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AbstratAll non-oeani loti habitats, hiey streams, rivers, estuaries and fjords, have anet seaward water movement. If individuals from a population have no means ofupstream movement, either through their own ations or from some other meh-anism, then any advetion, (no matter how small), will result in that populationbeing moved downstream and eventual removal from the system. Many organismswith little or no swimming ability, however, manage to persist in suh systems.This phenomenon has been termed the drift paradox.Organisms in a one dimensional domain are onsidered initially, using an adve-tion, di�usion population balane equation with exponential in situ growth inthe absene of movement. Building upon the results of Speirs and Gurney (2001)new analyti results were obtained for an extension to the model whih onsid-ered the e�et of organisms repeatedly transferring between the drift and a statibenthi state, an approximation to the ase for benthi stream invertebrates. Nu-merial modelling, through use of a disrete spae-time approah, was employedto investigate swimming against the ow. For onstant upstream swimming itwas found possible to use the previously developed analyti results with minormodi�ation. Movement against a time average of prior net water movement wasfound a onsiderably less suessful strategy.Rivers with non-haoti ow will exhibit a well de�ned vertial gradient in theirdownstream advetion due to bottom frition and visosity. This presents thepossibility of a near benthi ow refugia in systems where the upper water olumnows too fast to allow persistene. The refugia an only exist, however, so long asvertial turbulent di�usion does not remove individuals from this region at too fasta rate. Virtually all fresh water organisms meanwhile, have a negative buoyany.Semi-analyti results were derived to determine the extent to whih a onstantadvetion toward the bottom ould inrease the value of `ritial' vertial di�usionat whih mixing beomes too rapid for persistene. Results were ompared to atwo dimensional version of the disrete spae-time numerial model. Preditionsiii



of the extent of a benthi refugia were made for the River Meuse Belgium, a riveronsidered to ontain a resident population of phytoplankton, using the semi-analyti results. Preditions of ritial vertial di�usion were ontrasted withhydrauli engineering approximations of vertial turbulent di�usion over a rangeof river disharge values.In tidal bodies it is the net advetions over a tidal yle that beome importantto the issue of persistene. Strategi representations of both a oastal plain es-tuary and a fjord were investigated. Additional parameters beome signi�antin determining the net advetion of these systems. In partiular the magnitudeand gradient of density di�erenes aused by the interation of fresh water riverruno� and saline oastal water. To determine the ow �elds for these omplexsystems a primitive equation uid dynamis model, the Prineton Oean Model(POM), was used and partile traking was employed to establish redistributionmatries for two dimensional, (x,z), slies through these systems. Assuming thatparameters a�eting the vertial movement of organisms relative to the deter-ministi ow �eld are likely to be of greatest signi�ane to persistene, resultswere investigated for a range of organismal vertial di�usion believed to braketvalues to be found in the �eld. The degree of persistene was re-evaluated on in-trodution of a onstant sinking veloity and depth dependent growth rate, bothindividually and in ombination.
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Chapter 1
The problem of persistene; the`Drift Paradox'
1.0.1 The problem of the `Drift Paradox'All non-oeani loti habitats, hiey streams, rivers, estuaries and fjords, have anet seaward water movement. If individuals from a population have no real meansof upstream movement, either through their own ations or from some other meh-anism, then any advetion, (no matter how small), will result in that populationbeing moved downstream and eventual removal from the system. Many organismswith little or no swimming ability, however, manage to persist in systems withsuh a ontinuous net advetion. This phenomenon has been termed the driftparadox, (Hershey, Pastor, Peterson, and Kling 1993). Most obviously, this para-dox applies to organisms living permanently in the water olumn, (the pelagienvironment), suh as free oating phytoplankton and zooplankton in estuar-ies and fjords. The issue, however, also a�ets bottom dwelling organisms withplanktoni developmental stages. Aidental dislodgement or ative drift entryof benthi speies - partiularly stream invertebrates - again means populationpersistene in the fae of downstream advetion must be onsidered.
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1.0.2 Suggested resolutions: streams and riversVarious resolutions to the drift paradox have been put forward. In relation tostreams and benthi insets, Waters (1972) proposed that for a given setion ofstream, drift represented only exess prodution beyond that required to to re-plae the loal population. This prodution hypothesis implies that drifting issimply a soure of mortality. In the absene of ative upstream movement, thiswould require individuals to hold station at all loations at least long enoughto reprodue, over inde�nite generations. Any instane of total loss of popula-tion from the upstream end of the system would lead to permanent loss fromthat loation. Suh events are plausible, espeially as streams an experiene`atastrophi drift' events where a large fration of the biota are transporteddownstream, (Allan 1995).A more reent hypothesis similarly independent of upstream movement has beenproposed by Anholt (1995). Anholt added the idea of density-dependent popu-lation growth to the prodution hypothesis. As suh, areas subjeted to greaterlosses from drift experiene a higher rate of population inrease. Using a strate-gi omputer simulation in whih a series of stream segments with loal densitydependent growth were linked by random downstream drift events and adultsdispersing randomly both downstream and upstream, he was able to show thatpersistene was more likely when density dependene was stronger. However,extintion almost always ourred in the absene of the random adult dispersal.Although density dependent growth rates may well have the ability to enhanepersistene, the experiment seems to have shown that some degree of upstreammovement is the essential omponent for true long term survival.In respet to stream insets the idea of adult ompensation for downstream driftof larvae was enapsulated by M�uller (1954, 1982). M�uller suggested that driftentry was primarily behavioural and a response to ompetition for resouresamongst larvae. Drifting allowed olonisation of unexploited downstream reahes.Washout from the system was avoided by upstream ight of adults prior to ovipo-3



sition. M�uller termed this pattern the olonisation yle. Various studies suggestthat adults of some stream insets do move upstream, (Williams and Williams1993) and Hershey et al. (1993) onlude that suh movements an be suÆientto ompensate for drift. Reently, this form of speies persistene has been shownto our for other than insets. Marh, Benstead, Pringle, and Satena (1998)were able to demonstrate the yle in tropial freshwater shrimps.If the downstream drift and upstream ight are viewed as purely deterministiproesses, the olonisation yle annot, however, ensure population persistene.If drift exeeds upstream movement then net downstream movement is simplyredued. If there is net upstream movement then the population is still removedfrom the system, only in the opposite diretion. Considering the problem at apopulation level, however, with its assoiated degree of random variability, severalworkers have pointed out that no upstream bias in adult dispersal is neessaryfor maintaining populations when feundity is high, (Brittain and Eikeland 1988;Allan 1995) or if reprodution or drift is loally density dependent, (Waters 1972;Waters 1981; Allan 1995), there simply exists a requirement for suÆient adultsto ompensate for drift. Two reent strategi studies lend further support to thehypothesis as, while not ontraditing the above studies they suggest there isevolutionary advantage in both upstream bias to dispersion and exat ompen-sation of downstream drift. Anholt (1995) found that genotypes with upstreambiased dispersal drove randomly dispersing ompetitors to extintion. Using theframework developed by Anholt, Kopp, Jeshke, and Gabriel (2001) ondutedan invasion analysis in order to determine the evolutionarily stable dispersionstrategy. They onluded that exat ompensation by the population as a whole,that is a mean net movement of individuals from birth to reprodution of zero,was the optimal strategy.The olonisation yle is only appliable to speies where at least one develop-mental stage is apable of overoming downstream advetion. This is ertainlynot true of all speies that exist in loti systems, obvious examples being riverdwelling phytoplankton, (potamoplankton) and zooplankton. Reent studies of4



streams and rivers have foused on the fat that the ow is not uniform. Naturalhannels often ontain areas of very low ow, whih may at as refugia for organ-isms, (Rekendorfer, Kekeis, Winkler, and Shiemer 1999). The residene timeorganisms an ahieve in these areas is important. Small areas, or those with highexhange with the main ow an at to redue drift by e�etively reduing theaverage veloity of the water body as a whole. The drift paradox is only overomeone the harateristi residene time in the refuge allows reprodution.Floodplain habitats have been ited as stores of plankton population suh thatoodplain inundation an signi�antly inuene plankton densities in the river,(Saunders and Lewis 1988). More generally it has been proposed that riverinezooplankton are imports from adjaent lenti areas suh as the ood plain or rivermargins and side hannels, (Saunders and Lewis 1989). These areas, however,are probably best onsidered as separate subsystems, in the same way as lakesare in general. As with the studies of Waters and Anholt, without a means ofplaing some individuals bak upstream, studies of short term refugia, (Lanasterand Hildrew 1993; Robertson, Lanaster, and Hildrew 1995) fail to resolve theparadox, although for insets with an airborne adult stage they do provide a wayin whih the required upstream ompensation an be redued.With respet to the issue of persistene, most studies had foused on the deter-ministi aspets of drift1. This was noted by Speirs and Gurney (2001) who, intheir approah to the issue onsidered random motion, due both to turbulent wa-ter movement and to the randomly direted movements of individual organisms,as a potential soure of upstream re-olonisation and therefore as a andidatemehanism for population persistene. Rather than attempt to approximate agiven system strategi models were developed. Models were ast in the form ofadvetion-di�usion equations with the advetive term representing deterministidrift and the di�usive term approximating random motion. Models progressed inomplexity from a simple one dimensional system with onstant advetion andpopulation intrinsi growth rate through to a two dimensional model inorporat-1A notable exeption is that of Anholt (1995)5



ing the features of bottom frition and shearing, density dependent growth rateand a superimposed tidal osillation. The one-dimensional linear system allowedsemi-analytial results to be obtained with respet to the onditions required forpersistene through di�usion to operate. These results ould be ontrasted withthose from the more omplex senarios, whih ould not be treated analytiallyand for whih a disrete spae and time simulation strategy was developed. Thisstrategy, whih was adopted by this thesis, is desribed in hapter 3.For rivers, Speirs and Gurney (2001) performed simulations on two dimensionaldomains inorporating bottom frition and shearing. They onluded that themore omplex ow environments produed only moderate e�ets on the onlu-sions drawn from the simplest (and analytially tratable) model. All models,however, assumed organismal motion to be unbiased. This may be of partiularimportane in the vertial as, in the absene of strong organismal random motion,this e�etively assumes organisms of neutral buoyany with random movementdue to the vertial omponent of turbulene. In general, for larger rivers velo-ity gradients are muh greater in the vertial than they are in the horizontal.Shearing leads to water at greater depths moving more slowly whih, as Speirsand Gurney pointed out, introdues a form of ow refugia and the possibilityof near benthi persistene. This in turn suggests some form of direted motiontoward the benthos may well enhane persistene. Work on the investigation oforganismal sinking and its impat on persistene in this domain are presented inhapter 7.Prior to this, the one dimensional semi-analyti model of Speirs and Gurney(2001) is expanded to onsider organisms spending part of their time on or inthe substrate. Speirs and Gurney took aount of this fator through a simplemultipliation of the advetion term by the fration of time spent in the drift. Inhapter 6, however, a new analyti solution is obtained from �rst priniples.
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1.0.3 Suggested resolutions: tidal systemsIn systems where tidal ows are superimposed upon seaward owing river run-o�,(estuaries and fjords), the net ross setionally averaged ow over a tidal ylewill orrespond to the ross setionally averaged ow of the river disharge. Thepattern of net veloities over the length of the system - and vertially for the samehorizontal loation - an vary onsiderably however. The issue of net tidal ylemovement beomes more ompliated still in that any partile or organism mov-ing within the uid experienes many of these di�erent veloity yles. The issuesof residual ow patterns and net tidal yle movements are disussed in hapter2. These variations present the possibility of di�usive movement through tur-bulene, in ombination with spatially varying advetive ows, providing greateropportunities for persistene to planktoni organisms than in the purely gravitydriven ows of streams and rivers.The idea of the net motion in estuaries in itself being suÆient to ensure thepersistene of passive organisms has been put forward with respet to larvae,(Wolf 1973; Jager 1999). Speies of at �sh are even known to spawn in theoastal oeans but for the pelagi larval phase to migrate into estuaries beforesettling to beome benthi dwelling. Of more widespread signi�ane, almost allestuaries and fjords arry signi�ant populations of phytoplankton speies withno means of swimming and at best only limited buoyany ontrol.Chen, Shaw, and Wolott (1997) redued the uid dynami equations represent-ing tidal ow in a uniform domain to a linear form suh that analyti solutionsfor veloities ould be obtained. With spei� ombinations of bottom drag andvertial di�usion oeÆient they demonstrated how phase and magnitude di�er-enes between near benthi and near surfae ows ould enhane the retention oflarval rabs. Speirs and Gurney (2001) were able to extend the analytial solu-tions to inlude a river ow omponent. With this net seaward ow in plae theirinvestigations found that the underlying requirements for persistene in terms ofthe relative magnitude of vertial di�usion, horizontal di�usion, advetion and7



system length were only moderately hanged from the ase of river ow.The analyti treatment of the tidal ows, however, require the assumption of uni-form density and the absene of buoyany driven ow. As disussed in hapter2 density gradients are onsidered a very major ontributing fator in the netirulations observed in estuaries and fjords often leading to landward owing`ompensatory urrents'. In onsidering tidal regimes in this work a numerialpakage for solution of oeanographi uid dynamis equations was employed suhthat the e�et of density variations ould be inorporated. Suh an approah alsoallows the adoption of non-uniform bathymetry, whih is neessary for investi-gations involving fjords. This pakage, the Prineton oean model, (POM), isoutlined and disussed in hapter 5.Results for both neutrally buoyant and negatively buoyant organisms in estuarineow with density indued urrents as an additional mehanism for persistene areonsidered in hapter 8. Results for the more omplex bathymetry of a fjord arepresented in hapter 9. Light is essential to the maintenane and reprodutionof phytoplankton. Given the importane of phytoplankton in these two habitats,investigations also ontrasted results for when growth rates are uniform overdepth to those where growth rates delined in line with attenuation of daylight.Alternative to organismal motion direted exlusively toward the benthos is theidea of ative vertial migration. Larvae possess the ability to swim, in the orderof one to several m s�1, not enough to swim against tidal ows but enoughto inuene their depth in the water olumn. An alternative to purely passivetransport allowing olonisation was postulated by Creutzberg (1961) and termed`seletive tidal stream transport' (STST). In this hypothesis larvae asend ativelyin the water olumn during ood and return to the bottom when the tide turns.For this behaviour to be most e�etive vertial movements need to be in phasewith the tidal yle, requiring ues for timing. Candidate synhronising ueshave been suggested by Boehlert and Mundy (1988). Field evidene for suhbehaviour has potentially been found for the larvae of some speies, (Christy8



1989). Interestingly, the examples appear to be restrited to larvae that will notreprodue before the need for persistene in planktoni form has ended.A more ommon form of vertial migration pattern amongst plankton is a lightdependent diel (24h period) migration. Exept for a few world loations thismigration pattern is not synhronised with the main tidal onstituent. In mostloations the dominant tidal onstituent is the lunar semi-diurnal M2 tidal ur-rent. Hill (1995) ombined vertial migration, (in the form of a square wave),with a purely osillatory and spatially uniform tidal veloity. When migrationand tide were out of phase, integration over time led to no net transport overseasonal time sales but a basially sinusoidal pattern of displaement with am-plitude of up to several kilometres (for modest tidal urrents) and a period relatedto the di�erene in period between migration pattern and tide. These results arefrom a quite abstrat model and Hill freely onedes that many fators suh asthe non-uniformity of tidal urrents due to bottom frition and shear, turbulentdi�usion and net irulations from density gradients are not represented.
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Chapter 2
Complex ows and simplebehaviours
2.1 Rivers, estuaries and fjordsA simple de�nition of a river is `a hannel of owing water, whose movementis determined by gravity and is therefore downhill', (Dobson and Frid 1998).A widely adopted de�nition of an estuary, (whih also enompasses fjords), isthat of Cameron and Prithard (1963) who state that `An estuary is a semi-enlosed oastal body of water whih has a free onnetion with the open sea andwithin whih sea water is measurably diluted with fresh water derived from landdrainage.' using these de�nitions, two major di�erenes are of signi�ane to thiswork. Firstly, the mean ow of a river is always in one diretion if averaged overany time long enough to aount for random utuations. An estuary has boththe uni-diretional river omponent and an osillating tidal ow. A mean seawardow (averaged over the estuary ross setion) is only seen if the ow is averagedover the length of one tidal yle. Seondly, the density of rivers is e�etivelyuniform whereas the mixing of river water and saline water from beyond themouth of an estuary auses variations of salinity, and as a onsequene density,that an a�et the tidally averaged mean ow patterns.There is an additional form of water body that fails to fall into the above at-egories. The rivers feeding estuaries an be given a tidal omponent while re-10



maining free of salt intrusion. These setions of river an be alled tidal rivers,although they are sometimes referred to as the homogeneous portion, or ho-mogeneous fresh water zone, of estuaries, (Holley, Harleman, and Fisher 1970;MDowell and O'Connor 1977).2.1.1 RiversWhen onsidering idealised non-tidal rivers, (those of a uniform ross setion),the only upstream water movement provided is that of turbulent di�usion. Thedegree of turbulene and the length sales over whih it operates depend on theharater of river being onsidered, and this harater variation is often moresigni�ant between zones of the same river than between rivers. In general ariver system an be divided into three zones, (Dobson and Frid 1998). The erosionzone omprises mainly headwater streams. Channel slope is steep and sediment isgenerally eroded rather than deposited. The eroding nature of the stream ensuresthat substrate partile size is generally large (obbles and boulders), althoughsometimes the river may have eroded to the bedrok. The steep slope and oarsesubstrate is likely to lead to high turbulene and ri�es and rapids are likely tobe present.The seond zone is alled the sediment transfer zone beause gradient is reduedand sediment is transported with little net loss or gain. In this zone substratepartile size is dominated by sand and gravel. The smaller gravitational foredriving the ow and the smoother nature of the substrate will redue the degreeof turbulene generated in the ow and it is more likely that the vertial pro�lesof veloity aused by the visosity of the uid will beome apparent.The deposition zone is where a river deposits its sediment load, typially as itapproahes the sea. A tidal river is likely to be suh a zone, or deposition maynot our until a river has already entered an estuary. Conversely, suh a zonemay our well inland. The substrate again beomes smoother, being dominatedby �ne silt and a deposition zone has normally been brought about by a further11



redution in river gradient. As suh, the fators ausing turbulene are reduedompared to the sediment transfer zone.Di�usion lengths are generally small in omparison to the mean advetion for boththe vertial and horizontal elements of di�usion. However, the horizontal spreadof uid elements, and any passive and neutrally buoyant partiles that travelwith the uid, an be muh greater than that whih would result from di�usion.Termed dispersion, this spreading is aused by the interation of the randomdi�usive motion and the non-uniform nature of the time averaged veloity withina river ross setion. Bottom frition reates non-uniform vertial pro�les, whileother fators inlude varying depths aross a river transet and the inueneof bends. As disussed below, the nature of the spreading an be regarded asanalogous to turbulent di�usion. Therefore, suh e�ets an be taken into aountby the equations desribing the motion of partiles in idealised rivers by retainingthe same form of equation but substituting a muh larger oeÆient to desribethe degree of horizontal spread.2.1.2 Estuaries and fjordsThe de�nition of an estuary given above is a very general de�nition overingsystems from shallow, bar-built estuaries to deep, narrow sea fjords (known assea lohs in Sotland), and a very wide range of ow regimes. Many di�erentlassi�ation shemes are possible to further sub-divide estuaries into those withsimilar harateristis but most useful to this projet is a division based on aombination of topography and salinity struture.Topography is used to distinguish sea fjords from drowned river valley estuaries.Fjords are found in areas where river valleys were over-deepened and widened byie sheets during the last ie age. In general fjords are deep, up to several hundredmetres, with a small width-depth ratio, steep sides and an almost retangularross setion1. The intersetion between fjords, and the mouths of sea fjords are,1Their plan view is also in general retangular.12



by ontrast, usually shallow at the point where the ie sheet deposited materialto form sills. Sometimes suh sills are very shallow ompared to the main body ofthe fjord and they an also be onstrited. River disharge is small ompared tothe total fjord volume, but, as many sea fjords have restrited tidal ranges inlandof their mouths, the river ow is often large with respet to the tidal prism, thevolume between high and low water levels, (Dyer 1973). Drowned river valleyestuaries, also known as oastal plain estuaries, were formed when the risingsea waters after the last ie age ooded normal river valleys. The estuarinetopography is still muh like a river valley, deepening toward their mouths, butwith maximum depths seldom exeeding 30 metres, and usually onsiderably less.The width-depth ratio is usually large although not always. River ow is generallysmall ompared to the tidal prism, (Dyer 1973). There are other estuaries thatdo not �t into these two types of topographi desription but these are the typesof onern in this thesis. For onveniene, from this point oastal plain estuariesare simply referred to as estuaries.Salinity struture is important in estuaries as it a�ets their ow regimes. Theows in a tidal body tend to be dominated at any one instant by the tidal om-ponent of the ow itself. Measured at any one loation over a regular tidal periodhowever, a tidal ow of invisid water taking plae in a hannel of regular rosssetion will have a net ow of zero. If a river disharge is introdued, the netow over a tidal yle at any loation beomes equal to that of the river. Whenonsidering the persistene of planktoni organisms it is this residual movement,from the same point in one tidal yle to the next, that is important. In addi-tion to the e�ets of visosity, frition and turbulene, salinity struture altersthe simple piture of net ows. It does this by introduing di�erenes in waterdensity that in ombination with the aeleration due to gravity, produes newfores ating in the diretion of lower density. While salinity di�erenes a�et ur-rents, in their turn urrents a�et salinity distribution. Given onstant foringvariables, (hiey tidal motion over a tidal period and river disharge), however,an equilibrium will be established. Dyer (1973), however, questions whether real13



estuaries ever really establish true steady states as, amongst other fators, tidalregimes are omplex, river disharge onstantly variable and the topography ofan estuary often alters in response to a di�erent ow regime.Salt, as well as being important in altering water densities, an also be regardedas a passive traer. The distribution and movement of salt an and is used asan indiation of the spread and steady state distribution of other passive andneutrally buoyant partiles. In terms of their salinity distributions there are fourmain lassi�ations of estuary.Highly strati�ed, `salt wedge' estuariesIn all estuaries the water from river inow will tend to ow over the top of themore saline (and denser) water in the body of the estuary. Beause of the slopingnature of the estuary this tends to form a thin surfae ow of low salinity overa wedge shaped body of saline water. Fritional fores will tend to drag thetop layer of the salt water seawards and if shear is suÆient internal waves formand break at the interfae, ausing salt water to be mixed into the fresh water.This proess is known as entrainment. Turbulent fores, aused mainly by tidalmotion, will also mix the layers of lesser and higher salinity. In a highly strati�edestuary, however, the ratio of river ow to tidal ow is relatively large suh thatonly minimal mixing due to turbulene ours and the salinity in the wedge isvirtually onstant along the estuary. In general, salt wedge estuaries tend to haverelatively small width to depth ratios. The layer of very rapid hange in salinitywith depth is known as the haloline. Salinity is often the most important fatorin determining water density, suh that the haloline is often oexistent with apynoline, a layer of rapid density hange.The entrainment of salt water into the fresh water heading seawards leads to aompensating landward ow in the salt wedge. Beause the degree of reruitment,(entrainment plus turbulent mixing), into the surfae seaward ow is modest,however, so is the ompensatory ow. A simple diagram haraterising this type14



of estuary is given in Fig. 2.1The ombination of seaward ow of less dense water and landward ow of moredense water is often referred to as the gravitational irulation within the estuary.The removal of denser water from lower down the water olumn and the redutionin density of remaining water through turbulent mixing auses a pressure gradientin the opposite diretion to that in the surfae layer. It is the horizontal variationin density, ombined with the fore of gravity that auses the reverse pressuregradient and so the urrents may be referred to as density, as well as gravity,urrents. Exept in the ase of near vertially homogeneous and wide estuaries(see below) gravitational irulations are distributed vertially.Tidal ow an also be termed tidal ation. In terms of strati�ation the tidalprism is as important as veloities generated by the tidal motion at the estuarymouth. A smaller volume of water moving in and out of the estuary provides lessenergy for turbulent mixing and this an be aused by a small tidal range and/ora steeply sloping bathymetry (MDowell and O'Connor 1977, page 15).Partially mixed estuariesAs the tidal ow of an estuary inreases so does its energy. Most of this energyis transferred into turbulene whih in turn is dissipated by ating against thedensity gradients in the estuary. If the turbulent eddies are suÆiently strongto mix signi�ant amounts of water aross the haloline, then the estuary anbe onsidered partially mixed. The salinity of the seaward surfae ow is on-siderably raised but so too is its volume. This in turn auses an inrease in thevolume of the ompensating landward ow. In the James estuary, Virginia, USAthe seaward ow in the upper layer is 20 times the river ow and the ompensat-ing inow near the bottom is 19 times river ow, (Dyer 1973, page 9). This owpattern is known as a two layer ow system.In a partially mixed estuary the surfae salinity inreases muh more steadily15



down the estuary and undiluted fresh water only ours very near the head ofthe estuary. Within the more saline water there is also a longitudinal gradientin salinity. Horizontal salinity gradients have beome almost linear but in thevertial there is still a zone of high salinity gradient, often at about mid depth.Fig. 2.2 gives a haraterisation of this type of estuary.Well mixed { vertially homogeneous { estuariesWell mixed estuaries our when the tidal urrent is muh larger than the riverow. The turbulene from veloity shear needs to be suÆient to overome den-sity strati�ation. This is normally only possible in estuaries with small ross-setions. If the width of the estuary is suÆiently small that lateral shear isenough to reate laterally homogeneous onditions, salinity inreases evenly to-ward the mouth and there is no ompensatory ow. The salt balane, in terms oftidally averaged ow, is maintained solely by turbulent exhange due to bottomfrition or topographi irregularities. An intra tidal e�et also helps to maintainthe salt balane, however. Well mixed estuaries are likely to be subjet to highbottom frition. This implies the tidal wave is likely to have a large progressiveomponent, that is the maximum of the ood and ebb ows are likely to oinidequite losely to the high and low tide points at di�erent loations along the estu-ary, but these times vary along the estuary. With maximum ood ourring nearhigh water, when the ross setional area is large, and maximum ebb ourringnear low water, small ross setion, there is a larger transport of salt on the oodthan on the ebb. Fig. 2.3 gives a haraterisation of this type of estuary.Net upstream ows an our in a well mixed estuary if it is suÆiently wide.The Coriolis fore, (due to the Earth's rotation), will ause horizontal separationof the ow. In the northern hemisphere this leads to net seaward ow down theright hand side (looking seaward) and a ompensatory ow along the left handside of the estuary.Dyer (1973) ontends that it is diÆult to be sure that vertially homogeneous16
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estuaries really exist. Even very well mixed estuaries may still retain small vertialvariations that may get lost due to imperfet data olletion.FjordsThe ow patterns in fjords is generally similar to that in salt wedge estuaries.If they possess the typial sill struture at their mouth then, beause of therestritions of the sill, river ow tends to be large ompared to the volume ofwater input and extrated by the tide. Entrainment is the main ause of mixingbetween the fresh water inow and the saline water below. This upper layer isommonly of virtually onstant thikness from head to mouth and sometimesthis thikness is restrited to a depth equal to the sill. Where river disharge ishigh, the surfae layer is virtually of uniform salinity, but when disharge is lowermaximum salinity gradients an our at the surfae. This an also happen nearto the sill. Tidal veloities are greater over the sill and the water is less strati�ed.There is generally muh stronger vertial mixing in this region and the irulationpattern over the sill an be viewed as quite separate to that in the main body ofthe fjord. The inow of water into the fjord is omposed of a mixture of oastalwater and the outow water. Fig. 2.4 gives a haraterisation of a fjord.Unertainty of lassi�ation and variation within an estuaryThe lassi�ation of estuary types is only very general and the point at whih anestuary hanges from being highly strati�ed to partially mixed or from partiallymixed to well mixed is somewhat arbitrary. In addition, a given estuary may showtraits of di�erent lassi�ations of estuary at di�erent points along its length,(Dyer 1973). For example, near the head of an estuary where tidal amplitudemay be redued, river ow an dominate and a salt wedge struture may bepresent. If tidal veloities inrease downstream ausing eddy di�usion of salt tobeome more ative then a partially mixed struture may our.18
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Variations in topography along an estuary an a�et the ow struture. For agiven river disharge and tidal foring, a large inrease in width will inrease thetidal volume to river ow ratio. This ats in a similar way to a redution in riverow for an estuary of onstant width, leading to a more mixed struture. Inreas-ing the depth with other parameters �xed again inreases tidal ow ompared toriver ow. The greater depth, however, is likely to derease the e�etiveness ofvertial mixing and the river ow beomes more on�ned to the surfae, therebyinreasing the degree of strati�ation.Finally, the harater of an estuary an hange temporally. If an estuary experi-enes muh higher river runo� in one season than in another it an beome morestrati�ed in nature. The variation in tidal amplitude over the spring, neap tidalyle an be enough to hange an estuary from having a partially mixed haraterto that of a highly strati�ed estuary, (MDowell and O'Connor 1977).Classi�ation using a strati�ation-irulation diagramA useful quantitative means of lassifying and omparing estuaries was developedby Hansen and Rattray (1966). They used two dimensionless parameters toharaterise estuaries. Firstly a strati�ation parameter ÆS=So, de�ned as theratio of the surfae to bottom salinity di�erene ÆS to the mean ross setionalsalinity So. seondly a irulation parameter Us=Uf , de�ned as the ratio of thenet surfae urrent Us to the net mean ross setional veloity Uf . Net urrent,in this instane, refers to the urrent averaged over a tidal yle. The net meanross setional veloity Uf is e�etively the ross setional average of the riverow, as without river ow net mean ross setional veloity would be zero.A version of the lassi�ation diagram as used by Hansen and Rattray (1966)is shown in Fig. 2.5. This diagram distinguishes four main types of estuary,but further sub-divides types 1 to 3 aording to the value of the strati�ationparameter. Estuaries of Type 1 have net ow that is seaward at all depths. Type1a has only slight strati�ation as would be expeted for a well mixed estuary.20



Type 1b, however, an have an appreiable degree of strati�ation even though nonet upstream ounter urrent is generated. Maintenane of a horizontal salinitygradient is by di�usive e�ets alone. In Type 2 estuaries there is a ow reversalat depth. Upstream salt ux is due to a ombination of di�usion and advetion.These estuaries �t the pattern of partially mixed estuaries. Type 3 estuaries di�erfrom Type 2 in that advetion dominates upstream salt transfer, (aounting forover 99%). In Type 3b estuaries, the lower layer is suÆiently deep that in e�etthe salinity gradient and the irulation do not extend to the bottom. Sea fjordsare generally of Type 3b. Type 4 estuaries are the salt wedge type. A vertial,(and tidally averaged), ross setion of suh a ow should show a thik upper layerowing over a thin lower layer at the estuary head, graduating to a thin upperlayer owing over a thik lower layer, with the two layers being little inuened bythe other. As indiated in the �gure, there is a region at the top of the diagrambounded by the onditions found for freshwater outow over a stagnant salinelayer.The demaration between estuary types is again somewhat arbitrary. In parti-ular Hansen and Rattray note that the transition between Types 3 and 4 haslittle observational or theoretial basis. Beause of the variation in harater ofestuaries over their length, whole estuaries for any given set of onditions, (riverdisharge, tidal ow and, potentially, wind mixing), are represented by lines onthe diagram rather than points. It is perfetly possible for the line of one estuaryto ross lass boundaries.Hansen and Rattray (1966) found that Us=Uf was related to the ratio betweenfored river ow and the potential for density indued internal irulation. Thisratio is known as the `densimetri Froude number' and is de�ned byFm = UfqgH��=� (2.1)where g is the aeleration due to gravity, H is the depth of the estuary, �� is21
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ÆS=So � Ri1=3E F 1=15m + terms of higher order (2.3)Us=Uf � Ri1=6E F�29=30m + terms of higher order (2.4)Equation (2.3) implies that any density di�erene between the head and mouth ofan estuary will always indue some degree of vertial strati�ation while Equation(2.4) shows this strati�ation will always drive a gravitational irulation. Theyalso indiate, as expeted, that for a tidal body with truly homogeneous verti-al density, gravitational irulation an not exist. Oey (1984) also onludedthat Hansen and Rattray's method for determination of the relative importaneof gravitational irulation ompared to di�usive fores in salt transport { andtherefore the transport of any passive and neutrally buoyant partile { was re-markably general and appliable to many estuaries of various shapes.The gravitational irulation is best seen by onsidering vertial pro�les of veloityaveraged over a tidal yle. If the strati�ation is suÆient, however, an atuallandward ow in the vertial pro�le might be present if ows are integrated overthe ebb tide. Fig. 2.6 shows the ontrast between vertial ow pro�les for ahighly strati�ed and a well mixed estuary.2.1.3 Plume frontsIn estuaries with pronouned strati�ation the distint band of lower salinitywater moving seaward over more saline water an be termed a plume. Theseplumes tend to end in fairly sharp fronts. The fronts are notieable as they areassoiated with marked hanges in olour or turbidity and perhaps a line of foamor other detritus, (O'Donnell 1993). These are visual evidene to the front beinga zone of onvergene toward whih the buoyant water moves and at whih itsinks. If river inow is relatively modest plumes will only appear for a few hoursduring an ebb tide. If river inow is high, the plume front will only appear inthe estuary during the ood tide and is swept out through the mouth of the23
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Figure 2.6: Shemati of a strati�ed estuary and a well mixed estuary showing theontrast in veloity pro�les during A) ood tide and B) ebb tide, after MDowelland O'Connor (1977).estuary during the ebb tide or even as the ood tide urrent diminishes from itsmaximum, (Dyer 1987). Garvine (1977), from observations in the ConnetiutRiver, onluded that a well developed plume will exist during the ebb tide whenthe ratio of the mean freshwater disharge veloity to the root mean squared tidalveloity exeeds about 0.75 and will be present during a ood tide when the ratioexeeds 2.
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2.1.4 Tidally averaged residual movement: `residual ve-loity'Observed residual ows within systems result from osillatory tidal urrents, thee�ets of surfae wind stress, horizontal density gradients and river disharges.As indiated earlier, one an ompute expeted `steady' residual veloities, that isresidual veloities expeted to remain onstant between tidal yles, by imposingsimilarly steady states on the driving fores. The residual veloities as desribedabove are for veloities de�ned at a point in spae (Longuet and Higgins 1969)UR = 1T Z T0 Vdtwhere T is the duration of the tidal yle. Suh residual veloities are alledEulerian residual veloities2. Taking a partile starting at the point where theresidual veloity was measured and determining that its end point orrespondsto the diretion and magnitude of the UR value after one tidal yle is inorret,however. If the values of UR vary spatially then as a partile moves it will samplebrief instanes of ows that onstitute many di�erent residual urrents. To es-tablish the true residual veloity of a partile the frame of referene must travelwith the partile. Suh a residual movement is known as a Lagrangian residual.As outlined in Chapter 3, determination of persistene in this thesis is performedusing a disrete spae-time approah. To apply this approah to ows experien-ing tidal foring, any method determining the redistribution matrix must supplythe net, or residual, movement of a passive and neutrally buoyant partile over theperiod of a tidal yle. A redistribution matrix representing Lagrangian residualmovement will result if the movement over a tidal yle is determined by usinga ombination of a uid dynamis pakage, (solving ow governing equations intheir ontinuous form), and a traking algorithm.2Euler pioneered the work determining the equations of motion for uid using a �xed frameof referene. 25



The uid dynamis pakage is used to produe snap shots of the instantaneousow �elds. Traking of traers ould be inorporated into the uid dynamisprogram. To allow greater exibility, traking of partiles with di�erent hara-teristis using the same ow �elds, a separate disrete time traking algorithmwas developed, (see also setion 3.3.1). This traking algorithm uses small inter-vals, Æt, to update the position of a partile, using the snapshots of instantaneousow �elds. A new veloity to be applied to the partile is then determined takingaount of the partile's new position in time and spae.If a vetor is drawn from a partile's starting position to its �nishing position thenan imaginary veloity an be onsidered. When residual veloities are disussedin relation to partile movements determined from partile traking, it is thisimaginary veloity related to the Lagrangian residual movement that is beingonsidered.2.1.5 Di�usion versus dispersionTurbulene within uid ows is not yet fully understood and diret numerialmodelling of turbulene is very expensive omputationally, (Ferziger and Peri1999). As detailed in hapter 4.2.1, a widely pratised approah to dealing withturbulent motion is to onsider it analogous to moleular di�usion, the resultof the random movements of a substane's moleules. Moleular di�usion isgoverned by Fik's law of di�usion whih states that the mass of a substanerossing a unit area per unit time in a given diretion is proportional to thegradient of mass onentration in that diretion. In one dimension, Fik's lawan be stated mathematially as q = �D�C�x (2.5)where q is the mass ux, C the mass onentration and D a oeÆient of propor-tionality. The minus sign is to indiate transport is from high to low onentra-26



tions. Considering the relationship between q and C and applying the law of theonservation of mass in addition to Fik's law gives two more equations knownas di�usion equations. �C�t = D�2C�x2 (2.6)�q�t = �D�2q�x2 (2.7)When onsidering the spread of a point soure of onentration the pattern of on-entration at subsequent points in time will onform to a Gaussian distributionentred on the starting position. For general di�usion equations, or advetion-di�usion equations if a mean advetion is super-imposed on the `mass' movement,the oeÆient of proportionality, D is known as the oeÆient of di�usion. Whendesribing the e�et of moleular di�usion in uid ows it is known as the o-eÆient of kinemati visosity, � and when the e�et of turbulene is desribedin an analogous fashion to di�usion the oeÆient takes the name of oeÆientof kinemati eddy visosity, N . Kinemati eddy visosity desribes the trans-fer of momentum by this proess. Di�usive transport of passive traers an beonsiderably di�erent to that of momentum. This an be espeially true in thevertial diretion, depending on the degree of density strati�ation. Thus a thirdoeÆient, K, is used alled the oeÆient of eddy di�usivity.Dispersion arises when a uid has advetion in a given diretion but this adve-tion has a gradient in a seond dimension. Considering a two dimensional riverow, if the downstream diretion is x with advetive omponent Vx and the o-ordinate from river bottom to surfae z, then dispersion arises when �Vx=�z 6= 0whih, beause of bottom frition and the visosity of the uid itself, is the situa-tion in all rivers and estuaries. The phenomenon arises beause a uid element inthe river ow will move randomly vertially (beause of moleular di�usion andpossibly turbulene) and so sample at random all the advetive veloities. There-fore, if a long enough averaging time is available, the element's time-averaged27



veloity beomes equal to the instantaneous ross-setional average of all the ve-loities. In other words, after some long enough forgetting time the veloity hasbeome independent of the uid element's initial position and veloity. The hor-izontal motion over this period an be onsidered a series of independent stepsof random length. This makes the motion analogous to moleular di�usion andso an advetion-di�usion equation should desribe the hanging mean positionand spread of any partiles moving with the uid. The di�erene is that thestep lengths and time steps of the `random walk' are very di�erent to that ofthe di�usion that aused the vertial motion and a di�erent value is required forthe oeÆient of proportionality. This oeÆient is then termed the dispersionoeÆient.Flows with veloity gradients are often referred to as `shear ows' and the meh-anism of dispersion is often known as the `shear e�et', (Fisher, List, Koh,Imberger, and Brooks 1979). For some simple steady shear ows, analyti rela-tionships have been derived between the dispersion oeÆient, � and the kine-mati visosity � in laminar ows and between � and the eddy di�usivity K inturbulent ows. The relationship most diretly appliable to that for a river isgiven for turbulent ow down an inlined plane, where � is given by� = IH2V 02xKz (2.8)where I is a dimensionless integral given byI = � Z 10 V 00x Z z00 1K 0z Z z00 V 00x dz0dz0dz0 (2.9)and V 00x = V 0xqV 02x (2.10)where K 0z � Kz(z0)=Kz, V 0x � Vx(z0) � Vx, an over-bar denotes a ross setional28



average and z0 � z=H is the dimensionless measure of the distane up the waterolumn given that H is the overall water depth. Alternatively, if dimensionalterms are retained in the multiple integral, the dispersion oeÆient is given by� = � 1H Z H0 V 0x Z z0 1Kz Z z0 V 0xdzdzdz (2.11)Natural hannels tend to have a variation of depth aross the hannel. This inturn leads to transverse shear. Fisher (1967) applied the same reasoning thatleads to Equation (2.11) to the transverse diretion of river ross setions andobtained �t = � 1A Z B0 q0 Z y0 1Ky Z y0 q0dydydy (2.12)where A is ross setional area, Ky an eddy di�usivity in the transverse diretionand q0 � HV 0xb represents the deviation of the loal ow per unit width from themean disharge per unit width. He onluded that for rivers with a large width todepth ratio the longitudinal dispersion aused by transverse shear, �t, was moresigni�ant than that aused by shear in the vertial.The problem with estuaries and fjords is that ow is not steady but osillatory.This plaes limits on the appliability of the above equations, the important on-sideration being whether the time sale of the tidal yle is muh greater thanthe time for turbulene to di�use a substane aross the vertial and transversedistanes of the estuary. Holley, Harleman, and Fisher (1970) onsidered tidalmean dispersion aused by vertial di�usion, �zT for systems with neutral stabil-ity, that is without strati�ation. They derived expressions relating this quantityto the value, �z, that would be obtained by using Equation (2.11) and Eulerianresidual veloities. They found the relationship redued to a simple funtion fortwo ranges of a dimensionless mixing time sale � z, namely
29



�zT = 3�z(� z)2 for � z � 0:2 (2.13)and �zT = �z for � z � 1 (2.14)where � z is given by � z = TT z = TKzH2 (2.15)where H is a tidal mean value and T z � H2=Kz an be onsidered a turbulentmixing time sale. They suggested the above equations were appliable to reason-ably straight hannels that were also well de�ned suh that the hannel geometrydoes not vary signi�antly during a tidal yle. With these assumptions and areasonably wide estuary a turbulent mixing time-sale in the transverse diretionrelating half width to transverse di�usion oeÆient beomes large and a trans-verse dimensionless mixing time sale muh less than one. In e�et, beause ofthe osillatory nature of the ow, dispersion due to transverse veloity variationdereases as estuary width inreases, and for suÆiently wide estuaries this allowsonsideration of dispersion due to vertial shear and di�usion oeÆient only.The above onlusion was reahed even though tidal ow is understood to intro-due new mehanisms for dispersion, even in homogeneous onditions. The �rstmehanism was termed `tidal pumping' by Fisher et al. (1979). It desribesresidual irulation set up by the interation of the osillating ow and the ir-regular bathymetry found in most estuaries. Estuaries with a narrow mouth anreeive a ood tide as a on�ned jet type ow, while the ebb ow originates fromall around the mouth. Averaging over a tidal yle shows a net landward ow inthe area of the jet but a net seaward ow elsewhere. More generally, ombinationsof hannel geometry and separation at orners an indue large sale gyres in the30



residual ow. Suh residual vorties an be reated in the vertial as well as thehorizontal if the tidal urrent ows over irregular bottom topography, (Fisheret al. 1979, page 239). The horizontal separation of ow aused by the Coriolisfore in wide estuaries is also onsidered a omponent of tidal pumping.A seond mehanism has been referred to as the `storing basin', `tidal trapping' or`dispersion by non-loal mixing' mehanism. It onsiders the net mass transportaused by the variation of ross-setional shape, salinity and veloity at di�erentpoints in the ross setion during a tidal yle. An illustration of tidal trappingis to onsider an estuary with a main hannel and a shallow side hannel. In themain hannel, tidal elevations and veloities are likely to not be in phase. This isbeause the momentum of the ow is suÆient to ause the urrent to ontinue toow against an opposing pressure gradient, resulting in high and low slak tideslagging behind high and low water respetively. The side hannel is likely to haveow with less momentum and a smaller phase di�erene. If the ood tide arriesa path of traer up both main and side hannel then, as the tide turns, thetidal ow will reverse sooner in the side hannel and the traer it held may wellreturn to the main hannel downstream from that part of the path whih stayedin the main hannel. Winterwerp (1983) determined mixing by the sea beyondthe mouth of an estuary to be important in maintaining the salt balane in anestuary. For estuarine water that leaves the estuary on eah ebb tide, the moreit is well mixed outside of the estuary mouth, (suh that the salinity beomese�etively that of the sea water), then the greater the salinity intrusion duringthe next ood tide. Whether this last e�et an be inluded when onsideringanimal persistene in an estuary depends on whether the animal is onsideredable to survive for any period outside of the estuary.For systems with buoyany e�ets, gravitational irulation an be a signi�antor even dominant mehanism of dispersion. Several studies have onluded that,even in narrow estuaries, mass transport (and therefore longitudinal dispersionoeÆients) are determined predominantly by the vertial gradients in veloityand salinity, (Fisher 1972; Dyer 1974; Dyer 1977; Hughes and Rattray 1980).31



Abraham, Karelse, and Lases (1975), however, onluded that dispersion oeÆ-ients in estuaries are dependent on time and also vary with distane along anestuary and this was on�rmed by Winterwerp (1983) for longitudinal two di-mensional slies of the Rotterdam Waterway. West and Mangat (1986), analyseddata from the Conwy estuary and onluded that on average the dispersion o-eÆient was larger on the ebb tide than on the ood tide. They suggested thatif buoyany e�ets are weak, a value for one dimensional dispersion due to bothshear e�ets and the seondary irulation indued by buoyany �s ould begiven to a �rst approximation by�s � k1B2jVAjH (2.16)In this instane H represents the maximum depth along a transverse ross setionandB represents the half width, while VA is the ross setionally averaged veloity.The term k1 is a oeÆient whih West and Mangat (1986) suggested ould takethe value of k1 = 0:1 during an ebb tide and k1 = 0:025 for the ood tide.Equation (2.16) is a simpli�ation of Equation (2.12) with an empirial alterationto take aount of strati�ation. As suh it requires expliit onsideration ofdomain width. Its derivation was possible beause the ratio of transverse di�usionoeÆient, Ky, predited by Equation (2.12) to that derived from the �eld datawas onsistent for eah half tidal yle. Unfortunately, a similar approah ouldnot be applied to Equation (2.11) as it was found that the ratio of preditedto measured vertial di�usion oeÆient, Kz, varied throughout eah half tidalyle.(MDowell and O'Connor 1977, page78) onsider that prediting dispersion oef-�ients for real estuaries with strati�ation from semi-empirial formulae an onlyprovide order-of-magnitude estimates beause of the unique veloity struture ofeah system. The only way to obtain true dispersion oeÆients is from �elddata. Winterwerp (1983), onsidering mass transport due to variations in thevertial only, sets out the alulation of both a `real time' dispersion oeÆient32



�sz and a oeÆient, ~�sz to be used for tidally averaged advetion di�usionequations. In general the value of �sz averaged over a tidal yle is not equalto ~�sz, in large part beause the dispersion in the tidally averaged advetiondi�usion equation impliitly desribes net mass transport by tidal ows. Bothvalues an be obtained by breaking down veloity and onentration terms intoaveraged values and the deviation of a value at a given point from that average.The value of ~�sz is given by
�Ho ~�sz �Co�x = DHU tCtE+ U o DHtCtE+HoU 0oC 0o+ DHU 0oC 0tE+ DHU 0tC 0oE+ DHU 0tC 0tE (2.17)Here an over-line denotes a vertially averaged quantity and a prime a deviationfrom that vertial average. The subsript o denotes a tidally averaged quantityand the subsript t denotes the deviation from this tidal average. An H withno subsript is simply the water depth at a given point in time and the angularbrakets denote tidally averaged produts. The various terms making up Equa-tion (2.17) represent the di�erent mehanisms of dispersion as follows� HoU 0oC 0o { shear dispersion from the net gravitational irulation.� DHU 0tC 0tE { vertial shear dispersion from the non-steady veloity and on-entration pro�les.� DHU 0oC 0tE and DHU 0tC 0oE { shear dispersion from the orrelation between thesteady and osillating omponents of the vertial shear.� DHU tCtE { dispersion by non-loal mixing, (tidal trapping).� U o DHtCtE { dispersion by the orrelation between the steady and osillatingomponents of the ow.Winterwerp (1983) ompared measurements taken from three tidal ume exper-iments and from the Rotterdam Water-way. The three ume tests represented33



highly strati�ed, partially mixed and well mixed onditions respetively, whilethe Rotterdam Water-way was found to be highly strati�ed. In all ases it wasfound that the three terms representing orrelation e�ets provided a negligibleontribution. It was also found that the ontribution from the net gravitationalirulation, HoU 0oC 0o inreased in magnitude as onditions beame more strati-�ed. In the ume tests its ontribution went from being less than that from thenon-steady vertial shear term DHU 0tC 0tE under well mixed onditions, to om-parable under partially mixed onditions to onsiderably greater under strati�edonditions. Unsurprisingly therefore, the ontribution from the net gravitationalirulation was somewhat greater than that from non-steady vertial shear in theRotterdam Water-way.A more traditional, and muh simpler approah, of using salinity �eld measure-ments to determine a longitudinal dispersion oeÆient, is to use the equationdesribing the `salt balane' in an estuary��S�x = UfS (2.18)where S is salinity at a point along an estuary, �S=�x the longitudinal gradientand Uf the ross setionally averaged net veloity due to fresh water disharge.The equation e�etively assumes the salinity pro�le to be in steady state fromone tidal yle to the next suh that � represents the dispersion, by all relevantmehanisms, that allows an equal and opposite net tidal ux of salinity to theseaward ux represented by the term UfS at that loation. Fisher et al. (1979)point out that Equation (2.18) has been used with salinity values observed at lowslak water, high slak water or with values averaged over a tidal yle and thatthe result is highly dependent on whih approah is used. Also, some estuariesdo not onform well with the assumption that their salinity distribution is yli.This latter problem, however, also a�ets any estimation made using Equation(2.17).Fisher et al. (1979) ompiled a table of di�erent estuaries and their observed34



dispersion oeÆients. Values range from 10m2s�1 to approximately 1000m2s�1with the bulk of values falling in the range 100�300m2s�1. They noted that suhvalues were onsiderably smaller than values observed in even moderately sizedrivers and onluded the reason was the limited ability of shear ow to ausedispersion in estuaries, as indiated by Equation (2.13). Low values, in the range10� 60m2s�1, were generally found in very well mixed or homogeneous portionsof estuaries where shear ow dispersion is the dominant mehanism.
2.2 Planktoni animals and behaviour relevantto persistenePlankton an be de�ned as, (Reynolds 1984)the ommunity of plants and animals adapted to suspension in the seaor in fresh waters and whih is liable to passive movement by windand urrent.As suh it is distint from the `nekton' (e.g. �sh), that have the ability to substan-tially regulate their own distribution through swimming. This is not to say someplankton an not swim or otherwise inuene their movement by the surroundingwater to a ertain extent, but under normal irumstanes they are unable tooverome advetive movements imposed on them by the ow.The most obvious form of plankton are those that spend their whole life yle insuspension and whih have morphologial and behavioural adaptations to survivein the pelagi habitat. However, there are animals whih spend part or even mostof their life yle in the littoral habitat at the bottom of the water olumn. Forexample, the larvae of rabs and at �sh, (ommerially important speies), areplanktoni. There are still other organisms that are benthi dwellers but whihan be found in the drift for short periods. Although not onforming fully with the35



de�nition of plankton given above, they are ertainly subjet to passive movementby the urrent when they enter the drift. Many stream invertebrates fall into thislast ategory. A onsiderable number of �eld studies have measured the numbersof bottom dwelling invertebrates found in the drift. A review of these is given inBrittain and Eikeland (1988).There is muh debate as to the reasons for individuals entering the drift. Somestudies support the idea of animals being involuntarily swept into the waterolumn by the rapidly and strongly varying fores of the near bed turbulentow, (Po� and Ward 1991). Other studies3 suggest drift entry is deliberate andite many potential triggers inluding food depletion, (Kohler 1985), predatoravoidane, (Pekarsky 1980; Malmqvist and Sjostrom 1987), density dependene,(Corkum and Cli�ord 1980) and indeed redutions in ow veloity as the reasonsfor suh ation, (Minshall and Winger 1968; Po� and Ward 1991; Fonsea andHart 1996). The reasons are almost ertainly di�erent for di�erent taxa. Resultsfrom Degani et al. (1993) indiate that many invertebrates may prefer the highlyturbulent ows harateristi of the shallow and high veloity areas harateristiof ri�es in upland streams, while Growns and Davis (1994) desribe a number of`ow avoiders'.Behaviour an also be passive or ative one in the drift. Individuals havebeen found to atively redue their time in the water olumn, (Elliott 1971a;Ciborowski and Corkum 1980). Some studies ite hanges of behaviour by in-dividuals of a given speies in response to the strength of the ow, ating tominimise drift time when ow is strong but to inrease drift time and distanewhen veloities fall below a ertain threshold, (Campbell 1985; Allan and Feifarek1989). Even with in-drift behaviour, it seems likely that the rate at whih driftingindividuals return to the benthos is strongly dependent on the degree of turbu-lene, (vertial mixing), in the ow, (Smith 1982; MNair, Newbold, and Hart1997). Regardless of the means of drift entry and exit, hapter 6 demonstratesthat if rates of drift entry and exit an be determined and an be onsidered ap-3Or results for di�erent taxa within the same study.36



proximately onstant, then the ritial ow parameters for persistene in a givenlength of system an be determined semi-analytially.The work of Speirs and Gurney (2001) onsidered problems in whih organismsould e�etively be onsidered as neutrally buoyant. Persistene in the moreompliated ow regimes of hapters 8 and 9 is also initially onsidered for suhorganisms. Suh onsiderations are very instrutive, not least beause it is thenpossible to make omparison to results where vertial movement is also due tofators other than entrainment in the surrounding ow. A very simple formof `behaviour' for plankton an be onsidered that of sinking. There are fewplanktoni organisms that are onsistently buoyant. Most are often or alwaysmore dense than the water they inhabit, (Reynolds 1984). Phytoplankton areno exeption to this general rule. Terminal sinking speeds in quiesent waterhave been measured for various marine and fresh water diatom phytoplankton.Chapters 8 and 9 investigate whether or not simple, onstant sinking an enhanethe persistene of populations in estuaries and fjords. This is appropriate todiatoms as they possess no mehanism for swimming. Even so, it seems theyare not totally inapable of inuening their position in the water olumn. Livephytoplankton are able to ontrol their density to a ertain extent. A number ofstudies have found that several speies of live phytoplankton demonstrate lowersettling veloities in quiesent water than dead or senesent individuals fromthe same population, (Reynolds 1984, page 77). In the presene of turbulene,elimination time from the water olumn is also inuened by the `form resistane'of eah speies. Those with higher form resistane ahieved longer times in thewater olumn. Form resistane is a non-dimensional measure of the degree towhih an organism's shape inreases its drag. It is therefore also a measure ofhow readily an organism an be entrained by random water movements.If organisms possess a quiesent settling veloity the theory of settling in thepresene of turbulene implies that turbulene will only delay the settling of indi-viduals in the water olumn, by a fator diretly related to their settling veloityand form resistane. If only random motion is present in the vertial, eventual37



settling is inevitable, (Reynolds 1984, page 50). Phytoplankton derive their en-ergy from sunlight. Sinking may enhane physial persistene by transferringindividuals from net seaward owing waters into the net landward owing om-pensating urrents but the attenuation of sunlight in water is often quite rapid.The inuene of light dependent growth rates upon both neutrally buoyant andsinking populations is onsidered. In this way the e�et of both added elementsof realism an be assessed independently and in ombination.Other forms of phytoplankton possess agella whih allow them to beome motile.It is now well established that phytoplanktoni organisms will adjust their posi-tion in a water olumn by means of vertial migration, (Figueroa, Niell, Figueiras,and Villarino 1998). They have been shown to respond to gravity, hemial andthermal gradients, the magneti �eld of the Earth as well as to light. This lastfator an stimulate both positive and negative phototati responses, (Nultshand Hader 1988), although the basi pattern is one of a diurnal migration leadingto maximum onentrations at depth during the night and near the surfae duringthe day. For the well strati�ed system they studied, Figueroa, Niell, Figueiras,and Villarino (1998) found the pynoline was signi�ant in that only some speiesstudied were able to migrate through.Zooplankton are also known to make diurnal migrations, although the patternis in reverse with individuals rising during the night and moving to deeper wa-ter during the day. This behaviour has been found in the open oean, fjordsand estuaries. Migration to the surfae in estuaries, however, has been seento be inhibited by high strati�ation. Sampling of the estuarine setion of theRiver Test, Southampton, found onentrations of zooplankton just below thelow-salinity surfae water at times of high strati�ation, but zooplankton all theway to the surfae when the salinity gradient was not present. In ontrolled ex-periments Grindley (1964) showed that Pseudodiaptomus in an estuary migrateddownwards during the day and upwards at night. However, upward movementwas halted by salinities in the range 8.5-19.0 parts per thousand. He suggestedthat at times of normal river run-o� the full migration allowed persistene in the38



estuary. At times of river ood the animals prevented wash out by their avoidaneof low salinities.
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Part II
Methodologies
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Chapter 3
Methods for determining thepersistene of spatiallystrutured populations
3.1 Population balane equationThe balane equation for a spatially strutured population represented in ontin-uous spae and time has the general form (Gurney and Nisbet 1998)�n�t = (� � Æ)n� �Jx�x � �Jy�y � �Jz�z (3.1)where n(x; y; z; t) represents the population density at a point (x; y; z), �(x; y; z; t)and Æ(x; y; z; t) are loal per-apita birth and death rates, and J(x; y; z; t) repre-sents the net ux densities of individuals past the position (x; y; z).This thesis is onerned with the possibility for persistene provided by the fatthat uid ows with a net advetion experiene shear, turbulene and, (in laterhapters), are inuened by varying topography and salinity. Reduing the prob-lem to one dimension in the �rst instane, (the x diretion), if there were only41



advetion present, moving all individuals at the speed Vx past a given point,then the net ow rate term would be given by J(x; t) = Vxn(x; t). The mo-tion imparted by turbulene is onsidered random. Random motions produe anet ow rate whih is proportional to the spatial gradient of any onentration.The onstant of proportionality, the di�usion oeÆient, when used in relationto population balane equations is denoted by �x. The subsript denotes thepossibility for oeÆients with di�erent values in the other diretions for modelsthat onsider more dimensions. The net ow takes individuals from regions ofhigher density to lower density. The di�usion onstant is always regarded as pos-itive by onvention, suh that a net ow rate aused by solely di�usion beomesJ(x; t) = ��x�n=�x. Taking the overall net ow rate to be a ombination ofadvetion and di�usion, and replaing (�� Æ) by p(n), the net per-apita growthrate, the balane (or onservation) equation for a population in one dimensionbeomes �n�t = p(n)n� Vx�n�x + �x�2n�x2 (3.2)where the value of p(n) is now onsidered to, potentially, depend on the popula-tion density n.
3.2 Analyti tehnique for 1D problems3.2.1 1D problemSpeirs and Gurney (2001) onsidered the ase of Equation (3.2) representinga turbulent stream, where the turbulene has enabled the water to beome wellmixed vertially and transversely. The advetion veloity and di�usion oeÆientare also assumed onstant throughout the domain. The term �x an be onsideredanalogous to the oeÆient of eddy di�usion seen in the onservation equations forpassive traers found in uid dynamis, (for example see Equations (5.9), (5.13)42



and (5.16) that determine the evolution of salinity in a turbulent 3D system).These quantities are not equivalent, however, as the term in Equation (3.2) anbe regarded as representing motion indued by uid movements but of di�erentmagnitude and/or random movement generated by individuals themselves.The point x = 0 was assumed to represent the soure of the river at whih waterontaining zero organisms enters at veloity Vx. It was further assumed that noindividuals ould pass upstream of the soure, so the population ux at x = 0 iszero. That is, there exists a reeting boundary given byVxn(0; t)� �x  �n�x!x=0 = 0 (3.3)At the opposite end of the domain (x = L) the river ows into an environmentwhih the organisms an enter but from whih they an not return. This isrepresented by an absorbing boundary at whih the population is always zeron(L; t) = 0 (3.4)If p(n) is assumed to be a onstant, that is involving no density dependene, thenthe problem de�ned by Equations (3.2) to (3.4) is linear and the only possibilitiesfor the overall population are for exponential growth or deay over time, (Gurneyand Nisbet 1998). Following the analysis for the ase when di�usion only ispresent, (Gurney and Nisbet 1975), Speirs and Gurney (2001) assumed that afterinitial transients have died away, the solution takes the form of a stati spatialpattern with eah point in the pattern growing, or deaying, exponentially withtime. This meant solutions were sought in the formn(x; t) = e�tf(x) (3.5)where � is the long term exponential growth rate and f(x) is the funtion de-termining the spatial pattern. For speies whih do not exhibit an Allee e�et,43



(Allee 1931), p is normally a dereasing funtion of the loal population density.Its maximum value is therefore when n is e�etively zero. If p(n) is set to thismaximum value, the `intrinsi growth rate' denoted by r, the population an bethought of as one invading a given system. Beause r is a maximum value apopulation whih an not invade a given system is also inapable of persisting inthat system after being introdued as a �nite population.Speirs and Gurney (2001) were able to show that solutions are only possible ifthe long term growth rate � is related to r, Vx, �x and the system length L bytan�� LLd� = �VdVx� (3.6)where Ld � q�xr�1; Vd � 2q�xr; � � vuut1� �r � �VxVd�2 (3.7)Intermediate working leading to this result is given in Appendix A. The im-pliations for population persistene of the above result are overed in hapter6.3.2.2 112D problemThe method of Speirs and Gurney (2001) an be extended to onsider the asewhere organisms spend some of their time in the drift and the rest resident onor in the benthos. To attain an analyti solution organisms are assumed to bestati while in their benthi `state'. A further simpli�ation is to assume thatthe times spent in the drift and benthos are independent of the river veloity anddi�usion oeÆient. If, in addition, organisms are assumed to have exponentialdeay distributions for the benthi and water olumn residene times then therate of transfer between states are simple onstants. The details of this extension44



to the above method are detailed in hapter 6, setion 6.3.1. Chapter 6 thenonsiders the di�erene `linging' to the benthos makes ompared to the senarioof individuals permanently in the drift.Failure of solution tehnique when there is benthi movementThe key element to being able to extend the solution tehnique of Speirs andGurney (2001) to the ase when individuals spend time on the bottom is theassumption that these organisms are non-moving while on the bottom. This inturn permits non-trivial solutions in whih the population density in the benthos,m(x; t), is a onstant proportion of the population density in the drift, n(x; t), atall points. One movement is introdued in the benthos then the possibility of aonstant ratio between m(x; t) and n(x; t) breaks down.
3.3 Numerial tehniquesAs disussed in the previous setion, analyti solutions an be found for the longterm growth rate of a population if the per-apita growth rate of the populationis assumed to be onstant. Suh solutions provide valuable insights into thelimiting onditions for potential persistene. Non-linear representations of per-apita growth rate are more realisti of real populations, however, and theirintrodution makes it impossible to apply the analyti approah so far desribed.Analyti solutions for ertain two dimensional problems are possible, (Rihards1996), but the assumptions neessary to simplify the problem are quite restritive.If realisti hydrodynamis, or other fators, suh as animal behaviour, are to beinorporated then it is neessary to turn to numerial tehniques. One approah isto solve the ontinuous version of the equations speifying the model in question.There are a number of distint shemes that an be applied, (�nite di�erenes,�nite elements, �nite volumes, method of harateristis), and no one sheme has45



proven the best hoie for all possible problems. As an alternative to numerialsolution of the ontinuous model, a disrete spae-time representation an beadopted, as outlined for one dimensional problems in Gurney and Nisbet (1998),with extensions to two dimensional problems desribed in Speirs and Gurney(2001).3.3.1 Disrete spae-time approahConsidering a one dimensional model in the �rst instane, the domain is dividedinto a ontiguous series of equally spaed intervals of width �x and the averagepopulation density in quadrant x at time t is denoted by nx;t. This densitydistribution is updated at intervals �t aording tonx;t+�t =Xx0 Rx0 ;xBx0 ;t (3.8)The term Rx0 ;x represents a redistribution matrix and Bx0 ;t represents the numberof survivors and desendants of the population of quadrant x0 at time t who arepresent at time t + �t. In this work all non-linear per apita growth rates arerepresented by the logisti growth ratep(n) = r �1� nk� (3.9)where k represents the arrying apaity of the population. Therefore, follow-ing (Gurney and Nisbet 1998), Bx0 ;t is equated with the solution to the logistiequation, so that Bx0 ;t = knx0 ;tnx0 ;t + �(k � nx0 ;t) ; � � e�r�t (3.10)The redistribution matrix must be properly normalised suh that it produes amean displaement of Vx�t and a displaement variane of 2�x�t. That is46



Xx Rx0;x = 1Xx (x� x0)Rx0;x = Vx�tXx (x� x0)2Rx0;x = 2�x�t + (Vx�t)2 (3.11)Speirs and Gurney (2001) used a displaed tent distribution to represent Rx0;x.Suh a distribution is given byRx0;x = � 1� jx� x0 � doxjdmx !+ (3.12)where the + symbol denotes taking the value of the expression on the right handside if it is positive, or zero otherwise. The oeÆients �, dox and dmx are hosenso that the onditions of Equation (3.11) are satis�ed. To onform to the ondi-tions of Equations (3.3) and (3.4) at the boundaries, the method of images is usedto de�ne an appropriately modi�ed redistribution matrix. Using this tehniqueto model a logistially regulated population living in a 1D domain, (representinga well mixed river), Speirs and Gurney (2001) demonstrated that this form ofdisrete spae-time model demonstrated good agreement with the results of aontinuous model obtained by standard numerial methods, but with a ompu-tational ost approximately two orders of magnitude lower. The omparison ofresults is shown in Fig. 3.1.The disrete spae-time representation an be readily generalised to higher di-mensions by denoting position by a vetor, p � (x; z), for a vertial slie, orp � (x; y; z) for a full three dimensional model. The domain is now split intoa ontiguous series of retangular (2D), or uboidal (3D) ells. Equation (3.8)generalises to np;t+�t =Xp0 Rp0;pBp0;t (3.13)47
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Figure 3.1: Temporal development of a logistially regulated population with anintrinsi growth rate of 0:39day�1, being adveted along a 1 km river with a ve-loity of 0:001ms�1. Upper frames have �x = 0:06m2s�1. Lower frames have� = 0:25m2s�1. Right hand frames show the time history of average populationdensity. Left hand frames show the spatial distributions at t = 0 and the prediteddistribution at t = 50days. Solid lines represent the ontinuous time numerialmodel implementations, irles represent the disrete model. Disrete model: dis-plaed tent redistribution matrix (3.12), �t = 0:1day. From Speirs and Gurney(2001), with permission.The loal growth funtion is still given by Equation (3.10). In a 2D system withonstant rates of advetion and di�usion, the requirements on the redistributionmatrix beome Xp Rp0;p = 1Xp (x� x0)Rp0;p = Vx�tXp (x� x0)2Rp0;p = 2�x�t+ (Vx�t)2Xp (z � z0)Rp0;p = Vz�tXp (z � z0)2Rp0;p = 2�z�t+ (Vz�t)2 (3.14)where Vz�t and 2�z�t are the mean displaement and displaement variane inthe vertial respetively. 48



For suh a system the generalisation of the displaed tent distribution is given byRp0;p = � 1� jx� x0 � doxjdmx � jz � z0 � dozjdmz !+ (3.15)The oeÆients �, dox, dmx, doz and dmz are hosen so that the onditions ofEquation (3.14) are satis�ed. Speirs and Gurney (2001) used a reursive bi-linearinterpolation algorithm to determine these oeÆients for eah run using a newombination of model parameters. This satis�ed a penalty funtion imposed oneah of the onditions in turn, repeating the exerise if satisfying one onditionre-invalidated a previously satis�ed ondition, until all penalty funtions weresatis�ed simultaneously. For this work the parameters were found by making useof a NAG software library routine and ombining separate penalty funtions foreah of the onditions of Equation (3.14) in to one overall penalty funtion. Thatis if  1,  2,  3,  4 and  5 are de�ned as
 1 = Xp Rp0;p � 1 2 = Xp (x� x0)Rp0;p � Vx�t 3 = Xp (x� x0)2Rp0;p � [2�x�t + (Vx�t)2℄ 4 = Xp (z � z0)Rp0;p � Vz�t 5 = Xp (z � z0)2Rp0;p � [2�z�t+ (Vz�t)2℄ (3.16)then the NAG routine is used to minimise 	, where	 =  21 +  22 +  23 +  24 +  25 (3.17)This approah was found to work most eÆiently if the omponent penalty fun-tions,  1 et., were weighted aording to the relative magnitudes of the righthand sides of the separate onditions shown in Equation 3.14.49



Spae dependent displaed tent distributionsThe parameters of a displaed tent distribution are dependent on the veloitiesand di�usion oeÆients found at the point in spae and time at whih it is tobe applied. For work onsidering a 2D domain of a weakly mixed river, veloitiesand di�usion onstants are onsidered onstant in time but river veloity varieswith depth. In this instane a unique tent distribution is required for eah depthrepresenting a ell entre in the model. If z0 represents the vertial omponent ofthe soure ell position vetor, then the formula for eah tent beomesRp0;p = �(z0) 1� jx� x0 � dox(z0)jdmx(z0) � jz � z0 � doz(z0)jdmz(z0) !+ (3.18)and eah tent is subjet to the onditions as in Equation (3.14), but with auniform value of Vx now replaed by Vx(z0).Speirs and Gurney (2001) showed how use of tent distributions ould be extendedto tidally driven habitats. In suh habitats the deterministi ow �elds varywith time and it is therefore expeted that the redistribution matrix Rp0;p alsobeomes time dependent. If, however, the update inrement, �t is set equal toone tidal yle, Rp0;p then represents the residual motion over one tidal yle. It isneessary to ignore the spring-neap yle, but if this is done Rp0;p beomes time-independent. Assuming a tidal period of 12 hours, this is the size required forthe update inrement of the population model. Speirs and Gurney (2001) foundthat results obtained from simulations of the river senarios, (using �t = 0:1day),were weakly a�eted by the inrease in timestep.With �t set equal to the tidal period the population model is de�ned by Equation(3.13) while eah redistribution matrix is given by
Rp0;p = �(x0; z0) 1� jx� x0 � dox(x0; z0)jdmx(x0; z0) � jz � z0 � doz(x0; z0)jdmz(x0; z0) !+ (3.19)50



and the oeÆients of eah redistribution matrix are hosen so thatXp Rp0;p = 1Xp (x� x0)Rp0;p = �x(x0; z0)Xp (x� x0)2Rp0;p = 2�x�t + (�x(x0; z0))2Xp (z � z0)Rp0;p = �z(x0; z0)Xp (z � z0)2Rp0;p = 2�z�t + (�z(x0; z0))2 (3.20)In the above equations, �x and �z represent the x and z omponents of the netdisplaement of a neutrally buoyant partile, starting at position (x0; z0), overexatly one tidal yle. In other words they are Lagrangian residual movements,as outlined in setion 2.1.4. These values are derived by performing partiletraking on suh a partile using a fourth order Runge-Kutta algorithm and snapshots of instantaneous ow �elds. The x and z omponents of veloity in the ow�elds an be de�ned by an analyti solution of a simpli�ed set of uid dynamiequations, or via numerial solution of the full equations. These two means ofdetermining the veloity �elds are desribed in hapters 4 and 5 respetively.The �x and �z values are very likely to be di�erent for eah ell used in a model.Potentially a unique tent distribution is required for eah ell. Appliation of tentdistributions in a tidal situation also relies on organismal di�usion being divoredfrom the ow �elds in that its appliation is una�eted by the loations and move-ments of the traked partile during a tidal yle. The issue of dispersion ausedby an interation of advetive and random motion at sub-tidal timesales raisesdoubts about the validity of di�usion imposed only at the end of deterministitraking. This is ertainly the ase if the ow �elds are strongly divergent. Itwould again be true if animal behaviour in the form of reation to hanges in theow �eld or some other fator, (suh as salinity), were to be modelled. A further51



ompliation arises when the bathymetry is no longer straight sided. The methodof images at a reeting boundary, e�etively folding the distribution about theboundary, beomes ompliated.Redistribution matries from partile trakingTo aommodate senarios where the use of displaed tent distributions is lessonvenient or inappliable, the work of this thesis also generated redistributionmatries obtained from partile traking. In its simplest form the partile trakingalgorithm uses the same disrete spatial representation of the domain as thepopulation model. From the entre of eah ell the program traks a spei�ednumber of partiles, N , over �t, the time step used for the population model.Assuming veloities within the domain an vary with spae and time, partiletraking is performed over timesteps, Æt, muh smaller than those used for thepopulation model. The average veloity over eah period Æt is obtained usinga fourth order Runge-Kutta algorithm. In the same way as partile trakingused to produe the most general form of displaed tent distribution, the valuesof instantaneous veloity used by the Runge-Kutta algorithm were derived fromsnap shots of ow �elds, de�ned either by solution to a simpli�ed set of uiddynami equations, or via numerial solution to the full set of equations. Beausea partile's position at any partile traking timestep is unlikely to oinide witha veloity data value position, instantaneous veloity values are interpolated inspae. If the timesteps Æt are smaller than the time gaps between snap shotveloity data �les the instantaneous veloity values are also interpolated in time.Organismal di�usion is added at the end of eah traking timestep by assumingit is a white noise veloity with power spetral density p2�x;p2�z, that is thedisplaement varianes over the time interval Æt are de�ned as 2�xÆt and 2�zÆtin the x and z diretions respetively.
52



In this approah Rp0;p is given byRp0;p = number of traks from p0 to pnumber of repetitions, NThere is additional omputing overhead in the need to run the partile trakingprogram, ompared to generating displaed tent distributions. One a redistribu-tion matrix is ompleted, however, the population model runs exatly as before.Indeed, whereas the population model must handle any tent distributions thatattempt to plae population beyond reeting boundaries, the population modelusing a redistribution matrix from a partile traking program is free from suhissues, as they have been dealt with by the traking algorithm.Regardless of how the redistribution matrix is formed, if investigating the e�etof parameters that do not alter the spatial redistribution of population, the redis-tribution matrix only need be formed one and its alulation an be onsidered`o� line'. The most important parameter in this respet is the per-apita growthof the population, either through hanges in the intrinsi growth rate, or thewhole growth regime. Overall, use of a traking algorithm ombined with a dis-rete population model an still be more omputationally eÆient than numerialsolution of the partial di�erential equations.In Fig. 3.2 the numerial solutions to a ontinuous model representing a logis-tially regulated population, as shown in Fig. 3.1 are reprodued from (Speirsand Gurney 2001). Super-imposed on these results are ones obtained using par-tile traking and the disrete spae-time population model. The disrete modelis able to math the ontinuous model very losely. The approximation is bet-ter than that ahieved using the displaed tent redistribution matrix while usingomparable, or even greater values of �t. Use of partile traking performs betterlose to the boundaries.A good math of the ontinuous solution was obtained over a range of values for�t and interval size �x. With � = 0:06, a �t value of 6hrs � 0:1r�1 workedwell. With � = 0:25, the peak values of the population distribution ould only be53
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Figure 3.2: Temporal development of a logistially regulated population with anintrinsi growth rate of 0:39day�1, being adveted along a 1 km river with a ve-loity of 0:001ms�1. Upper frames have �x = 0:06m2s�1. Lower frames have� = 0:25m2s�1. Right hand frames show the time history of average populationdensity. Left hand frames show the spatial distributions at t = 0 and the prediteddistribution at t = 50days. Solid lines represent the ontinuous time numerialmodel implementations, irles represent the disrete model. Disrete model: re-distribution matrix from partile traking. Upper frames: �x = 6m, �t = 6hrs,Partiles traked per ell 10000; Lower frames: �x = 6m, �t = 2hrs, Partilestraked per ell 12000; All frames Æt = 30s.repeated with �t = 2hrs. This is possibly due to the higher relative densities ofthe latter ase, suh that population growth within an update inrement is morelikely to be a�eted by the non-linear growth term.As would be expeted, the �delity of the disrete model is a�eted asN is redued.In Fig. 3.3 the lower frames show runs with �x, �t and �x values as used in theupper frames of Fig. 3.2 but with dereasing values of N .Conditions requiring orretions to di�usion oeÆientsGurney, Speirs, Wood, Clarke, and Heath (2001) identi�ed a soure of potentialerror when using partile traking to form redistribution matries, dependingon the ombination of ell size, di�usion oeÆient and update inrement, �t.54
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Figure 3.3: Logistially regulated population with an intrinsi growth rate of0:39day�1, being adveted along a 1km river with a veloity of 0:001ms�1,�x = 0:06m2s�1. �t = 6hrs. Upper frames: Partiles traked per ell 10000,�x = 6m(irles), 10m(blue), 20m(green); Lower frames: �x = 6m, Partilestraked per ell 10000(irles), 1000(red), 500(blue), 100(green).Considering the x diretion only, and assuming a population is only subjet todi�usion, the redistribution matrix is required to satisfyXx (x� x0)2Rx0;x = 2�x�t (3.21)If we name the di�usion oeÆient used by the traking algorithm, �T , then thetraking operation produes a distribution of partile positions at �t whih isnormal with a zero mean and variane 2�T�t. Rx0;xj represents the fration ofthe traked ensemble whose �nal position lies in the ell entred at (j � 12)�x,where �x represents the ell size. Therefore, in the limit of a very large ensembleRx0;xj = 1p4��T�t Z j�x(j�1)�x exp � x24�T�t! dx (3.22)The value of �T should be suh that when the omponent parts of the redistribu-tion matrix given by Equation (3.22) are summed, they satisfy Equation (3.21).55



By de�ning y � x=LD where LD � p2�x�t and � � �T=�x, and ombiningEquations (3.21) and (3.22) the problem beomes one of hoosing � suh that1 = 1p2�� Xx  x� x0LD !2 Z j �xLD(j�1) �xLD exp � y22�! dy (3.23)Solving Equation (3.23) for � numerially allows the appropriate value of � tobe applied for any given ombination of �t, �x and desired �x. Gurney et al.(2001) showed that for �x < 0:1LD no orretion to the target di�usion onstantis neessary. For the approximate range 0:1LD � �x � 3:5LD, traking withthe target di�usion onstant produes redistribution matries whih imply exessdi�usion, that is � is a number less than one. One the normalised ell sizeexeeds 3:5LD the situation is reversed, with use of the target di�usion onstantproduing matries whih underestimate the required di�usion.Gurney, Speirs, Wood, Clarke, and Heath (2001) went on to onsider situationswhere partiles are subjet to both onstant advetion and di�usion. The or-retion fator � was alulated from Equation (3.23), that is as if there were zeroadvetion. It was found that for �x < 1:5LD both the advetion and di�usionwere rendered aurately, (errors < 1%), by the orreted traking proess. Avalue of �x=LD of up to 2 ould be used for an error of approximately 10% butif the ratio of ell size to di�usion length were larger, error inreased rapidly andbeame sensitively dependent on advetion veloity.The upper frames of Fig. 3.3 shows results for the ase where �x = 0:06m2s�1and �t = 6hrs, with the blak line showing the solution to the ontinuous model.The irles represent the result using �x = 6m, giving �x=LD � 0:1. The greenline represents the result using an unorreted value of �x and �x = 20m, giving�x=LD � 0:4.
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Chapter 4
Analytially derived ow �elds
4.1 Equations of motion for a Newtonian vis-ous uidThe equations of motion for a uid are given by a ombination of a onservationof mass, or ontinuity equation, and a onservation of momentum equation. If anassumption of inompressibility is used, together with that of onstant density,then the onservation of mass equation an be written as�v1�x1 + �v2�x2 + �v3�x3 � r � v = 0 (4.1)where x1; x2; x3 represent the Cartesian axes, v1; v2; v3 are the omponents ofveloity along the x1, x2 and x3 diretions, v is the veloity omponents in vetorform and r� is known as the divergene operator.The momentum equation states that for an elementary volume of uid, the prod-ut of its mass and aeleration equals the total fore ating upon it, that is�DvDt = �F +r � � (4.2)57



where the `body fore', F is the fore per unit mass ating on the body of theuid and the `stress tensor', � is a tensor quantity whose elements, �ij, representthe fore per unit area ating in the j diretion on a surfae with its normal inthe i diretion. The term r � � is used in the sense that(r � �)i = ��i1�x1 + ��i2�x2 + ��i3�x3 (4.3)A Newtonian visous uid is de�ned suh that�ij = �pÆij + � �vj�xi + �vi�xj! (4.4)where � is the oeÆient of absolute visosity of the uid. It is a quantitydesribing the amount of random moleular motion within the uid, (and as suhis a property of the uid). The term Æij is the Kroneker delta whih takes thevalue zero unless i = j in whih ase it is unity1. If we assume the absolutevisosity to be onstant then the equation of motion for a omponent of veloityan be written as
�DviDt = �gi � �p�xi + � ��xj  �vj�xi + �vi�xj!�DviDt = �gi � �p�xi + � ��xi  �vj�xj!+ ��2vi�x2j (4.5)where it is assumed the body fore is given by F = (g1; g2; g3). A repeated j suÆxdenotes summation over the three dimensions. Thus�2�x2j = �2�x21 + �2�x22 + �2�x23 � r2where r2 is known as the Laplaian operator. Also1Here, the stress tensor is symmetri, that is �ij = �ji.58



�vj�xj = r � vBut for an inompressible uid r � v = 0 so that Equation (4.5) beomes�DviDt = �gi � �p�xi + ��2vi�x2j (4.6)and the momentum equation for all three dimensions beomes�DvDt = �F�rp+ �r2v (4.7)Equation (4.7) is a form of what are known as the Navier-Stokes equations, thispartiular form assuming onstant visosity and density. If the only body foreomes from a uniform gravitational fore, suh that F = (0; 0; g) Equation (4.7)an be simpli�ed by de�ning a modi�ed pressure P � p � �gz suh that theequation beomes DvDt = �1�rP + �r2v (4.8)where � is known as the kinemati visosity and is de�ned as� = �� (4.9)
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4.1.1 Transfer of momentum and shear stressesIf we take the x omponent of the Navier-Stokes momentum equations we anwrite it as follows
�DVxDt = �g1 � �p�x + � "�2Vx�x2 + �2Vx�y2 + �2Vx�z2 #�DVxDt = �g1 � �p�x + ��x  ��Vx�x !+ ��y  ��Vx�y !+ ��z  ��Vx�z ! (4.10)The quantities ��Vx=�y and ��Vx=�z are known as shear stresses2 as they gen-erate fores parallel to the diretion of ow being onsidered due to the gradient,or shear, of the veloity in the seond dimension. Shear stresses and the resultantshearing of ow �elds are important in relation to bottom frition and the verti-al gradient in horizontal veloity suh frition reates in ombination with thevisosity of the uid. Sheared ow is one mehanism for the dispersion of passivetraers. The fores our beause of the transfer of momentum between planesparallel to the diretion of motion, due to moleular di�usion. Shear stressesare denoted using the stress tensor terminology �ij where the seond subsriptdenotes the diretion of the fore while the �rst subsript denotes the diretionof the momentum ux. So, for example�zx = ��Vx�z (4.11)

4.2 Turbulent owIn turbulent ow the veloity vetor is onsidered to be omprised of a meanomponent denoted by an over-sore and a utuating omponent denoted by aprime, (Nunn 1989), suh that the instantaneous veloity vetor is given by2��Vx=�x is a normal stress. 60



v = �v + v0 (4.12)Importantly, the mean of the utuating part of any individual veloity ompo-nent, (if taken over a suÆiently long time), is zero, but the mean of the produtof any two utuating veloity omponents is not zero.4.2.1 Equations of motion for turbulent owTo derive these equations the substantive derivative is �rst ast in a di�erentform as follows DviDt = �vi�t + vj �vi�xj = �vi�t + ��xj (vivj)� vi �vj�xj (4.13)For an inompressible uid the last term beomes zero suh that the substantivederivative beomes DviDt = �vi�t + ��xj (vivj) (4.14)Writing the Navier-Stokes equations for the instantaneous veloity omponentsgives
�( ��t(�vi + v0i) + ��xj [(�vi + v0i)(�vj + v0j)℄) = � ��xi ( �P +P 0)+ �r2(�vi+ v0i) (4.15)This may be expanded and rearranged to show how the new Navier-Stokes equa-tions inorporate those for the mean motion and those for the utuations, asfollows � h��vi�t + ��xj (�vi�vj)i+� h�v0i�t + ��xj (�vjv0i + �viv0j + v0iv0j)i 9>=>; = 8><>: � � �P�xi + �r2�vi��P 0�xi + �r2v0i (4.16)61



The momentum equations are expeted to govern the motion of the uid on anaverage basis as well as instantaneously (Nunn 1989), and taking a time averageof Equation (4.16) leaves only one surviving turbulene quantity, v0iv0j suh thatthe equation beomes� "��vi�t + ��xj (�vi�vj + v0iv0j)# = �� �P�xi + �r2�vi (4.17)As far as the aeleration of the mean ow is onerned the turbulent utuationquantities an be onsidered additional shear and normal stress terms, whih isillustrated by an alternative form of the above result�D �viDt = �� �P�xi + �r2�vi � ��xj (v0iv0j) (4.18)Equations (4.18) are known as the Reynolds equations and the last term on theright hand side represents the Reynolds stresses. In all but virtually laminarows these Reynolds stresses are orders of magnitude greater than those due tomoleular di�usion. A strategi simpli�ation to working with turbulent ow anbe made by onsidering the modelling of Reynolds stresses to be analogous tomoleular visosity and then ignoring the latter on the basis of its muh smallere�et. To show this the Reynolds equation for the x diretion an be onsideredand written in the following form
�DVxDt = ��P�x + ��x  ��Vx�x � �V 02x !+ ��y  ��Vx�y � �V 0xV 0y!+ ��z  ��Vx�z � �V 0xV 0z!(4.19)It is now possible to de�ne eddy visosity suh that, for example�V 0xV 0y = �N �Vx�y (4.20)and the appropriate shear stress term from Equation (4.19) an be written62



��y (�yx) = ��y  ��Vx�y � �V 0xV 0y! = ��y "(�+N)�Vx�y # (4.21)If it is then argued that the stresses due to moleular visosity an be ignoredthis leads to Equation (4.19) beoming�DVxDt = ��P�x + ��x  N �Vx�x !+ ��y  N �Vx�y !+ ��z  N �Vx�z ! (4.22)where N is known as the oeÆient of eddy visosity. In pratie N is nota onstant but varies with the magnitude of the veloity vetor and is not asalar beause the turbulent utuations upon whih its de�nition is based arediretional and likely to vary throughout the ow. If these two assumptions aremade however, then the momentum equations for turbulent ow beome exatlyequivalent to the Navier-Stokes equations but with N replaing �. In pratise theoeÆient is split into three omponent parts, Nx, Ny andNz. Numerial shemes,suh as the Prineton Oean Model, (POM), desribed in hapter 5 do alulatetime varying values of these oeÆients based on theories involving the gradientsof the time averaged veloity omponents. In subsequent equations dealing withturbulent ows the mean nature of the time averaged terms is onsidered impliitand the over-line is omitted.If onsidering passive traers within the ow, the desription of the onentrationof traer over time and spae an be performed by use of an equation analogousto the momentum equation. Di�usive movement of traers by turbulene hasbeen found from experiment to be similar but not equivalent to the spreadingof momentum in ows of near uniform density. Therefore new oeÆients arede�ned, (Kx, Ky and Kz), whih are known as the oeÆients of eddy di�usion.The ratio of eddy visosity oeÆient to eddy di�usion oeÆient is known asthe Prandtl number. Its value is often taken to be 1, although the value anmove well away from unity in the presene of density strati�ation, as desribedbelow. In the analytial population models and disrete spae-time simulationsthe `di�usion' oeÆients used represent a potential mixture of uid ow and63



organismal indued di�usive movement. They might also be representing disper-sion rather than pure di�usion. They are therefore given the separate notationof �x; �y; �z.In general the Navier-Stokes equations, in laminar or turbulent form, an onlybe solved analytially for speial ases. Otherwise numerial methods must beemployed. For initial investigations of persistene in advetive environments,however, valuable insights an be gained using analyti ow regimes derived fromstrategi simpli�ations to the problem. These are onsidered after speial fousis given to the vertial omponent of turbulene.
4.3 Vertial turbulent eddy visosity and di�u-sionIt will be seen in later setions and hapters that the value of the vertial om-ponent of turbulent eddy visosity is an important onsideration in relation toproduing Lagrangian residual movements from the analyti treatment of tidalows presented in setion 4.5. If it is onsidered that an animal has a randommovement not very di�erent to that for a passive traer, that is a movementalmost solely determined by water movement, then the value of vertial eddydi�usivity is very signi�ant for analyti population persistene results in two di-mensional river ow. Finally, when produing a transition matrix for the disretetime population model from solutions to the uid dynami equations and parti-le traking, di�usion must be imposed at eah traking timestep to prevent alltraks following the same path. The vertial eddy di�usivity values that wouldbe expeted from the type of ow being onsidered provide an obvious guide tothe vertial di�usion oeÆient, �z, to be applied in the traking program.For a two dimensional ow, referring to Equation (4.20), the vertial eddy vis-osity Nz is related to the shear stress �zx by64



�zx = �V 0xV 0z = Nz dVxdz (4.23)For steady ows, (rivers), values for the vertial omponent of eddy visosityan be dedued after establishing a seond relationship between the shear stressand veloity pro�le. In lassial hydrauli theory this is done by making use ofPrandtl's mixing length onept, whih desribes the average distane travelledby a blok of uid in turbulent ow before it suddenly aquires the veloity ofthe ow at a di�erent loation, (Smith 1975). This theory suggests the followingrelationship between the shear stress and the veloity gradient�zx = K 0�l2 �����dVxdz ����� dVxdz (4.24)where l is the mixing length and K 0 is a onstant of proportionality. If it isassumed that1. Near the bed the shear stress is onstant and equal to the stress on the beditself. That is �zx = �zxo = onstant.2. The sale of the turbulene is proportional to the distane from the bed.That is (K 0)1=2l / z where z represents distane from the bed.then (K 0)1=2l an be replaed by �z where � is a onstant known as von Karman'sonstant. Experimental determinations have onluded that the value of � isabout 0.40 or 0.41. Using these assumptions and a value of von Karman onstantof 0.4 Equation (4.24) an be re-ast asdVx = s�zxo� 10:4 dzz (4.25)The quantity q�zxo=� has the dimensions of veloity and is known as the fritionor shear veloity and is given the symbol Uf or U�. Solving Equation (4.25) gives65



Vx = 2:5s�zxo� ln� zC� (4.26)The onstant of integration, C, depends on the ratio between the height of rough-ness elements at the bed and the thikness of a laminar sub-layer whih is presentin all turbulent ows. For natural rivers and estuaries the roughness elements al-most always projet beyond the sub-layer, (dynamially rough ow), and for suhow C is dependent only on the height of roughness projetions, rp. The rela-tionship is found from experiment to be C = rp=30 suh that Equation (4.26)beomes Vx = 2:5U� ln 30zrp ! (4.27)Some oeanographi alulations, inluding those represented within the Prine-ton Oean Model, (POM), express Equation (4.26) in the formVx = 2:5U� ln� zzo� (4.28)where zo is known as the roughness parameter. If dynamially rough onditionsan be assumed for the ow then zo is atually related to the size of roughnesselements3 in the bed by zo = C = rp=30.Maintaining the assumption that shear stress is onstant up the water olumn,then given that U� = q�zxo=� = 0:4z(dVx=dz) and using Equation (4.23), (�zxo =�z(dVx=dz)), it an be seen that3For the relationships zo = C = rp=30 and C = rp=30, rp only represents the atual physialheight of roughness projetions if those roughness projetions are distributed in a uniformmanner, (Smith 1975). If the spread of projetions is uneven, or the grains vary in size, then an`equivalent roughness height' is employed. There is, however, no de�nite orrelation betweengrain size and equivalent roughness height, (Chanson 1999, page 235)
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Nz = �0:4U�z (4.29)if Nz is to represent the turbulent equivalent to dynami visosity ornz = 0:4U�z (4.30)if nz is to represent the turbulent equivalent to kinemati visosity. In otherwords eddy visosity inreases linearly with distane above the bed, regardlessof veloity pro�le. For a gradient urrent, suh as rivers, where ow is due togravity alone, U� an be alulated from the relationU� = qgHS (4.31)where g is aeleration due to gravity, H the total depth of the water and S theslope of the water surfae. Using this result the vertially averaged value of theeddy visosity oeÆient is found to benz = �6U�H � 0:0667U�H (4.32)Laboratory studies of steady ow have found that the vertial eddy visosity doesnot inrease linearly with depth but has a magnitude whih is roughly paraboliin shape with a maximum at approximately half depth and values of zero atbed and surfae, (MDowell and O'Connor 1977, page 65). An improvement onEquation (4.30) that allows reprodution of this shape is given bynz = 0:4U�zq1� z=H (4.33)Equation (4.33) is ahieved by assuming the distribution of shear stress is linearover the depth of the ow rather than onstant, while retaining a logarithmi67



veloity pro�le as desribed by Equation (4.27) or (4.28).The additional ompliation in onstant-density tidal ow, (as found when tryingto determine longitudinal dispersion), is the unsteady nature of the ow. Tur-bulene will be aused predominantly by bottom shear stress suh that it ouldbe expeted possible to utilise Equation (4.30) or (4.33) but U� will vary from amaximum at maximum ood and ebb to virtually zero at slak tide. Engineeringstudies have often used the average value of U� over a tidal yle, (Fisher, List,Koh, Imberger, and Brooks 1979).In general, in shear ows the vertially averaged horizontal veloity, U , is founda distane 0:4H from the bed. Equation (4.27) or (4.28) an therefore be usedto determine a relation between the shear veloity and the mean veloity for agiven ow. As shear veloity is a diÆult quantity to measure a formula usingthe vertial mean veloity in its plae was suggested by Bowden (1967), namelynz = 0:0025HU (4.34)at the mid depth of the vertial ross setion. If the tidal average value for Uis used then the tidally averaged value of nz at a horizontal loation has beenderived using the vertial average of the Eulerian residual veloity at that point.The value of the vertial eddy visosity and di�usivity an be onsidered equal fora homogeneous estuary. Lewis (1987) onsiders that in general a value for thesequantities in suh estuaries is of the order 0:01m2s�1. MDowell and O'Connor(1977) quote a range for suh oeÆients of 0:01 � 0:1m2s�1 for maximum in-stantaneous values and for tidally averaged values of 0:001� 0:01m2s�1.The piture is ompliated further when density strati�ation is taken into a-ount. A stable vertial density gradient an redue turbulent exhange, or, if itis suÆiently strong, extinguish turbulene altogether. Any mixing now must beaused by veloity shear at the pynoline, (Dyer 1973). The Rihardson num-ber, Ri, is a omparison of the stabilising fores of the density gradient to the68



destabilising inuenes of veloity shear. It is de�ned asRi = �g� ���z = �U�z !2 (4.35)For Ri > 0 strati�ation is stable, for Ri = 0 it is neutral suh that there is nodensity gradient in the vertial and Ri < 0 signals instability, suh that denserwater over-lies lighter water and gravitational fores will exist to overturn thisphenomenon, thereby inreasing turbulene. The point at whih strati�ation issuÆient to hange turbulent ow to laminar ow is generally taken to our atRi = 0:25 for uniform ow. Flow is non-uniform in tidal ows, however, andthe transition is believed to our at higher Ri. Field observations in the MerseyNarrows led to an empirial relationship between the vertial eddy visosity inhomogeneous onditions, No and that in the presene of density strati�ation, N ,namely hNi = hNoi (1 + aRi)b (4.36)where the onstants a; b were found to be 10 and �1=2 respetively, (MDowelland O'Connor 1977). The <> brakets indiate a tidally averaged value. Equa-tion (4.36) indiates a redution in momentum transfer of 60% for Ri = 0:5 and86% for Ri = 5. Di�erent quantities are used to represent the oeÆients ofeddy visosity and eddy di�usivity of salars partly beause �eld work and lab-oratory experiments have shown that strati�ation redues the vertial transferof salt faster than momentum. Equation (4.36) an be used for eddy di�usivityof salt, K, as well as momentum but the onstants a; b hange to 3:33 and �3=2respetively. An Ri value of �ve leads to a 74 fold redution in salt di�usion.The value of the Rihardson number also hanges ontinuously in an estuary.When tidal urrents are at their maximum, onditions might be roughly neutralin their surfae and bottom layers while the haloline has stable onditions. TheColumbia River has Ri values reahing 5 at mid-depth. At those points in time69



when tidal urrents are diminished, however, it is possible for the whole waterolumn to be stable, (Dyer 1973).Fisher, List, Koh, Imberger, and Brooks (1979) suggest that for a strati�edestuary the value of K an range between 1=10 and 1=100 the value of Ko duringa tidal yle.
4.4 `Steady' turbulent ow: RiversAnalyti expressions for river ow are possible if the mean motion of the wateris onsidered. The nature of the uid ow is haraterised by two ratios, theReynolds number and the Froude number. The Reynolds number, Re, representsthe ratio of inertial fores to visous fores and is given byRe = V̂RH� (4.37)where V̂R represents the vertially averaged river veloity, H is the depth of theriver and � is kinemati visosity. As inertial fores dominate visous foresow hanges from laminar to inreasingly turbulent. For wide hannels, ow isde�nitely laminar for Re < 500 and turbulent for Re > 2000, with a transitionaryband between, (Smith 1975). The Froude number, Fr, is de�ned byFr = V̂RpgH (4.38)where g is the aeleration due to gravity. The Froude number represents theratio of inertial fores to gravitational fores. If Fr < 1 ow is designated as sub-ritial or tranquil ow. Where Fr = 1 ow is ritial and when Fr > 1 ow issuper-ritial4. Generally, ow in streams and rivers under non-ood onditions4Super-ritial ow is also known as shooting or streaming ow, (Davis and Barmuta 1989)
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are either sub-ritial-turbulent or super-ritial-turbulent, (Davis and Barmuta1989).4.4.1 1D ow: well mixed riverThe most basi representation of a steady ow with a signi�ant mean omponentin only one diretion, the x diretion say, is to state that Vx = onstant. Althoughit appears a gross over-simpli�ation this representation of uid ow is reasonablewhen onsidering highly energeti shallow streams and rivers.When the depth of the water body is equal to or less than three times the heightof the substrate roughness, or roks and/or boulders extend all the way throughthe ow, loal ow is very dependent on individual substrate elements and verydiÆult to determine even numerially. Suh ows are often haraterised bysuper-ritial `white water' ommon in shallow ri�es, (Davis and Barmuta 1989).Suh ows, however, still possess a mean motion whih, beause of the vigorousmomentum mixing aused by the high turbulene, is more or less uniform overthe depth.4.4.2 2D ow: weakly mixed riverIn deeper and more tranquil rivers, (those in the sub-ritial regime), turbuleneis not enough to ause an approximately uniform vertial pro�le of horizontalmomentum. To approximate the ow of suh systems it is therefore importantto aount for the vertial veloity pro�le aused by visous fores preventingmovement at the substrate and, (exept in a laminar boundary layer), turbulentdi�usion mixing momentum between di�erent water depths. A logarithmi pro�lean be established through the method of solving for Vx from the equation forbottom shear stress as detailed in setion 4.3. This, however, requires stipulationof the roughness of the bed in some form. An alternative approah is to onsidera simpli�ed form of the momentum equation.71



If the horizontal omponent of a steady two dimensional, (x,z), ow is onsidereduniform in the x diretion and all non-linear terms of the substantive derivativeare ignored Equation (4.22) redues to1� �P�x = Nx� �2Vx�z2 (4.39)For rivers the pressure gradient is a result of the slope of the free surfae, �, suhthat Equation (4.39) beomesg ���x = nx�2Vx�z2 ; nx = Nx� (4.40)Appendix B shows that if a no slip ondition is applied at the bottom then thehorizontal veloity at any depth is given byVr(z) = VR  1� � zH �2! (4.41)where VR is the veloity at the river surfae, H is the river depth and z thedistane below the free surfae. Determining the vertially averaged veloity, V̂R,reveals it is exatly two thirds the value at the surfae, suh that Equation (4.41)an also be written as Vr = 3V̂R2  1� � zH �2! (4.42)Extensive measurement in rivers has shown the mean veloity, V̂R to reside at adistane approximately 0:4H from the bed, (Smith 1975, page 34). To hek thisrepresentation of the horizontal veloity we an set Vr = V̂R in Equation (4.42)and solve for z. This gives z = Hq1=3 suh that V̂R ours at a distane fromthe bed of H(1�q1=3) � 0:4226H.
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4.5 Tidal estuaryIn general, the time and spae dependent ow-�elds whih result from ows expe-riening tidal foring an only be determined numerially. However, Chen, Shaw,and Wolott (1997) developed an analyti solution for a strategially simpli�edtwo-dimensional, (x,z), representation of a tidally driven system. This solutionwas adapted by Speirs and Gurney (2001) to inlude a river outow omponentand was used to model persistene of passive organisms.4.5.1 Linearised momentum equationThe model is spei�ed by a linearised version of the equation for the onservationof momentum (Equation 4.22), for the x-omponent of momentum. It assumesturbulent ow, adopting a onstant oeÆient of eddy visosity in the plae ofmoleular visosity. The only fator a�eting the pressure gradient is onsideredto be the horizontal variation in free surfae elevation, �, suh that1�rP = g ���x (4.43)The momentum equation therefore beomes�Vx�t = �g ���x + nx  �2Vx�z2 + �2Vx�x2 ! (4.44)where nx is the onstant oeÆient of turbulent eddy visosity. It is then furtherassumed that, beause Vx hanges muh more slowly with x than with z, thatthe term �2Vx=�x2 an be omitted, giving a �nal momentum equation of�Vx�t = �g ���x + nx�2Vx�z2 (4.45)The ontinuity equation is de�ned as 73



�Vx�x + �Vz�z = 0 (4.46)The vertial veloity at the benthos is zero at all times, and so the rate of hangeof the loal surfae elevation, ��=�t � Vz(�) an be gained by integrating �Vz=�zup the water olumn. This gives���t = Z ��H �Vz�z dz = � Z ��H �Vx�x dz (4.47)where H is the depth below the mean free surfae. Equation (4.47) uses a vertialaxis with the origin at the mean free surfae and de�ned positive skyward, anda vertial veloity de�ned positive skyward, as is the onvention in hydraulis.Speirs and Gurney (2001) reversed the positive diretion in the vertial, (whilemaintaining the same origin), suh that the equation for surfae elevation beomes���t = �Vz(��) = � Z H�� �Vx�x dz (4.48)The analyti solution for the two omponents of veloity are ahieved by assumingthe variation in surfae elevation is not signi�ant in omparison to the meandepth of the system. Then � << H, and Equation (4.48) beomes5���t = � Z H0 �Vx�x dz = �H�Vx�x (4.49)Boundary onditions for the Speirs and Gurney (2001) version of the model spe-ify that at the landward end of the system, (x=0), the only veloity present isthat from the river. The seaward end, (x=L) ontains a linear ombination ofthis river ow and a sinusoidal tidal omponent, so thatVx(0; 0; t) = VR; Vx(L; 0; t) = VR + VT os 2� tT 8t (4.50)5This result applies whether the assumption � << H is applied to Equation (4.47) or (4.48).74



where T is the tidal period.To allow inlusion of the river ow, a no slip boundary ondition was set atthe bottom of the domain by Speirs and Gurney (2001)6 and a zero wind-stressondition applies at the mean free surfae suh that�Vx�z �����z=0 = 0; Vx(x;H; t) = 0 8t (4.51)Given these boundary onditions solutions to Equations (4.45) and (4.49) are
Vx = VR  1� � zH �2!+ VT  sin kxsin kL!<��1� osmzosmH� exp�i2� tT �� (4.52)and
Vz = VT  k os kxsin kL !<��exp�i2� tT �� �H � z + sinmz � sinmHm osmH �� (4.53)where k = 2�T 1pgH ; m = (1� i)p2 s 2�Tnx (4.54)Intermediate working is ontained in appendix B.The work of this thesis makes use of Equations (4.52) and (4.53) in order toprovide the veloities for a partile traking algorithm, as desribed in setion3.3.1. This in turn allows determination of the Lagrangian residual movementover a tidal yle. When onsidering persistene of planktoni organisms, owsof most interest are those that, at depth, generate landward residual movement.6Chen, Shaw, and Wolott (1997) used a linear drag law for the bottom boundary ondition.If river ow was to be inluded, however, then to maintain a linear momentum equation, a noslip ondition must be used. 75



When traking was applied to the solutions generated from Equations (4.52) and(4.53) it was found that suh landward `ows' only prove signi�ant for tidal owsthat, in turn, generate variations in surfae elevation that an not be onsideredinsigni�ant ompared to the mean depth of the system.When the free surfae rises above its mean value, both horizontal and vertialveloities for any point a given distane from the benthos will be alulated as ifthat point were a greater proportion of the distane toward the free surfae thanis atually the ase. When the free surfae falls below its mean value the situationis reversed. For a given volume of ow, the vertially averaged horizontal veloitywill derease for a rising free surfae and inrease for one whih is falling. Near thebenthos these e�ets are expeted to be dominated by the bottom drag. Beauseof the no slip ondition at the bottom and the drag, (aused by the eddy visosity),horizontal veloities near the benthos are small. The bottom drag also auses theveloity gradient, �Vx=�z to be greatest near the bottom boundary. This gradientbeomes small a relatively short distane from the boundary, and the shape of theveloity gradient urve would only be modestly a�eted by variations in surfaeelevation. Also, the e�etive and atual positions of a partile relative to thebenthos stay the same. Further up the water olumn the bottom drag e�etredues and then stops.The vertial veloity at any depth, Equation (4.53), is obtained by di�erenti-ating Equation (4.52) and then integrating up to the required depth. Arti�-ially high landward ows - during periods when the surfae elevation should beabove its mean level - lead to greater than desired absolute values of �Vx=�x,(as Vx(0; �; t) = VR 8t), and inreased values of vertial veloity. When sur-fae elevation is below its mean, seaward ows lower than the true value lead tosuppressed vertial veloities.There is also a disrepany between a partile traked from an initial positionat or lose to the water surfae and the value of the free surfae as alulatedfrom Equation (4.49). A partile whih moves above the mean free surfae level76



reeives a vertial veloity alulated by integrating �Vx=�x up to its given alti-tude. The movement of the surfae elevation, ��=�t, is only alulated using anintegration up to z = 0. The movement of the partile beomes greater than thatof the free surfae and if both quantities are rising, the partile will rise above thefree surfae. In the work of Speirs and Gurney (2001) only deterministi trakswere performed (ignoring the issue of the free boundary) and the resultant resid-ual movements used as the basis for determining parameters for displaed tentdistributions, whih are desribed in setion 3.3.1. Using a population model witha time step equal to the tidal period, if the free surfae was assumed at its meanlevel at t = 0, it was only neessary to ensure partiles were beneath the meanfree surfae at the end of the traking run. It was antiipated that inorporatinganimal behaviour into a tidal system ould render use of displaed tents impra-tiable or impossible. The alternative is to inorporate the random motions ofanimals into the traking algorithm. Suh random movement an plae partilesover boundaries in a non-physial manner at eah traking timestep. As a on-sequene heking partile position against the free boundary at eah timestepmust be performed and it beomes more important to gain a true representationof the variation of the free surfae with time.4.5.2 Sigma o-ordinatesA modi�ation to this analyti approah uses a form of sigma o-ordinate in thevertial, adapting the true sigma o-ordinate system developed for the PrinetonOean Model, (Blumberg and Mellor 1987). Blumberg and Mellor (1987) de�nethe instantaneous depth by D(x; t) = H(x) + �(x; t) (4.55)They then de�ne a new depth variable
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� = z � �D (4.56)This depth variable always has a value of zero at the free surfae (z = �) and -1at the bottom (z = �H). For the work in this thesis a new depth measure, z� isde�ned as follows z� = ��H (4.57)This new depth variable always has a value of zero at the free surfae (z = �)and H at the bottom (z = �H). To be onsistent with the work of Speirs andGurney (2001), z� is de�ned positive toward the benthos.The de�ning equations of the model, (Equations 4.45 and 4.46) beome�Vx�t = �g ���x + H2D2nx�2Vx�z2� (4.58)and �Vx�x + HD �Vz�z� = 0 (4.59)for the ontinuity equation. The hanges required for boundary ondition equa-tions are ontained in Appendix C. This appendix also ontains details of howthis new approah allows a new, and more self onsistent, means of alulatingthe rate of hange of surfae elevation with time.Use of Existing Solutions for Vx and VzThe expression (H2=D2)nx ould be onsidered to represent a oeÆient of eddyvisosity that varies as overall water depth varies. In other words a new term�E(x; t) ould be substituted for (H2=D2)nx. Attempting to take aount of the78



new time and spae dependene of the eddy visosity term, however, leads toa seond order di�erential equation in z� for the depth dependent part of thehorizontal veloity, (as was the ase for the altitude version of the model), butwhih now inludes the variation of surfae elevation with time, as shown inAppendix C. Rather than attempting to solve this more ompliated equationthe existing analyti solutions for Vx and Vz were adopted, but with vertialo-ordinate of the partile taken as the value in z�. The disadvantage to thisapproah is outlined below.In ontrast to the ase using a onventional altitude measure in the vertial, whenthe free surfae rises or falls from its mean value, a partile a given distane fromthe benthos maintains the proportions of its distane above the benthos and itsdistane below the free surfae. When use of Equation (4.52) is made however,this has the e�et of determining the veloity as if the partile were loser to thebenthos than is atually the ase for a raised free surfae and as if it is furtherfrom the benthos for a free surfae below the mean level. Beause of the steepveloity gradient near the benthos, partiles in the shear ow region of the domaingain a higher than desired horizontal veloity as the free surfae falls and a lowerthan desired horizontal veloity as the free surfae rises.Returning to Equation (4.58), this replaes nx by H2D2nx, whih implies that whenthe free surfae rises the eddy visosity term redues and vie versa. At thesame time when the free surfae is above its mean z� > z in terms of the distanerepresented by a single unit. For a veloity gradient that in physial terms remainsthe same this implies �Vx�z� > �Vx�z by a fator D=H. The e�et is again reversedwhen the free surfae falls below the mean level. The shear stress restritinghorizontal veloity at any depth in the model is given by HDnx �Vx�z� . Thus thetwo e�ets of the hange of o-ordinate do not a�et this fore ating on a uidelement. If the fator HD is not inluded however, for a free surfae above themean the shear stress will be at an elevated value and given the fat Vx is zeroat the benthos this auses the Vx value to be redued.79



4.5.3 Comparison of analyti solutions to those from auid dynamis pakageTo deide whether the `altitude' or `sigma' o-ordinate version of the analytisolution following Chen, Shaw, and Wolott (1997) provided the better approxi-mate ow �elds, residual ows produed by eah version were ompared to outputgained from a uid dynamis pakage, the Prineton Oean Model, (POM), whihis desribed in the next hapter. In its full form the POM pakage inorporatestemperature and salinity as additional state variables and the e�ets of the varia-tion of these quantities on the momentum equations. For the omparisons of thissetion it was possible to disable these terms within the momentum equations. Inaddition, the non-linear momentum terms ould be eliminated and the oeÆientof vertial eddy visosity ould be made a �xed value, rather than one determinedby a turbulene losure sheme. Unlike the analyti solution horizontal di�usionhad to be retained in order to prevent numerial instability and high frequenywaves persisting in the ow �elds7. The form of the momentum equation in the xdiretion, in Cartesian o-ordinates, as used by POM for these omparisons was�Vx�t = �g ���x + nx�2Vx�z2 + Fx (4.60)where Fx represents the horizontal di�usion and is given by Fx = ��x [2AM �Vx�x ℄and where AM is the oeÆient of horizontal kinemati eddy visosity.To remove as many onfounding e�ets as possible, initial omparison was madefor ows with no river omponent. Fig. 4.1 shows Lagrangian residual "veloi-ties" obtained when VT = 0:3. Plot a) shows the result using ow �elds generatedby the Chen solution and a Cartesian vertial oordinate while plot b) gives theresult from the modi�ed Chen solution with sigma vertial oordinate used whenalulating horizontal veloities. Plots ) and d) show residual veloities derived7In the analyti solution it is possible to pik the trial solution suh that only the fundamentalmode is represented. 80



using ow �elds output from POM. To drive the POM model an open boundaryondition has to be spei�ed at the seaward end of the domain. For the purposesof this omparison a veloity `inow' ondition was used with the veloities foreah boundary ell being spei�ed by the analyti solution at that point in spaeand time. Beause POM utilises a time splitting tehnique,8 values for vertiallyaveraged veloity must be supplied as well as those for individual depths. Forplot ) the vertially averaged veloity was determined by integrating the ana-lyti solution over the latest depth determined by the POM model. Veloitiesfor separate ells were determined after onverting the urrent sigma value atwhih the ell veloity is de�ned to an absolute altitude. For plot d) the sigmaimplementation to the analyti solution was imposed at the boundary. Vertiallyaveraged veloity was determined ignoring variation in sea surfae elevation andthe loations for de�ning ell veloities were onverted from full sigma oordinatesto a sale running between zero at the free surfae and H at the bottom.The resulting residual veloities using POM ows an be seen to be a muhloser qualitative math to the results obtained using an analyti solution withsimple Cartesian vertial oordinate. This is true for POM ows using eithertype of boundary ondition foring. Exat agreement was never expeted, �rstlybeause of the need to retain horizontal di�usion terms in the POM solutionand seondly beause the POM model does not use a no slip ondition at thebottom boundary but, (as detailed in the following hapter) a version of the 'lawof the wall' together with a bottom roughness parameter to determine the veloitypro�le near the bottom.One a domain is determined for a POM simulation veloities outside of thatdomain are unde�ned. To ensure the simulations for these omparisons werebeing driven by the orret veloities at the orret loation, the open boundary ofthe POM simulation was plaed at the same loation as the absorbing boundary8The model performs alulations to determine the vertially averaged and density inde-pendent aspet of the ow separately and then feeds the results of these alulations to odeperforming the full barolini alulations at longer time intervals.81
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Figure 4.1: Residual veloity plots derived using ow �elds from a) Solution afterChen, Shaw and Wolott (1997), using Cartesian vertial oordinate; b) Solutionafter Chen, Shaw and Wolott (1997), using � vertial oordinate; ) PrinetonOean Model, (POM), with boundary ondition supplied by `Chen' veloities; d)POM, with boundary ondition supplied by semi-sigma `Chen' veloities. VT =0:3, VR = 0:0.of the theoretial domain. This meant that residual veloities ould only bedetermined by starting partile traks from the low tide point in the tidal yleand onsequently residual veloities an only be determined for starting positionsup to the approximate low water mark. Partile traking using the analytisolutions are not subjet to these restritions as veloities remain de�ned beyondthe absorbing boundary. For onsisteny, residual veloity traks were de�nedonly to low water mark in all ases. More signi�antly, it an be argued thata logial inonsisteny ours if the region beyond the seaward boundary of thedomain is onsidered absorbing at instanes of ompleted tidal yles but notduring a tidal yle.The true objetive in this thesis is to onsider the possibilities of persistene whenthere exists in the domain a net ow in one diretion. It was therefore importantto be ertain the Cartesian form of the analyti solution still represented thebetter of the analyti ow �elds one river ow had been introdued. Fig. 4.2shows residual veloities obtained when VT = 0:3 and VR = 0:005. The analyti82
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Figure 4.2: Residual veloity plots derived using ow �elds from a) Solution afterChen, Shaw and Wolott (1997), using Cartesian vertial oordinate; b) Solutionafter Chen, Shaw and Wolott (1997), using � vertial oordinate; ) PrinetonOean Model, (POM), with boundary ondition supplied by `Chen' veloities; d)POM, with boundary ondition supplied by semi-sigma `Chen' veloities. VT =0:3, VR = 0:005.solution with Cartesian vertial oordinate an still be seen to be the best mathto either of the POM implementations.The river ow open boundary onditions must be imposed at eah end of thePOM domain. The analyti solution determines a �xed vertial pro�le of riverveloity and assumes no variation in water height whereas the height at eah openboundary varies. In these simulations the proportions of veloities assigned toells remained onstant but their absolute value was allowed to hange suh thata onstant volume of water was input and extrated at river and seaward endsrespetively.4.5.4 Comparison with full `primitive equations' solutionTo obtain the analyti ow solutions a number of simplifying assumptions hadto be made. As desribed in the next hapter, the assumption that horizontal83



di�usive terms are unimportant an be justi�ed via saling arguments and areused in simplifying numerial oeanographi ow models suh as POM. It wasalways expeted that density variations would signi�antly alter ows. The mainsoure of density variation, espeially in shallow water, is due to salinity variation.Flows derived from the analyti solution ould be onsidered as representing thosefrom tidal rivers, or a very well mixed portion of an estuary in whih the vertialpro�le of salinity is almost onstant.The redution of the momentum equation to a linear form and the stipulation of aonstant vertial eddy visosity oeÆient, however, is only performed beause ofthe diÆulty in solving non-linear di�erential equations. To determine the di�er-ene in residual veloity aused by introdution of the non-linear terms residualveloities arising from ow with VT = 0:3 and VR = 0:005 was determined usingows from a POM run inorporating these omponents. As suh the momentumequation, (in the x diretion), now being solved by the POM model beomes�Vx�t + Vx�Vx�x + Vx�Vz�z = �g ���x + nx(z)�2Vx�z2 + Fx (4.61)As detailed in hapter 5 oeanographi pakages suh as POM still retain a fewkey simplifying assumptions. The uid dynamis equations ontaining these as-sumptions are known as the `primitive equations'.The vertial dependene of the vertial eddy visosity oeÆient is determined bya turbulene losure algorithm within the POM pakage as outlined in the nexthapter. To avoid over presription of the open boundary ondition, a sinusoidalsurfae elevation is presribed. The vertially averaged horizontal veloities arethen alulated from the ontinuity equation but the depth dependent horizontalveloities are allowed to be determined from a radiation ondition, (given thattheir average must be onsistent with the vertially averaged value). For a givenvalue of VT and VR, the parameters speifying the surfae elevation in the POMmodel were taken from the results for surfae elevation of the semi-sigma analytisolution. Fig. 4.3 shows the omparison to residual veloities derived from the84
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Figure 4.3: Residual veloity plots derived using ow �elds from a) Solution afterChen, Shaw and Wolott (1997), using Cartesian vertial oordinate, VT = 0:3,VR = 0:005; b) POM, with inlusion of non-linear terms in momentum equa-tion and oeÆient of vertial eddy visosity alulated from pakage's turbulenelosure sheme. Boundary onditions supplied by spei�ed river veloities at land-ward end and surfae elevation at seaward end.Cartesian analyti solution for VT = 0:3, VR = 0:005, (the same result as displayedin Fig. 4.2, frame a)).From Fig. 4.3 it an be seen the ompensatory ow seen in the `Chen' solutionis absent one the non-linear terms are introdued. After also performing om-parisons where only the non-linear omponents of the advetion were introdued,the essential di�erene appears to be due to the struture and magnitude of theoeÆient of vertial eddy visosity.Chen, Shaw, and Wolott (1997) used a drag law ondition in the formnx�Vx�z = rVx(bot) = �o (4.62)where r is the frition onstant and Vx(bot) the veloity at the bottom. A nor-malised parameter for bottom frition was then de�ned as � � r=(!H) where! = 2�=T and T is the tidal period. A value of � = 0:5 implies r � 3� 10�4ms�185



for the depth used in their simulations of 4m and a tidal yle of 12:42hr. Thisbottom frition value was ombined with a value for nx of 2:25�10�5m2s�1, ho-sen hiey to allow their hosen harateristi depth for di�usion, zd � (nx=!)1=2,to equal 0:4m. This value falls outside of the range normally assoiated with ahomogeneous tidal system. The linearised equations are based on similar workperformed by Prandle (1982). Prandle de�ned the bottom boundary onditionto be 83�k ���Vx���Vx(bot) = �o (4.63)where Vx is the depth averaged veloity. Comparing results from the linearisedequations to �eld data Prandle (1982) derived a relationship between the onstantk and nx as follows nx = kVxH (4.64)Assuming the value of �o to be the same in equations (4.62) and (4.63) this givesa relationship between nx and r asnx = 3�rH8 (4.65)For r = 3 � 10�4ms�1 and H = 4 this relationship would give nx � 1:4 �10�3m2s�1, and the sale depth for di�usion beomes zd � 3:16m. Combininga lower than expeted value of vertial di�usion oeÆient with a given fritionparameter allows shearing of the longitudinal ow, (due to bottom frition), whilereduing the transfer of momentum, (aused by the eddy visosity), that wouldwork to redue this shearing.The value of nx � 1:4 � 10�3m2s�1 is more in line with �eld study estimates ofoeÆients in real systems. The values of vertial di�usion oeÆient determinedby the POM pakage vary with position and point in the tidal yle. Values86



during periods of high tidal ow were in the region of 1�10�3�2:5�10�3m2s�1.It is unlikely the POM model is over-prediting vertial eddy visosities (anddi�usivities) as in a omparison with laboratory data, Burhard, Petersen, andRippeth (1998, page 10553) found the model to under represent this quantity atintermediate depths for homogeneous ow.4.5.5 Signi�ane of buoyany e�ets.The literature on the general irulation of estuaries suggests that buoyany ef-fets, due to salinity di�erenes between the river inow and sea water at oppositeends of the system, are very signi�ant. This has proved to be the ase in thisinvestigation. Fig. 4.4 shows a run set up as for Fig. 4.3, frame b) with the exep-tion that the river inow is given a salinity 2psu lower than any water drawn infrom the seaward end of the system. The resultant residual veloities are learlyvery di�erent to the ase when density was homogeneous and although omplex,there is also evidene of irulations that ould also be expeted to enhane per-sistene. A di�erene in salinity of 2psu between river and sea water is muh lowerthan the normal di�erene in salinities between fresh water runo� and sea water,(whih an be as muh as 35psu). This di�erene was used to demonstrate thefat that only small variations in salinity an have a dramati e�et. For exam-ple, the Mersey Narrows has been observed to show the lassi residual veloitypatterns of a partially mixed estuary. Salinity di�erenes of 1psu were measuredbetween top and bottom and it was estimated vertial salinity di�erene wouldrange between 0.5psu and 2.0psu, (Bowden and Sharaf El Din 1966).The omplexity of the patterns seen in Fig. 4.4 is thought to be for two reasons.Firstly the value of bottom frition is onsidered to be rather high. It was avalue that worked well when the objetive was to math the residual veloitiesof the analyti solution. A value two orders of magnitude smaller is felt moreappropriate for the shallow systems being modelled and with the high vertialresolution available from the model (espeially in omparison to when the same87



z (
m)

x (km)0 10

0

5Figure 4.4: Residual veloity plots derived using ow �elds from POM, with in-lusion of non-linear terms in momentum equation and oeÆient of vertial eddyvisosity alulated from pakage's turbulene losure sheme. Boundary ondi-tions supplied by spei�ed river veloities at landward end and surfae elevationat seaward end. Salinities between inows at landward and seaward ends di�erby 2psu.number of depth layers are being used to model the deep oean). Seondly, lowersalinity water is input aross the full depth of a retangular domain. Buoyanye�ets are generated all the way down to the maximum 5m depth at the landwardend of the system. Compensatory ow from denser water is fored to move deeperas it approahes the river end. The harateristi wedge shape of the denser water,aused in large part by systems that beome deeper as they move seaward, is notable to form. The greater realism enabled by a sloping bottom was onsideredimportant in modelling systems with salinity e�ets and domains with slopingbathymetry were adopted when using the uid dynamis pakage.

88



Chapter 5
Computational uid dynamisapproah to deriving ow �elds:POM
All analyti solutions to uid dynami equations require simplifying assumptionsin order to solve the di�erential equations. Hopefully, the assumptions still allowvalid solutions to be obtained for a restrited senario. In some ases, even on-sidering a restrited senario, the assumptions neessary may produe solutionswhih lak signi�ant features in the ow. In the last hapter it was seen that theanalyti solution, (following Chen, Shaw, and Wolott (1997)), for a tidally drivenestuary inluding river ow but with onstant density di�ered from the solutionobtained from a omputational uid dynamis (CFD) pakage, (the PrinetonOean Model or POM), one the restrition of a linearised momentum equationhad been removed. More importantly the CFD pakage was required to inves-tigate persistene in senarios too omplex to obtain analyti solutions. Thesesenarios an be onsidered tidal systems involving non-uniform bathymetry, tidalsystems involving non-uniform density that then a�ets body fores, or systemsombining both these two aspets.
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5.1 Key assumptions made in oeanographi CFDpakagesIn general, oeanographi CFD pakages use as their starting point the full setof Navier-Stokes equations (Nunn 1989, pages 181{183) and apply simplifyingassumptions that lead to a set of equations known as the primitive equations.Temperature and salinity are important to oeanographi ows as they both af-fet density. The variation of density, as applied to the body fore term of themomentum equations for uid elements is an important driver of ows. As a on-sequene temperature and salinity onservation equations are inorporated intothe models. These equations an be onsidered analogous to the onservation ofmomentum equation but for salar quantities. They reeive the same simplifyingassumptions as applied to the momentum equation.5.1.1 Boussinesq approximationIn the work deriving analyti ow �elds the density of the water was assumed tobe onstant. For the primitive equations variations in density are ignored whenonsidering onservation of mass, (the ontinuity equation), and the horizontalomponents of the momentum equations. The simpli�ation is justi�ed on thegrounds that the variations in horizontal aelerations for a given fore, due tomass variations with density are too small to be signi�ant (averaging over anentire oean the disrepany is at most 3%, (Pond and Pikard 1983)) Within thevertial omponent of the momentum equation density is again assumed onstantfor the aeleration terms. This omponent also ontains, however, the gravitybody fore, �g. Even though the variation in density over the depth of an oeanis small ompared to the average value, its e�et through this term is apable ofgenerating signi�ant urrents, (Mellor 1996) and so atual in situ values mustbe used when alulating the pressure �eld.
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In e�et this approximation is suh that variations in density are negleted whenonsidering the inertia of the uid but not when onsidering its weight. This isreeted in the use of a onstant density term in the horizontal omponents ofthe POM momentum equations (Equations 5.4 and 5.5), but a variable in situdensity term in the vertial omponent of the momentum equations (Equation5.6). The approximation is known as the Boussinesq approximation after themathematiian who �rst suggested its use.5.1.2 Hydrostati approximationThe hydrostati approximation uses a saling argument. For oeans the horizontalsale of the domain is normally orders of magnitude greater than the vertialsale. If H is taken to represent the approximate depth and L to represent theapproximate length sale, then the sale of the horizontal variations of quantities(that is terms involving �=�x or �=�y) are taken to be of the order O(1=L) andthe sale of vertial variations is taken as O(1=H). From the ontinuity equation,�Vx=�x+�Vy=�y+�Vz=�z = 0, the sales of the vertial and horizontal veloitiesan also be related by wo = uoO(H=L) where wo represents the order of thevertial veloity and uo the order of horizontal veloities. If the z omponent of themomentum equation has this saling applied and all terms of order � O(1=L2) or� O(1=toL), (where to is the harateristi time sale), are ignored this omponentof the momentum equation redues to (Mellor 1996, pages 31{32)�p�z = �g�+ �o "O u2oL !+O(uofo)# (5.1)where fo represents the order of magnitude of the Coriolis fore. The gravitybody fore, �g is left unaltered for the same reason as in the Boussinesq approxi-mation. The pressure gradient term �p=�z is also left unaltered. This is beauseotherwise the three omponents of veloity ould be determined independent ofthe ontinuity equation, whih generally ould then not be satis�ed(Mellor 1996).91



To obtain values of the pressure for insertion into the horizontal omponents ofthe equation of momentum Equation (5.1) an be integrated with respet to z andthen di�erentiated with respet to x or y. The last part of the saling argumentthen notes that the saling assoiated with this integration and di�erentiationproess is suh that the quantities in the square braket of Equation (5.1) aremultiplied by H=L and if this ratio is suÆiently small they may be negleted.Thus the z omponent of the momentum equation �nally redues to�p�z = �g� (5.2)This is the same as the hydrostati equation for a uid at rest, whih explains thename given to the approximation. This approximation is not restrited to oeanappliations but an be applied to any situation where the vertial distane overwhih veloities hange signi�antly is muh less than the horizontal distanes.It e�etively states that the aeleration and visous/turbulent terms that e�etthe vertial omponent of veloity are unimportant in a thin layer.5.1.3 Boundary layer approximationsThe saling arguments that lead to the hydrostati approximation an also be ap-plied to the horizontal omponents of the momentum equation. Taken olletivelythe resulting simpli�ations are known as the boundary layer approximations asthey are only valid if the uid involved has a vertial depth muh less than itshorizontal extent1. For the horizontal omponents the saling e�etively simpli-�es the terms related to the Coriolis aelerations and eliminates terms relatedto horizontal di�usion. In most appliations, however, the horizontal di�usionterms have to be reinstated. This is beause the grid spaing required to ahievea reasonable program run length do not allow suÆient horizontal resolution to1Whih in atmospheri uid dynamis is only true of the boundary layer region lose to theearth's surfae. 92



fully desribe the ow and di�usion has to be used to represent the e�ets ofthose unresolved ow patterns.
5.2 Outline of POM pakageAs its name implies the Prineton Oean Model, POM, was developed at Prine-ton University and is desribed fully by Blumberg and Mellor (1987). The modeluses the full set of primitive equations desribing onservation of mass, momen-tum, temperature and salinity using the hydrostati and Boussinesq approxima-tions. To be onsistent with the literature desribing POM, notation is altered inthis setion suh that U , V and W replae Vx, Vy and Vz as the three artesianomponents of veloity. Following Blumberg and Mellor (1987) the equations are:the ontinuity equation �U�x + �V�y + �W�z = 0 (5.3)the Reynolds momentum equations�U�t + �U2�x + �UV�y + �UW�z � fV = � 1�0 �P�x + �(�uw)�z + Fu (5.4)�V�t + �UV�x + �V 2�y + �V W�z � fU = � 1�0 �P�y + �(�vw)�z + Fv (5.5)

�g = ��P�z (5.6)the integral of the hydrostati equationP = Patm + �0g� = g Z 0z �(x; y; z0)dz0 (5.7)the onservation equations for temperature and salinity (the mean temperatureand salinity equations) 93



�T�t + �UT�x + �V T�y + �WT�z = ��z (�w�) + FT (5.8)�S�t + �US�x + �V S�y + �WS�z = ��z (�ws) + FS (5.9)and an equation of state � = �(T; S) (5.10)The equation of state is that given by Fofono� (1962). The terms FU , FV , FTand FS are related to small sale mixing proesses not diretly resolved by themodel and parameterised as horizontal di�usion. These terms are given by:FU = ��x  2AM �U�x !+ ��y "AM  �U�y + �V�x !# (5.11)
FV = ��y  2AM �V�y !+ ��x "AM  �U�y + �V�x !# (5.12)
FT;S = ��x  AH �(T; S)�x !+ ��y "AH �(T; S)�y # (5.13)The horizontal kinemati eddy visosity, AM , an be given a onstant value, oran be alulated aording to Smagorinsky (1963)AM = C�x�y12 ���5v + (5v)T ��� (5.14)where C is a user spei�ed onstant, (the Smagorinsky onstant), and12 ���rv + (rv)T ��� = 24 �U�x !2 + 12  �V�x + �U�y !2 +  �V�y !2351=294



The eddy visosity oeÆient is therefore related to the spatial variation in ve-loity values and the ell sizes. The advantage of this form of formulation is thatas ell size beomes smaller and/or ows beome more homogeneous the value ofeddy visosity is automatially redued. The oeÆient of salar di�usivity, AH isregarded to be a �xed ratio to AM with AM=AH known as the turbulent Prandtlnumber, (Mellor and Yamada 1982). For isotropi turbulene the onstant Cshould be in the region 0.04, Ferziger and Peri (1999). Ferziger and Peri (1999,pages 270-271) ite several problems with the use of the Smagorinsky sheme.The Smagorinsky onstant an be a funtion of Reynolds number and it shouldbe redued lose to solid boundaries. Suh e�ets are probably unimportant inoean basin sale alulations but the work of this thesis involves ows of higherReynolds number and it was found that the simpler approah of using a onstantvalue of AM ould provide the same qualitative ow �elds while being more likelyto ensure numerial stability.In the vertial, the Reynolds stresses, uw and vw, and the turbulent heat andsalt uxes, w� and ws, are evaluated using the level 212 losure model of Mellorand Yamada (1982) where �(uw; vw) = KM ��z (U; V ) (5.15)
�(w�; ws) = KH ��z (T; S) (5.16)KM and KH represent vertial eddy visosity and vertial di�usivity of heat andsalt respetively. They are given by(KM ; KH) = lq(SM ; SH) (5.17)SM and SH are stability funtions given in Mellor and Yamada (1982), while lrepresents the turbulene marosale, (desribing the size of the largest turbulent95



eddies) and q2 is twie the turbulene energy2. The losure model used adds twomore prognosti equations to the model whih desribe the evolution of q2 andq2l.5.2.1 Boundary onditionsRemaining in the artesian representation of the model, boundary onditions atthe free surfae are given by:W = U ���x + V ���y + ���t (5.18)1�0 (�0x; �0y) = KM ��z (U; V ) (5.19)
QT = KH �T�z (5.20)
QS = KH �S�z (5.21)
q2 = 1�0 j�0jB2=31 (5.22)

q2l = 0 (5.23)Equation 5.18 is the ondition for Equation 5.3. Equation 5.19 gives the ondi-tions for the momentum equations 5.4 and 5.5, where �0 = (�0x; �0y) is the windstress vetor and �0 the surfae water density. Equations 5.20 and 5.21 relate to2The quantity q an be desribed as the turbulene intensity, (Burhard, Petersen, andRippeth 1998). 96



equations 5.8 and 5.9, where QS is the surfae salinity ux and QT is the surfaeheat ux. Boundary onditions at the bottom are given byW = �U �H�x � V �H�y (5.24)where H represents the bottom topography.1�0 (�Hx; �Hy) = KM ��z (U; V ) (5.25)
q2 = U2fB2=31 (5.26)
q2l = 0 (5.27)In addition the normal gradient of temperature and salinity are set to zero at thebottom boundary. The term Uf is a shear veloity term whose value is determinedfrom the bottom shear stresses (�Hx; �Hy). The bottom stresses are determined bymathing veloities with the logarithmi `law of the wall'. This means, (assuminghorizontal ow in the x diretion only for simpliity), that the bottom stress isgiven by �Hx = �0CDjUbjUb (5.28)with the value of the drag oeÆient CD given byCD = �1� ln(zb=z0)��2 (5.29)Here zb represents the height of the lowest de�ned veloity grid point above thebottom and Ub represents the veloity at that point, � is the von Karman onstant97



and the term z0 is known as the `roughness parameter'. When equations (5.25),(5.28) and (5.29) are used together they produe a vertial veloity pro�le nearthe bottom boundary of the formU(z) = �Hx�Uf ln(z=z0) (5.30)where here z denotes the distane away from the bottom boundary.5.2.2 Mode splittingThe dynamis of oastal irulation ontain both the propagation of fast movingexternal gravity waves and slow moving internal gravity waves. Calulations in-volving external waves, those determining the vertially integrated volume trans-port between ells and subsequently the free surfae elevations, must use a timestep suÆiently small that no wave will traverse a whole ell in that time. Ifalulations a�eted only by the internal gravity waves, those dealing with theinternal vertial struture of the ow, an be alulated separately these alu-lations an be alulated using longer timesteps. The POM model ahieves thisby a tehnique known as mode splitting. The volume transport equations areobtained by integrating the vertially strutured equations over the depth, elim-inating the vertial struture. These equations are known as the external modeequations, the unintegrated equations the internal mode equations. This teh-nique implies that open boundary onditions must be supplied for both vertiallyintegrated veloities and veloities at individual ell depths.5.2.3 Sigma oordinatesThe POM model makes use of �-oordinates for the vertial. This oordinatesystem replaes points in spae de�ned in the vertial aording to an altitude onthe z artesian axis by a position de�ned relative to the positions of the bottom98



and free surfae. Beause the deepest � oordinate is always de�ned at thebottom this system is referred to as a bottom following oordinate system. Thereason for adopting this oordinate system is that when a model is ast in �nitedi�erene form, a smooth representation of the bottom topography is obtained. Itis also relatively easy to inorporate a bottom boundary layer as well as a surfaeboundary layer. By ontrast, it is diÆult to model bottom boundary layers ina z-level model, (Mellor, Hakkinen, Ezer, and Pathen 1999). The ability to beable to ope with signi�ant topographial variability is important when dealingwith estuaries and sea lohs. Resolving bottom boundary layers is also importantin modelling suh systems, (Oey, Mellor, and Hires 1985a; Oey, Mellor, and Hires1985b)3. The horizontal eddy visosity (applied to the momentum equations)and di�usion (applied to salar quantities) in a numeri model in order to ensureomputational stability an be onsidered as a soure of error, espeially if theirvalues are that muh greater than ould be onsidered justi�ed in reality. Use of�-oordinates has been found to make models apable of operating with smallerpresribed values of horizontal di�usion, and, unlike z-level models, they areapable of aepting di�usion onstants alulated dynamially and related toveloity values, suh that in areas of low veloity these onstants take smallvalues (Mellor, Hakkinen, Ezer, and Pathen 1999).The set of equations 5.3 to 5.17 is therefore transformed using the relationship� = z � �D ;D � H + � (5.31)where � is the free surfae elevation and H is the depth below mean sea level.At the free surfae � = 0 (z = �) and at the bottom � = �1 (z = �H). Thedistane between levels at whih values are alulated for variables remain in�xed proportion to eah other independent of elevation or depth.3When topography is steep and the vertial resolution oarse, errors in the pressure gradientsresult from the use of sigma oordinates (Mellor, Ezer, and Oey 1994; Mellor, Oey, and Ezer1998). However, use of a similarly oarse z-level model an lead to errors in the barotropiomponent of the ow (Bell 1997). 99



The transformation leaves the U and V omponents of veloity with the samephysial meaning as for artesian oordinates. However, the artesian vertial ve-loity,W is transformed to !, whih physially represents the veloity omponentnormal to sigma surfaes. The transformation from ! to W isW = ! + U  ��D�x + ���x!+ V  ��D�y + ���y!+ ��D�t + ���t (5.32)The full set of the Equations (5.3) through (5.23), one onverted to take aountof sigma oordinates an be found in (Blumberg and Mellor 1987).5.2.4 Open lateral boundary onditionOpen lateral boundary onditions are an important and diÆult omponent ofa CFD pakage. In e�et they are being used to speify the environment, (interms of veloities, turbulent energy, salinity and temperature), exterior to thedomain. In this work domains were always assumed to run East, West with theNorth and South boundaries losed. In POM the q2 and q2l terms are onsideredto be alulated with suÆient auray at the boundaries even after negletingadvetion terms suh that spei�ation of exterior values beomes unimportant.Temperature e�ets were not onsidered in this work and for the strategi studiesundertaken realisti but approximate estimates of salinity were suÆient. Theseexternal values are used with an `upstream advetion' boundary ondition of theform �S�t + U �S�x = 0 (5.33)Veloity boundary onditions were more problemati. For the omparison withthe analyti solution, after Chen, Shaw, and Wolott (1997), to a tidally drivenow both the external, vertially integrated, veloity and the internal, vertiallystrutured, veloities ould be spei�ed by the solution to the analyti equations100



at the boundary. For problems where no kind of analyti solution exists this annot be done. As the studies are strategi it is also not possible to drive the modelvia �eld data. In these irumstanes the usual approah is to speify the surfaeelevation, (Blumberg and Mellor 1987). The external mode veloities were thendetermined from appliation of the vertially integrated form of the ontinuityequation. No information is available to determine the pro�le of the internalveloities so a radiation ondition was applied of the form�U�t + i�U�x = 0 (5.34)where i represents the phase speed of the fastest internal waves It was alulatedusing Orlanski's sheme, (Orlanski 1976).Although radiation onditions require no knowledge of desired boundary veloi-ties, in ases where substantial inows are required as well as substantial outowsthey an ause numerially valid, yet nonphysial barolini strutures interiorto the boundary, (Mellor 1998). To test for this phenomenon, a version of POMwith the same simpli�ations used to provide the omparison to the analyti tidalsolution in setion 4.5.3 was implemented, but with the open boundary drivenin the manner desribed above, the surfae elevation being assumed sinusoidalbut with an amplitude provided by output from the analyti solution. Fig. 5.1shows residual veloities over a tidal yle resulting from use of ows from thismodel ompared to those from the POM model with analytially de�ned veloityboundary onditions. The anti-lokwise rotation in residual displaements seenat the seaward end of frame b) is known to be a onsequene of the radiationboundary ondition beause of the general agreement in residual veloity patternbetween the result shown in frame a) and that given by using ows from the an-alyti solution. Comparison of frames a) and b) also suggest that the pattern ofresidual veloities are possibly not seriously a�eted away from the open lateralboundary. Fig. 5.2 shows the result of extending the POM domain to double thelength of the domain being onsidered for persistene experiments.101
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Figure 5.1: Residual veloity plots derived using ow �elds from a) PrinetonOean Model, (POM), with boundary ondition supplied by `Chen' veloities; b)POM, with boundary ondition supplied by sinusoidal surfae elevation. Surfaeelevation set to math those of a surfae tidal veloity of VT = 0:3. No river ow.
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Figure 5.2: Residual veloity plots derived using ow �elds from a) and ) POM,with boundary ondition supplied by sinusoidal surfae elevation. Surfae eleva-tion set to math those of a surfae tidal veloity of VT = 0:3; b) Prineton OeanModel, (POM), with boundary ondition supplied by `Chen' veloities. Frame )displays the whole of the extended domain used to distane open boundary e�etsfrom the area for study, frame a) shows the resulting residual veloities suppliedto a traking algorithm if the domain's absorbing boundary is assumed to be athalf POM domain length. No river ow.102
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5.3 Flow �elds solved solely by CFD pakagesThe POM pakage is apable of three dimensional modelling. All runs ondutedin this study, however, were onerned with two dimensional, (x,z) vertial slies.As suh the `steering' e�et of the Coriolis fore ould not be onsidered and sothis fore was disabled.5.3.1 Eliminating unwanted buoyany e�etsBuoyany e�ets are e�etively hanges to a ow �eld, (as derived assuminguniform density throughout the uid), aused by variations in density. Thesevariations an be aused by temperature and salinity. To isolate the e�et ofsalinity variations it was desired to remove any e�ets due to temperature. Thetemperature �eld ould be made steady by setting initial values and altering theode to e�etively eliminate Equation (5.8). In the absene of outside fores thestati stability of a uid is determined by the buoyany frequeny (or Brunt-V�ais�al�a frequeny), N2. If N2 is positive a uid is stable, N is real and has thedimensions of frequeny. It an be interpreted as giving the speed with whiha paket of water, moved vertially from its resting position, would return tothat position. If N2 is negative the water is unstable and any displaement ofa water paket will tend to be ampli�ed by the vertial density variation. WithN2 = 0 the uid an be thought to be neutrally stable. The buoyany frequenyis de�ned as N2 = g�dTdz + C�1p g2�2T � g�dSdz (5.35)where T is in situ temperature, Cp is the spei� heat apaity at onstant pres-sure of the uid, � the uid's oeÆient of expansion and � = ��1(��=�S)p;T .Assuming salinity to be onstant eliminates the �nal term. The temperaturesused in POM are potential temperatures �, de�ned by104



���z = �T�z � dTadz (5.36)Here, Ta is the adiabati temperature, whih has a vertial pro�le assuminghanges in hydrostati pressure hange the temperature of the water with noheat transfer. The adiabati temperature pro�le is de�ned as, (Tritton 1988)dTadz = �C�1p g�T (5.37)If the potential temperature is assumed onstant throughout the domain then�T=�z = dTa=dz and substituting this bak into Equation (5.35) gives (stillassuming no salinity variation)N2 = g���C�1p g�T + C�1p g2�2T = 0 (5.38)Therefore, in the absene of salinity e�ets a uniform potential temperature �eldensures neutral stability and models were run with suh.5.3.2 Buoyany, turbulene, vertial mixing and POMOne of the important features of buoyany is the degree to whih it an make adomain strati�ed. As disussed in setion 4.3, strati�ation, whih an be repre-sented by the gradient Rihardson number, has an important e�et on the extentto whih turbulene an exhange momentum and salar quantities. The POMmodel alulates the stability funtion values in its turbulene losure routinefrom a ombination of empirially derived onstants and a form of Rihardsonnumber.In real systems, when strati�ation has eliminated turbulent di�usion of salt,vertial transfer of salt aross a haloline is still possible. The proess is thatof entrainment, the one way proess whereby salt water is transported from a105



low turbulene salt layer into a higher turbulene fresh layer by the breakingof internal waves reated at the fresh/saline interfae. The POM turbulenelosure model is unable to simulate entrainment. For suÆiently high Rihardsonnumber the value of the oeÆient of vertial di�usivity, KH falls to zero. As ameans to overome this, the POM model inorporates a onstant, `UMOL', thatrepresents a minimum or `bakground' level of di�usion (and eddy visosity).Alternatively, a minimum value for the turbulent kineti energy an be spei�edwithin the losure sheme algorithm itself, (Burhard, Petersen, and Rippeth1998). If omparing the model to �eld data for a strati�ed system either of theserepresentations of internal wave breaking an be tuned in order to math thethikness and gradients of the strati�ed region.In strategi studies, hoie of this onstant an be an important fator in de-termining the degree of strati�ation displayed by the resultant ow regime. Inregions where the Rihardson number is high the alulated value of vertial dif-fusivity will fall away to zero leaving the degree of salinity mixing ditated bythe bakground value alone. This in turn inuenes the speed with whih strat-i�ation is broken down away from the soure of buoyany, (Garvine 1999, page1899).5.3.3 Tidal estuary with salinity driven buoyany e�etsFigures 5.4 and 5.5 illustrate the di�erenes the enhaned di�usion from a higherUMOL value an make. They represent the Lagrangian residual veloity from twoPOM runs using idential parameter values exept for the value of the bakgrounddi�usivity. In Fig. 5.4 the value of UMOL is set at 2:0� 10�5m2s�1. This valueof bakground di�usion is suÆient to enhane the mixing of lower, more salinewater with the fresh water inow but without breaking down the basi strati�ednature of the ow. The seaward residual movement in the upper portion of thesystem and the ompensating landward residual movement in the lower region areboth onsiderably enhaned over a salt wedge system experiening only minimum106
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body of fjord similar in length to the oastal plane estuary, while aommodatingthe additional features of sill, oastal sea and river setion, the overall length ofthe domain inreases to approximately 25km.Spin-up and quasi-steady onditionsBeause of steady foring, (onstant river inow volume and salinity, onstantsalinity of water beyond the open boundary and tidal elevation as a regular sinewave), a tidally averaged steady state an be expeted for both oastal planeestuary and fjord simulation. The nature of this steady state an not be known apriori and it takes a number of tidal yles for it to be reahed. A standard wayto determine whether the density struture of the system has been fully formed isto reord the domain averaged and tidally averaged salinity over suessive tidalyles. The `spin-up' of the model is omplete when this averaged value easesto vary, that is whenDSE = 1T Z T0 �Z Z S dxdz � [Z (H + �)dx℄�1� dt = onstant (5.39)When modelling large and omplex real systems ahieving a density struturethat mathes reorded data, by driving the system using foring parameters fromthe same data period, an take many yles. Galperin and Mellor (1990) regardedthe density struture of the Delaware Bay and River system to have beome fullydeveloped only after 2 months of simulated ows. With the muh simpler andsmaller, (in terms of physial size represented), strategi estuarine systems underonsideration for hapter 8 spin-up periods ould be onsiderably redued. Forthe fjord runs, however, spin-up time was muh more omparable to those itedfor real systems. Enhaned seaward ow near the surfae takes time to reahthe open boundary. This is espeially true of the longer fjord system. Further,the large deep body of the fjord is only weakly onneted to the tidal foring,(the main soure of ow). Even after net seaward surfae urrents have beomeestablished aross the domain, the full pattern of Lagrangian residuals ontinues109



to evolve.This seond onsideration is illustrated by �gs. 5.6 and 5.7. Eah �gure showsresidual veloities from ow �elds using the same run parameters but taken atdi�erent times from the simulation start. In Fig. 5.6 ow �elds were taken duringtidal yle 40. The surfae residual ow is well established and movements in thebody of the loh seem well established. However, Fig. 5.7, with residual owsalulated using ow �elds taken during tidal yle 80 shows the formation, inthe body of the fjord, of a distint landward ow just beneath the surfae ow.Comparison of these two �gures also shows large di�erenes in ow seaward ofthe sill. Flows in this region, however, were not inluded in the determinationof when ows were stable enough for persistene alulations. This was beauseof the unertainty of the validity of ow patterns near the open boundary andbeause the fous of this thesis was persistene of organisms within the body ofthe fjord. To this end the domains of the partile traking program and �naldisrete time-spae population program only extended a ertain distane beyondthe sill.As a minimum requirement, POM was run until DSE varied by less than 1% ofits value, but also a reord was kept of horizontal veloities at and adjaent tothe open boundary. A model was judged ready when the salinity riteria wasmet and ows at the boundary appeared to be in a reasonably steady yle.An illustration of variation in open boundary ows during spin-up of a fjord isgiven in Fig. 5.8. The model is set up with tidal elevations, river dishargeand bakground vertial di�usivity as employed in Figs. 5.6 and 5.7. Althoughoutputs for three ells are plotted the values are very similar suh that only onetrae appears evident. The degree to whih this remained true was in itself usedas an indiation of the model remaining numerially stable. Fig. 5.8 also showslearly the high frequeny osillations present at the start of simulation runs that,to be dampened out, require the use of non-zero horizontal eddy visosity values.
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Part III
Persistene of Passive and AtiveOrganisms
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Chapter 6
1D systems: well mixed rivers
6.1 Passive organisms permanently in the driftAs desribed in Chapter 3, a balane equation for organisms in a one dimensionalsystem, whose population grows with a loal per-apita growth rate, p(n), andwhih is subjet to an advetion Vx and di�usion with oeÆient �x an bewritten as �n�t = p(n)n� Vx�n�x + �x�2n�x2 (6.1)For passive organisms the quantity Vx an be onsidered diretly related to themean veloity of the water in the system and �x diretly related to the water'soeÆient of eddy visosity. They are not the same however, as even small organ-isms will possess an inertia that suppresses their movement relative to the wateraround them.
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6.1.1 Linear systemSpeirs and Gurney (2001) investigated the possibility for persistene in suh asystem by onsidering populations where p(n) always equalled r, the intrinsigrowth rate and where the system was bounded by a reeting boundary at theupstream end and an absorbing boundary at the downstream end. As shown inAppendix A they found that solutions were only possible if the following relationheld tan�� LLd� = �VdVx� (6.2)where Ld � q�xr�1 Vd � 2q�xr � � vuut1� �r � �VxVd�2 (6.3)From Equation (6.3) Ld represents the r.m.s. di�usive dispersal distane organ-isms an be expeted to travel in the time a population with per-apita growthrate r inreases in size by a fator pe or � 65%, and Vd represents the equivalentveloity of this movement. The term � gives the long term growth rate of theoverall population. It is obtained by �rst solving Equation (6.2) numerially todetermine �, and then using the third expression in (6.3) to solve for �. Thislong term growth rate an take positive and negative values, the former indiatingpopulation persistene and the latter washout from the system. The boundarybetween persistene and washout is therefore given when � = 0. By setting� = 0 in Equation (6.3) and bak-substituting for � into a rearranged form ofEquation (6.2) Speirs and Gurney (2001) derived an expression for the ritiallength, L, at whih, for given values of the other parameters, the population ison the threshold of washout
115



LLd = 24vuut V 2dV 2d � V 2x 35 artan24�vuutV 2d � V 2xV 2x 35 (6.4)As Vx tends to zero L=Ld tends to the value �=2, a result gained for popula-tions experiening di�usion but no advetion (Gurney and Nisbet 1998)1. As Vxtends toward the value of Vd the ritial length goes to in�nity. Therefore, for agiven intrinsi growth rate and a given di�usion onstant, �x, only systems withadvetion rates that satisfy Vx < 2q�xr (6.5)have the potential to sustain a persistent population. A orollary of the resultsfor L is that a ritial veloity, V, for the system an be seen to tend to zeroas the ratio L=Ld tends to �=2, implying no persistene is possible if life timedi�usive length beomes suÆiently large ompared to overall system length. AsL beomes large ompared to the value of Ld then the ritial veloity tendstoward Vd.For a system of given length and a population with given per-apita growth rate rand advetive displaement Vx, all the possible ombinations of L=Ld and Vx=Vdthat an be obtained from variation in the di�usion oeÆient �x lie on thestraight line given by VxVd = 12 �VxLr� LLd (6.6)Fig. 6.1 shows ontours of onstant �=r in the L=Ld against Vx=Vd plane. Su-perimposed are straight lines produed from Equation (6.6) but using di�erent1This ritial length was �rst disovered by Skellam (1951), who onsidered a reproduingpopulation subjet to di�usion in a domain running from �xb � x � xb and with absorbingboundaries at eah end. Skellam found that persistene was only possible if xb � �2p�xr�1(onverting to notation used in this text). This result was one of a number onerning repro-duing populations experiening di�usion. 116
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6.1.2 Non-linear systemSpeirs and Gurney (2001) modelled the same system but with a onstant loalper-apita birth rate replaed by one obeying the logisti equation, that isp(n) = r �1� nk� (6.8)117



They used the disrete spae-time model desribed in setion 3.3.1 with dis-plaed tent distributions providing the redistribution matrix. Beause the �xedper-apita growth rate is onsidered to represent the intrinsi growth rate ofa population, the linear analysis developed onditions for the persistene of aninvading propagule and it was argued that for populations with p(n) made a de-reasing funtion of density, no system in whih an invading propagule ould notgrow ould show a persistent population. Results using the non-linear growthterm supported this assumption. Combinations of the ratios L=Ld and Vx=Vdfrom whih the linear analysis predited washout lead to washout in the non-linear model and equally ombinations leading the linear analysis to predit apersistent population did lead to results of persistene.In ases of persistene a reproduing population, (ited at some point along thedomain), would have some proportion of its total spread in the upstream diretionfast enough to overome advetion, that is, part of the population is physiallymoved upstream. A steady inrease with time in population density in the regionof the river soure results until the requirement of zero ux at the boundary,oupled with the eventual e�ets of density dependene, reate a steady statedensity dereasing toward the river soure so that di�usive movement upstreamexatly balanes advetion downstream. Population density also falls away, (to-ward zero), as the seaward, absorbing boundary is approahed. As the boundaryis approahed ever fewer ontributions to population are available from down-stream.
6.2 SwimmingIn this setion the same uid dynamis as in Setion 6.1 are assumed, that is aonstant value of advetion, Vx, and di�usion oeÆient, �x. In order to disussthe e�et of swimming it is useful to onsider the movement of individuals as arandom variable within a statistial distribution. The displaement of a passivepartile over a time, � , is a normally distributed random variable with a mean of118



Vx� and standard deviation p2�x� . Its oeÆient of variation is thereforeC(�) = p2�x�Vx� (6.9)Re-arranging Equation (6.5) we see thatVxr�1 < q4�xr�1 (6.10)If one takes � = r�1 then C(r�1) � Cg beomes the oeÆient of variation of thenet displaement of the organism over a generation. Substituting the inequalityof Equation (6.10) into Equation (6.9) gains a ondition on Cg for persisteneCg � C(r�1) > p2�xr�1p4�xr�1 = 1p2 (6.11)6.2.1 Swimming against the average urrentIf an organism is assumed to swim upstream at a steady speed Vs, then therandom part of its dispersal is unhanged but the average downstream veloityis redued to Vx � Vs. The oeÆient of variation of the average organismaldisplaement over a generation is thusCo(r�1) = p2�xr�1(Vx � Vs)r�1 (6.12)From Equation 6.11 we have potential persistene if and only if Co(r�1) > 1=p2.If Cw is de�ned as the oeÆient of variation of uid elements within the owthen Co(r�1)=Cw(r�1) is given byCo(r�1)Cw(r�1) = VxVx � Vs = 11� Vs=Vx (6.13)119



So the persistene ondition for the oeÆient of variation of the uid elementdisplaement over the generational time beomesCw(r�1) > 1p2 �1� VsVx� (6.14)Equation 6.14 suggests swimming veloities small ompared to Vx have essentiallyno e�et on population persistene, while animals that an swim at veloitiesomparable to the average water veloity require almost no di�usion to persist.From Equation 6.12 it an be seen that modelling swimming against the averageurrent is e�etively the same as modelling a passive organism, but for an averagewater veloity redued by the amount Vs.Removing the logisti regulation from the model means long term populationgrowth reverts to being exponentially inreasing or dereasing. The inuene ofthe ratio Vs=Vx an then be seen by omparing the long term growth rate, �, toVs=Vx. Fig. 6.2 shows these values of �, normalised by dividing by the intrinsigrowth rate, for a ase in the absene of behaviour of marginal non-persistene,(Vx = 0:001ms�1, �x = 0:06m2s�1 and r = 0:39day�1).To show how this behaviour an e�et the distribution of a logistially regulatedpopulation and its average population density, Fig. 6.3 takes the same marginallynon-persistent senario, in the absene of behaviour. The initial population andthat after 50 days is shown in frame a) while the time history of the average pop-ulation density is shown in frame b). Lower frames show the e�et of introduingVs values of 0:1Vx, 0:5Vx and 1:0Vx. Even for a value of Vs = 0:1Vx a onsiderablee�et an be seen on both population distribution and the long term averagedensity.
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6.2.2 Swimming against the instantaneous urrentThe term instantaneous urrent is atually used to de�ne, in this ontext, theuid movement averaged over some time, � , a time onsiderably shorter than thetime required for the mean motion of the ow to dominate the size and diretionof movement. It is assumed that an organism, with a maximum swimming speedof Vs, swims against this instantaneous urrent, whih it mathes to within anormally distributed error ". It is further assumed that " has a mean of zeroand a standard deviation equivalent to a di�usion onstant �s. If the passivedisplaement an organism would experiene in the time � is W , then the ondi-tional probability density funtion for the organism's faultative displaement, s,relative to the water movement in the same period is given by the Gaussianp(sjW ) = G�s; s(W );q2�s�� (6.15)where s(W ) = � WjW j min(jW j; Vs�) (6.16)Let Wr be the resultant displaement over the period � . This is given byWr = W + s (6.17)Any ombination ofW and s satisfying the restrition s = Wr�W gives the samevalue of Wr. Integrating the produt of the probabilities of getting s for a givenvalue ofW , andW over all possible values ofW therefore gives the unonditionalprobability density funtion for the resultant displaement. That isp(Wr) = Z 1�1 p(W )p((Wr �W )jW )dW (6.18)122



The value of p((Wr�W )jW ) is given by Equation (6.15) withWr�W substitutedfor s, while p(W ) is given byp(W ) = G(W;Vx�;q2�x� ) (6.19)The values of �s, Vs and � need to be de�ned with onsideration to eah other.If we wish to investigate hanges in long term growth rate with hanges in Vs, itis reasonable to assume that over any period of averaging, � , the average errorin an organism's swimming speed will be some �xed perentage of it's maximumswimming speed, Vs. This in turn requires �s to vary with Vs, rather than remaina �xed value. The root mean square distane of error in a time � is p2�s� . Apseudo veloity an be obtained from1�q2�s� = s2�s� (6.20)If a single, �xed value of �s is assumed, this pseudo veloity is una�eted bythe value of Vs. As Vs is redued, a greater proportion of possible errors in theswimming speed beome omparable to the notional maximum swimming speeditself. Eventually Vs beomes dominated by the swimming error.Equation (6.20) shows that the veloity error is a�eted by the value given to � .The value to be hosen for � is a mute point. The large size of even plankton inomparison to water moleules and their individual di�usive movements guaran-tees some averaging in the response to water movements. A reasonable averagingtime, however, is diÆult to determine. If the value of � is hanged for any rea-son, then �s must be hanged if one wishes to maintain the same relationshipbetween q2�s� and any given value of Vs.Taking the same values of Vx, �x and r that gave marginal non-persistene inthe absene of behaviour, (as in setion 6.2.1), a � value of 0:1r�1 was hosenand values of �s were hosen suh that p2�s� = 0:1� Vs� 8 Vs. Fig. 6.4 shows123



numerial solutions to Equation (6.18) for Vs values of 0:0, 0:1Vx, 0:5Vx and 1:0Vx.The pdf displayed when Vs = 0:0 is, of ourse, the same as that in the absene ofbehaviour. Fig. 6.4 also shows the result for the pdf obtained from the partiletraking, population model ombination. Partiles were traked from one ell,(well away from the boundaries), for the period � . The population model wasthen run for a single timestep (again equal to �) with an initial population of 1in the same start ell and no population growth. This �gure shows the resultsobtained for the ase where Vs = Vx, �x = 1 and N = 60000.As disussed in relation to Equation (6.20), for a �xed value of di�usion on-stant, the e�etive veloity of di�usion inreases as the time interval onsidereddereases. This implies that as the averaging time � is redued, an organism isrequired to have a greater swimming speed in order to neutralise the di�usive wa-ter movement. Fig. 6.5 shows the e�et of varying � while maintaining Vs = Vx.The x-axis denotes Wr=� , a measure of veloity of the resultant movement. Asexpeted, as � redues, the pdf beomes more spread, showing inreasing propor-tions of water movement that have not been ounter-ated by swimming.6.2.3 Swimming against a moving averageA problem with the model of swimming against the instantaneous urrent asde�ned so far is that it requires an organism to instantaneously gauge the netwater movement over the forthoming period � and swim aordingly; in e�etto predit the displaement due to water movement. A more realisti modelan be onsidered one in whih the organism swims against a moving averagebuilt up over previous time. The overall averaging period remains � , but themoving average is omposed of smaller timesteps. It is onvenient to make theseomponent timesteps, Æt, equal to the individual timesteps of the partile trakingprogram. If # represents the fration of maximum swimming distane representedby the root mean squared di�usive distane of swimming error, this fration needsto hold true over the period � . This gives the following relationship between �s124
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of the water movement by the organism. For omparison the solid line shows theresult obtained by swimming against the average urrent, (as seen in Fig. 6.2).Both models of swimming against an instantaneous urrent show signi�antlyless improvement in �=r values as swimming speed inreases relative to wateradvetive veloity.The relatively poor performane of swimming against the instantaneous, pre-dited, urrent is underlined by re-onsidering Fig. 6.4. This shows how theupstream region of the pdf, (negative values of Wr), is more e�etively reduedthan the downstream region. The animal swims against both downstream andupstream urrents. Upstream urrents are on average smaller (beause of thenet downstream advetion) and so the animal is better at resisting them. Inter-estingly, by omparison, swimming against a moving average appears not only amore realisti model of behaviour, but also to ahieve greater improvements inpersistene.
6.3 Clinging to the benthos: No faultative move-ment in benthos or water olumn6.3.1 Extension of analytial solution to a 112D problemSetion 3.2.1 and Appendix A desribes the method for a semi-analyti deter-mination of the long term growth rate of a population in a one dimensionaladvetion, di�usion system. It was found possible to extend this tehnique tosolve for a system as before but with the addition of a benthi state and onstantrates of transfer between benthos and water olumn.To attain an analyti solution organisms are assumed to be stati while in theirbenthi `state'. A further simpli�ation is to assume that the times spent in thedrift or in the benthos are independent of the river veloity, or more aurately127



the organismal advetion and di�usion oeÆient used for organisms when theyare in the drift. If, in addition, organisms are assumed to have exponential deaydistributions for the benthi and water olumn residene times then the rate oftransfer between states are simple onstants. With these assumptions the singleontinuity equation, (Equation 3.2), beomes a oupled pair�n�t = p(n)n� �n+ �m� Vx�n�x + �x�2n�x2�m�t = p(m)m+ �n� �m (6.22)where m(t,x) represents population density in the benthos at time t and point x,� is the rate of transfer from benthos to drift and � is the rate of transfer fromdrift to benthos. As in the previous theory, it is only possible to derive analytisolutions if the per apita growth rates are onstants. In the following solution itis assumed p(n) = p(m) = r.If the population in the benthos assumes the same long term spatial pattern asthat in the drift, then the population density in the benthos at all points is aonstant multiple of the population in the drift at the same loation. That ism = �n where � is the onstant of proportionality. With no movement in thebenthos the boundary onditions for this problem remain as in Equations (3.3)and (3.4).To simplify the problem the following saled terms are introduedT � t=t0 where t0 = r�1X � x=x0 where x0 = Ld � p�xr�1! � �=�0 where �0 = r� � �=�0 where �0 = r� � Vx=V0 where V0 = Vd � 2p�xr 128



Substituting these saled terms into Equation (6.22) yields a simpli�ed set ofequations
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�n�T = n� �n+ !m� 2� �n�X + �2n�X2 (6.23)�m�T = m� !m+ �n (6.24)with boundary onditions 2�n(0; T )� �n�X �����X=0 = 0 (6.25)
n(l; T ) = 0 (6.26)where l � L=Ld. Using the assumption m = �n solutions were sought of the form

n = e�T f(X)m = �n (6.27)where � = �=r is the saled long term growth rate. Bak-substituting intoEquations (6.23) and (6.24) and dropping the (X) notation gives�f = f � �f + !�f � 2� dfdX + d2fdX2 (6.28)and �� = � + � � !� (6.29)Using the relationship ��+!� = �(1��) from equation (6.29) in equation (6.28)gives 130



0 = (1� �)(1 + �)f � 2� dfdX + d2fdX2 (6.30)Appendix D shows that the general solution to this problem should be in theform f(X) = Ae�X os kX +Be�X sin kX (6.31)where � � � and solutions are only possible iftan kl = �k� (6.32)where k = s(1� �)�1� �1� �� !�� �2 (6.33)Converting equation (6.32) bak to dimensional form givestan�� LLd� = �VdVx� (6.34)where � is given by� = vuut�1� �r � 1 + �� + �� r!� �VxVd�2 (6.35)or � = vuut�1� �r � 1 + �r�r + �r � 1!� �VxVd�2 (6.36)
131



Obtaining values of the saled long term growth rate �With parameters l and � �xed, equation (6.32) an be satis�ed by an in�nite seriesof values for k. From equation (6.33), however, it an be seen that negative valuesof k will always have a positive equivalent of the same magnitude. Beause allother parameters, (inluding � and !), are held �xed this must be derived usingthe same value of �.Conentrating on positive values of k, we investigate the relationship between kand �. Squaring k, to remove the square root, and di�erentiating with respet to� we obtain dk2d� = ��1� �! + �� 1��  �(1� �)(! + �� 1)2!= �1� �! + �� 1  1 + 1� �! + �� 1!= �1� �!(! + �� 1)2 (6.37)The produt �! is always positive, as is any term squared. Therefore dk2=d�is negative for any value of � showing that the maximum possible value of � isobtained from the smallest permissible value of k2 and, given the relationshipbetween positive and negative k values, the smallest positive value of k.The above suggests k = 0 provides the maximum possible � value. However,substituting k = 0 bak into the general solution given by equation (6.31) meansthat the right hand boundary of the system requires thatAe�l = 0 (6.38)This an only be satis�ed if A = 0, whih in turn implies f(X) = 0 8X and weare not interested in systems ontaining zero population density.With k = 0 exluded, the next value for positive k in whih the straight line132



�k=� uts the urves for tan kl is in the region �=2 < kl < �.Beause determining k involves a quadrati in �, it is possible for two values of � tosatisfy equation (6.32) for the single value of k of interest. As we are interested inthe largest possible long term growth rate we simply need to onsider the larger ofthe two roots. If we substitute $ � (1��) into Equation 6.33 then the quadratifor obtaining the roots of � beomes�$2 +$(! + � + �2 + k2)� !(�2 + k2) = 0 (6.39)Whih has roots given by
$ = (1� �) = 12(! + � + �2 + k2)� 12q(! + � + �2 + k2)2 � 4!(�2 + k2)� = 1� 12(! + � + �2 + k2)� 12q(! + � + �2 + k2)2 � 4!(�2 + k2) (6.40)6.3.2 E�et of exhange rates on proportions of popula-tion in drift and benthosSigni�ant relationships between the saled long term growth rate �, the saledsinking and re-suspension rates � and !, and the onstant of proportionalitybetween benthi and drifting population density at any point, �, an be seenfrom onsideration of Equation (6.29). Gathering all terms involving � to oneside gives � = �(! + �� 1) (6.41)As � � 0 this implies �(! + �� 1) � 0 (6.42)133



As � � 0, two ases must be onsidered. If � > 0 then the following relation holds
! + � � 1� � 1� ! (6.43)If ! > 1, � an beome negative and therefore the dimensional long term growthrate � an beome negative. If ! = 1 then from Equation (6.43) � � 0 and if! < 1 then � > 0.If � = 0 then nothing an be inferred about the relationship between ! and � fromEquation(6.42). However, the trial solution of Equation (6.27) and the O.D.E. ofEquation (6.30) an be seen to ollapse down to the ase when all organisms arepermanently in the drift and the long term growth rate an be determined as insetion 6.1If ! is set to zero then Equation (6.41) beomes� = �(�� 1) (6.44)As � � 0 and � � 0 and the maximum possible value for � is one, this implies that� = 0 also. Further � = 1, that is the long term growth rate equals the intrinsigrowth rate and/or � = 0. These results are reasonable if it is remembered thatpopulation in the benthos grows exponentially with no density dependene andwithout being subjeted to any form of dispersal. With the rate of reruitmentto the drift equal to zero any population in the benthos at a point x will grow atthe intrinsi growth rate. To obtain a value of � less than one there an be nopopulation in the benthos, that is � must be zero.The value of � for any given ombination of �, l, �, and ! is again found fromEquation (6.29), that is 134



� = �! + �� 1 (6.45)If we de�ne N = n+m then using Equation (6.45), N an be expressed as
N = n�1 + �! + �� 1�N = n ! + �� 1 + �! + �� 1 ! (6.46)and the proportions of total population made up of individuals from the drift andthe benthos beomes nN = ! + �� 1! + �� 1 + �mN = �! + �� 1 + � (6.47)If � = 1 then � = �=! suh that m = (�=!)n, n = (!=�)m andnN = !! + �mN = �! + � (6.48)It is shown in setion 6.3.3 that the proportions of Equation 6.48 an be preditedfrom a non-spatial Markov proess with two disrete states (Cox and Miller 1990).More generally, � an be found by solving for � �rst, or by substituting for � fromEquation (6.40), giving

� = �(! � 1) + 1� 12(! + � + �2 + k2) + 12q(! + � + �2 + k2)2 � 4!(�2 + k2)� = �!2 � 12(� + �2 + k2) + 12q(! + � + �2 + k2)2 � 4!(�2 + k2) (6.49)135
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l � L=Ld represent points on a straight line taken through Fig 6.1, (not drawn).As � inreases and l dereases we move to progressively lower values of �=r and,as expeted, the urves of Fig. (6.8) diverge from that equating to no horizontalmovement in the system. Thinking in physial terms, low values of ! and lowvalues of � equate to a population allowed a greater hane to grow in the benthoswithout entering the drift, but with a higher hane of being washed out of thesystem if entrained.6.3.3 Comparison to a two disrete state Markov proessThe assumptions about residene times and movements between the drift andbenthi states that allow an analyti solution to the problem of benthi lingingan also be used as the basis of a statistial approah for assessing the proportionof population in eah state.Assuming exponential deay distributions for the benthi and water olumn res-idene times allows these distributions to have no 'memory'. If in addition themovement of the population in the drift is ignored and the population in driftand benthos is onsidered uniformly spread then the problem has eased to bespatial. It an now be dealt with as a Markov proess with two disrete states(Cox and Miller 1990).The two states are that of being in the benthos (labelled state 0) and being inthe water olumn (state 1). Let the mutually independent and random residenetimes in the benthos, fTb1; Tb2; :::g, and those in the water olumn fTw1; Tw2; :::gbe exponentially distributed with mean values of Tb and Tw respetively. Therates of transition between states are 1=Tb = � and 1=Tw = �. Given that anorganism is in state 0 at time t the probability of a transition to state 1 in theinterval (t; t+ Æt) is given by
138



p(S(t+ Æt) = 1jS(t) = 0) = �Æt+O(Æt2) (6.50)where S is the reord of the state of the organism.Now let pb(t) be the probability of being in the benthos at time t and pw(t) theprobability of being in the water olumn at the same point in time. The rates ofhange of these two probabilities are given by
p0b(t) = ��pb(t) + �pw(t);p0w(t) = ��pw(t) + �pb(t) (6.51)If the initial probabilities pb(0) and pw(0) = 1 � pb(0) are spei�ed, then thesolution to Equations 6.51 are given by

pb(t) = �� + � + (pb(0)� �� + �) e�(�+�)t;pw(t) = �� + � + (pw(0)� �� + �) e�(�+�)t (6.52)From Equation 6.52 it is lear that as t ! 1, then independently of the initialonditions, the probability distribution tends topb = �� + � ; pw = �� + � (6.53)Therefore, for a population in the one dimensional domain, regardless of whatproportion are onsidered to start in the water olumn, after a time large om-pared with 1=(� + �), all organisms will have the same probability, �=(� + �)of being in the water olumn. With respet to investigating persistene throughsimulation, Equation 6.52 shows that the time-dependent terms vanish if pb(0) =pb; pw(0) = pw. Thus, if eah partile traked to form the redistribution matrix139



starts in the water olumn with probability pw and in the benthos with proba-bility pb = 1� pw then { if exhange rates are suÆiently high in omparison tointrinsi growth { we an e�etively assume the proportion of time spent in thewater olumn to equal pw during the simulation.6.3.4 E�et of retention in the benthos on ritial veloityThe previous setions show that with transition rates, � and �, suÆiently high,the proportions of population found in the drift and benthos losely approximatethose predited by Equation (6.53). This equation suggests that with Vx and �xonstant throughout the domain, and with organisms non-moving in the benthosand ating as passive partiles in the water olumn, the e�et of transitions be-tween the benthos and water olumn is analogous to onsidering passive partilespermanently resident in the water olumn but subjet to advetive water veloityof �=(� + �)� Vx and di�usion onstant of �=(� + �)� �x. With this assump-tion the oeÆient of variation of the average organismal displaement over ageneration beomes Co(r�1) = p2�xpwr�1pwVxr�1 ; pw � �� + � (6.54)As in the ase for swimming against the average urrent potential persistene ispossible i� Co(r�1) > 1=p2. In this ase Co(r�1)=Cw(r�1) is given byCo(r�1)Cw(r�1) = 1ppw (6.55)so for persistene we have the inequalityCw(r�1) > ppwp2 (6.56)Using the same assumption a predition an be made regarding how the amount140



of time spent in the benthos a�ets the ritial water veloity, V, at whih per-sistene beomes impossible. For passive organisms permanently in the waterolumn the relationship was found to beV = 2q�xr (6.57)If the organism spends the fration, pw, of time in the water olumn this rela-tionship beomes
pwV(pw) = 2qpw�xrV(pw) = 2qp�1w �xr (6.58)The relationship between V and V(pw) is thereforeV(pw)V = 1ppw ; V(pw) = Vppw (6.59)Plotting log(V(pw)=V) against log(1=ppw) gives a straight line with slope �0:5.This predited relationship is shown as the blak line of Fig. (6.9). The otherlines show the alulated results for di�erent values of l � L=Ld. As the lengthof the system inreases relative to the di�usion length the results more loselyapproximate the predited relationship. With L=Ld = 10 this agreement beomesvery lose exept for high values of pw.For any given value of L=Ld the same line in Fig. (6.9) is obtained by hoosingany value of � or ! and then varying the other saled rate of state hange in orderto ahieve the desired value of pw via use of Equation (6.47) with � set to zero.This assumes pw = n=N , that is the proportion of time an individual spends inthe drift is equivalent to the proportion of population found in the drift at anyone time. 141
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whether drift entry is passive, (as the result of hydrologial displaement), or a-tive, (Wilzbah 1990). Po� and Ward (1991) ompared between day di�erenesin drift density and drift rate of indigenous benthi insets for three ri�es, (refer-ene, experimentally inreased ow, experimentally dereased ow), in the upperColorado River. They found inreased drift rates following ow redution for sev-eral taxa inluding Baetis (mayies), Simuliidae, (blakies) and Brahyentrusamerianus, (addisy). This was onsidered indiation of ative drift joining asredution in ow rate and veloity would be enough to redue the mean shearstress ating on the stream bed. For Baetis spp. several authors have reportedative entry into the drift under onditions of low veloity, (Minshall and Winger1968; Corkum, Pointing, and Ciborowski 1977; Corkum 1978; Ciborowski 1983;Allan and Feifarek 1989). Drift density and rate results for other speies - themayies Paraleptophlebia heteronea and Ephemerella infrequens and the addis-y Lepidostoma ormea - seemed to suggest passive reruitment to be at least asigni�ant omponent to these speies' rate of entry to the drift. Statzner, Gore,and Resh (1988) ite results of laboratory experiments, performed on variousmaro-invertebrates, to determine the maximum veloity that ould be with-stood before individuals were swept into the drift. For addisies, mayies andstoneies the veloities were well beyond what would normally be enountered innatural streams, lending support to ative drift entry.Suh results do not provide the means to determine a rate of entry to the wa-ter olumn and the situation is ompliated further by the fat that onitingresults, onerning benthi (and drift) ativity, have been reported, even withinspeies, (Wilzbah 1990). Statzner, Gore, and Resh (1988) onlude that most�eld experiments, and indeed many laboratory experiments, are un-repeatableand not omparable beause too few hydrauli harateristis are measured. Tofully haraterise the hydrauli onditions ating on benthi invertebrates mea-surements are required of mean veloity, depth, substratum roughness and tem-perature, the last used to determine the kinemati visosity of the water. Most�eld studies by ontrast provide only mean veloity and/or mean disharge and143



stream order. These last two measures are not so useful. Those hydrauli param-eters that seem to most signi�antly orrelate to benthi population distributionsan vary onsiderably for the same disharge or stream order.With regard to residene times in the water olumn, Smith (1982) onsideredpartiles/individuals of negative buoyany introdued to a olumn of ompletelystati quiesent water olumn of depth H. It is then assumed that the terminalsinking veloity Vs of eah partile is ahieved instantaneously and that partileswill ontinue to sink at speed Vs until they hit the bottom. The settling time fora partile initially at the top of the water olumn, t0, is therefore H=Vs.If a large number of partiles are spread homogeneously through the water ol-umn, at a onentration n0, these partiles will then settle in times in the range0 � t0. At any intermediate time t less than t0 the proportion of the originalsuspension that has settled is given by n0Vst=H, and the proportion left in thewater olumn is therefore n0 � n0Vst=H.It is now assumed that at time t the olumn is instantaneously and homogeneouslymixed, suh that partiles still in suspension are evenly mixed throughout thewater olumn. Partiles already on the bottom are onsidered proteted frommixing, a not unreasonable assumption given that turbulent ows have a laminarsub-layer. If the new onentration over the water olumn is labelled nt then itsvalue is given by nt = n0(1� Vst=H) (6.60)If there are many instantaneous mixings { m say { in the time t0 rather than one,the periods of quiesene beome t0=m and the population remaining after the�rst and seond mixings beome
nt0=m = n0(1� Vst0=mH); n2t0=m = n0(1� Vst0=mH)(1� Vst0=mH) (6.61)144



The population density after the mth mixing (at time t0) beomesnt0 = n0(1� Vst0=mH)m (6.62)Sine t0 = H=Vs Equation (6.62) simpli�es tont0 = n0(1� 1=m)m (6.63)As m beomes large, Equation (6.63) tends towardsnt0 = n0(1=e) (6.64)where e is the natural logarithmi base.The above theory then, suggests exponential residene times with � being givenby � = 1=t0. In turn this gives � in terms of the sinking speed and overall depthas follows � = VsH (6.65)This result does not need a large number of mixing events within the time t0 tohold true, (Reynolds 1984), and fully developed turbulent ow in rivers an beonsidered to have a very large number of mixing events within the timeframeneeded for planktoni settling. Even in ows where the water olumn might passbetween periods of turbulent and laminar ow, suh as in tidal bodies at periodsof slak tidal ow, settling rates are likely to resemble the pattern for a turbulentwater olumn rather than one whih is quiesent. Experiments on three speies ofkilled phytoplankton gave results that mathed the time for 95% elimination fromthe water olumn predited from Equation (6.64) to a good degree, (Reynolds1984, page 76). Elimination time was however inuened by the `form resistane'145



of eah speies. Those with higher form resistane ahieved longer times in thewater olumn. Form resistane is a non-dimensional measure of the degree towhih an organism's shape inreases its drag. It is therefore also a measure ofhow readily an organism an be entrained by random water movements.The theory of Smith was developed with a view to explaining phytoplanktononentrations. In the shallow and turbulent streams onsidered apable of be-ing represented by the one dimensional modelling approah of this hapter ben-thi dwelling mirophytes2 do our but phytoplankton are absent, (Horne andGoldman 1994). Of onsiderable interest in upland streams, however, are in-vertebrates. In drift samples of swift owing temperate streams, the inset taxaEphemeroptera, Simuliidae, Pleoptera, and Trihoptera are usually of most quan-titative importane, (Brittain and Eikeland 1988). Applying the above theory tothese larger and more dense organisms requires onsiderably more faith in theidea of instantaneous mixing. Perhaps remarkably then, most studies of inver-tebrate drifting times and distanes have demonstrated �xed proportions of ani-mals remaining in the water olumn settle to the bottom for eah unit of time (ordistane) that passes. Higher stream advetions, as well as moving individualsfurther per unit time, inrease drift distanes by reduing the rate of settlement,but the general pattern remains the same, (Madsen 1968; MLay 1970; Elliott1971a; Ciborowski and Corkum 1980; Lanaster, Hildrew, and Gjerlov 1996).Elliott (1971a) also observed that live animals were able to settle more quiklythan dead individuals, and that there were di�erenes in settling rates betweenlive speimens from di�erent speies. This suggested behavioural di�erenes assettling rates did not vary amongst dead animals. However, the exponential rateof return to the benthos over time still held true. It seems that for settlingat least exponential residene time in the water olumn is not only onvenientmathematially but also the truest representation of reality.2Interestingly, one study at least has shown that benthi diatoms have seletively emigratedfrom experimentally darkened umes by altering their buoyany or form resistane to inreasetheir likelihood of entrainment into the ow, (Bothwell, Suzuki, Bolin, and J. 1989).146



Chapter 7
2D river systems
This hapter onsiders persistene in a model formulation that sets out to desribethe irumstanes in a deep river with modest ow rates. As shown in AppendixB, the horizontal veloity, Vr, in a uniform hannel of depth H at a depth z belowthe surfae is given byVr(z) = VR  1� � zD�2! = 32 V̂R  1� � zD�2! (7.1)where VR represents the veloity of the water at the free surfae, (z = 0), and V̂Rthe depth averaged or mean veloity. The horizontal advetion of any organismat any depth, Vx(z), an be onsidered a fration, ", of the water veloity at thatdepth. In a river system the long-term average water movement an be onsideredparallel to the bottom of the hannel as an the advetive dispersal of planktoniorganisms. Di�usive dispersal on the other hand an at both in the horizontaland the vertial although rates of hydrodynami mixing an be several orders ofmagnitude lower in the vertial than in the horizontal, (Reynolds 1994b).
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7.1 Passive organisms permanently in the driftTo understand how the vertial gradient in advetion and vertial di�usion inu-ene the story of persistene, (as determined from the one dimensional analysis),Speirs and Gurney (2001) initially onsidered the limiting ase when vertial dif-fusion is set to zero. Apart from enabling analysis this representation an besupported by the di�erene in mixing rates ited above and { leaving aside thepremise of passive organisms for a moment { from the argument that any be-haviour is likely to be more suessful in deoupling vertial water movementfrom individual motion. The e�et of the assumption is to ditate that anymembers of a population starting at a depth, z will live out their lives at thesame depth, as will their desendants. The problem therefore beomes a set ofunoupled one dimensional systems as onsidered in the previous hapter. Theadvetion veloity of the population in a layer is given byVx(z) = "32 V̂R  1� � zD�2! (7.2)From the one dimensional analysis inequality (6.7) implied that for a system oflength L and a population with intrinsi growth rate r, washout will our ifVxLr > 0:434 (7.3)Bak-substituting for Vx into Equation (7.2) gives a ritial depth above whihwashout is assured, that is washout ours ifz < z � Hs1� 0:289 Lr"V̂R (7.4)Speirs and Gurney (2001) found that if the average value of Vx in the waterolumn was set at the ritial level spei�ed by inequality (6.7), z = 0:58H suhthat persistent population is restrited to the bottom 42% of the water olumn.148



This is onsistent with the vertially averaged value of the veloity pro�le residing0:4H from the bottom, as disussed in setion 4.4. The persistent zone diminishesrapidly as the average value of Vx, the e�etive disharge rate of the organisms,inreases.7.1.1 Critial vertial di�usion oeÆientSpeirs and Gurney (2001) used populations with exponential growth rates toonsider the e�et of non-zero vertial mixing, the oeÆient for vertial di�usionbeing represented by �z. The e�et of suh mixing was di�erent between systemsallowing persistene at all depths when �z = 0 and systems where washout oursnearer the free surfae. If the rate of organismal advetion at the surfae stillallows persistene, vertial mixing exports population from the faster growing(and more densely populated) lower layers to the upper layers where greateradvetion removes individuals more quikly and auses slower overall populationgrowth. The average per-apita loss rate over the depth of the water olumn asa whole is inreased and overall system population growth is redued, but it isimpossible for the system to obtain a negative long term growth rate.In systems where the advetion in upper layers is suÆient to ause washout inthe absene of vertial di�usion, it was found suÆiently high values of �z wouldause the overall growth rate to beome negative, leading to washout of theentire population. Thus, in suh systems there exists a ritial vertial di�usionoeÆient �z that represents the limiting amount of di�usion for population topersist in the system as a whole.To form an analyti estimate for this di�usion oeÆient the deeper region of wa-ter allowing persistene in the absene of vertial di�usion was e�etively treatedlike a one dimensional system as in the previous hapter, with the layer at theritial depth z ating as the absorbing boundary. The intrinsi growth rate wastaken to be the per-apita growth rate over the whole of this deeper region. Fromthe one dimensional analysis, it was found that when only di�usion is present,149



the ratio of the system length (represented here by H�z) to the di�usion lengthmust exeed �=2 for persistene, that isH � zp�zr�1 > �2 (7.5)Rearranging for �z and bak substituting for z from Equation (7.4) gives anupper bound for �z�z < �z � 4rH2�2  1�s1� 0:289 Lr"V̂R!2 (7.6)The length of a system that provides the threshold between population persisteneand washout for a given value of di�usion or, in ases with advetion present, agiven ombination of advetion and di�usion values, an be alled the ritialsystem length, L. If investigating the ritial value of di�usion oeÆient forgiven values of system length and advetion, the system length an still be thoughtof as the ritial length for the point at whih the di�usion equals its ritial value.
7.2 E�et of sinkingPhytoplankton that have a density greater than water and no means of ativelyswimming will sink. This is true of a whole lass of phytoplankton, the diatoms.This form of movement is not behaviour in itself although there is onsiderableevidene to indiate suh non-buoyant algae use various means to ontrol therate of sinking, for example through alteration of their own density, (Reynolds1984). The sinking veloity, Vs, is also known as the terminal veloity beauseif the algae were to fall through still water it would initially aelerate beforereahing a steady (terminal) veloity at the point where the fore ausing themotion (the density di�erene between the algae and the surrounding water)is balaned by the drag fore resisting motion. The drag fore depends on adimensionless quantity alled the drag oeÆient, CD whih in turn is dependent150



on the partile Reynolds Number Rep � Vsd=� where d represents the diameterof the partile and � is kinemati visosity. This Reynolds number is the ratiobetween the inertial fores being exerted on the uid by the falling partile tothe visosity of the uid. For Rep < 0:1 the ow around the partile is entirelylaminar and for Rep < 0:5 it an be assumed laminar to an error within 10%,(Reynolds 1984). Most phytoplankton generate partile Reynolds numbers lessthan 0.1 and the laminar nature of the ow around them means their sinkingveloity an be estimated using a modi�ed version of the Stokes equation for theterminal veloity of a sphere, namelyVs = 118gd2(�s � �) 1�� (7.7)where �s is the density of the algae, � that of the surrounding uid, g is aeler-ation due to gravity and � the dynami visosity. The term � is known as theoeÆient of form resistane whih takes aount of the shape of the algae (fora sphere � = 1), whih means the term d represents the diameter of a spherehaving the same volume as the atual shape in question. Any adaptive meha-nisms adopted by phytoplankton to alter their sinking speed ompared to thatof an inert partile of the same density and shape an be aounted for, if themagnitude of their e�et is known, by adjusting the value of �. Importantly thevalue Vs, in water bodies with homogeneous density, remains onstant and is arelatively simple addition to the the previous theory while potentially having asigni�ant e�et on persistene.7.2.1 Inorporating sinking into estimation of ritial ver-tial di�usion oeÆientThe estimation of ritial vertial di�usion oeÆient employed by Speirs andGurney (2001) made use of the fat that in a one dimensional system in the ab-sene of advetion the ratio of the ritial length of that system to the population151



di�usion length will be L=Ld = �=2. One a settling veloity is introdued thisratio is no longer known a-priori. From their work on the linear 1D problem withadvetion toward the absorbing boundary Speirs and Gurney (2001) derived anequation for determining this ratio, namelyLLd = 24vuut V 2dV 2d � V 2x 35 artan24�vuutV 2d � V 2xV 2x 35 (7.8)When estimating ritial vertial di�usion, the domain of interest is that foundbelow the ritial depth and the sinking veloity is a veloity away from theabsorbing boundary. The e�et of this on the results of the one dimensionalanalysis must be onsidered, espeially as there is now the prospet that solutionsfor advetion veloities suÆient to allow the general solution to the populationequation to have real roots may be obtainable.If the analysis of the one dimensional linear system is re-worked with �z replaing�x and Vz replaing Vx suh that Vz = �Vs then the working of Appendix A ane�etively be left unhanged.Case where V 2s < 4�r(1� �=r) = 4�(r � �)With Vz = �Vs the equation to be satis�ed for valid solutions of long termpopulation growth rate istan�� LLd� = � Vd(�Vs)� = +VdVs� (7.9)with �, Ld and Vd de�ned as before. As for the ase with advetion toward theabsorbing boundary, with the parameters of the problem �xed, Equation (7.9)an be satis�ed by an in�nite series of values for �, but the smallest non zerovalue provides the solution with the maximum long term growth rate. Potentialsolutions for �L=Ld, however, now lie between 0 and �=2. Sine tan �� LLd�!1as �! �Ld=2L a solution to Equation (7.9) for 0 < � < �Ld=2L is assured if152



dd� �VdVs��������=0 > dd� �tan�� LLd��������=0 (7.10)Di�erentiating the left hand side givesdd� �VdVs��������=0 = VdVs (7.11)and the right hand sidedd� �tan�� LLd��������=0 = LLd se2 �� LLd������=0 = LLd (7.12)therefore a solution is assured if VdVs > LLd (7.13)The equation for the ritial length of the system, when � = 0, beomesLLd = 24vuut V 2dV 2d � V 2s 35 artan 24+vuutV 2d � V 2sV 2s 35 (7.14)This equation is de�ned for 0 < jVsj < Vd and as expeted has a maximum valueof �=2 when Vs = 0. As jVsj ! Vd then L=Ld ! 1. Therefore, with jVsj < 2p�rritial system length values are suh that1 < L=Ld < �=2 (7.15)The inequality for persistene in the deeper region of the river, previously givenby Equation (7.5) is now given byH � zp�zr�1 > 24vuut V 2dV 2d � V 2s 35 artan 24+vuutV 2d � V 2sV 2s 35153
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and �AB = exp[2 l℄ (7.18)where � here represents Vz=Vd, l � L=Ld,  � q�2 � (1� �) and A and B arearbitrary onstants. If the saled veloity term �s is de�ned suh that �s = Vs=Vd,given the relationship between Vs and Vz then � = ��s. Substituting for �s inEquation (7.17) gives �AB = (��s)�  (��s) +  = �s +  �s �  (7.19)With  > 0 Equation (7.19) requires �A=B > 1 as does Equation (7.18). With < 0 Equations (7.19) and (7.18) are again onsistent. Therefore, unlike in thease where advetion is toward the absorbing boundary, there is no inonsistenybetween the boundary onditions at either end of the system.Equating boundary onditions and substituting bak in dimensional terms givesVsVd +r�VsVd �2 + �r � 1VsVd �r�VsVd�2 + �r � 1 = exp 2642 LLdvuut�VsVd�2 + �r � 1375VsVd +	VsVd � 	 = exp � LLd 2	� (7.20)As jVsj is suh that V 2s > 2p�r(1��=r) and � � r, 	 is restrited to the range0 < j	j � Vs=Vd. The left hand side of Equation (7.20) goes to in�nity when	 = +Vs=Vd and to zero when 	 = �Vs=Vd, while the right hand side remains�nite between these limits. Therefore, Equation (7.20) is always satis�ed when	 = 0 but also both a positive and negative value of 	 must satisfy Equation(7.20) if 155



dd	 0� VsVd +	VsVd � 	1A������	=0 < dd	 �exp � LLd2	�������	=0 (7.21).When 	 = 0 so too is  and the absorbing boundary ondition ditates thate�T f(l) = 0 where f(l) � A exp[(� �  )l + B exp[(� +  )l℄. This implies thatA = �B and in turn that f(X) = A exp[�l℄� A exp[�l℄ = 0 8X, that is 	 = 0is a solution only possible for zero population in the system.Di�erentiating the left hand side of inequality (7.21) and evaluating at 	 = 0gives 2VsVd �VsVd �	�2 �������	=0 = 2VsVd �VsVd�2 = 2VdVs (7.22)and performing the same to the right hand side gives2LLd exp � LLd 2	�����	=0 = 2LLd (7.23)Therefore solutions are assured if VdVs < LLd (7.24)whih is the exat reverse of the ondition for the low sinking veloity ase.Looking at Equation (7.20) it an be seen that on setting 	 to a negative value,the expressions on both sides are the reiproal of when 	 is positive and ofequal magnitude. Thus, for a positive value of 	 satisfying Equation (7.20), thenegative value of equal absolute value will also satisfy the equation and both rootsare given by the same value of long term growth rate.An expression for the ritial length an be obtained, as before, by setting � = 0and rearranging Equation (7.20) as follows156
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that Vs=Vd / 1=p�z / L=Ld. Therefore, holding Vs and L �xed while varying�z produes a straight line. If & is the slope of the line its value is given by
& = Vs2prp�z2 � Vs2prp�z1 = Lpr�1p�z2 � Lpr�1p�z1& = Vs2rL (7.26)where �z1 and �z2 are two arbitrarily hosen values of �z. The ritial vertialdi�usion oeÆient, �z, is that value whih auses Equation (7.14) or (7.25) tobe satis�ed for the given values of Vs and L. If the value of L=Ld at whih thisours is named ��z then Vs2p�zr = &��z = Vs2rL��zq�z = 2rL2pr��z�z = rL2�2�z (7.27)The expression �z=rL2 is a dimensionless expression involving �z. This ex-pression equals 1=�2�z whih is itself a funtion of the dimensionless term &. Aharateristi urve for the system involving �z an therefore be obtained fromplotting �z=rL2 against & � Vs=2rL.Fig. 7.3 shows this harateristi urve. The region represented by Vs valuesgiving ritial di�usion values derived from Equation (7.14) is a very small frationof the total urve. When Vs=Vd ! 1 so too does L=Ld whih in turn means theslope variable & also tends to one. The minimum value of �z is given whenVs = 0. It is known that when Vs=Vd = 0 then L=Ld = L=Ld = �=2 suh thatLprp�z = �2 ) �z = 4rL2�2 (7.28)158
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more tratable approah was to onsider the regions above and below the ritialdepth to eah have a separate and onstant value of per-apita growth rate.The domain being onsidered now runs the length of the water olumn with areeting boundary at either end. It is still possible to have an overall growthrate of zero as the region above the ritial depth reeives a negative per-apitagrowth rate. If the long term growth rate in the boundary region between the bedand the ritial depth is labelled �br, and that in the surfae region �sr, then theproblem beomes one of two advetion-di�usion equations whih are independent,exept that they share a ommon boundary ondition at Z+ = H � z, where Z+is de�ned positive upwards from the bed and with origin at the bed. The twoequations are given by �n�T = �brn� Vz �n�Z+ + �z �2n�Z2+ (7.29)and �n�T = �srn� Vz �n�Z+ + �z �2n�Z2+ (7.30)As before saling is used to help simplify the problem. In this instane it is asfollowst � T=t0 where t0 = ��1br .z+ � Z+=z0 where z0 = Lbd = q�z��1br .vz � Vz=v0 where v0 = Vbd = 2p�z�br.This leads to the saled equations�n�t = n� 2vz �n�z+ + �2n�z2+ (7.31)161



and �n�t = �sr�brn� 2vz �n�z+ + �2n�z2+ (7.32)Trial solutions are assumed of the form
n = e�ztf(z+) for z+ below the ritial depthn = e�ztg(z+) for z+ above the ritial depth (7.33)where �z represents the saled long term growth rate for this vertial problem.Bak-substituting these trial solutions into Equations (7.31) and (7.32) leads to0 = (1� �z)f � 2vz dfdz+ + d2fdz2+ (7.34)and 0 = (�sr�br � �z)g � 2vz dgdz+ + d2gdz2+ (7.35)We now have two ordinary di�erential equations with onstant oeÆients. TheseO.D.E.s will have solutions of the form

f(z+) = Ae1z+ +Be2z+g(z+) = Ce3z+ + Ee4z+ (7.36)where A;B;C;D are arbitrary onstants and the s are given by the roots of theauxiliary equations
2 � 2vz + (1� �z) = 0 for f(z+)162



2 � 2vz + (�sr�br � �z) = 0 for g(z+) (7.37)For f(z+), 1 and 2 are given by1 = vz �  2 = vz +  (7.38)where  � qv2z + �z � 1. For g(z+), 3 and 4 are given by3 = vz �  24 = vz +  2 (7.39)where  2 � qv2z + �z � �sr�br .Boundary onditionsAt the river bed, (z+ = 0), there is a reeting boundary requiring no ux at theboundary. That is 2vzf(0)� dfdz+ �����z+=0 = 0 (7.40)At the top of the water olumn, z+ = h where h � H=q�z��1br , is anotherreeting boundary requiring2vzg(h)� dgdz+ �����z+=h = 0 (7.41)At the intersetion of the split domain, z+ = l � (H � z)=q�z��1br , the urvede�ning population density along the domain must be ontinuous. That is, werequire a single value for the population density. This requires163



e�ztf(l) = e�ztg(l)f(l) = g(l) (7.42)A ontinuous population ux is also required, implying2vzf(l)� dfdz+ �����z+=l = 2vzg(l)� dgdz+ �����z+=l (7.43)The term 2vz is onstant throughout the domain and given the requirement ex-pressed in Equation (7.42) this implies 2vzf(l) = 2vzg(l). This in turn impliesthat dfdz+ �����z+=l = dgdz+ �����z+=l (7.44)Solutions satisfying the boundary onditionsAppendix E shows how, on substituting in the general form of the solutions tof(z+) and g(z+) into the boundary ondition equations, it is possible to eliminatetwo of the arbitrary onstants (A;B;C;D), using the fat that all boundaryonditions must be satis�ed simultaneously. It is then shown that a solution existssatisfying all boundary onditions if a value of �z an be found that satis�es oneof the following two equations.vz �  vz +  = e2 l + 1vz +  � (7.45)h(vz +  )2e2 l � (vz �  )2i[(vz +  2)2 � e2 2(d�l)(vz �  2)2℄ � he2 2(d�l)(vz �  2)� (vz +  2)i
� kvz = tan kl + (7.46)164



h2k + v2z�k2vz tan kli[(vz +  2)2 � e2 2(d�l)(vz �  2)2℄ h(vz �  2)e2 2(d�l) � (vz +  2)iwhere k � q1� �z � v2z .Equation (7.45) is for sinking speeds that satisfy V 2s > 4�z(�br��z), while Equa-tion (7.46) is that whih needs to be satis�ed when V 2s < 4�z�br(1� �z=�br) =4�z(�br��z). The seond equation omes about beause for these lower sinkingspeeds the roots to the auxiliary equation are omplex. The two regions of sink-ing speed value are equivalent to those for the ase where the ontinuity equationwas solved with one onstant value of intrinsi growth rate, the value �br simplyreplaing r in the inequalities. In eah ase the term on the left hand side ofthe equation and the �rst term on the right hand side form the equivalent to theequations to be satis�ed for the single growth rate ase.The term �z is ontained within the terms  and  2. If the length and depth of thesystem are known, along with the horizontal advetion and di�usion oeÆientthen it is possible to determine the ritial depth. If the onstant boundaryregion and surfae region per-apita growth rates, �br and �sr, are also de�nedthen on setting �z = 0 the only variable that an be used to satisfy either of theabove equations is l whih in turn provides an estimate for the ritial di�usionoeÆient through the relationship l � (H� z)=q�z��1br . Determination of �zvalues is performed via a NAG penalty funtion minimisation algorithm.Values for �br and �srThe values of the boundary region and surfae region per-apita growth rates,�br and �sr, must be related to the values of long term growth rate at eah ver-tial depth in the system assuming no vertial di�usion. The best relationship,however, was unlear. To onsider this problem an algorithm was produed todetermine the long term growth rates at �nely spaed vertial intervals for anygiven ombination of system length and depth, intrinsi growth rate, r and hor-165



izontal di�usion oeÆient �x, using the value of horizontal advetion derivedfrom Equation (7.2), (with " = 1), and the analyti result for the one dimen-sional advetion-di�usion equation outlined in Appendix A. Three possibilitieswere onsidered1. Making �br and �sr the means of the � values determined below and abovethe ritial depth respetively.2. Considering that the long term growth rate at the ritial depth is zero,setting �br = �(Z+ = 0)=2 and �sr = �(Z+ = H)=2.3. Setting �br and �sr equal to the � values at the bed and water surfaerespetively.Fig. 7.5 shows the value of �z predited using these three methods to providevalues for the per-apita growth onstants. The domain and horizontal di�usionoeÆient are as used in the previous setion, sinking speed is zero, and thereare two ow regimes. The left hand panel has V̂R = 0:002 while the right showsresults using double the mean ow speed. Preditions as given by Speirs andGurney (2001) are also shown. The �gure shows that using � values from theextreme ends of the water olumn gives the highest predited ritial vertial dif-fusion value. With other parameters held onstant, as the horizontal advetionis inreased the negative long term growth rate at the water surfae beomes agreater magnitude while the positive value at the bed is una�eted. Critial ver-tial di�usion oeÆient preditions therefore beome more pessimisti omparedto results from numerial runs. Depending on ow onditions, preditions usingeither of the averaging approahes for the growth rate parameters an produeresults more inaurate than the predition from the muh simpler method ofSpeirs and Gurney (2001). Using � values from the extremes of the water ol-umn an ause an over-estimate in ritial vertial di�usion oeÆient. This is thesituation for neutrally buoyant partiles, however, and this method is only soughtto improve preditions for non-zero sinking speeds, where (as shown below) there166
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the onstant found in inequality (7.3) by analyti means. To investigate the issueof boundary region and surfae region growth rates, (as desribed above), a simplenumerial routine to determine long term growth rates at �nely spaed heightsup the water olumn was employed. This program has very low omputationaloverhead and an be used to make an aurate determination of the true ritialdepth.Old and new estimates of ritial vertial di�usion oeÆientFig. 7.6 shows the new preditions for ritial di�usion oeÆient ompared tothe estimates of the previous setion. The numerial results are the same asthose shown in �g. 7.4. It an be seen that the new estimates still beome morepessimisti as sinking speeds inrease but not to the same extent as the earlierestimates. Therefore, the advantage of employing the modi�ed method inreasesas expeted sinking speed inreases. The values of sinking speed represented withFig. 7.6 are well within the range expeted for water living plankton. Reynolds(1984) states the sinking speed of Stephanodisus astraea, a large freshwater di-atom, to be approximately 2:5 � 10�5ms�1. Benthi living invertebrates an beexpeted to have greater sinking speeds.7.2.3 Charateristi urves for ritial di�usion oeÆientWhen the ritial vertial di�usion oeÆient was estimated by only onsideringthe region of water olumn up to the ritial depth, it was seen that the rela-tionship between �z and the sinking veloity Vs ould be desribed by a singleharateristi urve. To make the di�usion and veloity terms non-dimensionalrequired use of the intrinsi growth rate r and the length of the water olumn upto the ritial depth, L � H � z. The value of the ritial depth, and thereforeof L, was derived by using a �xed relationship between the intrinsi growth rate,horizontal advetion and horizontal system length at whih persistene beomes168
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It is still true that vs � Vs=Vd / 1=p�z / l � L=Ld, but the relationshipbetween �z and Vs will now also depend upon the ratio between the per-apitagrowth rates hosen for the boundary region and surfae region and, through theterm h� l, the ratio of the distane up to the ritial depth to the overall depthof the system. Fig 7.7 shows families of urves of �z=�brL2 against Vs=2�brL.These non-dimensional terms are the same as used in the previous harateristiurve exept that �br has replaed r. This is not a signi�ant di�erene. It is theratio of surfae region to boundary region growth rate that determines the urveto be used rather than the atual value used to sale the diagnosti variables. Thedi�erent frames show urves for di�erent values of j�srj=�br while eah urve of agiven frame is that established on using a di�erent ratio of (H � L)=H � z=H.The use of j�srj is simply to allow the ratio of growth rates to be expressed as apositive number, given that all systems of interest have a negative value of �sr.For a given ratio of j�srj=�br there exists a minimum ratio z=H beyond whihsolutions an not be found with �z = 0, implying persistene is possible forany value of �z at ratios smaller than this minimum. Above a ertain value ofz=H the urves beome very lose and the relationship between �z and Vs ane�etively be onsidered as represented by a single urve. It an be seen, however,that the value of z=H at whih this e�et is seen to happen varies onsiderablyas the value of j�srj=�br is altered.One harateristi whih does seem robust from inspetion of Fig. 7.7 is the fatthat the saled ritial di�usion value does not inrease appreiably until thesaled sinking veloity reahes unity.
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7.2.4 Attempted appliation to real river systemData on river phytoplankton, (potamoplankton) populations has been olletedfor a number of years for the river Meuse. This river has its soure in Franeand then runs through Belgium and the Netherlands before entering the NorthSea. The total length of the river is 885 km. Data on phytoplankton growthand biomass is mainly available at a distane 530 km from the soure, with someother measurements between 480 km and 620 km, the Belgian setor of the river,(Everbeq, Gosselain, Viroux, and Desy 2001).The one dimensional advetion-di�usion equation assumes no reruitment of indi-viduals at the upstream end of the system. Desy, Gosselain, and Evrard (1994)predit no signi�ant phytoplankton biomass loser than 200 km to the soure.The downstream absorbing boundary has been taken as the loation 620 kmfrom soure as beyond this point no data is available. Although this hoie ofdownstream boundary is somewhat arbitrary, the solution beomes inreasinglyinsensitive to the length of the system as the ratio L=�x inreases. A systemlength of 420 km should make alulations very insensitive to hanges in thesystem length value.The disharge and morphology of the river Meuse hanges in the 420 km strethbeing onsidered. The river reeives inows from several signi�ant tributaries.The analyti solutions, however, require uniform values of advetion veloity anddi�usion oeÆient. Foring a single value of disharge, depth, and thereforemean veloity, for the whole domain length is an obvious soure of error. Themethod here, however, is only intended as a rough order of magnitude preditor,so the whole domain is assumed to have the disharge as measured 570 km fromthe soure, as well as the river morphology at that loation. It is true that alongthe Belgian setion, the river is regulated for navigation. Also fortunate is thefat the tributaries to the river Meuse arry little or no phytoplankton, suh thatinput of phytoplankton from the tributaries need not be onsidered, (Everbeqet al. 2001). 172



Desy, Servais, Smitz, Billen, and Everbeq (1987) alulated the growth rateof the phytoplankton ommunity in the river and found it to peak a little above0:7d�1. They onluded that growth in this eutrophiated river was never nutrientlimited. The phytoplankton is dominated in the spring and early summer (beforethe impat of zooplankton grazing) by the diatom Stephanodisus hantzshii.A study of growth rate in ulture also found the intrinsi growth rate for S.hantzshii to be r = 0:7d�1, (Swale 1963).Estimation of �xNo measured values for the longitudinal dispersion oeÆient, �x are available.Two formulas are available to estimate this value however. One is by Fisher1,(Fisher, List, Koh, Imberger, and Brooks 1979)�x = 0:011 V̂ 2r B2HU� (7.47)where V̂r is the mean river veloity, B is the width of the river at its surfae, His the mean depth and U� is the frition veloity given by U� = pgHS where g isthe aeleration due to gravity and S is the slope (gradient) of the water surfae.This slope an normally be taken as equivalent to the gradient of the river bed.The seond is by MQuivey and Keefer (MQuivey and Keefer 1974)�x = 0:05937 QSB (7.48)where Q is the disharge of the river. Both equations require the slope of the riverto be provided. If a slope is not provided it an be alulated from the Manningequation (Chapra 1997)1Equation (7.47) is a simpli�ed version of Equation (2.12), using assumptions about thevalues of ertain parameters from typial rivers.173



V̂r = 1nmanR2=3S1=2e (7.49)where R is the hydrauli radius of the river, given by A=Pw where A is the rosssetional area and Pw the wetted perimeter, Se is the slope of the energy gradeline2 and nman is the Manning roughness oeÆient. Manning roughness oef-�ients have been determined experimentally for various open hannel surfaes.For the river Meuse omparison the most appropriate values are those of 0.030 forlean and straight natural stream hannels or 0.040 for lean but winding naturalstream hannels, (Chow 1959). The Manning formula an be substituted into theontinuity equation and re-arranged to provide a relationship between river slopeand disharge S = �QnmanAR2=3 �2 (7.50)Thus a reasonable relationship between disharge, width, depth and slope an bemaintained even when slope is not given and only single, mean values of widthand depth are provided.The disharge of the river Meuse an be broadly split into a period of summerdisharge, with values of 30 � 80m3s�1 and winter values of 200 � 800m3s�1.Signi�ant phytoplankton ounts only our for the lower range of disharge.Table (7.1) shows values of river slope, and �x provided by Equations (7.47)and (7.48) for values of disharge between 30 and 80 m3s�1 and for width anddepth values given at the reording site (120m and 6m respetively). A Manningroughness oeÆient of 0.030 was assumed due to the regulation of the river.It an be seen that the estimates of �x from Equations (7.47) and (7.48) di�erby three orders of magnitude or more. Generally, eah method is expeted topredit reorded values to within a fator of �ve (Chapra 1997). The problem2By assuming that the ow is steady and the ross setion onstant, the energy slope ismade equal to the hannel slope. 174



Table 7.1:Q V̂R S U� �x Eqn (7.47) �x Eqn (7.48)30.0 0.042 1:627� 10�7 3:09� 10�3 15.055 91226.240.0 0.056 2:893� 10�7 4:12� 10�3 20.095 68406.550.0 0.069 4:520� 10�7 5:16� 10�3 24.380 54724.760.0 0.083 6:509� 10�7 6:19� 10�3 29.397 45603.970.0 0.097 8:860� 10�7 7:22� 10�3 34.397 39088.680.0 0.111 1:157� 10�6 8:25� 10�3 39.433 34209.2stems from the fat the estimation of MQuivey and Keefer is sensitive to theow's Froude number, Fr, given by V̂R=pgH. A more general form of Equation(7.48) is �x = 0:66 Û3ttĈ3 Q2SB (7.51)where Û3tt represents the mean travel time veloity of a traer and Ĉ3 the advetiveveloity. Equation (7.48) assumes Ĉ=Ûtt = 1:79 whih is true for Fr = 0:2 anddoes not vary muh for higher Froude numbers up to a limit of Fr = 0:5. Forsmaller Froude numbers, however, the ratio varies rapidly, greatly a�eting thepredition of �x. MQuivey and Keefer (1974) provide a urve for reading moreaurate values of Ĉ=Ûtt, down to a value of Fr = 0:1. For the disharges andhannel dimensions used here, however, the Froude number varies from 0.0055 to0.0145 and as suh estimation of the orret ratio of Ĉ and Ûtt is very unertain.Equation (7.47) appears muh less sensitive to hanges in hannel dimensions andriver slope. Equation (7.47) was therefore onsidered the preferred method forobtaining �x estimates.Table 7.2 shows the results alulated using �x estimates from this equation forj�sj=r, z=H, the value of �z alulated when Vs = 0 and when Vs = 2:5 �10�5ms�1, the value obtained from use of Equation 7.6 and an estimate of thevertially averaged vertial di�usion oeÆient that would be found in the river.175



Table 7.2:Q �x j�sj=r z=H �z �z �z �zVs = 0 Vs = 2:5� 10�5 Eqn 7.53 U�H=1530:0 15:055 7:135 0:8058 7:49� 10�6 2:37� 10�5 4:46� 10�6 1:24� 10�340:0 20:095 9:835 0:8344 5:03� 10�6 1:73� 10�5 3:24� 10�6 1:65� 10�350:0 24:380 12:558 0:8534 3:74� 10�6 1:38� 10�5 2:54� 10�6 2:06� 10�360:0 29:397 15:270 0:8672 2:96� 10�6 1:16� 10�5 2:08� 10�6 2:48� 10�370:0 34:397 17:992 0:8778 2:43� 10�6 1:00� 10�5 1:77� 10�6 2:89� 10�380:0 39:433 20:694 0:8862 2:06� 10�6 8:85� 10�6 1:53� 10�6 3:30� 10�3This last value is an approximation used by hydrauli engineers of�z = U�H15 (7.52)The term �b=r was taken to equal one in all ases. Equation 7.6 was not useddiretly beause of the diÆulty highlighted in setion 7.2.2. Instead the ritialdepth was determined from the numerial sheme used to alulate the value of �for many slies within a river and Equation 7.6 was substituted by the following�z = 4r(H � z)2�2 (7.53)These results are shown in graphial form in Fig. 7.8From Fig. 7.8 and table 7.2 it an be seen that none of the estimates of �zome lose to mathing or exeeding the estimate of the value to be found in theriver given by Equation 7.52. Setion 4.3 however desribed how measurementsof vertial di�usion have shown its magnitude to be roughly paraboli suh thatthe di�usion oeÆient an be represented by the equation�z = 0:4U�Z+q1� Z+=H (7.54)176
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The values shown in Fig. 7.10 are just beyond this level, and indeed �gures7.8 and 7.9 do indiate sinking has made some di�erene. Figures 7.8 and 7.9also indiate the relative bene�t of sinking to beome less as river disharge in-reases whereas the saled values for sinking speed and tolerable di�usion bothinrease with disharge in Fig. 7.10. This is beause the greater disharges lead tosmaller values of L, suÆiently so that �z values atually derease as dishargeinreases. When omparing �z values to values of �z from Equation (7.52) itmust also be remembered that values of �z inrease with disharge.
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Chapter 8
Tidal estuaries
8.1 Passive organisms permanently in the drift8.1.1 Results using analytially derived ow �eldsSpeirs and Gurney (2001) investigated a population that grows logistially in theabsene of advetion and di�usion, using the two dimensional population modeloutlined in setion 3.3.1 and ow �elds provided by the adaptation to the analytisolution of Chen, Shaw, and Wolott (1997) desribed in setion 4.5 and appendixB. The domain had a onstant depth below mean sea surfae of 5m. A typialexample of the Lagrangian residual veloities for this system is as shown in Figs.4.1 through 4.3 and is reprodued here in Fig. 8.1Speirs and Gurney (2001) found that ompared to a system with the same riverow and no tidal motion a small amount of tidal motion led to an inrease indomain average population density. Contour plots of the steady state populationdistributions showed that landward residual ow, as seen in �g. 8.1 moved theentre of population landward in the deeper water of the domain.It was found, however, that if tidal veloities were inreased further average pop-180
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5Figure 8.1: Residual veloity plots derived using ow �elds from solution afterChen, Shaw and Wolott (1997), as modi�ed by Speirs and Gurney (2001).ulation was redued until it fell to well below the value obtained without tidalmotion. Again, the reason ould be found from investigation of the residual velo-ities. As an be seen from Fig. 8.1 there is is an upward omponent to the residualmovement toward the landward end of the domain whih takes population intothe region of high seaward residual motion. As tidal veloity inreases both thisupward movement and the magnitude of the seaward `ow' in the upper layersinreases. Above a ertain level of tidal motion, although the entre of deeperpopulation is moved further landward, an inreasing proportion is being advetedinto the surfae layers and transported aross the seaward boundary. At a tidalveloity representative of a real system, (the Ythan estuary in N.E. Sotland),this e�et was enough to ause the population to wash out of the system.Speirs and Gurney (2001) onluded that for tidal systems with onstant density,near bottom residual ows had little e�et on the break-point between persisteneand washout for passive partiles. As supporting evidene to this onlusion allparameters were �xed with the exeption of the intrinsi growth rate, r. Theritial growth rate at whih the population is at the point of su�ering washout181



was determined and found to be very similar to the value estimated for a non-tidalsystem with the same river ow. Equation (7.6) was used to determine the valuefor the non-tidal system. As a further hek the intrinsi growth rate was set ata �xed value, (suÆient for persistene at small organismal vertial dispersion)and the vertial di�usion value �z altered until its ritial value was established.Again Equation (7.6) was used to ompare this value to that obtained in thenon-tidal situation and again the values obtained were similar.8.1.2 E�et of adopting CFD derived ow �eldsSetion 4.5.3 disussed onerns over the validity of the analyti ow results {at least in shallow systems { and therefore the Lagrangian residual movementsgenerated by these solutions. Sine the ability to generate these residual veloitiesusing the Prineton Oean Model, (POM), had been developed it was onsideredfurther investigations should be onduted using this tehnique. The onlusionfrom setion 4.5.3 that in shallow systems with homogeneous density, Lagrangianresidual landward ow is not generated led to onentration on systems withsalinity di�erenes. Finally, as use of a uid dynamis pakage no longer restritsinvestigation to domains of onstant depth, and as virtually all estuaries deepenas they approah the sea, a sloping bottom was inluded. To give a degree ofontinuity with the work using analyti ow �elds the same length of domain wasretained and the average depth over the length remains at 5m.Two ow regimes were onsidered. One an be regarded as having a net iru-lation typial of partially mixed estuaries. The seond regime starts as partiallymixed at the head of the domain but inorporation of more intense eddy di�usionleads to the system gaining the harater of a well mixed estuary by the time itreahes the seaward boundary. Loations of di�erent points along the domain onthe Hansen and Rattray strati�ation-irulation diagram are shown in Fig. 8.2.
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oeÆients from anything other than �eld measurements. When onsidering twodimensional vertial slies along a domain, longitudinal dispersion is hiey theresult of interation between the advetive ow �eld and vertial di�usion. Se-tion 4.3 disussed how for estuaries, and espeially for strati�ed estuaries, theestimation of the oeÆient of vertial di�usivity, Kz an also be unertain. Thisis partly beause the value of Kz is expeted to vary throughout the tidal yle asthe dominant form of advetion, (the tidal ow) varies from maximum ood andebb values to nothing at slak water. The partile traking ode was onstrutedin suh a way that it is possible to adopt the values determined for the oeÆientof vertial di�usivity from POM, (KH), for the same times and loations as theveloity data, as the value required for the partile traking vertial di�usivity,�z. It was felt that for omputational speed, and oneptual simpliity, adoptionof a single, onstant value of �z was preferable. It is not lear however, whatvalue �z should take.To explore these ideas, the POM veloity data to be used for population runswas used to trak large ensembles of partiles from seleted start loations using awide spread of values of �z. The range of values for vertial di�usivity of a traer,Kz is onsidered to be in the range 0:0001 � 0:01m2s�1 for a strati�ed estuary,with the value in a neutrally buoyant estuary apable of reahing 0:1m2s�1, (seesetion 4.3). The upper limits of these ranges were used as the upper limits of in-vestigation for �z for homogeneous and strati�ed estuary ow. Lower values werealso investigated in onsideration of the fat that even small phytoplankton havea size, and inertia, muh greater than a true traer. If their random movementis passive, it is likely to be that muh less than that for a true traer. Initiallythe value of the traking program horizontal di�usion oeÆient, �x was kept atzero.Fig. 8.3 shows the results from four loations seleted from the run demonstrat-ing a front in the Lagrangian residual movement. These start positions are shownin Fig. 8.4, the letters orresponding to those above the frames in Figs.8.3, 8.5and 8.6. It an be seen from Fig. 8.3 that use of only a vertial di�usion oef-184
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Figure 8.6: Dispersion oeÆients implied from the spread of an ensemble of par-tiles traked using POM generated ow �eld against vertial di�usion oeÆientimposed in the traking algorithm. Solid urve represents horizontal dispersionoeÆient; dashed urve represents vertial dispersion oeÆient. Case of tidalow in neutrally buoyant system.To show that the strati�ed system being used for Figs. 8.3 and 8.5 produesgreater dispersion than a system without salinity, (or temperature), variation {a homogeneous or neutrally buoyant system { the same experiment using onlya vertial di�usion oeÆient in the traking program was applied to ow �eldstaken from a system with uniform temperature and salinity. The results are shownin Fig. 8.6. It an be seen that the implied horizontal dispersion oeÆients arean order of magnitude or more less than those obtained with the strati�ed system.The ow �eld for Fig. 8.6 is the same as that whih provided the residual veloityplot of Fig. 5.5. Starting positions were at the same depths and longitudinalloations as in the strati�ed system.Di�usion oeÆient orretionThe orretion fator for the di�usion oeÆient used in a partile traking pro-gram given by Equation (3.23) was not used. The ratio of ell width in the188



vertial to vertial di�usion length, �z=p2�z�t, where �t is the timestep of thepopulation model, (12 hrs), remains less than 0.1 down to values of �z of ap-proximately 1�10�5m2s�1. At the minimum value used for full population runs,(1 � 10�6m2s�1), the ratio is approximately 0.3. At this ratio the di�erene inresultant di�usion between orreted and unorreted traking is moderate. Thee�et of use of Equation (3.23) in a two dimensional ow �eld with time varyingadvetion is unertain while use of unorreted oeÆients is onsidered not tohave made a signi�ant di�erene to the results presented in the next setions.8.1.3 Estuary with sloping bathymetry and salinity gra-dientsTaking the system with residual ows as represented by Fig. 8.4 it might beexpeted that persistene is possible regardless of vertial di�usion/dispersion dueto the irular pattern of the residual ows behind the front. This expetationwas tested for two intrinsi growth rates. The �rst r = 0:39day�1 � 4:5 �10�6s�1 is the same growth rate used in hapters 6 and 7 and is representative ofphytoplankton. The seond, r = 0:026day�1 � 3:0� 10�7s�1 is the same growthrate as that used by Speirs and Gurney (2001) in their work on a tidal estuaryand is loosely based on the growth rates for a mysid shrimp. The results areshown in Fig. 8.7 whih displays normalised domain mean density as a funtionof �z.For smaller values of vertial dispersion oeÆient results are as antiipated.Inreases in �z ause little di�erene to the overall long term population densityahieved. However, as vertial mixing inreases further, population mean densitydereases rapidly and eventually onditions of washout our.The explanation for this surprising result requires re-onsideration of the theory ofshear dispersion introdued in setion 2.1.5. Taylor's theory of shear ow disper-sion is only appliable if the ow regime remains onstant for a time `muh longer'189
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At a value of �z where domain averaged density starts to deline, frame b), pop-ulation density starts to redue toward the landward (and more shallow) end ofthe domain. This is expeted to be due to the shallower depths allowing ompletesampling of all depths for smaller vertial mixing. With a further slight inreasein vertial di�usion oeÆient, frame ), population mean density falls sharply.The redution in population density has progressed to greater depths and regionsnear the landward boundary now ontain no population at all.

density. 191
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To investigate a system where the residual movements over a tidal yle do notseem to represent suh a losed system, the persistene of populations subjet tothe residual ows represented by Fig. 8.9 was investigated. These Lagrangianmovements were obtained with the same tidal elevation and river ow parameters,but with a smaller degree of bakground vertial eddy visosity. The resultantows an be onsidered a lassi example of those from a partially mixed estuary,with residual movements muh greater than the atual ow of the river water.Again, mean long term population density was onsidered for a range of ver-tial di�usion oeÆient values while the horizontal dispersion oeÆient wasretained at zero. The results are shown in Fig. 8.10. As might be expeted inthis ow regime, very small values of vertial di�usion oeÆient lead to pop-ulation washout. Over suessive tidal yles, individuals starting in the lowerwater regions are arried toward the landward boundary and then out throughthe seaward boundary, while washout for individuals starting higher up the waterolumn ours sooner. Greater values of �z allow partiles resident in the upperlayers (experiening net seaward movement) to be di�used to lower regions expe-riening net landward movement. This overall delay in net seaward movement isonly suÆient for suÆiently high intrinsi growth rates. For the lower of the twointrinsi growth rates onsidered, washout ours over the whole range of vertialdi�usion.The `phytoplankton' growth rate is suÆiently high, however. The long termpopulation distribution for one of the �rst viable �z values is shown in frame a)of Fig. 8.11. Mean population density inreases as this phenomenon inreases,frame b). As for the initial ow regime, however, there exists a threshold in �zvalues after whih persistene beomes rapidly more diÆult and then impossible;frame ).
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8.1.4 Depth dependent growth ratesIf the population being onsidered is supposed to be that of phytoplankton, thenthe assumption of uniform growth rate ould be a signi�ant soure of error. Thedependene of phytoplankton on inident light for photosynthesis and redutionof light levels with depth is well doumented, eg (Sverdrup 1953).Considering the distribution of light in the water olumn �rst, �eld studies haveshown light intensities to redue exponentially with depth. The rate of thisexponential deay is given by an attenuation (or extintion) oeÆient ". Thatis I(z) = Io exp(�"z) (8.1)where Io is the light inident on the surfae and I(z) is the amount of light left atdepth z below the surfae. If the light intensity values I are expressed as a per-entages, (that is Io = 100%), then " gives the redution in ln I(z) over a depthinrement of one metre. The attenuation oeÆient varies for di�erent spetralwavelength bloks but an overall oeÆient an be de�ned for the range of wave-lengths used in photosynthesis (photosynthetially ative radiation or PhAR).The overall attenuation oeÆient is made up of the omponents "w, the e�etof the water, "p, that attributable to inert suspended partiulate matter and "a,shading produed by the algal biomass itself, (Reynolds 1984).To retain the logisti growth rate equation and inorporate light dependeny,relationships must be determined between light attenuation and the intrinsigrowth rate, r, and arrying apaity k. This an be done by re-formulatingthe logisti growth equation in terms of gross `growth' rates and loss or `death'rates. The intrinsi growth rate is the net per-apita growth of a population inthe absene of density dependene. As suh it an be formulated as
196



r = �o � Æo (8.2)where �o and Æo are density independent growth and death rates. In a systemwith no advetion or di�usion the rate of hange of population density n withtime an be written as dndt = �n� Æn (8.3)where � = �o � �1n, Æ = Æo + Æ1n and �1 and Æ1 are density dependent terms.Substituting for � and Æ in Equation (8.3) givesdndt = (�o � Æo)n� (�1 + Æ1)n2dndt = (�o � Æo)n0�1� n(�o�Æo)(�1+Æ1)1A (8.4)Equation (8.4) an be seen to be the logisti equation with r = �o�Æo as expetedand the arrying apaity k = r=(�1 + Æ1).For plants, this form of the logisti equation an be satis�ed by regarding �o =�N , where � is the slope of a linear funtional response and N is the total amountof bound and unbound nutrient in the system, (Gurney and Nisbet 1998). Theterm � an be regarded as proportional to the light intensity, while the amountof nutrient remains onstant. Therefore, an equation for a depth dependent valueof �o an be formed analogous to Equation (8.1)�o(z) = �ojz=0 exp(�"z) (8.5)In turn, this gives a relationship between the intrinsi growth rate and the lightintensity of 197



r(z) = �ojz=0 exp(�"z)� Æo (8.6)The arrying apaity is related to the intrinsi growth rate and therefore musthange as r hanges. If the value of r at the surfae is labelled ro and the value ofk at the surfae is set equal to one, then (�1+Æ1) = ro. Thus the depth dependentvalues of arrying apaity, k(z) are given byk(z) = r(z)=ro (8.7)Beause density dependene is built into the logisti equation, self shading shouldnot be inluded in the attenuation oeÆient. The value of " in this work istherefore a ombination of "w and "p only.The term Æo an be onsidered attributable to various fators inluding predation.It is therefore perfetly possible for r to beome negative at greater depths. Therelationship between r and k shows that k will beome negative whenever r isnegative and zero when r is zero. The ase when r = k = 0 produes 0=0in the logisti equation so it is neessary to replae the exat solution with anapproximation and determine behaviour in the limit. Sensible behaviour fromthe disrete time solution to the logisti equation should also be heked for thesituation when r and k are negative.As stated in setion 3.3.1 the disrete time solution to the logisti equation isgiven by Bx;t = knx;tnx;t + �(k � nx;t) ; � � e�r�t (8.8)With r = k = 0 this gives 0=0. When jrj is very small jr�tj � 1 and e�r�t anbe represented by the �rst two terms of its Malaurin series without signi�anterror. Therefore e�r�t an be represented by 1 � r�t. Substituting this newexpression into Equation (8.8), along with r=ro in plae of k gives198



Bx;t = (r=ro)nx;tnx;t + (1� r�t)((r=ro)� nx;t)Bx;t = rnx;tronx;t + r � ronx;t � r2�t + r�tronx;tBx;t = nx;t(1 + �tronx;t)� r�t (8.9)As r ! 0 Equation (8.9) tends toBx;t = nx;t1 + �tronx;t (8.10)To be biologially sensible Bx;t an not be negative. This is assured as all terms onthe right hand side are positive. So long as �tronx;t � 0, however, then Bx;t � nx;twith the two terms beoming equal when the population density beomes zero.When r and k are negative, �R and �K say, Equation (8.8) beomes
Bx;t = �Knx;tnx;t + eR�t(�K � nx;t)Bx;t = Knx;tnx;t (eR�t � 1) +KeR�tBx;t = Knx;t (eR�t � 1) +KeR�t � nx;t (8.11)Again all terms on the right hand side are positive ensuring Bx;t remains positive.As eR�t > 1 for jRj > 0 the term K=[nx;t �eR�t � 1�+KeR�t℄ < 1 and Bx;t � nx;t,as would be expeted for a negative intrinsi growth rate.Gurney and Nisbet (1998) list bakground light attenuation oeÆients ("w+ "p)for four di�erent sea lohs. Three lohs have the same value of 0:22m�1, whileone is more turbid with a oeÆient of 0:48m�1. In omparing results obtainedusing depth dependent growth rate, " an be taken as one of these two values, roneeds to be equal to the onstant intrinsi growth rate used before and the valuefor k is determined for all depths from Equation (8.7). If a depth zr is hosen199



for the point at whih r(z) = 0 then the remaining parameters, Æo and �o anbe determined as follows. Substituting for �o from Equation (8.2) into Equation(8.6) gives r(z) = (ro + Æo) exp(�"z)� Æo (8.12)r(z) = 0 at z = zr giving Æo = ro exp(�"zr)1� exp(�"zr) (8.13)�o an then be found from Equation (8.2).Gross photosyntheti rate in phytoplankton generally falls to zero when the in-ident light falls in the range 0:5 � 3%Io and a `euphoti depth' zeu is de�nedas 1%Io, (Reynolds 1984). Using this de�nition, from Equation (8.1), zeu an begiven as zeu = ln(Io)=" (8.14)The values of zeu obtained for given values of " are the maximum sensible values ofzr that an be hosen for that value of attenuation oeÆient. This ritial depthvalue an be assumed to be one obtained in the absene of predation. Dereasingvalues of zr an be interpreted as representing inreasing rates of predation.Fig. 8.12 repeats the same graph of mean population density against vertialdi�usion oeÆient for a population with intrinsi growth rate of 0:39day�1, (4:5�10�6s�1) as shown in Fig. 8.10 but with additional urves showing the e�et ofdepth dependent growth rate. The left hand frame shows urves for " = 0:22 andthe right hand frame those where " = 0:48. In eah frame zr has been set toequal zeu, 7m, (the depth of the deepest part of the system) and 3:5m, (the middepth). It an be seen that even with " = 0:22 and zr set to its maximum sensible200
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persistene relies on population surviving, and quite probably growing, in thedeeper regions loser to the seaward boundary. Fig. 8.13 shows how the pattern ofdistribution of population density is not altered by transition to depth dependentgrowth rates. Rather, onentrations are simply redued. Frames a), b) and ) allshow distributions for a vertial di�usion of �z = 1:0�10�4m2s�1 but frame a) isthat for uniform growth, frame b) that for growth when " = 0:2m�1; zr = 20:9mand frame ) that for " = 0:48m�1; zr = 7m. It should be noted that to makethe frames of this �gure more readable, the minimum ontour and the ontourstep size has been altered for eah frame.
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8.2 Vertial motion toward the benthos8.2.1 Uniform in situ growth rateAs in the onsideration of a vertially heterogeneous river the e�et of a onstantrate of sinking is investigated. As mentioned in hapter 7 a number of speies ofphytoplankton are known to be negatively buoyant and have no means of swim-ming. Suh phytoplankton are an important omponent of many estuaries andfjords. To link with hapter 7, the same sinking veloity, Vs, is used as in setion7.2.4. This represents a maximum reorded value for freshwater phytoplanktonspeies but there are marine speies with higher values, (Reynolds 1984).Using the onstant intrinsi growth rate of 0:39day�1 (4:5�10�6s�1) the graph ofnormalised, (and domain averaged), long term population density against vertialdi�usion oeÆient, (as shown in Fig. 8.10), is ompared to the result whensinking is present in Fig. 8.14. The former is given by a solid line and the lattera dotted line. The overall pattern ould be regarded as remarkably similar. Theonly region where results are qualitatively di�erent is that for whih �z values aresmallest. There has been a shift from washout to moderate persistene. Giventhe pattern of the residual ows, it seems surprising that organisms with a sinkingveloity should persist less well for any values of �z, espeially as in situ growthrates are onstant throughout the domain.A more signi�ant result of sinking is that persistene is now possible with thelower of the onsidered intrinsi growth rates, 0:026day�1. The urve of popu-lation density is shown by the dashed line. The lower growth rate is intendedto be representative of organisms as large as small shrimp. Zooplankton arelikely to have either signi�antly greater sinking speeds, or swimming ability.Even amongst motile phytoplankton swimming speeds are estimated to reah1:0� 10�3ms�1, (Reynolds 1994b, page 153).If organisms possess a quiesent settling veloity the theory of settling in the204
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1:0 � 10�6m2s�1 is shown in frame a). The same explanation seems to aountfor the small range of values of �z for whih the domain mean population densityis redued in the presene of sinking. Frame b) shows a ontour plot from thisrange, when �z = 1:0 � 10�4:4m2s�1. The advetive omponent to organismalvertial movement does seem to delay the onset of omplete mixing and resultantwashout. Frame ) of Fig. 8.15 takes the same �z value of 1:0 � 10�3:6m2s�1as used in frame b) of Fig. 8.11. In the ase of vertial sinking, the density ofpopulation an be seen to be more onentrated both toward the benthos, (to amodest degree), and toward the landward end of the domain.
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8.2.2 Sinking and depth dependent growth rateGiven the results from setion 8.1.4 and those for organisms with sinking veloitybut uniform growth, it is intriguing as to the e�et of sinking and light dependentgrowth ombined. Light restritions on growth led to sharp redutions in overallpopulation density. Sinking, however, did lead to gains in persistene, but for thehigher intrinsi growth rate only to small gains, and then for only some values ofvertial di�usion oeÆient. Perhaps most interesting is whether the ability topersist at very low values of �z provided by sinking an be maintained.The left hand frame of Fig. 8.16 repeats the left hand frame of Fig. 8.12 thatshows results for the ase of neutral buoyany given uniform growth and threevalues of zr when the attenuation oeÆient " = 0:22m�1. The right hand framegives the results when sinking is inluded. With sinking present, the patternof persistene against vertial di�usion again remains muh the same whethergrowth is onsidered uniform or light dependent. In turn this leads to gains inpersistene at low di�usion rates. The e�et is most marked when the growthredution with depth is most severe.Fig. 8.17 makes a similar omparison to that of Fig. 8.16 but for the ase wherethe attenuation oeÆient equals 0:48m�1. Again, the same form of relationshipan be seen between mean density urves when omparing between depth de-pendent growth and uniform growth and when omparing between sinking andneutrally buoyant organisms subjet to the same growth regimes. The great-est di�erene when sinking is present again ours for the smallest value of zr.Indeed, the situation has been hanged from one of extintion at all values ofvertial di�usion to a �nite region of di�usion oeÆients where persistene isseured.It is believed the inreasing advantage of organisms possessing sinking as redu-tion in r with depth beomes more severe is due to the same mehanism thatallows persistene with uniform but muh lower intrinsi growth rate. A greaterproportion of population beomes part of a gyre like pattern of motion that is208



restrited to the upper, and more shallow, part of the domain. If growth is suf-�ient for density dependene to take e�et this an beome a disadvantage, asseen in Fig. 8.14. Here, however, growth rates are being suppressed by otherfators.
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Figure 8.16: Mean population density in a tidal estuary, (with residual veloitiesas shown in Fig. 8.8), as a funtion of the population vertial mixing rate �z.Curves are for population intrinsi growth rates of 0:39day�1 (4:5 � 10�6s�1).Results for uniform growth rates and for values of zr as indiated. AttenuationoeÆient " = 0:22m�1 in all ases. Left hand frame, (solid lines) for neutrallybuoyant organisms; Right hand frame, (dotted lines), for organisms with sinkingveloity of Vs = 2:5� 10�5ms�1.
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Figure 8.17: Mean population density in a tidal estuary, (with residual veloitiesas shown in Fig. 8.8), as a funtion of the population vertial mixing rate �z.Curves are for population intrinsi growth rates of 0:39day�1 (4:5 � 10�6s�1).Results for uniform growth rates and for values of zr as indiated. AttenuationoeÆient " = 0:48m�1 in all ases. Left hand frame, (solid lines) for neutrallybuoyant organisms; Right hand frame, (dotted lines), for organisms with sinkingveloity of Vs = 2:5� 10�5ms�1. 210



Chapter 9
Strategi fjord
9.1 Ratios of tidal inow to river dishargeIn hapter 8 the river disharge into the system was hosen as muh to allow theomparison of two very di�erent residual ow patterns as any other reason. Forthe work on fjords it was possible to onsider the appropriateness of the ratio ofriver disharge to tidal inow thanks to a omprehensive survey of Sottish sealohs performed by Edwards and Sharples (1986). Edwards and Sharples reordedphysial dimensions and other statistis pertinent to oeanographi work, inlud-ing �gures for annual fresh water disharge and total annual tidal inow. Thelatter value, (with units ofm3year�1), was determined from the following formulainflow = 490� tiderange� (hwarea+ lwarea)=2 (9.1)where the onstant is derived from the fat that there are approximately 700semidiurnal tides per year and study of tidal tables for North West Sotlandshowed the mean tidal range in a year to be about 70% of the spring tidal range,(the term `tiderange' represents spring tidal range). In the strategi simulationsperformed in this work the tidal range is onsidered onstant and only a two211



dimensional slie is onsidered suh that the term (hwarea + lwarea)=2 an bereplaed by the length of the fjord. This length was taken as the distane fromthe inner edge of the sill region to the point at whih the river ow is injeted.A per unit width inow value ,(in m2s�1), an then be obtained frominflow = tiderange� lengthT (9.2)where T is the tidal period. Edwards and Sharples ranked 109 sea lohs aordingto this `freshtideratio'. With the tidal range of these strategi simulations retainedas, 2m � �1m, the river disharge used in hapter 8 gives a ratio of � 0:0055.This equates to values obtained for sea lohs ranking 76th to 87th in the leaguetable and is similar in value to lohs ranking as high as 69 and as low as 98. Withthe disharge value used by Speirs and Gurney (2001) in their investigation oftidal regimes the ratio beomes � 0:022, equal to sea lohs ranked 16th and 17thand similar to those from rank 15 to 19. The river disharge to tidal ow ratiosrepresented by these two inows over the majority of the range found in Sottishsea lohs.Two additional runs were onduted. One inreased the river disharge to tidalinow ratio to 0:1, greater than all but one sea loh, and the other reduedthe ratio to 0:002, lower than all but two lohs. The run with higher dishargeshowed no sign of settling to a quasi steady state. A more steady yle ouldprobably have been fored through adjustment of parameters suh as imposedhorizontal di�usion or bottom frition but this would ompromise the ability tomake omparisons between systems where the only di�erene is supposed to beone of river inow. Fig. 9.1 shows the Lagrangian residual movement obtainedusing the river disharge as in Speirs and Gurney (2001), while Fig. 9.2 showsresidual ows when river ow was redued to give the freshtideratio of 0:002.These residual movements are used in the remainder of this hapter.
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9.2 Passive organisms permanently in the drift9.2.1 Persistene relative to vertial di�usionDi�usion oeÆient orretionTo trak partiles over the muh deeper domain represented by the fjord butkeep within the memory onstraints of available omputers it was neessary toinrease vertial ell height from 0:1m to 1m. The riterion for aurate repre-sentation of intended di�usion established by Gurney et al. (2001), namely that�z=p2�z�t � 0:1 is only satis�ed down to values of �z � 1:0�10�2:8m2s�1. Atthe lowest value used to investigate persistene, 1:0� 10�6m2s�1, this ratio be-omes roughly 3:4. Between these values, if this non-steady ow regime behavesin a similar manner to the ase with no advetion, unorreted parameter valuesused in the partile traking program are likely to lead to over-representation ofvertial di�usion. An algorithm developed by Gurney et al. (2001) was used toprodue orreted oeÆient values. This only orrets exatly for the ase withno advetion. Individually tuned orretions for regimes with onstant advetionare possible but in this ase the advetions hange with time and spae and arenot known a priori. As stated in setion 3.3.1 on�dene in the orretion towithin a 10% error are possible up to a ell to di�usive distane ratio of 2. Verti-al di�usion was still likely to be represented with error > 10% for target valuesof 1:0 � 10�5:8 and 1:0 � 10�6m2s�1. These values were omitted for the fjordwork.Domain averaged population densitiesPhytoplankton and zooplankton that ould be regarded as passive are importanttrophi levels within fjords. Suh plankton are unlikely to exhibit intrinsi growthrates of as low as 0:026day�1 however, (O'Doherty 1985), so only the higher ofthe two growth rates onsidered previously, (0:39day�1), is onsidered in this215
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Figure 9.4: Mean population density in a tidal fjord, (with residual veloities asshown in Figs. 9.1 and 9.2), as a funtion of the population vertial mixing rate�z. Curves are for population intrinsi growth rate of 0:39day�1 (4:5� 10�6s�1).setion. Fig. 9.4 shows a plot of domain averaged population density againstvertial di�usion rate for residual movements over a tidal yle as shown in Figs.9.1 and 9.2. Most planktoni life that an live in saline fjords an also survivein the oastal sea. It is also onsidered legitimate for planktoni organisms to bearried into suh bodies from outside of the sill region. Therefore, when trakingorganisms to generate the redistribution matrix, traks were started between thesill region and open boundary to allow for organisms to be washed into the fjordregion. Also, the boundary at whih organisms were onsidered washed out duringtraking was set between sill and open boundary. The extent of this extendedtraking region an be seen from the population ontour plots used in this setion.In determining the results for domain averaged population density, however, onlythe domain found inside of the fjord sill was inluded.It an be seen from Fig. 9.4 that persistene is strong for all values of di�usionoeÆient onsidered and for both river disharges. At higher di�usion rates pop-ulation is virtually at the arrying apaity throughout the domain and the di�er-ene between river disharges has beome irrelevant. At lower levels of di�usionthere is a modest di�erene in persistene between the regimes. What di�erenes216



do exist in long term population pattern between results for low and high vertialdi�usion and river disharge are shown by Figs. 9.5, 9.6 and 9.7 whih showontours of long term population density for the ases of �z = 1:0 � 10�5m2s�1and �z = 1:0� 10�2m2s�1. It should be remembered that ells between the silland seaward open boundary were not inluded in the determination of domainaveraged population densities.Fig. 9.5 on�rms the idea that population is almost uniformly at the arrying a-paity. There is lear indiation, however of a large gyre or eddy formation at theseaward end of the fjord behind the sill. This feature extends to the deepest partof the fjord. The �gure shown represents the result for the higher river dishargebut plots for the ase of lower river disharge showed no signi�ant di�erenes forthose values of vertial di�usion where the domain averaged population densitieswere onvergent.In Fig. 9.6, whih shows the ase for high river disharge but low vertial di�usion,densities an be seen to redue in the surfae layers { as might be expeted { andin the regions lose to where the bathymetry drops toward the middle basin.In the ase of the same low value of di�usion and also low river disharge, Fig.9.7, redutions in population density an be seen to be slightly less in the upperregions of the water olumn. There is, however, a sizeable region with a nearabsene of population at the landward end of the fjord basin.
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9.2.2 Depth dependent growth rateThe very high domain averaged population onentrations shown in Fig. 9.4would suggest in themselves that depth dependent growth rates are likely to havea big impat on the results for persistene. The deepest part of the fjord regionis over ten times as deep as the deepest part of the estuary domain onsidered inthe previous hapter. The degree of redution, however, depends on the extentto whih population in the upper regions depends on supply from deeper regions.Fig. 9.8 shows the domain averaged population densities obtained using depthdependent growth rate and light attenuation oeÆient, " = 0:22m�1. For thedepth dependent growth rate, the depth for zero intrinsi growth rate, zr was setequal to the `euphoti depth' zeu, suh that predation an essentially be onsideredabsent. Even so e�ets on persistene are so dramati a logarithmi saling hasbeen employed for the normalised population density and for only a fration of thefull range. For higher river ow persistene is only possible for vertial di�usionoeÆients above 1:0 � 10�3m2s�1 and then it is only marginal. Washout andextintion of population was slow in the other ases. After a population modelrun representing one year very small �nite population densities were still present,but they were subjet to a steady derease in all ases. This was on�rmed byrunning the simulations for two years. A dotted line is inluded in Fig. 9.8to distinguish between results that indiated persistene and those where thepopulation was still slowly deaying.The ase for low river ow is very similar with the exeption of a persistentpopulation in one narrow window of lower vertial di�usion. Fig. 9.9 showsthe long term population distribution for a vertial di�usion from this region,(�z = 1:0 � 10�3:4m2s�1). Non-zero population is found throughout the fjordbut there is a small onentration found in the near surfae region just inside ofthe sill. A onentration an also be seen, however, at the upstream end of thedomain used to introdue the river ow. It should be noted that ontours in Fig.9.9 are at values an order of magnitude smaller than those of previous ontour220
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The small levels of persistene seen for higher vertial di�usion oeÆients seemsdue to the fat the random movement of individuals manages to repeatedly trans-fer suÆient numbers between the large sale eddies { both at the head of thefjord and toward the sill region { and the upper layers. Fig. 9.10 illustrates thee�et for when the �z value equals 1:0 � 10�2:6m2s�1. Contour plots were verysimilar between high and low river ow. This latter result suggests that in thepresene of only small values of vertial di�usion, the near surfae and and deeperwaters are weakly linked. Population in regions suitable for growth are subjet towashout while that in the deeper gyres dies out. If onnetion between the twois inreased, (by inreasing vertial di�usion), then eah region an re-supply theother, so long as the redution (and transition to negative) intrinsi growth rateis not too rapid. This was on�rmed by setting zr = 10m. This led to extremelylow values of persistent population at high values of vertial di�usion, (approxi-mately an order of magnitude smaller than the values for persistent populationin Fig. 9.8). For the ase of higher river ow extintion ourred for all othervalues of �z. For the smaller values of �z allowing persistene under onditions oflower river ow the situation was the same. In all ases the reason for persistenelearly beomes one of retention in the shallow riverine setion of the domain.Fig. 9.11 is used to illustrate this situation. It ould be argued that this no longerrepresents persistene in the fjord itself. The light attenuation oeÆient used,(" = 0:22m�1), is the lower of the two values ited by Gurney and Nisbet (1998)for Sottish sea lohs. The higher value has assoiated with it a euphoti depthof zeu = 9:6m.
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9.3 Vertial motion toward the benthos9.3.1 Uniform in situ growth rateIn the setting of a oastal plain estuary, a onstant sinking speed proved ad-vantageous ombined with very small vertial di�usion. In that ase, however,there was a lear two layer residual movement that extended the whole depth ofthe system. In the ase of the fjord domain, sinking that is not muh modi�edby turbulent di�usion an be expeted to take near surfae organisms below theregion of two layer ow. Given the irular, or gyre like residual movements inthe body of the fjord, (for both ow regimes onsidered), it is unlear how overallpersistene will be a�eted, at least in the absene of depth dependent growthrates.Fig. 9.12 ontrasts the results for neutrally buoyant organisms with those sub-jet to the onstant downward vertial veloity used previously of Vs = 2:5 �10�5ms�1, in terms of domain mean population density against vertial di�u-sion. At high di�usion rates the long term populations are virtually idential. Atlower values sinking proves detrimental.The reason is shown learly in Figs. 9.13 and 9.14 whih display populationontours for the ase of �z = 1:0 � 10�5:4m2s�1. Neither random di�usion oradvetive urrents have prevented the downward veloity from removing individ-uals from the surfae region of the fjord. The greater di�erenes displayed for thease of lower river ow seem due to population beoming absent in the middleof the fjord basin. It is not obvious from inspetion of Fig. 9.2 why this shouldbe the ase. Inreasing vertial di�usion steadily redues the signi�ane of thedownward advetive omponent. Contour plots, (not shown), for organisms withsinking but in the presene of high vertial di�usion appeared very similar to thatshown in Fig. 9.5.
224
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Chapter 10
Overview and Disussion
This thesis has dealt with ow regimes split into four basi ategories and onsid-ered one or more basi persistene issues for eah. The approah, on the whole,has been very strategi. An obvious way forward is to apply the methods devel-oped to omprehensive data sets for given speies or groups of speies in givenhydrodynami systems. Finding suh data is non-trivial in that both reliablehydrodynami and biologial data must be obtained and the two data sets needto be reorded at the same time, or at least at times when abioti onditions arevery similar. Even retaining a more strategi approah, there are many addi-tional issues that an be addressed. The remainder of this hapter disusses theresults obtained from hapters 6, 7, 8 and 9 in turn and onsiders a few of thepossibilities for future work.
10.1 1D systemsIt was found that if a onstant swimming veloity was introdued against thedeterministi advetion the results regarding key inequalities to be satis�ed forpersistene, as derived by Speirs and Gurney (2001), an still be applied with avery minor adjustment, namely the subtration of the swimming veloity from229



the advetion term. Swimming against a time averaged history of previous netow, as onsidered in setion 6.2.3, was shown to be less suessful. The reasonis beause net uid element movements, (onforming to a Gaussian distributionwith downstream mean), an be upstream as well as downstream. Upstreammovements are smaller on average, however, and the swimming veloity requiredto ompletely ompensate for them is more often within the maximum attributedto the organisms of the population.From a hydrauli point of view the one dimensional population models developedseem most appliable to low order shallow streams. The shallow water depthand the size of substrate elements relative to water depth means the e�ets ofturbulene are likely to overwhelm vertial gradients in advetion. Traditionally,pelagi plankton have been thought to be virtually absent from headwaters andmidreahes of streams, eg (Vannote et al. 1980). Most studies of stream planktonhave been lake outlet studies whih reorded rapid downstream delines in plank-ton numbers, (Brown, Limbek, and Shram 1989). This would point to limitedappliability of the initial semi-analyti treatment of organisms permanently inthe drift. Brussok, Brown, and Dixon (1985) however, suggested that zooplank-ton ould persist in some abundane in free owing streams if they possessed adistint ri�e-pool geomorphology. Brown, Limbek, and Shram (1989) studiedthe �rst �ve orders of a gravel bed stream, (the Illinois River, Arkansas), andfound an `abundant, diverse zooplankton ommunity omparable to that of loalreservoirs'. This river was of pool-ri�e form and population was onentratedin the pools, with density and abundane espeially high when ow through thepools was < 0:02ms�1. As would be expeted from the one dimensional analysisthe study found an inverse relationship between plankton density and observedow rate in the pools.If the pools of suh a system were not suÆiently deep to suggest use of the twodimensional model the one dimensional model ould be used for eah individually.One adjustment neessary might be the alteration of the upstream boundary toaount for import of individuals from further upstream. The same ould be230



done for individual ri�e setions. If the horizontal dispersion oeÆient, �x wastreated as a �tting parameter, the model of setion 6.1 ould be made to maththe overall population density of planktoni speies over the system length for agiven system averaged ow rate. If used in this way, however, the model is nolonger attempting to determine whether representations of turbulent or randommotion an predit persistene in any realisti fashion. Population distributionwould also not be orret. Brown, Limbek, and Shram (1989) found densitiesin the ri�es to be muh less than in the immediately preeding pool suh thata suession of population peaks an be expeted for the overall system. Thissuggests the need for a series of 1D domains linked by ommon boundaries. Thepossibility of analyti solutions to suh a system has not been investigated. It isalso possible that more than just a slow down in overall ow rate is responsible forstrong persistene in the pools. Vertially non-uniform advetive ow patternsaused by the deepening of the pool and its rise to a lip at the downstream endould be signi�ant. If so, 2D numerial ow simulations would probably be theonly way to model the situation.The variant of one dimensional model inluding `linging' to the benthos is po-tentially more widely appliable. Many invertebrates live on or amongst thesubstrate. Their persistene does not seem dependent on a pool-ri�e strutureand indeed some speies are ited as preferring regions of higher veloity andturbulene. Setion 6.3.5 showed that although there is no �rm evidene forexponential residene times in the benthi state, the existene of exponential res-idene times in the water olumn are supported by both theory and �eld data.What this model an not represent are speies whih have a nekton develop-mental stage suh as stream insets. Here it seems some form of model of theolonisation yle still needs to be applied. In turn this requires use of a stagestrutured model. The 112D model ould still be useful however, in that it pro-vides a semi-analyti solution to the aquati stages of the life yle, while takinginto aount the intermittent nature of drift events. A problem that would needto be resolved is that both analyti models use the intrinsi growth rate, r, to231



non-dimensionalise the problems. For a stage strutured model the growth rateduring the aquati phase is zero. It is feasible to use a nominal non-zero growthrate onsidered suÆiently small not to overly inuene the population distribu-tion at the end of aquati stages. Otherwise an alternative form of saling mustbe sought. In either ase, the proportion of individuals in the water olumn ouldbe onsidered as represented by Equation (6.53) (using the Markov theory). TheMarkov theory takes no aount of population growth and losely approximatesthe result from the 112D solution if exhange rates are high ompared to the in-trinsi growth rate. An estimate of the proportions of speies found in drift andbenthos is more likely to be available from �eld data than rates of drift entry andexit. Equation (6.53) allows determination of these latter parameters.Non-inset loti and benthi dwelling stream invertebrates seem less well studiedthan stream inset larvae. There is evidene of their ourrene in the drift,however, diretly from net sampling studies, (Allan et al. 1988; Bergey andWard 1989).The analyti tratability of the 112D model depends on the assumption of nomovement in the benthi `state'. This assumption is probably valid if onsideringvery small animals suh as harpatioid opepods. Other speies, suh as Gam-marus speies of amphipod have had signi�ant upstream movements measured, (Elliott 1971b; Marhant and Hynes 1981). Suh upstream movements havealso been measured for inset larvae, (Elliott 1971b; Hayden and Cli�ord 1974),although other studies have onluded movements to be random, (Hart and Resh1980). These upstream movements were not onsidered enough to ompensatefor downstream drift but raise the issue of whether results obtained from thesemi-analyti treatment are robust enough to be able to ignore the magnitudeof upstream movement reported. Performing this test requires use of a form ofthe disrete spae-time simulation. This ould be non-trivial beause the prob-lem an beome `sti�' as the mean residene time in the water olumn is madeshorter. A simulation model of this problem was developed to test simulationresults against the analyti results for the hange in ritial veloity with linging232



but no benthi movement. As the rate of return from the water olumn wasinreased, it was found only very small timesteps, oupled with long periods ofsimulated time ould reprodue the analyti results.
10.2 2D river systemsThe longitudinal advetion in larger rivers has a vertial pro�le as disussedin setions 4.3 and 4.4. For organisms with no direted movement, Speirs andGurney (2001) found the inequalities required for persistene gained from theone dimensional model to be little a�eted by expliit onsideration of depth.After modi�ation to the determination of ritial vertial di�usion oeÆient,this onlusion remained the same for neutrally buoyant organisms. When asteady sinking speed, Vs, was introdued the value of ritial vertial di�usiononly inreased signi�antly one Vs > 2�brL, that is greater than twie theprodut of the growth rate at the benthos and the depth of water below the ritialdepth, (the depth from the surfae at whih persistene beomes impossible inthe absene of vertial di�usion).For a given streth of river, the vertial gradient in downstream advetion is likelyto be muh greater than any longitudinal gradient. In the assumption downwardmovement would be the hief means by whih planktoni organisms might showenhaned persistene relative to results from the one dimensional analysis, hor-izontal swimming was not onsidered. If a onstant horizontal swimming speedis assumed, however, the results of hapter 7 an still be applied, with the pro-viso that in doing so advetions near the benthos beoming upstream must beignored. If this is onsidered aeptable then a swimming speed will have thee�et of raising the ritial depth toward the surfae and produe a less negativegrowth rate at the surfae layer. It should be remembered that �br was taken asthe long term growth rate at the benthos and that this growth rate was used forall depths up to the ritial depth. The value of �br then is the value obtainedwhen advetion is zero. With a onstant swimming speed the net horizontal ad-233



vetion will be rendered zero at some point between the benthos and the newritial depth. Using the long term growth rate at this point for �br would seemto remain as reasonable an assumption as in the absene of swimming.One issue with respet to this work is whether the value of �x assoiated witheah vertial slie of the domain should represent horizontal di�usion or the over-all horizontal dispersion of traers assoiated with the river. The fat that theoriginal theory of shear ow dispersion is based on movements of partiles betweendi�erent vertial layers, as represented by Equation (2.11) of setion 2.1.5 suggeststhe �x value should simply represent horizontal di�usion. On the other hand,the equation derived by Fisher for dispersion aused by the transverse variationsin ow, Equation (2.12), makes no use of the vertial gradient in the horizontaladvetion, Vx. If Fisher's onlusion, (assuming a large width to depth ratio forthe river), that dispersion aused by transverse shear dominates that aused byvertial shear is aepted, this suggests use of dispersion oeÆient values for �xis most appropriate. Suh dispersion oeÆients in this work were derived usingEquation (7.47), whih an be derived from Equation (2.12) after making someassumptions about parameter values for typial rivers, (Fisher et al. 1979).The attempt to apply the derivation of ritial vertial di�usion oeÆient to areal river system, the river Meuse, gave preditions orders of magnitude smallerthan an estimate of the expeted vertially averaged value, �z, given the samevalues of shear veloity. If a paraboli vertial pro�le is assumed for the inten-sity of vertial di�usion the heights of `ow refuge' within whih the value of�z remains less than the estimated value of �z was found to be very small forall river disharges onsidered. This was both in absolute terms and as a pro-portion of the total river depth. It is true that a single depth and width wasused for all disharge values. Various studies, (empirial and theoretial), haveonluded that river width and depth hange with river disharge aording topower funtions of disharge. A table of di�erent studies and the oeÆients andexponents derived are given by Knighton (1984, page 100). Deriving width anddepth relationships from suh equations allows the possibility for higher horizon-234



tal dispersion oeÆients from Equation (7.47). Although the general pattern ofdepth and width alteration with disharge are onsistent between studies, the o-eÆients and exponents used are not. Further, they are highly dependent on thesediment harateristis of the river and these were not known. Unless the valuesof �x were to rise onsiderably the basi pessimisti nature of �z foreast is un-altered. Results for �z were derived with the �x values taken as �ve times theiralulated value1. Exept for the ase of lowest river disharge, (where resultsindiated no limit on �z value), results were still nearly an order of magnitudesmaller than the vertially averaged �z value. Additionally, the river slope val-ues alulated are small in omparison to those generally assoiated with rivers,(Morisawa 1985; Chapra 1997). Smaller slope values lead to higher �x estimatesif other variables remain the same.There does seem growing evidene for potamoplankton populations that are resi-dent in rivers rather than the result of importation from lenti soures. Reynoldsand Glaister (1993) found populations of pelagi phytoplankton in the middlereahes of the river Severn, Shropshire inluding Stephanodisus speies. Al-though nutrient levels were only onsidered enough for `moderate' phytoplanktondevelopment, reorded downstream inreases in population density were greaterthan ould be predited from assumption of the population at the river headbeing adveted at the mean river ow rate and growing exponentially at its in-trinsi growth rate. Moreover, Reynolds (1994a) argues that �eld data suggestsphytoplankton an not be ushed from a river as fast as Fikian models predit,(inluding use of dispersion oeÆients). Other authors have onluded that suhmodels onsistently underestimate, sometimes substantially, the atual learanetimes of traers from partiular river reahes, (Benala and Walters 1983). Thework of hapter 7 is based on a Fikian model, or at least a series of suh modelstaking their horizontal advetion value from the appropriate point on the vertialveloity pro�le.An alternative type of model for determining longitudinal transport and disper-1Equation (7.47) is expeted to predit �x to within a fator of �ve.235



sion is the `aggregated dead zone' model, (Wallis, Young, and Beven 1989), whihattempts to take the aggregate e�et of areas of non-owing water (dead or stor-age zones) that exist within what an be onsidered part of the main hannelitself. Suh zones have been identi�ed in the �eld, with enhaned onentrationsof planktoni algae, (Reynolds, Carling, and Beven 1991). Beer and Young (1983)suggested that dead zone dispersion dominated turbulent shear ow dispersion.No study is known of, however, that attempts to ombine the theory of aggregateddead zones with the mehanism of turbulent di�usion for upstream movements.It is, therefore, a possibility for future study.A modi�ation to the urrent approah that ould be adopted to see if it improvedpreditive ability would be to e�etively turn the simulation on its side. Insteadof depth, the transverse dimension of the river is onsidered along with domainlength. Many 1D domains di�erentiated vertially are replaed by 1D domainsarranged aross the transverse diretion of the river. Mean advetions at givenpoints along the veloity pro�le are then replaed by estimates of depth averagedadvetion given a transverse pro�le of river veloities. It is well known thatveloities vary aross the transet of rivers and tehniques have been establishedto map these values. Fisher (1967) used suh methods to establish his equationfor determining longitudinal dispersion oeÆients from transverse di�erenesin ow. The study by Reynolds, Carling, and Beven (1991) found persistentlyhigher onentrations of planktoni algae very lose to the bottom of a streth ofthe river Severn but bigger and more important onentrations toward one bank.Near shore regions with slow ushing rates were also onsidered to be of vitalimportane in a study of river zooplankton, (Rekendorfer, Kekeis, Winkler,and Shiemer 1999).
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10.3 Tidal estuariesThe investigation of tidal estuaries used two sets of ow onditions that produedvery di�erent residual ow harateristis. In the �rst, all strati�ation in thesystem was broken down by internal turbulene part way toward the seawardboundary. This produed a frontal struture in Lagrangian residual movements.In the seond the residual ow patterns are very muh what an be expetedfrom a partially mixed estuary. It was found that for neutrally buoyant andpassive organisms persistene was possible in both systems up to a maximumlimit of vertial di�usion. This was true for two ases thought to braket thebulk of planktoni intrinsi growth rates. For the system with frontal struturethere seemed no lower bound to magnitude of vertial di�usion that allowedpersistene. This was not true for the partially mixed estuary whih requiredsome degree of vertial di�usion to allow persistene.Beyond a ertain limit of vertial di�usion oeÆient, population was progres-sively removed from the shallow end of the system. This is believed to be due topartiles beoming suÆiently evenly distributed over the shallower depths of thesystem as the tidal yle evolves, that they attain the depth averaged net ow inthe system whih is always seaward in the presene of river ow. The same phe-nomenon was reorded for partiles given a onstant sinking speed and neutrallybuoyant partiles. It is, however, thought unlikely to be an issue in real systems.Firstly, in the system investigated the e�et only beame apparent for organis-mal vertial dispersion oeÆients above 1� 10�3m2s�1. This value is at the topend of tidally averaged values of vertial di�usion oeÆient observed in estuarieswith strati�ation and, depending on the degree of strati�ation, potentially stillhigh for instantaneous values, (see setion 4.3).It is also probable that even organisms as small as phytoplankton will have aninertia that prevents their random hanges in veloity being as rapid or highmagnitude as for the surrounding water2. Both fators suggest the values of �z2Indeed, this non-omplete entrainment is believed bene�ial in that it enhanes nutrient237



ausing losses in mean population density are unlikely to our. Additionally,the phenomenon results from a ombination of vertial mixing and water olumnheight. The system investigated here is relatively shallow for an estuary. It isbelieved deeper systems would not demonstrate the same behaviour unless thevalue of �z were inreased to less realisti values. Finally, simulations were per-formed with no spei�ation of horizontal di�usion oeÆient as it was onsideredthis would normally be dominated by dispersion due to non-uniform advetiveows. If rapid vertial mixing eliminates suh dispersion, there is still sope forturbulent di�usion to restore some upstream movement.Introdution of a sinking veloity to organisms had an interesting e�et. In thepartially mixed estuary, onentration of organisms in upstream regions wherenet ow is hiey vertially upwards ould atually lead to density dependenereduing overall population levels ompared to the ase for a neutrally buoyantpopulation. Where sinking did demonstrate an advantage is at very low valuesof vertial di�usion oeÆient. Here sinking ould replae di�usive motion as themeans to break out of the upper, and seaward bound, deterministi residual owpattern.Inorporation of depth dependent intrinsi growth rate produed a surprisinglylarge di�erene in overall population densities. If the appropriate abioti lightattenuation oeÆients for a system are similar to those for west oast of Sotlandsea lohs, it seems results for phytoplankton population levels in systems with anaverage depth as little as 5m must take aount of this phenomenon.An obvious and interesting extension to work in both fjord and oastal plain es-tuary domains is the inorporation of vertial migration. Seletive tidal streamtransport, STST, is the easiest to inorporate into the disrete spae-time sim-ulation methodology. It is probably only appliable to estuaries. If modellingthe larval phase of animals it is appropriate to use a growth rate of zero. Inthis ase the approximation for the disrete time solution of the logisti equationuptake by allowing fresh medium to pass over the ell surfae, (Reynolds 1984, page 18).238



developed in setion 8.1.4 an be employed. The urrent `sinking veloity' on-stant an be aused to hange sign aording to the phase of the tidal yle. Amore sophistiated approah would be to hange the diretion of this movementfor eah individual trak dependent on whether the horizontal veloity being ex-periened was urrently landward or seaward. This allows for phase di�erenesin di�erent parts of an estuary, but also raises the possibility of organisms nearthe bottom moving upwards during the ebb phase in highly strati�ed systems.It would be relatively straitforward to develop the traking program to inludedata on salinity and or temperature if hanges in these quantities were onsideredmore appropriate ues.One would expet STST behaviour to lead to all population being onentratedat the head of the system. Larvae doumented to possibly show suh behaviourare only pelagi for a �nite period before reverting to a benthi lifestyle. Theyalso tend to enter the estuarine habitat from spawning grounds in the oastalsea. A test of the appropriateness of this behavioural theory would be to initiatea ohort of individuals near the seaward end of a domain, (mathed in length,depth, slope and tidal harateristis to a doumented system), and to reord the�nal longitudinal positions of individuals after a time thought to represent theirpelagi phase.The inorporation of a `bakground' di�usivity in POM to overome the e�etiveshutting down of the turbulene losure sheme in regions of high Rihardsonnumber is not ideal. This number is added everywhere in the domain, regardlessof the strati�ation. Too high a value for this onstant may lead to arti�ially highvalues of turbulene in regions where the turbulene losure sheme has otherwisemade an aurate estimate. One possibility is to inorporate more speialised odewithin the turbulene losure sheme to parameterise mixing in the pynoline,(Kantha and Clayson 1994). It is not known, however, whether this would makemuh di�erene to the persistene results, qualitatively or quantitatively.
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10.4 FjordsA single strategi haraterisation of a fjord was used to investigate persistenefor suh systems. The same tidal range used for investigation of oastal plainestuaries was employed. Two river inows were used to give as wide a rangeof inow as possible within limits de�ned by onsideration of the ratio of freshwater disharge to tidal inow in real systems. Given the depth of this systemattention was foused on the higher of the planktoni intrinsi growth rates usedin this work, onsidered representative of organisms with the least swimmingability. It was found that if in situ growth was allowed to be uniform very strongpersistene was possible for both ow regimes over all values of imposed vertialdi�usion onsidered.If depth dependent growth rates were introdued, however, long term populationdensities were ut dramatially. Using the same light attenuation oeÆients asused in the ase for a plain estuary, persistene in the body of the fjord wasonly possible for the lower oeÆient and if predation was assumed very low orabsent. Even then, this was only true for ertain values of vertial di�usion. TheLagrangian residuals for the ase with higher river disharge had indiated thepresene of a two layer residual ow in the surfae region of the fjord. It wassurprising therefore that use of a ritial depth for intrinsi growth rate set justbelow this feature did not indiate it to have any e�et on retention. Instead, withthe exeption of retention of organisms in that part of the domain representingthe river at the head of the system, no mehanism was deteted that allowedpersistene and did not involve irulation in the deeper part of the fjord.Introdution of a onstant sinking veloity did not show any signs of obviousbene�t. In the ase of uniform growth long term domain averaged populationdensities were either unaltered or sinking led to a redution. Sinking aused noqualitative di�erene to the e�et of depth dependent growth rate on persistene.Although the present investigation found a lak of a mehanism, (based on resid-240



ual uid motion), ating in the near surfae to aid retention, it is too early toonlude they do not exist within fjords. Two parameters whose variation hasyet to be onsidered are sill depth and tidal range. Although of the same basiformat, the bathymetry of fjords varies onsiderably. It is possible, (for Sottishsea lohs at least), for sills to be less than half the depth used in this study, whileothers are deeper. Turbulent mixing of water relies on kineti energy. The kinetienergy transported into a fjord basin by the tide is dependent on the ombina-tion of the tidal range and the ross setional area of the outer sill, (Edwards andSharples 1986). It is therefore possible for the kineti energy supply for turbulentmixing to be varied independently of the ratio of freshwater runo� to tidal inow.This study used a two dimensional vertial slie along what was taken to be theenterline of the fjord. One possibility is that retention of photo-autotrophiorganisms relies to some degree on horizontal ow patterns. Fjords often be-ome more narrow in the region of their sills. The head of a fjord is often thatmuh wider than the main river feeding it. These features o�er the possibility ofhorizontal gyres.It is possible, however, that more omplex `behaviour' than onstant sinking (orno behaviour) is required for phytoplankton retention, although it ould still bethat organisms do not need to be ative. The e�ets of depth and salinity di�er-enes ensure the density of water in suh systems inreases with depth. Organismsnegatively buoyant in the `fresh' surfae ow will see their relative density to thesurrounding ow redue with depth. This e�et would be espeially marked forows whih develop a marked pynoline. Indeed, studies have indiated thatsubsurfae biomass maxima tend to our within the pynoline and at densitydisontinuities, (Syvitski, Burrell, and Skei 1987, page 214).To represent orretly the full extent of strati�ation and the steepness of thedensity gradient at the pynoline it may be neessary to inlude the e�ets ofsurfae heating. Temperature e�ets were exluded from this work in order toremove the possibility of onfounding joint e�ets. Dyer (1973) onsidered that241



for estuaries and fjords as a whole temperature would have a relatively smallinuene on densities. In fjords warming of surfae waters during summer anhelp to stabilise the brakish layer3, (Syvitski et al. 1987). When using POM,however, one buoyany frequeny has beome suÆient to redue values for eddydi�usion from the turbulene losure sheme to below the spei�ed bakgroundlevel, it is this latter parameter that determines the stability of strati�ation.The e�et of diurnal migration on persistene in deeper systems is intriguing. Thiswould require slightly greater modi�ation to the present disrete time modellingapproah than STST migration mentioned above. The partile traking programould be run over two tidal yles inluding a sinking speed during the �rst and arising speed during the seond. However, the time step of the resultant populationmodel, one whole day, may well be too long not to inuene results. If this werethe ase, two redistribution matries would be required from the partile trakingprogram, one for sinking and one for rising. The population model would thenneed to alternate between transition matries.A more fundamental problem is that the above approah assumes a onstantphase between the migration yle and the tidal yle. Any longitudinal bias innet tidal yle movement would then be assumed to ontinue for the durationof the population model run. The phase di�erenes between these two ylesare known to hange throughout the year. The work of Hill (1995) using simplesine waves for tidal veloity and square waves for migration showed sinusoidalpatterns of horizontal displaement with no net displaement over seasonal timesales.This ompliation does not prevent the tidal yle being regarded as of onstantduration, (and indeed the dominant M2 tide has a steady period of 12.42 hours).If the varying tidal magnitudes of the spring-neap yle are still ignored use ofa single set of ow �elds is still possible. The issue then seems to beome oneof how many transition matries are required, eah representing di�erent phase3Surfae ooling in winter has the opposite e�et. It mixes surfae water downwards throughonvetion. 242



di�erenes between migration and tide.
10.5 Modelling in three dimensionsWhen onsidering `behaviours' potentially signi�ant to planktoni retention insystems, it is remarkable how muh an be investigated at the strategi levelwithout the need to onsider a domain in three dimensions. If variation of theadvetive and/or di�usive omponents of ow are of primary onern in only oneof the axes perpendiular to net ow, modelling in three dimensions an probablybe avoided. As onsidered in setion 10.2, in large rivers ow refugia may be moresigni�ant in terms of shallow areas at the sides rather than near the benthos.If variation in depth averaged advetion aross the transverse of the domain isonsidered to dominate e�ets from the vertial veloity pro�le, the problem anbe investigated by a two dimensional model.In the ase of fjords, a two dimensional model an again be used to see if featuressuh as horizontal gyres in the lee of areas of rapid ow, (suh as the sill or pointof river inow), are important near surfae mehanisms for the retention of or-ganisms. Results beome potentially less robust in this ase however. Signi�antfeatures of the residual ows reated in a horizontal domain may not be retainedon inlusion of the third dimension, espeially if depths are non-uniform.A move to three dimensional modelling would allow inorporation of transversemixing and shear e�ets into the longitudinal dispersion of populations over atidal yle within estuaries and fjords. Also these bodies an beome suÆientlywide for the Coriolis fore to beome signi�ant. The Coriolis fore tends todeet urrents to the right in the Northern hemisphere and left in the South-ern hemisphere. As mentioned in hapter 2, in wide estuaries this an lead to atransverse residual irulation, whih in the Northern hemisphere is a ounter-lokwise rotation when looking seawards. The onlusion that very well mixed,(near homogeneous), estuaries lak retentive mehanisms ould hange if the ir-243



ulation indued by the Coriolis fore, oupled with realisti transverse mixingoeÆients, led to enhaned persistene. The Coriolis fore is also likely to beimportant in wide fjords. The onset of suh e�ets is a ombination of domainwidth, latitude and the veloity of water in the system, as determined by theRossby radius of deformation.In the POM model it is a simple task to inorporate and speify the magnitudeof the Coriolis fore. POM also inorporates a representation of frition at lat-eral boundaries suh that transverse veloity shear e�ets will automatially bepresent, although this representation, desribed as `half slip' is relatively rude.The e�et of bottom frition and the resulting vertial pro�les of turbulene andveloity, however, are represented as aurately as possible, (within the limitsimposed by reasonable omputational ost). The redued momentum of nearshore ows therefore, should be represented well if the domain ross setion ismade more shallow moving away from the entre line. This should introdue amore realisti element of transverse shear as well as allowing the possibility ofrepresenting tidal pumping.
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Appendix A
Exponential growth in awell-mixed river
Solutions are sought to the balane equation�n�t = rn� Vx�n�x + �x�2n�x2 (A.1)with boundary onditions at the left and right ends of the domain ofVxn(0; t)� �x  �n�x!x=0 = 0 (A.2)and n(L; t) = 0 (A.3)To simplify the problem the following saled terms are introduedT � t=t0 where t0 = r�1X � x=x0 where x0 = Ld � p�wr�1245



! � �=�0 where �0 = r� � �=�0 where �0 = r� � Vw=V0 where V0 = Vd � 2p�wrSubstituting these saled terms into Equations (A.1) to (A.3) yields�n�T = n� 2� �n�X + �2n�X2 (A.4)with boundary onditions
2�n(0; T )� �n�X �����X=0 = 0 (A.5)n(l; T ) = 0 (A.6)where l � L=Ld.Solutions are sought in the formn(x; t) = e�T f(X) (A.7)where � is the saled long term growth rate. Bak-substituting into Equation(A.4) gives

�f = f � 2� �f�X + �2f�X20 = (1� �)f � 2� dfdX + d2fdX2 (A.8)This is a seond-order ordinary di�erential equation with onstant oeÆients,whih has the general solution 246



f(X) = Ae1X +Be2X (A.9)where A;B are arbitrary onstants and 1 and 2 are given by the roots of theauxiliary equation 2 � 2� + (1� �) = 0 (A.10)suh that 1 = � �  ; 2 = � +  ;  � q�2 � (1� �) (A.11)
A.1 High veloity ase: 1, 2 and  realIf the saled veloity is high enough to ensure that�2 > (1� �) (A.12)then 1, 2 and  are real. To satisfy the left hand boundary ondition requires�AB = 2� � 22� � 1 = � �  � +  (A.13)while mathing the right hand boundary ondition requires�AB = exp[(2 � 1)l℄ = exp(2 l) (A.14)If  > 0 then Equation (A.14) requires (�A=B) > 1 while Equation (A.13) re-quires (�A=B) < 1. If  < 0 the inequalities are reversed. The inompatibility ofrequirements (A.13) and (A.14) means that when the veloity satis�es inequality247



(A.12) there is no solution of the form (A.7) whih an satisfy both boundaryonditions.
A.2 Low veloity ase:  imaginary; 1 and 2omplex onjugatesIf inequality (A.12) is violated  is imaginary and 1 and 2 are omplex on-jugates suh that they an be expressed as a ombination of real and imaginaryparts 1 = � � ki; 2 = � + ki; k � q(1� �)� �2 (A.15)The general solution of Equation (A.8) an be rewritten asf(X) = Ae�X os kX +Be�X sin kX (A.16)where � � �.Mathing the left hand boundary ondition now requiresA(2� � �)� kB = 0! AB = k� (A.17)while mathing the right hand boundary requires�AB = tan kl (A.18)A solution mathing both boundary onditions is therefore one for whihtan kl = �k� (A.19)248



Converting Equation (A.19) bak into dimensional form givestan�� LLd� = �VdVx� (A.20)where � is the dimensional form of k suh that� � vuut�1� �r �� �VxVd�2 (A.21)
A.3 Obtaining values of the long term growthrate �If parameters l and � are �xed, Equation (A.19) an be satis�ed by an in�niteseries of values for k, any for whih the straight line �k=� uts the urves fortan kl. From Equation (A.15), however, it an be seen that negative values of kwill always have a positive equivalent of the same magnitude and with � �xedthis must be derived using the same value of �. Also from Equation (A.15) itan be seen that the maximum possible value for � is obtained from the smallestpossible value for k. This suggests that k = 0 provides the maximum saled longterm growth rate. Substituting k = 0 bak into the general solution given byEquation (A.16), however, means that the right hand boundary of the systemrequires Ae�l = 0 (A.22)This an only be satis�ed if A = 0, whih in turn implies 8X; f(X) = 0, that isa system ontaining zero population. The smallest non-zero value for k thereforegives the maximum possible value for � and will be found in the region �=2 <kl < �. The atual intersetion is easily found by a bisetion algorithm.249



Appendix B
Analyti Solution for ow in aTidal River
A solution is sought for a two dimensional uid ow, with horizontal veloity, Vxand sea surfae elevation, �, desribed by the following equations.�Vx�t = �g ���x + �e�2Vx�z2 ; ���t = � Z H0 �Vx�x dz (B.1)The solution must satisfy the following ow boundary onditions at the landward(x = 0) and seaward (x = L) ends of the systemVx(0; 0; t) = VR; Vx(L; 0; t) = VR + VT os 2� tT 8t (B.2)where T is the tidal period, and onditions of zero wind stress at the mean freesurfae and zero slip at the bottom�Vx�z �����z=0 = 0; Vx(x;H; t) = 0 8t (B.3)This problem is ompletely linear. As suh the solution an be a superposition of250



the ow generated by the river, (Vr), and that generated by the tide, (Vt). Theriver input is onstant, suh that the ow generated is steady (independent oftime) and uniform (independent of x). A solution is therefore sought of the formVx = Vs(z) + Vt(x; z; t) (B.4)The surfae elevation an also be split into that assoiated with the river ow, (�r),and that assoiated with the tidal ow, (�t). From Equations (B.1), the assump-tion that the river generated ow is steady and uniform implies that ��r=�t = 0.Suh ow also implies that ��r=�x = �H 0, where H 0 is a onstant. This isonsistent with Equations (B.1) if�2Vr�z2 = g�e �Vr�x = �gH 0�e (B.5)The general solution of Equation (B.5) is Vr = A + Bz � (gH 0=2�e)z2, whereA and B are arbitrary onstants. To satisfy the top boundary ondition on Vx,(Equation B.3), B = 0. To ensure Vr(0) = VR, A is set equal to VR. To satisfy theseond element of Equation (B.3), H 0 must be set suh that H 0 = 2�eVR=(gH2).This gives a �nal solution for Vr ofVr = VR  1� � zH �2! (B.6)The equations for Vt and �t beome�Vt�t = �g��t�x + �e�2Vt�z2 (B.7)and ��t�t = � Z H0 �Vt�x dz (B.8)251



To solve this equation it is assumed that the solution is the sum of a term whihis independent of z, (Vt0), and a z dependent term, (Vt1). If the z-dependeneof Vt1 is separable and the x and t dependene of Vt1 and Vt0 is the same, thenVt1 = Vt0�(z), and the general form of the solution for Vt is given byVt = Vt0�(z) (B.9)Substituting this form of the general solution into Equations (B.7) and (B.8)yields ��Vt0�t = �g��t�x + �eVt0�2��z2 (B.10)��t�t = �H ���Vt0�x (B.11)where �� represents the average value of � over the water olumn. Di�erentiatingEquation (B.10) with respet to time and bak substituting for ��t=�t leads to��2Vt0�t2 = gH ���2Vt0�x2 + �e�Vt0�t �2��z2 (B.12)Now, a trial solution is assumed of the formVt0 = ei!teikx where k2 = !2gH (B.13)This allows Equation (B.12) to be written in the form!2(�� ��) = �i!�e�2��z2 (B.14)De�ning �0 � �� ��, this beomes 252



�2�0�z2 = i !�e�0 (B.15)whose generi solutions are of the form �0 = eimz wherem2 = �i !�e ! m =+�  1� ip2 !s !�e (B.16)There is now a full generi solution to the tidal veloity omponent, Vt, namelyVt = 	1e+�i!te+�ikx(1 + 	2e+�mz) (B.17)where 	1 and 	2 are arbitrary onstants and m and k are de�ned as above.
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Appendix C
Analyti Solution for ow in aTidal River: Semi-sigmaCoordinates
With the introdution of semi-sigma oordinates into the uid ow equationspresented in Appendix B, the momentum equation beomes�Vx�t = �g ���x + H2D2�e�2Vx�z2� (C.1)and the ontinuity equation takes the form�Vx�x + HD �Vz�z� = 0 (C.2)Boundary onditionsThe landward and seaward boundary onditions on Vx� an simply be stated as
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Vx�(0; z� = 0; t) = VR; Vx�(L; z� = 0; t) = VR + VT os 2� tT 8t (C.3)and that at the bottom as Vx�(x; z� = H; t) = 0 8t (C.4)For the free surfae ondition we note that (with both z� and z de�ned positivetowards the benthos)
z� = ��H = ���z � �D �H = zH + �HD�z��z = HD (C.5)so HD �Vx��z� �����z�=0 = 0�Vx��z� �����z�=0 = 0 (C.6)This new free surfae ondition has the bonus that it applies to wherever the freesurfae sits at any point in time rather than simply to the mean free surfae level.To implement the new version of the model, new top and bottom boundaryonditions on Vz are required. At the bottom ow is fored to beome parallelto the bottom, while at the free surfae the boundary ondition implies that thesurfae rises and falls in response to ow whih is not parallel to the free surfae,so that Vz(x;�H; t) = �Vx(x;�H; t)�H�x (C.7)255



Vz(x; �; t) = Vx(x; �; t)���x + ���t (C.8)The new bottom boundary ondition, (Equation C.7), is onsistent with the re-quirement from the initial version of the model that the vertial veloity is zeroat all times beause Vx� is required to be zero at the bottom.The new top boundary ondition for Vz, (Equation C.8) is also onsistent withthe non-sigma version for the same reason. With Vx(x;�H; t) = 0 the equationfor ��=�t, Equation (C.13) below, an be written as���t = �Vx(x; �; t)���x � Z ��H �Vx�x dz (C.9)Bak substituting for ��=�t into Equation (C.8) givesVz(x; �; t) = � Z ��H �Vx�x dz (C.10)whih is the exat equivalent of Equation (4.47) given that ��=�t � Vz(�) in thenon-sigma version.One disrepany between the two versions of the model is that ��=�t � Vz(�)does not hold in the sigma version. In the non-sigma version ��=�t an beomezero when ��=�x 6= 0. This is only possible however when there is steady riverow but no tidal ow. The gradient ��=�x aused by steady river ow (seeAppendix B) is very small for the river veloities of interest in this work and thedi�erene is not onsidered signi�ant.New ontinuity equationThe utility of this new depth measure an be seen one the ontinuity equationis re-de�ned in terms of the surfae elevation and a vertially averaged horizontalveloity as desribed below. 256



Starting with the ontinuity equation as de�ned in Equation (4.46), this impliesthat Vz(x; z; t) = Vz(x;�H; t)� Z z�H �Vx�x dz (C.11)Following Blumberg and Mellor (1987) the top and bottom boundary onditionsof Equations (C.7) and (C.8) are imposed on Vz. Bak substituting Equation(C.7) into Equation (C.11) givesVz(x; z; t) = �Vx(x;�H; t)�H�x � Z z�H �Vx�x dz (C.12)and bak substituting Equation (C.12) into Equation (C.8) in turn gives���t + Vx(x; �; t)���x + Vx(x;�H; t)�H�x + Z ��H �Vx�x dz = 0 (C.13)To simplify Equation (C.13), a vertially averaged horizontal veloity is de�nedÛ � 1D(x; t) Z �(x;t)�H(x) Vxdz (C.14)from whih it is noted that��x (DÛ) = Vx(x; �; t)���x + Vx(x;�H; t)�H�x + Z ��H �Vx�x dz (C.15)Comparing Equations (C.15) and (C.13) shows that���t = � ��x (DÛ) (C.16)Comparing the relationship between horizontal veloities de�ned using the threevertial o-ordinate systems of z, � and z�, namely257



U(x; �; t) � Vx(x;D� + �; t) � Vx�(x;��H; t) (C.17)and noting that
� = z � �D ! d�dz = 1Dz� = ��H ! dz�d� = �H (C.18)from this omparison it an be seen that Û an be written as

Û � Z 0�1 U(x; �; t)d� � � 1H(x) Z 0H(x) Vx�dz� � 1H(x) Z H(x)0 Vx�dz� (C.19)Expanding Equation (C.16) aording to those elements dependent on x gives���t = �(H�Û�x + ��Û�x + Û ���x) (C.20)The Û term an be found by integrating the right hand side of Equation (4.52)between zero and H and dividing by H. The �Û=�x terms are given by the righthand side of Equation (4.53) evaluated at z = 0 and divided by H. If initialvalues of � are assumed at t = 0, alulation of � for any point in time or spaebeomes possible. In this work the ��=�x term was found by entral di�erening.A look-up table was onstruted of surfae elevations at eah of the ell entresfrom whih partiles were traked, with values for eah traking timestep withinthe tidal period.This form of the equation for the rate of hange of surfae elevation with time,(unlike Equation 4.49), does not break ontinuity for non-zero � values in as muhas the rate of hange of surfae elevation with time is always internally onsistentwith the veloities being alulated within the water olumn and the depth of258



water, D, over whih these veloities are allowed to exist. It is still true, however,that the veloities are alulated making the assumption that � remains zero.Given the new form of the ontinuity equation this is equivalent to assuming that��=�t = ��(HÛ )=�x.Unsolved equation for Vt using z� o-ordinatesIn solving for Vt we wish to follow the same proedure as in Appendix B andtherefore di�erentiate the equivalent of Equation (B.10) with respet to time.The momentum equation for Vt is now in the form�Vt�t = �g��t�x + H2D2�e�2Vt�z2� (C.21)and this leads to
��2Vt0�t2 = gH ���2Vt0�x2 +H2�e�2��z2� " ��D �Vt0D2� � �D�t + ��Vt0 �Vt0D2� � �Vt0�t #��2Vt0�t2 = gH ���2Vt0�x2 +H2�e�2��z2� "�2Vt0D3 ���t + 1D2 �Vt0�t #��2Vt0�t2 = gH ���2Vt0�x2 + H2D2�e�2��z2� "�2Vt0D ���t + �Vt0�t # (C.22)Substituting from the trial solution of Equation (B.13), namely Vt0 = ei!teikxwith k2 = !2=gH, gives

(i!)2Vt0� = gH ��(ik)2Vt0 + Vt0H2D2�e�2��z2� "i! � 2D ���t #�!2� = �!2 ��+ H2D2�e�2��z2� "i! � 2D ���t #!2(�� ��) = H2D2�e�2��z2� " 2D ���t � i!# (C.23)and de�ning �0 � �� ��, and re-arranging leads to259



�2�0�z2� = 24 D2!2H2�e� 2D ���t � i!�35�0 (C.24)
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Appendix D
Exponential growth in awell-mixed river: Transferbetween drift and benthos
It should be remembered it is assumed organisms stay in the drift and benthoswith exponentially distributed residene times and that they are motionless whilein the benthos.This problem an be de�ned as a oupled set of partial di�erential equations�n�t = rn� �n+ �m� Vw�n�x + �w �2n�x2 (D.1)�m�t = rm� �m+ �n (D.2)Boundary onditions are, (as for the ase of partiles permanently in the drift),that of zero ux at the left hand boundaryVwn(0; t)� �w �n�x �����x=0 = 0 (D.3)261



and an absorbing boundary at the right hand end of the systemn(L; t) = 0 (D.4)To simplify the problem the following saled terms are introduedT � t=t0 where t0 = r�1X � x=x0 where x0 = Ld � p�wr�1! � �=�0 where �0 = r� � �=�0 where �0 = r� � Vw=V0 where V0 = Vd � 2p�wrSubstituting these saled terms into Equations (D.1) and (D.2) yields a simpli�edset of equations �n�T = n� �n+ !m� 2� �n�X + �2n�X2 (D.5)�m�T = m� !m+ �n (D.6)with boundary onditions 2�n(0; T )� �n�X �����X=0 = 0 (D.7)
n(l; T ) = 0 (D.8)where l � L=Ld. 262



In seeking a trial solution it is assumed that the solution, after initial transientshave died away, will take the form of a stati spatial pattern whih sales ex-ponentially with time and that the population in the benthos will be a timeindependent proportion of the population in the drift. That is we seek solutionsof the form
n = e�T f(X)m = �n (D.9)where � is the onstant of proportionality between m and n and � is the saledlong term growth rate. Bak-substituting into Equations (D.5) and (D.6) gives�f(X) = f(X)� �f(X) + !�f(X)� 2� dfdX + d2fdX2 (D.10)and �� = � + � � !� (D.11)Using the relationship between �� + !� = �(1 � �) from equation (D.11) inequation (D.10) we obtain0 = (1� �)(1 + �)f � 2� dfdX + d2fdX2 (D.12)With this trial solution boundary onditions beome2�f(0)� dfdx �����x=0 = 0 (D.13)

f(l) = 0 (D.14)263



In a similar manner to the ase for a permanently water borne partile we are leftwith a seond order linear O.D.E. with onstant oeÆients. This has solutionsof the form f(X) = Ae1X +Be2X (D.15)where 1 and 2 are given by the roots of the auxiliary equation2 � 2� + (1� �)(1 + �) = 0Therefore
1 = 2� �q4�2 � 4(1� �)(1 + �)2= � �q�2 � (1� �)(1 + �)= � �  2 = 2� +q4�2 � 4(1� �)(1 + �)2= � +q�2 � (1� �)(1 + �)= � +  where  � q�2 � (1� �)(1 + �).
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D.1 High veloity ase: 1, 2 and  realFor 1, 2 and  to be real we require�2 > (1� �)(1 + �) (D.16)To satisfy the left hand boundary ondition we require
2�(Ae10 +Be20)� (A1e10 +B2e20) = 02�(A+B)� (A1 +B2) = 0�AB = 2� � 22� � 1�AB = � �  � +  (D.17)To satisfy the right hand boundary ondition requires

Ae1l +Be2l = 0�AB = e(2�1)l�AB = e2 l (D.18)If  > 0 the left hand boundary ondition requires �A=B < 1; the right handboundary ondition requires �A=B > 1.If  < 0 the left hand boundary ondition requires �A=B > 1; the right handboundary ondition requires �A=B < 1.Thus, when the saled veloity satis�es inequality (D.16) there is no solution ofthe form (D.9) whih satis�es both boundary onditions.
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D.2 Low veloity ase:  imaginary; 1 and 2omplex onjugatesWith 1 and 2 as omplex onjugates they an be expressed as a ombination ofreal and imaginary parts
1 = � � ki2 = � + kiwhere k � q(1� �)(1 + �)� �2, and the general solution of equation (D.12) anbe written as f(x) = Ae�x os kx +Be�x sin kx (D.19)where � � �.The left hand boundary ondition therefore requires that

0 = 2�e�0(A os k0 +B sin k0)�[e�0(�kA sin k0 + kB os k0) + �e�0(A os k0 +B sin k0)℄0 = 2�A� kB � �AAB = k� (D.20)The right hand boundary requires that
0 = e�l(A os kl +B sin kl)0 = 1 + BA tan klAB = � tan kl (D.21)266



A solution mathing both boundary onditions is one for whihtan kl = �k� (D.22)where k = s(1� �)�1� �1� �� !�� �2 (D.23)Converting equation (D.22) bak to dimensional form givestan(� LLd ) = � VdVw� (D.24)where � is the dimensional form of k suh that� = vuut(1� �r ) 1 + �� + �� r!� �VwVd �2 (D.25)or � = vuut(1� �r ) 1 + �r�r + �r � 1!� �Vw�d �2 (D.26)
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Appendix E
Exponential growth in a vertialwater olumn split at the ritialdepth
Expressed in terms of saled variables this problem onsists of two advetion-di�usion equations, one for the region below the ritial depth of the system�n�t = n� 2vz �n�z+ + �2n�z2+ (E.1)and one for the surfae region between the ritial depth and the water surfae�n�t = �sr�brn� 2vz �n�z+ + �2n�z2+ (E.2)On substituting trial solutions of the form

n = e�ztf(z+) for z+ below the ritial depthn = e�ztg(z+) for z+ above the ritial depth (E.3)268



these equations beome the following O.D.E.s0 = (1� �z)f � 2vz dfdz+ + d2fdz2+ (E.4)and 0 = (�sr�br � �z)g � 2vz dgdz+ + d2gdz2+ (E.5)These are both seond-order ordinary di�erential equations with onstant oeÆ-ients, whih have the general solution
f(z+) = Ae1z+ +Be2z+g(z+) = Ce3z+ + Ee4z+ (E.6)where A;B;C;D are arbitrary onstants and the s are given by the roots of theauxiliary equations

2 � 2vz + (1� �z) = 0 for f(z+)2 � 2vz + (�sr�br � �z) = 0 for g(z+) (E.7)that is 1 = vz �  ; 2 = vz +  (E.8)where  � qv2z + �z � 1 and3 = vz �  2; 4 = vz +  2 (E.9)269



where  2 � qv2z + �z � �sr�br .As outlined in the main text boundary onditions are two for zero ux, one atthe river bed 2vzf(0)� dfdz+ �����z+=0 = 0 (E.10)where z+ is a saled distane de�ned positive upwards from the bed and withorigin at the bed, and zero ux at the water surfae2vzg(h)� dgdz+ �����z+=h = 0 (E.11)where h is the saled total water depth. At the ritial depth, z+ = l � (H �z)=q�z��1br , are two onditions. Firstly a requirement that the urve de�ningpopulation density along the domain be ontinuous
e�ztf(l) = e�ztg(l)f(l) = g(l) (E.12)Seondly that there is a ontinuous population ux2vzf(l)� dfdz+ �����z+=l = 2vzg(l)� dgdz+ �����z+=l (E.13)whih, beause of the requirement of Equation (E.12) and the fat 2vz is onstantleads to dfdz+ �����z+=l = dgdz+ �����z+=l (E.14)
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E.1 High veloity aseIf vz � Vz=2p�z�br is suÆiently large that v2z > 1� �z and v2z > �sr=�br � �zthen the s and  s are real. Substituting the general form of solution for f(z+)and g(z+) into the boundary onditions gives�AB = vz �  vz +  (E.15)
�Ce3hEe4h = vz �  2vz +  2 (E.16)

Ae1l +Be2l = Ce3l + Ee4l (E.17)and A1e1l +B2e2l = C3e3l + E4e4l (E.18)Relating the three boundary onditionsRe-arranging Equation (E.15) we obtainA = �B12 (E.19)Re-arranging Equation (E.16) we obtainC = �Ee4he3h 34 (E.20)271



Substituting the results from Equations (E.19) and (E.20) into Equation (E.18)we obtain
�B121e1l +B2e2l = �Ee4he3h 343e3l + E4e4lB2 [22e2l � 21e1l ℄ = E4 "24e4l � e4he3h23e3l# (E.21)Considering the �rst of the boundary onditions at the ritial depth, (EquationE.17), provides �AB = 1e1l �e2l � CBe3l � EBe4l� (E.22)Substituting for C from Equation (E.20) and for B from Equation (E.21) into theabove leads to�AB = 1e1l 24e2l + e3l � Ee4h3e3h4 � 4 h22e2l � 21e1liE2 h24e4l � e4he3h23e3li�Ee4l � 4 h22e2l � 21e1liE2 h24e4l � e4he3h23e3li35�AB = e2 l + 1e1l 24e2 2he3l � vz �  2vz +  � h22e2l � 21e1li[24e4l � e2 2h23e3l ℄�e4l � vz +  2vz +  � h22e2l � 21e1li[24e4l � e2 2h23e3l℄35�AB = e2 l + e2 2h � vz �  2vz +  � h22e2 l � 21i[24e2 2l � e2 2h23 ℄� vz +  2vz +  � h22e2 l � 21i[24 � e2 2h23e�2 2l ℄�AB = e2 l + h22e2 l � 21i[24 � e2 2h23e�2 2l ℄ � "vz �  2vz +  e�2 2he�2 2l � vz +  2vz +  #�AB = e2 l + 1vz +  � h(vz +  )2e2 l � (vz �  )2i[(vz +  2)2 � e2 2(h�l)(vz �  2)2℄ �he2 2(h�l)(vz �  2)� (vz +  2)i (E.23)272



Equation (E.23) is a modi�ed form of the equation stating that the populationdensity at z+ = l is ontinuous that only involves the onstants of integration Aand B. The boundary onditions at z+ = 0 and z+ = h and the ondition thatthe ux of population is a ontinuous funtion at z+ = l were used to form therelationships between the onstants of integration that allowed elimination of theonstants C and D. For a given domain and ow onditions the right hand side ofEquation (E.23) onsists of known quantities exept for �z, (ontained within  and  2). Therefore, a solution that satis�es all the boundary onditions has beenfound if a value of �z an be found whih allows the right hand side of Equation(E.23) to equal the right hand side of Equation (E.15). That is if
vz �  vz +  = e2 l + 1vz +  � h(vz +  )2e2 l � (vz �  )2i[(vz +  2)2 � e2 2(h�l)(vz �  2)2℄� he2 2(h�l)(vz �  2)� (vz +  2)i (E.24)Chek on validity of Equation (E.24)Considering the region of the water olumn from the bed to the ritial depth,the di�erene in the solution to the urrent problem and the one desribed inAppendix A is that a loal per apita growth rate of �br replaes the intrinsigrowth rate r and the region beyond the ritial depth is not assumed to have anin�nitely large negative per-apita growth rate. If the assumed growth rate forthe upper layer is set to �1 and �br replaed by r then Equation (E.24) shouldollapse bak to the same form found in Appendix A, namelyvz �  vz +  = e2 l (E.25)where vz is the equivalent of � and l the equivalent of l of the original equation.Substituting dimensional terms into the expression for  as urrently de�nedgives 273



 = vuut Vz2p�z�br!2 + �z�br � 1 (E.26)On replaing �br with r this beomes the diret equivalent of the expression inAppendix A, remembering that Vx and Vz are just any veloity de�ned positive inthe diretion of X;Z+ inreasing. Therefore the left hand side and the �rst termon the right hand side of Equation (E.24) is diretly equivalent to the onditionfound in Appendix A. What remains is to show that the remainder of Equation(E.24) redues to zero.The terms vz,  and e2 l are all �nite. Therefore, exept when  = �vz, theexpression h(vz +  )2e2 l � (vz �  )2ivz +  is always �nite. For the exeptional ase when  = �vz, onsideration of Equation(E.26) shows this would require �z = r. The only way this ould our would beif there were no losses at the absorbing boundary, and this in turn would requirean in�nitely large sinking veloity. The above expression is multiplied by theexpression he2 2(h�l)(vz �  2)� (vz +  2)i[(vz +  2)2 � e2 2(h�l)(vz �  2)2℄whih we an label 	. On setting �br = r and �sr = �1 the term  2 beomes
 2 = vuut Vz2p�zr!2 + �zr � (�1)r 2 = 1 (E.27)As  2 !1 then 274



lim 2!1	 = he 2(� 2)� ( 2)i[( 2)2 � e 2(� 2)2℄lim 2!1	 = � 2(e 2 + 1)� 22(e 2 � 1)lim 2!1	 = 1 2lim 2!1	 = 0 (E.28)
E.2 Low veloity aseAs stated earlier, for the s and  s to be real requires v2z > 1 � �z and v2z >�sr=�br��z. As this work involves �nding the maximum value of �z that allows�z to remain non-negative it is useful to restrit onsiderations to those involvingnon-negative values of �z. The problem an be further restrited by only on-sidering systems that ontain a ritial depth, suh that �sr is always negative.As �br is always positive then v2z > �sr=�br � �z is guaranteed. For the systemsunder onsideration, the roots 3 and 4 will always be real.In ontrast it is possible, for systems of interest, for the inequality v2z > 1� �z tofail, in partiular, when �z = 0 and jVzj < 2p�z�br. In these instanes the roots1 and 2 beome omplex onjugates and the roots an be written as

1 = � � ki2 = � + kiwhere � � vz and k � q1� �z � v2z . The general solution of f(z+) in the lowerregion of the domain an then be written asf(z+) = Ae�z+ os(kz+) + Be�z+ sin(kz+) (E.29)275



If this new form of the general solution is substituted into the boundary onditionof Equation (E.10) we obtain
2vz(Ae�0 os k0 +Be�0 sin k0)�(A[e�0 ��k sin k0 + os k0� �e�0℄+B[e�0 � k os k0 + sin k0� �e�0℄) = 02vzA� vzA� kB = 0AB = kvz (E.30)The boundary onditions at z+ = l expressed by Equations (E.12) and (E.14)now have the formAe�l os kl +Be�l sin kl = Ce3l + Ee4l (E.31)and

A[vzevz l os kl � kevz l sin kl℄+B[vzevzl sin kl + kevzl os kl℄ = C3e3l + E4e4l (E.32)Using the results from Equation (E.30) and from Equation (E.20) to bak-substituteinto Equation (E.32) the relationship between the onstants of integration B andE now beomes
Bevz l "2k os kl + v2z � k2vz sin kl# = E4 "24e4l � e4he3h23e3l# (E.33)Considering again the ondition for the population density to be a ontinuousfuntion of depth and solving to obtain �A=B again gives276



�Ae�l os kl = Be�l sin kl � Ce3l � Ee4l�AB = 1e�l os kl �e�l sin kl � CBe3l � EBe4l� (E.34)Substituting for C from Equation (E.20) and for B from Equation (E.33) gives
�AB = 1e�l os kl "e�l sin kl + e3lB � Ee4h3e3h4 � EBe4l#�AB = 1evzl os kl 24evzl sin kl + e3l � Ee4h3e3h4 � 4evz l h2k os kl + v2z�k2vz sin kliE h24e4l � e4he3h23e3li�e4lE � 4evzl h2k os kl + v2z�k2vz sin kliE h24e4l � e4he3h23e3li 35�AB = tan kl + "2k + v2z � k2vz tan kl# "3e2 2h � 1[24e2 2l � e2 2h23 ℄�4 � 1[24 � e2 2he�2 2l23 ℄#�AB = tan kl + h2k + v2z�k2vz tan kli[24 � e2 2(h�l)23 ℄ h3e2 2(h�l) � 4i (E.35)Substituting for 3 and 4 gives a �nal relationship of
�AB = (E.36)tan kl + h2k + v2z�k2vz tan kli[(vz +  2)2 � e2 2(h�l)(vz �  2)2℄ h(vz �  2)e2 2(h�l) � (vz +  2)iSo, via the same arguments used for the ase with higher absolute values of vz,we know a solution has been obtained that satis�es all boundary onditions if

� kvz = tan kl + h2k + v2z�k2vz tan kli[(vz +  2)2 � e2 2(h�l)(vz �  2)2℄� h(vz �  2)e2 2(h�l) � (vz +  2)i (E.37)277



Chek on validity of Equation (E.37)As for the ase with higher absolute advetion, we set �br = r and �sr = �1 tosee if Equation (E.37) redues to an equivalent form of the ondition for solutionsas that found for the problem of a domain with loal per-apita growth rateequalling r and an absorbing boundary, as desribed in Appendix A, with in thisase the absorbing boundary at z+ = l. The term vz obtains the same meaningas for the higher veloity ase whih has already shown it to be equivalent tothe term � used in Appendix A. With vz � � then the term for k here is alsoequivalent to the same term used in Appendix A. It remains to show that the�nal term of Equation (E.37) redues to zero.The expression previously labelled 	 is again present in this �nal term and thiswill tend to zero as �sr ! �1. The remaining expression present is"2k + v2z � k2vz tan kl#The terms k, vz and l are all �nite, meaning the expression is also �nite exeptwhen tan kl = 1. To deal with this one ase Equation (E.37) is re-ast in theform
� kvz = sin klos kl + "2k +  v2z � k2vz ! sin klos kl#� h(vz �  2)e2 2(h�l) � (vz +  2)i[(vz +  2)2 � e2 2(h�l)(vz �  2)2℄(E.38)Multiplying through by os kl and vz Equation (E.38) beomes

�k os kl = vz sin kl + h2kvz os kl + �v2z � k2� sin kli�h(vz �  2)e2 2(h�l) � (vz +  2)i[(vz +  2)2 � e2 2(h�l)(vz �  2)2℄ (E.39)tan(kl) = 1 when kl beomes any odd multiple of �=2 suh that os kl = 0and sin kl = �1. Substituting these values into Equation (E.39) gives278



0 = �vz + h0� �v2z � k2�i� [0℄0 = vz (E.40)Therefore, for any value of vz other than zero the redution to the ondition for asolution of the previous theory has been ahieved. The ase where vz is also thease where tan(kl) =1! kl = j��=2 (where j is an odd number). As before,maximum values of �z are given by the smallest possible value of kl so kl = �=2is the value of interest. In seeking a ritial vertial di�usion oeÆient we require�z = 0. With �z = 0 and vz = 0, k = 1 . This implies that l = �=2. Substitutingbak in dimensional terms shows that when vz = 0 the ritial vertial di�usionoeÆient is given by (D � z)q�z��1br = (D � z)p�zr�1 = �2 (E.41)This is the same relationship for �z found from the one segment equations.
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