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ABSTRACT

The work reported in this thesis falls into two distinct
sections: in chapters 2-4 a simple, continuous-time,
birth and death model is employed to explain the gross
dynamic features of Nicholson's (1957) control blowfly
population data; in chapters 5 and 6 the emphasis is upon

investigating how age affects blowfly wvital rates.

[In chapter 2, model specific parameter estimates through
time are made and the conclusion is reached that
selection for competitive resilience is taking place

during the blowfly experiments.

[n chapters 3 and 4, the gquantitative and qualitative
consequence of the time-dependent parameter estimates are
considered, both deterministically and with noise
incorporated. It is made clear that the alteration in
dynamic behaviour observed in Nicholson's control
population is consistent with a shift in the wital rates
occurring so as to cause stabilization (i.e. a shift from
behaviour characteristic of the unstable region of
parameter space to that of the stable region). Given
the time-dependent parameter estimates, the model

provides a satisfactory simulation of the data.
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in cnapters 5 and 6, recent data of Readsnaw and van
serwen's (1l983) 1s considered. These data are ot
pDlowily survival and fTecundity ior populations malintalned
at various, constant densities. In chapter 5, the
depenaence of adult death rate on age and density 1is
unravelled and the strong dependence of mortality upon
age 15 made clear. A necessary by-product of the
investigation of density dependent mortality 1is an

inferred, time-dependent age-structure of the control

population.

In chapter 6, the time-dependent maturation times of the
control population are estimated. The estimates are

def initely erroneous, this being due to no account being
taken of the selection for competitive resilience
previously demonstrated. ‘Despite the maturation time
estimates being wrong, the results are then used, in
conjunction with a fit to development-dependent fecundity
data, in an attempt to determine how age and density

Jointly govern blowfly fecundity.
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CHAPTER ONE

INTRODUCTION

PROEM

Ecologists are interested in why natural populations
fluctuate; this interest may be motivated by a desire to
control agricultural pests, fight transmitted diseases,
conserve wild life, manage natural resources such as fish
stocks or 'merely' a desire to understand basic
ecological principles. Studying population fluctuations
under natural conditions is, however, difficult and
understanding the underlying causes of fluctuations is
awkward due to the many (and often unrealised)
confounding factors encountered in the field. The study
of natural populations is, of course, essential to
comprenending how populations interact in the real world
but the attempt to understand basic principles of
population dynamics is often undertaken under simplified

and well-controlled laboratory conditions.

Insect populations have been studied extensively for a
long time, due primarily to the abundance of insect pests
in agricultural and economic settings. Insects, though,
are also relatively easy creatures to study in the
laboratory and thus make good 'guinea-pigs' in trying to
understand general principles of population regulatory

mechanisms.



of

There are many well-known and oft-gquoted laboratory
insect population studies examining either single or
mixed cultures under various experimental conditions.
The duration and sampling freguency of such experiments

also varies greatly (e.g. Pratt, 1943 on Daphnia magna

for 100 days sampling every 2 days; Crombie, 1945 on the
beetle Rhizopertha for about 300 days sampling every 2

weeks ; Birch, 1953 on the weevil Calandra oryzae for

over 90 weeks and sampling once a month; Huffaker, 1958
on a predatory mite and its prey for 7 months, sampling
weekly; Huffaker, Shea and Herman, 1963 on the same
system but for B0 weeks; Park, Leslie and Mertz, 1964 on

Tribolium castaneum for 800 days and sampling every

month; Lloyd, 1965, 1968 on Tcastaneum for 35 weeks and

sampling each week). Some of the best known of all such
population studies, however, are those carried out by
Nicholson (1950, 1954a, 1954b, 1957, 1960) using the
Australian sheep blowfly Lucilia cuprina as an
experimental animal in attempts to elucidate fundamental
mechanisms of animal population regulation. These
studies were not only extensive in scope but lasted for
long periods (up to 722 days) and were sampled,
uninterrupted, at a high frequency (every 2 days). The
length and high sampling frequency of these experiments
provide particularly good data with which to work and it
is the longest of Nicholson's experiments (1957, Fig. 8)

that are the subject of investigation in this thesis.

10



1.2 NICHOLSON'S EXPERIMENTS

The Australian entomoleogist A. J. Nicholson used the
blowfly Lucilia cuprina (Wied.) as an experimental animal
to investigate population oscillations caused by
competition for food (1950), 'compensatory reactions'
(1954a) and the self-adjustment of populations to change
(1957). It is one particular dataset (see Fig. 1.11)
from this later paper (Nicholson, 1957, Fig. 81) that
forms the main target of investigation in this thesis.
Hereafter, all references to 'the data' or 'the

experiment' refer to this experiment.

An outline of the experiment is given in Nicholson (1957,
ple3) Brillinger, Guckenheimer, Guttorp and Oster (1980

pb7) provide the following description:

"On 15 May 1954 1000 pupae were set up in a perspex box
with a balsa wood grid on top of them to retain pupal
cases. Food consisted of lump sugar and moistened
cotton wool pad. Practically all eggs hatched
overnight. Adult food consisting of .4 gram ground
liver, dried in a desicator, was added to the cage on 20
May. This quantity was added daily. Measurements were
first made on 21 May. The basic data recorded were
Eotal counts of emerged or dead flies at two day
intervals and the dates when the emerged flies had been
laid as eggs. The experiment continued until 10 May

1956."

11
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Unfortunately, Nicholson (1954b, 1957, 1960) never gives
any more details about the experimental design than those
reported by Brillinger et al (1980). The following
comments, though, are useful in understanding the

exper iment.

Carbohydrate (supplied as sugar) and water are essential
to adult blowflies and larvae - without both, they cannot
long survive (Rasso and Fraenkel, 1954). Nicholson
intended, by supplying carbohydrate and water on an ad
lib basis, that adult mortality should not be influenced
by density. Protein (supplied as ground liver) is not
necessary for survival but is necessary for successful
reproduction (Evans, 1936; Dorman et al, 1938; Hobson,
1938; Rasso and Fraenkel, 1954; Harlow, 1956; Orr,
1964; Roberts and Kitching, 1974; See Wu, 1978 for

review. )

Protein is not only essential in reproduction for
nutritional reasons but also (Nicholson 1960) because
blowflies lay their eggs on it in respnse to having taken
a protein meal. Although never explicitly stated in any
of Nicholson's papers, the counting of eggs would thus be
greatly facilitated as they would all be contained in the
liver which was replaced daily. A further inference
about the experimental procedure is that, in order to
count the number of flies that finally emerged from eggs

laid on any particular day, each daily batch of eggs must

13
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have been kept separate from other batches and only the
adult flies (or possibly pupae) transferred to the main
population cage. Such an inferred experimental

procedure is similar to that employed by Wu (1978) when

replicating Nicholson's experiments.

The experiment described above was an 'adult food
limited' (afl) experiment. Nicholson (1954b) also
performed experiments in which larval food was limited
whilst adult food was supplied ad lib; these experiments,
which will be mentioned later, will be termed 'larval

food limited' (1f1).

The 1954b afl and 1fl experiments were conducted to
investigate the mechanism of population balance. The
1957 experiment, however, was in fact a control run.
Micholson performed eight similar runs in an attempt to
study the 'frequency response' of the system to a
periodic driving force; in future these runs will be
referred to as the 'driven' experiments. The results of
two of these runs, in which protein input varied from 50
to 500 mg 4”1 with a 20 or 80 day period, are shown in

Fig. 1.1 (C & H respectively).

Nicholson (1954b, 1957, 1960; see Clark, Geier, Morris
and Hughes, 1967, for review) explained the violent
oscillations seen in the blowfly experiments in terms of

density-dependent fertility and the lag (egg to adult

14
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development time) inherent in the blowfly life-cycle.
Apart from explaining the basic oscillatory behaviour,
MNicholson also invoked the observation that the age-
structure was changing over each population cycle in
order to explain certain fine-details such as double or
triple peaking (Nicholson, 1954b legend to Fig. 3;

Readshaw, 1981) on the population fluctuations.

Nicholson (1357, 1960) explained the change in dynamic
behaviour observed in Fig. 1.1 I around the four
hundredth day, in terms of selection acting to produce
flies capable of laying eggs in the absence of protein -
l.e. a reduction in the level of 'scramble' competition
(Nicholson 1954b; Varley, Gradwell and Hassell, 1973;
Gurney, Blythe and Nisbet, 1980) which Nicholson
considered to be the underlying cause of population
oscillations (Nicholson, 1954b pl9; see Maynard-Smith,
1574 pp 38-42). This explanation was supported by
experimental evidence that post-experimental flies could,
indeed, lay eggs in the absence, or near absence, of

protein (Nicholson, 1957 p 171).

That Nicholson's (1957) 'driven' experiments (Fig. 1.1 C
& H) synchronized, or phase-locked, with the 'driver'
(i.e. the variable protein input rate) was taken by
Nicholson as confirmation of his hypothesis (1933) that
populations tend to conform to climatic change.

Nicholson did not attempt to explain why the population

15



subjected to a Z20-day, variable protein-input rate (Fig.
l.1lc) first of all cycled with a period precisely double
that of the driver but then (from around the five
hundredth day) exhibited a period equal to that of the

driver.

1.3 A REVIEW OF PREVIOUS MODELLING OF NICHOLSON'S

BLOWFLY POPULATION DATA

The wealth of information in Nicholson's data and the
various possible mechanisms responsible for the ocbserved
population fluctuations were not the subject of
mathematical enquiry until some 15-20 years after
Nicholson's original publications. Beginning in 1973,
however, until the present time, there has been a
considerable amount of effort put into examining
Nicholson's data or in using it as an example to support
the notion that 'chaotic' (i.e. - c.f. Oster and
Ipaktchi, 1978 - 'apparently random motion within a
bounded attracting region'; see also e.g. May, 1974b:;
1975; Li and Yorke, 1975; Kadanoff, 1983) behaviour

might be common in Biological populations.

Much of the enguiry into Nicholson's experiments has
focussed on characterising gross features of the data
(e.g. how the population oscillations arise); effort has
also been put inte trying to understand how fine-detail
arises. In this and the following section I shall

consider both of these aspects.

16
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May (1974a pp 100-102) and Maynard-Smith (1974 pp 38-42)
consider Nicholson's (1954b) adult food limited
experiment and both seek to explain the blowfly
population dynamics using time-delayed, continous-time
models. May considered the time-delayed logistic model
(Hutchinson, 1948) and concluded that the population was
limit-cycling - the limit-cycles being generated by the
time-delayed regulatory mechanism (density-dependent
fecundity) in the model. He estimated, based upon his
analysis of the model, that the egg to adult development
time should be 9 days. Despite the surprisingly good,
gualitative fit to the data that May produced (see also
Aduslander, Oster and Huffaker, 1974), he recognized that
the 'true' egg to adult development time was about 11
days (Nicholson, 1957 Fig. B6E). Maynard-Smith used a
biologically more reasonable model with two free
parameters (the time-delayed logistic has only one) but
did not attempt a simulation of the data. Maynard-
Smith's broad conclusions are in agreement with those of
May and Nicholson - that the delay in the regulatory

mechanism is the primary cause of the oscillations.

Hassell, Lawton and May (1976) sought to characterise
about 30 insect populations as either stable, unstable or
chaotic. This characterisation was accomplished by
estimating parameters from population data (mainly life-
tables) for a generalised, single-species, difference

equation model due to Hassell (1975) and by plotting

17



the estimates on the stability diagram for the model.

All but two of the insect populations were characterised
as stable and only one of those remaining two -
Nicholsen's blowflies - as chaotic. Hassell et al based
their parameter estimates on Nicholson's (1954b) larval
focod limited experiment, not the adult food limited

exper iment. Varley, Gradwell and Hassell (1973) had
previously characterised the same experimental population
as being unstable; Gurney, Blythe and Nisbet (1980) also
characterised the 1954b 1f1 populations as unstable.
Hassell et al's characterisation of the blowfly
populations proved seminal in promulgating the idea that
the blowfly populations (including adult food limited
ones) are chaotic. Apart from the fact that their
estimates are based on the larval food limited data, the
validity of Hassell et al's assertion is in doubt because
their conclusions depend very much on the particular
discrete-generation model that they employed. Wu (1978)
attempted to model replicates of Nicholson's experiments
using Leslie-Matrix models; he concluded that (Wu, 1978,
P 53) '.... discrete generation models are not
appropriate for modelling this population”. That
discrete-generation models are structurally inappropriate
in modelling the blowfly populations is also discussed in
Nisbet and Gurney (1982 chs 2 and 8). Essentially, in
the larval food limited experiments the blowflies do seem
to display approximately discrete generations but in

adult food limited experiments reproduction is

18



continuous, implying overlapping generations. Whilst,
therefore, a discrete-time model may have been
appropriate, as used by Hassell et al when characterising
the larval food limited experiment, it must certainly be
inappropriate to generalise the result of 'chaos' to
adult food limited experiments - a fault which, it will

be seen, has been all too frequently made.

Oster (1976) and Oster and Guckenheimer (1976) studied
the behaviour of a time-delayed, birth and death model,
derived from the von Foerster (1959) equation. They
examined the bifurcation behaviour of the model and
indicated when chaotic solutions might arise. In both
papers, Nicholson's (1957) experiments were used as
examples of the possibility of such chaotic behaviour but
no attempt to estimate model parameters from the data was
made. In the words of Oster and Guckenheimer (1976 p
343) concerning how the population oscillations might

arise:

"naturally the mechanism of bifurcations suggests

itself”.

Oster and Ipaktchi (1978) studied the dynamics of a
continuous-time birth and death model (equivalent to that
studied by Gurney, Blythe and Nisbet, 1980). They
concentrated on defining the conditions for stability,
instability and chaos. Although the model was a

biologically realistic representation of the blowfly

19



populations, again no attempt was made to estimate
parameters from the raw data - the conclusion that the
blowfly populations might be chaotic being seemingly
presupposed. A similar, implicit characterisation of
the blowfly populations as being chaotic is made by
Charlesworth (1980 pp 63-65); it is merely shown that
the chaotic solutions to a discrete-time model may appear
which are similar to the (1957 afl) blowfly population

trajectories.

Wu (1978) attempted to determine whether or not the
blowfly populations display chaotic behaviour. His
approach was not to estimate parameters from Nicholson's
data for a biologically sensible model but to replicate
Nicholson's experiments and to model the resultant data
using Leslie-matrix models. He (p52) concluded that "an
animal may have intrinsic chaotic behaviour". He said
nothing, however, about how such "intrinsically chaotic
individuality" (sic) might influence population dynamics
and, as mentioned above, he also concluded that discrete-

time models were an inappropriate modelling approach.

Nicholson's blowfly populations, then, have increasingly
come to be thought of as displaying chaotic behaviour.
This has arisen, however, primarily due to circumstantial
evidence and only one attempt (Hassell et al, 1976) to
estimate parameters for a particular model; that model
may, though, be fraught with difficulties as it assumes

discrete generations. That so little attempt to

20
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estimate the parameters controlling the dynamic behaviour
of the blowfly populations has been made is due possibly
to the fact (May and Oster, 1976; Poole, 1977) that it
is practically impossible to distinguish the chaotic
behaviour that may be generated by non-linear

deterministic models from random processes.

Because characterisations of the blowfly populations as
chaotic are all - with the exception of Hassell et al
(1976) - lacking in quantitative verification, Gurney et
al (1980) sought to determine guantitatively the nature
of Nicholson's (1954b) blowfly population fluctuations
(i.e. whether they-ara driven guasi-cycles, self-
sustaining limit cycles or chaos). Their classification
depended upon both the stability analysis of a
biologically plausible delay-differential equation model
and parameter estimates from Nicholson's (1954b) adult
and larval food limited data. Gurney et al concluded
that in both adult and larval food limited cases, the
fluctuations were self-sustaining limit cycles.
Examination of further work, reported in Blythe, Nisbet
and Gurney (1982, see Fig. 10), reveals that chaos is not
a sensible possibility given the estimated parameter
ranges for either adult or larval food limited

populations.

21
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1.4 OVERVIEW OF THE THESIS

None of the continuous time models alluded to in sectien
1.3 explicitly include age-structure but approximate it
by containing time-lags to represent larval development
periods. Such "gross representation"™ models are
primarily of use in investigating and characterising
dynamic properties of populations that occur over
generation times or longer. Time delay models may
produce a repetitive fine structure as a simple numerical
response given appropriate parameter values (see e.g.
Oster, 1977a; Gurney et al, 1980) or when
deterministically driven. By 'fine structure' I here
mean pattern or fluctuations that take place over a time

much shorter than a generation.

In general, however, it has been pointed out that an
understanding of how fine-structure might arise
deterministically in the blowfly populations necessitates
a knowledge of the age structure of the population and
how vital rates depend upon age (Nicholson, 1954b; 1957;
1960; Auslander, Oster and Huffaker, 1974; Oster and
Takahashi, 1974; May, 1974a; Oster, 1976, 1981;: Readhsaw
and Cuff, 1980; Gurney et al, 1983; Readshaw and van
Gerwen, 1983). This, of course, was also realised by Wu
(1978) who investigated such age dependences in blowfly
vital-rates and used age structure (Leslie-matrix)

models. Although Wu was unsuccessful in modelling his

22



replicate experiments, Oster (1977a and b) used 'von
Foerster-like' equations with which he was able to

simulate Wu's data 'passably well' (Oster, 1981, Fig. 2).

Although, then, the desirability of age structure models
has been recognised, little attempt has been made to dig
into the age structure of Nicholson's blowfly
populations. This is hardly surprising as Nicholson's
data does not include age structure information.
Brillinger et al (1980; see also Oster, 1981) did try to
infer age-structure in Nicholson's data by making
assumptions concerning how mortality acts dependent upon
both density and age. Their attempt, though, was marred
by the unavailability of experimental evidence upon which
to found their assumptions. Only recently, however,
Readshaw and van Gerwen (1983) have performed various
experiments to investigate how fecundity and survival of
blowflies depend upon both age and density. The results
of these experiments provide a basis for investigating
the age-structure of Nicholson's blowfly populations.

This is the subject of chapters 5 and 6.

In chapter 5, age and density dependent survival is
investigated based on Readshaw and van Gerwen's data.
This investigation also permits the inference of age-
structure in the control population. In chapter 6 the
development rate of adults from emergence to maturity is

considered and the results, although recognised to be

23



erroneous, are combined with the inferred age-structure

in an investigation of age-specific fecundity.

Prior to considering details of age dependencies it is
desirable to clarify both how and why the gross
population dynamic features arise in Nicholson's

exper iments. In chapters 2 to 4, therefore, a gross
representation model will be employed to show that
population attributes represented by model-specific
parameters are changing throughout the experiment
(chapter 2) and that although the population is at first
best characterised in the unstable (but not chaotic)
region of parameter space, selection eventually causes
the population to be best characterised as stable
{chapter 3). This stabilization is sufficient to
explain the alteration in dynamics that occurs in both

the control and the 20-day driven experiment (chapter 4).

1.5 MODELLING

L.o5c1

We are not concerned here with long-term predictions or
the exposition of general ecological possibilities. Our
gross-representation model need not then be 'tactical’
nor 'strategic' in the sense of May (1974a); we require
a model that is a testable model of the blowf 1y

population dynamics. We are interested in determining

24



how and why the dynamic changes observed in Nicholson's
(1857), adult food limited, blowfly populations occur.
To achieve these ends a model that can describe the
general features of the population is required. Such a
model should firstly be capable of explaining behaviour
such as the limit cycles observed in Nicholson's (1954b)
afl data and the apparently similar, fairly regular
cycles seen for the first 400 days in Nicholson's (1957)
control run. The model must, however, also be capable
of producing the alteration in dynamic behaviour that

cccurs in the control run.

Labad FORMULATION OF THE MODEL

It is possible to construct a model with simple age-
structure by writing down linked balance equations for
all developmental stages (see Gurney, Nisbet and Lawton,
1983). Nicholson's (1957) experiments, however, all
permitted ad lib feeding for larvae and the only expected
density dependence in the population, and therefore also
in the model, should occur in the adult stage. For this
reason all pre-adult stages may be lumped together,
leaving only an adult class (the N class) for which, as
no emigration and immigration is possible, we can write

the instantaneous rate of change as

at = R(t) - D(t) (1.1)

where R(t) is the recruitment to the adult population at

25



time t and D(t) is the total number of adult deaths at
time t. All that now remains is to select suitable

functional forms for the per capita vital rates.

Because we have lumped all of the pre-adult stages, if we
assume that in the competition-free experimental
circumstances, that all individuals always develop at the
same rate, then we may represent the lumped age classes
by a single delay, T. This delay must, if it is to make
dynamic sense, be equal to the time taken for an
individual to develop from egg to maturity. The adult
class, therefore, is assumed to consist entirely of

mature individuals.

In reality, not all adults are mature but spend the first
few days of life as immatures. Essentially, this
assumption will mean that estimates of the model
parameters will be valid only in a model specific-sense -
an estimate of maximum per capita fecundity, for
instance, will not be a true estimate of per capita
fecundity of mature flies in Nicholson's experiments but
for the N-class individuals of the model. In practice,
this will not affect the period of population
fluctuations predicted by the model but it will effect
the population levels predicted at oscillation maxima and

minima.

26
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Given the delay, 7, recruitment to the adult class at
time t must equal the number of eggs laid 7 days ago
multiplied by some egg survival factor. The presumed
lack of competition between all pre-adult stages permits
the assumption of a density independent death rate for
pre-adults. This, taken with the constant development
time, 7, implies a constant egg to mature adult survival,
5. Recruitment to the N-class at time t, therefore, is

given as

R(t) = E(t-7) s (1.2)

where E(t) is the number of eggs laid at time t. We
require now, to find a functional form relating egg
production to the adult population size at the time of
egg production. As protein is supplied at a constant
rate, ¢, this is the same as seeking a direct link
between the rate of protein supply per adult (f mg d71)
and the per capita rate of egg production (E(f) eggs
fly~1 - 471,

This link has already been investigated by Gurney et al
(1983 p 487) who found, with the assumption of scramble
competition, an acceptable fit to the data inferred from
Nicholson's experiments, with an exponential function of

the form

Z3
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(1.3)

E(N(t)) = QexP[ ~

-N(t) fo]
where Q is the maximum per capita fecundity and f, is a
characteristic feeding rate. Combining equations (1.2)
and (l1.3) gives an expression for recruitment to the N-

class at time t.of

—N{t-r}.fn
R(t) = 0s N(t-7) exp [ > ] (1.4)

Possible density-dependence of the death rate is
discussed in chapter 2. For now, assume that death rate
is density independent and that there is a constant per
capita death rate, 8. Combining this assumption with
equations (1.1) and (1.4) gives the fully specified model

describing the rate of change in mature adults as

“N(t-7).£
¥ = 0s N(t-7)exp [ P °] - B.N(t) (1.5)

As specified, the model has time independent parameters,
the precise values of which govern the dynamic behaviour
of the population. In this form the model may be used
to simulate adeguately the limit cycles observed in
Nicholson's (1954b) afl experimental population or even
the repetitive behaviour seen for the first four hundred
days of the (1957) control experiment. The model

cannot, however, be used to represent a population which

28



o

undergoes an apparent change in behavioural regime (e.g.
from behaviour characterised as unstable to stable).

if, then, we wish to use the model to describe the (1957)
control data in which an apparent behavioural shift does
occur, we must not specify time invariant parameter
values but .instead admit time-dependency. In chapter 2,

estimates of Qs(t), 8(t) and f5(t) are made.

Equation (l1.5), hereafter referred to as the G-B-N model,
is of course only a partial specification of a model - we
still need a description of the initial conditions.
Nicholson (1957) started his experiments by placing 1000
pupae in a cage and beginning counts 2 days later. All
solutions to models will, therefore, start with an
innoculation of 1000 adults at time zero and will have an
initial history of zero population. Because
Nicholson's data are presented in 2-day blocks, the
population size being integrated over each datum
interval, all solutions to eguation (1.5) will be

displayed as population size averaged over the prior two

days.

The solutions presented in the thesis are all obtained
using a modified predictor-corrector algorithm - 'Solver'
(Maas, Nisbet and Gurney, 1982) - implemented on either a

Western Digital Microengine or a Sage II minicomputer.
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CHAPTER TWO
PARAMETER CHANGES AND ESTIMATION
INTRODUCTION

Nicholson (1857 p. 1l63) noted a number of obvious
alterations in the population behaviour of his control
exper iment. Specifically, he noted that the average
population size, and the population size at oscillation
minima, seemed to be rising as the experiment progressed.
He proposed that this was due to selection acting during
the experimeﬁt to produce flies with an improved egg
laying capacity. He tested this assertion experimentally
and found, quite remarkably, that post-experimental flies
could, unlike wild or laboratory stock flies, produce
eggs in the absence of protein; fig. 2.1.1 shows 100-
day, mean populations plotted against time, and fit with
an exponential regression time to emphasize the large and

unequivocable rise in mean population size.

Another notable change apparent in the control population
occurs at around 400 days into the experiment. Before
this point there is a fairly regular, cyclic behaviour
which then gives way in the later stages to a less
regular and not so obviously periodic pattern. Power
spectra (Figs. 2.l1.2a and b) of these two experimental

portions are revealing; Fig. 2.1.2a shows that in its
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earlier stages, the population fluctuates with a period
of 40 (+ 2) days. Fig. 2.1.2b clearly indicates that the
dynamics change - the behaviour of the population in the
later stages is barely cyclic at all; the spectrum, in

fact, is indicative of a great deal of broad-band noise.

This shift from strongly cyclic behaviour to essentially
non-cyclic fluctuations is also apparent, but manifests
itself differently, in the experiment subjected to a 20-
day variable protein-input regime (see Fig. 1l.lc).
Again, there is a clear change in dynamic behaviour -
this time about 500 days into the experiment. Over the
first 500 days Fig 2.1.3a illustrates that there is a
dominant period of 40 days (equivalent to twice the
driving period) which then gives way, as shown in Fig.
2.1.3b, to a twenty day cycle (equal to the driving
period). This behaviour begs to be explained (see
Appendix 1 and Fig. Al.2) as synchronization of the
natural limit cycle to the half-harmonic of the driving
frequency giving way to a simple capturing of the
(stable) system by the driving force ('periodically
driven guasi-cycles', Nisbet and Gurney, 1982, ch. 7).
This apparent shift from behaviour characterised as
unstable to stable in the driven experiment now suggests
that the shift in behaviour in the control is similarly
caused and that the power spectra (Figs. 2.1.2a and b)
are representative of a perturbed limit cycle and a

stable, underdamped system subjected to noise.
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2.2

2.4:X

In summary, the average population size in the control

experiment is increasing with time.

In both the control and 20-day driven experiments, the
observed dynamics and power spectra are consistent with a
shift from behaviour characteristic of the unstable
region of parameter space to behaviour characteristic of
the stable region. With this in mind, estimates through
time of the parameters of a model describing the blowfly
population dynamics - the G-B-N model - are derived in

the following sections.

DEATH

DC DEATH RATES VARY?

That per capita, daily death rate varies greatly is clear
(see Appendix 6, Fig. Ab.l) from the raw data presented
by Brillinger et al (1980). Gurney et al (1980)
estimated the death rate for a similar experimental
population (Nicholson, 1954b - adult food limited case)
by plotting the log of population sizes, during declines
to oscillation minima, against time. During these
periods, recruitment approaches zero and the slope of the
resulting plotted lines is an estimator of the per capita
death rate, &. A similar exercise has been carried out
for the 1957, control data, yielding the following

results.

& = 0.17 £ 0.02 471,
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The 1957 control experimental population had access to
0.4 g protein per day, the 1954b afl experimental
population had access to 0.5 g protein per day. Gurney
et al estimated per capita death rate for the 1954b

population as

0 =0.27 £ 0.025 471,

The ten individual measurements upon which the 1957
estimate (0.17 + 0.02 d7!) is based are quite variable
and show neither a consistent decrease nor increase with
time. A dependence of death rate on some other guantity
(or guantities) is indicated - the obvious first

candidate being density.

[S DEATH RATE DENSITY-DEPENDENT?

Previous workers' perception of the relationship between
death rate and density is ambiguous. Oster (1976) says
that blowfly death rates are 'nearly random' whilst
Brillinger et al (1980) claim a ‘clear indication that

the adult death rate is density-dependent'.

It can be seen that death rate does tend to increase with
density (Fig. 2.2.1) but that there is a great deal of
variation. The fitted regression line in Fig. 2.2.1
accounts for only a small amount of the wvariation in the
data (r? = 0.21). The large amount of variability seen
in Fig. 2.2.1 may well be due to the confounding effects

of age and possibly history dependence.

36



=— NOI1LVINndod

000°s1

29€=U " 5GH.0=J
N-ZEL000D-0 +%LL0=(N)Q

S0

31VY H1v3a AIva "v1ldv) ¥3d

37



Fig. 2.2.2 is a plot of death rate versus age for the
cohort of individuals comprising the initial population;
it is clear that age may have a pronounced effect on
mortality. That history might be important is
intuitively reasonable - the probability of an individual
dying depends not only on current events but also on the
health of that individual, a state which is dependent
upon (at least recent) past events. Precise details of
the effects of age and density on mortality are
investigated more fully in chapter 5, together with

possible history dependence.

Meanwhile, for use in the ensuing modelling and
simulation exercise, and to emphasize that mean death
rate probably does increase a little during the
experiment, a simple analytic fit of death rate against
time is presented; Fig. 2.2.3 shows an exponential
regression line fitted to 100-day, mean death rates

plotted against time.

FECUNDITY AND COMPETITIVE RESILIENCE

A SIMPLE APPROACH TO ESTIMATING Qs

According to Nisbet and Gurney (1982 p. 302), if the

amplitude of the blowfly population cycles is sufficient

to produce a minimum population which is substantially

smaller than that population able to achieve maximum
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reproductive success (#(t)/f,(t) - see equation 1.4),
then the recruitment curve against time will have a form
characterised by a double peak. Nicholson's (1954b)
adult food limited populaticn data satisfies this
condition and it is thus possible to estimate fecundity,

Dz, from .

MAX. EGG PRODUCTION RATE x SURVIVAL - 08 e—l
POPULATION AT TIME OF MAX. PRODUCTION

Gurney et al (1980) deduced values of Qs. for the (1954b)

afl population of
1.4 { Qs ¢ 7.4

and hence concluded that the blowfly population cycles
could only be explained as limit-cycles - because, with
the assumption that 7D = 14.8 days (an egg to mature
adult approximation) the possible values of Qs 7D, for
the possible range of 87, all lie within the unstable

region of Qs7 — 67 parameter space.

A like exercise has been performed for the 1957 control
data (for which - see Fig. 1.1lI - the double peak
criterion is justified). Qs estimates for the first
three cycles are large, some greater than 30; over these
initial cycles, however, the population is strongly
influenced by initial conditions and estimates are likely

to be unreliable. For the remaining 17 cycles measured,

4



Qs is estimated as

1.9 < Qs < 7.1

which is clearly compatible with CGurney et al's estimated

range. s

If  is again taken to be 14.8 days, the Qs T+ estimates
lie in the unstable region of parameter space for all

sensible estimates of deatﬂ rate, 6.

The individual Qs estimates, though, also tend to
decrease with time and come to approach the stability
boundary. This simple method of estimating Qs leads,
then, to the idea that the maximum per capita fecundity
might be declining with time and this seems to contradict
Nicholson's perception of flies developing an increased
egg laying capacity; this point will be returned to in

the discussion.

Just as Qs estimates show evidence of declining, so too
do f, estimates - f, is the amount of protein available,
per capita, at the time of maximum egg production and is
estimated as the average over each double peaked egg
production cycle. The equilibrium population for the G-

B-N model is given by

N* = (®/£,) In (Qs/B) (2.1)

L2



3.2

[t can be seen, therefore, that a decline in f, may

result in the observed, gradual population increase.

In order to achieve a more rigorous characterization of
the variation in Qs and f, values throughout the
experiment, the following statistical approach was

adopted.

A REGRESSION TECHNIQUE FOR ESTIMATING Qs and fo

The obvious, simple approach to estimating QOs and fo is
Lo transform the egg production function (1.2) into a

form suitable for linear regression analysis -

In (E(L)/N(t)) = In Q. - (N(t)/®)fs (2.2)

In order to estimate Qs rather than Q, however, we need
Eo use not E(t) but the number of viable eggs which were

produced at time t, Ey(t).

A plot of In (Ey(t)/N(t)) vs. N(t)/® yields, then, a
straight line of intercept InQs and slope f,. Using the
linear regression technique allows for the easy
calculation of standard errors on the point estimates of
Qs and f,; and also yields, of course, the linear
correlation coefficient, r, a measure of the goodness-of -

f£it.
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Apart from the usual underlying assumptions of least-
squares fitting (e.g. randomly distributed, random
errors), the added assumption is implicitly made that the
transformation of the data to a linear form should not

unduly bias the estimates of Qs and f,.

A linear fit will, though, be greatly influenced by
points that lie well to the right (on the 'tail') of the
recruitment hump where the population is high and egqg
production is low. As the important akttributes of the
recruitment function for Qs and f, estimation are the
position of the peak and the slope of the approach to the
peak, a decision was made to weight points in proportion
to egg production. Weighting in this manner mitigates
against points of high or low N. The most weighted
points have high egg production and middle range N.
Counting/sampling errors should therefore be of less

importance and unlikely to introduce bias.

The results of analysis for various regression interval
lengths of less than 100 days are presented in Appendix
2 Table 2.3.]1 summarizes results for a regression
interval of 100 days. Standard errors are not included
in Table 2.3.1 but are shown in Fig. 2.3.1. Notice that
the error bars on the Qs estimates are not symmetrical -
this is due to the fact that Qs is estimated as

exp (intercept + standard error).
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TABLE 2.3.1 Qs and f, estimates obtained from l00-day
regression intervals. A) data abutting start of

experiment. B) data abutting end of experiment.
g/

midpoint of 0s £ $ number of data
regression

o points used in
interval (days) the analysis

a) 51 5.86 0.37  -0.61 38
151 3.93 0.53 -0.80 41
251 2.50 0.44  -0.86 46
351 2.79 0.32  -0.82 49
451 0.89 0.18 -0.69 50
551 1.00 0.13  -0.61 50
651 1.27 0.10  -0.58 49

B) 71 4.21 0.36  -0.61 38
171 3.70 0.52  -0.81 45
271 2.33 0.43 -0.86 46
371 3.27 0.34  -0.85 49
471 0.78 0.14  -0.56 50
571 1.33 0.16  -0.48 50
671 0.90 0.09 ~0.67 45
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To emphasize the shift in parameter wvalues throughout the
experiment, the estimates are fitted with exponential
regression lines of the form y = a exp{-t/to}. Table
2.3.2 lists fits of this form for y = Qs and y = for
together with correlation coefficients, for various
lengths of regression interval. Clearly, the length of
the regression interval makes little difference to the
overall pattern of gradual decline. These fits were
obtained by regressing In y on t and thus the linear
correlation coefficients are gnly a guide to the
reliability of the heuristic properties of the
exponential regression fits which will be utilized later

in simulations (chapters 3 & 4).

CHECKING FOR BIAS/CONSISTENCY IN THE PARAMETER ESTIMATES

The linear regression model was adopted under the
assumption that transforming the data would have little
effect on the parameter estimates obtained. The
weighting procedure was adopted to further reduce any
effect that the transformation might have. For the
results to be of use it is necessary to test these

assumptions.

It is simple to derive equations for estimating Qs and f,
by a non-linear least-squares procedure (see Appendix 2).
Computation, however, involves iterative procedures and

it is not easy to obtain standard errors for the

L7



TABLE 2.3.2 EXPONENTIAL REGRESSION FITS TO Qs and f,

POINT ESTIMATES OBTAINED FOR DIFFERENT LENGTHS OF

REGRESSION INTERVAL.

EXPERIMENT, BR)

A)

DATA ABUTTING START OF

DATA ABUTTING END OF EXPERIMENT.

RECEESE 10N 0s = 9s(0)e /%5 £, = 25008 /%o
INTERVAL 03 (0) £ (08) 00 T(E)
(DAYS)
40 5.84 325.8 - -0.72 0.54 384.3  -0.85
60 6.73 292.7  -0.87 0.58 357.6 -0.95
80 6.66 294.2  -0.87 0.61 336.5 -0.93
900 6.28 296.7  -0.89 0.58 342.8 -0.94
100(A) 5.92 313.5  -0.88 0.49 399.6 -0.93
100(B)  5.96 325-;"- -0.90 0.53 379.2  -0.90
ALL DATA 6.21 308.7  -0.82 0.55 366.3 -0.91
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estimates or a measure comparable with r, the linear

correlation coefficient.

Estimates using the procedure outlined in Appendix 2 have
been made for the regression intervals of 100 days
abutting the start of the experiment. The outcome of the
analysis is presented in Fig. 2.3.2 which shows both
linear, weighted estimates and non-linear, unwe ighted

estimates for Qs and f,.
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FIG. 2.3.2 Estimates (+ standard errors) as in Fig. 2.3.1 from
regression intervals of 1l00-days abutting the start of the data,
plotted against time together with estimates (X) obtained for th«
same intervals using an unweighted, non-linear regression

analysis A) Qs B) f,.
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The Qs estimates cbtained using the linear analysis are
all lower than their non-linear counterparts (Fig.
2.3.2a). This is due to the linear analysis rather than
the weighting procedure - an unweighted linear analysis
actually yields even lower estimates. This is caused,
presumably, by the linearised 'tail' of the recruitment
hump exerting a disproportionately strong influence and
causing a reduction in the estimated value of In Qs.

The weighting procedure, whilst not fully compensating
for the linear transformation does, at least to some
extent, 'prevent the tail wagging the fit'. Not only
are the non-linear estimates all higher than the
weighted, linear ones, but they do not even all lie
within one standard error. We do not, though, have
estimates of standard errors for the non-linear estimates
and a comparison, therefore is difficult. Nevertheless,
the non-linear estimates do exhibit a decline through
time which is consistent with that observed for the

weighted, linear estimates.

Estimates of f, obtained using the non-linear analysis
are consistently greater than their weighted, linear
counterparts. All but one of the non-linear estimates
do, though, lie within one standard error of the
weighted, linear estimates. The general pattern of

decline 1s consistent for the two analytic approaches.
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In summary, the weighted, linear procedure produces

estimates of 0s and f, which are lower than would be

obtained with a non-linear fitting procedure. The

overall pattern of decline is seen with both procedures

and the results of the adopted, weighted linear

regression appear robust.

DISCUSSION

We have established that

1)

ii)

iii)

both population at oscillation minima and overall
mean population are rising during the course of

the experiment,

per capita death rate rises throughout the
experiment (see Fig. 2.2.3). There is, however,
a large amount of variability in the death rate
when plotted against population size (Fig. 2.2.1)
- any density-dependent relationship is,
therefore, well-disguised; the effects
confounding any density-dependent relationship

are possibly age (see Fig. 2.2.2) and history,

the maximum per capita fecundity of adults
decreases with time whilst f, (the reciprocal of
which is a measure of 'competitive resilience')

also declines.
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Nicholson perceived an increased egg laying capacity in
the blowflies; this seems to be contrary to the above
statement that fecundity declines. What precisely
Nicholson meant by 'egg laying capacity' is, however,
unclear. He (Nicholson) may have been referring to
population egg output but it is much more likely that the
allusion is to the individuals in the population. If we
are to consider Nicholson's remark as referring to
individuals then there are two explanations which may

account for the seeming inconsistency.

Firstly, Nicholson may not have been referring to per
capita fecundity or 'competitive ability' (Aiken and
Gibo, 1979) - but to the fecundity of mature individuals
in the population. Our estimates of Qs refer to all
adults and it is thus possible that a changing ratio of
immature to mature flies results in the observed decline
in Qa. We do not know how the fecundity of mature

adults varies through time.

Secondly, let us consider why f, declines. The
reciprocal of £, is a measure of competitive resilience.
This is not to be confused with competitive ability (or
fecundity). Competitive resilience does not refer to a
capacity to lay eggs per se but to the ability to lay
eggs iﬁ the circumstances of competition for resources.
Nicholson's 'egg laying capacity' may - as is suggested
by Oster (1981) with reference to Guttorp (1980) - be a
reference to competitive ability or it may have been a

reference to competitive resilience.
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Why then does f, decline? I would suggest that the
decline in f5; is an outcome of selection acting to
produce competitively resilient flies. Examples of
unintended selection in the laboratory do exist. Van
Den Ende (1973) reported the selection of 'sticky'
bacteria in a predator-prey system; bacteria that
evolved the ability to adhere to the walls of a glass
culture-vessel were more able to escape predation in an
otherwise homogeneous (and dangerous) environment.
Bazin and Saunders (1978) reported apparently spontaneous
changes in population densities of a bacterial prey and
an acrasidan predator. Agur (pers. comm.) has noted
that certain strains of a laboratory stock of a stored-
product beetle display an increased tendency towards

cannibalism.

Selection, then, may be acting to enhance competitive
resilience rather than to increase fecundity, the
selective pressure being competition for a limited
protein supply. It is often presumed (c.f. Calow (1978,
p87)) that selection acts to increase fitness, defined as
gross, replicative capacity (i.e. 'competitive ability'),
but this is only necessarily true if resources are
unlimited. Fitness may be a measure of the extent to
which a particular trait comes to monopolize the
available resources (Lotka, 1922). In the blowfly
population it is this latter process that occurs. Such
a process is self-reinforcing - as competitive resilience

increases so does competition (selective pressure) for

Sk



resources - it is a genetic feedback mechanism (Pimentel,

1961).

I believe that it is this genetic feedback which causes
the change in parameters which will be shown in the next
chapters to underlie the observed population dynamic

changes.
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CHAPTER 3

THE DYNAMIC CONSEQUENCES OF CHANGING VITAL-RATE

PARAMETERS IN A CONSTANT ENVIROWNMENT

31 INTRODUCTION

In this chapter the steady state behaviour and local
stability analysis for the G-B-N model are presented.
An indication of how the parameter changes described in
the previous chapter will influence behaviour is then

made.

The G-B-N model assumes that all adults are mature and
incorporates a density-independent death rate. These
are definite simplifications and thus a few model

variants, which alter these assumptions, are considered.

As this is the first point in the thesis where the
dynamic behaviour predicted by particular models is
mentioned, it is worth reiterating that these models are
presented as testable models of the laboratory population
under consideration. The final test of the models is
the quality of the simulations that are to follow; that
is, whether or not they capture the gross dynamic

properties that are patent in the data.
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3.2.1 BEHAVIOUR OF THE G-B-N MODEL AND THE PREDICTED

CONSEQUENCES OF CHANGING PARAMETERS

The equilibrium population of the G-B-N model is given by
egquation (2.1). Fig. 3.2.1 is a plot of the predicted
equilibrium population based on the estimated parameter
changes, against time. As all of the parameters (8,Qs
and f5) are changing with time, the plot is essentially a
sequence of predicted, instantaneous population

equilibria.

Also shown in Fig. 3.2.1 are the 100-day mean population
levels and an analytic fit to those points. Clearly,
whilst the predicted equlibrium population rises in a
similar manner to the mean population, it is consistently

greater (typically by between 1000 and 1500).

An idea of the dynamic behaviour to be expected may now
be gained by examining the behaviour of the model
linearised about the steady state. Fig. 3.2.2 shows the
local stability boundary in Qsr - 87 parameter space
together with an estimate of how Qs and 8t are

changing during the course of the experiment.

The population plainly begins in the unstable region (of
parameter space) and we should, therefore, expect to see
the population exhibiting limit-cycles. Fluctuations

which could very plausibly be perturbed limit-cycles are
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8.7 are estimated to change during the course of the experiment.
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observed in the experiment for about the first 400 days
(see section 2.1.2). In the deterministic simulation
these limit cycles will, of course, be more regular than

those observed experimentally.

The local stability boundary is crossed at 390 %+ 5 days
and the stable region is entered; at first the
population is in the underdamped region but gradually
passes into the overdamped region passing in turn through
areas that might roughly be called characteristic of
strong, weak and n;n-cy¢lic behaviour. In Fig. 3.2.2
these areas are delineated by fuzzy contours representing
coherence numbers (ng) of 5 and 1. The coherence number
is, 1n a static environment, a measure of the number of
cycles over which the amplitude of those cycles reduces

by a factor e (Nisbet and Gurney, 1982, ch. 4 p 58).

A deterministic simulation should then, considering the
trajectory over the stability diagram, display limit
cycle behaviour for about the first 390 days but then
exhibit a gradual, cyclic approach to the predicted
equilibrium value - equilibrium only being reached

towards the end of the simulation.
3.2.2 THE MODEL WITH DENSITY-DEPENDENT DEATHS
The relationship between density and mortality is not

strong (see section 2.2.2); it is confused, most

probably due to the effects of age and history dependence
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{see chapter 5). Although in later simulations there is
not any intention to use a density dependent death rate,
it is pertinent to investigate the effects that such a
mechanism might have on model behaviour. In this way it
is possible to answer the questions - could a density
dependent death rate alter the predicted equilibrium
population or the timing of passage across the local
stability boundary (the 'switching time') and could any
change in prediction be compatible with the observed,

exper imental results?

If mortality depends linearly on population size as is

weakly suggested by Fig. 2.2.1, then death rate is of the

form

8(t) = 85 + A N(t) (3.1)
where 8o = 0.114 Q-1
and 4 = 1.32 x 1075 47! N71,

The equilibrium population for the G-B-N model modified
Eo incorporate density dependent mortality is now found
iteratively from

N*(t) = (&/f,(t))1n(Qs(t)/(By + AN*(t))) (3.2)

A plot of N*(t) against time, based on the parameter

estimates obtained in chapter 2, is shown in Fig. 3.2.3.
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The predicted equilibrium population is clearly not very
different from that for the density independent death

rate model (Fig. 3.2.1).

A density dependent death rate will, in general, enhance
the stability of a model - for instance, if population
levels increase, the resultant increase in death rate
will tend to counter the population increase and cause
population levels to decrease, thus the death rate will
itself decrease and 2o on... The linearly dependent
death rate eguation (3.1l) achieves this enhanced
stability for a wide range of &6; values (see Fig. 3.2.4)
but not if 8o is 'too low'. There is an interesting
(i.e. instability rather than stability is enhanced)
effect for very low 8,5 values; such values, however, are
much lower than that which we will be considering and are

not of immediate interest.

For 8457 = 1.65 the local stability boundary rises as
K(=ATeo/f,) increases. K, in fact, based upon the f,
estimates obtained in chapter 2, varies from < 0.1l5 at
t = 0 days to » 0.6 at t = 400 days. Clearly,
therefore, the effect of a density dependent death rate
would be to bring forward the onset of stability
predicted in 3.2.1. In fact, the switching time would
be brought forward from 390 days to under 290 days - a

difference of 100 days!
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FIG. 3.2.4 Local stability boundaries for the density dependent
death rate model. When K = 0 the model is equivalent to the G-
B-N model. As time progresses, K, which is dependent upon fq,
increases. The line indicates how Qs.r is estimated to change

during the experiment. The local stability boundary is crossed

at 285 < t < 290 days.
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I[f the weak density dependence observed in mortality is
of importance, its neglect in simulations will have
little effect on overall, mean population levels but a
pronounced effect on the switching time at which
stability occurs. That the experimentally obserwved
switching time is in accord with that predicted by the
density independent death rate model is indicative that a
purely density dependent death rate is not a sufficient
explanation for the observed variations in mortality.

The need to investigate age and history effects is

strengthened. This is the stuff of chapter 5.

3.2.3 SPLITTING TOTAL ADULT POPULATION INTO SEPARATE

[MMATURE AND MATURE CLASSES

It was suggested at the end of chapter 2 that the
fecundity of mature adults as opposed to all adults may
or may not be declining but that the observed decline in
Qs might only be a concomitant of a model in which all
adults are lumped together. An investigation of the
effects of age structure is undertaken in chapters 5 and
6, but it is useful at this stage to consider whether or
not a simple splitting of the total adult population into

immatures and matures is possible.

It is easy (Gurney et al, 1983) to model the total adult
population, N, as separated immature, I, and mature, M,
classes and by the inclusion of an extra splitting of 7

into 71 and 7r, (for Immature adult and Larval delays) to
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FIG. 3.2.5 Local stability boundaries for the I/M split model
For both density independent death rate (K = 0) and density
dependent death rate (K = 0.3), the boundaries are calculatsd

with 71, = 11 days and 7] = 4 days.
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keep all 'book-keeping' consistent. Such a model yields
stability boundaries like those shown in Fig. 3.2.5.

This type of analysis, however, is of little utility
unless estimates for Qs referring to mature individuals

only, and estimates for the death rates of immature, &,

and mature, 8y, individuals can be made.

These parameter estimates obviously depend upon how N is
split into I and M classes which, in turn, depends upon
assumptions concerning the length of 77 and the assumed
values of 81 and Oy. A few simple, investigative

attempts have been made.

If 87 is assumed to be zero, as is suggested by Nicholson
(1957, Fig. 6) or very low (0.013 d471), as is suggested
by Fig. 2.2.2, then the calculated mature population
often (predominantly when population levels are very
high) goes negative and, as if to compound the misery,
eggs continue to be produced at such times. To prevent
this biological implausibility, 61 may be assumed equal
to &y- Such assumptions lead to attractive I/M splits
but these are specious, the assumptions are wholly

unreasonable.

Although, therefore, the model analysis is
straightforward, the data splitting is not and there is
little information that can usefully be gained until the
age—-classes can be realistically separated. This

endeavour is left until chapters 5 and 6.
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3.3 DETERMINISTICALLY SIMULATING THE CONTROL EXPERIMENT

Fig. 2.3.1 shows the deterministic simulation of the 1957
control experiment. As predicted in 3.2.1, the overall
mean population rises with time. Also, as observed by
Nicholson, the population size at oscillation minima rises
steadily as the experiment progresses. The power
spectrum (Fig. 3.3.2a) of the simulation for the first 400
days reveals that the period of the simulated cycles is
close (40 * 2 days) to that of the experimentally observed
cycles over the same period (38 x* 2 days). Whilst,
however, the simulation continues to display such cyclic
behaviour after 400 days, the data are essentially
aperiodic. The amplitude of the predicted cycles is
somewhat greater than that observed experimentally and the
population minima and maxima are also greater.
Eventually, as the simulation progresses, the cycles damp
out, finally tracking the instantaneous equilibrium after

about 600 days.

3.4 DISCUSSION

The deterministic simulation of the 1957 control exper iment
captures the gross features of the data, but, in the absence
of age-structure and/or noise, there is little fine-detail

present.

The prediction of the switching time by the G-B-N model,

given the parameter estimates, is in good agreement with
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that observed experimentally - the same cannot be said of
the switching time predicted by the density dependent death
rate model. Two things may be said about this. Firstly,
density dependent mortality per se, taking no account of
age or other effects, is not a good description of the death
process in the blowfly experiments. For modelling
purposes, in the absence of explicit age-structuring,
density independent mortality is justifiable. Secondly,
the G-B-N model was heuristically derived and was accepted
(Gurney et al, 1980) as a valid model of the blowfly
populations on the grounds that it provided a satisfying
gualitative fit to the data and was in good quantificative
agreement; the accurate prediction of switching time is a
further empirical justificaton for the adoption of the

model.

In section 1.2 attention was drawn to previous
characterisations of WNicholson's blowfly populations as
being chaotic; the results of this chapter confirm the
earlier contention that this is not the case. Far from
being chaotic, the 1957 control population eventually moves
towards stability. That the population is initially
unstable, however, is in agreement with characterisations
of the 1954b data by Maynard-Smith (1974), May (1974a) and

Gurney et al (1980).

With the exception of the blowflies, none of the species

considered by Hassell et al (1976) were classified as

chaotic; all but one, indeed, were deemed to display

N



dynamic stability. That stability is the norm amongst
laboratory populations as well as natural populations is
supported empirically by Thomas, Pomerantz and Gilpin
(1980) and by Mueller and Ayala (l198la,b,c); both sets of
authors reporting exclusively on Droscphila spp. - Thomas

et al on 27 and Mueller and Ayala on 25.

Both Thomas et al and Mueller and Ayala, having
demonstrated that stability is the normal state for
laboratory Droscophila populations, attempt to explain how
such a condition might arise. Thomas et al invoke group
selective arguments whilst Mueller and Ayala look no

further than the level of the individual.

Thomas et al argue that populations with chaotic dynamics
are likely to go extinct sooner than non-chaotic
populations. Their idea is that selection acts at the
level of the group by favouring populations which are
likely to persist longer. Clearly, in the case of a
single population of blowflies, such an argument is not
valid. The 1957 control population is not, like the
Droscophila populations of Thomas et al, stable throughout
the experiment (stability having already been selected),
but stabilizes during the experiment. Any genetic
mechanism underlying such stabilization must be acting at

the level of the individual.

It seem probable that the stabilization of the 1957 control

population occurs as a result of a trade—off

12



between competitive ability and competitive resilience.
How, precisely, this occurs is beyond the scope of this
discussion but Nicholson's blowfly data is now seen to be
useful in investigating the evolution of stability - it
is the only good population data in which stabilization

has (demonstrably) taken place.

13
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CHAPTER 4

THE DYNAMIC CONSEQUENCES OF CHANGING VITAL-RATE

PARAMETERS IN A VARIABLE ENVIRONMENT

4.1 [NTRODUCT [ON

In this chapter, the effects of changing vital-rate
parameters are investigated in both deterministically and
randomly varying environments. In section 4.2 a
deterministic simulation of Nicholson's 20-day driven
experiment (Fig. l.la) is presented. This simulation is
included as a test of the argument forwarded in the
preceding chapters, that the parameter changes
(particularly of f,) are an outcome of selection,

mediated by competition for protein.

The deterministic simulation of the control experiment
(Fig. 3.3.1) exhibits a gradual approach to stability;
the control data, however, displays large fluctuations in
the later stages of the experiment. Such fluctuations
can be explained as resonant guasi-cycles which may arise
due to either exogenous or endogenous perturbations.
Whether or not any noise in the blowfly experiment is
demographic rather than environmental is considered in
section 4.3. Simulations are then performed which

incorporate stochasticity.

14



[t is not intended by incorporating stochasticity that the
data might be faithfully reproduced. Performing
stochastic simulations is a route to strengthening the
argument that the altered dynamics observed in the
experiment are truly caused by changes in fecundity, death

rate and competitive resilience.

4.2 SIMULATING THE 20-DAY, DRIVEN EXPERIMENT

It was argued in chapter 2 that the altered dynamics
perceived in both the control and 20-day driven experiments
could best be explained by stabilization of the population
with time. [t is now intended to use the parameter
estimates obtained for the control experiment in an attempt
to simulate the driven experiment. The gquestion to be
answered is this: ia the apparent stabilization of the
driven experimental population caused by a similar

mechanism to that operating in the control?

4.2.1 PREDICTING THE SIMULATED BEHAVIOUR

In the 20-day driven experiment, a 40-day cycle
predominates for about 500 days and then gives way to a
series of cycles with a period of 20 days. In chapter 2
this behaviour was explained as possibly being
synchronization to the half-harmonic of the driving
frequency whilst the population was unstable, followed by a

simple capturing of the (now) stable population by the
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driver. Invoking the same mechanisms now leads to the
prediction, given the Qs7D-87D trajectory of Fig. 3.2.2,
that the deterministic simulation should display a
dominant period of 40 days over the first (roughly) 390
days which will then give way to a period of 20 days.
The average population should rise throughout the

experiment as f, declines.

4.2.2 THE SIMULATION

Fig. 4.2.1 shows a deterministic simulation of the 20-day
driven expafiment. This simulation used the parameter
estimates (for Qs, 6 and f,) obtained from the control
data and used to produce the undriven simulation (Fig.

. g S L B The protein supply, @, in the driven simulation
is step-wise pyramidal, following precisely that used

experimentally.

As with the simulation of the control, the general
features of the data are captured by the deterministic
simulation. In particular, the 40-day cycle eventually
gives way to a 20-day cycle (see Figs. 4.2.2a and b).
The switching-time, however, is much earlier in the
simulation than in the data - notice that the power
spectrum (Fig. 4.2.2b) of the simulation after the 500th
day, reveals only a 20-day period. In the data (see
Fig. 2.1.3b) there is still a 40-day periodicity evident

in the later stages.

16
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4.2.3 DISCUSSION

That the general features of the driven simulation are
similar to those observed in the experiment is indicative
of a similar, stabilizing mechanism in operation. The
rate at which this mechanism operates, however, is
different in the control and driven experiments. This may
be argued as being supportive of the argument that

selection is the underlying, stabilizing force.

The rate at which competitive resilience evolves (i.e. at
which f, declines) must depend upon the selective pressure,
competition for protein. The only difference between the
control and driven experiments is the protein input rate
and hence the force of selection in the two experiments must
differ; consequently, the rate of evolution of
competitive resilience will also differ and the switching-
time from instability to stability will not be the same in

the two experiments.

That both the control and 20-day driven populations
stabilize during the course of experimentation is
indicative that individual selection is a sufficient
explanation for the evolution of stability. The
suggestion at the end of chapter 3, that Nicholson's
control data might be beneficially utilized in studying the
evolution of stability should be extended to include the

20-day driven data.
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4.3 INCORPORATING STOCHASTICITY
4.3.1 [S THE NOISE DEMOGRAPHIC OR ENVIRONMENTAL?

Births and deaths are essentially random events resulting
in the appearance or disappearance of a single
individual. The fluctuations that may thus be produced
are said to be driven by “"demographic stochasticity™ (or
"whether or not God plays dice"™, Turelli, 1982). The
process is only important, however, when populations are
small, i.e. when the coefficient of variation (= YyN/N) is
large. In Nicholson's control experiment the adult
population almost never falls below 300 flies implying a
maximum coefficient of variation of lesa than 6%. We
may therefore conclude that simple demographic

stochasticity is not important.

To convince the reader that demographic stochastic
effects are, indeed, small, Fig. 4.3.1 shows a simulation
of the control experiment subject to demographic
stochasticity. The procedure used in constructing this
simulation is outlined in Appendix 3. The simulation is
virtually indistinguishable from its deterministic
counterpart (Fig. 3.3.1) except that during the last 200
days, a small amount of jitter is discernible.
Incorporating demographic stochasticity does not cause
endogenous resonant guasi-cycles whilst the population is
characterised as stable; if, therefore, the population
fluctuations observed in the later part of the control

experiment are quasi-cyclic and if the system has been
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correctly characterised, such cycles must be exogenocusly

induced.

Environments may vary unpredictably through time
(environmental stochasticity) in ways that are often
assumed to affect all individuals equally. Over a 2-day
interval, such variations will be averaged to some
extent; also, in a well-controlled laboratory experiment,
environmental variability should be small.

Environmental stochasticity might also, therefore, be
expected not to have a large effect; Nisbet and Gurney
(1982 p298) indicate, indeed, the expectation that if
guasi-cycles are a valid representation of the blowfly
populations, then such cycles would be driven by
demographic noise. Even a small environmental wvariation
may, however, have a large effect on the stable,
underdamped population (Nisbet and Gurney, 1976b; 1982 ch
7 p255 - "exogenous resonant guasi-cycles") - the
spectral density of the population fluctuations being

proportional to that of the environmental noise.

It is possible to measure the noise due to environmental
effects in the data if we assume that our parameter
estimates for the birth and death rates are
deterministically valid and that demographic stochastic
effects are small in comparison to environmental

fluctuations. At any time, the data contains the actual

82



birth and death rate information and we already have
estimates of these rates through time. The difference (or
'residuals') between the actual and predicted series
should, if the estimates are correct, be a measure of the
wobble induced in the wvital rates by stochastic

environmental variations.

If, however , the estimates are deterministically
inadequate (due to unconsidered demographic factors) then
we might alsc see additional pattern in the residual series
- specifically, periodicities representing age or density
effects. Let us consider both birth and death rate

residuals in turn.

A) BIRTH RATE RESIDUALS

Birth rate residuals plotted against time are shown in Fig.

4.3.2. The series is calculated as

BIRTH RATE (DERIVED FROM DATA)

- {Qs(t)> exp{-N(t)<{fo(t)>/®}

where '<{>' denotes the estimated parameter value at time t,

derived in chapter 2.

Prediction is clearly imperfect; birth rate 1is often
largely underestimated. A close inspection of the
residual series reveals, however, that following each

underestimate, there is a smaller overestimate. It is
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FIG. 4.3.2 Birth rate residuals ( = actual-predicted birth

rate) plotted against time.
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apparent from the power spectra (Figs. 4.3.3a and b) of
the birth rate residuals that over the first 400 days of
the series the deterministic errors in prediction are due
to two different mechanisms, one occurring with a period
of 38 (+ 2) days which is almost equal (see Fig. 2.1.2)
to a population cycle - and one with a period roughly
equal to a single generation length (19 + 2 days).

These two periods may represent, respectively, density
and age effects. That the generation length period is
not apparent in the power spectrum after the 400th day
(Fig. 4.3.3b) is supportive of this notion as, if the
population is indeed stabilizing, the age-structure is

more stable after this time.

[t was argued previously in chapter 2 that over the first
few population cycles, the age-structure of the
experimental poulation is greatly influenced by the
initial conditions. The large discrepancies observed
between prediction and reality over the first 200 days
may be due to this factor; for times after day 200,
prediction is much better. Notice that not only has the
single generation period disappeared after the 400th-day

but that the total power is also much reduced.

B) DEATH RATE RESIDUALS

Fig. 4.3.4 shows death rate residuals plotted against

time. The series is calculated as
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DEATH RATE (derived from data) - <{&(t)>

As with birth rate, prediction is imperfect - again being
largely underestimated. The power spectra (Figs. 4.3.5a
and b) of the death rate residual series indicate, though, a
different underlying cause of imprecise prediction. Fig.
4.3.5a reveals that errors in death rate prediction of the
unstable population (i.e. t ¢ 400 days) are cyclic with a
period of one population cycle. There is no evidence,
however, of a single generation effect. It was argued in
chapters 2 and 3 that death rate is only weakly density
dependent (being also dependent upon age). The lack of a
single generation period in the death rate residuals series
is, therefore, slightly surprising because we would expect

Lo see evidence of age, as well as of density dependence.

After the 400th day, when the population has stabilized,
the death rate residuals do not display a strong
periodicity (see Fig. 4.3.5b) equal to that of a population
cycle. The power spectrum reveals that discrepancies
between the actual and predicted death rates are much more

certainly due to noise alone.

In summary, both birth and death rate predictions are
imperfect due to neglect of both density and age effects.
There is evidence, though, that the vital rates also vary
unpredictably - due, presumably to random, environmental

variations.
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4.3.2 MEASURING THE NOISE AND SIMULATING THE EXPERIMENT

For times less than 400 days the population is
characterised as unstable and the observed fluctuations as
limit cycles. Environmental noise might perturb such
limit cycles and may cause variations in amplitude and even
non-repetitive fine structure. We are primarily
interested, however, in determining whether or not our
characterisation of the population after the 400th day, as
stable but influenced by external noise is a reasonable
one. To test the characterisation we may measure the
noise from the power spectra of the residual series after t
= 400 days and simulate the experiment incorporating this
noise. The method of incorporation is described in

appendix 3.

Essentially, birth and death rates will be calculated as

V() = Vppo(t) + s:r” v(t) (4.1)
where
V(t) = Vital rate at time t
Vper(t) = the deterministic estimate of the wvital
rate at time t
Sy = the spectral density of the noise
associated with the residual series
y(t) = Gaussian white noise of zero mean and

unit spectral density.
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Sy is estimated for birth and death rates (Sg and Sg
respectively) from the power spectra shown in Figs.

4.3.3b and 4.3.5b as

1/2  _
s} - 0.25
1,-”1 -1
3/ 0.20 for £ > 0.05 4
séé’ = 0.60 for 0 ¢ £ < 0.05 & *

Sg is simply the mean spectral density of the death rate
residual series after the 400th day (Fig. 4.3.5b). Sg1
is the mean spectral density of the birth rate residual
series (Fig. 4.3.3b) for freguencies greater than 0.05 4~
1 and thus ignoring the dominant period; Sg2 is the mean
spectral density of the same power residual series for
all frequencies shown. To test for the importance of
the periodicity present in the birth rate residual series
after the 400th day, a simulation with a sinusoidally
variable element of Qs is included. Such a
deterministically variable portion of Qs is equivalent to
representing the dominant period in Fig. 4.3.3b as a
delta-function. The amplitude of the continuous (sine)
function is taken as Z1/2 where Z is the total power
present in the peak of the power spectrum. For the
simulation with the dominant period present at a

frequency of £ = 0.025 @1, Qs is represented as

Qs(t) = Qsppr(t) + 0.2 s8in(0.157 t) + Sg11/2 y(t)  (4.2)
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Fig. 4.3.6 shows a simulation with 8 varying
deterministically and Qs varying stochastically

(Sg12 = 0.2). The effect of such stochastic variation
about the deterministic trend in Qs is plainly small - the
simulation is barely distinguishable from the
deterministic (Fig. 3.3.1) or demographically stochastic
(Fig. 4.3.1) analogues for the first 500 days and even after
this time, only fluctuates weakly. Increasing the
stochastic variability in Qs (Sg2? = 0.6; see Fig. 4.3.7),
however, causes larger fluctuations in the stable region
but leaves the 1limit cycles essentially unperturbed.
Adding a pericdic' element (using equation 4.2) has no
apparent effect on the limit cycles but produces a

capturing of the stable system which then oscillates at the

driving frequency(F] g.4.3.8).

Adding stochastic variation (Sg!/2 = 0.25) about the
deterministic trend in death rate (Fig. 4.3.9) has a much
more dramatic effect. Such wvariation not only causes
considerable perturbation to the limit cycles - even
repeatedly causing double-peaks — but induces large quasi-
cyclic fluctuations over the last 300 days of the
simulation. Fig. 4.3.10a shows a simulation with death
rate varying as in Figs 4.3.9 but with additional birth rate
variation (Sg3? = 0.6). This is shown for comparison with
the data (Fig. 4.3.10b); power spectra (Fig. 4.3.1la-d) of

the simulation and data are also
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FIG. 4.3.10 A) Simulation of the control data with
stochastic Qs and 0 (& as in Fig. 4.3.9, Qs as in Fig.

4.3.7). B) the control data.
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shown. The gualitative similarity between the simulation
and the data is clearly caused by the stochastic variation

in the death rate rather than the birth rate.

Although the power spectra in Fig. 4.3.1ll1 illustrates the
similarities between data and simulation (i.e. like periods
- 40 £ 2 va. 38 £ 2 days - for the limit cycles giving way to
'broader band' noise in the later stages), there is one
feature of the simulation that deserves special mention.
The extra 'peak' in the power spectrum of the simulation
after £ = 400 days (see Fig. 4.3.11b) represents a period of
10-11 days and is not present in the power spectrum of the
data (Fig. 4.3.114). This extra peak appears in all
simulations in which the death rate is assumed to wvary
stochastically. This is due to the way in which such
variation is added; the modulus of the transfer function
of the G-B-N model with stochastic death rate has an unusual
form (see Appendix 4) in which there is more than one peak,
the height and precise positioning of which depend upon the

Precise values of Qs and 8.

That a similar extra peak does not occur in the power
spectrum of the data is a reminder that, although the
simulation is appealingly similar to the data, the way in
which this has been achieved may ignore certain important

details of deterministic effects in the death rate.
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4.4 DISCUSSION

The deterministically driven simulation of Nicholseon's 20-
day driven experiment, using parameter estimates obtained
from the control data, displays qualitatively similar
behaviour to the driven data; this strengthens the idea
that the estimates and the model are good representations
of the blowfly experiments. Further, that the rates of
the caducity producing dynamic changes differ in the
control and driven experiments, suggests that the mechanism
underlying the wital rate changes is natural selection.
This selection must be acting at the level of the individual
and both the control and driven experiments are perhaps
excellent candidates for the study of the evolution of

stability in animal populations.

The dynamic behaviour of the driven experiment is, then,
well explained by the hypothesis of stabilization. That
the simulations with stochastic variation in the wvital
rates are gqualitatively good facsimilies of the control
data suggests that the same mechanism (i.e. stabilization)
also affords a satisfactory (and indeed satisying)
explanation for the guasi-cyclic behaviour seen in the

control data after the 400th day.

Demographic stochastic effects on the control data are

shown to be small; measuring environmental stochastic

effects is observed by the deterministically imprecise
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prediction of the vital rates. This imprecision is due to
neglect of age-structure in particular, and at least in the
case of mortality, density dependence. Including
environmental stochasticity in simulations produces
fluctuations similar to those observed experimentally -
such variability has the most marked effect when introduced
in the death rate. This reflects, possibly, the
relatively good, deterministic description of birth rate
dependent upon density (but not age) and the lack, thus far,
of any good deterministic explanation of the variability in

death rate.

So far we have employed a model which is a parsimonious
descrition of the blowfly population. Despite the lack of
complexity, this model has yielded gqualitatively good and
quantitatively acceptable simulations of the data and has
proved, perhaps unexpectedly, to be remarkably heuristic.
Heuristic, that is, in the sense that the model has not only
led to insight into what underlies the gross population
dynamic changes but also through its shortcomings, has
focussed attention on the details that need further
investigation. Although simple, the model has proved
particularly useful in laying to rest the notion that the
control dataset is chaotic. Indeeed, the model and
parameter estimation exercise has shown that the population
behaviour is best characterised by a gradual movement from
unstable to stable parameter space caused by selection to

increase competitive resilience.
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The major weakness of the model lies in ita lack of ability
to explain the detailed deterministic pattern of the
population fluctuations. We must now progress to an
inquisition into how age and density (and perhaps history
or 'health') influence birth, death and maturation rates.

This is the stuff of chapters 5 and 6.
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CHAPTER 5

THE DEPENDENCE OF MORTALITY UPON AGE AND DENSITY AND

THE INFERENCE OF AGE-STRUCTURE IN THE CONTROL POPULATION

S B [NTRODUCTION

In chapters 2-4, a simple non-structured model was employed
to describe and to explain gross features of the blowfly
population dynamice; in this and the ensuing chapter, our
attention will be upon how age and density Jjointly
influence vital rates. Clearly, in order to investigate
the detailed dependencies of fecundity and death upon age
and density, we need access to results of experiments that
investigate the problem. Although Nicholson, as pointed
out in chapter 1, noticed and commented upon the importance
of a changing population age-structure, he neither recorded
the ages of flies in the population at any time nor did he
examine experimentally how age affects wvital rates.
There are obvious reasons for this, not least that
collecting such data is both wvery difficult and very

expensive.

Experiments to investigate directly how age affects vital
rates have, however, been recently performed (Readshaw and
van Gerwen, 1983). In these experiments, cultures of L.
cuprina were kept at wvarious constant densities as they
aged. Thia was achieved by adding similarly aged flies to

cultures to replace individuals as they died. Protein was
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supplied at the same constant rate in each constant density
experiment. The data recorded (see Appendix 7) were the
number of eggs laid each day and how many of these survived,
also how many of the original population survived. These
few recordings, each day, provide a basis for investigating
how age and density affect survival (and hence death rate).
In the process of investigating age and density dependent
death rate it is also possible to infer age-structure in the
control population. This age-structure may then, after
examining how long adults take to mature throughout the
experiment, be used to investigate age-dependent fecundity

(see chapter 6).

Readshaw and van Gerwen did not attempt any age-structuring
of WNicholson's data based upon the results of their
constant density experiments; they confined their
discussion to the comments that density affects survival
and that fecundity is age-specific and hence, might cause

fine-structure in the blowfly populations.

An attempt to age-structure Nicholson's (1957) control data
has, however, already been made by Brillinger,
Guckenheimer, Guttorp and Oster (1980). These authors
assumed that the birth and death rates of individuals in the
control population depended either multiplicatively or
additively upon age and density. Also, they assumed that
the rates fluctuated randomly from individual to

individual. Brillinger et al's attempt to age-structure
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the control population is, unfortunately, marred by the
unavailability at the time of empirical evidence

concerning age-dependencies. Indeed, in the light of

Readshaw and van Gerwen's experimental results, it can be
seen that Brillinger et al's final age-structuring is
based upon an apparently unsound assumption;
specifically, Brillinger et al assumed that death rate
depended linearly upon age whereas it will be seen in
section 5.2 that the dependence is in fact upon age to

the fourth power!

5.4 INVESTIGATING AGE AND DENSITY DEPENDENCE IN THE

DEATH RATE USING READSHAW AND VAN GERWEN'S DATA

Fig. 5.2.1 shows survival (as proportion of original
population) plotted against time for blowfly populations
kept at four different, constant densities. Survival,
and by implication, death rate are clearly dependent upon
both density (flies die more gquickly at higher densities)
and time since emergence (if death rate was independent
of age, the survival curves would be simple, negative

exponentials).

To investigate how density and age affect death rate we
now need a suitable collapse of the four survival curves
shown in Fig. 5.2.1. If, quite arbitrarily, we scale
each curve by the time taken, t,, to reach some level of
survival - which we will take to be e™! (=37%) - then the
four curves all collapse onto one (Fig. 5.2.2). The

collapsed dakta is
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well fit by the function

S(t') = exp{-t'5} (5.1)

where £' is time scaled by t, and S(t') is survival to time

LA

This particular form of survival function is a so-called
Weibull-distribution, (Metz, 1974; Kalbfleisch and
Prentice, 1980) and necessarily implies that (and is
implied by) the death rate must be of the simple,

multipicative form

8(a) = a al (5.2)

where a is adult age since emergence and n = 4.

The parameter a is age-independent but density dependent
and by calculating @ though time in Nicholson's experiment
we can examine how the death rate is influenced by density.
We do, of course, already know the values of a for the four
constant population densities examined by Readshaw and van
Gerwen; we are seeking, though, to estimate a against time
during an experiment in which density is fluctuating.
Throughout the experiment, therefore, we will be implicitly
assuming that the history of flies does not affect their
current, instantaneous propensity to survive. Although
Ehis seems implausible, it will be justified post hoc in

gsection 5.3.
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We must also make some assumptions about how a varies
during any datum interval. Clearly, deaths, emergences,
population density and a are all continuous through time
- but the data are in two-day blocks and we must assume
something about @ during each interval. The simplest
thing is to let @ be constant over each datum-interwval
with an effective value @y, written subscript t to

emphasize the assumed lack of continuity.

In order to estimate &t we must now define the arbitrary
age-classes into which the control data will be split.

In the course of estimating Ef it will prove necessary to
keep track of how many individuals there are, during each
datum interval, in each age-class. The inferred age-
structure is, therefore, a necessary (but valuable) by-

product of investigating density dependence.

Consider age-class i spanning ajp, = ajy where

ajH — ajr, = Aa, then

y o i AR o Aa
ai 21 5 i aiL ai 5 aiH ai + ) (5.3)
So that we have age-classes 1,3,5 . . . spanning 0-2, 2-

4, 4-6 days etc...

Now, given (5.2), we can define survival through any age-

class i to mature out at time t + Aa as
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iH
S,(t) = exp {—Gt I x* ax) (5.4)
a3
= exp {—Qt?i} (5.5)
where
_ 1 3 = I 5
?l = a, Aa + 5 ay Aa” + 80 Aa (5.6)

which is thus a constant for each age-class during any time

interval.

We now have to combine equation (5.5) with the raw,
experimental data if we are to evaluate @ and investigate
the relationship between @ and density. We can proceed by

inferring that the number of deaths in each age-class is

given by
dj(t) = Xj(t) {1 - si(t)]} (5.7)

where X;(t) is the sub-population in age-class i at time t.

The total deaths in the population, which we know, must then

egual

D(t) = Eﬂ X, (0){1-5,(v)} (5.8)
i=

Combining equations (5.5) and (5.8) then yields the

transcendental equation
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D(t) = 1% X (t){l-exp(-@ ¥.)}.  (5.9)
i=0

where N is larger than the number of age classes in which
we are interested. We know X;(0) and can solve equation
(5.9) using a Newton-Raphson procedure to determine 30-
The survival of the X;(0) individuals into X3(2) may then
be calculated from equation (5.5) and Xj(2) is known; @,
may then be calculated from the updated age-structure,
and so on for the entire data series to produce both

values of @ and an inferred age-structure.

Starting, then, with empirical relationships between
survival and density, we have obtained by a simple
scaling procedure, a survival function, equation (5.1),
which implies a death rate, equation (5.2),
multiplicatively dependent upon age to the power four and
a guantity Et which will contain the density dependent
portion of the death rate. The relationship between ﬁt
and Nt may now be investigated. Also, by calculating ﬁt
we have had to infer an age-structure which will be

useful in examining age-dependence in fecundity.
5.3 RESULTS
The scatter diagram (Fig. 2.2.1) of death rate against

density indicated a weak relationship - r was 0.45, we

were
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accounting for only 21% of the variance. The
relationship between @+ and Nt is, however, much
stronger. Fig. 5.3.1 is a plot of lnfﬂt] vs. In(Ng): a
fitted regression line now accounts for almost 60% of the
variance (r = 0.77). 1In section 5.2.2 we made the
assumption that history did not affect current survival
chances - tnis may now be justified. 1f ln(ﬁt] is
regressed, not against 1In(N¢) but against a weighted
history of population sizes, then the resulting r values
may be increased; the effect, however, is small - we
cannot increase r by more than a very small amocunt
{0.01). Whilst, therefore, history does have an effect,
it is trivial compared to current conditions. Nt, of
course, already covers a two-day period and we are
necessarily accounting for some recent history, perhaps
this is why the relationship batwaen’ﬁt and Ny is so

good.

Based upon the relationship between ln[&t] and In(Nt) we
can now write a death rate function explicitly dependent

upon powers of both age and density as

6(a,N) = K Ngl-8 at (5.10)

where K = 4.35 x 10710 Ny~l.84"5

We are now in a position to test the self-consistency of
our analysis. If we plot values of 1ln(e¢) derived from
the scaling factors used in the original data collapse

(see
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a i

(section 5.2.2) against the natural logs of the constant
densities at which the data were obtained (the 'x' points in
Fig. 5.3.1) then these points lie close to the fitted
regression line. The regression line is a fit to the data
obtained at predominantly high and varying densities yet
the data upon which the analysis is based are for relatively
low and constant density experiments. That the analysis
results in a fit for 1In(a@t) vs. In(N¢) which is consistent
with the original data is reassuring - the correlation
between ln(a&; fitted) and 1ln(a data) at the experimental

constant densities is, in fact, 0.97.

As a further test we may derive (based upon equation (5.10))
the expected survival curves for the conatant densities
used by Readshaw and van Gerwen. Such curves compare well
with the data (Fig. 5.3.2) for three experiments but are
discrepant for the highest density. If the contrary
result was for the lowest density then we might conclude
that the relationship (5.10) is robust at all but very low
densities. The discrepant result, though, is at the
highest experimental density and may possibly best be
explained as an 'odd' result. [t would have been useful
if Readshaw and van Gerwen had performed at least one higher
density experiment. Nevertheless, we may confidently
expect our expression for the death rate egquation (5.10) to
be wvalid for all densities observed in Nicholson's
experiments. One possible caveat is that the data in Fig.

5.3.1 appear to display a tendency to deviate upwards from

114



&

AGE (days) —=

Lo
L=

10

ONIAIAINS S317d4 40 NOILAOdO¥d

115



the fitted regression line at high densities. This may
well be due to an 'interference' effect. That is,
although flies are fed ad libetum with water and
carbohydrate and are therefore not expected to compete
for these resources, at high densities it may become
physically difficult or impossible for all flies to gain
access to these essential supplies. In other words, at
very high densities, scramble competition may not be a

valid assumption.

Let us now, however, turn our attention to the inferred
population age-structure. The calculated mean age of
Elowflies against time is shown in Fig. 5.3.3. Clearly,
whilst the population is cycling so too is the mean age.
Later, as the population may be characterised as entering
stable parameter space (see chapter 3), so then does the
mean age appear 'stable'. The surprising thing about
the variations in mean age is that as the population
stabilises, the mean age declines to a value of about 3
days. L. cuprina typically take 5-7 days (with an

observed minimum of 4 - Mackerass, 1933) to mature.

1f we now consider the age-structure in 2-day age-classes
against time (Fig. 5.4.3) we see individuals being
recruited to the population and forming cohorts which
march along through time, gradually diminishing in size
until they disappear altogether. As time progresses we
see that there are fewer and fewer older individuals in

the population - that young flies come to predominate.
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5.4 DISCUSSION

It was seen in chapter 2 that the relationship between
death rate and density, without taking account of age, is
not good. When age is taken intec account (see Fig.
5.3.1) the relationship is very strong. This
improvement, moreover, is not restricted to the constant
density environment but has been demonstrated in
MNicholson's control experiment when population density
fluctuates wildly. Already, then, the investigation of
age-specific mortality shows how important age can be.
That strong age dependencies coupled with a fluctuating
mean age and age distribution might produce fine-
structure on population oscillations is clear. It now
remains, after estimating maturation-time wvariations, to
use the inferred age-structure to investigate age-

dependent fecundity.

The age-structure of Nicholson's control population has
been inferred using a procedure which produces results
consistent with the data from Readshaw and van Gerwen's
constant density experiments. The inferred age-
structure is also in line with Nicholson's observations
and the findings of chapters 2-4 of this thesis.

Consider the following.
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Selection acts to produce flies capable of producing eggs
in the near (or even total) absence of protein. Such
flies must, if we reasonably assume that protein remains
necessary for vitellogenesis, utilise protein acquired as
larvae in order to produce eggs. If flies are unable to
call upon protein acquired during the larval stage, then
they do not need to spend time competing for and ingesting
protein as adults - ovarian development may proceed
immediately after emergence and maturation times might
reduce to the time taken for ovarian development which is

typically about 2 days.

The results of the analysis, then, may be justified because
younger individuals come to predominate and because
maturation rates ought (if the analysis in chapters 2-4 is
correct) to decline. This, of course, 1is ‘'just-so'
Jjustification; the correctness of the inferred age-
structure cannot be formally tested, but, as has already
been shown, the analysis is self-consistent and the results
may be used with some confidence in an attempt to relate

fecundity to age and density (see chapter 6).

To conclude, it is worth pointing out that performing
constant density experiments of the type conducted by
Readshaw and van Gerwen is a relatively cheap, short and
easy exercise compared to the long, Nicholson-style,
population experiment in which no age-specific data is

recorded. I would suggest to experimentalists that
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conducting constant density experiments as a prelude to a
long population study would be a very worthwhile and
potentially illuminating exercise. Provided the survival
data recorded at constant densities collapses to a Weibull
distribution, a Nicholson-type experiment in which only
recruitment and deaths are recorded, might then be
performed with the knowledge that a time-dependent, age-
structure could be inferred. The utility of such an
inferred age-structure would depend, of course, on the
results of the constant density experiments extending to
the variable density situation; this, though, may be

tested easily after the first one or two population cycles.
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CHAFPTER &

MATURATION TIME ESTIMATION AND AGE

AND DENSITY DEPENDENCE IN FECUNDITY

6.1 INTRODUCT ION

In the previous chapter, the time-dependent age-structure
for Nicholson's (1957) control population was inferred
based upon the results of Readshaw and van Gerwen's
constant density experiments. In this chapter, data
from the same experiments will be used to estimate how
maturation times vary throughout Nicholson's experiment;
maturation time is here defined as the time from
emergence until flies firast lay eggs. This has been
carried out with the intention of combining the
maturation time estimates and the inferred age-structure
with Readshaw and van Gerwen's egg production data in
order to estimate how per capita fecundity, dependent
upon both density and age since emergence, varies through
time. As will become clear, however, the results of the
maturation time estimation, as evidenced by the estimated
number of mature individuals at any time, are not
consistent with Nicholson's egg laying results. This
problem will be discussed in terms of the increasing

competitive resilience demonstrated in chapters 2-4.
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Because of the difficulty in estimating maturation times,
the estimation of maximum age and density-independent,
per capita fecundities is awkward. Although it has not
as yet been possible to estimate fecundities
satisfactorily, an approach to the problem is presented;
this approach will work only when the problem of

estimating maturation times has been solved.

6.2.1 ESTIMATING MATURATION TIMES

In ;rder to estimate how maturation times wvary throughout
Nicholson's control experiment we must seek a
relationship between the rate of development of adults
from emergence to maturity (defined as the age at which
eggs are first laid) and feeding rate. The only, and
very limited, data available for this are those of age at
which flies first lay eggs at each of the constant
densities investigated by Readshaw and van Gerwen.

There are only four experimental densities and we
therefore only have four data points to work with. As
in previous chapters, we will assume that competition is
of the scramble type and hence that feeding rate, f(t),
is given as food available, &, divided by the population
size, N(t). If we plot the age at which eggs are first
laid, 71, against f then we cannot sensibly fit the data
with any 'standard' development rate function such as the
Michaelis-Menten. If, though, we plot 7 against 1n f

then the data are well fitted by a straight line (Fig.
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6.1); one function which provides such a fit and which

has the properties of maximum growth and feeding rates is

otherwise
Imax

g(f) = X ] et 2 ga

(6.1)

where gmax and fgpzyx are the maximum development and

feeding rates respectively.

If we now assume that there is a critical state of
development, S., at which maturity is triggered then,

under constant food conditions

S, = g(f) 7, (6.2)

and we therefore expect 7, to be given by

I

s 5

Co0rT IR T S

Ty = A In £ (6.3)

gmax gmax

The line fitted to the data (Fig. 6.1), therefore, has a
slope of (Sc/gmax) and intercept (Sg/dpayx)[l + 1In fpayx]-
The data are well fitted by the function (6.1) and we

obtain values of fpay and gpay of
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day on which egys are first laid

04 ! 7
f (mg/fly/day)

LI

10

FIG. b.2.1 Time to first egg laying plotted against In (f) for
each of Readshaw and van Gerwen's (1983) constant density

experiments.
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9max = 1-07 Sg.

If we now assume that the development function (6.1) is
valid not Jjust at constant densities but when densities
vary, and hence that feeding rate is time dependent and
given as protein input rate, @, divided by population
size, N(t), we may represent development rate during

Nicholson's control experiment as

1.07 Sc
g(t) = (6.4)
1+ an [EENG)

and hence expect the maturation time to be given by

t

1 = f lég? dx (6.5)
t-7 (8 | ln[;-] + 1n N(x)
which may be recast as a differential equation
dT
i ie - _ g(t)
at T T gET (ED) (6.8)

and can be solved, subject to appropriate initial
conditions (see Appendix 5), to calculate rj(t)

throughout the experiment.
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6.2.2  RESULTS

Fig. 6.2.2 shows the calculated age to maturity plotted
against time. Not surprisingly, as the population
density fluctuates, so too does the estimated maturation
time. Also, as the population rises through time then so
too does the estimated maturation time; this being
because the development rate equation (6.4) is assumed to

be purely density dependent.

By combining sstiéates of 71(t) with the inferred age-
structure, it is possible to estimate the number of
mature individuals at any time (see Fig. 6.2.3). The
estimated 77(t) values are, though, unquestionably wrong;
it often happens that a zero population of mature adults
is estimated when eggs are, in fact, being laid (see
Appendix 8). The problem occurs increasingly as time

progresses.

Notwithstanding the difficulties in assessing 7I(t), a
method for estimating age-dependent fecundities is
provided and the results of applying the method using the

erroneous maturation time estimates are shown.

6.3.1 ESTIMATING DENSITY AND DEVELOPMENT-DEPENDENT

FECUNDITY

Readshaw and van Gerwen recorded, for each constant

density experiment, the number of eggs layed each day and
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how many of these survived. To examine the relationship
between fecundity and age and density we have plotted
(Fig. 6.3.1) the three-day averaged fecundity against age
since maturity (based on the results in section 6.2) for
each constant density experiment. The fecundities are
normalised by the maximum observed fecundity for each
constant density experiment. It is clear that at lower
densities, flies continue to lay eggs for longer and also
that the peak in fecundity is later (though not
necessarily in terms of real age rather than age since
maturity). Alsé, but not clear from Fig. 6.3.1 due to
the normalisation, at lower densities, many more eggs are

produced per fly per day.

As with the survival data, we now seek to collapse the
four, normalised fecundity curves onto a single curve by
scaling the 'age since maturity' axis of Fig. 6.3.1.

The scaling factors, t,, used in the survival data
collapse (section 5.2) also prove satisfactory in
collapsing the four fecundity curves (Fig. 6.3.2) and the

scaled data are fitted acceptably by the function.

—£- = expim '}(a/a,)exp{-m *(a/q )™ (6.7)
‘Bmax

where

q = (a—rl}fto
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FIG. 6.3.1 Three-day average fecundity, normalised by the
maximum three-day averaged fecundity plotted against a) age
since maturity (a-7) and B) age since maturity scaled by the to
values used in the survival data collapse of chapter 5.

Based on Readshaw and van Cerwen's (1983) data.

O: 50 flies per cage, ++: 100 flies per cage,

+: 400 flies per cage, X: 800 flies per cage.
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= the three day averaged fecundity.

m = 2.3 * 0.3

do 0.35.

This function (6.7) is presented, not as a definitive
best-fit to the data, but as an adegquate and satisfactory
description of the unambiguously humped relationship
between normalised fecundity and the density-independent

state of development, g.

It is now possible to proceed from equation (6.7) to
calculate Bpax(t), the maximum per capita fecundity,
throughout Nicholson's control experiment. If the
subpopulations in the structured population at time t are

given as X(g,t) then it is evident from equation (6.7)

that
E(t) = 8., expin ') [ X(q,t)(a/a )exp(-n *(q/q,)™dq
gq=0

(6.8)
We do not know the values of X(g,t) but we do have

estimates of X(a,Lt). 1f we map the X(a,t) populations

into X(q,t) using the relationships
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aiH = (ajg - 7r(t))/tel(t) (6.9)

gir, = (ajp - 71(t))/to(t)

where 7I(t) are known from section 6.2 and t,(t) are
known from chapter 5, then we will obtain a series of
unequally spaced g-intervals for which we know each
subpopulation. Assuming that within each interval, at
any time, there is a flat g-distribution, we may
subdivide the g-intervals into any small number of units
of known population size. We may then find Bpax(t) by

evaluating equation (6.8) using Simpson's approximation.

6.3.2 RESULTS

The Bmax estimates obtained .using the approach outlined
in section 6.3.1 are shown in Fig. 6.3.2. Clearly, Bmax
fluctuates between very high and low values, especially
towards the start and over the last 300 days of the

exper iment. Over the last few hundred days, though, the
high Bpax(t) estimates are caused by the extremely low -
often zero - mature population estimates. Only in the
middle of the experiment, during the period 100-400 days
might we be at all confident that the Bpay(t) estimates
are in any way 'sensible' or representative of reality.
Before this time the population is heavily influenced by
initial conditions and after this period our maturation

rate estimates are distinctly questionable.
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FIG. 6.3.3 Calculated Bp;x against total population size, N(t)

for Nicholson's (1957) control experiment.
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If our Bpax(t) estimates are good then we should expect
to see some clear relationship between Bp;x(t) plotted
against N(t); clearly (see Fig. 6.3.3), there is no
relationship. The same lack of correlation occurs for
just the data from the middle of the experiment. 1t
must be concluded that the Bp,y(t) estimates are not

useful.

6.4 DISCUSSION

In the previous chapter we saw that the mean age of flies
decreased as the experiment progressed and justified this
result in terms of an hypothesised, gradual decline in
maturation times. The justification was founded upon
the results of chapters 2-4, in particular the

demonstration that f, declines during the experiment.

The maturation time estimates shown in Fig. 6.2.2 are
based on experiments carried out with flies that had not
been exposed to conditions conducive to evolving an
increased competitive resilience. The neglect, in
estimating 7r(t), of the evolution that occurs during the
experiment is a serious flaw - if we are to understand
successfully how 71 varies throughout the experiment then
we must, in some way, incorporate realistically the

decline in f, into our development rate function.

138



=

Unfortunately, interpreting the decline in fo and linking
this with the development dynamics is not easy. If we
are to keep our differential equation describing the rate
of change of 7; with time, equation (6.6), then we might
allow fpay to decline in some way as time passes. We do
not know, however, and therefore could not confidently
interpret any possible results of an analysis based on
such an assumption, how the decline in f, manifests
itself in ways other than the ability to lay eggs in the
absence of protein. If flies, as suggested in section
5.3, utilize protein resources acquired whilst in the
larval stage, then maybe not only f;a, declines but S¢
also - S., remember, does not refer to a physical size
but to a developmental state. . Similarly, the
development rate function (6.4), actually comprises more
than just one, simple process. As competitive
resilience increases, the complex of processes underlying
development, and therefore the development rate itself,

must change.

Essentially, then, we cannot confidently incorporate a
realistic change in the development rate. We cannot
calculate 7I(t) in a meaningful way unless we have access
to further infermation as to precisely how the decline in
fo is brought about and precisely what concomitant

effects this produces.
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Despite the difficulties in assessing 71(t), a method has
been presented for calculating development dependent
fecundities. Good estimates of such fecundities have
not been obtained because of the difficulties in
estimating maturation times. The difficulties arise due
Eo the lack of a reasonable method of incorporating the
evolution of competitive resilience into the development
rate function, equation (6.4). Until a realistic
estimate of maturation times has been achieved, it is

best to keep the Bp,, estimation procedure in abeyance.

Although no final estimation of age/development-dependent
fecundities has been achieved, the method used in the
previous section to infer age-structure and characterise
age and density dependent mortality, together with the
approaches to evaluating maturation times and Bpay.
illustrate the importance of age as a factor influencing
vital rates and provides a possible route, given some
modification, to accomplishing successfully a
disentanglement of how age and density jointly influence

population dynamics.

140



CHAPTER 7

SUMMARY

The objective of the work reported in this thesis is the
understanding of the dynamics of Nicholson's (1957)
control blowfly population data (Fig. 1.1I). To this
end, a continuous time, birth and death model has been
successfully employed to explain gross dynamic features
of the data; particularly, an apparent change in
behaviour after about 400 days. This has been followed
by an attempt to decouple the effects of age and density

on the blowfly wvital rates.

The starting point for the work is the observation
(Chapter 2) that the blowfly population subjected to a
20-day variables protein-input rate (Fig. 1l.lc) may best
be explained as displaying behaviour characteristic of an
unstable system for about 500 days but that this then
gives way to behaviour characteristic of a stable system.
To be more precise, for the first 500 days, a clear 40
day population cycle is evident and later a 20 day cycle
predominates; this behaviour is explained as
synchronization of the natural limit cycle to the half
harmonic of the driving frequency giving way to a simple
capturing of the (now stable) system by the driving

force. The observation of a change in behavioural
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regime in the 'driven' experiment suggests a similar
explanation for the change in dynamic behaviour perceived
in the contrel run and implies that the factors
controlling stability must somehow change during the

course of the experiment.

The stability properties of the model are governed by
daily, per capita, adult, maximum fecundity (Qs) and
death rate (8) and the egg to maturity development time
(7). The equilibrium population size is also controlled
by the parameter f,, which is a characteristic, per
capita protein intake rate (the reciprocal of which is a
measure of how well flies are able to compete - i.e.
competitive resilience). How these vital rate
parameters vary through time was estimated in Chapter 2.
Death rate was measured directly from Nicholson's raw
data but Qs and f, were estimated using a weighted linear
regression technique. It was shown that all three
parameters varied systematically as the experiment
progressed; in particular, Qs and f, declined. It was
suggested that the mechanism underlying these changes was
selection for competitive resilience, the selective
pressure being competition for the limited protein

available.

The estimates obtained in Chapter 2 were, of course, for
model specific parameters. In Chapter 3, however, it
was shown how the equilibrium population through time,

calculated from the parameter estimates, is consistent
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with the experimentally observed mean population. Also,
when the Qs7-67 estimates through time were plotted as a
trajectory over the stability diagram for the model, it

was shown that the estimates are consistent with a shift
from unstable to stable behaviour and, furthermore, that
the time at which the stability boundary is crossed is in
agreement with the shift in behaviour perceived in the

data.

The parameter estimates are shown to be representative of
the experimental population (chapter 3). A
deterministic simulation of the data based on the
estimates displays, however, a gradual approach to
stability whilst the control data displays large
fluctuations in the later stages. These fluctuations
may be explained as resonant guasi-cycles which arise due
to steochastic perturbations. To test, therefore, if the
deterministic characterisation of how the parameters vary
and influence dynamic behaviour is valid, the effects of
demographic and environmental noise were considered in
Chapter 4. It was shown that both deterministic birth
and death rate prediction are far from perfect. When,
however, noise, as measured from the vital rate residual
series (i.e. actual-predicted wvalues), is introduced into
the vital rates, simulations of the experiments display
not only perturbed limit cycles for the first 400 days
but also noisy quasi-cyclic behaviour for the latter part

of the runs. This simulated behaviour is appealingly
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similar to that observed experimentally and the model and
the parameter estimates are adjudged to be a good

representation of the blowfly experiments.

Whilst the work reported in Chapters 2-4 was in progress,
data concerning the blowfly wvital rates became available
{Readshaw and van Gerwen, 1983). This data is of adult
survival and fecundity for populations of L. cuprina kept

at four different constant densities.

In Chapter 5 the survival data from the constant density
experiments is considered; LChese data collapsed neatly
and provided a satisfactory separation of the effect of
age and density on mortality. The importance of age was
made very apparent; death rate, in fact, depends on age
to the power four! Knowing the influence of age on
survival it then proved possible to investigate Lthe age-
independent, density-dependence of death rate; a strong
relationship was found. The method used to investigate
density-dependence also led necessarily to the inference
of a tLime-dependent age-struckture in Nicholson's control

population.

In Chapter 6 an attempt was made to estimate how
maturation times (i.e. the adult age at which flies first
lay eggs) vary throughout the control experiment. This
attempt was based on a maturation time - feeding rate

relationship derived from Readshaw and van Gerwen's data.
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The results are definitely wrong but, nevertheless, were
used in conjunction with the inferred age-structure and a
development-dependent fecundity relationship (again based
on the constant density experimental data) to estimate
maximum per capita, age-independent fecundities through
time. No relationship with density was found for these

estimates.

The results of Chapter 3 were discussed in terms of the
evolution of stability. It was suggested that both
Nicholson's control and 20-day driven data are of
potential use in studying why animal populations tend to
be stable and how such stable dynamics evolve. Both
experiments represent, as far as I am aware, the only
population data in which stabilization has demonstrably

taken place.

Because selection for competitively resilient flies must
be genetically mediated and selection for competitive
resilience is the process by which population stability
is brought about, the use of genetic models of the
blowfly populations is a possibility for future work.

It has been gratifying, though, that the non-genetic
model used in Chapters 2-4 has, by the simple expedient
of admitting time-dependent parameters, explained
adequately why the observed alteration in dynamics
occurs. Although the construction of a genetic model is
appealing, the utility of the simpler approach is worthy

of emphasis.
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Before considering the usefulness of the age-dependency
investigations, it is worthwhile pointing out that the
assumption has been made implicitly throughout this
thesis that males and females may be lumped together with
impunity. The sex ratio in L. cuprina populations
certainly does tend to 1l:1 (Mackerass, 1933) but males
and females must differ in some respects. Mackerass has
observed that over a three day interval when flies were
emerging from pupae, males predominated early on. I do
not know, however, how differently adult males and
females survive or compete for limited resources. A few
experimental investigations intoc blowfly sex differences

might be wvaluable.

The first thing of interest in the age-dependence
investigations was the discovery of an extremely strong
dependence of death rate upon age. Whether or not this
is a blowfly or experiment specific result I do not know:
it would be interesting to know how age affects mortality

in other insects but such data is not available.

The procedure used to investigate age-independent,
density-dependent death rate led to an inferred
population age-structure throughout the experiment.
Conducting short and relatively cheap, constant density
experiments as a prelude to performing long and expensive
studies can be seen, therefore, to be potentially very

rewarding. Given certain testable assumptions the time-
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dependent age-structure may be calculated simply from the
easy to collect births and deaths data of a longer
exper iment. If age-structured data is to be collected

then such an approach is extremely wvaluable and cannot be

overstressed.

In Chapters 5 and 6 all investigations were based on
Readshaw and van Gerwen's data. These data were
collected at low and constant densities but the derived
relationships were used to investigate a population in
which densities were both predominantly high and very
var iable. This may well be why the attempt to estimate
maturation times in Chapter 6 was not successtful. More
likely, though, the difficulties of Chapter 6 arose
because no account was taken of the evolution of
competitive resilience. During Nicholson's experiments
the flies became able to lay eggs in the absence of
protein and the maturation time to feeding rate
relationship must have changed as the experiment
progressed. Only when adequate account is taken of
changes in competitive resilience will it be possible to
investigate age-independent, density-dependent

fecundities using the methods of Chapter 6.

The gross dynamic features of Nicholson's control
population have, I believe, been well explained. It
still remains, however, to further investigate and to

understand short-term poplation variations. Such
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comprehension will depend upon a detailed examination of
how age, density and perhaps sex and history affect the
vital rates. The analysis of Chapter 5 has provided a
good insight into how death rates are so affected, the
endeavour to comprehend fecundity dependencies is

underway.

Nicholson's data was much investigated during the 1970s
but in recent years has received little attention. The
data are still, however, amongst the most complete
available and if the age effects can be understood, might
yYet be an excellent basis against which to test new age-
structure modelling techniques and may provide insight in
to why population age-structure changes occur and how

important such changes might be.
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APPENDIX 1 - FORCED SYSTEMS

The experiment that is the main focus of interest in this
thesis was conducted as a control for a series of
experiments in which the protein-input rate was varied.
It was originally intended that the subject of this
thesis should be the effect of environmental variations
on population dynamics. Although this has not come to
pass, a numerical analysis of the G-B-N model subjected
to a variable protein input rate has been carried out and
will be reported here as the results lead to the
hypothesis forwarded at the start of chapter 2.
Essentially, the results of the numerical analysis permit
an interpretation of Nicholson's (1957) control and 20-
day driven experiments in which the values of Qs, f, and
8 are changing through time. It was this interpretation

that motivated the work that is reported in the thesis.

All natural populations are subject to both deterministic
and stochastic fluctuations in at least certain aspects
of their environments. That environmental variability
plays a significant role in causing population
fluctuations has long been appreciated. The literature
on the effects of deterministic fluctuations (Uvarov,
1931; Andrewartha and Birch, 1954; Skellam, 1967: Oster
and Takahashi, 1974; Coleman, 1979; Coleman, Hsieh and

Knowles, 1979; May, 1981; Sanchez, 1983; also Clark,
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Geier, Morris and Hughes, 1967; see Levins, 1968;
Fretwell, 1972 and Krebs, 1972 for reviews) and
stochastic fluctuations (e.g. May, 1973a; 1974a;
Roughgarden, 1975; Turelli, 1978; Boyce and Daly, 1980)

abounds.

In this thesis, the influence of stochastic variability
is discussed in chapter 4; in chapters 2 and 3, the
experiments are treated as deterministic. Deterministic
variability may have profound effects on a non-linear
system - specifically it may cause synchronization or
subharmonic rescnance (see, e.g. Rayleigh, 1883; Ludeke,
1942; Minorsky, 1963, ch. 19; Jones and Sleeman, 1983;
Jordan and Smith, 1977, ch. 7; Nisbet and Gurney, 1982,
ch. 2). A knowledge of these effects and how they might
arise in the G-B-N model is essential to understanding
the interpretation of the control and driven experiments

which appear in chapter 2.

The importance of synchronization and subharmonic
resonance has been recognised in other areas of
biological science (e.g. Winfree, 1967; 1980; Hao,
1982; Takahashi and Menaker, 1984) but the phenomena
have been paid little attention by population biologists
(notable exceptions being Oster and Takahashi, 1974;
Oster, 1977a; Nisbet and Gurney, 1976:; 1982, ch. 2).
This lack of attention being possibly due, as discussed
by MNisbet and Gurney (1982) to their probable lack of

importance for population modelling.
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WHAT ARE SUBHARMONIC RESONANCE AND SYNCHRONIZATION?

Synchronization, or “phase-locking", only occurs in
nonlinear systems when, in the absence of an applied
force, the system would be characterised as a limit cycle
(i.e. having an unstable local eguilibrium point).
Entrainment to the driving frequency, or a subharmonic of
the driving frequency, may occur when the system is
driven at, or near, its natural (limit cycle) frequency
or a harmonic thereof. The nearness to the natural
frequency at which synchronization may occur is dependent

upon the strength of the driving force.

Subharmonic resonance only occurs in systems
characterised as stable and underdamped. If the driving
oscillation is small, then normally the system exhibits a
similar, small oscillation (the amplitude and phase of
which may be calculated using the transfer function of
the system); as the stimulus strength increases,
however, the nonlinearities in the system may cause
resonarices. [n the case of the G-B-N model, the
nonlinearities cause recovery after population upswings
and downswings to be respectively fast and slow. When,
therefore, the population starts a cycle well below
equilibrium, it may not be able to rise fast enough
before being dragged down again by the driving force.
Recovery, though, is fast and enables the population to

quickly pass equilibrium on the second upswing (if half-
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harmonic resonance) and the second peak is effectively
amplified. The slow recovery after the subsequent
downswing results in the low population level at the

beginning of the next, subharmonic cycle.

DRIVING THE G-B-N MODEL

In order to investigate the effects of a variable
protein-input rate on the blowfly population, Nicholson
varied the supply of ground liver from 50 mg.d”! to 500
mg.d” 1. The rate was increased or decreased in 50 mg.
steps with the period of variation, varying in 10-day

intervals, from 10 to 80 days.

Variation is incorporated into @(t), for numerical
analysis of the driven G-B-N model, not in the step-wise
pyramidal form used experimentally but, for ease of

computation, continuously as

b(t) = ¢G{1 + 8 cos w t) (Al.1l)

Combining (1.5) and (Al.l) gives

-N(t-7) £,(t-7)
¢b(l + 8 cos w t)

dN
at = Qs N(t-7) exp

- ON(L)

(Al.2)

where f5 will, in general, be constant. Qualitatively,
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the continuous approximation (Al.l) to the protein-input
rate yields similar numerical results to those obtained
using a step-wise pyramidal form. Quantitatively the
two differ with the continuous function leading to a
higher, time-averaged population. It is straightforward
to perform a stability analysis on (Al.2) and to derive
the transfer function from the linearised dynamic. It
is thus possible to characterise the amplitude and phase
differences of the population cycles when driving with
low BA-modulation in the stable region of parameter space.
In order to investigate the behaviour of the model when
driven in the unstable region (in which we might expect
synchronization) or in the stable, underdamped region
with high A-modulation (in which we might expect
subharmonic resonance), it is necessary to resort to

numer ical analysis.

A pair of Qs7-87 parameter values (50, 0.5) was chosen
for investigation of the stable, underdamped region.

The point describes a system which has a natural
frequency, as determined from the transfer function, of
w'(= 2mf7) = 1.81 - this corresponds to a natural period
of 51.4 days. When g8 is 'large enough', subharmonic
resonance may occur if the driving frequency is at or
close to the natural frequency or 3/2 or 2 times the
natural freguency. Subharmonic effects, however, are
not apparent in the data and, as the adult larval food

limited populations have previously been characterized as
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unstable, the phenomencn of resonance has not been

exhaustively studied.

Numerous solutions to (Al.2) were obtained with Qs 7 =
150 and 67 = 3.5 with 8 = 0.08. These values were
chosen based upon Gurney et al's (1980) estimates for the
1954b afl experiment. The driving frequency, w', was
varied from 0 to 6.0. Fig. Al.la shows the undriven
limit cycle - note the double-peaked structure that
arises with the particular parameter values used (see,
section 1.3). Fig. Al.lb shows how the population, when
driven close to its natural frequency, synchronizes to
the driving frequency; Fig. Al.lc illustrates
synchronization of the natural limit-cycle to the half-
harmonic of the driving force. The results of the

synchronization analysis are summarised in Fig. Al.2.

The dashed line in Fig. Al.2 indicates how the population
would behave in the absence of an external driving force.
Synchronization to the driving frequency is seen in the
region S} and to the half-harmonic of the driving
frequency in the region S1/2- There are a number of
points (a, b and c) in the region S; which do not lie on
the abcissa. Two of these points, a and b, lie in an
area in which long transients (of about 20 years or more)
are cCoOmMMmon. Nicholson's 80-day driven experiment (Fig.
1.1H) lies in this region and may best be explained as a
transient with a 'beating' of the natural limit-cycle

fregquency and the driving freguency. The point c,
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FIG. Al.l Solutions to the driven G-B-N model displayed as
normalised population against normalised time

A) w' =0 B) w' =2.3 C) w' = 4.6.
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however, does not fall into this long-transient category
but lies on the driving frequency axis at very close to
the natural frequency of the undriven system. Very long
solutions have been obtained, but, even when the
transient has decayed, the model still exhibits the
natural limit-cycle frequency when driven at this
frequency. I am uncertain how to interpret point C;

the point represents, however, a driving frequency which

has no immediate relevancy to our study.

In section 2.1.2 the results of Nicholson's twenty-day

driven experiment are interpreted in the light of the

results summarized in Fig. Al.2.
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APPENDIX 2 - STATISTICS

THE NON-LINEAR LEAST SQUARES FIT.

-v.b 2

[yi -ax. e T ) : i=1l..N

Let x? = oW, i
i

1

g 2
we seek now to minimise ¥~ w.r.t. a and b

-v.b -v.b
ax? -0 = — vy _ i
35 0= =2 % wl xi e (yi ax. e b

-v.b -v.b
ax* _ h N i
a5 0 2a E w.xivi e (yi axi e 3

rearranging leads to two expreassions for a

—vib 4 —zvib
a; = (% Wi Y, X, e }f(§ w, X e )

—vih 5 *Zvib
a, = (% WYy Xy Ve }fig wy X3 v, oe )

but a; MUST equal a2; therefore, if a value of b is
obtained for which aj] = ap, the best fit values of a and

b are found.

The linear least squares fit was performed using standard
equations (Bevington, 1969). The standard errors were

calculated according to the equations given by Ezekiel



and Fox (1957 - ch. 17 and Appendix) and the sums of
squared residual terms used in the calculation of r, were
derived based on the method ocutlined in Hogg and Craig

(1978, p 44).

Both of the above methods for estimating Qs and f, have
been implemented using Pascal programs. They have been
checked by hand calculation and a recent U.C.S.D. Pascal
version (author, Blythe) of the SIMPLEXmethod (Caceci and
Cacheris, 1984). The results obtained using the simpley
method provided a very satisfactory and rigorous check of

the least-squares fitting routines.

Results obtained using the weighted, linear regression

are presented in chapter 2 and below in Table A2.1.
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Cycle
mid -
point

2. 1000E,
6. 1000E1
1. 0100E2
1:4100EZ
1.8100E2
2. 2100E2
2.6100E2
3. 0100E2
B« 4100E2
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4, 2100E2
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S:Bl100E2
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7.0100E2
3. 1000E1
9. 1000E!
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2. 1100E2
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3.9100E2
4, S100E2
. 1100E2
3. 7100E2
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6.3100E2
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3.3100E2
4. S100E2
S.S100E2
6.3100EZ
7. 1000EL
1. 7100E2
2.7 100EZ
3. 7100E2
4, TLO0E2
S.7I00E2
G.7I0DEZ
3.6100E2
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+ =B:3360E~-]1
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+=B.3323E-1
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P =3.6B29E~ )
=7 2BIGE-]
3. 89210E~-1
+ =B, GAS4E~-1
v =5.3411E-1
+=FBF34E-]
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s =B.7ES9E~1
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v =7 I04FE=1
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i+ =6.8339E~-}
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+ =B« BA13E=]
¢+ =T IFTIE-]
+=6.6190E-1
=B 460BE=]
v =B S014E-]
+=B.4254E~ |
=7 3TBAE-]
o =3 TI9EE-|
« =S 4B49E -]
v =B, 2451E-
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+=6.6201E-1
+=B.70S8E=-)
=7 9325E-)
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«=3.5379E-1
¢ =6.3TITE-)
=6 1Q97E-)
s =B.0408E~-)
+ =B 3511E-1
¢ =8 2005E-)
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- e e

¢+ =B« 0951E~;
i =3.B016E-1

o =B 1480E-1
o =8 1483E-1
» =8, S899E -
y =B 4BRZE-1
+ =3 STRABE=1
i =4 FEASE-1
=B« BIBIE~1L
¢ =B6:. BZDEE~1

TABLE S1

L« 4000EL
1:.4000E1
L.EODQE!
1.5000E1
2,0000E1
1. B000E1
L.BOODE!
Z,0000E1
1.9000E1
Z.000DEL
2. 0000E1L
2. 0000E1
2. 0000E}
2:0000QE 1
2., 0000EL
1. 9000E1
2.0000E1
1.6000EL
2:.3000E1
2, 10DOE]
2.3000E1
2,8000E1
2.8000E1
Z:3000E1
3.0000E)
3.0000E)
3. 0000E!
2.0000E1
2.3000E)
2.6000E1
Z:.B000E)
3. 1000E1
3. 8000E)
E.BOO0EL
3,5000E1
4, 0000EL
4.0000E!
3.9000E1
3,6000EL
3, 3000E1L
3.6000E1
4. 1000E1
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APPENDIX 3 - INCORPORATING STOCHASTICITY

A) SIMULATIONS [NCORPORATING DEMOGRAPHIC STOCHASTICITY

[f a particular realization contains N individuals at

time t, and if the time interval dt is very short, and

hence the probability of multiple births or deaths dur ing

dt is negligible, then the population change dN which

occurs during dt is a random variable with possible

values 0, * 1, and has the statistical expectation value

E{dN} = (+1) x {probability of a birth during dt}

+(-1) x {probability of a death during dt}

+(0) x {probability of no change during dt}

(A3.1)

A3.1 clearly implies
E{dN} = {B(N) - D(N))}dt (A3.2)
and E{(aN)?} = {B(N) + D(N)}ldt (A3.3)

A3.2 states that the expected population during dt is the
same as would be predicted by a deterministic model.

A3.3, however, is not so easily interpreted and has the
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property that E{(dN)?} is proportional to dt and not to

dat?.

[f we assume that dt is small enough to allow the neglect
of terms of order dt? and higher, the actual change in

population of any one replicate may be written
dN = ({B(N) - D(N)}dt + n(t) (B(N) + D(N)}1/2d4t (A3.4)

where 7 is a random variable with zero mean and unit
variance. Because, though,N is restricted to take only
integer values, the probability distribution of n(t) is

strange.

Except for very small populations, any population change
which might significantly affect the birth and death
probabilities must be the result of a large number of
statistically independent births and deaths. A3 .4,
therefore, may be employed to describe the population
change, dN, which occurs over a relatively long time
interval, dt, but with %(t) now (by the Law of Large
Numbers) having a probability distribution close to

normal.

If, then, the time scales inherent in our model allow us
to both regard 7» as normally distributed (i.e. dt large)
and regard N as continuous (i.e. dt small) then A3.4 may

be recast as
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dN = {B(N)-D(N)}dt + [B(N) + D(N)}1/2 dw(t) (A3.5)

where dN and dt are infinitesimally small and dw(t) - a

Weiner increment - has the statistical properties

E{dw(t)} = 0 for all t
E{(dw(t))2] = dt for all t

E{dw(t)dw(t')} =0 unless t = £

The stochastic differential equation, A3.5, may now be
rewritten in the form used to create the demographic

stochastic simulation in chapter 4.

SN - B(N) - D(N) + (B(N) + D(N)}*/? () ——
where
y(t) = dw(t)/dt (A3.7)

The righthand side of I6 may be interpreted as the sum of

'deterministic' and 'stochastic' contributions to dN(dt).

v(t) is Gaussian white noise which is calculated in all
simulations presented in chapter 4 using the noise-
generator built into the differential equation solving

program 'Solver' (Maas et al, 1582).
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B. SIMULATIONS INCORPORATING ENVIRONMENTAL STOCHASTICTY

[f we make the discrete-to-continuous approximation A3.5
with the additional assumption of a well-behaved driving
function, ®(t), then the population is described by the

non-linear, stochastic differential equation

dN(t) = {B(N,®(t)) - D(N,®(t))}dt
+ {B(N,®(t)) + D(N,®(t))}1/2 aw(t)

(A3.8)

Now assume that the 'wobble', f£(t), in the environmental
variable ®#(t) affects the birth and death probabilities

additively so that they take the forms

B(N,®(t)) = B(N,®*) + b(N)E(Lt)

D(N,®(t)) = D(N,®*) + d(N)f(t)

and A 3% becomes

dN(t) = {B(N,®*) - D(N,®*)}dt + {b(N)-d(N)}f(t)dt

+ {B(N,®(t)) + D(N,®(t))}*/2 aw(t) (A3.9)

If the population fluctuations due to demographic
stochasticity are small compared to the driven
fluctuations, the last term in A3.9 may be neglected to

leave
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dN(t) = {B(N,®*) - D(N,®*)}dt + [{b(N) - d(N)}f(t)dt

(A3.10)

1f the assumption of a well-behaved driving function is
now violated and £(t) allowed to be Gaussian white noise

of spectral density Sg,

dw_ (t)
i.e f£(t) =s;*"’ —%— (A3.11)
then
%% = B(N,®*) - D(N,®*) + {b{N]-d(N}}E;‘h r(t) (A3.12)

Equation A3.12 is of the form used in the environmental
stochastic simulations of chapter 4. Because Gaussian
white noise, however, has infinite variance, the birth
and death probabilities may become negative - in
simulations this is prohibited for obvious reasons of

biological sensibility.
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APPENDIX 4 - TRANSFER FUNCTION FOR THE MODEL WITH A

STOCHASTICALLY VARYING DEATH RATE.

The scaled G-B-N model with a time-dependent variation in

death rate is

N'(t') = Qa7N'(t'-1l)exp{-N'(t'-1)}-{8 + e(t')}TN' (L")

(Ad.1)

where

N' = Nfo/® ; t' = t/7
The linearized dynamic is then
n'(c') = -an'(t') - BE(E*) + v n'(t'-1) (Ad4.2)
where
a = 87

8 = 1ln(Qs/8)T

Y = 1ln(Qs/06)

defining n(w) as the Fourier transform of n(t) and E(w]
as the transform of f(t), where w = 27w7/T yields

n(w) [iw + a-v e”lW] = —g E(u} (Ad4.3)

The transfer function, T(w), is then calculated as
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1_?

T(w) = A(w)/f(w) = - (A4.4)
[iwta-ve ]

and the modulus of the transfer function, IT(w)l, is

found as
IT(w)! = (Re? + Im2)1/2 (A4.5)
where
Re = -f(a - v cos w)/B.L. (Ad4.6)
Im = 8 (w + ¥ 8in w)/B.L. (Ad4.7)

B.L. = (a - v cos w)? + (w + ¥ s8in w)?

Figs A4.l1 a-d show IT(w)l| wvs. w at times 400-700 days.
The double peaked structure described in 4.3.2 is clearly
seen; at greater w values smaller peaks are also

evident.

167



00 - — 25
0 0
0 015 0 0415
C 3
Yep— y 81

- 0
0 015 0 015
FREQUENCY (days~!) —= .

FIG. A4.1 Transfer functions for the G-B-N model with a
stochastic death rate. The figures are based on the
parameter estimates obtained in Cchapter 2 at A) t = 400 days

B) t = 500 days C) t = 60D days D) t = 700 days.
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APPENDIX 5 - MATURATION RATE ESTIMATION

We expect 71 to be given by

It 1.07 dx

1+1n g§]+1nuqx]

(A5.1)
b—TI[tJ

This may now be recast as a differential equation:

©
o = & g(x) dx (A5.2)
t-7I(t)

dTI
= g(t) - g1l - ] (a5.3)

it - _ g(t)
TS (A543

We now want to calculate the initial conditions for
solving (A5.4). If we choose a starting point of t = 8 days

then we know the population history up until this time:

t/days ] 2 4 B 8

N(t) 0 948 942 911 858
and at t = 8 days, Ty will be given as the solution of

t
1 =1.07 I L (A5.5)
e~ (8) 1+1n[5~] + 1nN(x)
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[f we assume a flat age-distribution within each datum

interval then (A5.5) is equivalent to solving

2
dx
1= 1.07 f =6.772 ¥ 1n(858 + 26.5 %)
o
2
dx
+ 1.07 I Z0.772 + In(911 + 15.5 x)
o
L
ax
+ 1.07 j =0.72 ¥ 1In (94243 %)
o (A5.6)
for L
b

dx
Z + In(N+Mx)

The integral is not, however, suitable

a
for quantification and we require a suitable change of
variable; therefore let Z = 1n A
then the bottom line (B.L.) becomes

B.L.. = 1nA + 1ln(N + Mx)

= 1n(A(N + Mx))

]

iIn ¥

ay i = i
now S AM =) dx AM dy
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S0

Y2
[° dx - L[t e
Z + In(N + Mx) AM In y
a Y1
where - A(N + Ma)
Y, = A(N + Mb)

From Gradshteyn and Ryzhik (1980 p. 204).
n
X dx ; n+l
I Inx =~ i Gx7)
and from Gradshteyn & Ryzhik (1980, p. 929)
Li (x) = Ei (ln x).

Abramowitz and Stegun (1965, tables 5.1) may now be

consulted and the problem is soluble - eguation (A5.5)

becomes
421
1 = o.0874 | %ﬁ; (A5.7)
396.5
453.3
+ 0.14%94 J. %
421
S
+ 0.7342 j %ﬁf
435.3

Evaluating (A5.7) is straightforward and we finally
obtain L = 1.496 days. 71(8) is then calculated as

2+2+41.496 = 5.496 days.
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APPENDIX 6 - RAW DATA

This Appendix contains the raw data for Nicholson's
(1957, Fig. 8 I,C & H) experiments. The control data
(run I) is the same as that presented in Brillinger et al
(1980); it is included here for easy reference. The
data for the 20 and 80 day driven experiments (runs C & H
respectively) was created by hand measurements of the
graphically presented data (Clark, Geier, Morris &
Hughes, 1968 pll4). The picture was copied, enlarged on

to tracing paper and then hand measured.
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S.BA00ED |, A4RM0ED | S.OPDOER , AZOOOE! | L44SCED |, ,0a00E2 TDACER |, 85,3050, 3VMEY , 270808 , 3,250 y 1,04NE3

S.BB00LE | 4.7BOOED , LJATWOED |, 1.3900E2 » LYGNED | 1en0E3 TWDBOOEZ |, S.TMMOED |, S.5070ED p LYTEIE |, .00 v 2063063

5000E2 , 5,758, 20NT0E3 , ZJBNEZ , 0VOR , 2.1E0 TJO0ER , 4.2040E] , LE710E) , 1.STOE3 , .4%en s L.4740E3

S.900E2 , 5.5EI0ES , LAGIOED , 1 0700E2 , 2OWEY |, 2.50000 TR |, 20703 , 70000, 0.0000 p LAVAEY 9 w0083

S/HE0E2 |, 502060 , 4JI0E2 , 7LTO00EL , LTINS , |.5sa00 TelSDOER  BLITH0E3 L 0u0000 0uOON0 |, 3,254 . 310083

S.REOOER 4. 7BAGER , LWTITOED  LSOOEZ , TLORU0ER | Lacwm TAMOEE | §u49083 L 00000, W00, 351000 s AI5ED

S.9800E2 |, 4.080E1 , L O0ED , BOIER , LZEWE |, Laaxm TURMER |, 4BAED , 00000, 0.0000 |, 2,319 ) £.48%0E7

§.0000E2 , 2,91000 |, 25120E3 , LHTOUEZ , BATONER , iSmmy TRME | LUOMED  0.0000  , 0,000, dugeTomy ) LIATED
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time

80000

20000

A Q000

B D000

§,0000

1.0000EL
1. 2000E1
1.4000EL
1.6000E1
1. B000EL
2. 0000EL
2. 2000E1
240001
245000EL
2,8000EL
3. 0000EL
3, 2M00EL
3. 4000E1
3.6000EL
3. B000EL
&, 0000E1
A, 200081
4, 400081
4 B000EL
4.8000E1
5. L000EL
5. 2000E1
5.4000EL
5. 6000E1
5.B000E1
&, 0000E]
6. 2000E1
& 4000E1
4o BUUOEL
&, BO00E1
7 JO000EL
7 2U00E]
FodDO0E:
7 +4000E1
7 +BOO0ED
8. 0000E]
8. 2000EL
B #000EL
8. 5000E
8.8000E1
F2 0000EL
?lml
7 4000EL
F.8000EL
7.EO00EL
1.000082
1. G200EZ
1.0400E2
1080082
1. 0800ER
1. 100082
1. 1200E2
1140082
1. B600EZ
1. IBOOEZ

DATA FROM THE 20-DAY DRIVEN EXPERIMENT

numbers

¢ J0000E2 |, 0.0000
5 J0000E2  ; 0.0000
¢ JO0DMEZ , 0.0000
¢ J0000EE ; 0,0000
¢ S0000E2  , 0.0000
¢ J0000EE , 0,0000
¢ J.0000E2 |, 0.0000
s JO000EZ , 0,000
¢ JDO00ER  , 0.0000
¢ S.0000E2 |, 0.0000
¢ J00M0E2 |, 0.0000
¢ JOONIEZ  , 0.0000
¢ LLO0E2 |, 1.230RE2
p FO0O0EZ  ; 1.0aAFE3
¢ S0000E2 , 2.2974E3
¢ 00002 |, 4.TIESEZ
y SOMD0EZ |, 5.44ZE3
o AD000ER  , T.52BZED
p SDOOEZ |, 4.543E3
p SP0O0ER |, G.STHER
y ToBOOOET 4 1.Z308E2
y BDODIES , 7.FVAVER
v B0000E3 | 2.0503E1
p S000E3  ; 2.0T13EL
p 7o5000E3 , 4.1028E1
p G0MER |, 4.1025E1
¢ LAOMEI |, 4.1535E1
y L80ME3 , BJSI2ER
¢ 2oI00CEZ  A.ROSLEL
p LJOMET , 1.A35FE2
¢ LAODOER , 0.0000
g & S0ME2 , 0.0000
» 0D00EZ 0.0000
y J500E2 , 2.4815E2
§ SAS000E2  , 2.0513%2
p OCLIEZ , J.0TE0ER
¢ JI00CEZ 4 1.6000E3
5 40000EZ  , 5.8051E3
¢ E0EE | J.2410E3
p 45000EE  20749E3
¢ S0X0E2 |, S.153RE2
¢ S0000E2 |, 4 TLIVER
» S0000E2 , 1LBMGZE2
; S.0000E3 , 2.0513E1
p & 0000ET | 4. 1024E0
y S JOO0ED , Ll4TSVER
P ST000E3 ;4. Q026E]
y T000E3 , B.2051EL
y L2000E3 |, 2051381
p S43000EZ (0000
p Le8O0UET |, 0,0000
p LIDOOER , 0.0000
¢ 8000022, 0.0000
y SJS000E2 |, S.TH3AEZ
¢ ZO0CER | 5.TABAER
p 4000GEZ |, 2.9233E3
» BI0E2 , 1.o6TED
p JO000EZ  , 3.0358E3
L0002, LLR3Ed
¢ So30M0E2  , L.AD00E3

12000E2 |, 3.0000E2
LBBOCER |, 6.0000F2
L24D0E2 , 1,B00083
Le280E2 |, 4.0000E3
L.2800E2 | 5.4000E3
Lo3000E2 |, 4.0000E3
1L.200EZ  , 2,9000E2
1. 3400E2 , 3.3000E3
1380082, 2,3000E3
1a3800E2 ) 1.5000E3
1 400E2 4 1,2000E3
LoAB0E2 | &.5000E2
1840082 | 3.500082
L ASO0ER 5 3.0000E2
1.4500E2 | &.0000E2

1.5000E2 |, 9.5000E2
1.5200E2 , 1.1500E3
1540052, 1,100063
1.5600E2 |, #.5000E2
L SA00E2 | 7.5000E2
1o6000EZ |, 7.0000E2
L2002, 7.0000E2
1. 5400E2 |, B,0000E2
1o6500E2 | 2,100023
1.6800E2 , 4.2000E3
LGIER 4750063
L7200E2 , 4.5000E3
1.7400E2  , 4100950
1.7500E2 , 2.3000E3
s S
1.3000E2 , 1.2000E3
LB20GEZ |, &.0000E2
1o8400E2 |, 4,0000E2
18500E2 |, 3.0000E2
1.8800E2 , 3.0000E2
LFUO0EZ  , 9.0000E2
1.5200E2 |, 1.5000E2
L4002, 1.6000E3
LaFS00E2 |, 1, 4000E3
L980052 | 1.3000E3
20000082, 1.3000E3
2020082, 1.3MED
2O400E2 , 1.800080
20060032, 2,800083
2.0800E2 |, 4,500023
00062, &, 200083
2.1200E2 , 4. JO00EZ
204002, 2200063
2S0E2 |, 1.50003
2.1B00E2 , 1,100083
2o 2000E2 » 7 0000E2
22002, 4.0000E2
2240082, 4.0000E2
2360052 | 3.5000E2
202B00E2 , 4.0000E2
2.3000E2 |, 4.5000E2
Zi3200EZ , 4,000082
2.M0EZ |, 7.5000ER
2.3500EF 1000083
2.B00E7 |, L.050088

177

¢ 4153381
r 251D
y 4 J02SEL
» 4 1025E]
» S.2051E1
» :1538E]
¢ JERRIER
[0 Ferix
» 1oBAGZER
¢ 1.2308E2
p 24051 3E1
o 90000

¢ 90000

v 2e441TE2
» 8:1538E]
v 1Y2R2E
v 145TMED
¢ 317983
» L1383
» L&AIDE2
p 8« 1538E]
p 4+1333E1
» SUS1E]
r 4. 1025EL
» W J025EL
y LabdITER
¢ 2051352
p BaA154E2
¢ S.2051EL
P 3 L]
» 5.1338E1
¢ LeBAAZED
¢ 44 L024EL
y S 2A20E2
p ASLHE
r 45133
» LTS
» LOOSIES
» 4:1024E1
i 2050362
¢ 90000

9,000

» 4 1025E1
v 90000

» L2082
« 4 025E
» 20513E1
st x]
r 4. 1026E1
p Ll254ER
¢ 2u258E2
¢ 1.Z304E2
» JO7evER
¢ 3. 2000E3
¢ d078%E3
¢ LAIE
» LFOTTED
¢ Bad154ER
p 07SVER
» B.251EL

2. 4000E2
2 4200E2
2+ 440082
B 400E2
2480082
2300082
2 5a0E
250057

2360052

2,3800E2
2o 6000E2
2420082
2, 6400E2
2850082
2o bB0E2
2. JOME2
2, 70082
2 JH00E2
2. T600E2
2:7B00E2
2, 8000E2
2,8200E2
2 BA00E2
2 BA00ER
2. 830082
2, ¥0D0E2
220062
254002
2/ P500E2
2.5800E2
3. 0000EZ
3 0200E2
3040082
3. 0500E2
3080082
300082
3. 120062
3. 140082
3. 18600E2
3150082
3, 200082
3. 220082
3. 240082
3. 2500E2
3280082
3, 200082
3, 320082
3340082
3, 40082
3,3800E2
3400082
3420082
Jo 440082
3450082
3. 4B00E2
3500082
3:3200E2
3. J400E2
J SEO0E2
3. 550082

¢ Z200CEE 4, 0024E1
¢ 200003, 4.0024E1
y 5.0000E3 , 8.2051EL
¢ B,0000E5 , 1.230422
p TDODOEZ | 1.0254E2
p JAOMET | 2, FSME2
p LSONED , 1.B4TE2Z
p L7ODOES |, 2,464547E2
r 1LIGMER , 4.300TER
p LOOMIER |, 2471862
r Jo0000E2 , 2.5667E2
o 0OOIER  , BLA1SHER
¢ S0000E2 , 4,512882
» 500002, 4.1025E3
p 5S000E2 |, 2.89T4ED
o LA5ME |, 377358
p LS00ET , 1.4400E3
p Lo30OOES |, |.1282E3
» LOOER ; 4.1026EL
r L8OXIE  6.1538E1
¢ LAS0CED , 4.1538E1
¢ SNE  B.205:E1
r &I000ES , 2.05.281
» 7e000E3 |, 4.1028E1
o JOBOD0ED | 2.A8ATER
p 5000083, 2051351
¢ JeA000E3  , L.ad10E2
p LENE  E153EL
¢ LIOMER |, 1.Z300E2
¢ LDOOES |, 1.B442E2
¢ S0000ER  2,4047E2
¢ 200ICEZ 245152
y UONE | 1eSIED
y 2500082, 3.3MIE3
p J00MEZ | L0F2IE3
1 50000E2 § S 12EE3
¢ 5.0000E2 , 1.9487E3
p 83000EF 4, 0024E1
p FO0DOE2 L 4. 0528E1
¢ LOS0OER | 40102601
p LSOOED |, 1.9442E7
p 2o4000E3 , 5l 1SHEL
y ToSDOEZ , 2.0503E2
p 300003, 4153828
¢ BO000E3 |, 4, 1024E1
p LOONET , LAaMOER
p LTOO0E] , 5.TEED
p 200003, 349232
r 1.S000E3 , 1.0254E2
p LOSMCE3  2.05138E1
p 35000E2 ; 4.300TR2
v S.0000E2 |, G.BFTeER
» 40000E2 | 2 9THE3
r S000E2 1450463
¥ LIGCE |, 1.9007E3
 LSWEY |, 4.4979E3
p 1300083, 5.%4EE3
¢ LGME L L0
o LEDMER . ),0254E3
p LOONED |, 2.051381



J8000E2 | 3.0000E3
3400E2 , 4.300083
14400E2 |, 5,500083
LE0ER | 8.0000E
J4800E2 |, 5.8000E3
JJ0HE2 |, 4.5000E3
AT200E2 |, 3.100083
LTANE2 | 1.9000E3
L TE0EE | 7000082
7822 | 5.500082
3.8000E2 . 4,0000E2
JA200E2 |, 2.5000E2
JBH00E2 . 3.5000ER
LBL00E2 |, 4.5000E7
J.Ba00E2 v 11500E3
LR00E |, 1.5500E3
352002 , 1.5500E3
354002, 1.1000E3
LRO0ER |, 7.0000E2
L¥BO0EZ |, 7.0000E2
4.0000E2 , 1.8000E3
LOEN0E2  , 2.4000E3
4.0400E2  , o 4000E3
40800E2 |, E.0000ET
4.0800E2 |, B.0000E3
S 00GER | B.0O00ES
4 L00EF  , 7.0000E3
4 J400E2  , 4.0000E3
4. 1600E2 |, J.4000ER
4. 180082 | 2.4000E3
4200082, 1900053
4. 2200E2 |, 1.3000ER
4240082, 7000002
4BH0ER |, 4.000082
4 2000E2 |, 3.0000E7
4300082
LI |, 2500052
43400, 2500082
4, J00E2 , 2.5000E7
4380082 |, 2500082
4400082, 3.0000E2
44200E2 |, 2, 200063
4, 4800E2 , 4.100083
H00E2 | B.0000E3
A4B00E2 |, 8,0000E3
4,300082 , 8.0000E3
4.5200E2 |, 7.5000E3
4.5400E2 |, 5800083
455002, 3.2000E3
4580082 | 2,5000E3
4 4000E2 |, 1.5000E3
442052 | v.0000E2
4.6800E2 | 7.0000E2
4 b500E2 , 5,500002
4. 5B00E2 |, 4.0000E2
4.7000E2 | 2.0000%2
T20ER , 3.0000E2
4.7400E2 | 2.0000E2
A TENER |, 3000082
4TE0E2 |, 2.500032

» §:415382)
» 4 1075E1
¢ 8. B051EL
¢ B20GIEL
¢ 430772
 2obAATER
» JBFTAER
¢ 2BTIEE2
y 8. 2051E1
¢ 410241
» Lo0BSeER
¢ JO7EFE2
¢ 104723
72304483
v 4389263
» 44873
» 2AB2IES
» 2547753
v 6. 1538E1
» B205IE1
¢ 410241
» B 1534E1
v 8205161
» B2O5IEL
) 149
» 4:102¢E1
¢ 143552
o G200
r 1.2254E2
1 4. L0Z8E
§ & 1532E1
» JoA3SRER
¢ 1 A5YER
» L&T1HE3
¢ 4541083
¢ &:0102E3
» 4102863
y JFNED
¢ 2533283
¢ L.EA10E2
5 +SASZE2
r 4 102EE]
¢ Lodiseez
r 2051361
+ b ISIBEL
¢ Ba15385)
» $+1538E]
¢ $1338EL
i 4 1025E)
y $:1338E1
» Jo4ETRER
v LATHED
¢ Jab¥ZIE2
p 7T V4TEZ
» 1L.E051E3
§ JL9THER
» 2LTIAEY
¢ 4102652
¢ 29513E1
» B1538EL

A4 BOOOER
4, B20E2
4. 8400E2
4. 5600E2
4, BAOOER
4. 700082
4, ¥200E2
4 F400E2
4, 9500E2
4.5300E2
F.0000E2
3020082
5040052
5080082
5080052
5100082
S 120082
140052
S.1400E2
S« 180082
5.2000E2
SeZ200E2
3. 2400E2
F. 250082
Se2000E2
Fe2000E2
5.3200E2
S 3400E2
3. JE00E2
5. 380082
5. 4000E2
Si4200E2
o 4eD0E2
5440082
5450022
J.5000E2
S.5200E2
3540082
5550082
5. 3500E2
S 6000E2
Fob2ME2
S d400ER
5.b400E2
J. 680052
5700022
5.7 2002
Sz
5740082
5B
5800082
5.BE00E2
5

5. Ba0ER
3.8800E2
5. 50002
5.7200E2
3 00EZ
Feva00E2
S.he00E2

p L0000E2 | 1.2308E2
p Eo4000ED » LaS410E2
5 R2ON0E3 , LA
¢ 4 I000E3 , 1.s4L0E2
p LSD00ET [ v.841082
y S000E3 |, 5.5395E2
§ ST0M0E3 |, 2o4815E2
p JBOMET |, .07S4E2
p 1eP000E3 | 4.1028E1
¢ 1.3500E3  A.B205E2
p FS000E2 , 2,190

PODOEZ |, 1.9487E2
7 E2 7. J34sE2
3.0000E2 , 2.235%E3
1 H000E3 | 3.354LE3
150003 , 5.5335E:
180003, 4.544122
1S000ES , 4.1026E1
1I00CE |, 3.4923E2
LJOMES | 1.0452E3
4.2000E3  , 3074582
p 4 A000ET 4015301
p 4 TO00ES |, 8.0000EF
r S.2000E3 ; L.4510E3
y JeI000E3 |, a.JevERR
¢ S8KES , To3B44ER
v 13000E3 |, 3.B4T4EZ
¢ LSMWE ; 1.435582
p LeolOOES , 3.2051E:
o La3DOOET , 4.102:81
¢ 1«A300E3 , 3.2051E1
» LSOOES , L.B44REF
p L200083 1805183
¢ LTHNED , 1,600083
p 28000E3 , G.3STOER
¢ LB000ET |, L.36REED
p LS0O0ET |, £.3007E
o LDODOES | 2.671%E2
p TLODGEZ | 14E59ER
§ T.5000E2 |, 2.718T2
¢ La2000E3 , 4.5841E2
¢ L20ME] |, I.2EMER
¢ AMLET  7.mavTER
¢ LAO0ED | BOTEVER
v LYOMOED |, S.02SEER
» LBOMED , 1,5305E3
p LASOOEZ 53T
y 1.3000E3 , 7.58¢7E2
¢ L8000E3 , 1.0254E2
i1

v LYSOOES , 124262
» LIHNED |, 1 ATSIER
» ZBODED | §,74v2ER
¢ LOOKET , §,330E0
o ZADNE |, 1,4359E2
§ S1000E3  &.0103E2
» LIOOOED |, 5.57HE2
» LISOCED , 5.1282E2
¢ LITOOES . LLOESAER
¢ LIONIED |, 1.435%E2

178

oy

6.000082 |, 2.2000E3 , 4.1024E7

5 0R00E2
& 040082
&, DE00E2
S 0800ER
100082
4120082
b J400E2
&, 160082
4:1800E2
4. 2000E2
&, Z200E2
&, 2800E2
5. 2500E2
&, 20082
&, J000E2
£, 3200E2
S M0ER
&4 J00E2
& 3800E2
& 4000E2
&a4200E2
A, 8400E2
S 4800ER
SodBO0ER
550002
4, 520082
4. 540CE2
5 5E00E2
4. 5800E2
& 5000E2
S S20E2
S b400E2
baodl0E2
£ 4B00E2
& JOCOER
S T200E2
& J40E2
& Te0EZ
S TBI0E2
4800082

=]
¢ 2V000E3
5 Do S0NES
¢ Ev8300E3
¢ 2500053
¢ 2DO0CES
p LIU0ED
» 150083
PRI x]
¢ Zo2DODE3
+ 4500053
¢ 4500083
» 3800053
¢ 3000053
§ SASNE
» 2000083
» 1.7000E3
v 1850063
o 1aTO00ES
» 2200083
» 258
¢ a0
¢ 420008
y Jeblid
+ 400053
¢ oo SO00E3
¢ Lo5000E3
¢ LlCCHE3
» 1h2000E3
2 2000E3
§ 4 2000ET
¢ 30000E3
p ST LNED
» SaA000E
5 2300053
¢ 2 J0ET
+ L.B00CE3
» 2v2000ED
y 250003
» 2.6000E3

v SeTABAEZ
¢ 7o ILED
y 2113853
» L6E05E3
¢ 2010353
» L-1487E3
v 2051262
¢ S TENED
y Jel7FE2
y ZE2IEZ
» 5128282
» Ba2051E2
y 5.300382
¢ asB320E2
¢ Le3SHE
¢ 1.230283
¢ SELSAER
¢ Led4IGE2
r 2.L513E1
¢ 1.2308E2
» SvMALTEZ
» TLBAICER
p JZiSEF
¢ L 2T13E3
» S0SLIES
¢ 4471563
¢ B 000052
§ S+ FE3LED
» 6»1535E1
e 3TER
¢ Ledve¥E3
p SF4FE2
1 Tead FSE2
F S.028072
§ 7 elBAEZ
PR i
R o]
y 355ER
p asd2)2E2
» 1025862

LHR0EZ , 2.950E , LATMES

§.8400E2

¢ 3100053

y LOCSIET



time

00000
2.0000
4, 0000

8.0000

14 0000EL
1. 2000E1
Lo 400EL
1.5000E1
1.BO00EL
2000021
2. 2000E1
2. 4000ET
2600051
2.8000E1
3.0000EL
3. 2000EL
3.4000E]
3, 4000EL
3.8000E1
4, 0000EL
4, 2000E1
4. 4000EL
#.5000E1
4, BOCOEL
F0000EL
S+ 2000EL
5.4000E1
5. 6000ED
5.8000E1
& 0EL
4. 2000EL
&, 400081
b B000EL
4 BODOEL
T 0O0GEL
7 2000EL
7 4000EL
T 8000EL
ToB0EL
&, 0000EL
8. 2000E1
B 4000EL
8. 6000EL
8. 800081
F0ONEL
720001
F.4000EL
F5000EL
FB000EL
1, 0G00E2
1.0200E2
1. (40CE2
1 00EE
1. 0800E2
Lo 1000E2
1. 1300E2
1. 1400E2
1. 1500E2
1180082

DATA FROM THE 80 - DAY DRIVEN EXPERIMENT

p LOOOOEZ |, 3.B974E2
5 L0000EZ , J.4B72E2
p LOOOOEZ , 4.307TERZ
v 1000E2 , 1.861523
5 LO0O0EZ , 1.928EE3
¢ Fo0000E2 , 1.55%0E3
y LIGOOER , &.153%EL
¢ Leb0OOES  , 2405132
¢ 2:2000E3 , &.1533EL
y &JO000E3 , 1.Z308E2
» 33000E3 , 1.0256E2
p HFONED | 2461582
p 46000E3 ; B.205IEL
p 2300083, B.2051EL
p 2:0000E3 ;4. 10Z6E1
¢ 12000E3  B.2051E0
§ TA0000E2  ; A.EOSIEL
¢ 30000E2 , 1.087253
¢ SSO00EE 1210353
p 3500022, 1.581583
¢ JO000EZ  ; 2.84a7E3
§ DSOOOE2 , 4.897453
¢ S0000E2 , ATTYSER
p BO000EZ  , 3.3840E3
p LiBOOIES  , 2.4000E3
p SE000E3 , 4.512EE2
p 400003, 5.205IE2
p S0000E3 , 5.028282
¢ To2000E3 , B.2051E1
¢ SS000E3  , B.2051EL
» Go800DED  , B.2051EL
p ATOOOEZ B.2051E1
¢ J2000E3 ; J.4R7EE2
p DoR000E3 4. 1024E1
p LoTOOOER  , 4.1024E1
p LIODOEZ ; 4,1024E1
p 2000E2 ; 4.1024E1
§ S0000E2 5 &.1522E1
p JM00EZ ; 2,1538E1
¢ J0OD0EZ 4. 1025EL
5 2000082, 4.1028E)
o 2.0000EZ |, 4. )024EL
¢ LSOOOEZ |, 4.0024E1
p LO000E2 , 4.717%E2
g LO00DEZ , 1.5205E83
» LOO00ER |, 7.17%<E2
y LODOOEZ , 2.0513E3
¢ 1OODDOER | %.0254E2
p LOO0CEZ  ; L.MAI0E3

1200082
1. 220082
1. 240062
1o 250082
1, 280082
1. 300082
130082
140082
1, 380082
1,380
1400082
1 4200E2
1440082
LeAs0E2
1:4800E2
1. 500082
1520082
1:540022
Lz
1580082
1. 6000E2
1.4200E2
1aad0ER
LbsD0EZ
1. 4800E2
1. 7000E2
1.7200E2
1.T7400E2
1. 760062
1. TROOER
1.800082
1820082
1 8aD0E2
1880082
1880082
1500082
1 ¥EE2
1. 7400E2
1. 560082
1iFe00E2
2.0000E2
2.030022
2,0400E2
2, al0E2
2,0800E2
2. 1000E2
2. 120082
2, J400E2
2150082
2.1800E2
2. 2000E2
2220082
2240052
ZeEMNER
2, 2A00E2
2, 300082
23002
2. 3400E2
2, 800E2
2380082
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APPENDIX 7 READSHAW and van GERWEN's DATA

This Appendix contains Readshaw and van Gerwen's (1983)
raw data. Shown are age since emergence, number of
flies, eggs laid and egg survival for four different

constant density experiments.
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APPENDIX 8 - A PROBLEM WITH THE MATURATION RATE ESTIMATES

The data shown in this Appendix are the calculated
immature and mature population sizes through time and the
eggs per mature fly estimates. Whenever a 'NOENTRY®
appears in the eggs per mature fly column, this signifies
that eggs have been laid but also that there has been an
estimate of no mature flies in the population at that
time. Such an event is clearly impossible and implies

an incorrect analysis.
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