3.3.1). This tracking algorithm uses small inter-
vals, dt, to update the position of a particle, using the snapshots of instantaneous
flow fields. A new velocity to be applied to the particle is then determined taking

account of the particle’s new position in time and space.

If a vector is drawn from a particle’s starting position to its finishing position then
an imaginary velocity can be considered. When residual velocities are discussed
in relation to particle movements determined from particle tracking, it is this
imaginary velocity related to the Lagrangian residual movement that is being

considered.

2.1.5 Diffusion versus dispersion

Turbulence within fluid flows is not yet fully understood and direct numerical
modelling of turbulence is very expensive computationally, (Ferziger and Peric
1999). As detailed in chapter 4.2.1, a widely practised approach to dealing with
turbulent motion is to consider it analogous to molecular diffusion, the result
of the random movements of a substance’s molecules. Molecular diffusion is
governed by Fick’s law of diffusion which states that the mass of a substance
crossing a unit area per unit time in a given direction is proportional to the
gradient of mass concentration in that direction. In one dimension, Fick’s law

can be stated mathematically as

Dac

-Do- (2.5)

q:

where ¢ is the mass flux, C' the mass concentration and D a coefficient of propor-

tionality. The minus sign is to indicate transport is from high to low concentra-
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tions. Considering the relationship between ¢ and C' and applying the law of the
conservation of mass in addition to Fick’s law gives two more equations known

as diffusion equations.

oC 0*C
o~ Do (2:6)
dq 0%q
- Pom (27)

When considering the spread of a point source of concentration the pattern of con-
centration at subsequent points in time will conform to a Gaussian distribution
centred on the starting position. For general diffusion equations, or advection-
diffusion equations if a mean advection is super-imposed on the ‘mass’ movement,
the coefficient of proportionality, D is known as the coefficient of diffusion. When
describing the effect of molecular diffusion in fluid flows it is known as the co-
efficient of kinematic viscosity, » and when the effect of turbulence is described
in an analogous fashion to diffusion the coefficient takes the name of coefficient
of kinematic eddy viscosity, N. Kinematic eddy viscosity describes the trans-
fer of momentum by this process. Diffusive transport of passive tracers can be
considerably different to that of momentum. This can be especially true in the
vertical direction, depending on the degree of density stratification. Thus a third

coefficient, K, is used called the coefficient of eddy diffusivity.

Dispersion arises when a fluid has advection in a given direction but this advec-
tion has a gradient in a second dimension. Considering a two dimensional river
flow, if the downstream direction is x with advective component V, and the co-
ordinate from river bottom to surface z, then dispersion arises when 0V, /0z # 0
which, because of bottom friction and the viscosity of the fluid itself, is the situa-
tion in all rivers and estuaries. The phenomenon arises because a fluid element in
the river flow will move randomly vertically (because of molecular diffusion and
possibly turbulence) and so sample at random all the advective velocities. There-

fore, if a long enough averaging time is available, the element’s time-averaged
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velocity becomes equal to the instantaneous cross-sectional average of all the ve-
locities. In other words, after some long enough forgetting time the velocity has
become independent of the fluid element’s initial position and velocity. The hor-
izontal motion over this period can be considered a series of independent steps
of random length. This makes the motion analogous to molecular diffusion and
so an advection-diffusion equation should describe the changing mean position
and spread of any particles moving with the fluid. The difference is that the
step lengths and time steps of the ‘random walk’ are very different to that of
the diffusion that caused the vertical motion and a different value is required for
the coefficient of proportionality. This coefficient is then termed the dispersion

coefficient.

Flows with velocity gradients are often referred to as ‘shear flows’ and the mech-
anism of dispersion is often known as the ‘shear effect’, (Fischer, List, Koh,
Imberger, and Brooks 1979). For some simple steady shear flows, analytic rela-
tionships have been derived between the dispersion coefficient, ® and the kine-
matic viscosity v in laminar flows and between ® and the eddy diffusivity K in
turbulent flows. The relationship most directly applicable to that for a river is

given for turbulent flow down an inclined plane, where ® is given by

H*V?
o =]—= (2.8)
K,
where [ is a dimensionless integral given by
== v [T L [ vrazazay 2.9
- o % Jo f; 0 z % 4z a4z ( : )
and
VI
V= (2.10)
VIQ

where K! = K,(2')/K,, V! = V,(2') — V., an over-bar denotes a cross sectional
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average and z' = z/H is the dimensionless measure of the distance up the water
column given that H is the overall water depth. Alternatively, if dimensional

terms are retained in the multiple integral, the dispersion coefficient is given by

o = —i/HV'/Zi/zV'dzdzdz (2.11)
- HJo tJo K, Jo * '

Natural channels tend to have a variation of depth across the channel. This in
turn leads to transverse shear. Fischer (1967) applied the same reasoning that
leads to Equation (2.11) to the transverse direction of river cross sections and

obtained

t LB v 1o,
) :_Z/o q/0 ?/0 q dydydy (2.12)
y

where A is cross sectional area, K, an eddy diffusivity in the transverse direction
and ¢' = HV,, represents the deviation of the local flow per unit width from the
mean discharge per unit width. He concluded that for rivers with a large width to
depth ratio the longitudinal dispersion caused by transverse shear, ®!, was more

significant than that caused by shear in the vertical.

The problem with estuaries and fjords is that flow is not steady but oscillatory.
This places limits on the applicability of the above equations, the important con-
sideration being whether the time scale of the tidal cycle is much greater than
the time for turbulence to diffuse a substance across the vertical and transverse
distances of the estuary. Holley, Harleman, and Fischer (1970) considered tidal
mean dispersion caused by vertical diffusion, ®*7 for systems with neutral stabil-
ity, that is without stratification. They derived expressions relating this quantity
to the value, ®*, that would be obtained by using Equation (2.11) and Eulerian
residual velocities. They found the relationship reduced to a simple function for

two ranges of a dimensionless mixing time scale 7%, namely
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&1 =30%(7%)?  for 77 < 0.2 (2.13)

and

T =d*  forTo>1 (2.14)
where 77 is given by
oL _Th: (2.15)
=T .

where H is a tidal mean value and 7% = H?/K, can be considered a turbulent
mixing time scale. They suggested the above equations were applicable to reason-
ably straight channels that were also well defined such that the channel geometry
does not vary significantly during a tidal cycle. With these assumptions and a
reasonably wide estuary a turbulent mixing time-scale in the transverse direction
relating half width to transverse diffusion coefficient becomes large and a trans-
verse dimensionless mixing time scale much less than one. In effect, because of
the oscillatory nature of the flow, dispersion due to transverse velocity variation
decreases as estuary width increases, and for sufficiently wide estuaries this allows

consideration of dispersion due to vertical shear and diffusion coefficient only.

The above conclusion was reached even though tidal flow is understood to intro-
duce new mechanisms for dispersion, even in homogeneous conditions. The first
mechanism was termed ‘tidal pumping’ by Fischer et al. (1979). It describes
residual circulation set up by the interaction of the oscillating flow and the ir-
regular bathymetry found in most estuaries. Estuaries with a narrow mouth can
receive a flood tide as a confined jet type flow, while the ebb flow originates from
all around the mouth. Averaging over a tidal cycle shows a net landward flow in
the area of the jet but a net seaward flow elsewhere. More generally, combinations

of channel geometry and separation at corners can induce large scale gyres in the
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residual flow. Such residual vortices can be created in the vertical as well as the
horizontal if the tidal current flows over irregular bottom topography, (Fischer
et al. 1979, page 239). The horizontal separation of flow caused by the Coriolis

force in wide estuaries is also considered a component of tidal pumping.

A second mechanism has been referred to as the ‘storing basin’, ‘tidal trapping’ or
‘dispersion by non-local mixing’ mechanism. It considers the net mass transport
caused by the variation of cross-sectional shape, salinity and velocity at different
points in the cross section during a tidal cycle. An illustration of tidal trapping
is to consider an estuary with a main channel and a shallow side channel. In the
main channel, tidal elevations and velocities are likely to not be in phase. This is
because the momentum of the flow is sufficient to cause the current to continue to
flow against an opposing pressure gradient, resulting in high and low slack tides
lagging behind high and low water respectively. The side channel is likely to have
flow with less momentum and a smaller phase difference. If the flood tide carries
a patch of tracer up both main and side channel then, as the tide turns, the
tidal flow will reverse sooner in the side channel and the tracer it held may well
return to the main channel downstream from that part of the patch which stayed
in the main channel. Winterwerp (1983) determined mixing by the sea beyond
the mouth of an estuary to be important in maintaining the salt balance in an
estuary. For estuarine water that leaves the estuary on each ebb tide, the more
it is well mixed outside of the estuary mouth, (such that the salinity becomes
effectively that of the sea water), then the greater the salinity intrusion during
the next flood tide. Whether this last effect can be included when considering
animal persistence in an estuary depends on whether the animal is considered

able to survive for any period outside of the estuary.

For systems with buoyancy effects, gravitational circulation can be a significant
or even dominant mechanism of dispersion. Several studies have concluded that,
even in narrow estuaries, mass transport (and therefore longitudinal dispersion
coefficients) are determined predominantly by the vertical gradients in velocity

and salinity, (Fischer 1972; Dyer 1974; Dyer 1977; Hughes and Rattray 1980).
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Abraham, Karelse, and Lases (1975), however, concluded that dispersion coeffi-
cients in estuaries are dependent on time and also vary with distance along an
estuary and this was confirmed by Winterwerp (1983) for longitudinal two di-
mensional slices of the Rotterdam Waterway. West and Mangat (1986), analysed
data from the Conwy estuary and concluded that on average the dispersion co-
efficient was larger on the ebb tide than on the flood tide. They suggested that
if buoyancy effects are weak, a value for one dimensional dispersion due to both
shear effects and the secondary circulation induced by buoyancy ®*¢ could be

given to a first approximation by

kyB?|V4|
P v ———— 2.16
- (216)

In this instance H represents the maximum depth along a transverse cross section
and B represents the half width, while V4 is the cross sectionally averaged velocity.
The term k; is a coefficient which West and Mangat (1986) suggested could take
the value of k; = 0.1 during an ebb tide and k; = 0.025 for the flood tide.
Equation (2.16) is a simplification of Equation (2.12) with an empirical alteration
to take account of stratification. As such it requires explicit consideration of
domain width. Its derivation was possible because the ratio of transverse diffusion
coefficient, K, predicted by Equation (2.12) to that derived from the field data
was consistent for each half tidal cycle. Unfortunately, a similar approach could
not be applied to Equation (2.11) as it was found that the ratio of predicted
to measured vertical diffusion coefficient, K,, varied throughout each half tidal

cycle.

(McDowell and O’Connor 1977, page78) consider that predicting dispersion coef-
ficients for real estuaries with stratification from semi-empirical formulae can only
provide order-of-magnitude estimates because of the unique velocity structure of
each system. The only way to obtain true dispersion coefficients is from field
data. Winterwerp (1983), considering mass transport due to variations in the

vertical only, sets out the calculation of both a ‘real time’ dispersion coefficient
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®** and a coefficient, ®** to be used for tidally averaged advection diffusion
equations. In general the value of ®°¢* averaged over a tidal cycle is not equal
to &5, in large part because the dispersion in the tidally averaged advection
diffusion equation implicitly describes net mass transport by tidal flows. Both
values can be obtained by breaking down velocity and concentration terms into
averaged values and the deviation of a value at a given point from that average.

The value of ®*¢* is given by

—H(,(i)“z%—zo = (HU,Cy) + U, (H,Cy) + H,U;C,

+ (HUCY) + (HU[Cy) + (HU{C} ) (2.17)

Here an over-line denotes a vertically averaged quantity and a prime a deviation
from that vertical average. The subscript o denotes a tidally averaged quantity
and the subscript t denotes the deviation from this tidal average. An H with
no subscript is simply the water depth at a given point in time and the angular
brackets denote tidally averaged products. The various terms making up Equa-

tion (2.17) represent the different mechanisms of dispersion as follows

e H,U!C! — shear dispersion from the net gravitational circulation.

<H U,{Ct’> — vertical shear dispersion from the non-steady velocity and con-

centration profiles.

<HU£C’,§> and <HUt’C’g> — shear dispersion from the correlation between the

steady and oscillating components of the vertical shear.

<H Ut6t> — dispersion by non-local mixing, (tidal trapping).

U, <Ht6t> — dispersion by the correlation between the steady and oscillating

components of the flow.

Winterwerp (1983) compared measurements taken from three tidal flume exper-

iments and from the Rotterdam Water-way. The three flume tests represented
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highly stratified, partially mixed and well mixed conditions respectively, while
the Rotterdam Water-way was found to be highly stratified. In all cases it was
found that the three terms representing correlation effects provided a negligible
contribution. It was also found that the contribution from the net gravitational
circulation, H,U!C" increased in magnitude as conditions became more strati-
fied. In the flume tests its contribution went from being less than that from the
non-steady vertical shear term <Hm> under well mixed conditions, to com-
parable under partially mixed conditions to considerably greater under stratified
conditions. Unsurprisingly therefore, the contribution from the net gravitational
circulation was somewhat greater than that from non-steady vertical shear in the

Rotterdam Water-way.

A more traditional, and much simpler approach, of using salinity field measure-
ments to determine a longitudinal dispersion coefficient, is to use the equation

describing the ‘salt balance’ in an estuary

oS

oo =UyS (2.18)

where S is salinity at a point along an estuary, 0S/0x the longitudinal gradient
and Uy the cross sectionally averaged net velocity due to fresh water discharge.
The equation effectively assumes the salinity profile to be in steady state from
one tidal cycle to the next such that ® represents the dispersion, by all relevant
mechanisms, that allows an equal and opposite net tidal flux of salinity to the
seaward flux represented by the term U;S at that location. Fischer et al. (1979)
point out that Equation (2.18) has been used with salinity values observed at low
slack water, high slack water or with values averaged over a tidal cycle and that
the result is highly dependent on which approach is used. Also, some estuaries
do not conform well with the assumption that their salinity distribution is cyclic.

This latter problem, however, also affects any estimation made using Equation

(2.17).
Fischer et al. (1979) compiled a table of different estuaries and their observed

34



dispersion coefficients. Values range from 10m?s ! to approximately 1000m?s*

with the bulk of values falling in the range 100 — 300m?s~!. They noted that such
values were considerably smaller than values observed in even moderately sized
rivers and concluded the reason was the limited ability of shear flow to cause
dispersion in estuaries, as indicated by Equation (2.13). Low values, in the range
10 — 60m?s~!, were generally found in very well mixed or homogeneous portions

of estuaries where shear flow dispersion is the dominant mechanism.

2.2 Planktonic animals and behaviour relevant

to persistence

Plankton can be defined as, (Reynolds 1984)

the community of plants and animals adapted to suspension in the sea
or in fresh waters and which is liable to passive movement by wind

and current.

As such it is distinct from the ‘nekton’ (e.g. fish), that have the ability to substan-
tially regulate their own distribution through swimming. This is not to say some
plankton can not swim or otherwise influence their movement by the surrounding
water to a certain extent, but under normal circumstances they are unable to

overcome advective movements imposed on them by the flow.

The most obvious form of plankton are those that spend their whole life cycle in
suspension and which have morphological and behavioural adaptations to survive
in the pelagic habitat. However, there are animals which spend part or even most
of their life cycle in the littoral habitat at the bottom of the water column. For
example, the larvae of crabs and flat fish, (commercially important species), are
planktonic. There are still other organisms that are benthic dwellers but which

can be found in the drift for short periods. Although not conforming fully with the
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definition of plankton given above, they are certainly subject to passive movement
by the current when they enter the drift. Many stream invertebrates fall into this
last category. A considerable number of field studies have measured the numbers
of bottom dwelling invertebrates found in the drift. A review of these is given in

Brittain and Eikeland (1988).

There is much debate as to the reasons for individuals entering the drift. Some
studies support the idea of animals being involuntarily swept into the water
column by the rapidly and strongly varying forces of the near bed turbulent
flow, (Poff and Ward 1991). Other studies® suggest drift entry is deliberate and
cite many potential triggers including food depletion, (Kohler 1985), predator
avoidance, (Peckarsky 1980; Malmqvist and Sjostrom 1987), density dependence,
(Corkum and Clifford 1980) and indeed reductions in flow velocity as the reasons
for such action, (Minshall and Winger 1968; Poff and Ward 1991; Fonseca and
Hart 1996). The reasons are almost certainly different for different taxa. Results
from Degani et al. (1993) indicate that many invertebrates may prefer the highly
turbulent flows characteristic of the shallow and high velocity areas characteristic
of riffles in upland streams, while Growns and Davis (1994) describe a number of

‘flow avoiders’.

Behaviour can also be passive or active once in the drift. Individuals have
been found to actively reduce their time in the water column, (Elliott 1971a;
Ciborowski and Corkum 1980). Some studies cite changes of behaviour by in-
dividuals of a given species in response to the strength of the flow, acting to
minimise drift time when flow is strong but to increase drift time and distance
when velocities fall below a certain threshold, (Campbell 1985; Allan and Feifarek
1989). Even with in-drift behaviour, it seems likely that the rate at which drifting
individuals return to the benthos is strongly dependent on the degree of turbu-
lence, (vertical mixing), in the flow, (Smith 1982; McNair, Newbold, and Hart
1997). Regardless of the means of drift entry and exit, chapter 6 demonstrates

that if rates of drift entry and exit can be determined and can be considered ap-

30r results for different taxa within the same study.
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proximately constant, then the critical flow parameters for persistence in a given

length of system can be determined semi-analytically.

The work of Speirs and Gurney (2001) considered problems in which organisms
could effectively be considered as neutrally buoyant. Persistence in the more
complicated flow regimes of chapters 8 and 9 is also initially considered for such
organisms. Such considerations are very instructive, not least because it is then
possible to make comparison to results where vertical movement is also due to
factors other than entrainment in the surrounding flow. A very simple form
of ‘behaviour’ for plankton can be considered that of sinking. There are few
planktonic organisms that are consistently buoyant. Most are often or always
more dense than the water they inhabit, (Reynolds 1984). Phytoplankton are
no exception to this general rule. Terminal sinking speeds in quiescent water
have been measured for various marine and fresh water diatom phytoplankton.
Chapters 8 and 9 investigate whether or not simple, constant sinking can enhance
the persistence of populations in estuaries and fjords. This is appropriate to
diatoms as they possess no mechanism for swimming. Even so, it seems they
are not totally incapable of influencing their position in the water column. Live
phytoplankton are able to control their density to a certain extent. A number of
studies have found that several species of live phytoplankton demonstrate lower
settling velocities in quiescent water than dead or senescent individuals from
the same population, (Reynolds 1984, page 77). In the presence of turbulence,
elimination time from the water column is also influenced by the ‘form resistance’
of each species. Those with higher form resistance achieved longer times in the
water column. Form resistance is a non-dimensional measure of the degree to
which an organism’s shape increases its drag. It is therefore also a measure of

how readily an organism can be entrained by random water movements.

If organisms possess a quiescent settling velocity the theory of settling in the
presence of turbulence implies that turbulence will only delay the settling of indi-
viduals in the water column, by a factor directly related to their settling velocity

and form resistance. If only random motion is present in the vertical, eventual
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settling is inevitable, (Reynolds 1984, page 50). Phytoplankton derive their en-
ergy from sunlight. Sinking may enhance physical persistence by transferring
individuals from net seaward flowing waters into the net landward flowing com-
pensating currents but the attenuation of sunlight in water is often quite rapid.
The influence of light dependent growth rates upon both neutrally buoyant and
sinking populations is considered. In this way the effect of both added elements

of realism can be assessed independently and in combination.

Other forms of phytoplankton possess flagella which allow them to become motile.
It is now well established that phytoplanktonic organisms will adjust their posi-
tion in a water column by means of vertical migration, (Figueroa, Niell, Figueiras,
and Villarino 1998). They have been shown to respond to gravity, chemical and
thermal gradients, the magnetic field of the Earth as well as to light. This last
factor can stimulate both positive and negative phototactic responses, (Nultsch
and Hader 1988), although the basic pattern is one of a diurnal migration leading
to maximum concentrations at depth during the night and near the surface during
the day. For the well stratified system they studied, Figueroa, Niell, Figueiras,
and Villarino (1998) found the pycnocline was significant in that only some species

studied were able to migrate through.

Zooplankton are also known to make diurnal migrations, although the pattern
is in reverse with individuals rising during the night and moving to deeper wa-
ter during the day. This behaviour has been found in the open ocean, fjords
and estuaries. Migration to the surface in estuaries, however, has been seen
to be inhibited by high stratification. Sampling of the estuarine section of the
River Test, Southampton, found concentrations of zooplankton just below the
low-salinity surface water at times of high stratification, but zooplankton all the
way to the surface when the salinity gradient was not present. In controlled ex-
periments Grindley (1964) showed that Pseudodiaptomus in an estuary migrated
downwards during the day and upwards at night. However, upward movement
was halted by salinities in the range 8.5-19.0 parts per thousand. He suggested

that at times of normal river run-off the full migration allowed persistence in the
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estuary. At times of river flood the animals prevented wash out by their avoidance

of low salinities.
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Part 11

Methodologies
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Chapter 3

Methods for determining the
persistence of spatially

structured populations

3.1 Population balance equation

The balance equation for a spatially structured population represented in contin-

uous space and time has the general form (Gurney and Nisbet 1998)

on oJ, dJ, dJ,
on _ s s 9 Oy 1
T i T » (3:1)

where n(x,y, z, t) represents the population density at a point (z,y, z), 5(z, y, z, t)
and 6(x,y, z,t) are local per-capita birth and death rates, and J(z, vy, 2,t) repre-

sents the net flux densities of individuals past the position (z,y, z).

This thesis is concerned with the possibility for persistence provided by the fact
that fluid flows with a net advection experience shear, turbulence and, (in later
chapters), are influenced by varying topography and salinity. Reducing the prob-

lem to one dimension in the first instance, (the x direction), if there were only
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advection present, moving all individuals at the speed V, past a given point,
then the net flow rate term would be given by J(z,t) = Vyn(z,t). The mo-
tion imparted by turbulence is considered random. Random motions produce a
net flow rate which is proportional to the spatial gradient of any concentration.
The constant of proportionality, the diffusion coefficient, when used in relation
to population balance equations is denoted by ®,. The subscript denotes the
possibility for coefficients with different values in the other directions for models
that consider more dimensions. The net flow takes individuals from regions of
higher density to lower density. The diffusion constant is always regarded as pos-
itive by convention, such that a net flow rate caused by solely diffusion becomes
J(z,t) = —®,0n/0x. Taking the overall net flow rate to be a combination of
advection and diffusion, and replacing (5 — ¢) by p(n), the net per-capita growth
rate, the balance (or conservation) equation for a population in one dimension

becomes

2
an—p(n)n—%a—nqL@ 0“n

Frie or T8 (3:2)

where the value of p(n) is now considered to, potentially, depend on the popula-

tion density n.

3.2 Analytic technique for 1D problems

3.2.1 1D problem

Speirs and Gurney (2001) considered the case of Equation (3.2) representing
a turbulent stream, where the turbulence has enabled the water to become well
mixed vertically and transversely. The advection velocity and diffusion coefficient
are also assumed constant throughout the domain. The term ®, can be considered
analogous to the coefficient of eddy diffusion seen in the conservation equations for

passive tracers found in fluid dynamics, (for example see Equations (5.9), (5.13)
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and (5.16) that determine the evolution of salinity in a turbulent 3D system).
These quantities are not equivalent, however, as the term in Equation (3.2) can
be regarded as representing motion induced by fluid movements but of different

magnitude and/or random movement generated by individuals themselves.

The point x = 0 was assumed to represent the source of the river at which water
containing zero organisms enters at velocity V,. It was further assumed that no
individuals could pass upstream of the source, so the population flux at x =0 is

zero. That is, there exists a reflecting boundary given by

Van(0,4) — @, (%)M — 0 (3.3)

At the opposite end of the domain (x = L) the river flows into an environment
which the organisms can enter but from which they can not return. This is

represented by an absorbing boundary at which the population is always zero

n(L,t) =0 (3.4)

If p(n) is assumed to be a constant, that is involving no density dependence, then
the problem defined by Equations (3.2) to (3.4) is linear and the only possibilities
for the overall population are for exponential growth or decay over time, (Gurney
and Nisbet 1998). Following the analysis for the case when diffusion only is
present, (Gurney and Nisbet 1975), Speirs and Gurney (2001) assumed that after
initial transients have died away, the solution takes the form of a static spatial
pattern with each point in the pattern growing, or decaying, exponentially with

time. This meant solutions were sought in the form

n(z,t) = e f(x) (3.5)

where A is the long term exponential growth rate and f(x) is the function de-

termining the spatial pattern. For species which do not exhibit an Allee effect,
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(Allee 1931), p is normally a decreasing function of the local population density.
[ts maximum value is therefore when n is effectively zero. If p(n) is set to this
maximum value, the ‘intrinsic growth rate’ denoted by r, the population can be
thought of as one invading a given system. Because r is a maximum value a
population which can not invade a given system is also incapable of persisting in

that system after being introduced as a finite population.

Speirs and Gurney (2001) were able to show that solutions are only possible if

the long term growth rate A is related to r, V,, ®, and the system length L by

L
tan <mL—d> = —%m (3.6)

where

2

A Ve
Ly=\/®,r 1, Vy=2/®,r, k= \11 - <Vd> (3.7)

Intermediate working leading to this result is given in Appendix A. The im-
plications for population persistence of the above result are covered in chapter

6.

3.2.2 1%D problem

The method of Speirs and Gurney (2001) can be extended to consider the case
where organisms spend some of their time in the drift and the rest resident on
or in the benthos. To attain an analytic solution organisms are assumed to be
static while in their benthic ‘state’. A further simplification is to assume that
the times spent in the drift and benthos are independent of the river velocity and
diffusion coefficient. If, in addition, organisms are assumed to have exponential
decay distributions for the benthic and water column residence times then the

rate of transfer between states are simple constants. The details of this extension
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to the above method are detailed in chapter 6, section 6.3.1. Chapter 6 then
considers the difference ‘clinging’ to the benthos makes compared to the scenario

of individuals permanently in the drift.

Failure of solution technique when there is benthic movement

The key element to being able to extend the solution technique of Speirs and
Gurney (2001) to the case when individuals spend time on the bottom is the
assumption that these organisms are non-moving while on the bottom. This in
turn permits non-trivial solutions in which the population density in the benthos,
m(z,t), is a constant proportion of the population density in the drift, n(z,t), at
all points. Once movement is introduced in the benthos then the possibility of a

constant ratio between m(x,t) and n(x,t) breaks down.

3.3 Numerical techniques

As discussed in the previous section, analytic solutions can be found for the long
term growth rate of a population if the per-capita growth rate of the population
is assumed to be constant. Such solutions provide valuable insights into the
limiting conditions for potential persistence. Non-linear representations of per-
capita growth rate are more realistic of real populations, however, and their

introduction makes it impossible to apply the analytic approach so far described.

Analytic solutions for certain two dimensional problems are possible, (Richards
1996), but the assumptions necessary to simplify the problem are quite restrictive.
If realistic hydrodynamics, or other factors, such as animal behaviour, are to be
incorporated then it is necessary to turn to numerical techniques. One approach is
to solve the continuous version of the equations specifying the model in question.
There are a number of distinct schemes that can be applied, (finite differences,

finite elements, finite volumes, method of characteristics), and no one scheme has
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proven the best choice for all possible problems. As an alternative to numerical
solution of the continuous model, a discrete space-time representation can be
adopted, as outlined for one dimensional problems in Gurney and Nisbet (1998),
with extensions to two dimensional problems described in Speirs and Gurney

(2001).

3.3.1 Discrete space-time approach

Considering a one dimensional model in the first instance, the domain is divided
into a contiguous series of equally spaced intervals of width Az and the average
population density in quadrant z at time ¢ is denoted by n,,. This density

distribution is updated at intervals At according to

N t+at = Z Rw’,a:Bw’,t (38)

The term R,/ , represents a redistribution matrix and B, , represents the number
of survivors and descendants of the population of quadrant =" at time ¢ who are
present at time ¢t + At. In this work all non-linear per capita growth rates are

represented by the logistic growth rate

py =7 (1-7) 39)

where k represents the carrying capacity of the population. Therefore, follow-
ing (Gurney and Nisbet 1998), B, , is equated with the solution to the logistic

equation, so that

kn, s
B, — T ,t : —rAt 3.10
ot Tyt + i(k o nx',t) 6 ‘ ( )

The redistribution matrix must be properly normalised such that it produces a

mean displacement of V,At and a displacement variance of 2®,At. That is
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> Ryy =1

Y (@—a"\Ry, = VAL

T

Y (x—a')VRy, = 20,At+ (V,At)? (3.11)
Speirs and Gurney (2001) used a displaced tent distribution to represent R, ,.

Such a distribution is given by

—a' - dox i
M) (3_12)

x'x — 1-—-
e, ¢< T

where the + symbol denotes taking the value of the expression on the right hand
side if it is positive, or zero otherwise. The coefficients ¢, d,, and d,,, are chosen
so that the conditions of Equation (3.11) are satisfied. To conform to the condi-
tions of Equations (3.3) and (3.4) at the boundaries, the method of images is used
to define an appropriately modified redistribution matrix. Using this technique
to model a logistically regulated population living in a 1D domain, (representing
a well mixed river), Speirs and Gurney (2001) demonstrated that this form of
discrete space-time model demonstrated good agreement with the results of a
continuous model obtained by standard numerical methods, but with a compu-
tational cost approximately two orders of magnitude lower. The comparison of

results is shown in Fig. 3.1.

The discrete space-time representation can be readily generalised to higher di-
mensions by denoting position by a vector, p = (z,z), for a vertical slice, or
p = (z,y,2) for a full three dimensional model. The domain is now split into
a contiguous series of rectangular (2D), or cuboidal (3D) cells. Equation (3.8)

generalises to

np7t+At = Z Rp’,po’,t (313)

p
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Figure 3.1: Temporal development of a logistically requlated population with an
intrinsic growth rate of 0.39day™!, being advected along a 1 km river with a ve-
locity of 0.001ms™t. Upper frames have ®, = 0.06m?s L. Lower frames have
® = 0.25m?s™ L. Right hand frames show the time history of average population
density. Left hand frames show the spatial distributions at t = 0 and the predicted
distribution at t = 50days. Solid lines represent the continuous time numerical
model implementations, circles represent the discrete model. Discrete model: dis-
placed tent redistribution matriz (3.12), At = 0.1day. From Speirs and Gurney
(2001), with permission.

The local growth function is still given by Equation (3.10). In a 2D system with
constant rates of advection and diffusion, the requirements on the redistribution

matrix become

Z Ryp =1
P

Z(x_x,)Rp’,p = VAt

P
(=2 )Ry, = 20,At+ (VAL)?
P
d.(z =) Ryp = VAL
P
Y (z—2)VRyp = 20,At+ (V,At)?
P

(3.14)

where V,At and 2®,At are the mean displacement and displacement variance in

the vertical respectively.
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For such a system the generalisation of the displaced tent distribution is given by

- ,_doa: - ,_doz "
[z~ |z |> (3.15)

forw =0 (1 R I
The coefficients ¢, dyz, dps, do, and d,,, are chosen so that the conditions of
Equation (3.14) are satisfied. Speirs and Gurney (2001) used a recursive bi-linear
interpolation algorithm to determine these coefficients for each run using a new
combination of model parameters. This satisfied a penalty function imposed on
each of the conditions in turn, repeating the exercise if satisfying one condition
re-invalidated a previously satisfied condition, until all penalty functions were
satisfied simultaneously. For this work the parameters were found by making use
of a NAG software library routine and combining separate penalty functions for

each of the conditions of Equation (3.14) in to one overall penalty function. That

is if ¥y, V9, Y3, ¥4 and 5 are defined as

Y = Z Rpp—1
P
Vo = > (v —a)Ryp— ViAL
P
Y3 = Y (v — )Ry p — [20,At + (V,At)?]
P
Vs = > (=2 )Ryp— V.AL
P
vs = Y (2— 2V Ry p — [20,At + (V,At)?]
P
(3.16)
then the NAG routine is used to minimise ¥, where
U =] 4+ 9+ 5+ Y+ 3 (3.17)

This approach was found to work most efficiently if the component penalty func-
tions, 1y etc., were weighted according to the relative magnitudes of the right

hand sides of the separate conditions shown in Equation 3.14.
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Space dependent displaced tent distributions

The parameters of a displaced tent distribution are dependent on the velocities
and diffusion coefficients found at the point in space and time at which it is to
be applied. For work considering a 2D domain of a weakly mixed river, velocities
and diffusion constants are considered constant in time but river velocity varies
with depth. In this instance a unique tent distribution is required for each depth
representing a cell centre in the model. If 2’ represents the vertical component of

the source cell position vector, then the formula for each tent becomes

o — o' — dou(2)| |z—z’—doz(z’)|>+ (3.18)

Fop = () (1 T () e

and each tent is subject to the conditions as in Equation (3.14), but with a

uniform value of V, now replaced by V,(2').

Speirs and Gurney (2001) showed how use of tent distributions could be extended
to tidally driven habitats. In such habitats the deterministic flow fields vary
with time and it is therefore expected that the redistribution matrix Ry p also
becomes time dependent. If, however, the update increment, At is set equal to
one tidal cycle, Ry , then represents the residual motion over one tidal cycle. It is
necessary to ignore the spring-neap cycle, but if this is done Ry, becomes time-
independent. Assuming a tidal period of 12 hours, this is the size required for
the update increment of the population model. Speirs and Gurney (2001) found
that results obtained from simulations of the river scenarios, (using At = 0.1day),

were weakly affected by the increase in timestep.

With At set equal to the tidal period the population model is defined by Equation

(3.13) while each redistribution matrix is given by

Y A 1o Y rol +
R o) (1 BTl A )

Az (2!, 2) Az (2!, 2")
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and the coefficients of each redistribution matrix are chosen so that

Z Ryp =1
P

Z(x - x,)Rp’,p = Aw(x’a Z,)

P
Z(x — x')QRp/,p = 20, At + (A, (2, 2))?
P
Z(z - Z,)Rp’,p = AZ(af,a Z,)
P
Z(z — Z,)QRp/,p = 20,At + (A, (2, 2))?
P

(3.20)

In the above equations, A, and A, represent the x and z components of the net
displacement of a neutrally buoyant particle, starting at position (2, 2'), over
exactly one tidal cycle. In other words they are Lagrangian residual movements,
as outlined in section 2.1.4. These values are derived by performing particle
tracking on such a particle using a fourth order Runge-Kutta algorithm and snap
shots of instantaneous flow fields. The x and z components of velocity in the flow
fields can be defined by an analytic solution of a simplified set of fluid dynamic
equations, or via numerical solution of the full equations. These two means of

determining the velocity fields are described in chapters 4 and 5 respectively.

The A, and A, values are very likely to be different for each cell used in a model.
Potentially a unique tent distribution is required for each cell. Application of tent
distributions in a tidal situation also relies on organismal diffusion being divorced
from the flow fields in that its application is unaffected by the locations and move-
ments of the tracked particle during a tidal cycle. The issue of dispersion caused
by an interaction of advective and random motion at sub-tidal timescales raises
doubts about the validity of diffusion imposed only at the end of deterministic
tracking. This is certainly the case if the flow fields are strongly divergent. It
would again be true if animal behaviour in the form of reaction to changes in the

flow field or some other factor, (such as salinity), were to be modelled. A further
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complication arises when the bathymetry is no longer straight sided. The method
of images at a reflecting boundary, effectively folding the distribution about the

boundary, becomes complicated.

Redistribution matrices from particle tracking

To accommodate scenarios where the use of displaced tent distributions is less
convenient or inapplicable, the work of this thesis also generated redistribution
matrices obtained from particle tracking. In its simplest form the particle tracking
algorithm uses the same discrete spatial representation of the domain as the
population model. From the centre of each cell the program tracks a specified
number of particles, N, over At, the time step used for the population model.
Assuming velocities within the domain can vary with space and time, particle
tracking is performed over timesteps, 6¢, much smaller than those used for the
population model. The average velocity over each period 6t is obtained using
a fourth order Runge-Kutta algorithm. In the same way as particle tracking
used to produce the most general form of displaced tent distribution, the values
of instantaneous velocity used by the Runge-Kutta algorithm were derived from
snap shots of flow fields, defined either by solution to a simplified set of fluid
dynamic equations, or via numerical solution to the full set of equations. Because
a particle’s position at any particle tracking timestep is unlikely to coincide with
a velocity data value position, instantaneous velocity values are interpolated in
space. If the timesteps dt are smaller than the time gaps between snap shot
velocity data files the instantaneous velocity values are also interpolated in time.
Organismal diffusion is added at the end of each tracking timestep by assuming
it is a white noise velocity with power spectral density /2®,;+/2®,, that is the
displacement variances over the time interval 0t are defined as 2®,6t and 2,6t

in the z and z directions respectively.
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In this approach R, , is given by

number of tracks from p’ to p

Tty p = number of repetitions, N

There is additional computing overhead in the need to run the particle tracking
program, compared to generating displaced tent distributions. Once a redistribu-
tion matrix is completed, however, the population model runs exactly as before.
Indeed, whereas the population model must handle any tent distributions that
attempt to place population beyond reflecting boundaries, the population model
using a redistribution matrix from a particle tracking program is free from such

issues, as they have been dealt with by the tracking algorithm.

Regardless of how the redistribution matrix is formed, if investigating the effect
of parameters that do not alter the spatial redistribution of population, the redis-
tribution matrix only need be formed once and its calculation can be considered
‘off line’. The most important parameter in this respect is the per-capita growth
of the population, either through changes in the intrinsic growth rate, or the
whole growth regime. Overall, use of a tracking algorithm combined with a dis-
crete population model can still be more computationally efficient than numerical

solution of the partial differential equations.

In Fig. 3.2 the numerical solutions to a continuous model representing a logis-
tically regulated population, as shown in Fig. 3.1 are reproduced from (Speirs
and Gurney 2001). Super-imposed on these results are ones obtained using par-
ticle tracking and the discrete space-time population model. The discrete model
is able to match the continuous model very closely. The approximation is bet-
ter than that achieved using the displaced tent redistribution matrix while using
comparable, or even greater values of At. Use of particle tracking performs better

close to the boundaries.

A good match of the continuous solution was obtained over a range of values for
At and interval size Az. With ® = 0.06, a At value of 6hrs ~ 0.1r worked
well. With & = 0.25, the peak values of the population distribution could only be
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Figure 3.2: Temporal development of a logistically regulated population with an
intrinsic growth rate of 0.39day ™", being advected along a 1 km river with a ve-
locity of 0.001ms . Upper frames have ®, = 0.06m?s . Lower frames have
® = 0.25m?s~'. Right hand frames show the time history of average population
density. Left hand frames show the spatial distributions at t = 0 and the predicted
distribution at t = 50days. Solid lines represent the continuous time numerical
model implementations, circles represent the discrete model. Discrete model: re-
distribution matriz from particle tracking. Upper frames: Ax = 6m, At = 6hrs,
Particles tracked per cell 10000; Lower frames: Ax = 6m, At = 2hrs, Particles
tracked per cell 12000; All frames 0t = 30s.

repeated with At = 2hrs. This is possibly due to the higher relative densities of
the latter case, such that population growth within an update increment is more

likely to be affected by the non-linear growth term.

As would be expected, the fidelity of the discrete model is affected as N is reduced.
In Fig. 3.3 the lower frames show runs with ®,, At and Az values as used in the

upper frames of Fig. 3.2 but with decreasing values of V.

Conditions requiring corrections to diffusion coeflicients

Gurney, Speirs, Wood, Clarke, and Heath (2001) identified a source of potential
error when using particle tracking to form redistribution matrices, depending

on the combination of cell size, diffusion coefficient and update increment, At.
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Figure 3.3: Logistically requlated population with an intrinsic growth rate of

0.39day !, being advected along a lkm river with a wvelocity of 0.001ms™*,

®, = 0.06m?s . At = 6hrs. Upper frames: Particles tracked per cell 10000,
Ax = 6m/(circles), 10m(blue), 20m (green); Lower frames: Ax = 6m, Particles
tracked per cell 10000 (circles), 1000 (red), 500 (blue), 100 (green).

Considering the x direction only, and assuming a population is only subject to

diffusion, the redistribution matrix is required to satisfy

> (v —a')’ Ry 5 = 20,At (3.21)

x

If we name the diffusion coefficient used by the tracking algorithm, ®, then the
tracking operation produces a distribution of particle positions at At which is
normal with a zero mean and variance 2®,At. Ry 4; represents the fraction of
the tracked ensemble whose final position lies in the cell centred at (j — 3)Az,

where Ax represents the cell size. Therefore, in the limit of a very large ensemble

R (3.22)

1 jAw z? p
v \/47Tq)TAt /(j—l)Aa: exp _4(1)TAt v

The value of ®; should be such that when the component parts of the redistribu-
tion matrix given by Equation (3.22) are summed, they satisfy Equation (3.21).
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By defining y = x/Lp where Lp = /2®,At and v = ®;/P,, and combining
Equations (3.21) and (3.22) the problem becomes one of choosing v such that

1 z—a'\" it y?

1==3% ( I ) /(M)LA—; exp <—$> dy (3.23)
Solving Equation (3.23) for v numerically allows the appropriate value of v to
be applied for any given combination of At, Ax and desired ®,. Gurney et al.
(2001) showed that for Az < 0.1Lp no correction to the target diffusion constant
is necessary. For the approximate range 0.1L), < Az < 3.5Lp, tracking with
the target diffusion constant produces redistribution matrices which imply excess
diffusion, that is v is a number less than one. Once the normalised cell size

exceeds 3.5Lp the situation is reversed, with use of the target diffusion constant

producing matrices which underestimate the required diffusion.

Gurney, Speirs, Wood, Clarke, and Heath (2001) went on to consider situations
where particles are subject to both constant advection and diffusion. The cor-
rection factor v was calculated from Equation (3.23), that is as if there were zero
advection. It was found that for Az < 1.5Lp both the advection and diffusion
were rendered accurately, (errors < 1%), by the corrected tracking process. A
value of Ax/Lp of up to 2 could be used for an error of approximately 10% but
if the ratio of cell size to diffusion length were larger, error increased rapidly and

became sensitively dependent on advection velocity.

The upper frames of Fig. 3.3 shows results for the case where ®, = 0.06m?s_;
and At = 6hrs, with the black line showing the solution to the continuous model.
The circles represent the result using Az = 6m, giving Az/Lj ~ 0.1. The green
line represents the result using an uncorrected value of ®, and Ax = 20m, giving

Azx/Lp =~ 0.4.
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Chapter 4

Analytically derived flow fields

4.1 Equations of motion for a Newtonian vis-

cous fluid

The equations of motion for a fluid are given by a combination of a conservation
of mass, or continuity equation, and a conservation of momentum equation. If an
assumption of incompressibility is used, together with that of constant density,

then the conservation of mass equation can be written as

81}1 + 61)2 + 61)3
8:1:1 al‘g 81173

=V-v=0 (4.1)

where w1, z9,x3 represent the Cartesian axes, vy, vs,v3 are the components of
velocity along the x1, x5 and x3 directions, v is the velocity components in vector

form and V- is known as the divergence operator.

The momentum equation states that for an elementary volume of fluid, the prod-

uct of its mass and acceleration equals the total force acting upon it, that is

v
pE:pF—FV-T (4.2)
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where the ‘body force’, F is the force per unit mass acting on the body of the
fluid and the ‘stress tensor’, 7 is a tensor quantity whose elements, 7;;, represent
the force per unit area acting in the j direction on a surface with its normal in

the ¢ direction. The term V - 7 is used in the sense that

. am 87’i2 aTig
(V1) = PR el (4.3)

A Newtonian viscous fluid is defined such that

ov;, 0y
¢ J

where i is the coefficient of absolute viscosity of the fluid. It is a quantity
describing the amount of random molecular motion within the fluid, (and as such
is a property of the fluid). The term d;; is the Kronecker delta which takes the
value zero unless ¢ = j in which case it is unity!. If we assume the absolute
viscosity to be constant then the equation of motion for a component of velocity

can be written as

Dvi . o ap + i an n (%i
e = P an, M ow; \ 0w T g
.D’Ui o ap a 81}] aZ’Ui
T e (a—x]) +“a—gc§ (4.5)

where it is assumed the body force is given by F = (g1, g2, g3). A repeated j suffix

denotes summation over the three dimensions. Thus

0* 0? 0*  0*

= 4t
ox%  Ox}  Oxy  0x3

=V?

where V? is known as the Laplacian operator. Also

'Here, the stress tensor is symmetric, that is 7;; = 7j;.
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But for an incompressible fluid V - v = 0 so that Equation (4.5) becomes

Du; op 0%v;
=pg; — — 4.6
Ppr =9 oz G O3 (46)
and the momentum equation for all three dimensions becomes
D
pF‘tf = pF — Vp + pViv (4.7)

Equation (4.7) is a form of what are known as the Navier-Stokes equations, this
particular form assuming constant viscosity and density. If the only body force
comes from a uniform gravitational force, such that F = (0,0, g) Equation (4.7)
can be simplified by defining a modified pressure P = p — pgz such that the

equation becomes

Dv 1
— = _2VP+uvV? 4.8
D1 p +vViv (4.8)

where v is known as the kinematic viscosity and is defined as

SERS

(4.9)
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4.1.1 Transfer of momentum and shear stresses

If we take the x component of the Navier-Stokes momentum equations we can

write it as follows

DV, _Op N 0%V, N 0*V, N 0*V,
Por = PR 9: TH | aa2 oy? 02?2
DV, dp 0 oV, o ( oV, o ([ 0V,
e = P o + ox (M ox ) * oy ('u oy ) + 0z (M 0z ) (4.10)

The quantities 0V, /0y and udV,/0z are known as shear stresses® as they gen-
erate forces parallel to the direction of flow being considered due to the gradient,
or shear, of the velocity in the second dimension. Shear stresses and the resultant
shearing of flow fields are important in relation to bottom friction and the verti-
cal gradient in horizontal velocity such friction creates in combination with the
viscosity of the fluid. Sheared flow is one mechanism for the dispersion of passive
tracers. The forces occur because of the transfer of momentum between planes
parallel to the direction of motion, due to molecular diffusion. Shear stresses
are denoted using the stress tensor terminology 7;; where the second subscript
denotes the direction of the force while the first subscript denotes the direction

of the momentum flux. So, for example

(4.11)

4.2 Turbulent flow

In turbulent flow the velocity vector is considered to be comprised of a mean
component denoted by an over-score and a fluctuating component denoted by a

prime, (Nunn 1989), such that the instantaneous velocity vector is given by

2110V, /0w is a normal stress.
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v=v+Vv (4.12)

Importantly, the mean of the fluctuating part of any individual velocity compo-
nent, (if taken over a sufficiently long time), is zero, but the mean of the product

of any two fluctuating velocity components is not zero.

4.2.1 Equations of motion for turbulent flow

To derive these equations the substantive derivative is first cast in a different

form as follows

Dvi_%+v_8vi sz+ 0 (vv) v@v]
Dt ot  ox; ot Ox; " Oy

(4.13)

For an incompressible fluid the last term becomes zero such that the substantive

derivative becomes

Dv; — 0v; L9 0
Dt — Ot 0z

-(vivy) (4.14)

Writing the Navier-Stokes equations for the instantaneous velocity components

gives

{gt(vl + ;) + %[(m + ;) (75 + v})]} = —aii (P+ P+ uV3(0; +v]) (4.15)

This may be expanded and rearranged to show how the new Navier-Stokes equa-
tions incorporate those for the mean motion and those for the fluctuations, as

follows

07; 0 (= 815 -
Plar T %j(%’“j)] — ! O SV (4.16)
+p |5 + 5 (@] + 0 + o)) —9 4 V]
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The momentum equations are expected to govern the motion of the fluid on an
average basis as well as instantaneously (Nunn 1989), and taking a time average
of Equation (4.16) leaves only one surviving turbulence quantity, vv’ % such that

the equation becomes

avl %) —— 1 _ oP o
N + 5 o, (005 4 vivj) | = o + puViy; (4.17)

As far as the acceleration of the mean flow is concerned the turbulent fluctuation
quantities can be considered additional shear and normal stress terms, which is

illustrated by an alternative form of the above result

Dr; oP o o —
= _ Vi, — — (v 4.1
p Dt axl + /’L Ul ax] (Ulv ) ( 8)

Equations (4.18) are known as the Reynolds equations and the last term on the
right hand side represents the Reynolds stresses. In all but virtually laminar
flows these Reynolds stresses are orders of magnitude greater than those due to
molecular diffusion. A strategic simplification to working with turbulent flow can
be made by considering the modelling of Reynolds stresses to be analogous to
molecular viscosity and then ignoring the latter on the basis of its much smaller
effect. To show this the Reynolds equation for the x direction can be considered

and written in the following form

DV, oP 0 (’ﬂ/ —\ 0 Ve, ——\ 0 87
P =5t AL Rl U e A AT B BT pVIV]
oy Y Y] 0z

Dt Oxr Ox 8 0 0z
(4.19)
It is now possible to define eddy viscosity such that, for example
_ oV,
VIVI=—-N 4.20
VIV = N (4.20)

and the appropriate shear stress term from Equation (4.19) can be written
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) ) (Mavw avwl (21)

— 0
= (Tye) = — VIV | = = N

If it is then argued that the stresses due to molecular viscosity can be ignored

this leads to Equation (4.19) becoming

DV, oP 0 (. 9V,\ O (,0V;\ 0 (. 0V,
=——+—|N — | N — (N 4.22
th 8x+8x< 8x>+8y< 8y>+82< 8z> ( )

where N is known as the coefficient of eddy viscosity. In practice N is not

a constant but varies with the magnitude of the velocity vector and is not a
scalar because the turbulent fluctuations upon which its definition is based are
directional and likely to vary throughout the flow. If these two assumptions are
made however, then the momentum equations for turbulent flow become exactly
equivalent to the Navier-Stokes equations but with N replacing p. In practise the
coefficient is split into three component parts, V,, IV, and N,. Numerical schemes,
such as the Princeton Ocean Model, (POM), described in chapter 5 do calculate
time varying values of these coefficients based on theories involving the gradients
of the time averaged velocity components. In subsequent equations dealing with
turbulent flows the mean nature of the time averaged terms is considered implicit

and the over-line is omitted.

If considering passive tracers within the flow, the description of the concentration
of tracer over time and space can be performed by use of an equation analogous
to the momentum equation. Diffusive movement of tracers by turbulence has
been found from experiment to be similar but not equivalent to the spreading
of momentum in flows of near uniform density. Therefore new coefficients are
defined, (K, K, and K,), which are known as the coefficients of eddy diffusion.
The ratio of eddy viscosity coefficient to eddy diffusion coefficient is known as
the Prandtl number. Its value is often taken to be 1, although the value can
move well away from unity in the presence of density stratification, as described
below. In the analytical population models and discrete space-time simulations

the ‘diffusion’ coefficients used represent a potential mixture of fluid flow and
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organismal induced diffusive movement. They might also be representing disper-
sion rather than pure diffusion. They are therefore given the separate notation

of &, B,, ..

In general the Navier-Stokes equations, in laminar or turbulent form, can only
be solved analytically for special cases. Otherwise numerical methods must be
employed. For initial investigations of persistence in advective environments,
however, valuable insights can be gained using analytic flow regimes derived from
strategic simplifications to the problem. These are considered after special focus

is given to the vertical component of turbulence.

4.3 Vertical turbulent eddy viscosity and diffu-

sion

It will be seen in later sections and chapters that the value of the vertical com-
ponent of turbulent eddy viscosity is an important consideration in relation to
producing Lagrangian residual movements from the analytic treatment of tidal
flows presented in section 4.5. If it is considered that an animal has a random
movement not very different to that for a passive tracer, that is a movement
almost solely determined by water movement, then the value of vertical eddy
diffusivity is very significant for analytic population persistence results in two di-
mensional river flow. Finally, when producing a transition matrix for the discrete
time population model from solutions to the fluid dynamic equations and parti-
cle tracking, diffusion must be imposed at each tracking timestep to prevent all
tracks following the same path. The vertical eddy diffusivity values that would
be expected from the type of flow being considered provide an obvious guide to

the vertical diffusion coefficient, ®,, to be applied in the tracking program.

For a two dimensional flow, referring to Equation (4.20), the vertical eddy vis-

cosity IV, is related to the shear stress 7,, by
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—_ dVy
Tow = PVEVI = N, dz

(4.23)

For steady flows, (rivers), values for the vertical component of eddy viscosity
can be deduced after establishing a second relationship between the shear stress
and velocity profile. In classical hydraulic theory this is done by making use of
Prandtl’s mixing length concept, which describes the average distance travelled
by a block of fluid in turbulent flow before it suddenly acquires the velocity of
the flow at a different location, (Smith 1975). This theory suggests the following

relationship between the shear stress and the velocity gradient

dV,
dz

dV,
dz

T = K'pl? (4.24)

where [ is the mixing length and K’ is a constant of proportionality. If it is

assumed that

1. Near the bed the shear stress is constant and equal to the stress on the bed

itself. That is 7,, = T,z, = constant.

2. The scale of the turbulence is proportional to the distance from the bed.

That is (K')'/?] oc z where z represents distance from the bed.

then (K')'/?[ can be replaced by kz where  is a constant known as von Karman'’s
constant. Experimental determinations have concluded that the value of k is
about 0.40 or 0.41. Using these assumptions and a value of von Karman constant

of 0.4 Equation (4.24) can be re-cast as

Toro 1 dz
dV, = —— 4.25
p 04 2 ( )

The quantity \/7,4,/p has the dimensions of velocity and is known as the friction

or shear velocity and is given the symbol U or U,. Solving Equation (4.25) gives
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TZCL’O <
V, =25 In (= 4.26
p " <C> (4.26)

The constant of integration, C', depends on the ratio between the height of rough-
ness elements at the bed and the thickness of a laminar sub-layer which is present
in all turbulent flows. For natural rivers and estuaries the roughness elements al-
most always project beyond the sub-layer, (dynamically rough flow), and for such
flow C' is dependent only on the height of roughness projections, r,. The rela-
tionship is found from experiment to be C' = r,/30 such that Equation (4.26)

becomes

V, = 250, In <%> (4.27)

Tp

Some oceanographic calculations, including those represented within the Prince-

ton Ocean Model, (POM), express Equation (4.26) in the form

V, = 2,50, In <i> (4.28)

<o

where z, is known as the roughness parameter. If dynamically rough conditions
can be assumed for the flow then z, is actually related to the size of roughness

elements® in the bed by z, = C' = r,/30.

Maintaining the assumption that shear stress is constant up the water column,
then given that U, = \/7,40/p = 0.42(dV,/dz) and using Equation (4.23), (7,4, =
®,(dV,/dz)), it can be seen that

3For the relationships z, = C = ,/30 and C = r,/30, r, only represents the actual physical

height of roughness projections if those roughness projections are distributed in a uniform
manner, (Smith 1975). If the spread of projections is uneven, or the grains vary in size, then an
‘equivalent roughness height’ is employed. There is, however, no definite correlation between

grain size and equivalent roughness height, (Chanson 1999, page 235)
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N, = p0.4U,z (4.29)

if V, is to represent the turbulent equivalent to dynamic viscosity or

n, = 0.4U,z (4.30)

if n, is to represent the turbulent equivalent to kinematic viscosity. In other
words eddy viscosity increases linearly with distance above the bed, regardless
of velocity profile. For a gradient current, such as rivers, where flow is due to

gravity alone, U, can be calculated from the relation

U.=+/gHS (4.31)

where g is acceleration due to gravity, H the total depth of the water and S the
slope of the water surface. Using this result the vertically averaged value of the

eddy viscosity coefficient is found to be

iy = %U*H ~ 0.0667U, H (4.32)

Laboratory studies of steady flow have found that the vertical eddy viscosity does
not increase linearly with depth but has a magnitude which is roughly parabolic
in shape with a maximum at approximately half depth and values of zero at
bed and surface, (McDowell and O’Connor 1977, page 65). An improvement on
Equation (4.30) that allows reproduction of this shape is given by

n, = 0.4U,z\/1 — z/H (4.33)

Equation (4.33) is achieved by assuming the distribution of shear stress is linear

over the depth of the flow rather than constant, while retaining a logarithmic
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velocity profile as described by Equation (4.27) or (4.28).

The additional complication in constant-density tidal flow, (as found when trying
to determine longitudinal dispersion), is the unsteady nature of the flow. Tur-
bulence will be caused predominantly by bottom shear stress such that it could
be expected possible to utilise Equation (4.30) or (4.33) but U, will vary from a
maximum at maximum flood and ebb to virtually zero at slack tide. Engineering
studies have often used the average value of U, over a tidal cycle, (Fischer, List,

Koh, Imberger, and Brooks 1979).

In general, in shear flows the vertically averaged horizontal velocity, U, is found
a distance 0.4H from the bed. Equation (4.27) or (4.28) can therefore be used
to determine a relation between the shear velocity and the mean velocity for a
given flow. As shear velocity is a difficult quantity to measure a formula using

the vertical mean velocity in its place was suggested by Bowden (1967), namely

n, = 0.0025HT (4.34)

at the mid depth of the vertical cross section. If the tidal average value for U
is used then the tidally averaged value of n, at a horizontal location has been

derived using the vertical average of the Eulerian residual velocity at that point.

The value of the vertical eddy viscosity and diffusivity can be considered equal for
a homogeneous estuary. Lewis (1987) considers that in general a value for these
quantities in such estuaries is of the order 0.01m?s t. McDowell and O’Connor
(1977) quote a range for such coefficients of 0.01 — 0.1m?s™! for maximum in-

stantaneous values and for tidally averaged values of 0.001 — 0.01m?s~!.

The picture is complicated further when density stratification is taken into ac-
count. A stable vertical density gradient can reduce turbulent exchange, or, if it
is sufficiently strong, extinguish turbulence altogether. Any mixing now must be
caused by velocity shear at the pycnocline, (Dyer 1973). The Richardson num-

ber, Ri, is a comparison of the stabilising forces of the density gradient to the

68



destabilising influences of velocity shear. It is defined as

. gadp , [OU 2

For Ri > 0 stratification is stable, for R¢ = 0 it is neutral such that there is no
density gradient in the vertical and R:i < 0 signals instability, such that denser
water over-lies lighter water and gravitational forces will exist to overturn this
phenomenon, thereby increasing turbulence. The point at which stratification is
sufficient to change turbulent flow to laminar flow is generally taken to occur at
Ri = 0.25 for uniform flow. Flow is non-uniform in tidal flows, however, and
the transition is believed to occur at higher R:. Field observations in the Mersey
Narrows led to an empirical relationship between the vertical eddy viscosity in
homogeneous conditions, N, and that in the presence of density stratification, NV,

namely

(N) = (N,) (1 + aRi)" (4.36)

where the constants a, b were found to be 10 and —1/2 respectively, (McDowell
and O’Connor 1977). The <> brackets indicate a tidally averaged value. Equa-
tion (4.36) indicates a reduction in momentum transfer of 60% for Ri = 0.5 and
86% for Ri = 5. Different quantities are used to represent the coefficients of
eddy viscosity and eddy diffusivity of scalars partly because field work and lab-
oratory experiments have shown that stratification reduces the vertical transfer
of salt faster than momentum. Equation (4.36) can be used for eddy diffusivity
of salt, K, as well as momentum but the constants a, b change to 3.33 and —3/2

respectively. An Ri value of five leads to a 74 fold reduction in salt diffusion.

The value of the Richardson number also changes continuously in an estuary.
When tidal currents are at their maximum, conditions might be roughly neutral
in their surface and bottom layers while the halocline has stable conditions. The

Columbia River has Ri values reaching 5 at mid-depth. At those points in time
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when tidal currents are diminished, however, it is possible for the whole water

column to be stable, (Dyer 1973).

Fischer, List, Koh, Imberger, and Brooks (1979) suggest that for a stratified
estuary the value of K can range between 1/10 and 1/100 the value of K, during
a tidal cycle.

4.4 ‘Steady’ turbulent flow: Rivers

Analytic expressions for river flow are possible if the mean motion of the water
is considered. The nature of the fluid flow is characterised by two ratios, the
Reynolds number and the Froude number. The Reynolds number, R, represents

the ratio of inertial forces to viscous forces and is given by

 VRH

v

R, (4.37)

where Vi represents the vertically averaged river velocity, H is the depth of the
river and v is kinematic viscosity. As inertial forces dominate viscous forces
flow changes from laminar to increasingly turbulent. For wide channels, flow is
definitely laminar for R, < 500 and turbulent for R, > 2000, with a transitionary
band between, (Smith 1975). The Froude number, F}, is defined by

F, = (4.38)

where ¢ is the acceleration due to gravity. The Froude number represents the
ratio of inertial forces to gravitational forces. If F,. < 1 flow is designated as sub-
critical or tranquil flow. Where F, = 1 flow is critical and when F, > 1 flow is

super-critical?. Generally, flow in streams and rivers under non-flood conditions

4Super-critical flow is also known as shooting or streaming flow, (Davis and Barmuta 1989)
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are either sub-critical-turbulent or super-critical-turbulent, (Davis and Barmuta

1989).

4.4.1 1D flow: well mixed river

The most basic representation of a steady flow with a significant mean component
in only one direction, the x direction say, is to state that V,, = constant. Although
it appears a gross over-simplification this representation of fluid flow is reasonable

when considering highly energetic shallow streams and rivers.

When the depth of the water body is equal to or less than three times the height
of the substrate roughness, or rocks and/or boulders extend all the way through
the flow, local flow is very dependent on individual substrate elements and very
difficult to determine even numerically. Such flows are often characterised by
super-critical ‘white water’ common in shallow riffles, (Davis and Barmuta 1989).
Such flows, however, still possess a mean motion which, because of the vigorous
momentum mixing caused by the high turbulence, is more or less uniform over

the depth.

4.4.2 2D flow: weakly mixed river

In deeper and more tranquil rivers, (those in the sub-critical regime), turbulence
is not enough to cause an approximately uniform vertical profile of horizontal
momentum. To approximate the flow of such systems it is therefore important
to account for the vertical velocity profile caused by viscous forces preventing
movement at the substrate and, (except in a laminar boundary layer), turbulent
diffusion mixing momentum between different water depths. A logarithmic profile
can be established through the method of solving for V, from the equation for
bottom shear stress as detailed in section 4.3. This, however, requires stipulation
of the roughness of the bed in some form. An alternative approach is to consider

a simplified form of the momentum equation.
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If the horizontal component of a steady two dimensional, (x,z), flow is considered
uniform in the x direction and all non-linear terms of the substantive derivative

are ignored Equation (4.22) reduces to

1P _ N, 0,
pOx  p 022

(4.39)

For rivers the pressure gradient is a result of the slope of the free surface, ), such

that Equation (4.39) becomes

0 02V, N,
) — (4.40)

=n n, =
Appendix B shows that if a no slip condition is applied at the bottom then the
horizontal velocity at any depth is given by

512

V() = Vg (1 - {ﬁ} ) (4.41)
where Vg is the velocity at the river surface, H is the river depth and z the
distance below the free surface. Determining the vertically averaged velocity, VR,
reveals it is exactly two thirds the value at the surface, such that Equation (4.41)

can also be written as

v, = % (1 - [%D (4.42)

Extensive measurement in rivers has shown the mean velocity, Vg to reside at a
distance approximately 0.4H from the bed, (Smith 1975, page 34). To check this
representation of the horizontal velocity we can set V, = V in Equation (4.42)
and solve for z. This gives z = H\/m such that Vi occurs at a distance from
the bed of H(1 —4/1/3) ~ 0.4226H.
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4.5 Tidal estuary

In general, the time and space dependent flow-fields which result from flows expe-
riencing tidal forcing can only be determined numerically. However, Chen, Shaw,
and Wolcott (1997) developed an analytic solution for a strategically simplified
two-dimensional, (x,z), representation of a tidally driven system. This solution
was adapted by Speirs and Gurney (2001) to include a river outflow component

and was used to model persistence of passive organisms.

4.5.1 Linearised momentum equation

The model is specified by a linearised version of the equation for the conservation
of momentum (Equation 4.22), for the x-component of momentum. It assumes
turbulent flow, adopting a constant coefficient of eddy viscosity in the place of
molecular viscosity. The only factor affecting the pressure gradient is considered

to be the horizontal variation in free surface elevation, n, such that

Lop_ 2

~VP = 4.43
pV 95 (4.43)
The momentum equation therefore becomes
oV, an 0%V, 0%V,
= —g— - 4.44
ot e ( 02?2 + Ox? ( )

where n, is the constant coefficient of turbulent eddy viscosity. It is then further
assumed that, because V, changes much more slowly with = than with z, that

the term 9%V, /0z? can be omitted, giving a final momentum equation of

ov,  op O,
ot = —ga—x + ng 922 (445)

The continuity equation is defined as
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oV, N oV,
o0x 0z

=0 (4.46)

The vertical velocity at the benthos is zero at all times, and so the rate of change
of the local surface elevation, dn/0t = V,(n) can be gained by integrating 0V, /0z

up the water column. This gives

on U 8V " BV
‘i - _ 4.4
ot /7H Bz /H Bx (4.47)

where H is the depth below the mean free surface. Equation (4.47) uses a vertical
axis with the origin at the mean free surface and defined positive skyward, and
a vertical velocity defined positive skyward, as is the convention in hydraulics.
Speirs and Gurney (2001) reversed the positive direction in the vertical, (while

maintaining the same origin), such that the equation for surface elevation becomes

on H 9V,
N -n ox

(4.48)

The analytic solution for the two components of velocity are achieved by assuming
the variation in surface elevation is not significant in comparison to the mean

depth of the system. Then n << H, and Equation (4.48) becomes®

@_ H 9V, N __Han
ot o Ox N ozr

(4.49)

Boundary conditions for the Speirs and Gurney (2001) version of the model spec-
ify that at the landward end of the system, (x=0), the only velocity present is
that from the river. The seaward end, (x=L) contains a linear combination of

this river flow and a sinusoidal tidal component, so that

t
Vx(O, 0, t) = VR, Vx(L, 0, t) = VR + VT COS 277'? \% (450)

®This result applies whether the assumption n << H is applied to Equation (4.47) or (4.48).
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where 1" is the tidal period.

To allow inclusion of the river flow, a no slip boundary condition was set at
the bottom of the domain by Speirs and Gurney (2001)° and a zero wind-stress

condition applies at the mean free surface such that

oV,
0z

=0, Ve(z, Hit) =0Vt (4.51)

z=0

Given these boundary conditions solutions to Equations (4.45) and (4.49) are

212 sin kx cosmz ot
Ve = Vi (1 - [E] ) +Vr (sin kL) R { (1  cos mH) b (ZQWT>} (4.52)

and

V=1, (kcoska:) %{[exp <22W%>} [H— - sinmz — sian” (4.53)

sin kL mcosmH

(4.54)

Intermediate working is contained in appendix B.

The work of this thesis makes use of Equations (4.52) and (4.53) in order to
provide the velocities for a particle tracking algorithm, as described in section
3.3.1. This in turn allows determination of the Lagrangian residual movement
over a tidal cycle. When considering persistence of planktonic organisms, flows

of most interest are those that, at depth, generate landward residual movement.

6Chen, Shaw, and Wolcott (1997) used a linear drag law for the bottom boundary condition.
If river flow was to be included, however, then to maintain a linear momentum equation, a no

slip condition must be used.
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When tracking was applied to the solutions generated from Equations (4.52) and
(4.53) it was found that such landward ‘flows’ only prove significant for tidal flows
that, in turn, generate variations in surface elevation that can not be considered

insignificant compared to the mean depth of the system.

When the free surface rises above its mean value, both horizontal and vertical
velocities for any point a given distance from the benthos will be calculated as if
that point were a greater proportion of the distance toward the free surface than
is actually the case. When the free surface falls below its mean value the situation
is reversed. For a given volume of flow, the vertically averaged horizontal velocity
will decrease for a rising free surface and increase for one which is falling. Near the
benthos these effects are expected to be dominated by the bottom drag. Because
of the no slip condition at the bottom and the drag, (caused by the eddy viscosity),
horizontal velocities near the benthos are small. The bottom drag also causes the
velocity gradient, 0V, /0z to be greatest near the bottom boundary. This gradient
becomes small a relatively short distance from the boundary, and the shape of the
velocity gradient curve would only be modestly affected by variations in surface
elevation. Also, the effective and actual positions of a particle relative to the
benthos stay the same. Further up the water column the bottom drag effect

reduces and then stops.

The vertical velocity at any depth, Equation (4.53), is obtained by differenti-
ating Equation (4.52) and then integrating up to the required depth. Artifi-
cially high landward flows - during periods when the surface elevation should be
above its mean level - lead to greater than desired absolute values of 0V, /0,
(as V;(0,m,t) = Vi Vt), and increased values of vertical velocity. When sur-
face elevation is below its mean, seaward flows lower than the true value lead to

suppressed vertical velocities.

There is also a discrepancy between a particle tracked from an initial position
at or close to the water surface and the value of the free surface as calculated

from Equation (4.49). A particle which moves above the mean free surface level
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receives a vertical velocity calculated by integrating 0V, /0x up to its given alti-
tude. The movement of the surface elevation, dn/0t, is only calculated using an
integration up to z = 0. The movement of the particle becomes greater than that
of the free surface and if both quantities are rising, the particle will rise above the
free surface. In the work of Speirs and Gurney (2001) only deterministic tracks
were performed (ignoring the issue of the free boundary) and the resultant resid-
ual movements used as the basis for determining parameters for displaced tent
distributions, which are described in section 3.3.1. Using a population model with
a time step equal to the tidal period, if the free surface was assumed at its mean
level at t = 0, it was only necessary to ensure particles were beneath the mean
free surface at the end of the tracking run. It was anticipated that incorporating
animal behaviour into a tidal system could render use of displaced tents imprac-
ticable or impossible. The alternative is to incorporate the random motions of
animals into the tracking algorithm. Such random movement can place particles
over boundaries in a non-physical manner at each tracking timestep. As a con-
sequence checking particle position against the free boundary at each timestep
must be performed and it becomes more important to gain a true representation

of the variation of the free surface with time.

4.5.2 Sigma co-ordinates

A modification to this analytic approach uses a form of sigma co-ordinate in the
vertical, adapting the true sigma co-ordinate system developed for the Princeton
Ocean Model, (Blumberg and Mellor 1987). Blumberg and Mellor (1987) define
the instantaneous depth by

D(z,t) = H(z) + n(x, 1) (4.55)

They then define a new depth variable
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(4.56)

This depth variable always has a value of zero at the free surface (z = n) and -1
at the bottom (z = —H). For the work in this thesis a new depth measure, z, is

defined as follows

2z = —0H (4.57)

This new depth variable always has a value of zero at the free surface (2 = n)
and H at the bottom (2 = —H). To be consistent with the work of Speirs and
Gurney (2001), z, is defined positive toward the benthos.

The defining equations of the model, (Equations 4.45 and 4.46) become

oV, on H? 0%V,
= gl 4.
ot = Yoz T Doz (4.58)
and
oV, HOJIV,
- — 4.
ox + D 0z, 0 (4.59)

for the continuity equation. The changes required for boundary condition equa-
tions are contained in Appendix C. This appendix also contains details of how
this new approach allows a new, and more self consistent, means of calculating

the rate of change of surface elevation with time.

Use of Existing Solutions for V, and V,

The expression (H?/D?)n, could be considered to represent a coefficient of eddy
viscosity that varies as overall water depth varies. In other words a new term

®p(x,t) could be substituted for (H?/D?)n,. Attempting to take account of the
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new time and space dependence of the eddy viscosity term, however, leads to
a second order differential equation in z, for the depth dependent part of the
horizontal velocity, (as was the case for the altitude version of the model), but
which now includes the variation of surface elevation with time, as shown in
Appendix C. Rather than attempting to solve this more complicated equation
the existing analytic solutions for V, and V, were adopted, but with vertical
co-ordinate of the particle taken as the value in z,. The disadvantage to this

approach is outlined below.

In contrast to the case using a conventional altitude measure in the vertical, when
the free surface rises or falls from its mean value, a particle a given distance from
the benthos maintains the proportions of its distance above the benthos and its
distance below the free surface. When use of Equation (4.52) is made however,
this has the effect of determining the velocity as if the particle were closer to the
benthos than is actually the case for a raised free surface and as if it is further
from the benthos for a free surface below the mean level. Because of the steep
velocity gradient near the benthos, particles in the shear flow region of the domain
gain a higher than desired horizontal velocity as the free surface falls and a lower

than desired horizontal velocity as the free surface rises.

Returning to Equation (4.58), this replaces n, by g—znx, which implies that when
the free surface rises the eddy viscosity term reduces and vice versa. At the
same time when the free surface is above its mean z, > z in terms of the distance

represented by a single unit. For a velocity gradient that in physical terms remains

gzﬂj > 66‘2” by a factor D/H. The effect is again reversed

the same this implies

when the free surface falls below the mean level. The shear stress restricting

horizontal velocity at any depth in the model is given by %nmg‘f. Thus the

two effects of the change of co-ordinate do not affect this force acting on a fluid

element. If the factor % is not included however, for a free surface above the

mean the shear stress will be at an elevated value and given the fact V,, is zero

at the benthos this causes the V, value to be reduced.
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4.5.3 Comparison of analytic solutions to those from a

fluid dynamics package

To decide whether the ‘altitude’ or ‘sigma’ co-ordinate version of the analytic
solution following Chen, Shaw, and Wolcott (1997) provided the better approxi-
mate flow fields, residual flows produced by each version were compared to output
gained from a fluid dynamics package, the Princeton Ocean Model, (POM), which
is described in the next chapter. In its full form the POM package incorporates
temperature and salinity as additional state variables and the effects of the varia-
tion of these quantities on the momentum equations. For the comparisons of this
section it was possible to disable these terms within the momentum equations. In
addition, the non-linear momentum terms could be eliminated and the coefficient
of vertical eddy viscosity could be made a fixed value, rather than one determined
by a turbulence closure scheme. Unlike the analytic solution horizontal diffusion
had to be retained in order to prevent numerical instability and high frequency
waves persisting in the flow fields”. The form of the momentum equation in the x

direction, in Cartesian co-ordinates, as used by POM for these comparisons was

oVy on 0*V,
R R F, 4.60
ot~ Jor ez T (4.60)
where F, represents the horizontal diffusion and is given by F, = 2[2A4,,9%]

and where A); is the coefficient of horizontal kinematic eddy viscosity.

To remove as many confounding effects as possible, initial comparison was made
for flows with no river component. Fig. 4.1 shows Lagrangian residual ”veloci-
ties” obtained when Vr = 0.3. Plot a) shows the result using flow fields generated
by the Chen solution and a Cartesian vertical coordinate while plot b) gives the
result from the modified Chen solution with sigma vertical coordinate used when

calculating horizontal velocities. Plots ¢) and d) show residual velocities derived

"In the analytic solution it is possible to pick the trial solution such that only the fundamental

mode is represented.
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using flow fields output from POM. To drive the POM model an open boundary
condition has to be specified at the seaward end of the domain. For the purposes
of this comparison a velocity ‘inflow’ condition was used with the velocities for
each boundary cell being specified by the analytic solution at that point in space
and time. Because POM utilises a time splitting technique,® values for vertically
averaged velocity must be supplied as well as those for individual depths. For
plot ¢) the vertically averaged velocity was determined by integrating the ana-
lytic solution over the latest depth determined by the POM model. Velocities
for separate cells were determined after converting the current sigma value at
which the cell velocity is defined to an absolute altitude. For plot d) the sigma
implementation to the analytic solution was imposed at the boundary. Vertically
averaged velocity was determined ignoring variation in sea surface elevation and
the locations for defining cell velocities were converted from full sigma coordinates

to a scale running between zero at the free surface and H at the bottom.

The resulting residual velocities using POM flows can be seen to be a much
closer qualitative match to the results obtained using an analytic solution with
simple Cartesian vertical coordinate. This is true for POM flows using either
type of boundary condition forcing. Exact agreement was never expected, firstly
because of the need to retain horizontal diffusion terms in the POM solution
and secondly because the POM model does not use a no slip condition at the
bottom boundary but, (as detailed in the following chapter) a version of the 'law
of the wall’ together with a bottom roughness parameter to determine the velocity

profile near the bottom.

Once a domain is determined for a POM simulation velocities outside of that
domain are undefined. To ensure the simulations for these comparisons were
being driven by the correct velocities at the correct location, the open boundary of

the POM simulation was placed at the same location as the absorbing boundary

8The model performs calculations to determine the vertically averaged and density inde-
pendent aspect of the flow separately and then feeds the results of these calculations to code

performing the full baroclinic calculations at longer time intervals.
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Figure 4.1: Residual velocity plots derived using flow fields from a) Solution after
Chen, Shaw and Wolcott (1997), using Cartesian vertical coordinate; b) Solution
after Chen, Shaw and Wolcott (1997), using o wvertical coordinate; ¢) Princeton
Ocean Model, (POM), with boundary condition supplied by ‘Chen’ velocities; d)
POM,; with boundary condition supplied by semi-sigma ‘Chen’ velocities. Vi =
0.3, Vi = 0.0.

of the theoretical domain. This meant that residual velocities could only be
determined by starting particle tracks from the low tide point in the tidal cycle
and consequently residual velocities can only be determined for starting positions
up to the approximate low water mark. Particle tracking using the analytic
solutions are not subject to these restrictions as velocities remain defined beyond
the absorbing boundary. For consistency, residual velocity tracks were defined
only to low water mark in all cases. More significantly, it can be argued that
a logical inconsistency occurs if the region beyond the seaward boundary of the
domain is considered absorbing at instances of completed tidal cycles but not

during a tidal cycle.

The true objective in this thesis is to consider the possibilities of persistence when
there exists in the domain a net flow in one direction. It was therefore important
to be certain the Cartesian form of the analytic solution still represented the
better of the analytic flow fields once river flow had been introduced. Fig. 4.2
shows residual velocities obtained when V; = 0.3 and Vi = 0.005. The analytic
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Figure 4.2: Residual velocity plots derived using flow fields from a) Solution after
Chen, Shaw and Wolcott (1997), using Cartesian vertical coordinate; b) Solution
after Chen, Shaw and Wolcott (1997), using o wvertical coordinate; ¢) Princeton
Ocean Model, (POM), with boundary condition supplied by ‘Chen’ velocities; d)
POM,; with boundary condition supplied by semi-sigma ‘Chen’ velocities. Vi =
0.3, Vi = 0.005.

solution with Cartesian vertical coordinate can still be seen to be the best match

to either of the POM implementations.

The river flow open boundary conditions must be imposed at each end of the
POM domain. The analytic solution determines a fixed vertical profile of river
velocity and assumes no variation in water height whereas the height at each open
boundary varies. In these simulations the proportions of velocities assigned to
cells remained constant but their absolute value was allowed to change such that
a constant volume of water was input and extracted at river and seaward ends

respectively.

4.5.4 Comparison with full ‘primitive equations’ solution

To obtain the analytic flow solutions a number of simplifying assumptions had

to be made. As described in the next chapter, the assumption that horizontal
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diffusive terms are unimportant can be justified via scaling arguments and are
used in simplifying numerical oceanographic flow models such as POM. It was
always expected that density variations would significantly alter lows. The main
source of density variation, especially in shallow water, is due to salinity variation.
Flows derived from the analytic solution could be considered as representing those
from tidal rivers, or a very well mixed portion of an estuary in which the vertical

profile of salinity is almost constant.

The reduction of the momentum equation to a linear form and the stipulation of a
constant vertical eddy viscosity coefficient, however, is only performed because of
the difficulty in solving non-linear differential equations. To determine the differ-
ence in residual velocity caused by introduction of the non-linear terms residual
velocities arising from flow with Vp = 0.3 and Vi = 0.005 was determined using
flows from a POM run incorporating these components. As such the momentum

equation, (in the x direction), now being solved by the POM model becomes

v, oV, . v, o 92V,

ot Ve ozr Ve 0z =95, T 7al(?) 022

- +F, (4.61)

As detailed in chapter 5 oceanographic packages such as POM still retain a few
key simplifying assumptions. The fluid dynamics equations containing these as-

sumptions are known as the ‘primitive equations’.

The vertical dependence of the vertical eddy viscosity coefficient is determined by
a turbulence closure algorithm within the POM package as outlined in the next
chapter. To avoid over prescription of the open boundary condition, a sinusoidal
surface elevation is prescribed. The vertically averaged horizontal velocities are
then calculated from the continuity equation but the depth dependent horizontal
velocities are allowed to be determined from a radiation condition, (given that
their average must be consistent with the vertically averaged value). For a given
value of Vi and V5, the parameters specifying the surface elevation in the POM
model were taken from the results for surface elevation of the semi-sigma analytic

solution. Fig. 4.3 shows the comparison to residual velocities derived from the
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Figure 4.3: Residual velocity plots derived using flow fields from a) Solution after
Chen, Shaw and Wolcott (1997), using Cartesian vertical coordinate, Vp = 0.3,
Vr = 0.005; b) POM, with inclusion of non-linear terms in momentum equa-
tion and coefficient of vertical eddy viscosity calculated from package’s turbulence
closure scheme. Boundary conditions supplied by specified river velocities at land-
ward end and surface elevation at seaward end.

Cartesian analytic solution for V = 0.3, Vi = 0.005, (the same result as displayed
in Fig. 4.2, frame a)).

From Fig. 4.3 it can be seen the compensatory flow seen in the ‘Chen’ solution
is absent once the non-linear terms are introduced. After also performing com-
parisons where only the non-linear components of the advection were introduced,
the essential difference appears to be due to the structure and magnitude of the

coefficient of vertical eddy viscosity.

Chen, Shaw, and Wolcott (1997) used a drag law condition in the form

o oV,
Y 0z

= 1Va(bot) = To (4.62)

where r is the friction constant and Ve the velocity at the bottom. A nor-
malised parameter for bottom friction was then defined as ¢ = r/(wH) where

w = 27/T and T is the tidal period. A value of ¢ = 0.5 implies 7 ~ 3 x 10" *ms !
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for the depth used in their simulations of 4m and a tidal cycle of 12.42hr. This

1

bottom friction value was combined with a value for n, of 2.25 x 107>m?2s~!, cho-

sen chiefly to allow their chosen characteristic depth for diffusion, z4 = (n,/w)'/?,
to equal 0.4m. This value falls outside of the range normally associated with a
homogeneous tidal system. The linearised equations are based on similar work
performed by Prandle (1982). Prandle defined the bottom boundary condition

to be

S

3T

A

Vx(bot) = To (463)

where V,, is the depth averaged velocity. Comparing results from the linearised
equations to field data Prandle (1982) derived a relationship between the constant

k and n, as follows

ng = kV,H (4.64)

Assuming the value of 7, to be the same in equations (4.62) and (4.63) this gives

a relationship between n, and r as

3mrH
Ng =
8

(4.65)

For r = 3 x 107*ms~! and H = 4 this relationship would give n, ~ 1.4 x
103m?s™ !, and the scale depth for diffusion becomes z; ~ 3.16m. Combining
a lower than expected value of vertical diffusion coefficient with a given friction
parameter allows shearing of the longitudinal flow, (due to bottom friction), while
reducing the transfer of momentum, (caused by the eddy viscosity), that would

work to reduce this shearing.

The value of n, ~ 1.4 x 107 3m?s~!

is more in line with field study estimates of
coefficients in real systems. The values of vertical diffusion coefficient determined

by the POM package vary with position and point in the tidal cycle. Values
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during periods of high tidal flow were in the region of 1 x 1072 — 2.5 x 10 3m?s L.
It is unlikely the POM model is over-predicting vertical eddy viscosities (and
diffusivities) as in a comparison with laboratory data, Burchard, Petersen, and
Rippeth (1998, page 10553) found the model to under represent this quantity at

intermediate depths for homogeneous flow.

4.5.5 Significance of buoyancy effects.

The literature on the general circulation of estuaries suggests that buoyancy ef-
fects, due to salinity differences between the river inflow and sea water at opposite
ends of the system, are very significant. This has proved to be the case in this
investigation. Fig. 4.4 shows a run set up as for Fig. 4.3, frame b) with the excep-
tion that the river inflow is given a salinity 2psu lower than any water drawn in
from the seaward end of the system. The resultant residual velocities are clearly
very different to the case when density was homogeneous and although complex,
there is also evidence of circulations that could also be expected to enhance per-
sistence. A difference in salinity of 2psu between river and sea water is much lower
than the normal difference in salinities between fresh water runoff and sea water,
(which can be as much as 35psu). This difference was used to demonstrate the
fact that only small variations in salinity can have a dramatic effect. For exam-
ple, the Mersey Narrows has been observed to show the classic residual velocity
patterns of a partially mixed estuary. Salinity differences of 1psu were measured
between top and bottom and it was estimated vertical salinity difference would

range between 0.5psu and 2.0psu, (Bowden and Sharaf El Din 1966).

The complexity of the patterns seen in Fig. 4.4 is thought to be for two reasons.
Firstly the value of bottom friction is considered to be rather high. It was a
value that worked well when the objective was to match the residual velocities
of the analytic solution. A value two orders of magnitude smaller is felt more
appropriate for the shallow systems being modelled and with the high vertical

resolution available from the model (especially in comparison to when the same
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Figure 4.4: Residual velocity plots derived using flow fields from POM, with in-
clusion of non-linear terms in momentum equation and coefficient of vertical eddy
viscosity calculated from package’s turbulence closure scheme. Boundary condi-
tions supplied by specified river velocities at landward end and surface elevation

at seaward end. Salinities between inflows at landward and seaward ends differ
by 2psu.

number of depth layers are being used to model the deep ocean). Secondly, lower
salinity water is input across the full depth of a rectangular domain. Buoyancy
effects are generated all the way down to the maximum 5m depth at the landward
end of the system. Compensatory flow from denser water is forced to move deeper
as it approaches the river end. The characteristic wedge shape of the denser water,
caused in large part by systems that become deeper as they move seaward, is not
able to form. The greater realism enabled by a sloping bottom was considered
important in modelling systems with salinity effects and domains with sloping

bathymetry were adopted when using the fluid dynamics package.
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Chapter 5

Computational fluid dynamics

approach to deriving flow fields:

POM

All analytic solutions to fluid dynamic equations require simplifying assumptions
in order to solve the differential equations. Hopefully, the assumptions still allow
valid solutions to be obtained for a restricted scenario. In some cases, even con-
sidering a restricted scenario, the assumptions necessary may produce solutions
which lack significant features in the flow. In the last chapter it was seen that the
analytic solution, (following Chen, Shaw, and Wolcott (1997)), for a tidally driven
estuary including river flow but with constant density differed from the solution
obtained from a computational fluid dynamics (CFD) package, (the Princeton
Ocean Model or POM), once the restriction of a linearised momentum equation
had been removed. More importantly the CFD package was required to inves-
tigate persistence in scenarios too complex to obtain analytic solutions. These
scenarios can be considered tidal systems involving non-uniform bathymetry, tidal
systems involving non-uniform density that then affects body forces, or systems

combining both these two aspects.
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5.1 Key assumptions made in oceanographic CFD

packages

In general, oceanographic CFD packages use as their starting point the full set
of Navier-Stokes equations (Nunn 1989, pages 181-183) and apply simplifying
assumptions that lead to a set of equations known as the primitive equations.
Temperature and salinity are important to oceanographic flows as they both af-
fect density. The variation of density, as applied to the body force term of the
momentum equations for fluid elements is an important driver of flows. As a con-
sequence temperature and salinity conservation equations are incorporated into
the models. These equations can be considered analogous to the conservation of
momentum equation but for scalar quantities. They receive the same simplifying

assumptions as applied to the momentum equation.

5.1.1 Boussinesq approximation

In the work deriving analytic flow fields the density of the water was assumed to
be constant. For the primitive equations variations in density are ignored when
considering conservation of mass, (the continuity equation), and the horizontal
components of the momentum equations. The simplification is justified on the
grounds that the variations in horizontal accelerations for a given force, due to
mass variations with density are too small to be significant (averaging over an
entire ocean the discrepancy is at most 3%, (Pond and Pickard 1983)) Within the
vertical component of the momentum equation density is again assumed constant
for the acceleration terms. This component also contains, however, the gravity
body force, pg. Even though the variation in density over the depth of an ocean
is small compared to the average value, its effect through this term is capable of
generating significant currents, (Mellor 1996) and so actual in situ values must

be used when calculating the pressure field.
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In effect this approximation is such that variations in density are neglected when
considering the inertia of the fluid but not when considering its weight. This is
reflected in the use of a constant density term in the horizontal components of
the POM momentum equations (Equations 5.4 and 5.5), but a variable in situ
density term in the vertical component of the momentum equations (Equation
5.6). The approximation is known as the Boussinesq approximation after the

mathematician who first suggested its use.

5.1.2 Hydrostatic approximation

The hydrostatic approximation uses a scaling argument. For oceans the horizontal
scale of the domain is normally orders of magnitude greater than the vertical
scale. If H is taken to represent the approximate depth and L to represent the
approximate length scale, then the scale of the horizontal variations of quantities
(that is terms involving 0/0z or 0/0y) are taken to be of the order O(1/L) and
the scale of vertical variations is taken as O(1/H). From the continuity equation,
OV, /0x+0V,/0y+0V,/0z = 0, the scales of the vertical and horizontal velocities
can also be related by w, = u,0O(H/L) where w, represents the order of the
vertical velocity and u, the order of horizontal velocities. If the z component of the
momentum equation has this scaling applied and all terms of order ~ O(1/L?) or
~ O(1/t,L), (where t, is the characteristic time scale), are ignored this component

of the momentum equation reduces to (Mellor 1996, pages 31-32)

2

a—z = —9p+po lO (%) + O(UOfo)] (5.1)

where f, represents the order of magnitude of the Coriolis force. The gravity
body force, pg is left unaltered for the same reason as in the Boussinesq approxi-
mation. The pressure gradient term Op/0z is also left unaltered. This is because
otherwise the three components of velocity could be determined independent of

the continuity equation, which generally could then not be satisfied(Mellor 1996).
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To obtain values of the pressure for insertion into the horizontal components of
the equation of momentum Equation (5.1) can be integrated with respect to z and
then differentiated with respect to x or y. The last part of the scaling argument
then notes that the scaling associated with this integration and differentiation
process is such that the quantities in the square bracket of Equation (5.1) are
multiplied by H/L and if this ratio is sufficiently small they may be neglected.

Thus the z component of the momentum equation finally reduces to

op
9. —gp (5.2)

This is the same as the hydrostatic equation for a fluid at rest, which explains the
name given to the approximation. This approximation is not restricted to ocean
applications but can be applied to any situation where the vertical distance over
which velocities change significantly is much less than the horizontal distances.
It effectively states that the acceleration and viscous/turbulent terms that effect

the vertical component of velocity are unimportant in a thin layer.

5.1.3 Boundary layer approximations

The scaling arguments that lead to the hydrostatic approximation can also be ap-
plied to the horizontal components of the momentum equation. Taken collectively
the resulting simplifications are known as the boundary layer approximations as
they are only valid if the fluid involved has a vertical depth much less than its
horizontal extent!. For the horizontal components the scaling effectively simpli-
fies the terms related to the Coriolis accelerations and eliminates terms related
to horizontal diffusion. In most applications, however, the horizontal diffusion
terms have to be reinstated. This is because the grid spacing required to achieve

a reasonable program run length do not allow sufficient horizontal resolution to

'Which in atmospheric fluid dynamics is only true of the boundary layer region close to the

earth’s surface.
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fully describe the flow and diffusion has to be used to represent the effects of

those unresolved flow patterns.

5.2 Outline of POM package

As its name implies the Princeton Ocean Model, POM, was developed at Prince-
ton University and is described fully by Blumberg and Mellor (1987). The model
uses the full set of primitive equations describing conservation of mass, momen-
tum, temperature and salinity using the hydrostatic and Boussinesq approxima-
tions. To be consistent with the literature describing POM, notation is altered in
this section such that U, V' and W replace V,, V,, and V, as the three cartesian

components of velocity. Following Blumberg and Mellor (1987) the equations are:

the continuity equation

ou oV oW
a7 + N + 5 0 (5.3)
the Reynolds momentum equations
ou oU* oUV oUW 1 0P O(—uw)
— —fV=—-— F, 5.4
8t+8x+6y+ 0z / p08x+ 0z * (54)
ov. UV ov? VW 1 0P O(—vw)

— — = ——— F, .
ot - Oz - oy * 0z 1o po Oy * 0z T (5:5)
oP

Py =7 (5.6)

the integral of the hydrostatic equation

! !

0
P = Py + pogn = g/ p(z,y,z)dz (5.7)

the conservation equations for temperature and salinity (the mean temperature

and salinity equations)
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oS oUS ovVS owS 0
9> 9w+ F .
ot o Ty T o o T (5.9)

and an equation of state

p=p(T,S) (5.10)

The equation of state is that given by Fofonoff (1962). The terms Fy, Fy, Fr
and Fg are related to small scale mixing processes not directly resolved by the

model and parameterised as horizontal diffusion. These terms are given by:

0 oU o [ ou  oV\]
= — (24— — A — 4+ — A1
F 8x< M8x>+8y_ M<8y+8x>_ (5.11)
0 oV o [ oUu  oV'\]
= (242 )+ = Ay ==+ = 12
Fy ay< May>+ax_M<ay+ax>_ (5.12)
0 o(T, S) 0 a(T,S)
_9 9 1
Frg pe <AH 9 ) + By [AH 3 (5.13)

The horizontal kinematic eddy viscosity, Ay, can be given a constant value, or

can be calculated according to Smagorinsky (1963)

Ay = CAxAy% ‘vv + (vv)T‘ (5.14)

where C'is a user specified constant, (the Smagorinsky constant), and

U\ L (v U\t (v’
ox 2\ 0xr Oy dy
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The eddy viscosity coefficient is therefore related to the spatial variation in ve-
locity values and the cell sizes. The advantage of this form of formulation is that
as cell size becomes smaller and/or flows become more homogeneous the value of
eddy viscosity is automatically reduced. The coefficient of scalar diffusivity, Ay is
regarded to be a fixed ratio to Ay; with Ay;/Ag known as the turbulent Prandtl
number, (Mellor and Yamada 1982). For isotropic turbulence the constant C
should be in the region 0.04, Ferziger and Peric (1999). Ferziger and Peric (1999,
pages 270-271) cite several problems with the use of the Smagorinsky scheme.
The Smagorinsky constant can be a function of Reynolds number and it should
be reduced close to solid boundaries. Such effects are probably unimportant in
ocean basin scale calculations but the work of this thesis involves flows of higher
Reynolds number and it was found that the simpler approach of using a constant
value of Aj; could provide the same qualitative flow fields while being more likely

to ensure numerical stability.

In the vertical, the Reynolds stresses, uw and 7w, and the turbulent heat and
salt fluxes, w@ and w3, are evaluated using the level 2% closure model of Mellor

and Yamada (1982) where

—(uw, vw) = KM%(U, V) (5.15)
— 0
—(w,ws) = Ky 7-(T. 5) (5.16)

Ky, and Ky represent vertical eddy viscosity and vertical diffusivity of heat and

salt respectively. They are given by

(Kn, Ku) = 1q(Su, Su) (5.17)

Sy and Sy are stability functions given in Mellor and Yamada (1982), while !

represents the turbulence macroscale, (describing the size of the largest turbulent
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eddies) and ¢? is twice the turbulence energy?. The closure model used adds two

more prognostic equations to the model which describe the evolution of ¢? and

¢l

5.2.1 Boundary conditions

Remaining in the cartesian representation of the model, boundary conditions at

the free surface are given by:

on on 0On
=U— 4= 1
W U8x+vay+8t (5.18)
L e 70y) = Kng 2 (U, V) (5.19)
Py Tox, Toy) — MaZ ) .
or
— Ky— 2
Qr = Kn's (520)
oS
Qg = KHE (5.21)
. 2/3
¢* = —|mn|B; (5.22)
Po
*l=0 (5.23)

Equation 5.18 is the condition for Equation 5.3. Equation 5.19 gives the condi-
tions for the momentum equations 5.4 and 5.5, where 75 = (79, To,) is the wind

stress vector and py the surface water density. Equations 5.20 and 5.21 relate to

2The quantity g can be described as the turbulence intensity, (Burchard, Petersen, and

Rippeth 1998).
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equations 5.8 and 5.9, where Qg is the surface salinity flux and ()7 is the surface

heat flux. Boundary conditions at the bottom are given by

W=-U—-V_— (5.24)

where H represents the bottom topography.

1 0
¢ =U2B}"° (5.26)
Pl=0 (5.27)

In addition the normal gradient of temperature and salinity are set to zero at the
bottom boundary. The term Uy is a shear velocity term whose value is determined
from the bottom shear stresses (74, Tay). The bottom stresses are determined by
matching velocities with the logarithmic ‘law of the wall’. This means, (assuming
horizontal flow in the x direction only for simplicity), that the bottom stress is

given by

Tz = poCp|Us|Us (5.28)

with the value of the drag coefficient C'p given by

Cp = E In(zy/20)| - (5.29)

Here z, represents the height of the lowest defined velocity grid point above the

bottom and U, represents the velocity at that point,  is the von Karman constant
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and the term zy is known as the ‘roughness parameter’. When equations (5.25),
(5.28) and (5.29) are used together they produce a vertical velocity profile near
the bottom boundary of the form

U(z) = :;f In(z/z2) (5.30)

where here z denotes the distance away from the bottom boundary.

5.2.2 Mode splitting

The dynamics of coastal circulation contain both the propagation of fast moving
external gravity waves and slow moving internal gravity waves. Calculations in-
volving external waves, those determining the vertically integrated volume trans-
port between cells and subsequently the free surface elevations, must use a time
step sufficiently small that no wave will traverse a whole cell in that time. If
calculations affected only by the internal gravity waves, those dealing with the
internal vertical structure of the flow, can be calculated separately these calcu-
lations can be calculated using longer timesteps. The POM model achieves this
by a technique known as mode splitting. The volume transport equations are
obtained by integrating the vertically structured equations over the depth, elim-
inating the vertical structure. These equations are known as the external mode
equations, the unintegrated equations the internal mode equations. This tech-
nique implies that open boundary conditions must be supplied for both vertically

integrated velocities and velocities at individual cell depths.

5.2.3 Sigma coordinates

The POM model makes use of o-coordinates for the vertical. This coordinate
system replaces points in space defined in the vertical according to an altitude on

the z cartesian axis by a position defined relative to the positions of the bottom
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and free surface. Because the deepest o coordinate is always defined at the
bottom this system is referred to as a bottom following coordinate system. The
reason for adopting this coordinate system is that when a model is cast in finite
difference form, a smooth representation of the bottom topography is obtained. It
is also relatively easy to incorporate a bottom boundary layer as well as a surface
boundary layer. By contrast, it is difficult to model bottom boundary layers in
a z-level model, (Mellor, Hakkinen, Ezer, and Patchen 1999). The ability to be
able to cope with significant topographical variability is important when dealing
with estuaries and sea lochs. Resolving bottom boundary layers is also important
in modelling such systems, (Oey, Mellor, and Hires 1985a; Oey, Mellor, and Hires
1985b)?. The horizontal eddy viscosity (applied to the momentum equations)
and diffusion (applied to scalar quantities) in a numeric model in order to ensure
computational stability can be considered as a source of error, especially if their
values are that much greater than could be considered justified in reality. Use of
o-coordinates has been found to make models capable of operating with smaller
prescribed values of horizontal diffusion, and, unlike z-level models, they are
capable of accepting diffusion constants calculated dynamically and related to
velocity values, such that in areas of low velocity these constants take small

values (Mellor, Hakkinen, Ezer, and Patchen 1999).

The set of equations 5.3 to 5.17 is therefore transformed using the relationship

z—n
— " " p=H 5.31
0= "5 + 17 (5.31)

where 7 is the free surface elevation and H is the depth below mean sea level.
At the free surface 0 = 0 (2 = n) and at the bottom 0 = —1 (2 = —H). The
distance between levels at which values are calculated for variables remain in

fixed proportion to each other independent of elevation or depth.

3When topography is steep and the vertical resolution coarse, errors in the pressure gradients
result from the use of sigma coordinates (Mellor, Ezer, and Oey 1994; Mellor, Oey, and Ezer
1998). However, use of a similarly coarse z-level model can lead to errors in the barotropic

component of the flow (Bell 1997).

99



The transformation leaves the U and V' components of velocity with the same
physical meaning as for cartesian coordinates. However, the cartesian vertical ve-
locity, W is transformed to w, which physically represents the velocity component

normal to sigma surfaces. The transformation from w to W is

_ oD oy oD  on\, 9D  on
W_M+U<08x+8x>+v<08y+8y>+06t+8t (5.32)

The full set of the Equations (5.3) through (5.23), once converted to take account

of sigma coordinates can be found in (Blumberg and Mellor 1987).

5.2.4 Open lateral boundary condition

Open lateral boundary conditions are an important and difficult component of
a CFD package. In effect they are being used to specify the environment, (in
terms of velocities, turbulent energy, salinity and temperature), exterior to the
domain. In this work domains were always assumed to run East, West with the
North and South boundaries closed. In POM the ¢? and ¢l terms are considered
to be calculated with sufficient accuracy at the boundaries even after neglecting
advection terms such that specification of exterior values becomes unimportant.
Temperature effects were not considered in this work and for the strategic studies
undertaken realistic but approximate estimates of salinity were sufficient. These
external values are used with an ‘upstream advection’ boundary condition of the

form

89S S
o tUs=0 (5.33)

Velocity boundary conditions were more problematic. For the comparison with
the analytic solution, after Chen, Shaw, and Wolcott (1997), to a tidally driven
flow both the external, vertically integrated, velocity and the internal, vertically

structured, velocities could be specified by the solution to the analytic equations
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at the boundary. For problems where no kind of analytic solution exists this can
not be done. As the studies are strategic it is also not possible to drive the model
via field data. In these circumstances the usual approach is to specify the surface
elevation, (Blumberg and Mellor 1987). The external mode velocities were then
determined from application of the vertically integrated form of the continuity
equation. No information is available to determine the profile of the internal

velocities so a radiation condition was applied of the form

ou ou

where ¢; represents the phase speed of the fastest internal waves It was calculated

using Orlanski’s scheme, (Orlanski 1976).

Although radiation conditions require no knowledge of desired boundary veloci-
ties, in cases where substantial inflows are required as well as substantial outflows
they can cause numerically valid, yet nonphysical baroclinic structures interior
to the boundary, (Mellor 1998). To test for this phenomenon, a version of POM
with the same simplifications used to provide the comparison to the analytic tidal
solution in section 4.5.3 was implemented, but with the open boundary driven
in the manner described above, the surface elevation being assumed sinusoidal
but with an amplitude provided by output from the analytic solution. Fig. 5.1
shows residual velocities over a tidal cycle resulting from use of flows from this
model compared to those from the POM model with analytically defined velocity
boundary conditions. The anti-clockwise rotation in residual displacements seen
at the seaward end of frame b) is known to be a consequence of the radiation
boundary condition because of the general agreement in residual velocity pattern
between the result shown in frame a) and that given by using flows from the an-
alytic solution. Comparison of frames a) and b) also suggest that the pattern of
residual velocities are possibly not seriously affected away from the open lateral
boundary. Fig. 5.2 shows the result of extending the POM domain to double the

length of the domain being considered for persistence experiments.
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Figure 5.1: Residual velocity plots derived using flow fields from a) Princeton
Ocean Model, (POM), with boundary condition supplied by ‘Chen’ velocities; b)
POM, with boundary condition supplied by sinusoidal surface elevation. Surface
elevation set to match those of a surface tidal velocity of Vir = 0.3. No river flow.
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Figure 5.2: Residual velocity plots derived using flow fields from a) and ¢) POM,
with boundary condition supplied by sinusoidal surface elevation. Surface eleva-
tion set to match those of a surface tidal velocity of Vir = 0.3; b) Princeton Ocean
Model, (POM), with boundary condition supplied by ‘Chen’ velocities. Frame c)
displays the whole of the extended domain used to distance open boundary effects
from the area for study, frame a) shows the resulting residual velocities supplied
to a tracking algorithm if the domain’s absorbing boundary is assumed to be at

half POM domain length. No river flow.

102



a)

o

S

7777 L7 §§éé,é
SERRREEET - -
P33 333333535335355993

X (km) 10

z (m)
‘“““’J’“’MMA/

(6]

b)

o

z (m)

4

W
W
Wt
W
W
\L<|/J'
N
W
W
b
w.
Lo
N
N
N
%

Figure 5.3: Residual velocity plots derived using flow fields from a) Princeton
Ocean Model, (POM), with boundary condition supplied by ‘Chen’ velocities; b)
POM, with boundary condition supplied by sinusoidal surface elevation. Surface
elevation set to match those of a surface tidal velocity of Vi = 0.3. In both cases
river flow is given by Vi = 0.005 and there is inclusion of non-linear terms in
the momentum equation.

Residual velocities over the whole POM domain give an overall pattern much as
in frame b) of Fig. 5.1. However, if residual velocities are only considered in the
landward half of the domain, (frame a), Fig. 5.2), the resulting set have a pat-
tern sufficiently similar to those generated using the prescribed inflow boundary
velocities (frame b), Fig. 5.2), to expect the qualitative nature of any persistence

experiments to be unaffected.

The extent of non-physical flow generated by radiation lateral boundary condi-
tions is dependent upon the character of the flow within the domain. Fig. 5.3
shows the comparison between residual velocities generated by the same two types
of lateral boundary condition - operating on the same standard domain length -
once a river flow, (Vz = 0.005), and the non-linear components of the momen-
tum equation are introduced. The only differences that now appear concern the
strength of the seaward flowing components of residual movement. In general, the
only means of determining whether an open boundary has caused non-physical
flow features, and the extent of such features, is by visual inspection of the flow

patterns or residual velocities.
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5.3 Flow fields solved solely by CFD packages

The POM package is capable of three dimensional modelling. All runs conducted
in this study, however, were concerned with two dimensional, (x,z) vertical slices.
As such the ‘steering’ effect of the Coriolis force could not be considered and so

this force was disabled.

5.3.1 Eliminating unwanted buoyancy effects

Buoyancy effects are effectively changes to a flow field, (as derived assuming
uniform density throughout the fluid), caused by variations in density. These
variations can be caused by temperature and salinity. To isolate the effect of
salinity variations it was desired to remove any effects due to temperature. The
temperature field could be made steady by setting initial values and altering the
code to effectively eliminate Equation (5.8). In the absence of outside forces the
static stability of a fluid is determined by the buoyancy frequency (or Brunt-
Viisila frequency), N2. If N? is positive a fluid is stable, N is real and has the
dimensions of frequency. It can be interpreted as giving the speed with which
a packet of water, moved vertically from its resting position, would return to
that position. If N? is negative the water is unstable and any displacement of
a water packet will tend to be amplified by the vertical density variation. With
N? = 0 the fluid can be thought to be neutrally stable. The buoyancy frequency

is defined as

drT ds
N? = ga— + C; ' g*a’T — g— 5.35
ga—+0, ga 98— (5.35)
where 7' is in situ temperature, C, is the specific heat capacity at constant pres-
sure of the fluid, o the fluid’s coefficient of expansion and 5 = p 1(9p/0S), -

Assuming salinity to be constant eliminates the final term. The temperatures

used in POM are potential temperatures ©, defined by

104



00 _or _d,
0z 0z dz

(5.36)

Here, T, is the adiabatic temperature, which has a vertical profile assuming
changes in hydrostatic pressure change the temperature of the water with no

heat transfer. The adiabatic temperature profile is defined as, (Tritton 1988)

dT,
dz

=—C, 'gaT (5.37)

If the potential temperature is assumed constant throughout the domain then
0T/0z = dT,/dz and substituting this back into Equation (5.35) gives (still

assuming no salinity variation)

N? = ga x —C;'gaT + C; ' g?a*T =0 5.38
p p

Therefore, in the absence of salinity effects a uniform potential temperature field

ensures neutral stability and models were run with such.

5.3.2 Buoyancy, turbulence, vertical mixing and POM

One of the important features of buoyancy is the degree to which it can make a
domain stratified. As discussed in section 4.3, stratification, which can be repre-
sented by the gradient Richardson number, has an important effect on the extent
to which turbulence can exchange momentum and scalar quantities. The POM
model calculates the stability function values in its turbulence closure routine
from a combination of empirically derived constants and a form of Richardson

number.

In real systems, when stratification has eliminated turbulent diffusion of salt,
vertical transfer of salt across a halocline is still possible. The process is that

of entrainment, the one way process whereby salt water is transported from a
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low turbulence salt layer into a higher turbulence fresh layer by the breaking
of internal waves created at the fresh/saline interface. The POM turbulence
closure model is unable to simulate entrainment. For sufficiently high Richardson
number the value of the coefficient of vertical diffusivity, K falls to zero. As a
means to overcome this, the POM model incorporates a constant, ‘UMOL’, that
represents a minimum or ‘background’ level of diffusion (and eddy viscosity).
Alternatively, a minimum value for the turbulent kinetic energy can be specified
within the closure scheme algorithm itself, (Burchard, Petersen, and Rippeth
1998). If comparing the model to field data for a stratified system either of these
representations of internal wave breaking can be tuned in order to match the

thickness and gradients of the stratified region.

In strategic studies, choice of this constant can be an important factor in de-
termining the degree of stratification displayed by the resultant flow regime. In
regions where the Richardson number is high the calculated value of vertical dif-
fusivity will fall away to zero leaving the degree of salinity mixing dictated by
the background value alone. This in turn influences the speed with which strat-
ification is broken down away from the source of buoyancy, (Garvine 1999, page

1899).

5.3.3 Tidal estuary with salinity driven buoyancy effects

Figures 5.4 and 5.5 illustrate the differences the enhanced diffusion from a higher
UMOL value can make. They represent the Lagrangian residual velocity from two
POM runs using identical parameter values except for the value of the background
diffusivity. In Fig. 5.4 the value of UMOL is set at 2.0 x 10°m?s~!. This value
of background diffusion is sufficient to enhance the mixing of lower, more saline
water with the fresh water inflow but without breaking down the basic stratified
nature of the flow. The seaward residual movement in the upper portion of the
system and the compensating landward residual movement in the lower region are

both considerably enhanced over a salt wedge system experiencing only minimum
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Figure 5.4: Residual velocity plot derived using flow field from POM, using
full primitive equations. Open boundary condition supplied by sinusoidal sur-
face elevation, tidal range +1m. River flow has per unit width discharge of

Qr = 417 x 1073m?s™!. Sea water at 35psu, river water at Opsu. Background
diffusivity 2.0 x 10™5m?2s7!.

entrainment, as expected from a partially mixed estuary, (see section 2.1).

In Fig. 5.5 the value of UMOL is set at 2.0 x 10™*m?s~!. At this value of back-
ground diffusivity mixing is sufficiently strong to have broken down stratification
completely before the seaward boundary of the system has been reached, such
that the seaward end of the system is virtually homogeneous. At the bound-
ary between the stratified and homogeneous sections downwelling takes place as
observed in real estuaries, (Dyer 1987). The stratified portion of the estuary
still experiences upper seaward and lower landward residual movements but the

homogeneous section contains only weak seaward residual movement.

The scaling arguments of the boundary layer approximations apply to the motion
of scalars such as salinity as well as to the velocity of the water itself. This in turn
implies that horizontal diffusion of salinity can be omitted. Diffusion of horizontal
velocity was retained chiefly to ensure numerical stability of the solutions. The
same requirement was not necessary with respect to salinity and in fact inclusion

of diffusion of salinity had a tendency to undermine stability. Therefore horizontal
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Figure 5.5: Residual velocity plot derived using flow field from POM, using
full primitive equations. Open boundary condition supplied by sinusoidal sur-
face elevation, tidal range +1m. River flow has per unit width discharge of

Qr = 417 x 1073m?s™!. Sea water at 35psu, river water at Opsu. Background
diffusivity 2.0 x 10~4m2s7!.

diffusion of salinity was omitted for this work.

5.3.4 Fjord

Work centred on retention of organisms in fjords were performed using two di-
mensional, (x,z) vertical slices along a ‘strategic’ representation of a fjord. In
other words, while no attempt was made to reproduce the sub-surface topogra-
phy, (bathymetry), of a specific fjord, key features common to most fjords were
reproduced. The main body of the fjord is 80m deep, a value representative of
Scottish sea lochs. The seaward end of the fjord rises steeply to a sill of relatively
shallow depth, (30m). Beyond the sill the depth increases again in a region rep-
resenting the coastal sea, and this is where the open boundary is situated. At
the landward end of the system the bathymetry again rises relatively steeply to a
shallow section where fresh water river inflow is injected. It is common for fjords

to have their main fresh water inflow at the head of the system. To have a main
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body of fjord similar in length to the coastal plane estuary, while accommodating
the additional features of sill, coastal sea and river section, the overall length of

the domain increases to approximately 25km.

Spin-up and quasi-steady conditions

Because of steady forcing, (constant river inflow volume and salinity, constant
salinity of water beyond the open boundary and tidal elevation as a regular sine
wave), a tidally averaged steady state can be expected for both coastal plane
estuary and fjord simulation. The nature of this steady state can not be known a
priori and it takes a number of tidal cycles for it to be reached. A standard way
to determine whether the density structure of the system has been fully formed is
to record the domain averaged and tidally averaged salinity over successive tidal
cycles. The ‘spin-up’ of the model is complete when this averaged value ceases

to vary, that is when

<§> = %/OT {//S drdz x [/(H + n)dm]_l} dt = constant (5.39)

When modelling large and complex real systems achieving a density structure
that matches recorded data, by driving the system using forcing parameters from
the same data period, can take many cycles. Galperin and Mellor (1990) regarded
the density structure of the Delaware Bay and River system to have become fully
developed only after 2 months of simulated flows. With the much simpler and
smaller, (in terms of physical size represented), strategic estuarine systems under
consideration for chapter 8 spin-up periods could be considerably reduced. For
the fjord runs, however, spin-up time was much more comparable to those cited
for real systems. Enhanced seaward flow near the surface takes time to reach
the open boundary. This is especially true of the longer fjord system. Further,
the large deep body of the fjord is only weakly connected to the tidal forcing,
(the main source of flow). Even after net seaward surface currents have become

established across the domain, the full pattern of Lagrangian residuals continues
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to evolve.

This second consideration is illustrated by figs. 5.6 and 5.7. Each figure shows
residual velocities from flow fields using the same run parameters but taken at
different times from the simulation start. In Fig. 5.6 flow fields were taken during
tidal cycle 40. The surface residual flow is well established and movements in the
body of the loch seem well established. However, Fig. 5.7, with residual flows
calculated using flow fields taken during tidal cycle 80 shows the formation, in
the body of the fjord, of a distinct landward flow just beneath the surface flow.
Comparison of these two figures also shows large differences in flow seaward of
the sill. Flows in this region, however, were not included in the determination
of when flows were stable enough for persistence calculations. This was because
of the uncertainty of the validity of flow patterns near the open boundary and
because the focus of this thesis was persistence of organisms within the body of
the fjord. To this end the domains of the particle tracking program and final
discrete time-space population program only extended a certain distance beyond

the sill.

As a minimum requirement, POM was run until <§> varied by less than 1% of
its value, but also a record was kept of horizontal velocities at and adjacent to
the open boundary. A model was judged ready when the salinity criteria was
met and flows at the boundary appeared to be in a reasonably steady cycle.
An illustration of variation in open boundary flows during spin-up of a fjord is
given in Fig. 5.8. The model is set up with tidal elevations, river discharge
and background vertical diffusivity as employed in Figs. 5.6 and 5.7. Although
outputs for three cells are plotted the values are very similar such that only one
trace appears evident. The degree to which this remained true was in itself used
as an indication of the model remaining numerically stable. Fig. 5.8 also shows
clearly the high frequency oscillations present at the start of simulation runs that,

to be dampened out, require the use of non-zero horizontal eddy viscosity values.
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Figure 5.7: Residual velocity plot derived using flow field from POM, using full
primitive equations. Flow parameters as for Fig. 5.6. Velocity fields taken during

last tidal cycle of a 40 day run.
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Figure 5.8: Horizontal velocity at open boundary as a function of time. Traces
are for velocity at the open boundary and for two cells adjacent to open boundary.

There is evidence of low frequency, (wave length of several tidal cycles), variation
in flows still present at the point where Lagrangian residuals were derived. This
effect becomes more pronounced as river discharge is increased and is presumably
due to the greater energy being input to the system. Fig. 5.8 shows it clearly as
the run presented had the strongest discharge used with the fjord bathymetry.
The two layer residual flow pattern demonstrated in Fig. 5.7 might therefore be
quite fragile. Such patterns are cited for real fjords and these runs were intended
to give a strategic representation of movements in a fully developed fjordic flow
field. Additionally, Dyer (1973) doubts if tidal systems ever establish a true
equilibrium. Indeed such an equilibrium is only theoretically possible in this
work because of the simplification to both a constant tidal cycle, (ignoring the
spring/neap cycle), and river inflow, together with the omission of the transient
effects of winds. Residual movements were calculated when further computational
effort for flow field spin-up was considered excessive, although a run with river
inflow stronger than that used for figures 5.6 to 5.8 was abandoned as it appeared

to become increasingly unstable with time.
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Chapter 6

1D systems: well mixed rivers

6.1 Passive organisms permanently in the drift

As described in Chapter 3, a balance equation for organisms in a one dimensional
system, whose population grows with a local per-capita growth rate, p(n), and
which is subject to an advection V, and diffusion with coefficient ®, can be

written as

2
an_p(n)n_%a_n+® 0“n

Frie or T8 (6.1)

For passive organisms the quantity V, can be considered directly related to the
mean velocity of the water in the system and &, directly related to the water’s
coefficient of eddy viscosity. They are not the same however, as even small organ-
isms will possess an inertia that suppresses their movement relative to the water

around them.
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6.1.1 Linear system

Speirs and Gurney (2001) investigated the possibility for persistence in such a
system by considering populations where p(n) always equalled r, the intrinsic
growth rate and where the system was bounded by a reflecting boundary at the
upstream end and an absorbing boundary at the downstream end. As shown in
Appendix A they found that solutions were only possible if the following relation
held

L
tan <mL—d> = —%m (6.2)

where

A 2
L=/ ®,r 1 Vy=2¢/®ur HEJI———(%) (6.3)
d

From Equation (6.3) L, represents the r.m.s. diffusive dispersal distance organ-
isms can be expected to travel in the time a population with per-capita growth
rate r increases in size by a factor \/e or &~ 65%, and V; represents the equivalent
velocity of this movement. The term A gives the long term growth rate of the
overall population. It is obtained by first solving Equation (6.2) numerically to
determine k, and then using the third expression in (6.3) to solve for A. This
long term growth rate can take positive and negative values, the former indicating
population persistence and the latter washout from the system. The boundary
between persistence and washout is therefore given when A = 0. By setting
A = 0 in Equation (6.3) and back-substituting for x into a rearranged form of
Equation (6.2) Speirs and Gurney (2001) derived an expression for the critical
length, L., at which, for given values of the other parameters, the population is

on the threshold of washout
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V2

VE— V2

L.

Ly

Vd2 _ ‘/;:2
V2

x

arctan

(6.4)

As V, tends to zero L./L, tends to the value /2, a result gained for popula-
tions experiencing diffusion but no advection (Gurney and Nisbet 1998)*. As V,
tends toward the value of Vj; the critical length goes to infinity. Therefore, for a
given intrinsic growth rate and a given diffusion constant, ®,, only systems with

advection rates that satisfy

V, < 24/®,r (6.5)

have the potential to sustain a persistent population. A corollary of the results
for L. is that a critical velocity, V,, for the system can be seen to tend to zero
as the ratio L/L4 tends to m/2, implying no persistence is possible if life time
diffusive length becomes sufficiently large compared to overall system length. As
L becomes large compared to the value of L; then the critical velocity tends

toward Vj.

For a system of given length and a population with given per-capita growth rate r
and advective displacement V, all the possible combinations of L/Ly; and V,/Vy
that can be obtained from variation in the diffusion coefficient ®, lie on the

straight line given by

=)= (6.6)

Lq

Vi 1<Vx> L
Vg 2

Fig. 6.1 shows contours of constant A/r in the L/L, against V,/V; plane. Su-

perimposed are straight lines produced from Equation (6.6) but using different

!This critical length was first discovered by Skellam (1951), who considered a reproducing
population subject to diffusion in a domain running from —z;, < z < z; and with absorbing
boundaries at each end. Skellam found that persistence was only possible if z;, > %\/W
(converting to notation used in this text). This result was one of a number concerning repro-

ducing populations experiencing diffusion.
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Figure 6.1: Contours of constant A/r defined by Equation (6.2), with the values
of A/r as marked. Dotted line: set of A/r values made accessible by varying the
diffusion rate with V,/Lr = 0.434. Dashed line: set of A/r values accessible with
Vy/Lr = 0.222. From Speirs and Gurney (2001), with permission.

values of V,,/Lr. If this ratio is sufficiently small, Fig. 6.1 shows that there exists
a range of diffusion coefficient values over which persistence is possible for the
population. As this ratio becomes larger, however, the finite range of possible @,
values becomes progressively smaller. Speirs and Gurney (2001) determined to
graphical accuracy the marginal case where persistence is just possible, (dotted

line), which gives a further inequality required for persistence

v,
YE - 0.434 6.7
Ir < (6.7)

6.1.2 Non-linear system

Speirs and Gurney (2001) modelled the same system but with a constant local

per-capita birth rate replaced by one obeying the logistic equation, that is

py =7 (1-7) (63)



They used the discrete space-time model described in section 3.3.1 with dis-
placed tent distributions providing the redistribution matrix. Because the fixed
per-capita growth rate is considered to represent the intrinsic growth rate of
a population, the linear analysis developed conditions for the persistence of an
invading propagule and it was argued that for populations with p(n) made a de-
creasing function of density, no system in which an invading propagule could not
grow could show a persistent population. Results using the non-linear growth
term supported this assumption. Combinations of the ratios L/L; and V,/Vy
from which the linear analysis predicted washout lead to washout in the non-
linear model and equally combinations leading the linear analysis to predict a

persistent population did lead to results of persistence.

In cases of persistence a reproducing population, (cited at some point along the
domain), would have some proportion of its total spread in the upstream direction
fast enough to overcome advection, that is, part of the population is physically
moved upstream. A steady increase with time in population density in the region
of the river source results until the requirement of zero flux at the boundary,
coupled with the eventual effects of density dependence, create a steady state
density decreasing toward the river source so that diffusive movement upstream
exactly balances advection downstream. Population density also falls away, (to-
ward zero), as the seaward, absorbing boundary is approached. As the boundary
is approached ever fewer contributions to population are available from down-

stream.

6.2 Swimming

In this section the same fluid dynamics as in Section 6.1 are assumed, that is a
constant value of advection, V,, and diffusion coefficient, ®,. In order to discuss
the effect of swimming it is useful to consider the movement of individuals as a
random variable within a statistical distribution. The displacement of a passive

particle over a time, 7, is a normally distributed random variable with a mean of
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V.7 and standard deviation /2®,7. Its coefficient of variation is therefore

O(r) = (6.9)

Re-arranging Equation (6.5) we see that

Vor™t < (/4D 1 (6.10)

If one takes 7 = 77! then C(r~') = C, becomes the coefficient of variation of the
net displacement of the organism over a generation. Substituting the inequality

of Equation (6.10) into Equation (6.9) gains a condition on C, for persistence

C,=Cr ) > e =— (6.11)

6.2.1 Swimming against the average current

If an organism is assumed to swim upstream at a steady speed Vi, then the
random part of its dispersal is unchanged but the average downstream velocity
is reduced to V, — V;. The coefficient of variation of the average organismal

displacement over a generation is thus

A P

(6.12)
From Equation 6.11 we have potential persistence if and only if C,(r=!) > 1/v/2.
If C, is defined as the coefficient of variation of fluid elements within the flow

then C,(r—1)/C,(r!) is given by

(6.13)



So the persistence condition for the coefficient of variation of the fluid element

displacement over the generational time becomes

Cp(r™t) > 1 (1 — E) (6.14)

Equation 6.14 suggests swimming velocities small compared to V. have essentially
no effect on population persistence, while animals that can swim at velocities
comparable to the average water velocity require almost no diffusion to persist.
From Equation 6.12 it can be seen that modelling swimming against the average
current is effectively the same as modelling a passive organism, but for an average

water velocity reduced by the amount V.

Removing the logistic regulation from the model means long term population
growth reverts to being exponentially increasing or decreasing. The influence of
the ratio V;/V, can then be seen by comparing the long term growth rate, A, to
Vs/Vy. Fig. 6.2 shows these values of A, normalised by dividing by the intrinsic
growth rate, for a case in the absence of behaviour of marginal non-persistence,

(Vz =0.001ms ™1, &, = 0.06m?s ! and r = 0.39day!).

To show how this behaviour can effect the distribution of a logistically regulated
population and its average population density, Fig. 6.3 takes the same marginally
non-persistent scenario, in the absence of behaviour. The initial population and
that after 50 days is shown in frame a) while the time history of the average pop-
ulation density is shown in frame b). Lower frames show the effect of introducing
Vs values of 0.1V}, 0.5V, and 1.0V,.. Even for a value of V; = 0.1V}, a considerable
effect can be seen on both population distribution and the long term average

density.
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Figure 6.2: Population with an exponential growth rate, (intrinsic growth rate
= 0.39day™"), swimming in a lkm river against a current with V, = 0.001ms™",
®, = 0.06m%s~. Graph of ratio of long term growth rate to intrinsic growth rate
compared to Vi /Vy,: swimming against average current.
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Figure 6.3: Logistically requlated population with an intrinsic growth rate of
0.39day !, being advected along a lkm river with a velocity of 0.001ms !,
d, = 0.06m2s~!. At = 6hrs. Organism swims against average current with
constant velocity V. Right hand frames show the time history of average popu-
lation density. Frames a),b): Vi = 0.0; Frames c),d): V; = 0.1V,; Frames e),f):

Vs = 0.5V, Frames g),h): V= 1.0V,.
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6.2.2 Swimming against the instantaneous current

The term instantaneous current is actually used to define, in this context, the
fluid movement averaged over some time, 7, a time considerably shorter than the
time required for the mean motion of the flow to dominate the size and direction
of movement. It is assumed that an organism, with a maximum swimming speed
of Vi, swims against this instantaneous current, which it matches to within a
normally distributed error . It is further assumed that £ has a mean of zero
and a standard deviation equivalent to a diffusion constant ®,. If the passive
displacement an organism would experience in the time 7 is W, then the condi-
tional probability density function for the organism’s facultative displacement, s,

relative to the water movement in the same period is given by the Gaussian

p(s|W) =G <s,§(W), W) (6.15)

where

(W) = ——— min(|W|, V,7) (6.16)

Let W, be the resultant displacement over the period 7. This is given by

W, =W +s (6.17)

Any combination of W and s satisfying the restriction s = W, — W gives the same
value of W,.. Integrating the product of the probabilities of getting s for a given
value of W, and W over all possible values of W therefore gives the unconditional

probability density function for the resultant displacement. That is
pW,) = [ pW)p(W, = W)|W)dw (6.18)
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The value of p((W,, —W)|W) is given by Equation (6.15) with W, —W substituted
for s, while p(W) is given by

p(W) = G(W, V,7,/20,7) (6.19)

The values of ®,, V, and 7 need to be defined with consideration to each other.
If we wish to investigate changes in long term growth rate with changes in Vj, it
is reasonable to assume that over any period of averaging, 7, the average error
in an organism’s swimming speed will be some fixed percentage of it’s maximum
swimming speed, V. This in turn requires ®; to vary with V;, rather than remain
a fixed value. The root mean square distance of error in a time 7 is v/2®,7. A

pseudo velocity can be obtained from

1 20,
~\/2®,7 = (6.20)

T T

If a single, fixed value of ®, is assumed, this pseudo velocity is unaffected by
the value of V;. As Vj is reduced, a greater proportion of possible errors in the
swimming speed become comparable to the notional maximum swimming speed

itself. Eventually Vs becomes dominated by the swimming error.

Equation (6.20) shows that the velocity error is affected by the value given to 7.
The value to be chosen for 7 is a mute point. The large size of even plankton in
comparison to water molecules and their individual diffusive movements guaran-
tees some averaging in the response to water movements. A reasonable averaging
time, however, is difficult to determine. If the value of 7 is changed for any rea-
son, then ®, must be changed if one wishes to maintain the same relationship

between 4/ % and any given value of V.

Taking the same values of V,, ®, and r that gave marginal non-persistence in

1

the absence of behaviour, (as in section 6.2.1), a 7 value of 0.1r~" was chosen

and values of ®; were chosen such that /2,7 = 0.1 x V7 V V,. Fig. 6.4 shows
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numerical solutions to Equation (6.18) for V; values of 0.0, 0.1V, 0.5V, and 1.0V
The pdf displayed when V; = 0.0 is, of course, the same as that in the absence of
behaviour. Fig. 6.4 also shows the result for the pdf obtained from the particle
tracking, population model combination. Particles were tracked from one cell,
(well away from the boundaries), for the period 7. The population model was
then run for a single timestep (again equal to 7) with an initial population of 1
in the same start cell and no population growth. This figure shows the results

obtained for the case where V; = V,, Az =1 and N = 60000.

As discussed in relation to Equation (6.20), for a fixed value of diffusion con-
stant, the effective velocity of diffusion increases as the time interval considered
decreases. This implies that as the averaging time 7 is reduced, an organism is
required to have a greater swimming speed in order to neutralise the diffusive wa-
ter movement. Fig. 6.5 shows the effect of varying 7 while maintaining Vs = V..
The x-axis denotes W, /7, a measure of velocity of the resultant movement. As
expected, as 7 reduces, the pdf becomes more spread, showing increasing propor-

tions of water movement that have not been counter-acted by swimming.

6.2.3 Swimming against a moving average

A problem with the model of swimming against the instantaneous current as
defined so far is that it requires an organism to instantaneously gauge the net
water movement over the forthcoming period 7 and swim accordingly; in effect
to predict the displacement due to water movement. A more realistic model
can be considered one in which the organism swims against a moving average
built up over previous time. The overall averaging period remains 7, but the
moving average is composed of smaller timesteps. It is convenient to make these
component timesteps, 0¢, equal to the individual timesteps of the particle tracking
program. If ¥ represents the fraction of maximum swimming distance represented
by the root mean squared diffusive distance of swimming error, this fraction needs

to hold true over the period 7. This gives the following relationship between &,
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Figure 6.4: Probability density function for the net displacement of an or-
ganism swimming against flow averaged over a period T. V, = 0.00lms !,
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model using Az = 1m and N = 60000.
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Figure 6.5: Probability density function for the net displacement velocity of an
organism swimming against flow averaged over a period T. V, = 0.00lms™!,
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Figure 6.6: Population with an exponential growth rate, (intrinsic growth rate
= 0.39day™"), swimming in a lkm river against a current with V, = 0.001ms™",
®, = 0.06m%s~. Graphs of ratio of long term growth rate to intrinsic growth rate
compared to Vi /Vy: swimming against average current, (solid line); swimming
against a moving average, (dashed line); swimming against a predicted current

averaged over a period T, (dot-dashed line). T = 6hrs.

and V;

28,7 = JVT
20,7 = V2V2r?
192
o, = TTVf (6.21)

For the much smaller time periods 4t the ratio of diffusive to advective swimming
distance will be much greater. The tracking timesteps, however, are not intended
as part of the biological model and the choice of §¢ should be such that smaller

values have little or no effect on the final result.

Fig. 6.6 shows graphs of \/r against V;/V, produced from the particle tracking
and population model combination for the case where ¥ = 0.1. Values for V,, ®,
and r are as in section 6.2.1. The dashed line represents the result obtained using

a moving average. The dot-dashed line represents the earlier case of a prediction
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of the water movement by the organism. For comparison the solid line shows the
result obtained by swimming against the average current, (as seen in Fig. 6.2).
Both models of swimming against an instantaneous current show significantly
less improvement in A/r values as swimming speed increases relative to water

advective velocity.

The relatively poor performance of swimming against the instantaneous, pre-
dicted, current is underlined by re-considering Fig. 6.4. This shows how the
upstream region of the pdf, (negative values of W, ), is more effectively reduced
than the downstream region. The animal swims against both downstream and
upstream currents. Upstream currents are on average smaller (because of the
net downstream advection) and so the animal is better at resisting them. Inter-
estingly, by comparison, swimming against a moving average appears not only a
more realistic model of behaviour, but also to achieve greater improvements in

persistence.

6.3 Clinging to the benthos: No facultative move-

ment in benthos or water column

6.3.1 Extension of analytical solution to a 1%D problem

Section 3.2.1 and Appendix A describes the method for a semi-analytic deter-
mination of the long term growth rate of a population in a one dimensional
advection, diffusion system. It was found possible to extend this technique to
solve for a system as before but with the addition of a benthic state and constant

rates of transfer between benthos and water column.

To attain an analytic solution organisms are assumed to be static while in their
benthic ‘state’. A further simplification is to assume that the times spent in the

drift or in the benthos are independent of the river velocity, or more accurately
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the organismal advection and diffusion coefficient used for organisms when they
are in the drift. If, in addition, organisms are assumed to have exponential decay
distributions for the benthic and water column residence times then the rate of
transfer between states are simple constants. With these assumptions the single

continuity equation, (Equation 3.2), becomes a coupled pair

on on 0%n
A _ _yv e 2
5 p(n)n — fn+am -V, p + 502
88—7? = p(m)m+ fn —am (6.22)

where m(t,x) represents population density in the benthos at time ¢ and point z,
a is the rate of transfer from benthos to drift and [ is the rate of transfer from
drift to benthos. As in the previous theory, it is only possible to derive analytic
solutions if the per capita growth rates are constants. In the following solution it

is assumed p(n) = p(m) =r.

If the population in the benthos assumes the same long term spatial pattern as
that in the drift, then the population density in the benthos at all points is a
constant multiple of the population in the drift at the same location. That is
m = On where 6 is the constant of proportionality. With no movement in the
benthos the boundary conditions for this problem remain as in Equations (3.3)

and (3.4).

To simplify the problem the following scaled terms are introduced

T =t/ty wherety =r"1!
X =x/xg where vp = Ly = /P,r!
w=a/ayg where ap =7
o=0/By where fy=r
v="V,/Vy where Vj =V; =2J/®,r
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Substituting these scaled terms into Equation (6.22) yields a simplified set of

equations
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on on  0°n

a—T:n—an+wm—2ya—X+aX2 (6.23)
0
8—7; =m—wm+on (6.24)
with boundary conditions
on
2vn(0,T) — — =0 (6.25)
0X | _,
n(l,T)=0 (6.26)

where | = L/Ly. Using the assumption m = n solutions were sought of the form

no= STFX)
m = 6n (6.27)
where A = A/r is the scaled long term growth rate. Back-substituting into

Equations (6.23) and (6.24) and dropping the (X) notation gives

df d*f
and
ON=0+0 —wb (6.29)

Using the relationship —o+wf = (1 — \) from equation (6.29) in equation (6.28)

gives
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dif &
Ozﬂ—AX1+®f—mg§+7ﬁé (6.30)

Appendix D shows that the general solution to this problem should be in the
form

f(X) = Ae** cos kX + Be** sin kX

(6.31)
where £ = v and solutions are only possible if
k
tankl = —— (6.32)
v
where
k= 4/(1-)) (1 - L) — 2 (6.33)
1-A—w
Converting equation (6.32) back to dimensional form gives
L Vi
t — = 6.34
o <'€ Ld> v, (6.34)

where k is given by

D)@ e

or

K:J(1_%)<L+§I%t7>—(g)2 (6.36)
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Obtaining values of the scaled long term growth rate \

With parameters [ and v fixed, equation (6.32) can be satisfied by an infinite series
of values for k. From equation (6.33), however, it can be seen that negative values
of k will always have a positive equivalent of the same magnitude. Because all
other parameters, (including o and w), are held fixed this must be derived using

the same value of .

Concentrating on positive values of k, we investigate the relationship between k
and \. Squaring k, to remove the square root, and differentiating with respect to

A we obtain

%? _ &4—5:%i7>_<@%%E%V>

- -7 1_,_2
B wH+A-1 wH+A—1

- —Lr@:%%iﬁ (6.37)

The product ow is always positive, as is any term squared. Therefore dk?/d\
is negative for any value of A showing that the maximum possible value of A is
obtained from the smallest permissible value of k? and, given the relationship

between positive and negative k values, the smallest positive value of k.

The above suggests & = 0 provides the maximum possible A\ value. However,
substituting k£ = 0 back into the general solution given by equation (6.31) means

that the right hand boundary of the system requires that

Ae” =0 (6.38)

This can only be satisfied if A = 0, which in turn implies f(X) = 0 VX and we

are not interested in systems containing zero population density.

With £ = 0 excluded, the next value for positive £ in which the straight line
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—k/v cuts the curves for tan £l is in the region 7/2 < ki < 7.

Because determining £ involves a quadratic in A, it is possible for two values of A to
satisfy equation (6.32) for the single value of k of interest. As we are interested in
the largest possible long term growth rate we simply need to consider the larger of
the two roots. If we substitute w = (1 — ) into Equation 6.33 then the quadratic

for obtaining the roots of A becomes

—?+ww+o+ v+ k) —w+ k%) =0 (6.39)

Which has roots given by

1 1
w = (1—)\):§(w+a+u2+k2)ii\/(w+a+y2+k2)2—4w(y2+k2)

1 1
A = L—;w+a+ﬂ+kﬂi§¢W+a+w?+WV—&Mﬂ+k% (6.40)

6.3.2 Effect of exchange rates on proportions of popula-

tion in drift and benthos

Significant relationships between the scaled long term growth rate A, the scaled
sinking and re-suspension rates ¢ and w, and the constant of proportionality
between benthic and drifting population density at any point, €, can be seen
from consideration of Equation (6.29). Gathering all terms involving 6 to one

side gives

o=0w+A—1) (6.41)

As o > 0 this implies

Blw+A—1)>0 (6.42)
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As 0 > 0, two cases must be considered. If # > 0 then the following relation holds

w+ A

v
—_

A > 1-w (6.43)

If w > 1, A can become negative and therefore the dimensional long term growth
rate A can become negative. If w = 1 then from Equation (6.43) A > 0 and if
w < 1 then A > 0.

If & = 0 then nothing can be inferred about the relationship between w and A from
Equation(6.42). However, the trial solution of Equation (6.27) and the O.D.E. of
Equation (6.30) can be seen to collapse down to the case when all organisms are
permanently in the drift and the long term growth rate can be determined as in

section 6.1

If w is set to zero then Equation (6.41) becomes

o=0\—1) (6.44)

As o > 0and 6 > 0 and the maximum possible value for A is one, this implies that
o = 0 also. Further A = 1, that is the long term growth rate equals the intrinsic
growth rate and/or § = 0. These results are reasonable if it is remembered that
population in the benthos grows exponentially with no density dependence and
without being subjected to any form of dispersal. With the rate of recruitment
to the drift equal to zero any population in the benthos at a point z will grow at
the intrinsic growth rate. To obtain a value of A less than one there can be no

population in the benthos, that is # must be zero.

The value of # for any given combination of v, [, o, and w is again found from

Equation (6.29), that is
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o
= - 6.45
w+A—1 ( )

If we define N = n + m then using Equation (6.45), N can be expressed as

o
N = 14 —
n( +w+)\—1>

w+A—1+0
N = - 6.46
n( w+A—-1 > ( )

and the proportions of total population made up of individuals from the drift and

the benthos becomes

w+A—-1

w+A—14+0
o
= - - 6.47
w+A—14+0 ( )

SERIE

If A =1 then § = o/w such that m = (¢/w)n, n = (w/o)m and

w+o
o

- (6.48)

w+o

SERIE

It is shown in section 6.3.3 that the proportions of Equation 6.48 can be predicted

from a non-spatial Markov process with two discrete states (Cox and Miller 1990).

More generally, § can be found by solving for A first, or by substituting for A from
Equation (6.40), giving

o

(w—1)+1—%(w+a+y2+k2)—1—%\/(w+a+l/2+k2)2—4w(y2+k2)
H — " (6.49)
— Lo+ 12+ k) + L/(w+o+ 12+ k)2 — dw(v? + k2)

SIS
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Figure 6.7: Graphs of proportion of population in benthos against scaled sinking
rate for various values of scaled re-suspension rate. Right hand frame repeats the
data of left hand frame over a small range of o. Results are for fized values of
Vi/Va and L/Lg. Dashed lines represent proportion of population that would be
found in benthos if there were no horizontal movement.

Fig. 6.7 shows graphs of the proportion of population in the benthos against
scaled sinking rate for various values of scaled re-suspension rate. The right hand
panel is identical to the left hand panel except in only showing results over a
small range in 0. As these proportions depend not only on w and ¢ but also on
A, they therefore depend on the scaled quantities v and [. To produce Fig. 6.7
specific values were chosen for v and [. The dashed lines represent the proportion
of the population that would be found in the benthos if there were no horizontal
movement, (that is, they are determined by Equation 6.53 of section 6.3.3). The
right hand panel shows that this approximate result for the proportion in the
benthos is very close to the true result for all values of o if w is sufficiently high
and only differs significantly from the true result when both w and o values are

low.

Re-considering Equation (6.47) for m/N, it can be seen that as o tends to zero
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Figure 6.8: Graphs of proportion of population in benthos against scaled sink-
ing rate for scaled re-suspension rate of w = 1.0. Solid lines represent different
combinations of V,/Vy and L/Ly. a) V,/Vq = 09, L/Ly = 1.0; b) V,/Vy; =
08, L/Ld = 20, C) Vm/Vd = 07, L/Ld = 30, d) V{}C/Vd = 06, L/Ld = 40, 6)
Ve/Va=0.5, L/Ly =5.0; f) V,/Va= 0.1, L/Ly = 9.0. Dashed line represents
proportion of population that would be found in benthos if there were no horizontal
movement.

the denominator is dominated by the expression w + A — 1. Small values of w in
turn make the expression more critically dependent on the value of A\. The differ-
ence between systems with and without horizontal movement is that horizontal

movement can generate equilibrium solutions with A < 1.

The value of A for given values of w and o depends on values chosen for v and |.
Thus, as combinations of v and [ move the value of A to the lowest permissible for
a given value of w, values of m/N will diverge from the approximation assuming
no movement as o values decrease. This effect can be seen in Fig. (6.8) which
shows graphs of m/N against o for the single value w = 1.0 but for different
combinations of ¥ and [. The case equating to no horizontal movement in the

system is also represented via a dashed curve. The values for v = V,/V; and
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[ = L/Lg4 represent points on a straight line taken through Fig 6.1, (not drawn).
As v increases and [ decreases we move to progressively lower values of A/r and,
as expected, the curves of Fig. (6.8) diverge from that equating to no horizontal
movement in the system. Thinking in physical terms, low values of w and low
values of \ equate to a population allowed a greater chance to grow in the benthos
without entering the drift, but with a higher chance of being washed out of the

system if entrained.

6.3.3 Comparison to a two discrete state Markov process

The assumptions about residence times and movements between the drift and
benthic states that allow an analytic solution to the problem of benthic clinging
can also be used as the basis of a statistical approach for assessing the proportion

of population in each state.

Assuming exponential decay distributions for the benthic and water column res-
idence times allows these distributions to have no 'memory’. If in addition the
movement of the population in the drift is ignored and the population in drift
and benthos is considered uniformly spread then the problem has ceased to be
spatial. It can now be dealt with as a Markov process with two discrete states

(Cox and Miller 1990).

The two states are that of being in the benthos (labelled state 0) and being in
the water column (state 1). Let the mutually independent and random residence
times in the benthos, {7}, Tpe, ...}, and those in the water column {71, T2, ...}
be exponentially distributed with mean values of T, and T,, respectively. The
rates of transition between states are 1/T, = a and 1/T,, = 3. Given that an
organism is in state 0 at time ¢ the probability of a transition to state 1 in the

interval (¢,t 4 6t) is given by
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p(S(t+d0t) = 1|S(t) = 0) = adt + O(6t?) (6.50)

where S is the record of the state of the organism.

Now let py(t) be the probability of being in the benthos at time ¢ and p,,(t) the
probability of being in the water column at the same point in time. The rates of

change of these two probabilities are given by

py(t) = —apy(t) + Bpu(t),

py(t) = —Bpu(t) + apy(t) (6.51)

If the initial probabilities p,(0) and p,(0) = 1 — py(0) are specified, then the

solution to Equations 6.51 are given by

po(t) = 4 +{pb(0) 4 }G(Mﬂ)t,

a+ [ Ca+p
_ @ __“ ~(a+B)t
Pu(t) = e {pw(O) a+ﬁ}e * (6.52)

From Equation 6.52 it is clear that as ¢t — oo, then independently of the initial

conditions, the probability distribution tends to

I} o«
a+f’ pw_a+ﬁ

Py = (6.53)

Therefore, for a population in the one dimensional domain, regardless of what
proportion are considered to start in the water column, after a time large com-
pared with 1/(a + (), all organisms will have the same probability, a/(a + )
of being in the water column. With respect to investigating persistence through
simulation, Equation 6.52 shows that the time-dependent terms vanish if p,(0) =

Do, Pw(0) = py. Thus, if each particle tracked to form the redistribution matrix
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starts in the water column with probability p, and in the benthos with proba-
bility p, = 1 — p,, then — if exchange rates are sufficiently high in comparison to
intrinsic growth — we can effectively assume the proportion of time spent in the

water column to equal p,, during the simulation.

6.3.4 Effect of retention in the benthos on critical velocity

The previous sections show that with transition rates, a and £, sufficiently high,
the proportions of population found in the drift and benthos closely approximate
those predicted by Equation (6.53). This equation suggests that with V, and ®,
constant throughout the domain, and with organisms non-moving in the benthos
and acting as passive particles in the water column, the effect of transitions be-
tween the benthos and water column is analogous to considering passive particles
permanently resident in the water column but subject to advective water velocity
of a/(a + B) x V, and diffusion constant of a/(a + ) x ®,. With this assump-
tion the coefficient of variation of the average organismal displacement over a

generation becomes

1 V2P, p,rt «
Co(r™) = —7— Du
PuVar a+

(6.54)

As in the case for swimming against the average current potential persistence is

possible iff C,(r~') > 1/v/2. In this case C,(r~!)/Cy(r') is given by

1
Ow(T_l) - \/m (655)

so for persistence we have the inequality
Cy(r~t) > YL (6.56)
V2

Using the same assumption a prediction can be made regarding how the amount
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of time spent in the benthos affects the critical water velocity, V., at which per-
sistence becomes impossible. For passive organisms permanently in the water

column the relationship was found to be

‘/C = 21/@137" (657)

If the organism spends the fraction, p,, of time in the water column this rela-

tionship becomes

pw‘/;:(pw) = 2\/ pwq)xr
Ve(pw) = 24/py'®P.r (6.58)
The relationship between V, and V.(p,,) is therefore

Vipe) 1 V.
bu) _ Ly ) =
V;: vV Pw vV Pw

Plotting log(V.(pw)/V.) against log(1/,/pw) gives a straight line with slope —0.5.

(6.59)

This predicted relationship is shown as the black line of Fig. (6.9). The other
lines show the calculated results for different values of [ = L/Ly. As the length
of the system increases relative to the diffusion length the results more closely
approximate the predicted relationship. With L/L; = 10 this agreement becomes

very close except for high values of py,.

For any given value of L/L, the same line in Fig. (6.9) is obtained by choosing
any value of o or w and then varying the other scaled rate of state change in order
to achieve the desired value of p, via use of Equation (6.47) with \ set to zero.
This assumes p,, = n/N, that is the proportion of time an individual spends in
the drift is equivalent to the proportion of population found in the drift at any

one time.

141



100 ;
red: 1=10
green: |=5
blue: =1
magenta: 1= 0.1
10 ;
2
e
> | |
10 N
0 L ool L \‘\\\\\‘ L ool L P T
0.0001 0.0010 0.0100 0.1000 1.0000

Py

Figure 6.9: Graph of the ratio of critical velocities (that for individuals spending
time in the benthos against the maximum possible for passive particles found per-
manently in the drift), against the proportion of the long term population found
in the drift. Black line is the relationship predicted by Equation (6.59). Coloured
lines are results for systems with different values of | = L/Lq and V.(p,) deter-
maned from Equations 6.47 and 6.40.

The advantage in terms of persistence gained from time spent in the benthos is
illustrated by the fact that even for a value of L/L; = 0.1 non zero values of
Vy; are possible. By contrast Speirs and Gurney (2001) found that for passive
particles permanently in the drift, it was not possible to achieve persistence for

an L/Lg value less than 7/2.

6.3.5 Appropriateness of exponential residence times

The above theory is based on exponential residence times for both the drift and
benthic states of individuals. The literature is very unclear as to the timing and
reasons for benthic animals to enter the water column. Exponential residence

times in the water column, however, is supported by theory and observations.

With regard to benthic residence times, there has been considerable debate on
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whether drift entry is passive, (as the result of hydrological displacement), or ac-
tive, (Wilzbach 1990). Poff and Ward (1991) compared between day differences
in drift density and drift rate of indigenous benthic insects for three riffles, (refer-
ence, experimentally increased flow, experimentally decreased flow), in the upper
Colorado River. They found increased drift rates following flow reduction for sev-
eral taxa including Baetis (mayflies), Simuliidae, (blackflies) and Brachycentrus
americanus, (caddisfly). This was considered indication of active drift joining as
reduction in flow rate and velocity would be enough to reduce the mean shear
stress acting on the stream bed. For Baetis spp. several authors have reported
active entry into the drift under conditions of low velocity, (Minshall and Winger
1968; Corkum, Pointing, and Ciborowski 1977; Corkum 1978; Ciborowski 1983;
Allan and Feifarek 1989). Drift density and rate results for other species - the
mayflies Paraleptophlebia heteronea and Ephemerella infrequens and the caddis-
fly Lepidostoma ormea - seemed to suggest passive recruitment to be at least a
significant component to these species’ rate of entry to the drift. Statzner, Gore,
and Resh (1988) cite results of laboratory experiments, performed on various
macro-invertebrates, to determine the maximum velocity that could be with-
stood before individuals were swept into the drift. For caddisflies, mayflies and
stoneflies the velocities were well beyond what would normally be encountered in

natural streams, lending support to active drift entry.

Such results do not provide the means to determine a rate of entry to the wa-
ter column and the situation is complicated further by the fact that conflicting
results, concerning benthic (and drift) activity, have been reported, even within
species, (Wilzbach 1990). Statzner, Gore, and Resh (1988) conclude that most
field experiments, and indeed many laboratory experiments, are un-repeatable
and not comparable because too few hydraulic characteristics are measured. To
fully characterise the hydraulic conditions acting on benthic invertebrates mea-
surements are required of mean velocity, depth, substratum roughness and tem-
perature, the last used to determine the kinematic viscosity of the water. Most

field studies by contrast provide only mean velocity and/or mean discharge and
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stream order. These last two measures are not so useful. Those hydraulic param-
eters that seem to most significantly correlate to benthic population distributions

can vary considerably for the same discharge or stream order.

With regard to residence times in the water column, Smith (1982) considered
particles/individuals of negative buoyancy introduced to a column of completely
static quiescent water column of depth H. It is then assumed that the terminal
sinking velocity V; of each particle is achieved instantaneously and that particles
will continue to sink at speed V; until they hit the bottom. The settling time for
a particle initially at the top of the water column, #', is therefore H/ V.

If a large number of particles are spread homogeneously through the water col-
umn, at a concentration ng, these particles will then settle in times in the range
0 — ¢. At any intermediate time ¢ less than ¢’ the proportion of the original
suspension that has settled is given by noVit/H, and the proportion left in the

water column is therefore ng — noVit/H.

It is now assumed that at time ¢ the column is instantaneously and homogeneously
mixed, such that particles still in suspension are evenly mixed throughout the
water column. Particles already on the bottom are considered protected from
mixing, a not unreasonable assumption given that turbulent flows have a laminar
sub-layer. If the new concentration over the water column is labelled n; then its

value is given by

ny =no(l — Vit/H) (6.60)

If there are many instantaneous mixings — m say — in the time t' rather than one,
the periods of quiescence become t'/m and the population remaining after the

first and second mixings become

Ny jm = no(1 = Vit'/mH),  noyjm =no(1 = Vit'/mH)(1 = Vit'/mH) (6.61)
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The population density after the mth mixing (at time t') becomes

ny = no(1 — Vit'/mH)™ (6.62)

Since t' = H/V; Equation (6.62) simplifies to

ny =ng(l—1/m)™ (6.63)

As m becomes large, Equation (6.63) tends towards

ny = no(1/e) (6.64)

where e is the natural logarithmic base.

The above theory then, suggests exponential residence times with £ being given
by f = 1/t'. In turn this gives [ in terms of the sinking speed and overall depth

as follows

(6.65)

=
I
Sepe

This result does not need a large number of mixing events within the time ¢’ to
hold true, (Reynolds 1984), and fully developed turbulent flow in rivers can be
considered to have a very large number of mixing events within the timeframe
needed for planktonic settling. Even in flows where the water column might pass
between periods of turbulent and laminar flow, such as in tidal bodies at periods
of slack tidal flow, settling rates are likely to resemble the pattern for a turbulent
water column rather than one which is quiescent. Experiments on three species of
killed phytoplankton gave results that matched the time for 95% elimination from
the water column predicted from Equation (6.64) to a good degree, (Reynolds

1984, page 76). Elimination time was however influenced by the ‘form resistance’
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of each species. Those with higher form resistance achieved longer times in the
water column. Form resistance is a non-dimensional measure of the degree to
which an organism’s shape increases its drag. It is therefore also a measure of

how readily an organism can be entrained by random water movements.

The theory of Smith was developed with a view to explaining phytoplankton
concentrations. In the shallow and turbulent streams considered capable of be-
ing represented by the one dimensional modelling approach of this chapter ben-
thic dwelling microphytes? do occur but phytoplankton are absent, (Horne and
Goldman 1994). Of considerable interest in upland streams, however, are in-
vertebrates. In drift samples of swift flowing temperate streams, the insect taxa
Ephemeroptera, Simuliidae, Plecoptera, and Trichoptera are usually of most quan-
titative importance, (Brittain and Eikeland 1988). Applying the above theory to
these larger and more dense organisms requires considerably more faith in the
idea of instantaneous mixing. Perhaps remarkably then, most studies of inver-
tebrate drifting times and distances have demonstrated fixed proportions of ani-
mals remaining in the water column settle to the bottom for each unit of time (or
distance) that passes. Higher stream advections, as well as moving individuals
further per unit time, increase drift distances by reducing the rate of settlement,
but the general pattern remains the same, (Madsen 1968; McLay 1970; Elliott
1971a; Ciborowski and Corkum 1980; Lancaster, Hildrew, and Gjerlov 1996).
Elliott (1971a) also observed that live animals were able to settle more quickly
than dead individuals, and that there were differences in settling rates between
live specimens from different species. This suggested behavioural differences as
settling rates did not vary amongst dead animals. However, the exponential rate
of return to the benthos over time still held true. It seems that for settling
at least exponential residence time in the water column is not only convenient

mathematically but also the truest representation of reality.

2Interestingly, one study at least has shown that benthic diatoms have selectively emigrated
from experimentally darkened flumes by altering their buoyancy or form resistance to increase

their likelihood of entrainment into the flow, (Bothwell, Suzuki, Bolin, and J. 1989).
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Chapter 7

2D river systems

This chapter considers persistence in a model formulation that sets out to describe
the circumstances in a deep river with modest flow rates. As shown in Appendix
B, the horizontal velocity, V,., in a uniform channel of depth H at a depth z below

the surface is given by

Vi(2) = Vi (1 - {%D = 20 (1 - {%D (7.1)

where Vg represents the velocity of the water at the free surface, (z = 0), and Vi
the depth averaged or mean velocity. The horizontal advection of any organism
at any depth, V.(z), can be considered a fraction, ¢, of the water velocity at that
depth. In a river system the long-term average water movement can be considered
parallel to the bottom of the channel as can the advective dispersal of planktonic
organisms. Diffusive dispersal on the other hand can act both in the horizontal
and the vertical although rates of hydrodynamic mixing can be several orders of

magnitude lower in the vertical than in the horizontal, (Reynolds 1994b).
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7.1 Passive organisms permanently in the drift

To understand how the vertical gradient in advection and vertical diffusion influ-
ence the story of persistence, (as determined from the one dimensional analysis),
Speirs and Gurney (2001) initially considered the limiting case when vertical dif-
fusion is set to zero. Apart from enabling analysis this representation can be
supported by the difference in mixing rates cited above and — leaving aside the
premise of passive organisms for a moment — from the argument that any be-
haviour is likely to be more successful in decoupling vertical water movement
from individual motion. The effect of the assumption is to dictate that any
members of a population starting at a depth, z will live out their lives at the
same depth, as will their descendants. The problem therefore becomes a set of
uncoupled one dimensional systems as considered in the previous chapter. The

advection velocity of the population in a layer is given by

Vale) = =20 (1 - {gr) (72)

From the one dimensional analysis inequality (6.7) implied that for a system of

length L and a population with intrinsic growth rate r, washout will occur if

T
Ya o 0434 7.3
Ir (7.3)

Back-substituting for V, into Equation (7.2) gives a critical depth above which

washout is assured, that is washout occurs if

3
2 < zo=Hy|1—0.289— (7.4)
EVR

Speirs and Gurney (2001) found that if the average value of V, in the water
column was set at the critical level specified by inequality (6.7), z. = 0.58 H such

that persistent population is restricted to the bottom 42% of the water column.
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This is consistent with the vertically averaged value of the velocity profile residing
0.4H from the bottom, as discussed in section 4.4. The persistent zone diminishes
rapidly as the average value of V,, the effective discharge rate of the organisms,

increases.

7.1.1 Critical vertical diffusion coefficient

Speirs and Gurney (2001) used populations with exponential growth rates to
consider the effect of non-zero vertical mixing, the coefficient for vertical diffusion
being represented by ®,. The effect of such mixing was different between systems
allowing persistence at all depths when ®, = 0 and systems where washout occurs
nearer the free surface. If the rate of organismal advection at the surface still
allows persistence, vertical mixing exports population from the faster growing
(and more densely populated) lower layers to the upper layers where greater
advection removes individuals more quickly and causes slower overall population
growth. The average per-capita loss rate over the depth of the water column as
a whole is increased and overall system population growth is reduced, but it is

impossible for the system to obtain a negative long term growth rate.

In systems where the advection in upper layers is sufficient to cause washout in
the absence of vertical diffusion, it was found sufficiently high values of ®, would
cause the overall growth rate to become negative, leading to washout of the
entire population. Thus, in such systems there exists a critical vertical diffusion
coefficient ®,, that represents the limiting amount of diffusion for population to

persist in the system as a whole.

To form an analytic estimate for this diffusion coefficient the deeper region of wa-
ter allowing persistence in the absence of vertical diffusion was effectively treated
like a one dimensional system as in the previous chapter, with the layer at the
critical depth z. acting as the absorbing boundary. The intrinsic growth rate was
taken to be the per-capita growth rate over the whole of this deeper region. From

the one dimensional analysis, it was found that when only diffusion is present,
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the ratio of the system length (represented here by H — z.) to the diffusion length

must exceed 7/2 for persistence, that is

H— 2,

™

Rearranging for ®, and back substituting for z. from Equation (7.4) gives an

upper bound for @,

4rH? Ir\’
B, < b, = — (1 o J1- 0.289#) (7.6)
™ EVR

The length of a system that provides the threshold between population persistence
and washout for a given value of diffusion or, in cases with advection present, a
given combination of advection and diffusion values, can be called the critical
system length, L.. If investigating the critical value of diffusion coefficient for
given values of system length and advection, the system length can still be thought

of as the critical length for the point at which the diffusion equals its critical value.

7.2 Effect of sinking

Phytoplankton that have a density greater than water and no means of actively
swimming will sink. This is true of a whole class of phytoplankton, the diatoms.
This form of movement is not behaviour in itself although there is considerable
evidence to indicate such non-buoyant algae use various means to control the
rate of sinking, for example through alteration of their own density, (Reynolds
1984). The sinking velocity, V5, is also known as the terminal velocity because
if the algae were to fall through still water it would initially accelerate before
reaching a steady (terminal) velocity at the point where the force causing the
motion (the density difference between the algae and the surrounding water)
is balanced by the drag force resisting motion. The drag force depends on a

dimensionless quantity called the drag coefficient, C'p which in turn is dependent
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on the particle Reynolds Number R, = Vid/v where d represents the diameter
of the particle and v is kinematic viscosity. This Reynolds number is the ratio
between the inertial forces being exerted on the fluid by the falling particle to
the viscosity of the fluid. For R, < 0.1 the flow around the particle is entirely
laminar and for R,, < 0.5 it can be assumed laminar to an error within 10%,
(Reynolds 1984). Most phytoplankton generate particle Reynolds numbers less
than 0.1 and the laminar nature of the flow around them means their sinking
velocity can be estimated using a modified version of the Stokes equation for the

terminal velocity of a sphere, namely

1
1Y

1

‘/;‘ -
po

d*(ps — p) (7.7)
where pg is the density of the algae, p that of the surrounding fluid, g is acceler-
ation due to gravity and p the dynamic viscosity. The term ¢ is known as the
coefficient of form resistance which takes account of the shape of the algae (for
a sphere ¢ = 1), which means the term d represents the diameter of a sphere
having the same volume as the actual shape in question. Any adaptive mecha-
nisms adopted by phytoplankton to alter their sinking speed compared to that
of an inert particle of the same density and shape can be accounted for, if the
magnitude of their effect is known, by adjusting the value of ¢. Importantly the
value Vi, in water bodies with homogeneous density, remains constant and is a

relatively simple addition to the the previous theory while potentially having a

significant effect on persistence.

7.2.1 Incorporating sinking into estimation of critical ver-

tical diffusion coefficient

The estimation of critical vertical diffusion coefficient employed by Speirs and
Gurney (2001) made use of the fact that in a one dimensional system in the ab-

sence of advection the ratio of the critical length of that system to the population
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diffusion length will be L./Ly = m/2. Once a settling velocity is introduced this
ratio is no longer known a-priori. From their work on the linear 1D problem with
advection toward the absorbing boundary Speirs and Gurney (2001) derived an

equation for determining this ratio, namely

2
d

L.

Lq

VdZ _ V2

T

VZ

T

arctan (7.8)

When estimating critical vertical diffusion, the domain of interest is that found
below the critical depth and the sinking velocity is a velocity away from the
absorbing boundary. The effect of this on the results of the one dimensional
analysis must be considered, especially as there is now the prospect that solutions
for advection velocities sufficient to allow the general solution to the population

equation to have real roots may be obtainable.

If the analysis of the one dimensional linear system is re-worked with ®, replacing
®, and V, replacing V, such that V, = —V; then the working of Appendix A can
effectively be left unchanged.

Case where V? < 4®r(1 — A/r) =49(r — A)

With V, = —V; the equation to be satisfied for valid solutions of long term

population growth rate is

L Vi Vi
tan (K—) = — = +2 .
an <I€ d) ( S)K SK (7.9)

with k, L,; and V, defined as before. As for the case with advection toward the
absorbing boundary, with the parameters of the problem fixed, Equation (7.9)
can be satisfied by an infinite series of values for x, but the smallest non zero
value provides the solution with the maximum long term growth rate. Potential
solutions for kL /Ly, however, now lie between 0 and 7/2. Since tan (KI%) — 00

as k — mLq/2L a solution to Equation (7.9) for 0 < k < wL4/2L is assured if
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d (Vy d L
— = — [t — 7.10
dr <V;H>L:0 ~ dr ( o <“Ld>> . (7.10)
Differentiating the left hand side gives
d (Vy Vy
(e =2 7.11
dk <Vsﬂ> o Vs ( )
and the right hand side
d L L L L
4 an (2 _ L 2( _> _—— 7.12
dr < . (KL)) L:o Lo \"La)lewo ~ La (712
therefore a solution is assured if
Vo L
— > — 7.13
v (7.13)
The equation for the critical length of the system, when A = 0, becomes
L. || w | [ vz -2
— = — t T 7.14
I, [ T V52J arctan [+ 0 J (7.14)

This equation is defined for 0 < |V| < V; and as expected has a maximum value
of 7/2 when V; = 0. As |Vy| — Vy then L./L; — 1. Therefore, with |V;| < 2v/®r

critical system length values are such that

1< L/Ly<m/2 (7.15)

The inequality for persistence in the deeper region of the river, previously given

by Equation (7.5) is now given by




Vr(H-z) IV, =L /L,

Figure 7.1: Characteristic curve for Vy/Vs against (H — z.)/\/®.r~! = L./Ly.
Dashed line shows line of equality between the two ratios.

(7.16)

Values of the right hand side of inequality (7.16) are known for when Vi = 0 and
Vs, = Vg, but for intermediate values it is necessary to treat the inequality as an
equation and solve numerically. Fig. 7.1 shows the characteristic curve for V;;/V;
against H — z.//®,r~1 = L/Ly, with a dashed line showing the line of equality
between the two ratios. As expected, it shows that solutions to Equation (7.9)

are found when V;/Vy > L/L,.

Case where V2 > 49(r — A)

The inequality V2 > 2v/®r(1 — A/r) defines when the general solution to the
population balance equation has real roots. Appendix A gives the boundary con-
ditions, written in terms of scaled variables, to be satisfied under these conditions,

namely

A (7.17)




and

—% = exp[2¢] (7.18)

where v here represents V,/Vy, | = L/Lg, ¥ = \/v?> — (1 — A) and A and B are

arbitrary constants. If the scaled velocity term v is defined such that vy = V;/Vy,
given the relationship between Vi and V, then v = —v,. Substituting for v, in

Equation (7.17) gives

— (_Vs)_"/) — Vs"_"/)
(_Vs)+77b l/s—lb

A
> (7.19)

With ¢ > 0 Equation (7.19) requires —A/B > 1 as does Equation (7.18). With
1) < 0 Equations (7.19) and (7.18) are again consistent. Therefore, unlike in the
case where advection is toward the absorbing boundary, there is no inconsistency

between the boundary conditions at either end of the system.

Equating boundary conditions and substituting back in dimensional terms gives

2 —

Vs Ve A
By et 2£J<E>2+§‘1
Ve v.\2 , A Lg \ \Vy r
woy() -t -
V.
_s_|_\Ij —L
Va
8 = exp —2\11] (7.20)
Vd—\IJ L Lg

As |V4| is such that V2 > 2v/®r(1 — A/r) and A < r, W is restricted to the range
0 < |¥| < V;/Vy. The left hand side of Equation (7.20) goes to infinity when
U = +V;/V, and to zero when ¥ = —V,/V,, while the right hand side remains
finite between these limits. Therefore, Equation (7.20) is always satisfied when

¥ = ( but also both a positive and negative value of ¥ must satisfy Equation

(7.20) if
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(7.21)

When ¥ = 0 so too is 9 and the absorbing boundary condition dictates that
e f(l) = 0 where f(I) = Aexp[(v — )l + Bexp|(v + ){]. This implies that
A = —B and in turn that f(X) = Aexp[vl] — Aexp[vl]] =0 VX, thatis ¥ =0

is a solution only possible for zero population in the system.

Differentiating the left hand side of inequality (7.21) and evaluating at ¥ = 0

gives

2V, 2V, 2V,
V. 2 = Vo2 = % (722)
Va(ve —9) |, Val(ss) ’
and performing the same to the right hand side gives
2L [ L 2L
—exp | —2W = — 7.23
Lo P sy~ Ta (7.23)
Therefore solutions are assured if
Va L
— < — 7.24
v < I (7.24)

which is the exact reverse of the condition for the low sinking velocity case.
Looking at Equation (7.20) it can be seen that on setting ¥ to a negative value,
the expressions on both sides are the reciprocal of when W is positive and of
equal magnitude. Thus, for a positive value of ¥ satisfying Equation (7.20), the
negative value of equal absolute value will also satisfy the equation and both roots

are given by the same value of long term growth rate.

An expression for the critical length can be obtained, as before, by setting A = 0

and rearranging Equation (7.20) as follows
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Figure 7.2: Characteristic curve for Vy/Vy against (H — z.)/\/®,r~t = L./L,.
Dashed line shows line of equality between the two ratios.

Ve AR
%: 12 o Vd+ (Vd)2 1 (7.25)
Tt Ly

The new inequality for persistence in the weakly mixed river is given by requiring
that the left hand side of Equation (7.25) exceed the right hand side and replacing
L. by H — 2.

Characteristic curve for critical diffusion coeflficient

As has already been seen, the term H — z., which is determined by the horizontal
flow parameters of the river and intrinsic growth rate of the population under
consideration, represents a boundary layer adjacent to the bed of the river within
which persistence is possible in the absence of vertical diffusion. When investigat-
ing values of vertical diffusion coefficient that will remove sufficient individuals
from this layer to make overall population persistence marginal, it is convenient
for simplifying notation to regard H — z. = L., even though strictly H — z, is only
a critical length once ®, = ®,.. For any given value of L. and V it is possible to

determine the critical value of the vertical diffusion constant, ®,, by first realising
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that V5 /Vy o< 1/3/®, o L./Ly. Therefore, holding V; and L. fixed while varying

®, produces a straight line. If ¢ is the slope of the line its value is given by

Vi Vs L L

¢ = — — < __ ¢
2\/’[_"\/ (bzg 2\/?\/ (I)ZI / vV T71\/¢Z2 \V4 Tﬁl\/ ¢Zl
Vs
= o1 (7.26)

where ®,; and ®,, are two arbitrarily chosen values of ®,. The critical vertical
diffusion coefficient, ®,., is that value which causes Equation (7.14) or (7.25) to
be satisfied for the given values of V; and L. If the value of L./L,; at which this

occurs is named Ag, then

®, = ——¢ (7.27)

The expression @,./rL? is a dimensionless expression involving ®,.. This ex-
pression equals 1/A%, which is itself a function of the dimensionless term ¢. A
characteristic curve for the system involving ®,. can therefore be obtained from

plotting ®,./rL? against ¢ = V,/2rL,.

Fig. 7.3 shows this characteristic curve. The region represented by V; values
giving critical diffusion values derived from Equation (7.14) is a very small fraction
of the total curve. When V;/V; — 1 so too does L./Ly which in turn means the
slope variable ¢ also tends to one. The minimum value of ®,. is given when

Vs = 0. It is known that when V;/V; =0 then L./L; = L./Lq = 7/2 such that

L.r w 4rL?
- 5 (bzc - -
o, 2 = 2

(7.28)
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Figure 7.3: Characteristic curve relating critical vertical diffusion coefficient to
sinking velocity.

Fig. 7.4 shows curves of long term growth rate against vertical diffusion coefficient
for a population growing exponentially. Domain dimensions, advection rate and
horizontal diffusion coefficient and population intrinsic growth rate were made the
same as those used by Speirs and Gurney (2001) to test the estimate of critical
vertical diffusion coefficient for neutrally buoyant particles. The comparison is
not exactly the same as Speirs and Gurney (2001) used a logistic growth rate and
compared equilibrium mean densities to ®,, but they found non-linear effects
to be small. The figure shows the good prediction of ®,. when sinking speed is
zero. The additional two curves correspond to values of the dimensionless variable
Vs/2rL. of 1.0 and 10.0 for this system and it can be seen that as sinking speed
increases the prediction of the critical vertical diffusion coefficient becomes less
accurate. This is believed to be because the assumption made that the end of the
vertical system represented by the critical depth is an absorbing boundary beyond
which no population returns is progressively violated as sinking speed increases.

An improved, but more complicated estimate of ®,. is presented below.
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Figure 7.4: Curves of long term growth rate against vertical diffusion coefficient
for a population growing exponentially with r = 0.39day !, in a 1km long and 2m

deep river with Vi = 0.002ms . Individuals are advected at the water velocity

and diffuse horizontally with constant ®, = 0.25m?s™. Curves are for sinking
speeds of Vs = Oms™! (neutrally buoyant organisms), Vy = 7.4 x 107%ms™! and
V, = 7.4 x 10 °ms . Dashed lines indicate estimated values of critical vertical
diffuston coefficient for these sinking speeds.

7.2.2 Revised estimation of critical vertical diffusion co-

efficient

The preceding estimation of the critical vertical diffusion coefficient, by assuming
an absorbing boundary at the critical depth, effectively assumed the long term
growth rate, A, above the critical depth to equal —oo. In reality, in the absence
of vertical diffusion the long term growth rate will be a smooth function, reducing
with increasing altitude to a negative but finite value at the water surface. Unfor-
tunately, assuming A to be a linear function of depth, and applying the method
of Appendix A, leads to an ordinary differential equation but with non-constant

coefficients and the form of the solution could not be found. A less optimal but
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more tractable approach was to consider the regions above and below the critical

depth to each have a separate and constant value of per-capita growth rate.

The domain being considered now runs the length of the water column with a
reflecting boundary at either end. It is still possible to have an overall growth
rate of zero as the region above the critical depth receives a negative per-capita
growth rate. If the long term growth rate in the boundary region between the bed
and the critical depth is labelled A,, and that in the surface region A, then the
problem becomes one of two advection-diffusion equations which are independent,
except that they share a common boundary condition at Z, = H — 2., where Z,
is defined positive upwards from the bed and with origin at the bed. The two

equations are given by

on on 9’n

— =Ayn—1V, d, 2

or ~ Mt Vegg t P (7.29)
and

on on 0%n

I A — o .

o~ et = Vegg T P (7.30)

As before scaling is used to help simplify the problem. In this instance it is as

follows

t =T/t where t,=A,"

7z, =7, /79 where zp= Ly =1/®.\,%

v, = V,/vp where vy =V, =2VP, Ay

This leads to the scaled equations

(7.31)



and

on A, on 0%*n
on _Dsr gy O O 7.32
T VL PR (7.32)
Trial solutions are assumed of the form
n = e*'f(z;) for z; below the critical depth
n = e*'g(z,) for z, above the critical depth (7.33)

where A\, represents the scaled long term growth rate for this vertical problem:.

Back-substituting these trial solutions into Equations (7.31) and (7.32) leads to

df d*f
0_1_)\Z _2z—+— 734
( ) =2 dz,  dz% (7:34)
and
Ay dg d?g
— (B Ny 20, 09 .
0 (1&(”- )g v dZ_|_ dZ_2i_ (7 35)

We now have two ordinary differential equations with constant coefficients. These

0O.D.E.s will have solutions of the form

f(zy) = Ae* 4 Be*+

g(z4) = Ce*+ + Ee™*+ (7.36)
where A, B, C, D are arbitrary constants and the s are given by the roots of the

auxiliary equations

VP =2vu,y+(1-X,) = 0 for f(zy)
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AST
72 - 2Uz’7 + (A— - )‘z) =0 fO?" g(Z-i-) (737)
br

For f(zy), 71 and 7, are given by

M= ’l}z—lb
Yo = v, + Y (7.38)

where ¢ = /v2 4+ X\, — 1. For g(z.), 73 and 4 are given by

Y3 = 'Uz_qva
Yo o= U4y (7.39)

_ 2 A
where ¢y = /07 + A, — 3=

Boundary conditions

At the river bed, (z; = 0), there is a reflecting boundary requiring no flux at the

boundary. That is

4

= 4
. 0 (7.40)

20, f(0)

Z+:0

At the top of the water column, z, = h where h = H/\/®,A;!, is another

reflecting boundary requiring

g

QUzg(h) - dZ+

=0 (7.41)

Z+:h

At the intersection of the split domain, z, = [, = (H — z.)/y/®.A};,!, the curve
defining population density along the domain must be continuous. That is, we

require a single value for the population density. This requires
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e/\ztf(lc) — e/\ztg(lc)
f(lc) = g(lc) (7'42)

A continuous population flux is also required, implying

Qsz(lc) - g = 2Uzg(lc) - g (743)

The term 2v, is constant throughout the domain and given the requirement ex-
pressed in Equation (7.42) this implies 2v, f(l.) = 2v,g(l.). This in turn implies
that

_ dg.
_dZ_|_

44
To (7.44)

z4=le z24=lc

Solutions satisfying the boundary conditions

Appendix E shows how, on substituting in the general form of the solutions to
f(z4) and g(z,) into the boundary condition equations, it is possible to eliminate
two of the arbitrary constants (A, B,C, D), using the fact that all boundary
conditions must be satisfied simultaneously. It is then shown that a solution exists
satisfying all boundary conditions if a value of A, can be found that satisfies one

of the following two equations.

Z +Z = e i e (7.45)
(v: + )% — (v, — 1))? _

[(Uz[ + 4hy)2 — e22(d-le) (p, — JZ)Q] X [62¢2(d ) (v, — 1) — (v, + z/)Q)]

—UE = tankl. + (7.46)
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[2k + = tan k|

z

(02 + )7 = 250, = )]

where k = /1 — A\, — v2.

Equation (7.45) is for sinking speeds that satisfy V2 > 4®, (A, —A,), while Equa-
tion (7.46) is that which needs to be satisfied when V2 < 4®,A,.(1 — A,/Ay,) =

[(Uz )Rt _ (4 %)}

49, (Ap — A,). The second equation comes about because for these lower sinking
speeds the roots to the auxiliary equation are complex. The two regions of sink-
ing speed value are equivalent to those for the case where the continuity equation
was solved with one constant value of intrinsic growth rate, the value A, simply
replacing r in the inequalities. In each case the term on the left hand side of
the equation and the first term on the right hand side form the equivalent to the

equations to be satisfied for the single growth rate case.

The term A, is contained within the terms ¢) and ¢,. If the length and depth of the
system are known, along with the horizontal advection and diffusion coefficient
then it is possible to determine the critical depth. If the constant boundary
region and surface region per-capita growth rates, A,. and Ay, are also defined
then on setting A, = 0 the only variable that can be used to satisfy either of the
above equations is [. which in turn provides an estimate for the critical diffusion
coefficient through the relationship l. = (H — z.)/y/®.A;,!. Determination of ®,,

values is performed via a NAG penalty function minimisation algorithm.

Values for A, and A,

The values of the boundary region and surface region per-capita growth rates,
Ay and Ay, must be related to the values of long term growth rate at each ver-
tical depth in the system assuming no vertical diffusion. The best relationship,
however, was unclear. To consider this problem an algorithm was produced to
determine the long term growth rates at finely spaced vertical intervals for any

given combination of system length and depth, intrinsic growth rate, r and hor-
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izontal diffusion coefficient ®,, using the value of horizontal advection derived
from Equation (7.2), (with ¢ = 1), and the analytic result for the one dimen-
sional advection-diffusion equation outlined in Appendix A. Three possibilities

were considered

1. Making Ay, and A, the means of the A values determined below and above

the critical depth respectively.

2. Considering that the long term growth rate at the critical depth is zero,
setting Ay, = A(Z; =0)/2 and Ay, = A(Z1 = H)/2.

3. Setting A, and Ay, equal to the A values at the bed and water surface

respectively.

Fig. 7.5 shows the value of ®,. predicted using these three methods to provide
values for the per-capita growth constants. The domain and horizontal diffusion
coefficient are as used in the previous section, sinking speed is zero, and there
are two flow regimes. The left hand panel has Vr = 0.002 while the right shows
results using double the mean flow speed. Predictions as given by Speirs and
Gurney (2001) are also shown. The figure shows that using A values from the
extreme ends of the water column gives the highest predicted critical vertical dif-
fusion value. With other parameters held constant, as the horizontal advection
is increased the negative long term growth rate at the water surface becomes a
greater magnitude while the positive value at the bed is unaffected. Critical ver-
tical diffusion coefficient predictions therefore become more pessimistic compared
to results from numerical runs. Depending on flow conditions, predictions using
either of the averaging approaches for the growth rate parameters can produce
results more inaccurate than the prediction from the much simpler method of
Speirs and Gurney (2001). Using A values from the extremes of the water col-
umn can cause an over-estimate in critical vertical diffusion coefficient. This is the
situation for neutrally buoyant particles, however, and this method is only sought

to improve predictions for non-zero sinking speeds, where (as shown below) there
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Figure 7.5: FEstimates of critical vertical diffusion coefficient, (vertical lines).
In both frames L = 10km, H = 2m and ®, = 0.25. In the left hand frame
Vi = 0.002 and in the right hand frame Vi = 0.004. Solid lines: estimates using
A values at extreme ends of water column for Ay, and Ag,; dashed lines: estimates
using (endvalues)/2; dot-dashed lines: estimates using calculated means of A
values below and above critical depth; dotted lines: estimates derived from formula
of Speirs and Gurney (2001).

is still a modest degree of more pessimistic prediction as sinking speed increases.

Therefore, this option was the one chosen for subsequent investigations.

Critical depth revisited

The determination of the critical depth in the previous theory relied on turning
inequality (7.3) into an equation and substituting for V. As demonstrated in Fig.
6.1 this value of V,, providing the critical depth is the absolute maximum value
possible, derived when the relationship between system length, intrinsic growth
rate and horizontal diffusion coefficient is at an optimum for persistence. If the
relationship between these values departs from the optimum the value of V,,/Lr
that gives the critical depth will reduce. This in turn requires the constant found
in Equation (7.4), (0.289), to be reduced. If the constant is not altered then
calculation of the critical depth can become impossible as the term inside the

square root of Equation (7.4) becomes negative. It is not known how to adjust
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the constant found in inequality (7.3) by analytic means. To investigate the issue
of boundary region and surface region growth rates, (as described above), a simple
numerical routine to determine long term growth rates at finely spaced heights
up the water column was employed. This program has very low computational
overhead and can be used to make an accurate determination of the true critical

depth.

Old and new estimates of critical vertical diffusion coefficient

Fig. 7.6 shows the new predictions for critical diffusion coefficient compared to
the estimates of the previous section. The numerical results are the same as
those shown in fig. 7.4. It can be seen that the new estimates still become more
pessimistic as sinking speeds increase but not to the same extent as the earlier
estimates. Therefore, the advantage of employing the modified method increases
as expected sinking speed increases. The values of sinking speed represented with
Fig. 7.6 are well within the range expected for water living plankton. Reynolds
(1984) states the sinking speed of Stephanodiscus astraea, a large freshwater di-
atom, to be approximately 2.5 x 10™>ms~!. Benthic living invertebrates can be

expected to have greater sinking speeds.

7.2.3 Characteristic curves for critical diffusion coefficient

When the critical vertical diffusion coefficient was estimated by only considering
the region of water column up to the critical depth, it was seen that the rela-
tionship between ®,. and the sinking velocity V; could be described by a single
characteristic curve. To make the diffusion and velocity terms non-dimensional
required use of the intrinsic growth rate r and the length of the water column up
to the critical depth, L. = H — z.. The value of the critical depth, and therefore
of L., was derived by using a fixed relationship between the intrinsic growth rate,

horizontal advection and horizontal system length at which persistence becomes
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Figure 7.6: Estimates of critical vertical diffusion coefficient for a system with
L = 10km, H = 2m, &, = 0.25 and Vg = 0.002. Sinking speed V; = 0.0ms™*
(top frame); Vs = 7.4 x 10 %ms™! (middle frame); Vs = 7.4 x 10 °ms~! (bottom
frame). Solid vertical lines: estimates using two segment vertical ‘domain’ and
A wvalues at extreme ends of water column for Ay and Ag,.; dashed vertical lines:
estimates derived assuming single segment vertical domain up to critical depth,
(as described in section 7.2.1).

marginal. In other words, L. is fixed by those parameters of the system that might
need to be altered to match different horizontal flow characteristics and/or dif-
ferent domains. Altering these independent parameters alters the location along

the characteristic curve for a given value of V.

Re-considering Equations (7.45) and (7.46) they are functions of

e ) = Vo + A, —1 = f(vg) or k =/1—(vs+A,) = f(vs) — given that

determining ®,. requires A, = 0.

L4 ¢2 = \/Us + )‘z - Asr/Abr = f(Us;Asr/Abr)-

o l.=(H — 2.)/y/®..A,"

o h—1l.= H/\/O, A" — (H —2.)/\/®.\,,t = 2./\/ PN
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It is still true that v, = Vi/Vy o< 1/y/®, o l. = L./Lq, but the relationship
between ®,. and V; will now also depend upon the ratio between the per-capita
growth rates chosen for the boundary region and surface region and, through the
term h — [, the ratio of the distance up to the critical depth to the overall depth
of the system. Fig 7.7 shows families of curves of ®,./Ay,.L? against V,/2\, L.
These non-dimensional terms are the same as used in the previous characteristic
curve except that A, has replaced r. This is not a significant difference. It is the
ratio of surface region to boundary region growth rate that determines the curve
to be used rather than the actual value used to scale the diagnostic variables. The
different frames show curves for different values of |Ay,|/Ay- while each curve of a
given frame is that established on using a different ratio of (H — L.)/H = 2./ H.
The use of |A4,| is simply to allow the ratio of growth rates to be expressed as a

positive number, given that all systems of interest have a negative value of A,.

For a given ratio of |A.|/Ay there exists a minimum ratio z./H beyond which
solutions can not be found with A, = 0, implying persistence is possible for
any value of ®, at ratios smaller than this minimum. Above a certain value of
z¢/H the curves become very close and the relationship between ®,. and V; can
effectively be considered as represented by a single curve. It can be seen, however,
that the value of z./H at which this effect is seen to happen varies considerably

as the value of |Ag.|/Ay, is altered.

One characteristic which does seem robust from inspection of Fig. 7.7 is the fact
that the scaled critical diffusion value does not increase appreciably until the

scaled sinking velocity reaches unity.
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Figure 7.7:  Curves of ®,./Ay.L? against Vi/2My.L. for different ratios of
|Asi|/Apr. In each frame curves are for different values of z./H. Going from
top to bottom z./H are: For |Ag|/Npy = 0.5; 0.67,0.7,0.75,0.08,0.85,0.95
and above; for |Ag|/Apy = 1.0; 0.51,0.55,0.6,0.7,0.85 and above; for
|Asr| /Ay = 2.0; 0.84,0.85,0.4,0.45,0.5,0.6,0.8 and above; for |Ag|/Ay. = 2.0;
0.17,0.2,0.25,0.3,0.4,0.7 and above. Top most curves in each frame are for the
smallest ratio of z./H for which solutions could be obtained.
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7.2.4 Attempted application to real river system

Data on river phytoplankton, (potamoplankton) populations has been collected
for a number of years for the river Meuse. This river has its source in France
and then runs through Belgium and the Netherlands before entering the North
Sea. The total length of the river is 885 km. Data on phytoplankton growth
and biomass is mainly available at a distance 530 km from the source, with some
other measurements between 480 km and 620 km, the Belgian sector of the river,

(Everbecq, Gosselain, Viroux, and Descy 2001).

The one dimensional advection-diffusion equation assumes no recruitment of indi-
viduals at the upstream end of the system. Descy, Gosselain, and Evrard (1994)
predict no significant phytoplankton biomass closer than 200 km to the source.
The downstream absorbing boundary has been taken as the location 620 km
from source as beyond this point no data is available. Although this choice of
downstream boundary is somewhat arbitrary, the solution becomes increasingly
insensitive to the length of the system as the ratio L/®, increases. A system
length of 420 km should make calculations very insensitive to changes in the

system length value.

The discharge and morphology of the river Meuse changes in the 420 km stretch
being considered. The river receives inflows from several significant tributaries.
The analytic solutions, however, require uniform values of advection velocity and
diffusion coefficient. Forcing a single value of discharge, depth, and therefore
mean velocity, for the whole domain length is an obvious source of error. The
method here, however, is only intended as a rough order of magnitude predictor,
so the whole domain is assumed to have the discharge as measured 570 km from
the source, as well as the river morphology at that location. It is true that along
the Belgian section, the river is regulated for navigation. Also fortunate is the
fact the tributaries to the river Meuse carry little or no phytoplankton, such that
input of phytoplankton from the tributaries need not be considered, (Everbecq

et al. 2001).
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Descy, Servais, Smitz, Billen, and Everbecq (1987) calculated the growth rate
of the phytoplankton community in the river and found it to peak a little above
0.7d='. They concluded that growth in this eutrophicated river was never nutrient
limited. The phytoplankton is dominated in the spring and early summer (before
the impact of zooplankton grazing) by the diatom Stephanodiscus hantzschii.
A study of growth rate in culture also found the intrinsic growth rate for S.

hantzschii to be r = 0.7d"1, (Swale 1963).

Estimation of &,

No measured values for the longitudinal dispersion coefficient, ®, are available.
Two formulas are available to estimate this value however. One is by Fischer?,

(Fischer, List, Koh, Imberger, and Brooks 1979)

‘7232
P, =0.011 }TIU (7.47)

where V, is the mean river velocity, B is the width of the river at its surface, H
is the mean depth and U, is the friction velocity given by U, = \/gH S where g is
the acceleration due to gravity and S is the slope (gradient) of the water surface.

This slope can normally be taken as equivalent to the gradient of the river bed.

The second is by McQuivey and Keefer (McQuivey and Keefer 1974)

Q
d, =0. = A4
0 0593753 (7.48)

where @ is the discharge of the river. Both equations require the slope of the river
to be provided. If a slope is not provided it can be calculated from the Manning

equation (Chapra 1997)

'Equation (7.47) is a simplified version of Equation (2.12), using assumptions about the

values of certain parameters from typical rivers.
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. 1
V, = —— R332 (7.49)

nman

where R is the hydraulic radius of the river, given by A./P, where A, is the cross
sectional area and P, the wetted perimeter, S, is the slope of the energy grade
line? and n,,,, is the Manning roughness coefficient. Manning roughness coef-
ficients have been determined experimentally for various open channel surfaces.
For the river Meuse comparison the most appropriate values are those of 0.030 for
clean and straight natural stream channels or 0.040 for clean but winding natural
stream channels, (Chow 1959). The Manning formula can be substituted into the
continuity equation and re-arranged to provide a relationship between river slope

and discharge

Qriman } 2 (7.50)

5= [ACR2/3

Thus a reasonable relationship between discharge, width, depth and slope can be
maintained even when slope is not given and only single, mean values of width

and depth are provided.

The discharge of the river Meuse can be broadly split into a period of summer

1 1

discharge, with values of 30 — 80m?s~! and winter values of 200 — 800m3s~!.
Significant phytoplankton counts only occur for the lower range of discharge.
Table (7.1) shows values of river slope, and ®, provided by Equations (7.47)
and (7.48) for values of discharge between 30 and 80 m?s™' and for width and
depth values given at the recording site (120m and 6m respectively). A Manning

roughness coefficient of 0.030 was assumed due to the regulation of the river.

It can be seen that the estimates of ®, from Equations (7.47) and (7.48) differ
by three orders of magnitude or more. Generally, each method is expected to

predict recorded values to within a factor of five (Chapra 1997). The problem

2By assuming that the flow is steady and the cross section constant, the energy slope is

made equal to the channel slope.
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Table 7.1:

Q |Vg |S U, ®, Eqn (7.47) | ®, BEqn (7.48)
30.0 | 0.042 | 1.627 x 1077 | 3.09 x 1073 15.055 91226.2
40.0 | 0.056 | 2.893 x 107 | 4.12 x 103 20.095 68406.5
50.0 | 0.069 | 4.520 x 1077 | 5.16 x 103 24.380 54724.7
60.0 | 0.083 | 6.509 x 107 | 6.19 x 103 29.397 45603.9
70.0 [ 0.097 | 8.860 x 107 | 7.22 x 103 34.397 39088.6
80.0 | 0.111 | 1.157 x 107 | 8.25 x 1073 39.433 34209.2

stems from the fact the estimation of McQuivey and Keefer is sensitive to the
flow’s Froude number, F,., given by ‘A/R/\/gH. A more general form of Equation
(7.48) is

U3 Q
ét;w—B (7.51)

¢, =0.66

where U3 represents the mean travel time velocity of a tracer and C® the advective
velocity. Equation (7.48) assumes C'/Uy = 1.79 which is true for F, = 0.2 and
does not vary much for higher Froude numbers up to a limit of £, = 0.5. For
smaller Froude numbers, however, the ratio varies rapidly, greatly affecting the
prediction of ®,. McQuivey and Keefer (1974) provide a curve for reading more
accurate values of C’/Utt, down to a value of F, = 0.1. For the discharges and
channel dimensions used here, however, the Froude number varies from 0.0055 to
0.0145 and as such estimation of the correct ratio of C' and mt is very uncertain.
Equation (7.47) appears much less sensitive to changes in channel dimensions and
river slope. Equation (7.47) was therefore considered the preferred method for

obtaining ®, estimates.

Table 7.2 shows the results calculated using ®, estimates from this equation for
|As|/7, 2./H, the value of ®,. calculated when V; = 0 and when V; = 2.5 x
10~°ms~!, the value obtained from use of Equation 7.6 and an estimate of the

vertically averaged vertical diffusion coefficient that would be found in the river.
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Table 7.2:

Q Oy | [Asl/r | 2/H e D e P,
Vi=0]V,=25x10"° Eqn 7.53 U.H/15

30.0 | 15.055 | 7.135 | 0.8058 | 7.49 x 107° 2.37 x 1075 | 4.46 x 107¢ | 1.24 x 1073
40.0 | 20.095 | 9.835 | 0.8344 | 5.03 x 107° 1.73 x 107° | 3.24 x 107% | 1.65 x 1073
50.0 | 24.380 | 12.558 | 0.8534 | 3.74 x 10~° 1.38 x 107° | 2.54 x 107 | 2.06 x 1073
60.0 | 29.397 | 15.270 | 0.8672 | 2.96 x 107° 1.16 x 107° | 2.08 x 107 | 2.48 x 1073
70.0 | 34.397 | 17.992 | 0.8778 | 2.43 x 10~° 1.00 x 1075 | 1.77 x 107¢ | 2.89 x 1073
80.0 | 39.433 | 20.694 | 0.8862 | 2.06 x 107° 8.85 x 107% | 1.563 x 1075 | 3.30 x 1073

This last value is an approximation used by hydraulic engineers of
U.H
¢, = B (7.52)

The term A,/r was taken to equal one in all cases. Equation 7.6 was not used
directly because of the difficulty highlighted in section 7.2.2. Instead the critical
depth was determined from the numerical scheme used to calculate the value of A

for many slices within a river and Equation 7.6 was substituted by the following

(7.53)

These results are shown in graphical form in Fig. 7.8

From Fig. 7.8 and table 7.2 it can be seen that none of the estimates of ®,.
come close to matching or exceeding the estimate of the value to be found in the
river given by Equation 7.52. Section 4.3 however described how measurements
of vertical diffusion have shown its magnitude to be roughly parabolic such that

the diffusion coefficient can be represented by the equation

®, = 0.4U,Z.\/1 — Z. /H

(7.54)
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Figure 7.8: Curves of ®,. against river discharge as estimated for the river Meuse,
Belgium, compared to estimate of vertically averaged vertical diffusion coefficient.
Left hand frame; estimates of ®,. when V, =0, (red line), Vi = 2.5 x 10 °ms 1,
(green line) and estimate from Equation 7.53, (blue line). Estimate of the ver-
tically averaged vertical diffusion coefficients, (from Equation 7.52) given by the
black line. Right hand frame; ratio of ®,. values to ®, value from Equation (7.52).

This means the vertical diffusion in the river must be smaller than the estimates
of ®,. for at least some distance from the river bed. Fig. 7.9 shows plots of depth
for this new measure of flow refuge region, labelled L,, against river discharge for
the three estimations of ®,. performed. The left hand frame gives actual distances
in metres while the right hand frame shows the ratio of L, to the assumed overall

depth of the river.

Fig. 7.9 gives a poor indication of potamoplankton persistence in the river Meuse.
Even with a sinking speed likely to be slightly greater than that for the primary
species being considered in this instance the right hand frame suggests that per-
sistence is only guaranteed for organisms that spend their time in a region near

the bottom that represents less than 0.5% of the overall water depth.

Fig. 7.10 shows how the two non-dimensional quantities, (Vy/(2Ay-L.) and @,./ (A, L)),
used to form the graphs of Fig. 7.7 vary with river discharge. The conclusion
from Fig. 7.7 was that sinking could start to have a significant effect on the

critical vertical diffusion determined if its scaled value became greater than one.
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The values shown in Fig. 7.10 are just beyond this level, and indeed figures
7.8 and 7.9 do indicate sinking has made some difference. Figures 7.8 and 7.9
also indicate the relative benefit of sinking to become less as river discharge in-
creases whereas the scaled values for sinking speed and tolerable diffusion both
increase with discharge in Fig. 7.10. This is because the greater discharges lead to
smaller values of L., sufficiently so that ®,. values actually decrease as discharge
increases. When comparing ®,. values to values of ®, from Equation (7.52) it

must also be remembered that values of ®, increase with discharge.
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Chapter 8

Tidal estuaries

8.1 Passive organisms permanently in the drift

8.1.1 Results using analytically derived flow fields

Speirs and Gurney (2001) investigated a population that grows logistically in the
absence of advection and diffusion, using the two dimensional population model
outlined in section 3.3.1 and flow fields provided by the adaptation to the analytic
solution of Chen, Shaw, and Wolcott (1997) described in section 4.5 and appendix
B. The domain had a constant depth below mean sea surface of 5m. A typical
example of the Lagrangian residual velocities for this system is as shown in Figs.

4.1 through 4.3 and is reproduced here in Fig. 8.1

Speirs and Gurney (2001) found that compared to a system with the same river
flow and no tidal motion a small amount of tidal motion led to an increase in
domain average population density. Contour plots of the steady state population
distributions showed that landward residual flow, as seen in fig. 8.1 moved the

centre of population landward in the deeper water of the domain.

It was found, however, that if tidal velocities were increased further average pop-
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Figure 8.1: Residual velocity plots derived using flow fields from solution after
Chen, Shaw and Wolcott (1997), as modified by Speirs and Gurney (2001).

ulation was reduced until it fell to well below the value obtained without tidal
motion. Again, the reason could be found from investigation of the residual veloc-
ities. As can be seen from Fig. 8.1 there is is an upward component to the residual
movement toward the landward end of the domain which takes population into
the region of high seaward residual motion. As tidal velocity increases both this
upward movement and the magnitude of the seaward ‘flow’ in the upper layers
increases. Above a certain level of tidal motion, although the centre of deeper
population is moved further landward, an increasing proportion is being advected
into the surface layers and transported across the seaward boundary. At a tidal
velocity representative of a real system, (the Ythan estuary in N.E. Scotland),

this effect was enough to cause the population to wash out of the system.

Speirs and Gurney (2001) concluded that for tidal systems with constant density,
near bottom residual flows had little effect on the break-point between persistence
and washout for passive particles. As supporting evidence to this conclusion all
parameters were fixed with the exception of the intrinsic growth rate, r. The

critical growth rate at which the population is at the point of suffering washout
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was determined and found to be very similar to the value estimated for a non-tidal
system with the same river flow. Equation (7.6) was used to determine the value
for the non-tidal system. As a further check the intrinsic growth rate was set at
a fixed value, (sufficient for persistence at small organismal vertical dispersion)
and the vertical diffusion value @, altered until its critical value was established.
Again Equation (7.6) was used to compare this value to that obtained in the

non-tidal situation and again the values obtained were similar.

8.1.2 Effect of adopting CFD derived flow fields

Section 4.5.3 discussed concerns over the validity of the analytic flow results —
at least in shallow systems — and therefore the Lagrangian residual movements
generated by these solutions. Since the ability to generate these residual velocities
using the Princeton Ocean Model, (POM), had been developed it was considered
further investigations should be conducted using this technique. The conclusion
from section 4.5.3 that in shallow systems with homogeneous density, Lagrangian
residual landward flow is not generated led to concentration on systems with
salinity differences. Finally, as use of a fluid dynamics package no longer restricts
investigation to domains of constant depth, and as virtually all estuaries deepen
as they approach the sea, a sloping bottom was included. To give a degree of
continuity with the work using analytic flow fields the same length of domain was

retained and the average depth over the length remains at 5m.

Two flow regimes were considered. One can be regarded as having a net circu-
lation typical of partially mixed estuaries. The second regime starts as partially
mixed at the head of the domain but incorporation of more intense eddy diffusion
leads to the system gaining the character of a well mixed estuary by the time it
reaches the seaward boundary. Locations of different points along the domain on

the Hansen and Rattray stratification-circulation diagram are shown in Fig. 8.2.
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Figure 8.2: Stratification-circulation diagram, after Hansen and Rattray (1966),
with results marked for the two flow regimes used. Results were taken for four
locations from the head of the domain to the seaward boundary as indicated.

Problem of longitudinal dispersion in tidal estuaries

If the random movement of animals is to be represented as analogous to Fickian
diffusion then random diffusion and multiple repetitions must be built into the
particle tracking algorithm that creates the redistribution matrix, R, ,, for the
discrete time population model. The timesteps of the tracking model are much
greater than the timescales of turbulent water movement, but much less than the
final timestep of the population model of one tidal cycle (assumed to equal 12
hours in this work). In the horizontal this poses a problem because the longitu-
dinal spread, (and landward movement), of a cohort of individuals can depend
much more on diffusion carrying different individuals onto divergent advective
paths than on the distance of diffusive travel itself. As discussed in the introduc-
tion, this requires a coefficient of dispersion different to, and usually much larger

than, the coefficient representing turbulent diffusion.

Previously, one-dimensional longitudinal dispersion coefficients have been ob-
tained by trial and error adjustment when fitting a model to a set of field data,
(West and Mangat 1986). Obviously, this is not possible using strategic models

and section 2.1.5 outlined the uncertainty in determining longitudinal dispersion
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coefficients from anything other than field measurements. When considering two
dimensional vertical slices along a domain, longitudinal dispersion is chiefly the
result of interaction between the advective flow field and vertical diffusion. Sec-
tion 4.3 discussed how for estuaries, and especially for stratified estuaries, the
estimation of the coefficient of vertical diffusivity, K, can also be uncertain. This
is partly because the value of K, is expected to vary throughout the tidal cycle as
the dominant form of advection, (the tidal flow) varies from maximum flood and
ebb values to nothing at slack water. The particle tracking code was constructed
in such a way that it is possible to adopt the values determined for the coefficient
of vertical diffusivity from POM, (Kp), for the same times and locations as the
velocity data, as the value required for the particle tracking vertical diffusivity,
®,. It was felt that for computational speed, and conceptual simplicity, adoption
of a single, constant value of ®, was preferable. It is not clear however, what

value @, should take.

To explore these ideas, the POM velocity data to be used for population runs
was used to track large ensembles of particles from selected start locations using a
wide spread of values of ®,. The range of values for vertical diffusivity of a tracer,
K, is considered to be in the range 0.0001 — 0.01m?s~! for a stratified estuary,
with the value in a neutrally buoyant estuary capable of reaching 0.1m?s™!, (see
section 4.3). The upper limits of these ranges were used as the upper limits of in-
vestigation for ®, for homogeneous and stratified estuary flow. Lower values were
also investigated in consideration of the fact that even small phytoplankton have
a size, and inertia, much greater than a true tracer. If their random movement
is passive, it is likely to be that much less than that for a true tracer. Initially
the value of the tracking program horizontal diffusion coefficient, ®, was kept at

Zero.

Fig. 8.3 shows the results from four locations selected from the run demonstrat-
ing a front in the Lagrangian residual movement. These start positions are shown
in Fig. 8.4, the letters corresponding to those above the frames in Figs.8.3, 8.5

and 8.6. It can be seen from Fig. 8.3 that use of only a vertical diffusion coef-

184



N
N

&
Je

=
855
-
=
58

_—e——e——e

-

\
\
»
\
\

G ENES
o e h AN

T

L

)
[T T
A
[
\‘\‘\‘\‘\‘\‘\‘\‘\‘\
(RS
\‘\ ‘\
\‘\‘\‘\‘\‘\‘\‘\‘\‘\

=
o,
=
o,
=
o,
=
(=)
=
o,

PRER R
0,0,0,00,0 0,0 5
PRER R

0,0,0,00,0,0, 0 5

=
o
=
ou
&
=
ou
&
N L

N

B
OO .

T T T
>©
B
O

T ‘\ ‘\

N

Implied dispersion coefficients from spread of tracked ensemble (mzs'l)

10 1 10 7
10 -1 10" =
107 1 10%F 7
10_4j - 10 Ny ]
10_5j ] lO_sj e n
I ot e S
1000 - 1 1050 .- 7
Eer A S T T IR IR IR R I S PR I I I I
10 7 6 -5 -4 3 2 10 -7 6 5 -4 3 2
107 10° 10° 10" 10% 10 107 10° 10° 10" 10° 10

Value of vertica diffusion coefficient used in particle tracking program (mzs'l)

Figure 8.3: Dispersion coefficients implied from the spread of an ensemble of par-
ticles tracked using POM generated flow field against vertical diffusion coefficient
imposed in the tracking algorithm. Solid curve represents horizontal dispersion

coefficient; dashed curve represents vertical dispersion coefficient.

ficient produces spread of the ensemble in the horizontal, implying a dispersion
coefficient, (as would be used in a one dimensional advection diffusion equation),
orders of magnitude greater than the vertical diffusion coefficient used. This
demonstrates the presence of dispersive mechanisms within the flow. The values
of implied dispersion coefficient increase in line with the increase in ®, value used
until the latter becomes sufficient for the ensemble to become well mixed over the
depth of the system over the period of a tidal cycle. The consequences resulting
from rapid diffusion over the depth of the water column at high values of vertical

diffusion coefficient can be seen in section 8.1.3.

For a system varying in depth from 7 to 3 metres, as in Fig. 8.4, the longitudinal
dispersion peaks for an imposed vertical diffusion in the range 1 x 107 to 1 x
1073m?s~L. The lower value in this range corresponds to the lower value quoted
for vertical turbulent diffusion coefficients in stratified estuaries. Taking this value
as a fixed value for the vertical diffusion coefficient in the tracking program an

investigation was then made of the effect of using different values of horizontal
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Figure 8.4: Lagrangian residual movements over a tidal cycle calculated from
POM derived flow. Tidal range £1m; Vi = 0.003125ms ', (Q; = 4.167 x
1073m?s™); UMOL = 2.0 x 10~*m?s~!. Letters indicate starting positions for

ensemble tracking experiments.

dispersion coefficient, ®,. The results are presented in Fig. 8.5, using the same
selection of starting positions as before. The dotted horizontal line in each frame
represents the value of longitudinal dispersion coefficient implied from the run
using the same value of vertical diffusion coefficient and zero horizontal coefficient.
If the horizontal coefficient value for the particle tracking program is set to less
than the value implied by the dispersive mechanisms of the advective flow the final
implied value remains much the same. As ®, is made larger than the implied value
obtained from dispersive mechanisms the coefficient implied by the final spread of
the ensemble rises to match ®,. It is now the case that the coefficient imposed on
the tracking program has caused diffusion to dominate dispersion in terms of the
final spread of particles. If a smaller value of vertical diffusion coefficient is used,
sufficiently small to cause smaller horizontal spreading from dispersion, then the
point at which imposed diffusion takes over from dispersion as the main spreading
mechanism in the horizontal also reduces. The vertical dispersion coefficient

implied by the final spread of particles is essentially unaffected by any variation
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particles tracked using POM generated flow field and a tracking algorithm vertical
diffusion coefficient of 1.0 x 10™*, against horizontal diffusion coefficient imposed
in the tracking algorithm. Solid curve represents horizontal dispersion coefficient;

dashed curve represents vertical dispersion coefficient.
in imposed horizontal diffusion.

In light of the relationship between vertical diffusion rate and horizontal disper-
sion rate in stratified tidal bodies the persistence of organisms was investigated
over a range of values for the population model vertical coefficient ®,, leaving
the horizontal coefficient ®, set at zero. Although these investigations are non-
organism specific it was hard to imagine a planktonic organism that could create
horizontal random movements with a diffusion coefficient greater than the dis-
persion coefficients indicated by Fig. 8.3. The implied horizontal diffusion is also
beyond expected horizontal turbulent diffusion values, (McDowell and O’Connor
1977, page 65), especially during periods of slower tidal flow. This approach
conveys the advantage of reducing the number of independent variables by one.
Further, vertical diffusion and dispersion in estuaries are considered virtually
equivalent such that ®, can be regarded as the result of short duration, random

movements alone.

187



T a b)
Né 102 T T T T T 102 T T T T T
1F 1 1 .
% 10 1 w0 ]
10 */—’4\’\' 4 1°F e
Es B Es B
101 -1 10 -
g 102F - 10-2;./’—_\0\. =
X< 3k 4 3k 4
g 10 1 o B
5 10°F " - 10'F B . =
5 —_———.———- — 5 —_———-——— —
[ S s R 5 S S
-6 L I L L -6 L L L L .|
S 10 - - - - 10° = - - - -
g' 10° 10 10° 10° 10" 10° 10 10° 10° 10"
S ] d)
@ 10?7 T T T T ] 10?7 T T T T ]
& 10 4 10 —
(=} 0 e () q
£ 10°[ - 10°F -
‘G 71;'/0/‘\0\. = S |
g 10'f 1 1077 1
§ 107 0wl ]
é 10°F - 10°F -
-4 ,"\\ g -4 |
= 105* ———— SN 1 105* —————a— — — e — —
g 10—~ * 1 107fe-" —=e A
E_lo-sfrx [N MR VR (st} 5 AU R SR R B
5 10° 10* 10° 10 10" 10° 10* 10° 10° 10"

Value of vertica diffusion coefficient used in particle tracking program (mzs'l)

Figure 8.6: Dispersion coefficients implied from the spread of an ensemble of par-
ticles tracked using POM generated flow field against vertical diffusion coefficient
imposed in the tracking algorithm. Solid curve represents horizontal dispersion
coefficient; dashed curve represents vertical dispersion coefficient. Case of tidal

flow in neutrally buoyant system.

To show that the stratified system being used for Figs. 8.3 and 8.5 produces
greater dispersion than a system without salinity, (or temperature), variation —
a homogeneous or neutrally buoyant system — the same experiment using only
a vertical diffusion coefficient in the tracking program was applied to flow fields
taken from a system with uniform temperature and salinity. The results are shown
in Fig. 8.6. It can be seen that the implied horizontal dispersion coefficients are
an order of magnitude or more less than those obtained with the stratified system.
The flow field for Fig. 8.6 is the same as that which provided the residual velocity
plot of Fig. 5.5. Starting positions were at the same depths and longitudinal

locations as in the stratified system.

Diffusion coefficient correction

The correction factor for the diffusion coefficient used in a particle tracking pro-

gram given by Equation (3.23) was not used. The ratio of cell width in the
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vertical to vertical diffusion length, Az/\/2®,At, where At is the timestep of the
population model, (12 hrs), remains less than 0.1 down to values of ®, of ap-
proximately 1 x 10™°m2s™!. At the minimum value used for full population runs,
(1 x 107%m?2s™1), the ratio is approximately 0.3. At this ratio the difference in
resultant diffusion between corrected and uncorrected tracking is moderate. The
effect of use of Equation (3.23) in a two dimensional flow field with time varying
advection is uncertain while use of uncorrected coefficients is considered not to

have made a significant difference to the results presented in the next sections.

8.1.3 Estuary with sloping bathymetry and salinity gra-

dients

Taking the system with residual flows as represented by Fig. 8.4 it might be
expected that persistence is possible regardless of vertical diffusion/dispersion due
to the circular pattern of the residual flows behind the front. This expectation
was tested for two intrinsic growth rates. The first 7 = 0.39day™! = 4.5 x
10 557! is the same growth rate used in chapters 6 and 7 and is representative of
phytoplankton. The second, r = 0.026day = = 3.0 x 10~"s~! is the same growth
rate as that used by Speirs and Gurney (2001) in their work on a tidal estuary
and is loosely based on the growth rates for a mysid shrimp. The results are

shown in Fig. 8.7 which displays normalised domain mean density as a function

of ®,.

For smaller values of vertical dispersion coefficient results are as anticipated.
Increases in @, cause little difference to the overall long term population density
achieved. However, as vertical mixing increases further, population mean density

decreases rapidly and eventually conditions of washout occur.

The explanation for this surprising result requires re-consideration of the theory of
shear dispersion introduced in section 2.1.5. Taylor’s theory of shear flow disper-

sion is only applicable if the flow regime remains constant for a time ‘much longer’
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Figure 8.7: Mean population density in a tidal estuary, (with residual velocities
as shown in Fig. 8.8), as a function of the population vertical mizing rate ®,.
Curves are for population intrinsic growth rates of 0.39day ' (4.5x 107 %s71) and
0.026day ' (3.0 x 10" "s!) as indicated.

than the ‘forgetting time’. This forgetting time is the time required for random
motions to have enabled a particle to sample all locations in a cross section suffi-
ciently for its location to have become independent of its initial location, and its
mean velocity to have become independent of its initial velocity. The horizontal
dispersions experienced by particles in the stratified tidal regimes of this chapter
are not, caused solely by shear dispersion for values of ®, that allow persistence.
Instead, particles experience both the upper net seaward and compensating net
landward flows for extended periods through each flood and ebb half tidal cy-
cle. If ®, becomes sufficiently large, however, particles can experience flow at all
depths sufficiently quickly in contrast to the temporal change in flow regime that
an approximation to shear flow dispersion results. When this occurs the mean
movement of particles becomes equal to the depth averaged advection of the flow
over the flood and again over the ebb. This mean movement over a tidal cycle be-
comes the depth averaged river flow. Fig. 8.8 shows this effect taking place. The
three frames display contour plots of the long term population within the domain.

With very low vertical mixing, frame a), population density is high everywhere!.

'Interestingly, the front in the residual flow is reflected by a slight decrease in population
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At a value of @, where domain averaged density starts to decline, frame b), pop-
ulation density starts to reduce toward the landward (and more shallow) end of
the domain. This is expected to be due to the shallower depths allowing complete
sampling of all depths for smaller vertical mixing. With a further slight increase
in vertical diffusion coefficient, frame c), population mean density falls sharply.
The reduction in population density has progressed to greater depths and regions

near the landward boundary now contain no population at all.

density.
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Figure 8.8: Contours of population density in a tidal estuary, with residual ve-
locities as shown in Fig. 8.3) and population intrinsic growth rate of 0.39day™"
(4.5 x 1078571 ). Frame a), vertical mizing rate ®, = 1.0 x 1075m?s~!; Frame
b), vertical mizing rate ®, = 1.0 x 1073m?s™'; Frame c), vertical mizing rate
®, =1.0x10"28m?s™ L.
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To investigate a system where the residual movements over a tidal cycle do not
seem to represent such a closed system, the persistence of populations subject to
the residual flows represented by Fig. 8.9 was investigated. These Lagrangian
movements were obtained with the same tidal elevation and river flow parameters,
but with a smaller degree of background vertical eddy viscosity. The resultant
flows can be considered a classic example of those from a partially mixed estuary,

with residual movements much greater than the actual flow of the river water.

Again, mean long term population density was considered for a range of ver-
tical diffusion coefficient values while the horizontal dispersion coefficient was
retained at zero. The results are shown in Fig. 8.10. As might be expected in
this flow regime, very small values of vertical diffusion coefficient lead to pop-
ulation washout. Over successive tidal cycles, individuals starting in the lower
water regions are carried toward the landward boundary and then out through
the seaward boundary, while washout for individuals starting higher up the water
column occurs sooner. Greater values of ®, allow particles resident in the upper
layers (experiencing net seaward movement) to be diffused to lower regions expe-
riencing net landward movement. This overall delay in net seaward movement is
only sufficient for sufficiently high intrinsic growth rates. For the lower of the two
intrinsic growth rates considered, washout occurs over the whole range of vertical

diffusion.

The ‘phytoplankton’ growth rate is sufficiently high, however. The long term
population distribution for one of the first viable ®, values is shown in frame a)
of Fig. 8.11. Mean population density increases as this phenomenon increases,
frame b). As for the initial flow regime, however, there exists a threshold in @,
values after which persistence becomes rapidly more difficult and then impossible;

frame c).
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Figure 8.9: Lagrangian residual movements over a tidal cycle calculated from
POM derived flow. Tidal range £1m; Vi = 0.003125ms ', (Q; = 4.167 x
103m?s 1), UMOL = 2.0 x 10 °m?s ™ *.
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Figure 8.10: Mean population density in a tidal estuary, (with residual velocities

as shown in Fig. 8.8), as a function of the population vertical mizing rate ®,.
Curve is for population intrinsic growth rates of 0.39day ' (4.5 x 1075s71).
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Figure 8.11: Contours of population density in a tidal estuary, with residual ve-
locities as shown in Fig. 8.8) and population intrinsic growth rate of 0.39day™"
(4.5 x 1078571 ). Frame a), vertical mizing rate ®, = 1.0 x 10™°m?s~'; Frame
b), vertical mizing rate ®, = 1.0 x 1073%m?s~'; Frame c), vertical mizing rate
®, =1.0x1025m?s7 L.
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8.1.4 Depth dependent growth rates

If the population being considered is supposed to be that of phytoplankton, then
the assumption of uniform growth rate could be a significant source of error. The
dependence of phytoplankton on incident light for photosynthesis and reduction
of light levels with depth is well documented, eg (Sverdrup 1953).

Considering the distribution of light in the water column first, field studies have
shown light intensities to reduce exponentially with depth. The rate of this
exponential decay is given by an attenuation (or extinction) coefficient . That

is

I(z) = I, exp(—¢z) (8.1)

where I, is the light incident on the surface and I(z) is the amount of light left at
depth z below the surface. If the light intensity values I are expressed as a per-
centages, (that is I, = 100%), then ¢ gives the reduction in In I(z) over a depth
increment of one metre. The attenuation coefficient varies for different spectral
wavelength blocks but an overall coefficient can be defined for the range of wave-
lengths used in photosynthesis (photosynthetically active radiation or PRAR).
The overall attenuation coefficient is made up of the components ¢,,, the effect
of the water, ,, that attributable to inert suspended particulate matter and e,

shading produced by the algal biomass itself, (Reynolds 1984).

To retain the logistic growth rate equation and incorporate light dependency,
relationships must be determined between light attenuation and the intrinsic
growth rate, r, and carrying capacity k. This can be done by re-formulating
the logistic growth equation in terms of gross ‘growth’ rates and loss or ‘death’
rates. The intrinsic growth rate is the net per-capita growth of a population in

the absence of density dependence. As such it can be formulated as
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r=[B,— 0, (8.2)

where (3, and J, are density independent growth and death rates. In a system
with no advection or diffusion the rate of change of population density n with

time can be written as

Ccll—rtl = fn —on (8.3)

where § = 8, — fin, 6 = d, + 01n and [; and 0; are density dependent terms.
Substituting for 5 and ¢ in Equation (8.3) gives

d

= = (Bo=b)n— (B + )’

dn n

T (Bo — do)n (1 - m) (8.4)
(B1+01)

Equation (8.4) can be seen to be the logistic equation with r = 3,—J, as expected

and the carrying capacity k = /(51 + 01).

For plants, this form of the logistic equation can be satisfied by regarding 3, =
aN, where « is the slope of a linear functional response and N is the total amount
of bound and unbound nutrient in the system, (Gurney and Nisbet 1998). The
term « can be regarded as proportional to the light intensity, while the amount
of nutrient remains constant. Therefore, an equation for a depth dependent value

of B, can be formed analogous to Equation (8.1)

Bo(2) = Pol.—o exp(—¢2) (85)

In turn, this gives a relationship between the intrinsic growth rate and the light

intensity of
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r(2) = Bol,_gexp(—ez) — &, (8.6)

The carrying capacity is related to the intrinsic growth rate and therefore must
change as r changes. If the value of r at the surface is labelled r, and the value of
k at the surface is set equal to one, then (5;+4d;) = r,. Thus the depth dependent

values of carrying capacity, k(z) are given by

k(z) =r(z)/ro (8.7)

Because density dependence is built into the logistic equation, self shading should
not be included in the attenuation coefficient. The value of ¢ in this work is

therefore a combination of ¢, and ¢, only.

The term ¢, can be considered attributable to various factors including predation.
It is therefore perfectly possible for r to become negative at greater depths. The
relationship between r and k£ shows that £ will become negative whenever r is
negative and zero when r is zero. The case when r = k = 0 produces 0/0
in the logistic equation so it is necessary to replace the exact solution with an
approximation and determine behaviour in the limit. Sensible behaviour from
the discrete time solution to the logistic equation should also be checked for the

situation when r and k are negative.

As stated in section 3.3.1 the discrete time solution to the logistic equation is

given by

knw,t
Bmt

- . E=e A 8.8
7 nw,t + f(k - na:,t) g ( )

With r = k = 0 this gives 0/0. When |r| is very small [rAt| < 1 and e ! can
be represented by the first two terms of its Maclaurin series without significant

rAt

error. Therefore e 2" can be represented by 1 — rAt. Substituting this new

expression into Equation (8.8), along with r/r, in place of k gives
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_ (170
C T e = rA)((rfro) = )

T’I’nyt

Tolg i + 1 — ToNgy — r2AL + 1 Atrong,
nx,t

B,; = 8.9
ot (1 + Atrong,) — rAt (8.9)
As r — 0 Equation (8.9) tends to
Tyt
o Mt 8.10
T+ Atrong, (8.10)

To be biologically sensible B, ; can not be negative. This is assured as all terms on
the right hand side are positive. So long as Atr,n,, > 0, however, then By ; < ng,

with the two terms becoming equal when the population density becomes zero.

When r and k are negative, —R and —K say, Equation (8.8) becomes

B . _Kn:n,t
wt Nyt + eRAt(_K - nx,t)
B . an’t
ot Ny (RO — 1) + KeRA
K
th = X Nyt (811)

’ Ny (€fA — 1) + KelAt

Again all terms on the right hand side are positive ensuring B, ; remains positive.
As eftAt > 1 for |R| > 0 the term K/[n,, (eRAt — 1) +KefA < 1and B,y < ngy,

as would be expected for a negative intrinsic growth rate.

Gurney and Nisbet (1998) list background light attenuation coefficients (g, +¢,)

1

for four different sea lochs. Three lochs have the same value of 0.22m™", while

one is more turbid with a coefficient of 0.48m !

. In comparing results obtained
using depth dependent growth rate, € can be taken as one of these two values, r,
needs to be equal to the constant intrinsic growth rate used before and the value

for k is determined for all depths from Equation (8.7). If a depth z,. is chosen
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for the point at which r(z) = 0 then the remaining parameters, J, and 3, can
be determined as follows. Substituting for g, from Equation (8.2) into Equation

(8.6) gives

r(z) = (ro + 0,) exp(—ez) — d, (8.12)

r(z) =0 at z = z,, giving

5 - o XP(—EZpe)
o

1 —exp(—eze) (8.13)

f, can then be found from Equation (8.2).

Gross photosynthetic rate in phytoplankton generally falls to zero when the in-
cident light falls in the range 0.5 — 3%, and a ‘euphotic depth’ z, is defined
as 1%I,, (Reynolds 1984). Using this definition, from Equation (8.1), z., can be

given as

Zew = In(1,) /e (8.14)

The values of z., obtained for given values of € are the maximum sensible values of
2z that can be chosen for that value of attenuation coefficient. This critical depth
value can be assumed to be one obtained in the absence of predation. Decreasing

values of z,. can be interpreted as representing increasing rates of predation.

Fig. 8.12 repeats the same graph of mean population density against vertical
diffusion coefficient for a population with intrinsic growth rate of 0.39day =", (4.5 x
107%s7!) as shown in Fig. 8.10 but with additional curves showing the effect of
depth dependent growth rate. The left hand frame shows curves for ¢ = 0.22 and
the right hand frame those where ¢ = 0.48. In each frame z,. has been set to
equal ze,, 7m, (the depth of the deepest part of the system) and 3.5m, (the mid

depth). It can be seen that even with e = 0.22 and z,. set to its maximum sensible
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Figure 8.12: Mean population density in a tidal estuary, (with residual velocities
as shown in Fig. 8.8), as a function of the population vertical mizing rate ®,.
Curves are for constant population intrinsic growth rates of 0.39day™" (4.5 x
107%s71) (black line); r = 0.39day ' at the surface with r(z) = B,|,_, exp(—ez) —
0o and zp. = zey (red line); z.. = Tm (blue line) and z,. = 3.5m (green line). Left
hand frame: Light attenuation coefficient, € equals 0.22m="; right hand frame:
e =0.48m~".

value the reduction in mean population density is marked. The reductions when

¢ = 0.48 could be described as dramatic.

Although the reduction in mean population density brought about by the in-
troduction of depth dependent growth rate is large, the overall pattern remains
consistent. If an organism allows itself to be moved in a diffusive manner to a
certain extent, then persistence becomes possible, whereas near total avoidance of
random motions leads to washout. Too great a degree of random vertical motion,
however, is sub-optimal and there is an increasing risk that washout will again

occur.

This is at least true when z,.. is set greater than 3.5m. At this value, even
though the transition from net seaward to net landward flow occurs at a depth of
around 2m, persistence has been made impossible in the case of higher attenuation

coefficient and is only very marginal in the case for clearer waters. This suggests
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persistence relies on population surviving, and quite probably growing, in the
deeper regions closer to the seaward boundary. Fig. 8.13 shows how the pattern of
distribution of population density is not altered by transition to depth dependent
growth rates. Rather, concentrations are simply reduced. Frames a), b) and c) all
show distributions for a vertical diffusion of ®, = 1.0 x 10~*m?s~! but frame a) is

that for uniform growth, frame b) that for growth when ¢ = 0.2m™!

, Zre = 20.9m
and frame c¢) that for ¢ = 0.48m~!, z,. = 7m. It should be noted that to make
the frames of this figure more readable, the minimum contour and the contour

step size has been altered for each frame.
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Figure 8.13: Contours of population density in a tidal estuary, with residual
velocities as shown in Fig. 8.8), population intrinsic growth rate of 0.39day !
(4.5 x 1078571 ) and vertical mizing rate of ®, = 1.0 x 10~*m?s~'. Frame a),
uniform growth. Frame b), attenuation coefficient € = 0.22m™=" and z,. = 20.9m.
Frame c), attenuation coefficient ¢ = 0.48m~1 and z,. = 7.0m.
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8.2 Vertical motion toward the benthos

8.2.1 Uniform in situ growth rate

As in the consideration of a vertically heterogeneous river the effect of a constant
rate of sinking is investigated. As mentioned in chapter 7 a number of species of
phytoplankton are known to be negatively buoyant and have no means of swim-
ming. Such phytoplankton are an important component of many estuaries and
fjords. To link with chapter 7, the same sinking velocity, V5, is used as in section
7.2.4. This represents a maximum recorded value for freshwater phytoplankton

species but there are marine species with higher values, (Reynolds 1984).

Using the constant intrinsic growth rate of 0.39day ™" (4.5 x 107%s71) the graph of
normalised, (and domain averaged), long term population density against vertical
diffusion coefficient, (as shown in Fig. 8.10), is compared to the result when
sinking is present in Fig. 8.14. The former is given by a solid line and the latter
a dotted line. The overall pattern could be regarded as remarkably similar. The
only region where results are qualitatively different is that for which ®, values are
smallest. There has been a shift from washout to moderate persistence. Given
the pattern of the residual flows, it seems surprising that organisms with a sinking
velocity should persist less well for any values of ®,, especially as in situ growth

rates are constant throughout the domain.

A more significant result of sinking is that persistence is now possible with the

lower of the considered intrinsic growth rates, 0.026day .

The curve of popu-
lation density is shown by the dashed line. The lower growth rate is intended
to be representative of organisms as large as small shrimp. Zooplankton are
likely to have either significantly greater sinking speeds, or swimming ability.

Even amongst motile phytoplankton swimming speeds are estimated to reach

1.0 x 1072ms~!, (Reynolds 1994b, page 153).

If organisms possess a quiescent settling velocity the theory of settling in the
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Figure 8.14: Mean population density in a tidal estuary, (with residual velocities
as shown in Fig. 8.8), as a function of the population vertical mizing rate ®,.
Curves are for population intrinsic growth rates of 0.39day ' (4.5 x 107%s71)
with organisms neutrally buoyant (solid line); sinking with a velocity of Vy =
2.5 x10™°ms™" (dotted line). The same sinking velocity and intrinsic growth rate
of 0.026day~" (3.0 x 1077s7!).

presence of turbulence implies that turbulence will delay the settling of individuals
in the water column, (by a factor directly related to their settling velocity), but
if only random motion is present in the vertical eventual settling is inevitable,
(Reynolds 1984, page 50). As a consequence one might expect contour plots
of the long term distribution of population density to show strong concentration
toward the benthic boundary. Fig. 8.15 shows this to be only partially true. This
figure shows frames of population distribution when the intrinsic growth rate is

0.39day*.

The strong landward bias to flow nearer the benthos conveys population toward
the head of the estuary. Close to the reflecting boundary net flow tends to
be vertically upwards, but this advection is counter balanced by the downward
advection of sinking. Strong concentrations therefore form at the head of the
estuary. It is thought the fact only modest domain mean populations are achieved
in the region of ®, values where there was no persistence previously is due to

this focusing of individuals and density dependence. The result when &, =
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1.0 x 107%m?2s~! is shown in frame a). The same explanation seems to account
for the small range of values of ®, for which the domain mean population density
is reduced in the presence of sinking. Frame b) shows a contour plot from this
range, when ®, = 1.0 x 10~**m?s~!. The advective component to organismal
vertical movement does seem to delay the onset of complete mixing and resultant
washout. Frame c) of Fig. 8.15 takes the same @, value of 1.0 x 1073%m?s~!
as used in frame b) of Fig. 8.11. In the case of vertical sinking, the density of
population can be seen to be more concentrated both toward the benthos, (to a

modest degree), and toward the landward end of the domain.
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Figure 8.15: Contours of population density in a tidal estuary, with residual
velocities as shown in Fig. 8.8), population intrinsic growth rate of 0.39day !
(4.5 x 1078571, sinking speed of V, = 2.5 x 107 ms~'. Frame a), vertical mizing
rate ®, = 1.0x107%m?s™!; Frame b), vertical mizing rate ®, = 1.0x10™*4m?s~1;

Frame c), vertical mizing rate ®, = 1.0 x 107 3%m?s~ 1.
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8.2.2 Sinking and depth dependent growth rate

Given the results from section 8.1.4 and those for organisms with sinking velocity
but uniform growth, it is intriguing as to the effect of sinking and light dependent
growth combined. Light restrictions on growth led to sharp reductions in overall
population density. Sinking, however, did lead to gains in persistence, but for the
higher intrinsic growth rate only to small gains, and then for only some values of
vertical diffusion coefficient. Perhaps most interesting is whether the ability to

persist at very low values of ®, provided by sinking can be maintained.

The left hand frame of Fig. 8.16 repeats the left hand frame of Fig. 8.12 that
shows results for the case of neutral buoyancy given uniform growth and three
values of z,.. when the attenuation coefficient € = 0.22m~'. The right hand frame
gives the results when sinking is included. With sinking present, the pattern
of persistence against vertical diffusion again remains much the same whether
growth is considered uniform or light dependent. In turn this leads to gains in
persistence at low diffusion rates. The effect is most marked when the growth

reduction with depth is most severe.

Fig. 8.17 makes a similar comparison to that of Fig. 8.16 but for the case where
the attenuation coefficient equals 0.48m'. Again, the same form of relationship
can be seen between mean density curves when comparing between depth de-
pendent growth and uniform growth and when comparing between sinking and
neutrally buoyant organisms subject to the same growth regimes. The great-
est difference when sinking is present again occurs for the smallest value of z,..
Indeed, the situation has been changed from one of extinction at all values of
vertical diffusion to a finite region of diffusion coefficients where persistence is

secured.

It is believed the increasing advantage of organisms possessing sinking as reduc-
tion in r with depth becomes more severe is due to the same mechanism that
allows persistence with uniform but much lower intrinsic growth rate. A greater

proportion of population becomes part of a gyre like pattern of motion that is
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restricted to the upper, and more shallow, part of the domain. If growth is suf-
ficient for density dependence to take effect this can become a disadvantage, as
seen in Fig. 8.14. Here, however, growth rates are being suppressed by other

factors.
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Figure 8.16: Mean population density in a tidal estuary, (with residual velocities
as shown in Fig. 8.8), as a function of the population vertical mizing rate ®,.
Curves are for population intrinsic growth rates of 0.39day! (4.5 x 1075s71).
Results for uniform growth rates and for values of z,. as indicated. Attenuation
coefficient ¢ = 0.22m™" in all cases. Left hand frame, (solid lines) for neutrally
buoyant organisms; Right hand frame, (dotted lines), for organisms with sinking
velocity of V, = 2.5 x 10 °ms 1.
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Figure 8.17: Mean population density in a tidal estuary, (with residual velocities
as shown in Fig. 8.8), as a function of the population vertical mizing rate ®,.
Curves are for population intrinsic growth rates of 0.39day™' (4.5 x 1075s71).
Results for uniform growth rates and for values of z,. as indicated. Attenuation
coefficient € = 0.48m~t in all cases. Left hand frame, (solid lines) for neutrally
buoyant organisms; Right hand frame, (dotted lines), for organisms with sinking
velocity of Vy = 2.5 x 10 °>ms 1.
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Chapter 9

Strategic fjord

9.1 Ratios of tidal inflow to river discharge

In chapter 8 the river discharge into the system was chosen as much to allow the
comparison of two very different residual flow patterns as any other reason. For
the work on fjords it was possible to consider the appropriateness of the ratio of
river discharge to tidal inflow thanks to a comprehensive survey of Scottish sea
lochs performed by Edwards and Sharples (1986). Edwards and Sharples recorded
physical dimensions and other statistics pertinent to oceanographic work, includ-
ing figures for annual fresh water discharge and total annual tidal inflow. The

latter value, (with units of m*year—!), was determined from the following formula

inflow = 490 x tiderange x (hwarea + lwarea)/2 (9.1)

where the constant is derived from the fact that there are approximately 700
semidiurnal tides per year and study of tidal tables for North West Scotland
showed the mean tidal range in a year to be about 70% of the spring tidal range,
(the term ‘tiderange’ represents spring tidal range). In the strategic simulations

performed in this work the tidal range is considered constant and only a two
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dimensional slice is considered such that the term (hwarea + lwarea)/2 can be
replaced by the length of the fjord. This length was taken as the distance from
the inner edge of the sill region to the point at which the river flow is injected.

A per unit width inflow value ,(in m?s™!), can then be obtained from

tiderange X length
T

9.2)

inflow =

where T is the tidal period. Edwards and Sharples ranked 109 sea lochs according
to this ‘freshtideratio’. With the tidal range of these strategic simulations retained
as, 2m = *1m, the river discharge used in chapter 8 gives a ratio of ~ 0.0055.
This equates to values obtained for sea lochs ranking 76th to 87th in the league
table and is similar in value to lochs ranking as high as 69 and as low as 98. With
the discharge value used by Speirs and Gurney (2001) in their investigation of
tidal regimes the ratio becomes = 0.022, equal to sea lochs ranked 16th and 17th
and similar to those from rank 15 to 19. The river discharge to tidal flow ratios
represented by these two inflows cover the majority of the range found in Scottish

sea lochs.

Two additional runs were conducted. One increased the river discharge to tidal
inflow ratio to 0.1, greater than all but one sea loch, and the other reduced
the ratio to 0.002, lower than all but two lochs. The run with higher discharge
showed no sign of settling to a quasi steady state. A more steady cycle could
probably have been forced through adjustment of parameters such as imposed
horizontal diffusion or bottom friction but this would compromise the ability to
make comparisons between systems where the only difference is supposed to be
one of river inflow. Fig. 9.1 shows the Lagrangian residual movement obtained
using the river discharge as in Speirs and Gurney (2001), while Fig. 9.2 shows
residual flows when river flow was reduced to give the freshtideratio of 0.002.

These residual movements are used in the remainder of this chapter.
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Figure 9.2: Lagrangian residual movements over a tidal cycle calculated from
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Figure 9.3: Stratification-circulation diagram, after Hansen and Rattray (1966),
with results marked for the two flow regimes used. Results were taken for four
locations; the point at which the riverine section feeds into the body of the fjord,
the upstream and downstream locations at which the fjord basin is at its deepest
and the location of the sill.

The overall pattern of residual movement was found to alter subtly between the
extremes of river discharge considered. With higher river discharge there is a
clear indication of a two layer flow regime in the near surface region of the fjord,
(Fig. 9.1). This seems absent in the case of low river flow, (Fig. 9.2). Fig.
9.3 shows the location of these two flow regimes on the Hansen and Rattray
stratification-circulation diagram. Both results show the regimes to be of type 3
as would be expected of fjords. As mentioned in section 2.1.2 a typical fjord is
expected to be of type 3b. The system with the higher river flow conforms to
this expectation very well. The lower stratification indicated for the case of lower
river discharge is because the river flow was insufficient to form a well defined
near surface brackish layer. The diagram clearly shows how the difference between
surface and vertically averaged net velocity is greatly reduced in the region of the
sill, indicating the breaking down of buoyancy driven near surface flows in this

region by greater levels of turbulent mixing.
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9.2 Passive organisms permanently in the drift

9.2.1 Persistence relative to vertical diffusion
Diffusion coefficient correction

To track particles over the much deeper domain represented by the fjord but
keep within the memory constraints of available computers it was necessary to
increase vertical cell height from 0.1m to 1m. The criterion for accurate repre-
sentation of intended diffusion established by Gurney et al. (2001), namely that
Az//2®,At < 0.1 is only satisfied down to values of ®, ~ 1.0 x 107%8m?s—1. At
the lowest value used to investigate persistence, 1.0 x 1075m?s—1, this ratio be-
comes roughly 3.4. Between these values, if this non-steady flow regime behaves
in a similar manner to the case with no advection, uncorrected parameter values
used in the particle tracking program are likely to lead to over-representation of
vertical diffusion. An algorithm developed by Gurney et al. (2001) was used to
produce corrected coefficient values. This only corrects exactly for the case with
no advection. Individually tuned corrections for regimes with constant advection
are possible but in this case the advections change with time and space and are
not known a priori. As stated in section 3.3.1 confidence in the correction to
within a 10% error are possible up to a cell to diffusive distance ratio of 2. Verti-
cal diffusion was still likely to be represented with error > 10% for target values
of 1.0 x 107°8 and 1.0 x 107%m?s—1. These values were omitted for the fjord

work.

Domain averaged population densities

Phytoplankton and zooplankton that could be regarded as passive are important
trophic levels within fjords. Such plankton are unlikely to exhibit intrinsic growth
rates of as low as 0.026day~" however, (O’Doherty 1985), so only the higher of

the two growth rates considered previously, (0.39day!), is considered in this
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Figure 9.4: Mean population density in a tidal fjord, (with residual velocities as
shown in Figs. 9.1 and 9.2), as a function of the population vertical mizing rate
®,. Curves are for population intrinsic growth rate of 0.39day ' (4.5 x 10 5s71).

section. Fig. 9.4 shows a plot of domain averaged population density against
vertical diffusion rate for residual movements over a tidal cycle as shown in Figs.
9.1 and 9.2. Most planktonic life that can live in saline fjords can also survive
in the coastal sea. It is also considered legitimate for planktonic organisms to be
carried into such bodies from outside of the sill region. Therefore, when tracking
organisms to generate the redistribution matrix, tracks were started between the
sill region and open boundary to allow for organisms to be washed into the fjord
region. Also, the boundary at which organisms were considered washed out during
tracking was set between sill and open boundary. The extent of this extended
tracking region can be seen from the population contour plots used in this section.
In determining the results for domain averaged population density, however, only

the domain found inside of the fjord sill was included.

It can be seen from Fig. 9.4 that persistence is strong for all values of diffusion
coefficient considered and for both river discharges. At higher diffusion rates pop-
ulation is virtually at the carrying capacity throughout the domain and the differ-
ence between river discharges has become irrelevant. At lower levels of diffusion

there is a modest difference in persistence between the regimes. What differences
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do exist in long term population pattern between results for low and high vertical
diffusion and river discharge are shown by Figs. 9.5, 9.6 and 9.7 which show
contours of long term population density for the cases of ®, = 1.0 x 1075m?s~!
and ®, = 1.0 x 1072m?s~!. It should be remembered that cells between the sill

and seaward open boundary were not included in the determination of domain

averaged population densities.

Fig. 9.5 confirms the idea that population is almost uniformly at the carrying ca-
pacity. There is clear indication, however of a large gyre or eddy formation at the
seaward end of the fjord behind the sill. This feature extends to the deepest part
of the fjord. The figure shown represents the result for the higher river discharge
but plots for the case of lower river discharge showed no significant differences for
those values of vertical diffusion where the domain averaged population densities

were convergent.

In Fig. 9.6, which shows the case for high river discharge but low vertical diffusion,
densities can be seen to reduce in the surface layers — as might be expected — and
in the regions close to where the bathymetry drops toward the middle basin.
In the case of the same low value of diffusion and also low river discharge, Fig.
9.7, reductions in population density can be seen to be slightly less in the upper
regions of the water column. There is, however, a sizeable region with a near

absence of population at the landward end of the fjord basin.

217



-10—
-201-
-301-
40—
50—

z(m)

-60|—
-701-
-80|-
-90 |-
-100.

X (km)

Figure 9.5: Contours of population density in a tidal fjord, with residual ve-
locities as shown in Fig. 9.1), population intrinsic growth rate of 0.39day
(4.5 x 107%s71) and vertical mizing rate of ®, = 1.0 x 107*m?s~t. Contour
intervals 0.1.
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Figure 9.6: Contours of population density in a tidal fjord, with residual ve-
locities as shown in Fig. 9.1), population intrinsic growth rate of 0.39day !
(4.5 x 107%s71) and vertical mizing rate of ®, = 1.0 x 10™°m?s~. Contour
intervals 0.1.
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Figure 9.7: Contours of population density in a tidal fjord, with residual ve-
locities as shown in Fig. 9.2), population intrinsic growth rate of 0.39day
(4.5 x 107%s71) and vertical mizing rate of ®, = 1.0 x 10 °m?s~t. Contour
intervals 0.1.
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9.2.2 Depth dependent growth rate

The very high domain averaged population concentrations shown in Fig. 9.4
would suggest in themselves that depth dependent growth rates are likely to have
a big impact on the results for persistence. The deepest part of the fjord region
is over ten times as deep as the deepest part of the estuary domain considered in
the previous chapter. The degree of reduction, however, depends on the extent

to which population in the upper regions depends on supply from deeper regions.

Fig. 9.8 shows the domain averaged population densities obtained using depth
dependent growth rate and light attenuation coefficient, ¢ = 0.22m~!. For the
depth dependent growth rate, the depth for zero intrinsic growth rate, z,. was set
equal to the ‘euphotic depth’ 2., such that predation can essentially be considered
absent. Even so effects on persistence are so dramatic a logarithmic scaling has
been employed for the normalised population density and for only a fraction of the
full range. For higher river flow persistence is only possible for vertical diffusion

coefficients above 1.0 x 10™3m?2s~!

and then it is only marginal. Washout and
extinction of population was slow in the other cases. After a population model
run representing one year very small finite population densities were still present,
but they were subject to a steady decrease in all cases. This was confirmed by
running the simulations for two years. A dotted line is included in Fig. 9.8

to distinguish between results that indicated persistence and those where the

population was still slowly decaying.

The case for low river flow is very similar with the exception of a persistent
population in one narrow window of lower vertical diffusion. Fig. 9.9 shows
the long term population distribution for a vertical diffusion from this region,
(®, = 1.0 x 10 3>*m?s~ ). Non-zero population is found throughout the fjord
but there is a small concentration found in the near surface region just inside of
the sill. A concentration can also be seen, however, at the upstream end of the
domain used to introduce the river flow. It should be noted that contours in Fig.

9.9 are at values an order of magnitude smaller than those of previous contour
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Figure 9.8: Mean population density in a tidal fjord as a function of the popu-
lation vertical mixing rate ®,. Results are for population intrinsic growth rate
of 0.39day™" (4.5 x 1075s71), light attenuation coefficient, € equals 0.22m™=" and
Zre = Zey = 20.9m, (intrinsic growth rate critical depth equalling euphotic depth).
Left hand frame; residual movements as in Fig. 9.1, right hand frame; residual
movements as in Fig. 9.2. Dotted lines indicate split between results for persis-
tence and results where population was still declining after two years.
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Figure 9.9: Contours of population density in a tidal fjord, with residual velocities
as shown in Fig. 9.2, and depth dependent intrinsic growth rate of 0.39day ="
(4.5 x 1078571 ) at the surface. Light attenuation coefficient, € = 0.22m™", depth
of zero intrinsic growth z.. = 20.9m and vertical mizing rate of ®, = 1.0 X
1034m?2s~L. Contour intervals 0.01.
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The small levels of persistence seen for higher vertical diffusion coefficients seems
due to the fact the random movement of individuals manages to repeatedly trans-
fer sufficient numbers between the large scale eddies — both at the head of the
fjord and toward the sill region — and the upper layers. Fig. 9.10 illustrates the

L. Contour plots were very

effect for when the ®, value equals 1.0 x 10 25m?s~
similar between high and low river flow. This latter result suggests that in the
presence of only small values of vertical diffusion, the near surface and and deeper
waters are weakly linked. Population in regions suitable for growth are subject to
washout while that in the deeper gyres dies out. If connection between the two
is increased, (by increasing vertical diffusion), then each region can re-supply the
other, so long as the reduction (and transition to negative) intrinsic growth rate
is not too rapid. This was confirmed by setting z,. = 10m. This led to extremely
low values of persistent population at high values of vertical diffusion, (approxi-
mately an order of magnitude smaller than the values for persistent population
in Fig. 9.8). For the case of higher river flow extinction occurred for all other
values of ®,. For the smaller values of ®, allowing persistence under conditions of
lower river flow the situation was the same. In all cases the reason for persistence
clearly becomes one of retention in the shallow riverine section of the domain.
Fig. 9.11 is used to illustrate this situation. It could be argued that this no longer
represents persistence in the fjord itself. The light attenuation coefficient used,
(e = 0.22m™1), is the lower of the two values cited by Gurney and Nisbet (1998)
for Scottish sea lochs. The higher value has associated with it a euphotic depth

of z,, = 9.6m.
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Figure 9.10: Contours of population density in a tidal fjord, with residual velocities
as shown in Fig. 9.1, and depth dependent intrinsic growth rate of 0.39day *
(4.5 x 1078571 ) at the surface. Light attenuation coefficient, € = 0.22m™", depth
of zero intrinsic growth z.. = 20.9m and vertical mizing rate of ®, = 1.0 X
10-25m2s7 L. Contour intervals 0.01.
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Figure 9.11: Contours of population density in a tidal fjord, with residual velocities
as shown in Fig. 9.2, and depth dependent intrinsic growth rate of 0.39day ™"
(4.5 x 107%s71) at the surface. Light attenuation coefficient, ¢ = 0.22m~1, depth
of zero intrinsic growth z.. = 10.0m and wvertical mizing rate of ®, = 1.0 X
10-34m?2s~ L. Contour intervals 0.01.
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9.3 Vertical motion toward the benthos

9.3.1 Uniform in situ growth rate

In the setting of a coastal plain estuary, a constant sinking speed proved ad-
vantageous combined with very small vertical diffusion. In that case, however,
there was a clear two layer residual movement that extended the whole depth of
the system. In the case of the fjord domain, sinking that is not much modified
by turbulent diffusion can be expected to take near surface organisms below the
region of two layer flow. Given the circular, or gyre like residual movements in
the body of the fjord, (for both flow regimes considered), it is unclear how overall
persistence will be affected, at least in the absence of depth dependent growth

rates.

Fig. 9.12 contrasts the results for neutrally buoyant organisms with those sub-
ject to the constant downward vertical velocity used previously of Vi = 2.5 x
10 5ms~!, in terms of domain mean population density against vertical diffu-
sion. At high diffusion rates the long term populations are virtually identical. At

lower values sinking proves detrimental.

The reason is shown clearly in Figs. 9.13 and 9.14 which display population
contours for the case of ®, = 1.0 x 107>*m?s~ 1. Neither random diffusion or
advective currents have prevented the downward velocity from removing individ-
uals from the surface region of the fjord. The greater differences displayed for the
case of lower river flow seem due to population becoming absent in the middle
of the fjord basin. It is not obvious from inspection of Fig. 9.2 why this should
be the case. Increasing vertical diffusion steadily reduces the significance of the
downward advective component. Contour plots, (not shown), for organisms with
sinking but in the presence of high vertical diffusion appeared very similar to that

shown in Fig. 9.5.
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Figure 9.12: Mean population density in a tidal fjord as a function of the popula-
tion vertical mizing rate ®,. Curves are for a uniform population intrinsic growth
rate of 0.39day™" (4.5 x 107%s71). Black lines show case for neutral buoyancy.
Red lines show case for sinking velocity of Vy = 2.5 x 10™°ms~'. Left hand frame;

residual movements as in Fig. 9.1, right hand frame; residual movements as in
Fig. 9.2.
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Figure 9.13: Contours of population density in o tidal fjord, with residual ve-
locities as shown in Fig. 9.1, population intrinsic growth rate of 0.39day~*
(4.5 x 107%s71), sinking velocity of Vs = 2.5 x 107°ms™! and vertical mizing
rate of ®, = 1.0 x 10~ >4m?s~ 1.
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Figure 9.14: Contours of population density in a tidal fjord, with residual ve-
locities as shown in Fig. 9.2, population intrinsic growth rate of 0.39day*
(4.5 x 107%s71), sinking velocity of Vi = 2.5 x 107°ms~! and vertical mizing
rate of ®, = 1.0 x 10™>4m?s~ 1.

9.3.2 Depth dependent growth rate

Given the results for depth dependent growth from section 9.2.2 and that the only
significant difference introduced by a sinking velocity was removal of population
from the near surface regions in section 9.3 the prospects for persistence when
these two attributes are combined is not encouraging. If a light attenuation

coefficient of ¢ = 0.22m~!

is employed and z.. made equal to z., as before,
then persistence at high values of vertical diffusion coefficient is again possible
for the same reasons as in the case for neutrally buoyant particles. Surprisingly,
in the case of higher river discharge, persistence also just becomes possible for
smaller diffusion values. The results for long term population densities when

depth dependent growth is used — contrasting the cases with and without sinking

— is shown in Fig. 9.15.

For all cases of persistence at vertical diffusion values < 1.0x10 3m?s~!, the same
pattern of long term population emerges. Population is sustained in the riverine

part of the domain and in the gyre like residual flow toward the landward end
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Figure 9.15: Mean population density in a tidal fjord, (with residual velocities
as shown in Fig. 9.1), as a function of the population vertical mizing rate ®,.
Curve for population intrinsic growth rate of 0.39day™" (4.5 x 1075s71), sinking
velocity Vy = 2.5 x 10™5ms~!, light attenuation coefficient, ¢ equals 0.22m™" and
Zre = Zey = 20.9m, (intrinsic growth rate critical depth equalling euphotic depth).

of the fjord basin. Diffusive movement is probably enabling population exchange
between the two regions. An example of the population distributions observed is

given in Fig. 9.16.

The pattern and scale of persistence is not much changed between the neutrally
buoyant case and the case for sinking. It was anticipated that introduction of a
critical depth for intrinsic growth of 10m might produce results as for section 9.2.2
with the only source of persistence being retention of population in the riverine
section of the domain. This did indeed prove to be the case. The conclusion
drawn is that with the exception of retention of organisms in that part of the
domain representing a river, no mechanism was detected that allowed persistence

and did not involve circulation in the deeper part of the fjord.
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Figure 9.16: Contours of population density in a tidal estuary, with residual ve-
locities as shown in Fig. 9.2, sinking velocity of V, = 2.5 x 107°ms ™! and depth
dependent intrinsic growth rate of 0.39day™" (4.5x107%s7!) at the surface. Light
attenuation coefficient, € = 0.22m™"', depth of zero intrinsic growth z,. = 20.9m
and vertical mizing rate of ®, = 1.0 x 10™*m?2s~t. Contour intervals 0.01.
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Chapter 10

Overview and Discussion

This thesis has dealt with flow regimes split into four basic categories and consid-
ered one or more basic persistence issues for each. The approach, on the whole,
has been very strategic. An obvious way forward is to apply the methods devel-
oped to comprehensive data sets for given species or groups of species in given
hydrodynamic systems. Finding such data is non-trivial in that both reliable
hydrodynamic and biological data must be obtained and the two data sets need
to be recorded at the same time, or at least at times when abiotic conditions are
very similar. Even retaining a more strategic approach, there are many addi-
tional issues that can be addressed. The remainder of this chapter discusses the
results obtained from chapters 6, 7, 8 and 9 in turn and considers a few of the

possibilities for future work.

10.1 1D systems

It was found that if a constant swimming velocity was introduced against the
deterministic advection the results regarding key inequalities to be satisfied for
persistence, as derived by Speirs and Gurney (2001), can still be applied with a

very minor adjustment, namely the subtraction of the swimming velocity from
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the advection term. Swimming against a time averaged history of previous net
flow, as considered in section 6.2.3, was shown to be less successful. The reason
is because net fluid element movements, (conforming to a Gaussian distribution
with downstream mean), can be upstream as well as downstream. Upstream
movements are smaller on average, however, and the swimming velocity required
to completely compensate for them is more often within the maximum attributed

to the organisms of the population.

From a hydraulic point of view the one dimensional population models developed
seem most applicable to low order shallow streams. The shallow water depth
and the size of substrate elements relative to water depth means the effects of
turbulence are likely to overwhelm vertical gradients in advection. Traditionally,
pelagic plankton have been thought to be virtually absent from headwaters and
midreaches of streams, eg (Vannote et al. 1980). Most studies of stream plankton
have been lake outlet studies which recorded rapid downstream declines in plank-
ton numbers, (Brown, Limbeck, and Schram 1989). This would point to limited
applicability of the initial semi-analytic treatment of organisms permanently in
the drift. Brussock, Brown, and Dixon (1985) however, suggested that zooplank-
ton could persist in some abundance in free flowing streams if they possessed a
distinct riffle-pool geomorphology. Brown, Limbeck, and Schram (1989) studied
the first five orders of a gravel bed stream, (the Illinois River, Arkansas), and
found an ‘abundant, diverse zooplankton community comparable to that of local
reservoirs’. This river was of pool-rifle form and population was concentrated
in the pools, with density and abundance especially high when flow through the
pools was < 0.02ms ™. As would be expected from the one dimensional analysis
the study found an inverse relationship between plankton density and observed

flow rate in the pools.

If the pools of such a system were not sufficiently deep to suggest use of the two
dimensional model the one dimensional model could be used for each individually.
One adjustment necessary might be the alteration of the upstream boundary to

account for import of individuals from further upstream. The same could be
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done for individual riffle sections. If the horizontal dispersion coefficient, ®, was
treated as a fitting parameter, the model of section 6.1 could be made to match
the overall population density of planktonic species over the system length for a
given system averaged flow rate. If used in this way, however, the model is no
longer attempting to determine whether representations of turbulent or random
motion can predict persistence in any realistic fashion. Population distribution
would also not be correct. Brown, Limbeck, and Schram (1989) found densities
in the riffles to be much less than in the immediately preceding pool such that
a succession of population peaks can be expected for the overall system. This
suggests the need for a series of 1D domains linked by common boundaries. The
possibility of analytic solutions to such a system has not been investigated. It is
also possible that more than just a slow down in overall flow rate is responsible for
strong persistence in the pools. Vertically non-uniform advective flow patterns
caused by the deepening of the pool and its rise to a lip at the downstream end
could be significant. If so, 2D numerical flow simulations would probably be the

only way to model the situation.

The variant of one dimensional model including ‘clinging’ to the benthos is po-
tentially more widely applicable. Many invertebrates live on or amongst the
substrate. Their persistence does not seem dependent on a pool-riffle structure
and indeed some species are cited as preferring regions of higher velocity and
turbulence. Section 6.3.5 showed that although there is no firm evidence for
exponential residence times in the benthic state, the existence of exponential res-
idence times in the water column are supported by both theory and field data.
What this model can not represent are species which have a nekton develop-
mental stage such as stream insects. Here it seems some form of model of the
colonisation cycle still needs to be applied. In turn this requires use of a stage
structured model. The I%D model could still be useful however, in that it pro-
vides a semi-analytic solution to the aquatic stages of the life cycle, while taking
into account the intermittent nature of drift events. A problem that would need

to be resolved is that both analytic models use the intrinsic growth rate, r, to
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non-dimensionalise the problems. For a stage structured model the growth rate
during the aquatic phase is zero. It is feasible to use a nominal non-zero growth
rate considered sufficiently small not to overly influence the population distribu-
tion at the end of aquatic stages. Otherwise an alternative form of scaling must
be sought. In either case, the proportion of individuals in the water column could
be considered as represented by Equation (6.53) (using the Markov theory). The
Markov theory takes no account of population growth and closely approximates
the result from the I%D solution if exchange rates are high compared to the in-
trinsic growth rate. An estimate of the proportions of species found in drift and
benthos is more likely to be available from field data than rates of drift entry and

exit. Equation (6.53) allows determination of these latter parameters.

Non-insect lotic and benthic dwelling stream invertebrates seem less well studied
than stream insect larvae. There is evidence of their occurrence in the drift,
however, directly from net sampling studies, (Allan et al. 1988; Bergey and
Ward 1989).

The analytic tractability of the I%D model depends on the assumption of no
movement in the benthic ‘state’. This assumption is probably valid if considering
very small animals such as harpacticoid copepods. Other species, such as Gam-
marus species of amphipod have had significant upstream movements measured
, (Elliott 1971b; Marchant and Hynes 1981). Such upstream movements have
also been measured for insect larvae, (Elliott 1971b; Hayden and Clifford 1974),
although other studies have concluded movements to be random, (Hart and Resh
1980). These upstream movements were not considered enough to compensate
for downstream drift but raise the issue of whether results obtained from the
semi-analytic treatment are robust enough to be able to ignore the magnitude
of upstream movement reported. Performing this test requires use of a form of
the discrete space-time simulation. This could be non-trivial because the prob-
lem can become ‘stiff’ as the mean residence time in the water column is made
shorter. A simulation model of this problem was developed to test simulation

results against the analytic results for the change in critical velocity with clinging
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but no benthic movement. As the rate of return from the water column was
increased, it was found only very small timesteps, coupled with long periods of

simulated time could reproduce the analytic results.

10.2 2D river systems

The longitudinal advection in larger rivers has a vertical profile as discussed
in sections 4.3 and 4.4. For organisms with no directed movement, Speirs and
Gurney (2001) found the inequalities required for persistence gained from the
one dimensional model to be little affected by explicit consideration of depth.
After modification to the determination of critical vertical diffusion coefficient,
this conclusion remained the same for neutrally buoyant organisms. When a
steady sinking speed, V, was introduced the value of critical vertical diffusion
only increased significantly once V; > 2A,,. L., that is greater than twice the
product of the growth rate at the benthos and the depth of water below the critical
depth, (the depth from the surface at which persistence becomes impossible in

the absence of vertical diffusion).

For a given stretch of river, the vertical gradient in downstream advection is likely
to be much greater than any longitudinal gradient. In the assumption downward
movement would be the chief means by which planktonic organisms might show
enhanced persistence relative to results from the one dimensional analysis, hor-
izontal swimming was not considered. If a constant horizontal swimming speed
is assumed, however, the results of chapter 7 can still be applied, with the pro-
viso that in doing so advections near the benthos becoming upstream must be
ignored. If this is considered acceptable then a swimming speed will have the
effect of raising the critical depth toward the surface and produce a less negative
growth rate at the surface layer. It should be remembered that A, was taken as
the long term growth rate at the benthos and that this growth rate was used for
all depths up to the critical depth. The value of A, then is the value obtained

when advection is zero. With a constant swimming speed the net horizontal ad-
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vection will be rendered zero at some point between the benthos and the new
critical depth. Using the long term growth rate at this point for A, would seem

to remain as reasonable an assumption as in the absence of swimming.

One issue with respect to this work is whether the value of ®, associated with
each vertical slice of the domain should represent horizontal diffusion or the over-
all horizontal dispersion of tracers associated with the river. The fact that the
original theory of shear flow dispersion is based on movements of particles between
different vertical layers, as represented by Equation (2.11) of section 2.1.5 suggests
the @, value should simply represent horizontal diffusion. On the other hand,
the equation derived by Fischer for dispersion caused by the transverse variations
in flow, Equation (2.12), makes no use of the vertical gradient in the horizontal
advection, V,. If Fischer’s conclusion, (assuming a large width to depth ratio for
the river), that dispersion caused by transverse shear dominates that caused by
vertical shear is accepted, this suggests use of dispersion coefficient values for @,
is most appropriate. Such dispersion coefficients in this work were derived using
Equation (7.47), which can be derived from Equation (2.12) after making some

assumptions about parameter values for typical rivers, (Fischer et al. 1979).

The attempt to apply the derivation of critical vertical diffusion coefficient to a
real river system, the river Meuse, gave predictions orders of magnitude smaller
than an estimate of the expected vertically averaged value, ®,, given the same
values of shear velocity. If a parabolic vertical profile is assumed for the inten-
sity of vertical diffusion the heights of ‘flow refuge’ within which the value of
®, remains less than the estimated value of ®,. was found to be very small for
all river discharges considered. This was both in absolute terms and as a pro-
portion of the total river depth. It is true that a single depth and width was
used for all discharge values. Various studies, (empirical and theoretical), have
concluded that river width and depth change with river discharge according to
power functions of discharge. A table of different studies and the coefficients and
exponents derived are given by Knighton (1984, page 100). Deriving width and

depth relationships from such equations allows the possibility for higher horizon-
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tal dispersion coefficients from Equation (7.47). Although the general pattern of
depth and width alteration with discharge are consistent between studies, the co-
efficients and exponents used are not. Further, they are highly dependent on the
sediment characteristics of the river and these were not known. Unless the values
of ®, were to rise considerably the basic pessimistic nature of ®,. forecast is un-
altered. Results for ®,. were derived with the ®, values taken as five times their
calculated value!. Except for the case of lowest river discharge, (where results
indicated no limit on ®, value), results were still nearly an order of magnitude
smaller than the vertically averaged ®, value. Additionally, the river slope val-
ues calculated are small in comparison to those generally associated with rivers,
(Morisawa 1985; Chapra 1997). Smaller slope values lead to higher ®, estimates

if other variables remain the same.

There does seem growing evidence for potamoplankton populations that are resi-
dent in rivers rather than the result of importation from lentic sources. Reynolds
and Glaister (1993) found populations of pelagic phytoplankton in the middle
reaches of the river Severn, Shropshire including Stephanodiscus species. Al-
though nutrient levels were only considered enough for ‘moderate’ phytoplankton
development, recorded downstream increases in population density were greater
than could be predicted from assumption of the population at the river head
being advected at the mean river flow rate and growing exponentially at its in-
trinsic growth rate. Moreover, Reynolds (1994a) argues that field data suggests
phytoplankton can not be flushed from a river as fast as Fickian models predict,
(including use of dispersion coefficients). Other authors have concluded that such
models consistently underestimate, sometimes substantially, the actual clearance
times of tracers from particular river reaches, (Bencala and Walters 1983). The
work of chapter 7 is based on a Fickian model, or at least a series of such models
taking their horizontal advection value from the appropriate point on the vertical

velocity profile.

An alternative type of model for determining longitudinal transport and disper-

'Equation (7.47) is expected to predict ®, to within a factor of five.
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sion is the ‘aggregated dead zone’ model, (Wallis, Young, and Beven 1989), which
attempts to take the aggregate effect of areas of non-flowing water (dead or stor-
age zones) that exist within what can be considered part of the main channel
itself. Such zones have been identified in the field, with enhanced concentrations
of planktonic algae, (Reynolds, Carling, and Beven 1991). Beer and Young (1983)
suggested that dead zone dispersion dominated turbulent shear flow dispersion.
No study is known of, however, that attempts to combine the theory of aggregated
dead zones with the mechanism of turbulent diffusion for upstream movements.

It is, therefore, a possibility for future study.

A modification to the current approach that could be adopted to see if it improved
predictive ability would be to effectively turn the simulation on its side. Instead
of depth, the transverse dimension of the river is considered along with domain
length. Many 1D domains differentiated vertically are replaced by 1D domains
arranged across the transverse direction of the river. Mean advections at given
points along the velocity profile are then replaced by estimates of depth averaged
advection given a transverse profile of river velocities. It is well known that
velocities vary across the transect of rivers and techniques have been established
to map these values. Fischer (1967) used such methods to establish his equation
for determining longitudinal dispersion coefficients from transverse differences
in flow. The study by Reynolds, Carling, and Beven (1991) found persistently
higher concentrations of planktonic algae very close to the bottom of a stretch of
the river Severn but bigger and more important concentrations toward one bank.
Near shore regions with slow flushing rates were also considered to be of vital
importance in a study of river zooplankton, (Reckendorfer, Keckeis, Winkler,

and Schiemer 1999).
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10.3 Tidal estuaries

The investigation of tidal estuaries used two sets of flow conditions that produced
very different residual flow characteristics. In the first, all stratification in the
system was broken down by internal turbulence part way toward the seaward
boundary. This produced a frontal structure in Lagrangian residual movements.
In the second the residual flow patterns are very much what can be expected
from a partially mixed estuary. It was found that for neutrally buoyant and
passive organisms persistence was possible in both systems up to a maximum
limit of vertical diffusion. This was true for two cases thought to bracket the
bulk of planktonic intrinsic growth rates. For the system with frontal structure
there seemed no lower bound to magnitude of vertical diffusion that allowed
persistence. This was not true for the partially mixed estuary which required

some degree of vertical diffusion to allow persistence.

Beyond a certain limit of vertical diffusion coefficient, population was progres-
sively removed from the shallow end of the system. This is believed to be due to
particles becoming sufficiently evenly distributed over the shallower depths of the
system as the tidal cycle evolves, that they attain the depth averaged net flow in
the system which is always seaward in the presence of river flow. The same phe-
nomenon was recorded for particles given a constant sinking speed and neutrally
buoyant particles. It is, however, thought unlikely to be an issue in real systems.
Firstly, in the system investigated the effect only became apparent for organis-
mal vertical dispersion coefficients above 1 x 10 3m?s~!. This value is at the top
end of tidally averaged values of vertical diffusion coefficient observed in estuaries
with stratification and, depending on the degree of stratification, potentially still

high for instantaneous values, (see section 4.3).

It is also probable that even organisms as small as phytoplankton will have an
inertia that prevents their random changes in velocity being as rapid or high

magnitude as for the surrounding water?. Both factors suggest the values of @,

2Indeed, this non-complete entrainment is believed beneficial in that it enhances nutrient
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causing losses in mean population density are unlikely to occur. Additionally,
the phenomenon results from a combination of vertical mixing and water column
height. The system investigated here is relatively shallow for an estuary. It is
believed deeper systems would not demonstrate the same behaviour unless the
value of ®, were increased to less realistic values. Finally, simulations were per-
formed with no specification of horizontal diffusion coefficient as it was considered
this would normally be dominated by dispersion due to non-uniform advective
flows. If rapid vertical mixing eliminates such dispersion, there is still scope for

turbulent diffusion to restore some upstream movement.

Introduction of a sinking velocity to organisms had an interesting effect. In the
partially mixed estuary, concentration of organisms in upstream regions where
net flow is chiefly vertically upwards could actually lead to density dependence
reducing overall population levels compared to the case for a neutrally buoyant
population. Where sinking did demonstrate an advantage is at very low values
of vertical diffusion coefficient. Here sinking could replace diffusive motion as the
means to break out of the upper, and seaward bound, deterministic residual flow

pattern.

Incorporation of depth dependent intrinsic growth rate produced a surprisingly
large difference in overall population densities. If the appropriate abiotic light
attenuation coefficients for a system are similar to those for west coast of Scotland
sea lochs, it seems results for phytoplankton population levels in systems with an

average depth as little as 5m must take account of this phenomenon.

An obvious and interesting extension to work in both fjord and coastal plain es-
tuary domains is the incorporation of vertical migration. Selective tidal stream
transport, STST, is the easiest to incorporate into the discrete space-time sim-
ulation methodology. It is probably only applicable to estuaries. If modelling
the larval phase of animals it is appropriate to use a growth rate of zero. In

this case the approximation for the discrete time solution of the logistic equation

uptake by allowing fresh medium to pass over the cell surface, (Reynolds 1984, page 18).
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developed in section 8.1.4 can be employed. The current ‘sinking velocity’ con-
stant can be caused to change sign according to the phase of the tidal cycle. A
more sophisticated approach would be to change the direction of this movement
for each individual track dependent on whether the horizontal velocity being ex-
perienced was currently landward or seaward. This allows for phase differences
in different parts of an estuary, but also raises the possibility of organisms near
the bottom moving upwards during the ebb phase in highly stratified systems.
It would be relatively straitforward to develop the tracking program to include
data on salinity and or temperature if changes in these quantities were considered

more appropriate cues.

One would expect STST behaviour to lead to all population being concentrated
at the head of the system. Larvae documented to possibly show such behaviour
are only pelagic for a finite period before reverting to a benthic lifestyle. They
also tend to enter the estuarine habitat from spawning grounds in the coastal
sea. A test of the appropriateness of this behavioural theory would be to initiate
a cohort of individuals near the seaward end of a domain, (matched in length,
depth, slope and tidal characteristics to a documented system), and to record the
final longitudinal positions of individuals after a time thought to represent their

pelagic phase.

The incorporation of a ‘background’ diffusivity in POM to overcome the effective
shutting down of the turbulence closure scheme in regions of high Richardson
number is not ideal. This number is added everywhere in the domain, regardless
of the stratification. Too high a value for this constant may lead to artificially high
values of turbulence in regions where the turbulence closure scheme has otherwise
made an accurate estimate. One possibility is to incorporate more specialised code
within the turbulence closure scheme to parameterise mixing in the pycnocline,
(Kantha and Clayson 1994). It is not known, however, whether this would make

much difference to the persistence results, qualitatively or quantitatively.
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10.4 Fjords

A single strategic characterisation of a fjord was used to investigate persistence
for such systems. The same tidal range used for investigation of coastal plain
estuaries was employed. Two river inflows were used to give as wide a range
of inflow as possible within limits defined by consideration of the ratio of fresh
water discharge to tidal inflow in real systems. Given the depth of this system
attention was focused on the higher of the planktonic intrinsic growth rates used
in this work, considered representative of organisms with the least swimming
ability. It was found that if in situ growth was allowed to be uniform very strong
persistence was possible for both flow regimes over all values of imposed vertical

diffusion considered.

If depth dependent growth rates were introduced, however, long term population
densities were cut dramatically. Using the same light attenuation coefficients as
used in the case for a plain estuary, persistence in the body of the fjord was
only possible for the lower coefficient and if predation was assumed very low or
absent. Even then, this was only true for certain values of vertical diffusion. The
Lagrangian residuals for the case with higher river discharge had indicated the
presence of a two layer residual flow in the surface region of the fjord. It was
surprising therefore that use of a critical depth for intrinsic growth rate set just
below this feature did not indicate it to have any effect on retention. Instead, with
the exception of retention of organisms in that part of the domain representing
the river at the head of the system, no mechanism was detected that allowed

persistence and did not involve circulation in the deeper part of the fjord.

Introduction of a constant sinking velocity did not show any signs of obvious
benefit. In the case of uniform growth long term domain averaged population
densities were either unaltered or sinking led to a reduction. Sinking caused no

qualitative difference to the effect of depth dependent growth rate on persistence.

Although the present investigation found a lack of a mechanism, (based on resid-
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ual fluid motion), acting in the near surface to aid retention, it is too early to
conclude they do not exist within fjords. Two parameters whose variation has
yet to be considered are sill depth and tidal range. Although of the same basic
format, the bathymetry of fjords varies considerably. It is possible, (for Scottish
sea lochs at least), for sills to be less than half the depth used in this study, while
others are deeper. Turbulent mixing of water relies on kinetic energy. The kinetic
energy transported into a fjord basin by the tide is dependent on the combina-
tion of the tidal range and the cross sectional area of the outer sill, (Edwards and
Sharples 1986). It is therefore possible for the kinetic energy supply for turbulent

mixing to be varied independently of the ratio of freshwater runoff to tidal inflow.

This study used a two dimensional vertical slice along what was taken to be the
centerline of the fjord. Ome possibility is that retention of photo-autotrophic
organisms relies to some degree on horizontal flow patterns. Fjords often be-
come more narrow in the region of their sills. The head of a fjord is often that
much wider than the main river feeding it. These features offer the possibility of

horizontal gyres.

It is possible, however, that more complex ‘behaviour’ than constant sinking (or
no behaviour) is required for phytoplankton retention, although it could still be
that organisms do not need to be active. The effects of depth and salinity differ-
ences ensure the density of water in such systems increases with depth. Organisms
negatively buoyant in the ‘fresh’ surface flow will see their relative density to the
surrounding flow reduce with depth. This effect would be especially marked for
flows which develop a marked pycnocline. Indeed, studies have indicated that
subsurface biomass maxima tend to occur within the pycnocline and at density

discontinuities, (Syvitski, Burrell, and Skei 1987, page 214).

To represent correctly the full extent of stratification and the steepness of the
density gradient at the pycnocline it may be necessary to include the effects of
surface heating. Temperature effects were excluded from this work in order to

remove the possibility of confounding joint effects. Dyer (1973) considered that
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for estuaries and fjords as a whole temperature would have a relatively small
influence on densities. In fjords warming of surface waters during summer can
help to stabilise the brackish layer®, (Syvitski et al. 1987). When using POM,
however, once buoyancy frequency has become sufficient to reduce values for eddy
diffusion from the turbulence closure scheme to below the specified background

level, it is this latter parameter that determines the stability of stratification.

The effect of diurnal migration on persistence in deeper systems is intriguing. This
would require slightly greater modification to the present discrete time modelling
approach than STST migration mentioned above. The particle tracking program
could be run over two tidal cycles including a sinking speed during the first and a
rising speed during the second. However, the time step of the resultant population
model, one whole day, may well be too long not to influence results. If this were
the case, two redistribution matrices would be required from the particle tracking
program, one for sinking and one for rising. The population model would then

need to alternate between transition matrices.

A more fundamental problem is that the above approach assumes a constant
phase between the migration cycle and the tidal cycle. Any longitudinal bias in
net tidal cycle movement would then be assumed to continue for the duration
of the population model run. The phase differences between these two cycles
are known to change throughout the year. The work of Hill (1995) using simple
sine waves for tidal velocity and square waves for migration showed sinusoidal
patterns of horizontal displacement with no net displacement over seasonal time

scales.

This complication does not prevent the tidal cycle being regarded as of constant
duration, (and indeed the dominant M2 tide has a steady period of 12.42 hours).
If the varying tidal magnitudes of the spring-neap cycle are still ignored use of
a single set of flow fields is still possible. The issue then seems to become one

of how many transition matrices are required, each representing different phase

3Surface cooling in winter has the opposite effect. It mixes surface water downwards through

convection.
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differences between migration and tide.

10.5 Modelling in three dimensions

When considering ‘behaviours’ potentially significant to planktonic retention in
systems, it is remarkable how much can be investigated at the strategic level
without the need to consider a domain in three dimensions. If variation of the
advective and/or diffusive components of flow are of primary concern in only one
of the axes perpendicular to net flow, modelling in three dimensions can probably
be avoided. As considered in section 10.2, in large rivers flow refugia may be more
significant in terms of shallow areas at the sides rather than near the benthos.
If variation in depth averaged advection across the transverse of the domain is
considered to dominate effects from the vertical velocity profile, the problem can

be investigated by a two dimensional model.

In the case of fjords, a two dimensional model can again be used to see if features
such as horizontal gyres in the lee of areas of rapid flow, (such as the sill or point
of river inflow), are important near surface mechanisms for the retention of or-
ganisms. Results become potentially less robust in this case however. Significant
features of the residual flows created in a horizontal domain may not be retained

on inclusion of the third dimension, especially if depths are non-uniform.

A move to three dimensional modelling would allow incorporation of transverse
mixing and shear effects into the longitudinal dispersion of populations over a
tidal cycle within estuaries and fjords. Also these bodies can become sufficiently
wide for the Coriolis force to become significant. The Coriolis force tends to
deflect currents to the right in the Northern hemisphere and left in the South-
ern hemisphere. As mentioned in chapter 2, in wide estuaries this can lead to a
transverse residual circulation, which in the Northern hemisphere is a counter-
clockwise rotation when looking seawards. The conclusion that very well mixed,

(near homogeneous), estuaries lack retentive mechanisms could change if the cir-
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culation induced by the Coriolis force, coupled with realistic transverse mixing
coefficients, led to enhanced persistence. The Coriolis force is also likely to be
important in wide fjords. The onset of such effects is a combination of domain
width, latitude and the velocity of water in the system, as determined by the

Rossby radius of deformation.

In the POM model it is a simple task to incorporate and specify the magnitude
of the Coriolis force. POM also incorporates a representation of friction at lat-
eral boundaries such that transverse velocity shear effects will automatically be
present, although this representation, described as ‘half slip’ is relatively crude.
The effect of bottom friction and the resulting vertical profiles of turbulence and
velocity, however, are represented as accurately as possible, (within the limits
imposed by reasonable computational cost). The reduced momentum of near
shore flows therefore, should be represented well if the domain cross section is
made more shallow moving away from the centre line. This should introduce a
more realistic element of transverse shear as well as allowing the possibility of

representing tidal pumping.
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Appendix A

Exponential growth in a

well-mixed river

Solutions are sought to the balance equation

on on o*n
—=m-V,— +¢,— Al
ar " Ya Ox * Ox? (A1)
with boundary conditions at the left and right ends of the domain of
on
w00 (51) (A2)
and
n(L,t) =0 (A.3)

To simplify the problem the following scaled terms are introduced

T =t/ty wherety=r""
X =x/xy where vyg =Ly =/P,r!
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w=ajag where ap =7

o=0(/By where o =r

v="V,/Vo where Vj =V, =2/P,r

Substituting these scaled terms into Equations (A.1) to (A.3) yields

— =n—2v—— A4
or ~ " Tax T axe (A4)
with boundary conditions
on
2 T)— — = A
vn(0,T) x|, 0 (A.5)
n(l,T) = 0 (A.6)
where | = L/L,.
Solutions are sought in the form
n(x,t) = M f(X) (A7)

where A\ is the scaled long term growth rate. Back-substituting into Equation

(A.4) gives

of o
A= f—2ua—§+asz
dif &
0 = (1—A)f—2y£+d—)£ (A.8)

This is a second-order ordinary differential equation with constant coefficients,

which has the general solution
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f(X) = Ae"™ 4+ Bem™ (A.9)

where A, B are arbitrary constants and 7; and 7, are given by the roots of the

auxiliary equation

v —=2uy+(1-A) =0 (A.10)

such that

m=v—1, y=v+, P=12-(1-2N) (A.11)

A.1 High velocity case: v, 75 and 1 real

If the scaled velocity is high enough to ensure that

2> (1- ) (A.12)

then ~;, v and ¢ are real. To satisfy the left hand boundary condition requires

A 2W—vy v—9

_Z = A3
B 2v—v v+ ( )
while matching the right hand boundary condition requires
A
—g = exp|(72 = M)l] = exp(2¢) (A.14)

If » > 0 then Equation (A.14) requires (—A/B) > 1 while Equation (A.13) re-
quires (—A/B) < 1. If ¢ < 0 the inequalities are reversed. The incompatibility of

requirements (A.13) and (A.14) means that when the velocity satisfies inequality
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(A.12) there is no solution of the form (A.7) which can satisfy both boundary

conditions.

A.2 Low velocity case: ¢ imaginary; v, and 7,

complex conjugates

If inequality (A.12) is violated 1 is imaginary and 7; and 7, are complex con-
jugates such that they can be expressed as a combination of real and imaginary

parts

nw=v—Fki, Yy=v+ki, k=\(1-)\)—v? (A.15)

The general solution of Equation (A.8) can be rewritten as

f(X) = Ae** cos kX + Be** sin kX (A.16)

where & = v.

Matching the left hand boundary condition now requires

k

A
Av—v)—kB=0— === A7
(20— v) S S=1 (A.17)
while matching the right hand boundary requires
A

A solution matching both boundary conditions is therefore one for which

k
tan kl = - (A.19)
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Converting Equation (A.19) back into dimensional form gives

L
tan <mL—d> = —%m (A.20)

where k is the dimensional form of &k such that

2

=D () i

A.3 Obtaining values of the long term growth

rate )\

If parameters [ and v are fixed, Equation (A.19) can be satisfied by an infinite
series of values for k, any for which the straight line —k/v cuts the curves for
tan kl. From Equation (A.15), however, it can be seen that negative values of k
will always have a positive equivalent of the same magnitude and with v fixed
this must be derived using the same value of A. Also from Equation (A.15) it
can be seen that the maximum possible value for A is obtained from the smallest
possible value for k. This suggests that £ = 0 provides the maximum scaled long
term growth rate. Substituting £ = 0 back into the general solution given by
Equation (A.16), however, means that the right hand boundary of the system

requires

Ae’t =0 (A.22)

This can only be satisfied if A = 0, which in turn implies VX, f(X) =0, that is
a system containing zero population. The smallest non-zero value for k£ therefore
gives the maximum possible value for A and will be found in the region /2 <

kl < m. The actual intersection is easily found by a bisection algorithm.
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Appendix B

Analytic Solution for flow in a

Tidal River

A solution is sought for a two dimensional fluid flow, with horizontal velocity, V,

and sea surface elevation, n, described by the following equations.

WV,  op PV, g [V,

_ g 5 L —
o~ Yo %92 W o O

dz (B.1)

The solution must satisfy the following flow boundary conditions at the landward

(z = 0) and seaward (z = L) ends of the system

t
Vx((), 0, t) = VR, Vx(L, 0, t) = VR + VT COS 27[.T \% (B2)

where T is the tidal period, and conditions of zero wind stress at the mean free

surface and zero slip at the bottom

%‘? —0, Vi H ) =0 vt (B.3)

z=0

This problem is completely linear. As such the solution can be a superposition of
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the flow generated by the river, (V;), and that generated by the tide, (V;). The
river input is constant, such that the flow generated is steady (independent of

time) and uniform (independent of x). A solution is therefore sought of the form

Ve = Vi(2) + Vi(z, 2, 1) (B.4)

The surface elevation can also be split into that associated with the river flow, (n,),
and that associated with the tidal flow, (7;). From Equations (B.1), the assump-
tion that the river generated flow is steady and uniform implies that dn, /0t = 0.
Such flow also implies that On,/0x = —H', where H' is a constant. This is
consistent with Equations (B.1) if

*V, gV,  gH

0z2 @, 0r @,

(B.5)

The general solution of Equation (B.5) is V, = A + Bz — (gH'/2®.)2?, where
A and B are arbitrary constants. To satisfy the top boundary condition on V,
(Equation B.3), B = 0. To ensure V,.(0) = Vg, A is set equal to V. To satisfy the
second element of Equation (B.3), H' must be set such that H' = 2®,Vy/(gH?).

This gives a final solution for V, of

V= Vi (1 _ [gf) (B.6)

The equations for V; and 7, become

oV, N oy 9°V,
ot 9o T (B7)

and

on, _ "9V,
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To solve this equation it is assumed that the solution is the sum of a term which
is independent of z, (Vj), and a z dependent term, (V};). If the z-dependence
of V1 is separable and the x and t dependence of V;; and Vg is the same, then

Vi1 = Viop(z), and the general form of the solution for V; is given by

Vi = Vio(2) (B.9)

Substituting this form of the general solution into Equations (B.7) and (B.8)
yields

Vo - oy 0

b = 95, T PV (B.10)
ony -0V
— =-H B.11
ot ¢ o0x ( )

where ¢ represents the average value of ¢ over the water column. Differentiating

Equation (B.10) with respect to time and back substituting for dn,/0t leads to

Vi -0V Wi ¢
=gH o, ——— B.12
Pop ~IHO G TPy o (B.12)
Now, a trial solution is assumed of the form
iwt ik s W
Vip = e"“e"™ h k* = — B.13
= e“e where i ( )
This allows Equation (B.12) to be written in the form
_ 02
wip— @) = —z’w@ea—z‘f (B.14)

Defining ¢' = ¢ — ¢, this becomes
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82¢’ W ,
922 ZQTQ¢

whose generic solutions are of the form ¢ = e"™* where

9 SN + (1= w
m° = —i— m =— —
o, V2 o,

(B.15)

(B.16)

There is now a full generic solution to the tidal velocity component, V;, namely

+. o+, +
‘/; — \Ifle_“"te_lkx(l + \I[2€—mz)

(B.17)

where U, and Wy are arbitrary constants and m and k are defined as above.
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Appendix C

Analytic Solution for flow in a
Tidal River: Semi-sigma

Coordinates

With the introduction of semi-sigma coordinates into the fluid flow equations

presented in Appendix B, the momentum equation becomes

v,  og H_ &V,
o~ Yor T 2% (G1)

and the continuity equation takes the form

ov, HIV,

O + Dos 0 (C.2)

Boundary conditions

The landward and seaward boundary conditions on V,, can simply be stated as
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t
V;;U(O, Zo = 0, t) = VR, V;;U(L, 2o = 0, t) = VR + VT COS 27TT Vi (C3)

and that at the bottom as

Vio(T, 2 = H,t) =0Vt (CA4)

For the free surface condition we note that (with both 2z, and z defined positive

towards the benthos)

% - g (C.5)
SO
HoV|
D 0z, o
aavzi" =0 (C.6)

This new free surface condition has the bonus that it applies to wherever the free

surface sits at any point in time rather than simply to the mean free surface level.

To implement the new version of the model, new top and bottom boundary
conditions on V, are required. At the bottom flow is forced to become parallel
to the bottom, while at the free surface the boundary condition implies that the
surface rises and falls in response to flow which is not parallel to the free surface,

so that

Vi(z,—H,t) = =V, (x,—H,t)— (C.7)



on 0
Vi) = Vile,n, )50 + 5] (©8)

The new bottom boundary condition, (Equation C.7), is consistent with the re-
quirement from the initial version of the model that the vertical velocity is zero

at all times because V,, is required to be zero at the bottom.

The new top boundary condition for V,, (Equation C.8) is also consistent with
the non-sigma version for the same reason. With V, (z, —H,t) = 0 the equation

for 0n/0t, Equation (C.13) below, can be written as

on on n oV,

Back substituting for dn/dt into Equation (C.8) gives

n JV,

Vz(l"ﬂ%t) = - 5 Ox

dz (C.10)

which is the exact equivalent of Equation (4.47) given that dn/dt = V,(n) in the

non-sigma version.

One discrepancy between the two versions of the model is that dn/dt = V,(n)
does not hold in the sigma version. In the non-sigma version dn/dt can become
zero when 0n/0x # 0. This is only possible however when there is steady river
flow but no tidal flow. The gradient 0n/0x caused by steady river flow (see
Appendix B) is very small for the river velocities of interest in this work and the

difference is not considered significant.

New continuity equation

The utility of this new depth measure can be seen once the continuity equation
is re-defined in terms of the surface elevation and a vertically averaged horizontal

velocity as described below.
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Starting with the continuity equation as defined in Equation (4.46), this implies
that

Vi (x,z,t) =V, (x,—H,t) — /z av?ﬂdz (C.11)

—H O

Following Blumberg and Mellor (1987) the top and bottom boundary conditions
of Equations (C.7) and (C.8) are imposed on V,. Back substituting Equation
(C.7) into Equation (C.11) gives

‘/Z('TJ Zat) = —Vx(l', _H7 t)

oH / Ne (C.12)

O0x  Jow or

and back substituting Equation (C.12) into Equation (C.8) in turn gives

on
ot

0 OH n oV,
+%($,n,t)—n+%(l‘,—H,t)—+/H o

= A
e 9 dz =0 (C.13)

To simplify Equation (C.13), a vertically averaged horizontal velocity is defined

~ 1 n(w,t)
0= / Vydz (C.14)

from which it is noted that

0, o on 0H n OV,
Comparing Equations (C.15) and (C.13) shows that
an 0 -
T —_ (D 1
5 = 9PV (C.16)

Comparing the relationship between horizontal velocities defined using the three

vertical co-ordinate systems of z, o and z,, namely
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U(z,o,t) = Vy(x, Do +n,t) = Vye(z, —0H, t) (C.17)

and noting that

— d 1
o = 1,92

D dz D
o = —oH— P2 g (C.18)
o — g dO'_ .

from this comparison it can be seen that U can be written as

b= Uwotdr=—2 [ viodgn = [y 4 C.19
:/;1 (.T,O—,)O':— /H(x) IUZU:H—J;)/O 202y ()

H(z) (

Expanding Equation (C.16) according to those elements dependent on x gives

on_ _ {HaU ou U@} (C.20)

ot~ \"or "er T
The U term can be found by integrating the right hand side of Equation (4.52)
between zero and H and dividing by H. The BU/ Ox terms are given by the right
hand side of Equation (4.53) evaluated at z = 0 and divided by H. If initial
values of 1 are assumed at ¢ = 0, calculation of 7 for any point in time or space
becomes possible. In this work the 0n/0x term was found by central differencing.
A look-up table was constructed of surface elevations at each of the cell centres

from which particles were tracked, with values for each tracking timestep within

the tidal period.

This form of the equation for the rate of change of surface elevation with time,
(unlike Equation 4.49), does not break continuity for non-zero n values in as much
as the rate of change of surface elevation with time is always internally consistent

with the velocities being calculated within the water column and the depth of
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water, D, over which these velocities are allowed to exist. It is still true, however,
that the velocities are calculated making the assumption that 7 remains zero.

Given the new form of the continuity equation this is equivalent to assuming that

an/ot = —0(HU) /o

Unsolved equation for V; using 2, co-ordinates

In solving for V; we wish to follow the same procedure as in Appendix B and
therefore differentiate the equivalent of Equation (B.10) with respect to time.

The momentum equation for V; is now in the form

oV on,  H*_ 0%V,

- o T %2 (C21)

and this leads to

Ve _0*Vio 5. 0?0 Vio 0D 0 (Vi Vi

v or T yHIGE TH OGS 8—D<—> o +a—vt0(ﬁ> .
82‘/;50 . 0? Vio 2 52¢ —2Vio 877 1 avto

bom = 9HI 55 ””’F D5 ot D2 ot

9*Vio . - 0%V ¢ [ 2V On Vi

or = G +ﬁq>eazg D ot ot (C22)

Substituting from the trial solution of Equation (B.13), namely V,, = e™!e?®
with k? = w?/gH, gives

(iw)* Vg = gH@(ik)*Vi +Vto 82¢ [M : anl

oz D ot
82¢ 2 0n
W' ¢+ oz [“ Dat]
- H? 82¢ 20n |
2 - - R N A
w (¢ — ¢) <I>eazg lD o w] (C.23)

and defining ¢’ = ¢ — ¢, and re-arranging leads to
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¢ _ i, ¢’ (C.24)
0z (%% — iw)
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Appendix D

Exponential growth in a
well-mixed river: Transfer

between drift and benthos

It should be remembered it is assumed organisms stay in the drift and benthos
with exponentially distributed residence times and that they are motionless while

in the benthos.

This problem can be defined as a coupled set of partial differential equations

on on 9’n
Frimkiie Bn + am — V“’_a:c + (I)“’_a:ﬁ (D.1)
om

Boundary conditions are, (as for the case of particles permanently in the drift),

that of zero flux at the left hand boundary

on
— P, = = D.
Vo (0,1) W 0 (D.3)

=0



and an absorbing boundary at the right hand end of the system

n(L,t) =0 (D.4)

To simplify the problem the following scaled terms are introduced

T =t/ty where to =r"!
X =x/xy where vyg = Ly = /P,r!
w=a/ay where ay=r

o=/p(/By where fy=r

v="V,/Vo where Vj =V, =2/Qyr

Substituting these scaled terms into Equations (D.1) and (D.2) yields a simplified

set of equations

g—;:n—an+wm—2ug—;+gjg (D.5)
Z—Z}:m—wmjLan (D.6)
with boundary conditions
2vn(0,7T) — g—; . =0 (D.7)
n(l,T) =0 (D.8)

where [ = L/L,.
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In seeking a trial solution it is assumed that the solution, after initial transients
have died away, will take the form of a static spatial pattern which scales ex-
ponentially with time and that the population in the benthos will be a time
independent proportion of the population in the drift. That is we seek solutions

of the form

m = 0On (D.9)

where @ is the constant of proportionality between m and n and A is the scaled

long term growth rate. Back-substituting into Equations (D.5) and (D.6) gives

M(X) = F(X) — o f(X) + wf(X) _2V%+% (D.10)

and

0N =0+ 0 — wh (D.11)

Using the relationship between —o + wf = 6(1 — A) from equation (D.11) in
equation (D.10) we obtain

if &
0:(1—)\)(1+0)f—2yé+d—XfQ (D.12)

With this trial solution boundary conditions become

2w f(0) — % =0 (D.13)

=0

F(1) =0 (D.14)



In a similar manner to the case for a permanently water borne particle we are left
with a second order linear O.D.E. with constant coefficients. This has solutions

of the form

f(X) = Ae"X + Ber* (D.15)

where ; and v, are given by the roots of the auxiliary equation

Y= 207+ (1= XN)(1+6)=0

Therefore

2v — \[42 —4(1 = \)(L +0)
"= 5

= V—\/l/2 A)(L+6)
— v

2v+ (42 — 4(1 — A)(1 +6)
2
= vt — (1= N1 +0)

T2 =

= V—|—’l/)

where ¢ = \/V2 —(1=X)(1+0).
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D.1 High velocity case: v, 7» and ) real

For 7y, 72 and v to be real we require

V2> (1-X)(1+06) (D.16)

To satisfy the left hand boundary condition we require

2v(Ae™? + Be™%) — (Ay1e™? + Bye™’) = 0

W(A+B) — (A +By) = 0

—A 2u—p
B = 22—y
—A v—1
— = D.17
B v+ ( )
To satisfy the right hand boundary condition requires
At Be? = 0
—A
- — el
—A
f = €2¢l (D18)

If ©» > 0 the left hand boundary condition requires —A/B < 1; the right hand
boundary condition requires —A/B > 1.
If 9» < 0 the left hand boundary condition requires —A/B > 1; the right hand

boundary condition requires —A/B < 1.

Thus, when the scaled velocity satisfies inequality (D.16) there is no solution of

the form (D.9) which satisfies both boundary conditions.
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D.2 Low velocity case: v imaginary; v; and 7,

complex conjugates

With 7, and 7, as complex conjugates they can be expressed as a combination of

real and imaginary parts

m o= v—~k

Yo = v+ki

where k = \/(1 — A)(1+ 0) — v2, and the general solution of equation (D.12) can
be written as
f(z) = Ae*” cos kx + Be** sin kx (D.19)

where & = v.

The left hand boundary condition therefore requires that

0 = 2we’’(Acosk0 + Bsink0)
—[e"°(—kAsin kO + kB cos k0) + ve”® (A cos kO + B sin k0)]

0 = 2vA—kB—-vA
% _ % (D.20)
The right hand boundary requires that
0 = e"(Acoskl + Bsinkl)
0 = 1+ % tan kl
% = —tankl (D.21)
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A solution matching both boundary conditions is one for which

tan kl = —E

R

where

)

Converting equation (D.22) back to dimensional form gives

L
tan(k—) = —Em

L d Vw

where k is the dimensional form of & such that

o5 () - ()

or
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Appendix E

Exponential growth in a vertical
water column split at the critical

depth

Expressed in terms of scaled variables this problem consists of two advection-

diffusion equations, one for the region below the critical depth of the system

(E.1)

and one for the surface region between the critical depth and the water surface

on A, on  0%’n
i —Wy— + — E.2
ot A s, T2 (E:2)
On substituting trial solutions of the form
n = e*'f(z;) for zy below the critical depth
n = eM'g(zy) for z, above the critical depth (E.3)
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these equations become the following O.D.E.s

i &f
— (=) f—20, 0 O
0=I )/ Ualz_FjLalZ?,r

and

Asr
Abr

dg d?g
Mg —2v L 4 &I
)g —2v e

0=
( dz2

(E.5)

These are both second-order ordinary differential equations with constant coeffi-

cients, which have the general solution

f(zy) = Ae"* 4 Be*+

9(z) = Ce™* + Be™™

(E.6)

where A, B, C, D are arbitrary constants and the s are given by the roots of the

auxiliary equations

V=20 7+ (1-X) = 0 for f(zy)

A
——X) = 0 for g(z)

2
_2z
7= 2uy (-

that is

71:%—% /72:Uz+"/)

where ¢ = /v2 + A, — 1 and

V3=V, — 2, Y4 =0, + o
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where ¢y = \/v2+ A\, — ﬁb

As outlined in the main text boundary conditions are two for zero flux, one at

the river bed

=0 (E.10)

where z, is a scaled distance defined positive upwards from the bed and with

origin at the bed, and zero flux at the water surface

g

QUzg(h) - dZ+

~0 (E.11)

Z+:h

where h is the scaled total water depth. At the critical depth, z, = 1. = (H —
z)/\/®.A;!, are two conditions. Firstly a requirement that the curve defining

population density along the domain be continuous

e/\ztf(lc) — e/\ztg(lc)
f(lc) = g(lc) (E'12)

Secondly that there is a continuous population flux

(E.13)

which, because of the requirement of Equation (E.12) and the fact 2v, is constant

leads to

s

dZ+

_ g

= E.14
I (E.14)

2=l 24=l¢

270



E.1 High velocity case

If v, = V,/2/®, A\, is sufficiently large that v2 > 1 — )\, and v? > Ay /Ay — A,
then the s and s are real. Substituting the general form of solution for f(z,)

and ¢(zy) into the boundary conditions gives

A v, -
- E.15
B uiu (E.15)
—Ce™t _ v — ¥ (E.16)
Eevh v, + 1o .
Aetle 4 Benle = Ce3le 4 Fetile (E.17)
and
AyieMle 4 Byyele = Cryzele By et (E.18)
Relating the three boundary conditions
Re-arranging Equation (E.15) we obtain
A=_-Bn (E.19)
V2
Re-arranging Equation (E.16) we obtain
Yah
C=-p<_2- (E.20)
et v
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Substituting the results from Equations (E.19) and (E.20) into Equation (E.18)

we obtain

Yah
_Bﬁfyle’)’llc + B,er’YZlc — _Ee,,/sh E,y:;e’)’b’lc + Ef),4674lc
V2 e Y4
B E erih
e — e = [ﬁem - 6@7?6”3“] (E-21)

Considering the first of the boundary conditions at the critical depth, (Equation
E.17), provides

—A 1 E
3 - ol - o - B -
e c

Substituting for C' from Equation (E.20) and for B from Equation (E.21) into the

above leads to

B ! emle 4 el x . h » X [ = mlh }
B erle evshoy, Ev [ﬁe%lc _ ;T%%ewc]
2 '72lc A2 'Yllc
Va |73€ Vie
_EeYle % [ 2 741h ]
By, [13erte — Sapnersic]
2 ’YZZC _ 2 ’Yllc
“A e 1| gt V2T Y2 e et ]
B e le v, —+ fd) [f)/Ze'Mlc — 62¢2h7§€73lc]
2_vole 2 71le
_erile o v: t Yo {72672 — e ]
0% PR — e
2 _20l, 2
—A ey oen VT W2 e — 1]
B o0 et = o)
Cvttn e A
v+ [ - ehydenvle
—A ey [3e*’e — ] vy — P e, 4y
B - [72 _ 62’(/)2h7§e*2’l/}2lc] Uz + w 672¢2lc Uz _|_ 1/)
—_A _ e 1 y [(vz + ¢)282¢lc — (Uz — 1/))2] )
B v+ P (e +1he)? — e2elh=l) (v, — ahy)?
(272071 (0, = ) = (v2 + 1) (F.23)

272



Equation (E.23) is a modified form of the equation stating that the population
density at z, = [, is continuous that only involves the constants of integration A
and B. The boundary conditions at 2z, = 0 and z;, = h and the condition that
the flux of population is a continuous function at z; = [. were used to form the
relationships between the constants of integration that allowed elimination of the
constants C and D. For a given domain and flow conditions the right hand side of
Equation (E.23) consists of known quantities except for A,, (contained within
and 1),). Therefore, a solution that satisfies all the boundary conditions has been
found if a value of A, can be found which allows the right hand side of Equation

(E.23) to equal the right hand side of Equation (E.15). That is if

vy — w1 [(0: + )22 — (v, — )?]
= € ¢ —|— X
Uy + 1/) Uy + 77b [('Uz + 77b2)2 - 62¢2(hil0)(vz - 77b2)2]
x [0 (0, = 1hy) — (v + )] (E-24)

Check on validity of Equation (E.24)

Considering the region of the water column from the bed to the critical depth,
the difference in the solution to the current problem and the one described in
Appendix A is that a local per capita growth rate of A, replaces the intrinsic
growth rate r and the region beyond the critical depth is not assumed to have an
infinitely large negative per-capita growth rate. If the assumed growth rate for
the upper layer is set to —oo and Ay, replaced by r then Equation (E.24) should

collapse back to the same form found in Appendix A, namely
eV _ e (E.25)
e

where v, is the equivalent of v and [, the equivalent of [ of the original equation.

Substituting dimensional terms into the expression for ¢ as currently defined

gives
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V. \? A,
77b:\}<2\/q)z/\br> +A—br_1 (E26)

On replacing A, with r this becomes the direct equivalent of the expression in
Appendix A, remembering that V, and V, are just any velocity defined positive in
the direction of X, Z, increasing. Therefore the left hand side and the first term
on the right hand side of Equation (E.24) is directly equivalent to the condition
found in Appendix A. What remains is to show that the remainder of Equation

(E.24) reduces to zero.

The terms v,, ¢ and e?*c are all finite. Therefore, except when 1) = —v,, the

expression

(02 + )22 — (v, — )7
v, + 9P

is always finite. For the exceptional case when 1) = —uv,, consideration of Equation
(E.26) shows this would require A, = r. The only way this could occur would be
if there were no losses at the absorbing boundary, and this in turn would require

an infinitely large sinking velocity. The above expression is multiplied by the

expression
[62w2(h_lc)(vz - 77b2) - ('Uz + 77b2)]
[(vs +92)? — e22(0=l) (v, — 4)y)?]
which we can label ¥. On setting A, = r and A, = —oo the term ), becomes
by = v\ SR )
toN\ever) T
Yy = 00 (E.27)

As 1y — oo then
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€72 (=hs) = (10)]

lim ¥ =
Y200 [(1h2)? — e¥2(—1p2)?]

. —1/)2(€w2 + 1)

| v = ————~
Y200 g2 (ev — 1)

1

lim ¥ = —
‘/’ZILHOO (>

lim ¥ = 0 (E.28)
P —00

E.2 Low velocity case

As stated earlier, for the vs and s to be real requires v2 > 1 — A, and v >
Agr /Ay — A, As this work involves finding the maximum value of ®, that allows
A, to remain non-negative it is useful to restrict considerations to those involving
non-negative values of A\,. The problem can be further restricted by only con-
sidering systems that contain a critical depth, such that A, is always negative.

As Ay, is always positive then vg > A /Ay — A, is guaranteed. For the systems

under consideration, the roots 3 and -4 will always be real.

In contrast it is possible, for systems of interest, for the inequality v? > 1 — \, to
fail, in particular, when A, = 0 and |V,| < 2/®,As,. In these instances the roots

~v1 and 7, become complex conjugates and the roots can be written as
mo= ki
Yo = E+ki

where £ = v, and k = /1 — A\, — v2. The general solution of f(z) in the lower

region of the domain can then be written as

f(zy) = Ae*** cos(kzy) + Be***sin(kz,) (E.29)
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If this new form of the general solution is substituted into the boundary condition

of Equation (E.10) we obtain

2v,(Ae*® cos kO + Bet” sin k0)
—(A[ef? x —ksin kO + cos kO x &€
+B[e®® x kcosk0 +sin k0 x &%) = 0
20,A—v,A—kB = 0
A k

Z =2 E.30
B o (E-30)

The boundary conditions at z; = [. expressed by Equations (E.12) and (E.14)

now have the form

Aetle cos kl, + Beble sin kl, = Ce3le + Ferile (E.31)

and

Alv,e% cos kl, — ke sin k]

+B[vze””lc sin kl,. + ke cos kl] = Cryzele + By el (E.32)

Using the results from Equation (E.30) and from Equation (E.20) to back-substitute
into Equation (E.32) the relationship between the constants of integration B and

E now becomes

2 _ 12
v, — k

Be% ' |2k cos kl, +

win| = E et € 2] (g3
o sinkl.| = o vie™ = e (E.33)

Considering again the condition for the population density to be a continuous

function of depth and solving to obtain —A/B again gives
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—Aeflecoskl, = Beesinkl, — Cemle — Ferile
A 1

C E
5 = oosil efle sin ki, — Ee%lc — Eewc (E.34)
esle .

Substituting for C from Equation (E.20) and for B from Equation (E.33) gives

A 1 ersle E€74h’y E
_- = - €le giny k1 > 3 H oyl

B esle cos ki, le Sn fle + B e3hey, BE

A 1 Eevah vee:le [2k cos ki, + ZE sin kil
—= = G [e”zlc sin kl, + e x i - s X [ ]

B ev=le cos kl, el E [mewc _ W%evslc}

vzle A*
e Y4e? [2]{; cos kl. +  sin kl, ]]

e
E [74674lc i W73673lc:|
2 12

A 1
-2 = tanklc+[2k+vz

[yiev2le — e2v2hq]

tan klc] [7362‘/’” X

Uy

1
—Ya X —
[f)/z — 62w2h6 2"/’2&:7%]]

2k + = tan k|

A
—= = tankl, : 2pa(h—le) _ E.35
B an ke + 12— e2ba(h—ic)n2] [736 74] (E.35)

Substituting for v;3 and 7, gives a final relationship of

_% _ (E.36)
[2k + = tan k|

tan kl,.
ANkl T 2w, — )]

[(Uz _ 77b2)621/12(hflc) _ (Uz + 1/)2)]

So, via the same arguments used for the case with higher absolute values of v,,

we know a solution has been obtained that satisfies all boundary conditions if

k [Qk + U fan Kl ]
i = tankl, + (0, + 0n)? — ewz(h ) (v, — 19)?]
X [(Uz — afy)e22 (L) (g, 4 ¢2)] (E.37)
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Check on validity of Equation (E.37)

As for the case with higher absolute advection, we set Ay, = r and A, = —o0 to
see if Equation (E.37) reduces to an equivalent form of the condition for solutions
as that found for the problem of a domain with local per-capita growth rate
equalling r and an absorbing boundary, as described in Appendix A, with in this
case the absorbing boundary at z, = [.. The term v, obtains the same meaning
as for the higher velocity case which has already shown it to be equivalent to
the term v used in Appendix A. With v, = v then the term for k here is also
equivalent to the same term used in Appendix A. It remains to show that the

final term of Equation (E.37) reduces to zero.

The expression previously labelled W is again present in this final term and this

will tend to zero as A, — —oo. The remaining expression present is

2 12
% + =

tan kl,.

Uy

The terms k, v, and [. are all finite, meaning the expression is also finite except
when tan kl. = co. To deal with this one case Equation (E.37) is re-cast in the

form

E_sinkl, l2k+ <v§ - k2> sinklcl [(v: — )e?2le) — (v, + )]

v, coskl, v, cos kl.. 8 (v, + 12)? — e2¥2(h—le) (v, — 4y)?]
(E-38)
Multiplying through by cos kl. and v, Equation (E.38) becomes
—kcoskl, = w,sinkl, + [2kvz coskl. + (2)2 — k2) sin klc} X
w HWalhte) Uz + d)
(v = 92)e 2) (E.39)

[(v, + 1)) — e2¥2(h=le) (v, — 1)y)?]

tan(kl.) = oo when kl. becomes any odd multiple of 7/2 such that coskl. = 0
and sin kl. = +1. Substituting these values into Equation (E.39) gives
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0 = v, + [0 (v2 = k)] x 0]

0 = v, (E.40)

Therefore, for any value of v, other than zero the reduction to the condition for a
solution of the previous theory has been achieved. The case where v, is also the
case where tan(kl.) = co — ki, = j x m/2 (where j is an odd number). As before,
maximum values of A, are given by the smallest possible value of kl. so kl. = /2
is the value of interest. In seeking a critical vertical diffusion coefficient we require
A, =0. With A, =0and v, =0, k = 1. This implies that [, = 7 /2. Substituting
back in dimensional terms shows that when v, = 0 the critical vertical diffusion

coefficient is given by

(D—-2) [D—-z)
O VBT 2 (E.41)

This is the same relationship for ®,. found from the one segment equations.
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