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Abstract

We investigate ways to test for various aspects of seasonality in marine time series. In
particular, we analyze series from the Stonehaven Fcosystem long-term monitoring
station, run by Marine Scotland, Aberdeen. Our main focus is in identifying any
systematic changes in seasonality as these may be attributed to climate change. We
explore existing methodologies and introduce simple and robust Resampling tests.
Generalized Additive Models (GAMs) are used to seasonally decompose each series

and test the significance of individual components.

We study the seasonal patterns of some environmental series but also phytoplankton
and zooplankton species series from Stonehaven. Climate change will have a direct
effect on phytoplankton communities as they are influenced by changes in the cur-
rents, the water temperature and salinity, as well as the availability of nutrients. The
zooplankton species feed on the phytoplankton biomass and are themselves prey to
larger fish and other top predators. Evaluating the seasonal patterns of phytoplank-
ton and zooplankton populations is in itself important because plankton species are

at the heart of the marine food web.

Of the environmental series from Stonehaven which we examined, Salinity, Ammo-
nia and Nitrate have patterns that are systematically shifting earlier in the year.
Chlorophyll a, which is an indicator of the phytoplankton biomass, has a pattern
whose amplitude is gradually decreasing while it is also shifting slightly earlier in

the year. Amongst the zooplankton series analyzed, Acartia clausi copepodite stage



6 males (Cém), Calanus finmarchicus C5 and Calanus helgolandicus C5 have pat-
terns systematically shifting earlier in time. Calanus helgolandicus C6f and C6m
and Juvenile Calanus copepods C1 - 4 have seasonal patterns whose amplitude is
systematically increasing as well as shifting earlier in the year. These zooplankton
species are important because of their role as prey in the life cycle of the most com-
mercially important fish. Our results indicate the nature and magnitude of the effect

that climate change has on marine life and provide a basis for further analyses.



Chapter 1

Introduction

1.1 Climate Change

In the summer of 2003 a heat wave was responsible for many deaths in Europe.
Anderson & Bausch) (2006), in a briefing note on climate change and natural disasters
to the European Parliament, report that at least 22,146 people lost their lives due
to the unprecedented heat wave. In the same note they mention a number of other
natural disasters that have struck Europe and the rest of the world and are linked

to climate change.

Climate change is generally regarded as the single most serious problem facing the
world today. Climate is a generic name for the average weather conditions expe-
rienced over a long period of time. The climate is always changing as a result of
various natural causes but it is believed that during the last century human factors
have been responsible for other, greater than natural, climate change. Over the last
hundred years, the temperature of the Earth has risen by 0.74°C, while 0.4°C of this
warming has occurred since the 1970s (Department for Environment, Food & Rural
Affairs, DEFRA| 2008]).



In the UK alone, many changes over recent years have been observed. According
to the Inter-Agency Committee on Marine Science and Technology (IACMST) some

notable examples include:

e The annual mean Central England Temperature has increased by 0.5°C during

the last century.

e The mean of annual mean temperatures over 30 years in Northern Ireland and
Scotland increased by 0.3°C from 1873-1902 to 1961-1990.

e There is a tendency towards wetter winters in north-east England and drier

summers in south-east England.

e Mean annual sea surface temperature of the UK coastline has increased by
0.5°C.

e The mean sea level around the UK coast has increased by about 1 mm per year

during the last century.

These are all considered manifestations of climate change by TACMST| (2005). The
phrase ‘climate change’ is used to describe the man-attributed, rather than natural

change in the climatological conditions.

A major contributor towards climate change is the usage of fossil fuels in human
societies. Fossil fuels, such as coal and oil, are used in homes, factories, trains, planes
and cars. These emit carbon dioxide which is considered a harmful ‘greenhouse’ gas.
Greenhouse gases are the gases that when released into the atmosphere surrounding
the Earth, keep it warm. Due to the large scale deforestation since the Industrial
Revolution there are not as many trees to absorb the increasing quantities of this
extra carbon dioxide. Additionally, other types of greenhouse gases are released into
the atmosphere and thus, the mixture of gases in earth’s atmosphere is changing.
This greenhouse effect is very important when we talk about climate change as
these greenhouse gases prohibit the Earth from cooling. It is these extra greenhouse

gases which humans have released that are thought to pose the greatest threat to



the environment and the current climatological conditions, according to the [UK
Phenology Network (2009). Nature’s Calendar, the name of the web-site of the UK’s

Phenology group, has a good discussion and material on climate change.

Eutrophication, defined as ‘an increase in the rate of supply of organic matter to an
ecosystem’ by Nixon| (1995)), is considered a global concern, too, and is attributed to
man-made causes. Eutrophication is partly a consequence of increased system pro-
ductivity due to nutrient enrichment, say |Carpenter et al.| (1998) and triggers signif-
icant changes in coastal ecosystems. The presence of eutrophication has many unde-
sirable outcomes such as toxic algal blooms and low dissolved-oxygen levels (hypoxia)

with disastrous effects on the ecosystem (National Research Council, [2000)).

Nonetheless, it is not only the phenomenon of climate change itself that is worrying
but also the ways these changes in climate influence the course of life on earth. Plant
life is affected greatly by the existing climatological conditions and thus, a change
in them would result in a change in the plant life (Sherry et al., 2007). Animal and
human life are in turn affected directly and indirectly (through plants) by climate
change. Therefore, climate change is not to be taken lightly. In modern society,
scientists and politicians are concerned with finding ways to tackle this. A first step
in battling climate change is assessing the current state. A lot of research has been
done to estimate the extent of change by examining indicators of seasonal changes,
as they occur in nature, (IACMST)] 2005; Heath et al., [1999; Menzel et al., [2005).
In science, an event is considered seasonal when it is periodic, i.e. it repeats itself
after a set period of time. Thus, by examining the timing and succession of seasons

in nature one can monitor changes in the climate.

1.2 Phenology

This interest in the succession of seasons is not new. In Japan and China the time of
blossoming of some trees (e.g. cherry trees) is associated with ancient festivals and

thus, some of these dates can be traced back to the eighth century. The study of



the times of recurring natural phenomena, especially in relation to climate, is called
phenology. Examples include recording when the first cuckoo was heard each year or
when the blackthorn blossom was first spotted. Robert Marsham was Britain’s first
phenologist and started recording his 'Indications of Spring’ as early as 1736. The
first individual records found are from a Weather Diary from Egioke (near Redditch)
from March 1703 (UK Phenology Network, 2009).

These individual records can then be compared with other ones allowing us to com-
pare, for example, the rates of change in the succession of seasons. The UK Phenol-
ogy Network (UKPN) is run by the Woodland Trust and the Centre for Ecology and
Hydrology. It has over 25,000 volunteers who send in observations from their local
areas. From their web-site, Nature’s Calendar, the UKPN urges observers to record
a variety of events by the time of year. These include, for example, the sighting of

specific, migrating, bird species or the blossoming of specific plants.

In addition, many scientific monitoring projects / stations have been running since
the last century. For example, the Sir Alister Hardy Foundation for Ocean Science
(SAHFOS) runs the Continuous Plankton Recorder (CPR) Survey, a marine mon-
itoring programme that has been collecting data from the North Atlantic and the
North Sea on the ecology and biogeography of plankton since 1931. Another example
is Plymouth’s Marine Laboratory which is involved in various monitoring projects
including the CPR Survey and long-term and decadal time series monitoring stations
in the English Channel (Plymouth Marine Sciences Partnership), [2009).

As climate change has gained much publicity in recent years so has phenology (Cook
et al.,2005; Bell, 2009). Bell (2009) talks about the history of phenology and presents
findings from her analysis of the data on flowering at the Kew Gardens. She notes
shifts, earlier in the year, in the flowering date of many species and draws attention

to the consequences of climate change.

An interesting neologism in phenology is the phrase ‘season creep’ used to refer to
observed changes in the timing of seasons. A gradual shift of a season to earlier or

later in the year is called season creep. It is especially used to describe the movement



of spring to earlier in the year due to climate change, (McFedries| |2006). We will
refer to season creep later when we try to detect the effects of climate change in

marine data sets.

1.3 Stonehaven Ecosystem Monitoring

Marine life is affected by climate change and it is the possibility of detecting and
identifying season creep in marine life that is the main focus of this thesis. We are
investigating ways to evaluate seasonal stability in data from the Stonehaven long-
term Ecosystem monitoring station, located in the eastern North Sea (56°57.8'N
02°06.2'W), in a water depth of around 50m, see Figure . This monitoring station
is run by the Fisheries Research Services (FRS) in Aberdeenﬂ

The Stonehaven data consist of weekly samples (weather permitting) since January
1997. The database includes measurements of environmental variables (such as tem-
perature and salinity) and nutrients (e.g. nitrate) but also counts of many phyto-

plankton and zooplankton species.

Analyzing the data, we examine the nature of seasonal patterns focusing mainly on
zooplankton time series. This relates to other work at various monitoring sites around
Scotland, the UK and the North Atlantic generally (Beaugrand & Reid, 2003} [Heath
et al.,1999)). In Figure , we see the ocean currents in the North Sea. Stonehaven
is in the northwestern North Sea and is influenced by the inflow of mixed Scottish

coastal and oceanic water that flows south along the Scottish east coast.

Furthermore, studying the seasonal patterns of phytoplankton and zooplankton pop-
ulations is important because plankton species are at the heart of the marine food
web, see Figure [1.3] Climate change influences the course and strength of currents,

the water temperature and salinity and the thermal stratification of the sea, which

1On April 1 2009, Fisheries Research Services (FRS) was merged with the Scottish Fisheries Pro-
tection Agency (SFPA) and the Scottish Government Marine Directorate to form Marine Scotland
- Scotlands new marine management organisation.
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all affect plankton communities and chemical nutrient supply. These changed condi-
tions influence the physiology and population dynamics of the phytoplankton species
that absorbs the energy from the sun and chemical nutrients to provide the biomass
that feeds the zooplankton species. Larger fish such as cod and haddock feed on
zooplankton, and thus a change in the seasonality of phytoplankton can alter the
timing and balance of productivity in the sea and affect commercially important fish

and other top predators such as seabirds and cetaceans.

We use methods based on Classical Seasonal Decomposition (CSD) to test for sta-
bility in the seasonal pattern of the series. A seasonal pattern can exhibit changes
in the size of the seasonals (amplitude change) or in the timing of occurrence (phase
change). Furthermore, these changes can happen in a systematic or a random way. A
random change (fluctuation) in the seasonal cycle can often be attributed to environ-
mental factors (e.g. an unusually cold period) while systematic changes are mostly
related to climatological conditions and their effects on the environment (e.g. days
become gradually colder). Once the instability of the seasonal pattern is verified we
explore the nature of it. We are interested in systematic changes in either the size or
the timing of the seasonal pattern. Thus, we are actually looking for evidence that

climate change influences marine life.

There exists a vast bibliography of studies on seasonal stability, many of which come
from econometrics such as Said & Dickey| (1984); |Hylleberg et al.| (1990)). These
studies have produced a number of highly sophisticated, complex and elaborate tech-
niques e.g. (seasonal) unit root tests, that aim to address issues arising in the con-
text of seasonal (in)stability in economic time series. Nonetheless, these methods are
based on theoretical hypotheses and should be applied with great care. Furthermore,
they were created for use with monthly or quarterly time series, and thus cannot be
applied to higher frequency (weekly) biological data without problems. We are inter-
ested in testing the stability of a pattern and do not necessarily require the detailed
output of some of these unit root tests. Furthermore, the Stonehaven data are not
equi-spaced in time, with many missing values and duplicate measurements, and in-

clude erroneous values due to equipment malfunctions. Therefore, it is important to
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find straightforward, robust and simple procedures for testing scientific hypotheses
about changes in the seasonal cycle that can be used to analyse the Stonehaven data
set but also can easily be applied by marine biologists in the future. We consider

two main approaches: Resampling and Generalized Additive Modelling.

In the following chapters we firstly talk about CSD techniques and use three time
series as illustrative examples. Then we review some testing methodologies for the
different types of seasonality and present some new simple approaches. A sensitivity
analysis of the newly presented methods is conducted. Finally the results from our
analysis of the Stonehaven data sets are discussed along with possibilities for further

work.



Chapter 2

Seasonal Decomposition

2.1 Introduction to Seasonal Decomposition

A time series is defined as a sequence of observations occurring in time. Typically,
in time series, adjacent observations are dependent and time series analysis consists
of methodologies to analyse this dependence. A time series is said to be seasonal
with period s when similarities in the series occur every s basic time intervals (Box

& Jenkins, [1976)).

One of the oldest approaches to the analysis of a time series, X; with period s,
is to consider the series as the union of three components; a long term, relatively
slow, movement of the data referred to as trend; a periodic component of period
s, corresponding to seasonality; and the remainder or error. Hence, the series can
be decomposed into those three components, the trend component, T}, the seasonal
component, S; and the remainder, or the error term, R;. Then the individual com-
ponents can be further examined to allow more detailed interpretation of the data

or even projected to the future to create forecasts.

Xe = f(S,, Tt Re) (2.1)

13
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The trend in a series, which can be thought of as a measure of its local level, exhibits
slow movement and can be linear or non linear. A linear trend can be easily projected
in the future to give an insight as to what the behaviour of the series will probably

be a few time steps ahead.

The seasonal component is the periodic movement of the series, and thus can be
viewed in terms of amplitude (size) and phase (timing) similar to a sinusoid. By
examining the time of occurrence and the nature of the seasonal pattern one can get
an appreciation of the different effects influencing the behaviour of the series. The
seasonal component in a series can behave in a number of different ways as explained
in the next section. It is of great importance in biological applications as animal
life cycles are often strongly seasonal and so it may yield insight into the underlying

mechanisms that drive the process examined.

Furthermore, both the trend and the seasonal components can be modelled as either
deterministic or stochastic. The above methodology is known as seasonal decompo-
sition. The decomposition of a time series can take a variety of forms but the two
most common and useful ones are the i) additive, with the underlying assumption

that adding these components together will produce the original series, thus:

or ii) multiplicative, in which the original series is the product of the components,
thus:
Xt = E * St * Rt. (23)

The selection of the model depends on the nature of the time series. One easy ap-
proach is to fit a trend to the series and look at the derived discrepancies between
the fitted trend and the seasonal troughs and peaks in the series. If the size of the
discrepancies appears to be stable over changes in trend then the additive decom-
position model may be applicable, while if they are increasing or decreasing with

the trend, the multiplicative model is preferred. In the latter case, however, instead
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of employing the multiplicative model one may choose to take the logarithm of the

analyzed series and use the additive decomposition model:
log(Xy) = log(Ty * Sy * Ry) (2.4)
log(X:) = log(Ti) + log(St) + log(Ry). (2.5)

A vast variety of techniques used to decompose series exists. The most common
method used for trend extraction is the moving average (MA). The MA method is
based on the reasoning that neighbouring observations are likely to be close in value
(Makridakis et al) |1998)). The value of the moving average of order ¢, MA(q), at
time t is the average of the observation at time ¢ and the m = q;—l points on either
side of it:
1R
T, = p > Xy, (2.6)

j=—m

where X, ; is the observation at time ¢ + j, i.e. j observations after the one we are
estimating the trend for. In the above definitions ¢ is odd and there are no MA(q)
values for the first or last (¢ — 1) time points. The higher the order of the MA,
the more terms and information from the data are lost. There are different ways to
overcome the problem of missing values introduced by such a MA. A simple one is
to use a lower order MA for the end points (‘end filters’) hence, reducing the number

of missing values.

Choosing the order of a MA equal to the suspected periodicity, s, eliminates the
seasonality as it is creating averages with length equal to the periodicity, negating
thus, the seasonal variation in the series. Therefore, a MA(s) may be used to capture
the slow long term movement in the data. If the periodicity is an even number then
a centred MA(2 x s) is employed to ensure that the estimated values correspond to
meaningful observation times. A centred MA(2 x s) is simply a MA(s) followed by
a MA(2).
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Once a trend has been estimated it is removed from the time series to produce a
de-trended series that is then examined for seasonal effects. A stable seasonal cycle
is estimated by averaging for each period across all years. These are called seasonal
factors. Commonly the seasonal factors are standardized by subtracting from each of
them their overall mean, thus ensuring that they sum to zero. The term ‘seasonals’
will always be used to refer to standardized estimates of stable seasonal factors.
However, it is not always clear that the seasonality present in the series is stable over

time. This is illustrated using three example time series below.

1. The monthly U.S. housing starts of privately owned single-family structures
from January 1965 to January 1976, is referred to as the House series (Abraham
& Ledolter, 1983). The House series is plotted in Figure .

1200

So05

Number of Housin
800

600

400

1966 1968 1970 1972 1974 1976
Years

Figure 2.1: The House series.

Using a centred moving average for trend extraction and averaging for the seasonal

component, the House series is decomposed, figure [2.2]

The de-trended series in figure [2.2] indicates a stable seasonal pattern. However, the
December values in the de-trended series (marked with red circles) tend to fall over
time questioning the stability of the seasonals. A change in the December size of the

seasonals could be connected to unusually heavy winters for some years or a change
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Figure 2.2: The House series with the centred moving average estimated trend, the de-
trended series with marked Decembers, the stable seasonals and the residuals.

in the behaviour of the market during the holidays period.

2. The monthly unemployment rate in the UK from January 1986 to December 1996,

referred to as the Unemployment series (National Statistics Online, |1997). This series
is shown in Figure 2.3

In Figure 2.4 the de-trended series of the Unemployment data shows two peaks that
appear to change in relative size indicating that the nature of seasonality may not
be stable. Also there is still some trend in the de-trended series so a further trend

extraction should be considered.

3. Finally a monthly temperature time series from the Kola peninsula from January

1967 to January 2001 is also examined, the Kola series (Marshall, pers. comm.,
. This series, shown in Figure , is a part of the observed temperatures in
the Kola section that have been monitored for more than 100 years (Ottersen et al.|
2005)). The Russian State Hydro-meteorological University (RSHU) and the Polar
Research Institute of Marine Fisheries and Oceanography (PINRO) are involved in

the collection process and in collaboration with the Institute of Marine Research in
Norway are analyzing the data (Bochkov, 2005; Averkiev et al. [2005). The Kola
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section temperatures are considered to be representative of fluctuations in the cli-
mate in the Barents Sea, (Ottersen et al) 2005). Yndestad et al| (2008) examine
relationships between the Kola section and the Faroe-Shetland Channel time series.
For us, the Kola series is of particular interest as part of our analysis involves looking

at temperature series from Stonehaven.

5

4

Kola Temperature

3

1970 1975 1980 1985 1990 1995 2000
Years

Figure 2.5: The Kola series.

Figure [2.6] shows the Kola series decomposed by the aforementioned methodology.
We notice that although the original series in Figure displays frequent and sub-
stantial changes, the de-trended series in Figure indicates that these are probably

changes in trend as there are no signs of any changes in seasonality.

A strength or weakness of the available decomposition methods is their ability or
inability to cope with missing values in the series and this is a problem with our
data from Stonehaven, so it must be considered. A time series can have missing
values at the beginning or at the end, or even internally. There are two direct
solutions to this problem. One is to use techniques that allow for the existence
of missing values and do not get affected by them, while the second is to replace
the missing values in some way and then use “standard” procedures. Thus, one
could perform a seasonal decomposition that allows for missing values and then

extrapolate or interpolate the estimated components accordingly to substitute the
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Figure 2.6: The Kola series with the centred moving average estimated trend, the de-trended
series, the stable seasonals and the residuals.

missing entries, or use extrapolation (or interpolation) on the time series before

conducting the decomposition.

The last section of this chapter is a brief review of the existing literature on seasonal
decomposition. Further discussion on seasonality follows as it is important to explain

the terminology used for this central component of seasonal decomposition.

2.2 Trending Seasonality

The idea of a trending seasonal pattern may seem peculiar at first but it appears
to be so for many time series. For example, in Nature even though our intuition
may be that seasonality should be stable, e.g. colder winters and warmer summers,
for temperature data, the phenomenon of global warming with all its consequences
raises the question of whether that seasonal pattern stays stable or whether there is
a shift /change of the seasonality as time passes, i.e. coldest or warmest temperature
occurs earlier or later in the year. This is just one example of how a trending seasonal

pattern may arise in an environmental context, but there are many more occurrences
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in other areas. In this section we discuss briefly what kinds of trend are possible in
an existing seasonal pattern and explain the reasons for considering one specific type

of change more important in the context of this thesis.

We may define a trending seasonal pattern as one which exhibits change from year
to year. This change can be in the size of the pattern (amplitude change), in the
time of the occurrence of the pattern (phase change) or a combination of the above.
Furthermore, regardless of the nature of the change (amplitude or phase) the change
can take place in a systematic way - meaning an average drift in one direction,
either increase or decrease - or as random fluctuations. Thus, a systematic shift in
time (later or earlier each year) is a systematic change of phase while a systematic
increase or decrease in the size of the seasonals is a systematic amplitude change. A
random movement in the timing of peaks and troughs is referred to as a fluctuation
in time and a random change of the size of the seasonals as fluctuating amplitude
change. Considering the combinations of the possible nature and types of change,
there are nine different possibilities for a seasonal pattern that are demonstrated in

Table .11
Table 2.1: Types of Seasonal Patterns

Phase
No Change | Systematic Change | Fluctuation
< No Change AN & PN AN & PS AN & PF
% Systematic Change | AS & PN AS & PS AS & PF
;:5 Fluctuation AF & PN AF & PS AF & PF

The different types of change that a seasonal pattern may exhibit are shown in
Figure[2.7] Clockwise from top left we see a systematic increase and a fluctuation in

amplitude and a systematic earlier shift and a fluctuation in phase.

In Nature and in particular, in marine biology, commonly series exhibit seasonals
changing in one way or another. However, even though all types of changing season-

ality may be scientifically of interest, we can often differentiate between the causes
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Figure 2.7: A systematic (increasing) amplitude change, a fluctuation in amplitude, a sys-
tematic (earlier) shift in time and a fluctuation in time, using a period of 52
weeks. In the bottom two plots the dotted lines mark the 30th week.

of these types of change. While fluctuations in the size or timing of a seasonal pat-
tern are associated with climatological factors that can themselves fluctuate rapidly,
a systematic change is mostly associated with large scale environmental factors, i.e.
the underlying long term change in the environment, and thus are realised as system-
atic -usually small- changes over time. In our analysis of the data from Stonehaven
that follows, we are particularly interested in those slow, long term dynamics, and
thus our focus is mainly to find ways to identify and estimate systematic change in
either size or time. Clearly, a systematic time shift can be related to climate change
and global warming. Initially, however, all types of seasonality will be considered for

the series analysed.

Not all time series have a seasonal pattern and amongst those that exhibit seasonal
behaviour, some seasonal patterns stay stable while others change over time. A
seasonal pattern will be referred to as a stable seasonal pattern or stable seasonality if
it remains stable over time, as a pseudo-trending seasonal pattern or pseudo-trending
seasonality if it exhibits any kind of fluctuations, and as a trending seasonal pattern or

trending seasonality if it is changing smoothly with time, i.e. systematic shift in time
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and systematic amplitude change. Thus, when identifying the kind of seasonality in
a series only systematic changes will be considered as a trending seasonality while
attempts to identify random changes are noted, even though considered ‘pseudo-

trending’ as mentioned above.

2.3 Brief Description of Seasonal Decomposition

Bibliography

In this section a brief review of existing methodologies for (seasonal) decomposition of
a time series is presented. As noted, these methodologies try to extract two separate
components, a trend-cycle and seasonality, from a time series and thus distinguish
them from the randomness. A quick look at the history of decomposition follows
based on Makridakis et al.| (1998]).

The first attempts to decompose a series originated around the start of the 20th cen-
tury. It was believed that to study the serial correlation within or between variables
one had to remove any spurious correlation caused by trend. Poynting (1884) and
Hooker (1901) attempted to eliminate the trend and seasonal fluctuation by aver-
aging over several years. Later Spencer (1904) and Anderson and Nochmals (1914)
generalized the procedure of trend extraction to include polynomials of higher or-
der.

At the same time economists were working towards the same goal, trying to predict
economic depressions. Separating the elements of economic activity would isolate the
changes in the business cycle from seasonal and other effects. In 1911 a committee
was appointed in France to analyse the causes of the economic crisis in 1907. The
group attempted to separate the trend from the cycle of the series. In the United
States, Copeland (1915) tried to extract the seasonal fluctuation from the other

components of the series.

Time series decomposition as known today was first employed by F. R. Macauley of
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the National Bureau of Economic Research in the 1920s. He introduced the ratio-to-
moving average approach to time series decomposition that is the basis of Census II.
Shiskin (1957) created Census II, a computer programme for decomposition of time

series which is now the most widely used of the decomposition packages.

A brief discussion of the most commonly used decomposition ideas and techniques
follows. There is a variety of different ways to estimate or extract the trend and
seasonal components and many possible combinations. We start with some simple
ways to estimate these components individually and go on to look at more elaborate

algorithms.

2.3.1 Weighted Moving Average - WMA

Averaging neighbouring values can be used to estimate the trend in a series. An
extension on the MA(q) is to attribute (unequal) weights to the observations ac-
cording to their distance from the centre of the MA. Meaning that the closer the
observation is to the time point of estimation the more influence it will have on that
estimate. This method is known as a weighted moving average (WMA). The size
of the weights can be decided based on the nature of the series. Procedures that

use weights that decrease exponentially are called exponential smoothing procedures
(Makridakis et al., 1998)). A general form of a WMA at time ¢ is:

j=m
T, = Z j Xty (2.7)

j=—m

where «; are the weights and m = %. When all a; are set equal to 1/¢q we have the
simple MA(q), (2.6). Two conditions commonly apply to the weights: they should
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sum to one and they should be symmetric:

f:ajzl

j=—m
Oéj = CY,]'

There are, however, situations that asymmetric weights are more appropriate. When
the weights do not sum to one (2.7)) is divided by their sum.

The benefit from using a WMA is that since the observations are slowly down-
weighted and do not leave the average abruptly the result is much smoother than a
simple MA. Nevertheless, there are two main disadvantages. At the end points of the
series, realative to the order used, missing values occur as they cannot be estimated
by the WMA. Trying to overcome this issue, one could employ smaller order WMA
at the ends, known as ‘end filters’. This, however, further results in flat estimates
near the end of the series even when a pronounced trend is obvious (Makridakis
et al., (1998).

Furthermore, using WMA leaves the trend sensitive to outliers and extreme values.
A modified smoothing technique that behaves better when outliers are present is to
use running (moving) medians. Again an order needs to be chosen that corresponds
to the number of data points included but now the median and not the mean of
these points is used. This procedure is robust to outliers but produces ‘rough’ fits.
One could use a smoother on the trend estimated by running medians to produce
a smooth trend (Faraway, 2006). Similarly robust to outliers, running medials are
defined, where medials are the means once the highest and lowest observation are
removed (Makridakis et al., [1998).

2.3.2 Local Regression Smoothing

Using local regression smoothing one can avoid the above issues created by using

a (W)MA. Instead of averaging a window of the series one now fits a straight line
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through them,
ﬂ =a; + btt (28)

The two parameters a; and b; represent the intercept and slope of the line at time ¢,
respectively. These can be estimated by Ordinary Least Squares (OLS), minimizing
the sum of squared errors. Hence, fitting a series of straight lines to the data we get
estimates for each data point. Using local regression to estimate the trend allows us
to estimate a local trend instead of a global linear trend (Chatfield} 2000). Similar
to WMA we can attribute weights, a; to the observations and thus fit by minimizing
the weighted sum of squares. This method improves the bias observed when using
(W)MA at the end of the series (Makridakis et al., [1998]).

In order to use local regression smoothing one has first to decide the value of the
smoothing parameter, ¢, which in analogy to the order of a MA, represents the
number of data points considered in each fit. A large value of ¢ would produce a
very smooth picture but could lose some of the existing pattern while a small value

could incorporate noise in our estimates.

Cleveland’s Locally Weighted Scatterplot Smoother (LOWESS or LOESS) is an im-
plementation of weighted local regression smoothing with protection against outliers
that can influence the fitted lines or curves. It fits a locally-fitted polynomial of
degree d to the data with common values of d equal to 1, locally-linear, or 2, locally-
quadratic (Cleveland et all 1990). LOWESS starts with an initial weighted local
regression. The residuals from this regression are computed. Then the weights are
adjusted so that the observations that resulted in large residuals have smaller contri-
bution to the regression. The local regression is then repeated with the new weights.
The new residuals are calculated and the weights adjusted again, accordingly. The
procedure repeats down-weighting the points that give large residual values, as sus-

pected outliers. When the estimated trend converges the procedure stops (Cleveland,

1931).

Constantly down-weighting data points with large produced residuals makes LOWESS
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more robust than local weighted regression. In fact, if there are no outliers, the re-
sulting trends from the two procedures would be almost the same while when there
are extreme values LOWESS produces better results (Makridakis et al., 1998]).

2.3.3 Seasonality Estimation/Extraction

If a stable seasonal pattern is assumed, one can average each season’s observations to
produce seasonal factors. This, nonetheless, can easily be affected by extreme values.
Taking seasonal medials or medians can help deal with outliers. Nevertheless, the

above methods assume a seasonal pattern that does not change in time.

MA can be used to extract the seasonal pattern of a series that is believed to change in
time. Seasonal averaging to estimate seasonal factors would not capture a changing
pattern. Using a (W)MA for each season would, however, allow for changes in
time. Alternatively, one could use local regression to estimate a seasonal pattern
that changes in time. For each season’s points local regression can be employed to

provide smooth estimates of this periodic component (Makridakis et al., 1998]).

To extract and not estimate the seasonal pattern one could also use a linear filter.
Though, many possibilities exist, seasonal differencing is a simple commonly used
way. The seasonal difference is written as 1 — B® where s is the periodicity of the
series and B is the back-shift operator, Bx; = x;_1 so that (1 — B®)x; = (v, — 2_s)
(Chatfield, 2000).

2.3.4 Census Bureau methods

The U.S. Bureau of Census has developed, over the years, a number of intricate
methods for seasonal adjustment of, mainly economic, time series. The most recent
variant is X-12-ARIMA (Findley et al., |1998). This is an extension of the X-11-
ARIMA, Census II method, in an effort to suitably seasonally adjust more types of
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economic data (Makridakis et al., |1998]). The following discussion on X-12-ARIMA
is based on [Findley et al.| (1998); Makridakis et al.| (1998).

The Census II decomposition uses a number of different WMAs. As mentioned
before, this leads to a loss of data points at the beginning and end of the series. The
X-12-ARIMA uses end-filters to avoid losing many data points at the end points of
the series. Additionally, it gives the user the ability to create forecasts and backcasts

based on an ARIMA model and thus, extend the series to accommodate for the
WMAS.

The X-12-ARIMA method has twelve steps and extends its predecessor, X-11, to
include alternative seasonal, trade-day and holiday effect adjustments with a variety
of seasonal and trend filter options. Furthermore, the diagnostics for assessing the
quality of the seasonal adjustments are more methodical and it allows extensive
modelling for linear regression models with ARIMA errors (regARIMA). Finally, it

uses an interface which can facilitate batch processing of large numbers of series.

This latest Census II method allows for additive (A) and multiplicative (M) decom-
position and also a pseudo-additive (PA) one. The last one is used to seasonally
adjust series with small (even zero) values in the same season every year. A PA

decomposition has the form:

where, X; is the examined time series, S; the seasonals, T; the trend and R; the

remainder component.

Assuming a seasonal time series X; with periodicity s, the algorithm begins with a
centred MA(2 X s) to estimate the trend, T}'. For monthly data a MA(2 x 12) is

used:

1 1 1 1 1
711 == ﬂXt_ﬁ + EXt_5 + te + EXt + cte + EXH_5 + ﬂXt+6 (210)
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The estimated trend is then removed from the series - forecasts and backcasts are
used at the end points- to create the de-trended series, Detr!. The de-trended series
is formed by subtraction in the additive case or division in the multiplicative one, of

the trend from the original series:

A: Detr} = X; — T} (2.11)
M, PA : Detr, = X, /T} (2.12)

From the de-trended series the initial estimate of the seasonal component, S'tl, is

computed using a MA(3 x 3)[| seasonal MA for monthly periodicity:

- 1 2 3 2 1
S} = §Detrt1,24 + §Detrt1,12 + §Detrt1 + §Det7“t1+12 + §Detrt1+24 (2.13)

To remove any noise included in this initial estimate of the seasonals, S’tl, a centred
MA(2 x s) (2 x 12 for monthly) is applied to it and it is then removed from the initial

estimate to produce seasonal factors, S}:

5 l 4 14 1. 1 4 1 -
Ao gl (ﬂ53—6+ﬁ53—5+“'+§53+---+553+s+ﬂ52+6),
or
S
LS o+ S+ S 4 LS+ LS

M, PA: S} =

Thus, the initial remainder, R} can now be computed, removing the estimated sea-

sonal factors from the de-trended.

A: R} = Detr} — S} (2.14)
M : R} = Detr}/S} (2.15)
PA: R} = Detr; — S} +1 (2.16)

Ldouble MA(3)
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The points at which this remainder takes large values are identified as extreme ob-
servations and the seasonal component is re-estimated without them. Hence, any
points that fail to follow the pattern of the rest of the data are replaced by esti-
mates. These seasonals are removed from the original series to give a de-seasonalized

series, Des;:

A: Des; = X, — S} (2.17)
M : Des; = X;/S} (2.18)
PA : Des; = X; — T} % (S} — 1) (2.19)

The trend is now estimated from the de-seasonalized series using a Henderson’s
WMA that removes the noise from the trend. The Henderson’s filters have a choice
of lengths of 9,13 or 23 with the possibility of it being automatically chosen, see
Findley et al. (1998]). A second estimate of the seasonal factors is computed similarly
to before but with a MA(3x5) used for monthly series. Then a second de-seasonalized
series is computed, as in , and , and a final trend is extracted from
it using Henderson’s filters. These steps are iterated to ensure a more successful
estimation of the components by replacing extreme values and eliminating any noise

that enters the estimation.

Systematic diagnostic checks are used to evaluate the decomposition. Spectrum es-
timates can be examined to determine whether seasonal effects are present in the
residual series. A detectable residual seasonal pattern can be attributed to inap-
propriate seasonal adjustments of the model or to a trend in the seasonals. X-
12-ARIMA includes two types of stability diagnostics; 1)sliding spans which uses
overlapping sub-spans to analyze the difference between the largest and smallest ad-
justments made to a point and 2)revision histories which considers the difference
between the earliest adjustment of a point and the latest one based on all future

available points.

Furthermore, X-12-ARIMA allows for a variety of regressors to be included in the
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regARIMA models. These can used to model sudden changes in the level or the
seasonality of the series. Additionally, seasonal effects such as leap years, holidays,
trading-days and others can be modelled this way. There are automatic model iden-
tification and selection procedures employed in the X-12-ARIMA which help utilize
the regARIMA models. Constructing regARIMA models with specific terms the user
can test for the existence of effects such as changes in the seasonal pattern. Never-

theless, X-12-ARIMA allows only for quarterly or monthly seasonal periods.

2.3.5 A Seasonal-Trend Decomposition Based on LOESS -
STL

An alternative to the aforementioned Census II methods is a Seasonal-Trend Decom-
position Based on LOESS (STL) (Cleveland et al., |1990)). It consists of a sequence
of LOESS applications and thus is a resistant to extreme values decomposition tech-
nique. It can be applied to time series with missing values and contrary to the X-12-
ARIMA the STL allows any seasonal period greater than 1. It cannot accommodate,
however, the many seasonal effects (such as trading-day etc.) that X-12-ARIMA can
and it has no built-in diagnostics for the seasonal adjustment. There is only an addi-
tive version of STL but the logarithm of the data can be used for the multiplicative
case (Makridakis et al.,[1998). The following description is based on Cleveland et al.
(1990).

This method consists of two recursive procedures, one nested within the other. Dur-
ing each iteration of the inner loop the trend and seasonal components are estimated.
One iteration of the outer loop consists of multiple runs of the inner and then com-
putation of robustness weights to be used in the next run of the inner loop, to reduce
the contribution of the extreme values to the overall estimation procedure. For the

initial run of the outer loop these robustness weights are all set to 1.

The inner loop starts by de-trending the series, (2.11)), and thus, an initial estimate

of the trend, T} is needed. This is usually set to be zero. Wherever there are missing
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values in the original series there will be ones also in the de-trended one as STL does

not substitute them by estimates.

The de-trended values for each season are collected to form seasonal ‘sub-series’.
For example, for monthly data twelve seasonal sub-series are created. Each sub-
series is then smoothed by LOESS with parameter ¢, and d = 1. The smooth is
estimated at all internal points of the series, including any missing values, but it is
also extrapolated one point before and one ahead of the end points of the sub-series,
i.e. one year backcast and forecast of the seasonals. The smoothed sub-series are put

together to create the seasonal component, Stl

A low-pass filter, MA(3 X s X s), is used on this seasonal component, consisting of
three MAs followed by a LOESS with parameter ¢; and d = 1 to create L}. Data
points are lost at both ends, s at each end, from the usage of MAs but as the sub-
series were extended proactively earlier this does not cost any of the original time
points. The low frequency component L} is subtracted from the seasonals S’tl (i.e.
de-trending of the seasonal) to ensure that no low frequency movement enters the

seasonal estimation:

St=5— L} (2.20)

where S} is the final seasonal component of this iteration. A de-seasonalized series is
created as in and LOESS is used on it to extract the trend, 7}'. This LOESS
has parameter ¢, and d = 1. The trend is estimated at all points of the original
series, including any missing values. This trend will be used as the initial estimate

for the next iteration of the inner loop.

The outer loop begins after one or two iterations of the inner one. The remainder
component is computed by subtracting the estimated trend and seasonals from the
original series. A large value in the remainder is considered evidence of an extreme
value in the original series. Once these are identified, robustness weights are com-

puted giving small or zero weights to them. Let h = 6 x median(|R;|), the robustness
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weight at time ¢ is:

wy = B(|Ry|/h), where (2.21)
B(t) = { (1 _OtQ)Q’ 0 fif ! (2.22)

Therefore, when the inner loop is repeated after one outer loop iteration the new
robustness weights are used for two LOESS applications, for the trend and seasonal
estimations. The two LOESS used to estimate the seasonal component and the
trend component are used on the appropriate series after it has been multiplied by

the newly calculated robustness weights.

STL allows us to choose a number of parameters according to the data examined.
Firstly, the number of inner and outer loop iterations has to be decided. Com-
monly one pass through the outer loop consists of one or two iterations of the inner
loop while a total of 10 or 20 outer loop iterations take place (Makridakis et al.
1998). If we use one inner loop iteration per outer loop iteration then a total of 5

passes through the outer are sufficient while 10 provide a near certainty of conver-
gencd]

Furthermore, the ¢5, ¢; and ¢; parameters for the LOESS used have to be chosen.
Cleveland et al| (1990) suggest the value of the least odd integer greater than or
equal to s for the ¢; parameter and an odd value of at least 7 for the g, parameter,
based on an eigenvalue analysis of the inner loop filters. Parameter ¢; controls the
level of smoothness of the trend that entered the seasonal estimation and is then
removed from it. The value of the ¢; parameter determines the amount of change
allowed in the estimated seasonal component. A small value of ¢, allows substantial

changes from year to year while a large ensures that the change is slow.

Finally, the ¢; parameter sets the amount of variation from the data to be included

2criterion used for convergence by Cleveland et al| (1990) is max,|UF — UFT|/(maz,UF —
min,UF) < 0.01 where U* is the trend or seasonal component estimated in iteration k.
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in the trend estimation. A high value includes less variation, smoother estimate
of trend, while a small one more variation, wigglier estimate. Thus, a trade-off is
created as we want a high value for ¢; so that only the slow, long-term variation
is included in the estimation but we also want a low enough value so that no low-
frequency effects remain in the remainder to be treated as extreme values. An odd
value is proposed for this parameter, too by (Cleveland et al| (1990) and they also
suggest that the following inequality should hold:

(2.23)

If the series examined has two or more seasonal components, STL can be used suc-
cessively to estimate firstly the seasonal component with the shortest period and
then, after that is subtracted from the data, the other ones till the longest-period

component is estimated.

Therefore, STL offers choices in specifying the amount of variation in the trend and
seasonal components, making it very flexible. Nevertheless, the estimated trend is
unstable at the end of the series since LOESS is used (Makridakis et al., [1998).

2.3.6 Structural Time Series Models

Structural time series models (STMs) are linear Gaussian state-space models for time
series based on a decomposition of the series into various components (Harveyy, |(1990)).
These components are referred to as ‘unobserved’ components because they are not
observed directly but are assumed to have ARMA representations (Harvey, |1993).
STMs commonly include three components; a trend, a seasonal and a remainder (or

error) component. The following description is based on [Harvey| (1990, 1993)).

Let 24, (t = 1,2,...,T), be the observed time series. A simple STM that includes a
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local trend (local level model) is:

Ty = My + Vt, Ve ~ N(O, 0'2) (224)

v

M1 = My + U, U ~ N(O, 0',3) (225)

where m; is the level /trend at time point ¢. Though the trend can take many forms,
in this case it is modelled as a random walk by (2.25). When o2 = 0, z; has a constant
level while when o2 = 0 z; is a random walk. A signal-noise ratio (¢ = 02/0?) can

be used to describe this model.

A basic structural model that includes a trend and a seasonal component is:

Ty =my + 5 +v, v~ N(0,02) (2.26)

M1 =My + by +ug,  u ~ N(0,02) (2.27)

biy1 = b + 2, 2z~ N(0,02) (2.28)

Sip1+ 8+ Si_gpo =wy, wy~ N(0,02) (2.29)

where m, is the trend and s; is the seasonal dummy at time ¢ when z; has period s.

When o2 = 0, z; has a stable seasonal pattern.

From the above models we can see that STMs can be regarded as regression models
in which the explanatory variables are functions of time and the parameters are time

varying.

Changes in the seasonal pattern can be incorporated in these models with a stochastic

trigonometric seasonal component:

w=mtrnte t=1,...,T (2.30)
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where v, = Z{S/ f] ;¢ and each v, is generated by

Jj=

; COSA;  SInA\; e Wi =1, ..., [s/2
B = Y N R VS R 5/2 (2.31)
Vit —SinA; CoSA; Vi1 Wy t=1, ..., T.
In the above equation \; = 2mj/s is frequency, in radians, and w;; and w}, are

two mutually uncorrelated white noise disturbances with zero means and common

variance which is the same for all j.

Once a model has been put in state space form, the Kalman filter may be applied for
prediction and smoothing. In addition, for a Gaussian model the Kalman filter can be

used to construct the likelihood function by a prediction error decomposition.

2.3.7 TRAMO - SEATS

Contrary to the U.S. Bureau of Census, in Europe, Eurostat uses Time series Regres-
sion with ARIMA noise, Missing observations and Outliers (TRAMO) and Signal
Extraction in ARIMA Time Series (SEATS) to seasonally adjust time series with
monthly or lower frequency. A short description of these methods follows and is

based on Maravall| (2002).

TRAMO can be used for estimation, forecasting and interpolation of regARIMA
models. Additionally, it can be run in an entirely automatic manner. It performs a
regARIMA in the presence of missing values and outliers. Let x; be our time series
with n observations. TRAMO fits the regression:

Ty — yt/gt + Zt (232)

where B = (831, B2, . . ., Bm)T is a vector of regression coefficients, y; = (y1r, Yoty - - - » Ymt )~
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is a vector of m regression variables and z; follows an ARIMA process:

¢(B)p(B)z = 0(B)ay, (2.33)

where B is the backshift operator (i.e.Bx; = X; 1), ¢(B), ¢(B),0(B) are finite poly-
nomials in B and a; is white noise. All the unit roots from differencing are contained
in ¢(B) so that ¢(B) is the stationary autoregressive polynomial and 6(B) is the

moving average polynomial.

We can specify which regression variables to be included in the model or let the
program generate them. These regression variables include trading day effects, holi-
day effects and intervention variables as dummy variables or sequences of ones and

Zeros.

The parameters in and are initially estimated by Maximum Likelihood
(ML) or Ordinary Least Squares (OLS). Then the Kalman filter (Harvey, [1990) and
the QR algorithm (Francis, |1961, [1962)) are used to get new parameter estimates.
Constructed t-tests for outliers are computed for each datum to check for the exis-

tence of outliers.

The detected outliers are not included in the estimation. Similarly to stepwise re-
gression, multiple regressions are used to detect outliers and select the “best” re-
gression equation. Three types of outliers are detected; additive outlier, level shift
and transitory change. Nevertheless, the user can also specify outliers. Furthermore,
seasonal effects, such as trading day effects, are considered and tested for, when

applicable.

Missing observations are dealt in two ways; interpolation or assigning an arbitrary
value and an additive outlier. In the latter case the interpolator is computed as the
difference between the assigned value and the estimated regression parameter. Mean

Squared Errors (MSE) are reported for all interpolators.
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Finally, TRAMO can automatically identify and fit an ARIMA model to the se-
ries after the outliers, missing values and trading effects have been accommodated
properly. Firstly the non-stationary polynomial, ¢(B), of is identified by iter-
ating a sequence of AR and ARMA(1,1) models ] Then an ARMA model is chosen
for the stationary series, within the range of ARMA models with 0 < (p,q) < 3,
0<(P,Q)<2.

Hence, TRAMO adjusts a time series, estimating the deterministic effects of outliers,
trading day or holiday effects and the ARIMA model that was identified. This infor-
mation is then passed to SEATS for further analysis. SEATS decomposes (additive
or multiplicative) a series that follows this ARIMA into four components (trend,
seasonal, transitory and remainder) using signal extraction techniques. The trend
component has a spectral peak at 0 frequency, the seasonal has spectral peaks at
seasonal frequencies while the remainder (irregular) component captures white noise
behaviour and thus has a flat spectrum. Contrary to the remainder, the zero-mean
stationary transitory component picks up fluctuations that are not white noise but
do not belong in the trend or the seasonal components. These components depend on
the structure of the identified ARIMA and if no outliers and no trading day, holiday
etc. effects are present in a series, then SEATS can be used directly to identify and
decompose the ARIMA model that fits the series.

The ARIMA models for the components are established by partitioning the spectrum
into additive spectra, one for each component. Under the assumption that only the
remainder component includes noise (‘canonical’” property) a unique decomposition
of the spectrum is identified. Minimizing the MSE, estimators of the components
are computed filtering the series after extending it first with forecasts and backcasts.
Revisions are used, as in X-12-ARIMA, till convergence is achieved. Along with
these estimated components, SEATS provides their forecasts for several years with
standard errors for all. A comparison of the differences between the theoretical and
the empirical moments for these estimators can be used for diagnostic checks while

spectral diagnostics are also available.

3Differencing and seasonal differencing are considered up to order (1 — B)?(1 — B?).
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SEATS, thus, decomposes the series, as modelled by TRAMO, into four components.
If the ARIMA model identified and estimated by TRAMO cannot be decomposed
appropriately then SEATS identifies a different model to work with. By default
additive outliers and transitory changes are included in the remainder component
by SEATS while level shifts to the trend. All trading day, holiday and generally all
calendar effects are added to the seasonal component. The regression variables in
the regARIMA can be added to any desired component but by default are treated

as a separate one.

Overall, TRAMO-SEATS provides the user with an automated tool for seasonal
adjustment, however, there are a few points that merit some consideration. SEATS
prefers ARIMA models where the total AR order, including differencing, is equal
to the total MA order (balanced models) and if that is not the case for the chosen
one by TRAMO, SEATS may use many revisions. Thus, SEATS is more suited for
balanced models. Furthermore, SEATS should only be used to seasonally adjust
time series with a seasonal pattern as it can induce seasonality into the adjustment
of non seasonal series (Hood, 2002)). Spectral diagnostics can be used to check for
seasonality in the original series as well as in the remainder component. Findley
et al. (2005) propose modifications of SEATS diagnostics used to detect over- or
underestimation of the components. The diagnostics of SEATS are computed using
variance estimates under the assumption of an applied infinitely long filter which
results in bias towards underestimation. [Findley et al| (2005) advocate that usage
of time-varying variances associated with the actual finite length filters that are

employed leads to unbiased versions of the current diagnostics.

We should note that a new version of the X-12-ARIMA is now based on TRAMO
while another is developed that includes SEATS. TRAMO-SEATS and X-12-ARIMA
have been implemented in a single interface called ‘DEMETRAT]

4This is freely available at http://circa.europa.eu/irc/dsis/eurosam/info/data/demetra.htm
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2.4 Discussion

In this chapter we have talked about the different types of seasonality that may be
present in a series. Furthermore, we have presented a number of commonly used
techniques to decompose a series into a trend and seasonals. Since, however, there
are many types of seasonality we should identify the correct type before we attempt
to extract or estimate it. Additionally, for many of these methods to work properly

the existence of a seasonal pattern has firstly to be verified.

The discussed methodologies are complex and require a well behaved quarterly or
monthly times series. As discussed before, the Stonehaven data are higher frequency
data and include missing values and duplicate measurements. Therefore, we would
have to use monthly aggregates, risking that small changes in the pattern could go
unnoticed. Additionally, in the context of this thesis we are mainly interested in tests
between the different types (including absence) of seasonality. Hence, the detailed
output of the above procedures is not required. These tests should be simple, robust
and fairly automated so that they can be implemented easily on the Stonehaven
data and help us draw accurate conclusions about the seasonality in them but also
in order to be of use to marine biologists in the future. The next chapter is a brief

introduction to testing techniques for seasonality in a series.



Chapter 3

Testing for Seasonality

3.1 Introduction to testing

3.1.1 Introduction

As mentioned before, in classical seasonal decomposition of time series, the series is
decomposed into three basic components, the trend, the seasonal and the residuals.
In common practice the seasonals are assumed to be stable over time, i.e. that the
shape, size and timing of the seasonal cycle does not change with time. The previous
chapter presented the possible types of seasonality in a time series and discussed
techniques available to model these components in a seasonal decomposition. Nev-
ertheless, one needs to decide the nature of the components to be included in the

seasonal decomposition model.

In addition, in many sciences the purpose of a decomposition is to develop an under-
standing of the underlying dynamics that drive the process observed and therefore,
an assumption of stability is beyond scope. For example in biological science the
study of biological series is not intending to register the emerging patterns and sim-

ply extrapolate them in to the future but rather investigate what drives the series;

41
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how and why the patterns are derived. In that context one may wish to conduct tests
to check the nature of the seasonals and then estimate them accordingly. Estimating
a stable seasonal component when in fact there is a trend in its shape, size or timing
will distort the picture one has of the data and thus, it may lead one to draw wrong

conclusions or simply miss the existence of some features.

Testing the existence of a seasonal pattern and furthermore trying to evaluate the
kind of seasonality is of great interest to theoretical and applied scientists. In theory
testing for existence and type of seasonals is used to verify theories and expand
knowledge of phenomena. In practice it is of utmost importance to test whether

what a scientist thinks he is observing corresponds to reality.

This chapter discusses different ways to test for seasonality. There are tests for
the existence of seasonality and tests for the type of seasonality, once the existence
has been verified. Firstly, old preliminary analyses for a stable seasonal pattern are
presented and then formal testing frameworks for the detection of seasonality, from
econometrics, are reviewed. The House, Unemployment and Kola time series are

used as examples.

3.1.2 Preliminary Analyses — Testing for Stable Seasonal-
ity

Suppose that during the analysis of a discrete time series { X;} there are strong indi-
cations of an existing stable seasonal pattern and the objective is to assess whether
this is true. A number of ways to explore and verify the existence of stable seasonality

In a time series exist.

A popular first approach is to fit a straight line to each seasonal factor of the de-
trended series across the years. The trend is removed by a moving average of order
equal to the periodicity of the series. The p-values are then weighed against a pre-

defined significance level to evaluate the fit, thus testing the null hypothesis that
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the seasonality is stable, the regression coefficient is equal to zero, (Hy : b = 0)
against the alternative of non stable seasonality, the regression coefficient is not
zero, (Hy : b # (0)). Therefore, a p-value smaller than the predefined significance
level rejects the null hypothesis in favor of the alternative while a greater accepts
it.

P Values
02 03 04 05 06 07

0.1

2 4 1! 12
(F\/Ionths 8 0

Figure 3.1: The House, stable seasonal, series estimated p-values.

However, in the above case we are conducting multiple testing and thus a few issues
arise. Using a 5% significance level implies that there is a 5% chance that the p-
value will in fact be insignificant when it appears significant. Considering that when
dealing with monthly data we are conducting twelve such tests while for weekly, as
the Stonehaven data, fifty two, it becomes evident that the interpretation of the
outcome of these tests is at best ambiguous if not misleading and a simpler way of

testing for stability is needed.

From figure [3.1] we can see that two of twelve p-values for the House data are close
to 0.05 but none of them are significant, while figure [3.2 shows that four p-values are
significant for the Unemployment data. The Kola p-vaues are all insignificant, figure
3.3l Hence, the p-values coincide with our previous observation of the behaviour of

the series. However, inference is not always straightforward.
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Figure 3.2: The Unemployment, trending seasonal, series estimated p-values.
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Figure 3.3: The Kola, stable seasonal, series estimated p-values.




45

[o0]
@
*
*
© *
=2
< | *
o
N
o * *
* * *
*
* *

o
2

0.0 0.2 0.4 06 08 1.0

Figure 3.4: The House estimated p-values Q-Q Plot.

In addition, one could check whether the collected p-values follow a Uniform distri-
bution by plotting a Quantile-Quantile (Q-Q) plot of them.

The Q-Q plots in figures [3.4] and all indicate a non stable seasonal pattern.

This can be due to a violation of the assumption of independence.

Another approach is to sum the double negative logarithm of the p-values and check
if it follows a Chi-squared distribution. If the p-values are insignificant then the
sum of their the double negative logarithm follows a Chi-squared distribution with
degrees of freedom equal to twice the number of observations in each cycle of the
seasonal component, i.e. twenty four degrees of freedom for monthly data. Assuming

it does, we conclude that the seasonality is stable.
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Figure 3.5: The Unemployment estimated p-values Q-Q Plot.
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Figure 3.6: The Kola estimated p-values Q-Q Plot.
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X = Z(—Zln(pi)). prob(X ~ 22(24))

House Data Set 39.103 2.7 x 1072
Unemployment Data Set 73.288 6.871 x 1077
Kola Data Set 9.675 9.958 x 1071

From the table above, only the Kola data set is deemed stable. The Unemployment
data set is identified as trending while the House series is also deemed to have a

trending seasonal pattern.

Additionally, there are a number of assumptions for the above tests to show accurate
results. The most commonly violated one being the assumption that the p-values
are independent to each other, while assumptions of homoscedasticity and normality
of the logarithm of the p-values are also made. Often time series data is made from
monthly or even weekly observations and therefore there is high concern that the
p-values may in fact be correlated. More often than not, one will notice that there
is high autocorrelation between some values and that could be responsible for the

failure of the tests to verify the suspicion of a stable seasonal pattern.

Looking at p values when fitting harmonics or straight lines can be helpful. However,
the problem of multiplicity arises from the sequential tests, since for monthly data
one would need to look at twelve of these p values while for weekly fifty two! Q-Q
plots and Fisher’s test can be applied to deal with the multiplicity problem but then
the assumption of independence is forced. An assumption that is commonly violated.
The accuracy of these tests depends on the p values being independent but in time

series they are highly dependent.

In the following section formal testing methodologies are presented.
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3.2 (Seasonal) Unit Root Tests

3.2.1 Introduction

The early analysis of time series consisted of a (seasonal) decomposition of a se-
ries into trend and seasonal components. These two estimated components contain

important information and reward careful examination and interpretation.

In many sciences the information contained in the aforementioned components is
considered of essence in order to understand the behavior and dynamics of the series
but particularly in economics a number of methods have been devised to estimate
long-run economic relationships and therefore the majority of articles cited in this

chapter will be of economic areas.

Many different issues might occur when one performs a regression with different
orders of integrated variables. To avoid this problem, one has to be very careful
during the identification stage of the model to identify the correct order of integration.
In the context of ARIMA models, identifying the order of integration is equivalent
to determining the parameter d in the ARIMA (p,d,q) model. The Box—Jenkins
approach (Box & Jenkins, [1976) involved the use of graphs of the autocorrelation
function for determining the parameter d. The recent developments of unit root tests
is simply the use of formal statistical tests in place of the visual inspection of the

graphs of the autocorrelation function (Maddala & Kiml, 1998]).
Phillips & Perron| (1988)) state that:

“One major field of application where the hypothesis of a unit root has important
implications is economics. This is because a unit root is often a theoretical implication
of models which postulate the rational use of information that is available to economic
agents. Formal statistics tests of the unit root hypothesis are of additional interest to
economists because they can help to evaluate the nature of the nonstationarity that

most macroeconomic data exhibit. In particular, they help in determining whether the
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the trend is stochastic, through the presence of a unit root, or deterministic, through

the presence of a polynomial time trend.”

There is no question that unit root tests can provide useful results to contribute
to the investigation and evaluation of the trend and seasonal components; however,
they do come with limitations as a number of different assumptions need to be made
before one can use them effectively. In all likelihood, the most important step before
conducting a unit root test is the correct specification of the deterministic trend in
a model. As mentioned before, most time series models include both a deterministic
and a stochastic trend and the miss-specification of the deterministic trend will affect
the identification of an underlying stochastic one by shadowing or overemphasizing
it. If a time series has a unit root then this is the indication of an existing stochastic
trend; thus, it is of great importance that the deterministic trend, one incorporates
in the model to be tested, is in fact appropriate. The critical values given for the
different unit root tests also differ according to the various forms of deterministic
trends in the tested models. Due to this fact, the unit root testing procedures are not

as straightforward as conventional testing procedures (Maddala & Kim) 1998).

Over recent years there has been a continuous development of new unit root testing
frameworks in an effort to overcome drawbacks and limitations of the earlier ones, and
different paths have been created. Early on, the tests were developed to distinguish
between a stationary and a nonstationary process; testing for a zero frequency unit
root but were then extended to analyze seasonal patterns; testing for unit roots at all
or some seasonal frequencies. In this section we will try to give a broad overview of
the best known and most commonly used tests along with some of their development
over the years; the purpose being to use unit root tests to evaluate trend and seasonal
components in biological series and thus expand their application in an area other
than economics. An effort was made to sort the tests by first arranging them in a
chronological order - not very strictly so as to separate between unit root tests and
seasonal unit root tests - and also classify them in two broad categories according
to the approach they use towards time series analysis; whether the analysis uses

(seasonal) ARIMA models or the structural time series models. Since a full review
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of all existing unit root testing techniques is beyond the scope of this chapter, the
reader is referred to [Maddala & Kim| (1998) for a more detailed discussion. At the
end of this chapter two diagrams are summarizing the discussed tests, Figure the
ones using ARIMA models and Figure the ones that use structural time series

models.

3.2.2 ARIMA Models
Dickey - Fuller Test

The first unit root testing framework was introduced by Dickey & Fuller| (1979). The
realization that the number of existing unit roots is equal to the parameter d in the
ARIMA (p,d, q) model, motivated Dickey and Fuller to replace the somewhat intu-
itive visual inspection of the sample autocorrelation function with a formal testing
procedure for unit roots. The test, known as the standard DF test, is of the null hy-
pothesis that a first-order autoregressive, AR(1), process contains a unit root against
the alternative that it is stationary and is based on the assumption of independently

and identically distributed (iid) errors.

As a basis for the test the following autoregressive model is used:

Xt = pXt,1 + €¢, t= 1727 ceey (31)

where Xy = 0, p is a real number and {¢} is a sequence of independent normal

random variables with mean zero and variance o2 [i.e., ¢ ~ NID(0,0?)].

For the time series X; to converge (as t — 00) to a stationary time series |p| < 1
is needed. Given n observations, the Maximum Likelihood Estimator (MLE) of p is
the OLS estimator
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n -1 n
p= (Z X31> > XX (3.2)
t=1 t=1

Then a t test statistic is formed:

t,= (3.3)

where SE(p) is the standard error of the OLS estimator. The asymptotic distribution

of the statistic is a functional of the Wiener process,

) W(1)? -1

tp — T
2 {fol W(T)QdT} ’

(3.4)

[

where W is a standard Wiener process.

Wiener Process or Brownian Motion:

A stochastic process { X (t),t > 0} is said to be Brownian Motion process if:
1. X(0) = 0;
2. {X(t),t > 0} has stationary and independent increments;
3. for every t > 0, X(t) ~ N(0,c%).

In the above model no drift or linear trend was included and the derived asymptotic
distribution, for the null hypothesis, is under the assumption that the data generating
process (DGP) had no drift and no linear trend in it. The DF test can, however,
be used when a drift and/or linear trend are included in the model and depending
on whether the DGP has a drift and/or linear trend in it the critical values change.
The test statistic stays the same for all cases but for the case of the linear trend
the asymptotic distribution of the statistic, under the hypothesis of a unit root, is

a different functional of the Wiener process. Fuller in 1976 provided tables with
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the various critical values needed for the above mentioned test statistics. The null
hypothesis of a unit root is rejected when the test statistic is smaller than the given
critical value (Dickey & Fuller] [1979).

This is a parametric test for a zero frequency unit root but can also be used to
test the validity of a given co-integrating relationship (Harvey, |2001). An issue with
this test is that the normal test significance level is affected when the error terms e,
in are autocorrelated, as is often the case with time series data. In addition,
as Dickey and Fuller mention : “There is evidence that these tests are biased tests,
accepting the null hypothesis more than 95 percent of the time for p close to, but less

than, one.”

In a recent paper (da Silva Lopes|, |2004)) investigates the effects of deterministic

114

seasonality in DF' tests and concludes that: “ ..the common perception that deter-
manistic seasonality has nothing to do with testing the long-run properties of the data

is incorrect” and suggests ways to account for it.

Augmented Dickey - Fuller Test

For a wide class of errors which allows some heterogeneity and serial correlations in

errors, a different regression which contains lagged differences was suggested:

p
AXy=a+pXi1+ Y BAX,i+e, (3.5)

=1

where the first differences series {AX,} has a stationary AR(p) representation with
a known p. This is the augmented Dickey-Fuller test (ADF) (Maddala & Kim,
1998). Augmenting the regression with lagged differences intends to remove the

serial correlation from the disturbance (Chambers & McGarry, 2002).

The nominal significance level of 5% under the null hypothesis (p = 1) is held better,
if p is larger (Maddala & Kim)|, [1998). However, it has been noted that then the power
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of the test decreases, i.e. the tests can no longer distinguish between a process with
unit roots and a stationary process with p values close to, but less than, one- much
like the DF test . Thus, there is a trade-off between the validity and the power of the
test in choosing p. Some authors suggest using information based rules such as the
Akaike Information Criterion (AIC) or the Schwarz Bayesian Information Criterion
(BIC) for the selection of p, while others argue using sequential rules (see [Maddala;
& Kim| (1998))).

Furthermore, the ADF test only works well in the presence of seasonal unit roots in
the DGP if the test regression is sufficiently augmented with lags; otherwise, over-
rejections of the null will occur (da Silva Lopes, 2004). In the same article Lopes

also mentions that the ADF test does not work very well with small samples.

Finally (Busetti & Taylor}, 2003) discuss the presence of unattended structural breaks
in the sample; “a process which is stochastically stationary about a deterministic com-
ponent subject to structural breaks can display properties very similar to a unit root
process. . ..the conventional ADF tests cannot reject the unit root null hypothesis,

even asymptotically, where a broken trend exists.”

Said - Dickey (SD) Test

The ADF test was extended to the more general case where the series of first dif-
ference in are of the general ARM A(p,q) form with the parameters p and ¢
unknown and serially correlated errors. |Said & Dickey| (1984) showed that it is pos-
sible to approximate an ARIM A(p,d, q) model by an autoregression whose order is
a function of the sample size n. By the use of OLS the coefficients in this autoregres-
sive approximation are estimated and then used as statistics whose limit distributions
coincide with the ones tabulated by Dickey and listed by |[Fuller| (1976).

The procedure will be given, here, for p = d = 1 but in the same paper it is extended
to the general p, ¢ case with iid errors. The model considered is as in (3.1) where

now:
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(=6 +e+Pey (f=...,-2,-1,0,1,2,...), (3.6)

where it is assumed that |a] < 1, |#] < 1, Xy = 0 and {e;} is a sequence of iid
random variables. The null hypothesis to be tested is Hy : p = 1. Then,

[e. 9]

e =Y (=Y (ej—aea ;1) (3.7)

J=0

and it follows that

Xt — Xt—l = (p — 1)(Xt_1) + (Oé + 5)(615_1 — 6615_2 + ﬁ2€t_3 — ... ) + €. (38)

Under the null hypothesis of a unit root, ¢, = X; — X; 1. This motivates us to
estimate the coefficients in by regressing the first difference, AX;, on X; 1,
AX;_ 1, AX; o, ..., AX;_; where k is a suitable integer. For the estimators of the
coefficients in to be consistent it is essential to let k be a function of the number
of observations, n. In addition, it is assumed that n~'/3k — 0 and that there exist
¢ >0, r > 0 such that ck > n'/", Said and Dickey (1984).

When the stated conditions are met the limiting distribution of the t-statistics of
the coefficient on the lagged dependent variable X; ; has the same Dickey & Fuller

(1979)) distribution as when the errors are iid.

Since, this test is an extension of the ADF test it suffers from the same drawbacks.
In addition (Maddala & Kim, [1998) highlight that the actual size of the test may
deviate greatly from the nominal size if the order or the autoregressive correction is
not increased as the sample size increases; in order to accommodate the additional
effect of the correlation structure of the residuals. Thus, if there are important

moving average components in the structure of the series {X;} a large number of
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nuisance parameters may be needed in the estimation. Additionally, one needs to
remember that an effective observation is lost for each extra lag of AX, introduced,
leading one to deduce that this approach may in fact have significantly lower power

when moving average terms are more important than if the errors were iid.

Phillips Test

All the testing frameworks mentioned above are confined to the case where the
sequence of innovations driving the model are independent with a common variance.
Furthermore, it is frequently assumed that these innovations ¢; are iid (0, 0?) or, even
further, that they are iid and follow the normal distribution. However, independence
and homoscedasticity are strong assumptions that are often violated when working
with time series data (Phillips, 1987). In addition, from economic theory, these
assumptions are false in the context of aggregate time series that maybe characterized
as a random walk. Thus (Phillips, [1987) stated that : “For both empirical and
theoretical considerations, therefore, it is important to develop tests for unit roots

that do not depend on these conditions.”

Consequently (Phillips, 1987)) provided asymptotic theory for the least squares re-
gression estimator and the associated regression t statistic which allows for quite
general weakly dependent and heterogeneously distributed innovations; performing

non-parametric adjustments to the existing test statistics.

Let {X;}:2, be a stochastic process generated in discrete time according to ({3.1))

and

p=1 (3.9)

Under (3.9) the representation X; = S; + X is formed in terms of the partial sum
Sy = Z"i ¢; of the innovation sequence {¢;} in (3.1) and the initial condition X.

Phillips defines Sy = 0 and assumes that X has a certain specific distribution.
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To be precise it is assumed that {e }$° is a sequence of random variables that satisfy

the following conditions:

1.
E(e) = 0,all t;
2.
sup, Ee;|® < oo for some > 2;
3.
0 = limp_. BE(T'S3) exists and 0 > 0;
4.

{e:};° is strong mixing with mixing coefficients a,,,that satisfy:

9]
Z oz}n_Z/ﬁ < 0o0.
t

These conditions allow for both temporal dependence and heteroscedasticity in the
process {¢ }7°; while condition (4) controls the extent of temporal dependence so
that, although there may be substantial dependence amongst recent events, events
which are separated by long intervals of time are almost independent (Phillips, |1987)).
For the definition of strong mixing and mixing coefficients «,, the reader is referred
to |White| (1984).

Then the new test statistics are:

Z,=T(p—1) = (1/2)(s, — 57)/ (T2 ZX31> (3.10)
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and

-1

T t—2 T 1/2
Zy=(p—1) (Z th—1> [smi = (1/2)(s7, — s2) | smu (T_z ZXE—1> (3.11)

. . . . . T T
where T is the sample size, [ is the lag truncation number and p = >, X, X1/ >, X2,
is the OLS estimator of p. Furthermore, s? and s2,, under the null hypothesis (3.9),

are the consistent estimators:

T T
=T (Xi—Xa)’=T"> ¢ (3.12)
1 1
and . R
si=T"'Y +2T'> > . (3.13)
1 =1 t=7+1

of 02, the variance of the innovation process {¢;}, and o2 = var(T~/2Sz), respec-

tively.

An interesting feature of the new test statistics is that their limiting distributions
are identical to those found in earlier work under the assumption of iid errors. In

particular, as T tends to infinity,

(W) -1)/2

Zy = —— (3.14)
Jo W(t)2dt
and
(W(1)*—=1)/2 (3.15)
LTy wzdrye |

where once again critical values are given by Fuller (1976).

The above test can be used in a broad category of models. [Phillips (1987) says:
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“It applies, for example, to virtually any ARMA model with a unit root and even
ARMAX systems with a unit root and with stable exogenous processes that admit
a Wold decomposition.” One of the benefits of the Phillips test is that it is not
necessary to identify the model in order to apply the test and consistently estimate
the existence of a unit root in the series. Furthermore, it can easily be performed on
models with a drift and a time trend (Phillips, [1987).

However (Chambers & McGarry, 2002) highlight that the t-ratio of this test suf-
fers nuisance parameter dependencies that are a reflection of the dynamics in the

disturbance making the inference of the outcome difficult.

Phillips - Perron (PP) test

Phillips & Perron (1988) extended the above study of Phillips to the cases where
(a) a drift, and (b) a drift and a linear trend are included in the specification of the
model. These extensions are important for practical applications, where the presence
of a nonzero drift is very common. Moreover, in many cases and, particularly with
economic time series, the main competing alternative to the presence of a unit root
is deterministic linear time trend. It is therefore important that regression tests for

unit roots allow for this possibility.

The models considered are driven by a sequence of innovations denoted by {¢;} which
satisfies the four conditions as in Phillips test. Let {X;} be a time series generated
by and . Initial conditions are set at ¢ = 0 and yy may be any random
variable, including a constant, whose distribution is fixed and independent of the

sample size T.

The two least squares regression equations are considered

X, =i+ pXe1 + & (3.16)

1
Xe=p+ 0= 5T) +pXia + &, (3.17)
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where (fi,p) and (fi, 3, p) are the conventional least squares regression coefficients.
The regression t statistics are formed and their limiting distributions derived; all
depending upon the nuisance parameters o and o2, which is an obstacle to inference

in the case where 0% # o?. Using the consistent estimators from Phillips| (1987) -

replacing the {e;} for the residuals from (3.16)) and (3.17))- transformations of the test

statistics are used; which eliminate the nuisance parameters asymptotically.

Furthermore, since the estimator in (3.13)) is not constrained to be nonnegative, as
it was defined can be negative when there are large negative sample covariances,

simple modifications to it are suggested. For example the weighted variance estima-

tors: , l .
o =T 'Y &§+2T7'> wy > &é,, (3.18)
t=1 s=1 t=s+1
T ! T
op =T Z & + 21" Z Wy Z €t€t—s, (3.19)
t=1 s=1 t=s+1

where wg = 1 — s/(l + 1), is the triangular window, while other windows could be

used.

The limit distributions of the new test statistics developed here are expressed as
functionals of standard Brownian motion and are the same as those tabulated by
Fuller| (1976). This means that their tests may be used with existing tabulations
even though they allow for much more general time series specifications. In the same
paper they also study the asymptotic local power properties of their tests using the
theory of near-integrated processes and provide some simulation evidence on the

finite sample performance of the new tests Phillips & Perron| (1988)).

Variance ratio tests

Cochrane| (1988) proposed a variance ratio (VR) statistic to evaluate the presence
of a unit root by measuring the degree of persistence in a time series. The variance

ratio is the variance of the kth lag difference of the series divided by k-times the
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variance of its first-difference:
VR, = — 3.20
k 1 71 ( )

where Vi, = var(X; — X;_x)/k. The VR can be expressed as the weighted sum of
the correlations r; between AX,; and AX,_;:

k .
VRk:1+2Z[1—ki1]rj (3.21)

J=1

As an estimator for the variance ratio Cochrane used:

k= var( Xy — Xi_1) T

ViEy = var(Xy — X4—1) ‘T —k+ 1)

(3.22)

which is an unbiased estimator and as T'— oo, k — 00, and k/T — 0, has a limiting

normal distribution with mean V Ry, and variance 4kV R} /3T.

In practice one considers V Ry for different values of k and rejects models when at
least some of the V' R statistics provide evidence against it. However, further papers
from different authors, (see Maddala & Kim| (1998])) suggest that this penalizes the
null hypothesis since the tests are correlated and thus argue that there are substantial
size distortions with the use of the asymptotic approximations and furthermore with
the use of sequential testing procedure with different values of k. Instead one could
use a joint test that takes under consideration the different V Rj statistics and by

using Monte Carlo methods derives the critical values for them.

Dickey, Hasza and Fuller (DHF) test

Dickey et al.| (1984) researched regression estimators of coefficients in seasonal au-
toregressive models. They expanded the DF test to look for unit roots in all the

seasonal and zero frequencies.
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Let the time series X; satisfy
Xt :detfd_FEta t = 1,2,..., (323)

where X 441, X _449,..., X are initial conditions and the ¢ are iid (0, 0?) random
variables. The above model is a simple seasonal time series model in which d is equal

to the period of the present seasonality.

In their paper they consider several regression-type estimators of p; and compute
percentiles of their distributions under the hypothesis that p; = 1. The null hypoth-
esis for this test is that there are unit roots at the 0 and all seasonal frequencies with
the alternative of no unit roots (Maddala & Kim| |1998).

The first estimator of py is the OLS estimator defined as

n 1 n
pa = ( S Xz d) Y XX (3.24)
t=1 t=1

If the initial conditions are fixed and ¢; are normal, py is the MLE. The Studentized
regression statistic for testing the hypothesis Hy : pg = 1 is

o= (pa—1) [( i Xf,d) _152} o (3.25)

where
n

S =(n-1)"> (X, — paXia) (3.26)

t=1

are included in the standard output from a computer regression of X = X; — X;_4

on thd-

An alternative model for seasonal data is the stationary model in which the obser-

vations satisfy
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Xi = paXi—a+e, |pal <1

Where, for normal stationary X, satisfying (3.27)),

Xt :det+d+et7 € ~~ N.[D(O,O'2>
An alternative estimator of pg, which they call the symmetric estimator is

n n

pa= (22 (X)) (o7 + X20).

t=1 t=1

and define the associated Studentized statistic as

n

[Soeexzg) s

t=1

5}2
|
[\
|
Y
™
Y
|
[
S~—
| —

where

S*=(@2n-1)" Z[(Xt — paXi—a)® + (Xia — paXs)?].

t=1

(3.27)

(3.28)

(3.29)

(3.30)

(3.31)

Models (3.23)) and ([3.27) both imply that the time series X; has a zero mean, some-

thing that is rarely encountered in practice. Therefore, an alternative regression

model is considered

d
Xe=) 06+ paXiate, t=12...,

i=1

where
5 = 1, if ¢t =1i(mod d)
" 0, otherwise

(3.32)

(3.33)
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and {¢} is a sequence of iid (0,0%) random variables. The regression of X; on
01,02ty Oqr, X¢—q for t=1,2,..., n, produces coefficients él, ég, e ,éd, Pud- The

Studentized regression statistic associated with p,q — 1 is denoted by 7,,4.

Assuming that |pg| < 1, a reparameterized version of model (3.32) is

d d
X — Z 5itllz‘ = Pd (Xt—d - Z 5z't,ui> + €, (334)

=1 =1

where

Under the model the hypothesis p; = 1 implies that 6, = 0 regardless of the
value of u;. Thus, specifying p; = 1 in the model allows p; to assume any
value. Under the alternative of |pg| < 1, however, y; is an identified parameter and
should be estimated (Dickey et al., [1984]).

Two estimators for u; are then considered for the stationary model. The first is that
defined by the regression estimators for (3.32)), and the second is the seasonal mean
i1; defined by

fi=mi+ 1)) Xogrivg, i=1,2,....d, (3.36)

Jj=0

where n; is the greatest integer not exceeding (n + d — i)/d. The estimator fi; can
be used to define a symmetric estimator of p4, analogous to (3.29)), as follows

n

Pud = { Z(m? + :Ef_d)}l2 Z TeTi—q, (3.37)
=1

t=1

where

d
r=X, =Y judi. (3.38)
i=1
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However, if the initial conditions are fixed, the 6; (or p;) should be estimated using

the regression model.

The percentiles of the distributions for time series that have unit roots at the seasonal
lag are computed in the same paper (Dickey et al., 1984), in which the above method
was introduced, by Monte Carlo integration for finite samples and by analytic tech-
niques and Monte Carlo integration for the limit case. The tabled distributions may

be used to test the hypothesis that a time series has a seasonal unit root.

A major drawback of this test is that it does not allow for unit roots at some but not
all of the seasonal frequencies and that the alternative has a very particular form,

namely that all the roots have the same modulus (Hylleberg et al., [1990).

Hylleberg, Engle, Granger and Yoo (HEGY) Test

Hylleberg et al.| (1990) developed a test that follows the Dickey-Fuller framework and
looks at unit roots at all the seasonal frequencies as well as the zero frequency. In
the same paper they provide tables of the critical values for the limiting distributions

of the developed test statistics.

To test the hypothesis that the roots of ¢(B) lie on the unit circle against the alterna-
tive that they lie outside the unit circle, it is convenient to rewrite the autoregressive

polynomial in the form:

p
p(B) =D MAB)(1 — 0(B))/0x(B) + A(B)g*(B), (3:39)
k=1
where the Ay are a set of constants, p*(B) = ¢**(B) + >_ A\, with ¢**(B) a (possibly

infinite or rational) polynomial and

5u(B) =1— eiB , A(B) = ﬁdk(B). (3.40)
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In this representation ¢(0) = ¢*(0) which is normalized to unity.

It is clear that the polynomial ¢(B) will have a root at 6y if and only if A, = 0. Thus
testing for unit roots can be carried out equivalently by testing for parameters A = 0

in an appropriate expansion.

For example, to test for seasonal unit roots in quarterly data one would expand a
polynomial ¢(B) about the roots +1, —1,+i, and —i as 0, k = 1,...,4. Then, from
(13.39),

¢(B) = —mB(1+ B+ B? + B*) — my(~B)(1 — B+ B> — B?)

— (m4 + mB)(—=B)(1 — B?) + ¢*(B)(1 — BY), (3.41)

where m = —\y, T = — g, 2A3 = —73 + imy, and 20y = —73 — imy. Since p(B) is

real, A3 and A4 had to be complex conjugates.

The data are assumed to be generated by a general autoregression of the form
p(B)z = €, (3.42)

and ([3.41)) is used to replace p(B), giving
O (B)yar = TiY1e-1 + oY1 + T3Ysr—2 + Taysi—1 + €, (3.43)

where
vt = (1+ B+ B? + B¥)x; = S(B)xy,
ys = —(1— B+ B? — B¥)z,,
Yz = —(1 — BQ)QUt,
Y = (1 — BYzy = Ay

Equation (3.43) can be estimated by OLS, possibly with additional lags of y4 to
whiten the errors. To test the hypothesis that ¢(6x) = 0, where 0y is either +1, —1, +i

or —i, one needs simply to test that A, is zero. For the root 1 this is simply a test
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for m; = 0, and for —1 it is m = 0. For the complex roots +i and —i, A3 will have
absolute value of zero only if both 73 and 74 equal zero which suggests a joint test.
There will be no seasonal roots if my and either w3 or 74 are different from zero, which
therefore requires the rejection of both a test for 7, and a joint test for w3 and m4. To
conclude that a series has no unit roots at all and is therefore stationary, one would
have to establish that each of the 7’s is different from zero (save possibly either 73

or my).

The hypothesis tests can be amended to include a constant, seasonal dummies and
a time trend. Then (3.43) becomes

4

O (B)yse = p+ pt + Z Skt + TMY1e-1 + ToYor—1 + T3Ysi—2 + TaYz—1 + €&, (3.44)
k=2

which can be estimated by OLS and statistics on the 7’s can be used for infer-

ence. The asymptotic and finite sample distributions change (Beaulieu & Miron,
1993)).

F-type statistics for the joint null hypotheses are computed, Fiosq, Fo34, F34, against
the alternative that they are not all equal to zero. Furthermore, t-statistics are
computed for the one-sided ‘t’ tests on 7, my and 73 and the two-sided ‘t’ test on
7y = 0. Critical values for the above tests are given in |Hylleberg et al.| (1990)), where

they present the aforementioned testing framework.

Nonetheless, the lag augmentation that is employed is only a partial solution to the
problem caused by serial correlation between the innovations driving the process
(Burridge & Taylor, 2001a.b). In addition, the HEGY test is sensitive to periodic
heteroscedasticity (PH) amongst the innovations and may have less power for the

zero frequency unit root than the DF test (da Silva Lopes, [2004)).
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Chambers McGarry

As demonstrated by Phillips (1987), testing for a unit root at the zero frequency
can be carried out using a straightforward regression of a variable on its lag, with
any neglected (stationary) dynamics captured by the disturbance process. However,
the limiting distribution of the resulting t-ratio suffers from nuisance parameter de-
pendencies that are a reflection of the dynamics in the disturbance, thus making
inference difficult. A method of eradicating nuisance parameters from the limiting
distributions is to perform the regression in the frequency domain and by doing so
it is not necessary to be concerned with selecting the appropriate number of lagged
variables to include in the regression, which always takes the same form in the fre-
quency domain. Another advantage is that the setup allows for unit root testing
in autoregressive moving average (ARMA) models as well as purely autoregressive
models (Chambers & McGarry| 2002).

Consider a univariate process X; having the autoregressive representation of ,
where ¢; ~ IID(0,0?), B denotes the lag operator, T denotes sample size, and

o(z) =1— Z§:1 ;77 is a polynomial of order p, where p > s, the number of seasons.
The polynomial ¢(z) can be expressed as the product of two lower-order polynomials
in the form ¢(z) = a4(2)b(z). In this representation as(z) is a polynomial of order s
having 0 < s; < s roots on the unit circle and s — s; roots outside the unit circle,
while b(z) is a polynomial of order p — s that has all its roots outside the unit circle.
It is, therefore, the polynomial as(z) that captures possible seasonal integration in
the process X;. Attention will be focused on testing the number of roots of a,(z)
that lie on the unit circle when s = 4, which is appropriate for testing for seasonal

unit roots with quarterly data.

With the factorisation of ¢(z) described above and s = 4 it is possible to write ([3.42))

as

as(B)X; = wy (3.45)
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where u; = ¢(B)e; is a stationary random disturbance in which
¢(z) = 14322, ¢;527 = b(2)~" that satisfies 72| j°¢7 < oo and ¢ ~ 1ID(0, 07) with o? <

Q.

Following HEGY,, the polynomial a4(z) = 1+ Z?Zl a2’ can be decomposed as

as(2) = —mzay(2) — mazag(z) — myzas(z) — myzay(z) + (1 — 2, (3.46)

where a;(2) = 14+ 2+ 224+ 23, an(z) = —(1 — 2z + 22 = 23), a3(2) = —2(1 — 2?)
and ay(z) = —(1 — 2?). The coefficients 7,7y, T3 and 74 correspond to the roots
1,—1,i and —i respectively in the sense that if m; = 0 then a4(z) possesses the
corresponding root. Matching the coefficients in (3.46)) with those of a4(z) yields
the relationships a; = —m + Mo + My, a9 = —m1 — Ty + W3, a3 = —7 + Ty — 7y, and
ay = —m — my — w3 — 1. Alternatively, solving these expressions for the 7; in terms
of the a; yields m; = —as(1)/4,m = —(1 —a1 +as—as+ay) /4,13 = —(1 —as+aq)/2
and m; = (a; — a3)/2. Note that the term (1 — z%) is not multiplied by another
polynomial, as in HEGY, in which a representation of ¢(z), rather than just a4(z),
is sought and which results in a term of the form a*(z)(1— 2%), where a*(z) is a finite
polynomial. This term is required in HEGY to account for the additional terms in
the polynomial involving b(z), which in this approach has already been incorporated

within the disturbance term w;.

Let y; = (1 — B*) X, and define the variables

yir=0a;(B)Xy (1=1,...,4). (3.47)

Then, using the representation (3.46)) for as(2), (3.45) may be written as the regres-

sion model

4
Y = Zﬂjyj,t—l +uy, t= 1a27"'7T7 (348)
j=1
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which is in the form of the HEGY regressionﬂ but with one notable exception their
representation of ¢(z) yields a variable on the left hand side which may be de-
noted a*(B)y; and which incorporates the dynamics that are effectively associated
with b(z), in order to produce a white noise disturbance. In the spectral regres-
sion approach adopted here such dynamics are assigned to the disturbance term
u; and are treated non-parametrically via the use of appropriate spectral density

estimates.

Defining the vectors x; = [yl,t_l,yg,t_l,yg,t_l,yzl,t_l]/ and ™ = [7r1,7r2,7r3,7r4]/ (13.48))

may be written as the regression model

Yy =am+u, t=12.. T (3.49)

The frequency domain tests of the restrictions 7, =0 (j =1,...,4) considered here

are based on the frequency domain regression estimator of 7 defined by

T = ﬁ Z fmx(wj)fﬂa(wj)_ll [ﬁ Z fwy(wj)faa(wj)_l ‘ (350)

j=—M+1 Jj=—M+1

In the above definition of T, fab(w) denotes a nonparametric estimate of the spectral

density function of two (possibly vector) random processes a; and by, given by

fab(w) = % Z k(%)C’ab(n)e—mw, (351)

n=—M

where k(.) is a bounded, even, kernel function satisfying k(0) = 1 and k(z) =
0 for = ¢ [—1,1], M is a bandwidth parameter, w; = 7j /M, and

!The variable g4, is denoted y3, by HEGY and 3, is HEGY’s y3,_1.
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Ty by, n>0
Canln) = (3.52)
T_l Zf:|n|+1 atb;_‘np n < 0.

In addition, when 7" — oo, the bandwidth parameter M — oo but in a way such
that M/T"/? — 0.

The variable u; = y; — :1:;7?0 s denotes the residual from a time domain regression
of y; on x;, where ors is the OLS estimator. The estimated asymptotic covariance

matrix of 7 is

1|1 -
_ £ R -1
j=—M+1

Two types of test statistic are considered for testing the individual null hypothesis

that m; = 0(j = 1,...,4). The first type of statistic is simply T'7,;(j = 1,...,4) while
the second type is the t-ratio defined by

~

J s
i j=1,...,4, (3.54)

T3

tj:

where V7 ;; denotes the j'th diagonal element of V. The hypotheses that m3 = 74 = 0
and that m = m = m3 = my = 0 can be tested using Wald statistics constructed
from the unrestricted estimator 7. They will be denoted .J34 and .Ji234 respectively,

and are defined by

J; = # R[R; Ve R 'Rit, i =1234,34. (3.55)

where Rigzq = Iy, R3y = [02,[3],0, denotes an n x n matrix of zeros, I,, denotes

an n X n identity matrix and V7 is the covariance matrix defined in (3.53). The
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limiting distributions of these statistics, under the stated assumptions, are given by
Chambers & McGarry| (2002) when they propose their method.

Bootstrapping the HEGY tests

Burridge & Taylor| (2003) argue that the effects on the sampling distributions of
the HEGY statistics induced by shocks which are serially correlated, periodically
heteroscedastic, and possibly asymmetric, can be successfully accommodated by the
use of a bootstrap. In addition, the bootstrap corrects the adverse effects of data-
dependent lag selection seen in the conventional augmented HEGY tests and stops
inflation of test significance levels above their nominal levels. Finally, the bootstrap
delivers estimated tail probabilities which are the quantities required for inference

and so there is no issue of the unreliability of tabulated critical values.

The model considered is a quarterly time series which can be written as

a(B) Xypys = Ugpys + ps + Bs(4t + 5), (3.56)

¢<B)u4t+s = €4t+s, (357)

where a is a fourth order polynomial in the usual lag operator, B. This allows for
periodic intercepts and time trends through u, and [, respectively. The shocks
{u4s4s} are an AR(m) process, in which the m roots of ¢(z) = 0 all lie outside
the unit circle. In addition, they are allowed to be periodically heteroscedastic,
and to have an asymmetric distribution, that is, we define the annualised vector
innovation process € = (64t,3,64t,2,64t,1,€4t5 and assume that ¢, ~IID(0,~) with
—=diag(o?,,...,08), and with finite fourth moments. The innovations are otherwise
unrestricted. The shocks, {€41s}, and hence {Xy;,,}, display PH unless o, = o, for

all s, Burridge and Taylor (2003).
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In order to derive the HEGY tests, the polynomial a(B) is factorised at the seasonal
frequencies wy = 2k7/4, k=0, 1, 2, and expanded around the seasonal unit roots

exp(£2kmi/4), k = 0,1,2, to obtain the auxiliary regression equation

4 m
Ay Xapys = ps + B7(4 + s) + Z TiYjat+s—1 + Z PiAs Xgrps—j + €arys,  (3.58)

j=1 j=1

which may be estimated along 4t + s = m + 5,...,47. The inclusion of sea-
sonal level and trend dummies in (3.58)), whose parameters p; and 37, respectively,
are linear mappings of us and (s of (3.56), s = —3,...,0, ensures that the sam-
pling distributions of the estimated coefficients on the transformed level variables,
Yjar+s,] = 1,...,4, and their associated t- and F-statistics are unaffected by the

= (pu_z,...,p0)and B = (6_3,..., ) parameters. The transformed level variables
which correspond to the seasonal frequencies wy = 2k /4, are given by (3.47)).

The tests of interest are the regression t-statistics, t1,ts, t3 (one-sided) and ¢4 (two-
sided), together with the F-statistics, Fs4, Fo34 and Fiozs.

The bootstrap algorithm begins with estimation of , with the lag length, m,
and the intervening lags to be retained, selected using the sequential elimination
procedure advocated by [Beaulieu & Miron| (1993| pp.318-319). That is, a maximum
lag, M.z, and the deterministics are specified, and the test equation estimated.
Thereafter, if any lagged fourth differences have t-statistics smaller than 1.65 in
absolute value (i.e. insignificant at an approximate level of 10%), the least significant
lag is removed and the equation re-estimated. This continues until all the included
lags are significant, at which point their estimated coefficients and the seven unit

root test statistics are recorded, and their residual vector is stored.

The residuals for each quarter are stored separately, and a sample from each of
their empirical distributions is drawn. These four independently drawn samples are

merged, preserving the seasonal ordering, into the vector €*, which is then used
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to construct a bootstrapped observed sequence under the null hypothesis via the
equation,

~

¢(B)A4X2t+s = 62t+s (3-59)
initialized at 0.

The full fitting algorithm, using the same maximum lag, selection method, and the
deterministics is then applied to the X7, series and the resulting test statistics com-
pared with the originals. This procedure is repeated for a large number of bootstrap
samples and record how many of the bootstrapped statistics are more extreme (in
the relevant tail/s) than the original, thus locating the latter in the bootstrap null

cumulative density function (cdf).

An important feature of the fitted equation is that the test statistics and the residual
vector are unaffected by the deterministic parameters under both the null and the
alternatives. Thus, in simulating the null distribution by the bootstrap sampling from
the seasonal residual empirical cdfs we need not incorporate the fitted deterministic
parameters in the bootstrap samples, provided they are included in the test equation
fit to those samples (Burridge & Taylor} 2003).

Pons

Pons (2004) asserts that temporal aggregation has important implications for sea~
sonal time-series analysis, since this data transformation confuses non-observable
seasonal cycles with observable ones. This sampling effect known as aliasing implies
that when a particular quarterly seasonal unit root is detected, it is not possible
to state whether the unit root is present at a monthly frequency with the same pe-
riod, or at another monthly frequency with a period not observable at the quarterly

interval.

In his paper (Pons, 2004) proposes to control effects from temporal aggregation
by combining monthly and quarterly seasonal unit root tests and applies it to the
HEGY test. It is argued, first, theoretically and then demonstrated with a Monte
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Carlo experiment that it is possible to improve substantially the performance of
the seasonal unit root test that only uses monthly information. Furthermore, the
proposed methodology can be extended to all seasonal unit root tests that test for

integration or no integration at the separate frequencies.

3.2.3 Structural Time Series Models

Unit root testing is normally carried out within a framework of autoregressive models.
Auto-regressions are popular, especially in economics, because they are easy to fit.
An alternative approach is to use structural time series models (STMs). These models
are formulated in terms of unobserved components such as trends, seasonals, and
cycles. The most interesting testing issues in structural time series models concern
testing the null hypothesis that a particular component is deterministic against the
alternative that it is stochastic and non-stationary. The non-stationarity in question
appears under the alternative rather than under the null hypothesis. In the unit root
tests, such as augmented Dickey-Fuller, the situation is reversed, but for unobserved

components models this is not the natural way to proceed (Harvey, 2001).

Kwiatkowski, Phillips, Schmidt and Shin (KPSS) Test

Kwiatkowski et al.| (1992) propose a test of the null hypothesis that an observable
series is stationary around a deterministic trend. The series is expressed as the sum of
deterministic trend, random walk and stationary error, and the test is the Lagrange

Multiplier (LM) test of the hypothesis that the random walk has zero variance.

Under the additional assumptions that the random walk is normal and that the
stationary error is normal white noise, the one-sided LM statistic for the trend sta-
tionarity hypothesis is the same as the Locally Best Invariant (LBI) test statistic.
However, the assumption that the error is white noise is not credible in many appli-

cations, since it implies that under the null hypothesis the variable should have iid
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deviations from the trend. Therefore, they derive the asymptotic distribution of the
statistics under general conditions on the stationary error, and propose a modified
version of the LM statistic that is valid asymptotically under these general condi-
tions. The asymptotic distribution is nonstandard, involving higher-order Brownian

bridges.

Let Xy, (t = 1,2,...,T), be the observed series to be tested for stationarity. It is
assumed that it can be decomposed into the sum of a deterministic trend, a random

walk, and a stationary error:

Xt = Bt + Tt + €t. (360)

Here r; is a random walk:
Ty = Ti—1 + U, (3.61)

where the u; are iid (0,02). The initial value 7 is treated as fixed and serves the
role of an intercept. The stationarity hypothesis is simply that o2 = 0. Since
€; is assumed to be stationary, under the null hypothesis X; is trend-stationary.
Kwiatkowski, Phillips, Schmidt and Shin also consider the special case of the model
in which case under the null hypothesis X; is stationary around a level (r)

rather than around a trend.

Let e, (t = 1,2,...,T), be the residuals from the regression of X on an intercept
and time trend. Let 62 be the estimate of the error variance from this regression
(the sum of squared residuals, divided by 7). Define the partial sum process of the

residuals:

Si=> e, t=12...T (3.62)

Then the LM -and the LBI- statistic is
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T
LM =Y S;/57. (3.63)
t=1

The "long-run variance’ of the model is defined as

o? = lim T7'E(S%), (3.64)

T—oo
which will enter into the asymptotic distribution of the test statistic. A consistent
estimator of o2, say s(I)?, can be constructed from the residuals e;. Specifically,

KPSS use an estimator of the form

T l T
s =11 Z el + 2771 Z w(s, 1) Z et g (3.65)
t=1 s=1

t=s+1
as in [Phillips| (1987) or |Phillips & Perron| (1988)).

Here w(s,l) is an optional weighting function that corresponds to the choice of a
spectral window. In the construction of the test, KPSS use the Bartle‘mﬂ window
w(s,l) =1 —s/(l + 1) which guarantees the non-negativity of s*(l). For consistency
of s%(l), it is necessary that the lag truncation parameter [ — oo as T — oo. The
rate | = o(T"/?) will usually be satisfactory under both the null and the alternative
(Kwiatkowski et al., [1992]).

For the tests of both the level-stationary and trend-stationary hypotheses, the de-
nominator of the LM statistic in (3.63)) is 62, which converges in probability to 2.

However, when the errors are not iid, the appropriate denominator of the test statistic

is an estimate of o2 instead of o?2.

First the level-stationary case is considered. The model is as in (3.60) with 3 set to
zero, so that the residuals e; are from a regression of y on intercept only; that is,

e, = X; — X = X; — pu. Sy is then the partial sum process of the residuals e; as in
(3.62)). So the test statistic is

2In [Phillips & Perron| (1988) is mentioned as the triangular window.
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T
hu=T7"% St/s*(1) (3.66)
t=1
with X
Ny — / Wi (r)dr, (3.67)
0

under the assumptions of Phillips and Perron (1988). Here Wj(r) is a standard
Brownian bridge:
Wi(r) = W(r) —rW(1),

where W (r) is a Wiener process (Brownian motion).

The analysis of the trend-stationary case is very similar to that of the level-stationary
case. The model is now exactly as in . Let e; be the residuals from a regression
of X; on intercept and trend, and let S; be the partial sum process of the e; as in
. Furthermore, let 7, be the new test statistic, where the subscript 7 indicates
that we have extracted a mean and a trend from X, and serves to distinguish the

trend-stationary case from the level-stationary case. Then

e = T3 52/5() (3.68)

and its asymptotic distribution is

1
e — / Wo(r)2dr (3.69)
0

where the second-level Brownian bridge Ws(r) is given by

Way(r) = W(r) + (2r — 3r )W (1) + (—6r + 61%) /1 W(s)ds. (3.70)

The upper tail critical values for both derived limiting distribution are calculated via
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a direct simulation and tabulated by the authors of these tests in the paper where
the tests were introduced (Kwiatkowski et al) [1992). In addition, KPSS say that
the above tests are intended to complement unit root tests, such as the Dickey-Fuller

tests and can be extended to allow for nonlinear trends.

Canova and Hansen (CH) Test

In the same sense that HEGY generalized the DF framework from the zero frequency
to the seasonal frequencies (Canova & Hansen, [1995)) generalize the KPSS framework
from the zero frequency to the seasonal frequencies. They describe a set of tests
to examine the structural stability of seasonal patterns over time. The tests are
built on the null hypothesis of unchanged seasonality and can be tailored to test for
unit roots at seasonal frequencies or for time variation in seasonal dummy variables.
Thus, they propose a test for whether the seasonal pattern changes sufficiently over
time to warrant a seasonal unit root, or whether a stable seasonal pattern is more
appropriate. A discussion of the way they propose to test for non-constant seasonal

patterns follows.

They start from a linear time series model with stationary seasonality, a seasonal

dummy model:

Xi=yiB+date, i=12...T (3.71)

In , X, is real valued, y; is a k x 1 vector of explanatory variables, d; is an
s x 1 vector of seasonal dummy indicators and « is an s X 1 parameter vector, where
s is the period of the seasonal component. In addition, ¢; ~ (0,0?) is an error
uncorrelated with y; and d;. Notice that there is no intercept p included in the
above model to achieve identification. The advantage of this formulation is that the
coefficients « represent seasonal effects. To study whether the seasonal intercepts, a,
have changed over time, Canova and Hansen modify the above conventional seasonal

dummy model by entering «; in place of a.
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There are many forms of potential nonstationarity for «; that could be considered;

in their paper they consider stochastic variation of a martingale form:

AIOJZ' = A/ai,l + Uy, (372)

where o is fixed and {u;, F;} is a martingale difference sequence with covariance
matrix F(u;i;) = 72G, G = (AQA)™. The s x a matrix A selects the elements of
a that we allow to stochastically vary under the alternative hypothesis. Note that

when 7 = 0 the coefficient vector is fixed at g for the entire sample.

The LM test for Hy : 7 = 0 against H; : 7 # 0 is given by the statistic:

T T
1 (A N A A
:T_E: A(AQA)TAD, = Tt (AQA) 1A§ DD, A| , (3.73)

t=1

where D, = ZZ L di€;, t1(Q) is the trace of Q and (), the consistent kernel estimate

of the long-run covariance matrix of d;e;, €1, is defined as:

. i ko1 o

k=—m

In the above equation m is the bandwidth and w(.) is any kernel function that
produces positive semidefinite covariance matrix estimates, such as the Bartlett,

Parzen, or the quadratic spectral.

Testing the stability of the ath seasonal intercept, (where 1 < a < s), can be achieved
by choosing A to be the unit vector with a 1 in the ath element and zeros elsewhere.

This produces the test statistic:

T
1 ~
_ T2§ D24, (3.75)
t=1
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where ﬁat is the ath element of ﬁt, and Qaa is the ath diagonal element of Q). Under
Hj the limiting distribution of this test statistic is given by:

L, —4 CvM(1) foreach a=1,...,s, (3.76)

where CvM (p) = fol W, (r) W,(r)dr, ‘—, denotes convergence in distribution and
W, denotes a vector standard Brownian bridge of dimension p. When p = 1, the
distribution of CvM (p) simplifies to that known as the Cramér-von Mises goodness-
of-fit distribution widely used in the statistical literature, so we will refer to CvM (p)

as the generalized Cramér-von Mises distribution with p degrees of freedom.

Here, the statistics L, are essentially the KPSS statistic applied to the seasonal sub-
series (only the observations from the ath seasonal are used). Thus, the KPSS test
is for instability in the average level of the series, but the L, tests are for instability

in the seasonal subseries.

One straightforward test statistic for testing instability in all the seasonal intercepts

can be obtained by taking A = I, yielding:

1 PR
Ly==>Y DQ'D,. (3.77)

Standard analysis shows that under Hy, L; —4 VM(s). Note that L; is a test for
instability in any of the seasonal intercepts, so that it will have power against zero-
frequency movements in X;. In other words, L is a joint test for instability at the
zero frequency as well as at the seasonal frequencies. To cope with this problem one
could test for variation in the joint seasonal intercept process that keeps the overall
mean constant. Specifically, decompose the seasonal intercepts a into an overall
mean and deviations from the mean. Then test the joint stability of those deviations

from the mean.
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Critical values for the pre-described test statistics, the generalized Von Mises distri-
bution, are given in the same paper where they propose their tests Canova & Hansen
(1995).

One shortcoming of the above framework is that the test for a unit root at a particular
frequency is seriously affected by the existence of other “unattended” unit roots which
may exist at the same or other frequencies. In particular, the stationarity tests distort
below nominal size under the null and display an associated loss of power under the
alternative as argued by Hylleberg| (1995)). Furthermore, even though the above test
takes care of both stationary autocorrelation and heteroscedasticity, is not well suited
to handle non-stationary dynamics in the residuals. Finally, it can be argued that, in
the same way CH advise against second differencing, because it can absorb at least
one of the annual unit roots, it is possible to lose semi-annual unit roots by the first

differencing they are proposing (Hylleberg, [1995)).

Taylor

As an answer to the problem raised by the unattended unit roots by Hylleberg (1995),
Taylor| (2003) suggests that before testing for a unit root at a particular frequency
one should first transform the data by applying a differencing filter (prefilter), that
reduces the order of integration at each one of the remaining (unattended) frequencies

by one.

Taylor proposes the following prefilters:
Fy = (1—B%/(1 - B) for testing at the zero frequency, (3.78)

F. = (1—B%/(1+ B) for testing at the Nyquist, 7, frequency, (3.79)

where d is even, and

F(B) = (1 - B%)/(1 —2cos(2kn /d) B + B?) for testing at the harmonic frequencies
(3.80)
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where k = 1,...,d* and d* = (d/2) — 1, if d is even or [d/2], if d is odd.

An advantage of the above technique is that it does not alter the limiting distri-
bution theory for the tests vis-a-vis the case in which the are no unattended unit
roots(Taylor, 2003)).

(Un)Attended Structural Breaks - Busetti and Harvey, Busetti and Tay-

lor

Busetti & Harvey| (2003) argue that the KPSS and CH stationarity tests are likely to
be oversized if there are structural breaks in the seasonal pattern and propose mod-
ifications to the test statistics to overcome that effect. However, these modifications
change the limiting null distribution of the statistics from CvM(s;) to CvM (2s1),
where s; is the number of seasonal intercepts included in the test. In contrast to the
seasonal breaks, breaks in the trend leave the asymptotic distribution of the statistics

unaffected as long as they are correctly modelled.

In the context of a regression of a time-series variable on a set of zero and seasonal
frequency spectral indicator variables the null hypothesis, of interest, is that of fixed
parameters against the alternative that (at least one of) the parameters on a given
subset, say Jq, of the spectral indicators evolve as random walks, revealing thus that
the process has unit root(s) at (at least one of) the spectral frequencies included in
Ji. If some or all of the parameters on the spectral frequency regressors included
in J; display a structural break these breaks are termed attended while otherwise
unattended (Busetti & Taylor, [2003)).

Busetti and Taylor, referring to the KPSS and CH tests, state: ‘From a practical per-
spective, the impact of unattended breaks and unattended unit roots on the stationarity

tests of Section 2 are just as important as those arising from attended breaks.’

Busetti & Taylor| (2003) put forward two ways of dealing with processes that are

stochastically stationary about a deterministic component subject to structural breaks
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and thus, can display properties very similar to a unit root process. The first, for
structural breaks is bias correcting the original stability tests while the second, effec-
tive against both structural breaks and unattended unit roots is achieved by running
stability tests on pre-filtered data. Their work extends the suggestions of |Busetti &
Harvey| (2003) on dealing with structural breaks.

Suppose that there is a structural break at an unknown point in the sample, ag €
(0,1). They propose to replace in the KPSS and CH test statistics the biased estima-
tor -in the presence unattended breaks- of the error variance by an asymptotically
unbiased one, which is obtained by minimizing the sum of squared residuals over
all the possible break dates, Busetti and Harvey (2003), Busetti and Taylor (2003).
Specifically, under the null, a* = arg inf,6%(a) is a superconsisten‘ﬂ estimator of
ap and thus, 6%(a) = T! Zthl e:(a)? is the estimator they are proposing for the
denominator of the statistics; where €;(a) denotes the OLS residuals from the fitted

regression.

To deal with both structural breaks and unattended unit roots they use the differ-
encing filter v7o = (1 + B)(1 + B?) to reduce by one the order of integration at all of

the spectral frequencies where a structural breaks is suspected.

Both suggested methodologies recover (under mixing conditions, see Busetti & Taylor:
(2003))) the usual limiting null distribution of the Cramér-von Mises family, appro-

priate to the case where there are no breaks or unattended unit roots.

3.2.4 Discussion

It is evident that the question of which testing procedure one should use is not
readily answered because the reason that one decides to test for unit roots in the
first place is crucial. However, the DF, ADF and PP tests should be avoided since
they lack power against meaningful alternatives. In addition, as for the variance

ratio test, in small samples, using the asymptotic distributions results in substantial

3Tt converges to the true value at rate 7.
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size distortions and it is advised to obtain small sample critical values using Monte
Carlo methods.

Generally, one of the issues arising when conducting unit root tests is the specification
of the deterministic trend in a model, as mentioned at the beginning of this chapter,
as it is closely related to the power and size of the tests. It is important to include
as many deterministic regressors as there are deterministic components in the trend
function of the DGP. Otherwise the test will at best lose finite sample power or
at worst have power that goes to zero as the sample size increases. Nevertheless,
one does not want to include more deterministic regressors than necessary as that
will decrease the power of the test, Maddala & Kim (1998). Some authors propose
sequential testing to overcome the above problem, but that then leads to new issues
as the asymptotic distributions for general trends have yet to be derived. Finally
for the majority of the tests mentioned above a trade off arises from the fact that
if the number of observations, n is too small the tests are biased when there is

autocorrelation while for a large value of n the tests lose power.

A large number of tests have been devised as modifications to the older ones, trying
to deal with some of the arising issues. |Chambers & McGarry| (2002), state that
there are different ways to deal with nuisance parameter dependencies. Firstly, one
can augment the regression with lagged differences in an attempt to remove the
serial correlation from the disturbance, i.e. ADF test, or, extended to seasonal unit
root tests, i.e. HEGY, include a sufficient number of lagged (seasonal) differences as
additional regressors in order to whiten the residuals. However, the outcome of such

tests will be affected by the number of lagged differences employed.

Secondly, one can make non-parametric adjustments to the test statistics, thus
achieving the desired limiting distributions. Lastly, by carrying out the regression
in the frequency domain instead of the time domain, one can use non-parametric
spectral density estimators to deal with the heteroscedasticity attributed to serial
correlation. Furthermore, by employing the bootstrap method or Monte Carlo one

can be sure of the limiting distributions not being affected by violated assumptions.
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These four ways are the main ways by which the mentioned tests were modified to
accommodate more general conditions. For more information about unit root and

seasonal unit root tests the reader is referred to Maddala and Kim (1998).

3.2.5 Applications

Three of the aforementioned tests are applied to the House, Unemployment and
Kola data sets. We start by applying the Phillips-Perron test which tests the null
hypothesis of a unit root at 0 frequency against the alternative hypothesis of sta-

tionarity.

Table 3.1: Phillips-Perron Unit Root Test

Series p-value

House Data 0.0140

Unemployment Data | 0.826
Kola Data 0.01

The results are presented in Table The test concludes that only Unemployment

has a stochastic trend; unit root at 0 frequency.

The HEGY test tests the null hypothesis of a unit root at all frequencies against
the alternative of stationarity. No deterministic components were included in the
models. In Table the results from this test are displayed. All series are found to

have a seasonal unit root and no root at the long-run (0) frequency.

The Canova-Hansen test tests for instability in the seasonal pattern. The null hy-
pothesis is of a stable seasonal pattern against the alternative of a unit root. The
following tests are for stationary cycles at all seasonal frequencies without includ-
ing a first order lag and a linear trend. The Canova-Hansen test accepts the null
hypothesis of a stable seasonal pattern, i.e. no unit root, see Tables and [3.4]
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Table 3.2: HEGY Unit Root Test p-values

Freq. | House | Unemployment | Kola

0 0.100 0.100 0.100
7/6 | 0.100 0.010 0.100
©/3 | 0.100 0.100 0.010
7/2 | 0.010 0.100 0.010
27/3 | 0.048 0.100 0.010
57/6 | 0.010 0.010 0.010

7 | 0.010 0.100 0.010

Table 3.3: Canova-Hansen Unit Root Test p-values

Series L-statistic

House Data 1.117

Unemployment Data 1.088
Kola Data 0.656

It is seen that the interpretation of the test results is difficult as a number of decisions
have to be made before the tests are performed. The power and the size of these tests
is closely related to the model chosen to represent the data. One has to decide on the
appropriate order of integration in the model to be tested. The order of integration
is important as it can affect the outcome of the tests directly, through the creation of
the test statistic, and indirectly, through the appointed critical values. Furthermore,

the deterministic parts of the model have to be chosen correctly.

The specification of the deterministic trend in the model, as mentioned before, is
crucial. One should include as many deterministic regressors as there are determin-
istic components in the trend function of the DGP. Otherwise the power of the test
may converge to zero as the sample size increases. One the other hand, including

more deterministic regressors than necessary can still have a detrimental effect to
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Table 3.4: Canova-Hansen Unit Root Test Critical Values

L-statistic | p-value
2.49 0.10
2.75 0.05
2.99 0.025
3.27 0.01

the power of the test. The critical values used for inference differ according to the
various forms of the specified deterministic trend. Through the above three examples
we see that it is hard to decide on the above features, especially when the purpose
of conducting these tests is to explore the nature of the series examined as is in the

context of this thesis.

In addition, these tests come with limitations as a number of different assumptions
need to be made before one can use them effectively. Assumptions of independence
and Normality are often required while heteroscedasticity and autocorrelation can

also hinder the correct interpretation of the test results.

Due to this fact, the unit root testing procedures are not as straightforward as con-
ventional testing procedures (Maddala & Kim,|1998). For the purpose of our analyses
we require methods that do not impose many assumptions on the series and whose
interpretation is fairly straightforward. Furthermore, as discussed in the previous
chapter we are concerned with the different types of seasonality focusing mainly on
systematic changes in either phase or amplitude. Thus, the above sophisticated test-
ing techniques emphasize on many aspects that are not necessary in our studies while
they fail to answer our main concerns regarding the type of seasonality. Thus, there

is a need for a simple and robust way to test for the various types seasonality.
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Figure 3.7: A diagram summarizing the Unit Root Tests that assume an ARIMA structure.
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Structural Time Series Models
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Figure 3.8: A diagram summarizing the Unit Root Tests that use structural time series mod-
els.



Chapter 4

Further Tests on Seasonality

4.1 Introduction

As we have seen from the last chapter conducting seasonality tests is not always
straightforward and never without difficult inference. Furthermore, these elaborate
and sophisticated testing frameworks focus on aspects that, even though interesting,
may fall outside the main scope of our study. As an alternative to the above men-
tioned techniques simple, robust and fairly automated procedures are presented in
this chapter. The first section introduces Resampling Tests based on Classical Sea-
sonal Decomposition (CSD) while the second looks at Generalized Additive Models
(GAMs) and how they can be utilized to test for types of seasonality.

4.2 Resampling Tests for Seasonality

The first procedure presented is used to test the absence of a seasonal structure
against the alternative of a stable seasonal cycle, the second the presence of a stable

seasonal cycle against the alternative of a trending one and the third the absence of

90
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a seasonal structure against the presence of a trending one.

4.2.1 Non Seasonal vs Seasonal

This testing procedure is beneficial when one needs to test the existence of a stable
seasonal pattern in the examined time series. The starting hypothesis is that of no
seasonal pattern (Hy : Non Seasonal) with the alternative hypothesis of a stable one
(H, : Stable Seasonal). Thus, one should be cautious when applying this method to
a series that is suspected of having a trending seasonal pattern as this test may fail
to indicate it. A series with a highly trending seasonal cycle that is buried in noise
may in fact be deemed “non seasonal” using this testing algorithm. For those series,
a different test, one between no seasonal pattern and a trending one, might be more

appropriate and follows.

The procedure starts by employing an additive approach, assumes no seasonal pat-
tern exists, and thus, a trend component, 7}, is extracted from the data, { X;}, using a
(centred, if necessary) moving average of order s, MA(s), where s is the hypothetical
periodicity:

Xi=T,+ Ry (4.1)

Stable seasonal indices are evaluated by averaging R; across the years for each season

and then standardizing them. Thus:

Rt:St‘i‘R:

The sum of the squared residuals, R} is saved, SSR = ZR;‘Q.
t

The residuals, { R}, are randomized to create the series { R;; }. Then seasonal indices,
S, are evaluated from R;. The sum of the squared residuals, (SSR;) is then noted
and the procedure of randomizing the errors from the first decomposition, {R;}, is

repeated nine hundred and ninety eight times, (998), to generate the sums of squared
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residuals, SSRy, ..., SSRgg9. Thus, for k=1,...,999 we have:

Ry = Sy + Ry, (4.2)

and SSRy, = > R;7.

t
Inference is based on the fact that if the series really has a stable seasonal pattern,
then SSR will be significantly smaller than the sum of squared residuals evaluated
from the randomized residuals, R, i.e. SSRy. Hence, the lower tail of the distribution

is used and a p-value is computed as followsﬂ:

999
> I(SSR > SSR;)
_ =1
p-value = 1600 ) (4.3)
where
[(TRUE) =1 and I(FALSE)=0 (4.4)

For a given significance level, too small a p-value indicates a stable seasonal pattern
while, an acceptable p-value is evidence of non-seasonality. This algorithm offers
a simple test but without the need for any assumptions about distribution or the
serial (in)dependence of the data making it robust and useful in practical time series

analysis.

One should note, however, that using MAs means that if we test a non seasonal
series we may find it seasonal as the MAs can induce seasonality to a non seasonal
series during trend extraction. It may, thus, be better to use a different smoothing
technique to estimate the trend. In a later chapter we will modify this algorithm to

use Friedman’s super-smoother which is described later.

LA further test on whether the seasonality is stable or not, once its existence has been verified,
will be conducted.
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4.2.2 Stable Seasonal vs Trending Seasonal

Using the previous algorithm one can verify the existence of seasonality, but only
in the form of a stable seasonal pattern. When seasonality is clearly present one
wants to test whether that pattern is truly stable and not trending. In this case,
the starting hypothesis is that of a stable seasonal pattern (Hy : Stable Seasonality)
with the alternative hypothesis of a trending one (H 4 : Trending Seasonality).

It becomes crucial to distinguish between the trend in the series and any trend in the
seasonal pattern, as over-smoothing the series will underestimate the existing trend,
while if one allows the trend to pick up too much of the variation in the series it could
actually extract some of the seasonality in it, and even pick up noise. The latter may
not seem important if the purpose of our analysis is to forecast, since the variation
may still be modelled correctly (though not by the seasonal component) and thus,
the forecasts could be successful. However, since the purpose of this study is to
understand and describe the behaviour of the series and the underlying dynamics in
it, it is very important to correctly recognize and distinguish between the long term

trend and any trend in the seasonals.

Using a stable CSD procedure, a stable seasonal pattern and a trend component are
extracted from the data. This stable CSD is performed using a MA(s) where s is
the periodicity of the series, X, to extract a first trend, T}, and produce the first
de-trended series, Detr;:

Detr} = X, — T} (4.5)

Then the first seasonals, S}, k = 1,..., s, are estimated in the usual way. These are
then repeated to create the series of first seasonals, S}, of equal length to the starting
time series, X;. This in turn is subtracted from the data to produce a deseasonalized
series, Des):

Des; = X; — S}. (4.6)

A MA(s) is again employed to smooth the de-seasonalized series, Des;, and yield a
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second trend, T?, and thus, a second de-trended series, Detr?:

Detr; = X, — T7. (4.7)

We now generate a second set of seasonals, S7, k = 1,. .., s which form a second /final
time series of seasonals, S?. The overall mean of the second seasonals is added to

the second trend to form the final trend, T}

X, =T+ S+ R, (4.8)

The values in each season of the residuals, {R;}, from this decomposition are sepa-
rately smoothed across the years to evaluate trending seasonals, S;. Then we remove

these trending seasonals from the series to generate residuals, Ry,

R, =S;+R;. (4.9)

The smoother in this case is Friedman’s super-smoother, a variable span scatter-
plot smoother. Friedman’s super-smoother is a running lines smoother that chooses
between three different spans for the lines. The running lines smoothers are sym-
metric, using k data points for each predicted value, k/2 data points on each side,
with values of k as 0.5%n, 0.2%n and 0.05 % n, where n is the number of data points
in the time series. Then, by cross-validation for each prediction, the best of the
three fitted smoothers is chosen. Finally, the best spans are smoothed by a running
lines smoother and the final prediction is chosen by linear interpolation (Friedman)
1984)).

The above smoother was selected as the most appropriate from others available in
literature because it uses cross-validation to choose from different spans, making it
automatic, more robust and more reliable to extract the present trending seasonals

whilst not over-smoothing the data.
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The sum of the squared residuals is saved, SSR. The residuals, R;, are now random-

ized to create the series {R;;}. Then the super-smoother is again used on the {R;;}

series for each season across the years to extract a trending seasonal pattern, S,
*

and generate residuals, I7};:

Rtl - S:l + R:l

The sum of the squared residuals (SSR;) from this decomposition is then noted and
the procedure of randomizing the {R;} series, from which the trending seasonals are
extracted, is repeated nine hundred and ninety eight times to generate the sums of

squared residuals, SSR1, ..., SSRgg9, which are saved, as before.

If the series does not truly have trending seasonality then applying this procedure
to the randomized data should be essentially the same as applying it to the original
data, whereas if the series does exhibit trending seasonality then the application
to the original data will yield a significantly better fit as measured by the sum of

squared residuals.

Thus, the lower tail of the distribution is used for inference and the p-value is as in
(4.3). Too small a p-value is taken to indicate trending seasonality at the appropriate

level, whereas an acceptable p-value indicates stable seasonality.

As mentioned in the previous chapter, there may be different types of changing
seasonals. A sensitivity analysis of the above procedure will follow later. Finally
we recall that the definition of a trending seasonal pattern is that the seasonals are
systematically shifted in time, while a seasonal pattern that is stable or fluctuating

in time is considered a stable seasonal pattern, i.e. regardless of other changes.

4.2.3 Non Seasonal vs Trending Seasonal

In this section we discuss a test between the starting hypothesis of no seasonal pattern
(Hy : Non Seasonal) and the alternative hypothesis of a trending seasonal pattern

(Ha : Trending Seasonality). This testing procedure is similar to the two already
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mentioned with the obvious difference that the non seasonal decomposition, (only
a trend is extracted) employed in the first test is used on the data to generate the

residuals that will now be used in exactly the same way as in the second test.

Under the null hypothesis of no seasonality present, a trend, T}, is extracted, using
a MA(s), from the data, {X;}, where s is again the putative periodicity, as in (4.1)).
The residuals, Ry, from this non seasonal decomposition are then smoothed, each
season separately, as in . Repeated randomisation of the residuals, as before,

allows us to compute appropriate residual sums of squares and perform our test.

When the series does not really have trending seasonality applying this method to
the randomized data is the same as applying it to the original data. If the series,
however, does exhibit trends in the seasonals then the fit to the original data will be
significantly better than the randomized ones. Therefore, inference uses the lower

tail of the distribution with p-value from equation (4.3)).

This testing procedure should be valuable if we wish to examine the behaviour of a
time series buried in noise, i.e. the signal of the trending seasonal pattern is too small

or too trending to be detected as a stable one using the first testing procedure.

4.2.4 Applications

The above Resampling tests are used to draw conclusions on the seasonality of the
three example time series. The p-values from the tests for the House, Unemployment
and Kola time series are presented in Table [1.1]

Table 4.1: Resampling Results

NS vs SS | SS vs TS | (NS vs TS)
House Data Set 0 0.317 0.134
Unemployment Data Set 0 0 0.027
Kola Data Set 0 0.994 0.738

The House time series clearly has stable seasonality with a zero p-value for the
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Non Seasonal vs. Seasonal test and a non significant p-value of 0.317 for the Stable
Seasonal vs. Trending Seasonal test. Similarly, the Unemployment time series clearly
exhibits trending seasonality with both p-values equal to zero for the same tests.
Finally, the results for the Kola data indicate a stable seasonal pattern with zero
and 0.994 p-values. Note that the latter p-value is close to 1 as the evaluated stable
seasonal model gives a very good fit, meaning that the SSR of the first CSD has a
low value so that the subsequent decompositions do not generate smaller SSRs. In
practice, since they all tested seasonal, the Non Seasonal vs Trending Seasonal test
would not be applied; nevertheless, the Unemployment series is identified as having

a trending seasonal even against the alternative of no seasonality.

4.2.5 Discussion

The above tests do not require any assumptions of a specific distribution or of serial
(in)dependence of the time series examined, making them very robust. Consequently
they are easy to implement and have a more reliable interpretation than other more
elaborate techniques that focus on many different aspects of seasonality. The main
purpose of this thesis is to analyze and examine biological time series that are serially
correlated and exhibit different types of seasonality that need to be identified and
explored, so the above tests provide a good basis. Along with the GAM testing
procedures that follow, these are the main tools used in the data analysis of these

biological time series in the following chapters.

4.3 Introduction to Generalized Additive Mod-

els

Generalized Additive Models (GAMs) are often used in literature to build models of
biological data (Venables & Dichmont, [2004)) (Guisan et al. 2002) (Barry & Welsh|
2002)). In this thesis we use GAMs to test for different types of seasonality. We start
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with a brief explanation of GAM theory and then we construct three different types
of model, under assumptions about seasonality. Examples are used to illustrate the
framework described. The description that follows is based on Wood (2006)).

We start with a linear model:

Xi=a+by+e, i=1,2,...,n (4.10)

where X1, ..., X, are independent r.v.s following the Normal distribution with mean
i =a+by; (1 =1,2,...,n) and variance o>. The vy, ...,y, are the explanatory
variables of the model and ¢4, ..., ¢, are the errors. The errors are assumed to be iid

with €; ~ N(0,0?). Parameters a and b are unknown and need to be estimated.

The degrees of freedom (d.f.) for the above linear model are (n — 2) since it involves
two parameters, a and b. In general, if a model with p parameters is being fitted to

n data points then its residual d.f. are (n — p).

Such a more general model is more easily written in matrix form, using that X; ~
N(ﬂ’h 02)7 as:
EX)=p=yp (4.11)

where E(.) denotes expectation, X = (Xi,...,X,,)T, is the response variable, p =

(1, -+, pn)T is the mean vector, 3 = (B4,...,3,)", a vector of unknown parameters
and
Iy yi2 o0 Ypar
T yor yo2 .0 yop
y= . . . .
L Y1 Yn2 oo Ynpa

is a matrix of the explanatory variables and is known as the model matrix. The

linear component of the model is given by y(3.

Two approaches are commonly used for estimation; OLS and ML estimation. In
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OLS we minimise, with respect to (w.r.t.) 8, the mean squared error (MSE):
1 T
~(x—yB)(x~yB) (4.12)

where x = (z1,...,2,)" is a realisation of X. Hence, the estimated parameter values

minimise the errors in our model in this sense.

The ML estimation is based on maximising the likelihood function of X w.r.t. 3.
Thus, we find the parameter estimates that maximise the likelihood of the data
given the chosen model. Let X; have a probability (density or mass) function f(z;)
then the Likelihood (L) is defined as:

L) = ][ (). (4.13)

where L(3) implies that for given values of x; the likelihood function can be seen as

a function of the unknown parameters.

Maximisation of the log-likelihood, denoted by [, yields the same results and is often

computationally more efficient,
[(B) = log (H f(%)) = log(f(z:)) =) L (4.14)
Pl : :

The MLE and the OLS estimator of 3 are the same for the linear model when the

errors are normal and it is given by:

A

B= "y 'y'x (4.15)

provided that (y’y) is invertible. The matrix H = y(y’y) 'y’ is called the ‘hat

matrix’ and the elements of its main diagonal, H;; will appear again later.
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Generalized Linear Models (GLMs) allow for a response distribution other than Nor-
mal and for a degree of non-linearity in the model structure. The independent r.v.s

X; now follow an exponential familyﬁ distribution with p.d.f.:

z6 — b(0)
a(7)

(@) = exp { + T)} (4.16)

where «(.),b(.) and ¢(.) are arbitrary functions, 6 is the canonical parameter and
7 is the scale (dispersion) parameter. For more information on exponential family

properties see Dobson| (2002)).

The general structure of a GLM is:

9(p) =ypB (4.17)

where, since X; follows an exponential family distribution, E(X) = p = b'(0)

and

1"

Var(X) =b (8)a(r). (4.18)

Assuming «(7) can be written as «(7) = 7/w, where w is a known constant, we can

write the variance of X in relation to p as:

Var(X) = V(u)7 (4.19)

where V/(.) a function such that V(u) = b"(f)/w. The relationship between the
linear predictor and the mean p is given by g, a monotonic, differentiable
‘link function’, while 3 is a vector of unknown parameters (Dobson, [2002). Due to
this generalization the model fitting has to be iterative and large sample limiting
results are needed for inference. The estimation and inference are based on ML

estimation but now this requires an iterative LS approach.

2Examples include the Poisson, the Binomial, the Normal and the Gamma distributions.
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The log-likelihood function for each of the observed x;’s is:

l; ={z:0 —b(0)} Ja(T) + e(x;, T) (4.20)

and for all the observed z;’s :

n n

| = Z I, = Z wif/a(r) = Y _b(6:)/a(n) + Y clwi,m) (4.21)

i=1 i=1

The above model’s terms are parametric and thus many plausible non-parametric
(n.p.) functions are excluded from the model fit. Also we have to decide the appro-
priate form of the model while it would be easier, yet computationally more costly,
to let the modelling approach choose the appropriate form of the model. GAMs

provide a framework for n.p. components in GLMs.

“A generalized additive model is a generalized linear model with a linear predictor
involving a sum of smooth functions of covariates.” state Hastie & Tibshirani (1990).

So a general structure is:

g(p) = yB + filyr) + folye) + f3(ys) + - + fn(Um) (4.22)

where the f; are smooth, twice differentiable n.p. functions of the covariates, y;, the
other parts are as defined earlier. Thus, the relationship between the mean of the
response variable and the covariates is specified in terms of smooth functions and
not only parametric terms. The range of potential fits to the data is much larger

than the parametric approach (Faraway, |20006).

INFERENCE

To estimate fi, fa,..., fm one needs to represent them in such a way that
becomes a linear model. This is achieved by choosing a basis for each one of them,
defining the space of functions of which each of the fi, fo,..., f, is an element.

The basis selection amounts to choosing some basis functions that are treated as
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completely known: if bj;(y) is a set of such basis functions for f;(y), i=1,2,...,q,,

then f;(y) can be represented as:
9
Fi(y) =D Bibsi(y), (4.23)
i=1

for some values of the unknown parameters, 3;;. The f; are smooth n.p. functions

of the covariates y;.

So, for example, one could use a cubic spline basis. A cubic spline is a curve that
consists of sections of cubic polynomials joined together at points, known as knots,
in such a way that they are continuous in value, as well as the first and second
derivatives. Generally, a spline is a polynomial in each interval between two knots
and a piecewise polynomial overall. A disadvantage of a single polynomial would be
that it does not perform well over the whole domain but only locally. Spline bases are
not faced with the same problem, but need more than n parameters to be estimated
for a fit to n data points. This computational cost can be addressed using regression
splines. For regression splines the smoothing problem is solved for a small subset of
the data and the implied basis is then used for model construction of the whole data
set. For the above bases one has to choose the knot locations. The knots are often
evenly spaced through the range of the data but specific knots can be chosen (Wood,
2003)).

Choosing basis functions can restrict the model as other ones might be better suited.
Using thin plate regression splines (t.p.r.s.) one does not have to choose basis func-
tions and knot locations as these emerge from the minimization of the constructed
objective function, see Wood (2003)). A t.p.r.s. basis has the benefits of thin-plate
splines but requires a smaller number of parameters to be estimated. Instead of
choosing number of knots and knot locations in t.p.r.s. one has only to choose the
basis dimension, later when we refer to the number of knots for a t.p.r.s. we mean
the value of the basis dimension. Another benefit from using t.p.r.s. is that con-

trary to the above bases, t.p.r.s. can successfully represent smooths of more than one
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variable.

Using OLS or ML to select f; would result, almost certainly, in a very wiggly line
that passes through most points of the data. Therefore, we need a way to control
the smoothness of these functions (splines). One way would be to repeatedly change
the basis dimension by altering the number of knotsE| but that could lead to various
issues with uneven knot spacing and/or dependence on the location of the knots.
Furthermore, if a large number of basis functions is used to approximate the real
underlying function, the model will probably overfit while if the basis dimension is
kept small it will be too restricted to approximate the truth (Wood & Augustin)
2002). An alternative is to keep the dimension of the basis fixed at a sufficiently
large value and add a ‘wiggliness’ penalty to the log-likelihood to be maximized or
to the objective function of the OLS.

A common way to measure the wiggliness of a function is to use its second derivative.
This gives the rate of change of the slope, known as curvature, of that function. For
example, [Silverman & Green| (1993)) state that for a given set of increasing points
{zi,y; i = 1,...,n} from all the continuous functions on [y, y,], with continu-
ous first derivatives, the smoothest function can be defined as the one that mini-

mizes:

y’n
/ f(y)*dy. (4.24)
Y1
q
Assuming that f has a basis expansion f(y) = Zﬁibi(y) we can write

Yn
/ £ (v)*dy = BTSB (4.25)

3i.e. with backward selection we would start with many knots and then drop knots sequentially.
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since £ (y) = B z(y), where z(y) = b, (y) and thus,

/ " )y = /ynﬁTZ(y)zT(y)ﬁdy:ﬁTSB, S = / " ay)e ()dy  (4.26)

1

GAMs maximize a penalized log-likelihood which can be used as a simple generali-
sation of the penalized OLS:

(= )" (= )+ 3 A7) (4.27)

where J; is a function measuring the wiggliness of f; and /\jﬁ is the smoothing
parameter relating to f;. Smoothing parameters are used to balance the minimization
of the badness of the fit, measured by the first part, and the model wiggliness, as
measured by the second part (Wood, |2003)).

Thus, instead of maximizing the log-likelihood, [(3) a penalized log-likelihood, I,(3)
is maximized, using Penalized Iterative Re-weighted Least Squares (P-IRLS) :

L(B) = U(B) — 5 3 \B"S,B (4.28)

where 3 is a vector of the unknown parameters of the corresponding penalized GLM
once the bases are chosen and the term ,BTSJ- B is used to measure the wiggliness of
the j™" smooth function with S; a matrix of known coefﬁcient. The \; are smoothing
parameters, controlling the trade-off between goodness of fit of the model and model

smoothness.

For known A; the [, can be maximized to find B but since the Aj need themselves
to be estimated iterative steps for convergence are employed, see Wood, (2006). The

automatic methods of choosing smoothing parameters are explained later in this

4A spline whose smoothness is controlled by smoothing parameters is called a ‘smoothing spline’.
®The majority of wigliness measures, e.g. [ f; (x)2dx, can be written in the form ,BTSJﬂ.
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section.

In GAMs the d.f. cannot be defined as in the linear model case. To measure the
flexibility of the model Wood defines effective d.f. as the tracdf| of the hat matrix
of the GAM, tr(H). Thus, the residual d.f. of the GAM in can be written as
(n — tr(H)), where the hat matrix, H, is:

H=y(y'y+AS)y", (4.29)

where S and A\ as above.

When the link function is the identity function and the errors are normal, then

2

analogous to the linear parametric model case the residual variance, o<, can be

estimated by the residual sum of squares divided by the residual d.f.:

5% = (Z(ml — ,121»)2) / (n—tr(H)) (4.30)
i=1
where H is the influence (hat) matrix such that g(ft) = Ha. The above estimator
for the additive model is unbiased (see Wood, (2006))). From equations (4.19) and
(4.30)), the scale parameter for the GAM can be estimated by the Pearson-type scale

estimator,

T = (Z V(i) (s — ﬂi)g) /(n—tr(H)). (4.31)

In the package “mgcv”, created by Simon Wood, available in R, the modeller can
choose the number of knots to be used for basis construction, but this is only setting
an upper bound on the flexibility of a term. The smoothing parameters, A;, control
the effective d.f. and this is part of model specification. Therefore, the actual fit
retains some insensitivity to the chosen basis dimension as long as it is not set

restrictively low. The only difference between two sufficiently large basis dimensions

6Trace is defined as the sum of the elements on the main diagonal of a square matrix.
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is that a function space with the larger one will contain more functions with the

estimated effective d.f. than the smaller one.
Un-Biased Risk Estimator

The smoothing parameters A, that control the level of smoothing, are needed for the
estimation of the model coefficients and can be estimated in two ways. When the
scale parameter is known, then attempting to minimize the expected MSE leads to
minimizing an estimate of it given by the Un-Biased Risk Estimator (UBRE) which
is also closely related to Mallow’s C]ﬂ :

Vu(A) = (x — Hx)" (x — Hx) /n — 0% + 2tr(H)o? /n (4.32)

which depends on the smoothing parameters through H. Nevertheless this is inap-

propriate when the scale parameter has to be estimated.
Cross Validation

When the scale parameter is unknown, minimizing the mean square prediction error
(P) is preferred. P is the average squared error in predicting a new observation x
using the fitted model and can be written as:

triH) (4.33)

P = 0% + MSE, where MSE =
n

by substituting (4.30]) into (4.32). Since P is directly dependent on o2, any criteria
based on P will resist over-smoothing much more than criteria based on MSE alone,

as the o2 estimate would then be inflated.

To estimate P, cross validation is used. Excluding one datum, x;, from the model
fitting process implies that the model fitted to the remaining data is independent of
the omitted x;. Thus, the squared error in predicting z; can be estimated, and, by

omitting all data in turn we get the ordinary cross validation (OCV) score estimate

Cp=(x— Hx)" (x — Hx) /0% — n + 2tr(H).
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of P:

v, = %i <x — ﬂl"")Q (4.34)

where /li_il denotes the prediction of E(x;) obtained from the model fitted without
observation ;. While the right hand side (r.h.s.) of (4.34) requires n model fits, it
can be shown, see [ Wood, (2006), that V, can be computed from one fit of the original

model using the following formula:

2

V, = 2; % (4.35)

S|

Nevertheless, OCV is hard to compute for a GAM where there are several smoothing
parameters. In practice, the weights 1 — H;;, are commonly replaced by the mean
weight, tr(I — H)/n. Then the corresponding OCV score of (4.34)) can be re-written

as:
n
n

V= (@) > (i — i), (4.36)

[n—tr ,
i=1

which is known as the Generalized Cross Validation (GCV) score. The above equa-
tion can be modified to include a parameter ~, as in (4.37]), which can be used to
inflate the model d.f. in the GCV score and result in smoother fits (Kim & Gul
2004). For the traditional GCV score, as in equation ,this parameter should

be set to 1 while values greater than 1 favour smoother fits.

nZ(% — fii)”
T 0

Simulation results by |[Kim & Gul (2004) suggest a value of 1.4 for . This value gives

smooth fits with good performance.

The estimation of the smoothing parameters, A, is done using iterative minimization
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of the GCV score or UBRE score, see |Wood| (2006]). Once a basis is chosen for a
GAM this is transformed in a linear model or a GLM with one or more associated
penalties. Hence the GAM is fitted, once a basis and wiggliness penalty are chosen,

by penalized likelihood maximization which is achieved using Penalized Iterative
Re-weighted Least Squares (P-IRLS).

In the “mgev” package, estimation of a GAM consists of two iterative loops. The
outer loop optimizes a smoothness selection score minimising it, w.r.t. the parame-
ters, using Newton’s method or other non-linear optimisation algorithm. Thus, the
smoothing parameters are estimated. Once the outer loop converges, the inner loop
uses P-IRLS to estimate the model given the smoothing parameters. This package
allows us to choose the maximum number of iterations per loop and the optimisa-
tion algorithm adopted in the outer loop. We are using Newton’s method in several
dimensions, backed up by steepest descent to iteratively adjust the smoothing pa-

rameters for each penalty.

4.3.1 Testing with GAMs

The function ‘gam’ from the “mgev” package in R is used to build GAMs. We
develop three different GAMs to allow us to test directly for our different forms of
seasonality. The first model is non seasonal and includes only a smooth function of
time to incorporate the long term trend in the series. The second one models stable
seasonality using factors, and a trend using a smooth function over time, as before.
Finally, our third model includes, in addition, trending seasonality, in the form of
smooth functions of time per season used as a factor. Hence, the models are nested
making formal comparison easier. Considering the nature and form of the time series

examined an appropriate exponential family distribution is chosen.
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Constructing hypotheses models:

Non Seasonal Model, Model-NS contains only a smooth function of time.

g(ue) = fi(yr) = s(t), t:time (4.38)

Stable Seasonal Model, Model-SS contains a smooth function of time and incorporates

factors for the seasons.

g(pe) = fi(yie) + fac = s(t) +fac, t:time, fac:1,2,...,s (4.39)

Trending Seasonal Model, Model-TS contains a smooth function of time, factors for

seasons and smooth functions of time per season as factor.

() = fi(yre) + fac + fo(yar) + - - + fs(yse) = s(t) + fac + s(t, by = ff),

1, j=i—1[i/j]

_ ,i=1,...,nand j=1,...,s.
0, otherwise

t:time, fac:1,2,...,s, f;; = {
(4.40)

In the above equation ff is an n x s matrix, where n is the length of the data and
s the suspected periodicity. The (i,7) element in ff is equal to 1 when ¢ is the jth

season of the current year.

Thin plate regression splines (TPRS) are used for the trend and the trending sea-

sonals while seasonal factors are used for the stable seasonals.

We consider two ways to test between models. When the scale parameter, o2, is

unknown we use F-ratio tests to check whether the increase in the residual sum of
squares from dropping the extra term(s) is significant. When the scale parameter is
known we use the scaled deviances of the two models to construct a log-likelihood
ratio statistic. The scaled deviance, D* of a model is the deviance, D divided by
the scale parameter, 7. In the following examples the scale parameter is unknown

and thus, ANOVA is used between non-seasonal versus seasonal and stable seasonal
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versus trending seasonal models.

We use the following criteria to evaluate and compare the model fits:

1)Akaike’s Information Criterion (AIC):

— 20+ 2p (4.41)

2) (Schwartz) Bayesian Information Criterion

— 2l + pln(n) (4.42)

where [ the log-likelihood, p the number of parameters and n the length of the data.
Furthermore, the GCV score can be used for comparison between nested models with
the lowest score preferable. Since we are comparing nested models we are using the

GCV score as another criterion.

To avoid over-fitting and to favour smoother fits we reduce the model d.f. thus
inflating the GCV score using v = 1.4 instead of the default value 1 as a constant
multiplier in the construction of the model in equation (Kim & Gul 2004)). This
is done because the nature of the models we are examining calls for smooth fitted
terms for all GAMs fitted. The default size of basis dimension, k& = 10, is used for

all model terms.

Finally, one has to check the validity of the GAMs in question. We look at the
residuals of these models creating diagnostic plots. For this purpose standardised
deviance residuals are created, cZSt. To check the normality assumption we examine
a QQ (quantile-quantile) plot of these residuals and their histogram. To check the
constant variance assumption of the response variable we plot the residuals against

the response while a plot of the residuals themselves would reveal any remaining

gdstd,i = ((fL - c;)/ (6’ (1- H“)), where H;; are the elements on the leading diagonal of the

hat matrix, H, and d the average of the deviance residuals d;.
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pattern that was not incorporated in the model.

4.3.2 Applications

We demonstrate the above described procedure using the House, Unemployment
and Kola data sets from previous chapters. For these examples the Gaussian family
with the identity link function are chosen. Criteria are reported along with plots to
support the choice of seasonality for each series. For the first series diagnostic plots
for all fitted models are discussed while later only the ones from the chosen model

are presented.

House Data

The GCV score can be used for comparison between nested models. The smallest
score, in this case the SS model, is preferred, which corresponds to the results of our
Resampling test, Table [4.1]

GCYV Score: Non-Seas: 39378.33, Stable: 5129.542 & Trending: 45951.786

Table 4.2: House Data ANOVA

Resid. Df | Resid. Dev | Df | Deviance F Pr(>F)
NS | 124.047 4358058
SS | 111.295 412375 12.752 | 3945682 | 83.508 | < 2.2e-16
TS 97.065 311305.536 | 14.23 | 101069.75 | 2.215 0.012

The results from the ANOVA between the models are displayed in Table 1.2 The
first row of the table refers to the NS model while the second one gives the results of
the ANOVA between the NS and the SS model and the third one the results between
the SS and TS GAMs. These indicate that the series is seasonal with a trending
seasonal pattern, conflicting with GCV and Resampling.

Figure shows the two most likely fits for the House data; the SS model fit is
depicted in red while the TS in blue. The trend and the stable seasonals from the

SS model are plotted. The stable seasonal pattern is very smooth, considering that
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Figure 4.1: The upper left plot shows the House data with the trend from the stable GAM in
red. The upper right plot shows the stable seasonals estimated from the stable
GAM while in the lower plot the House data are plotted as dots with the fits
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from the stable (red) and trending (blue) GAMs.

twelve factors were estimated.

The smooth functions fitted by the TS model are plotted in Figure . Their
confidence intervals are given by the dotted lines. For the first eleven months the
confidence intervals (C.I) of the smooths include the zero value for all the x-axis.
December, however, shows a significant deviation from zero, which agrees with our

previous thoughts.

The AIC criterion, Table identifies, like the ANOVA and possibly for the same

reasons, the TS as the best model. BIC is more conservative and points to a stable

pattern.

Table 4.3: House Data AIC & BIC:

Non-Seasonal | Stable Seasonal | Trending Seasonal
df 8.953 21.705 35.935
AIC 1765.93 1480.198 1471.545
BIC 1791.739 1542.768 1575.138
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Figure 4.2: The (twelve) trending seasonals from the TS model of the House data with
confidence intervals (dotted lines), by row from top left.

It seems unlikely that the House data have a systematically trending seasonal pattern,
since only the Decembers display apparent change in the sense of fluctuations in size.
This change could be due to unusually cold Decembers or to more people going away
on holidays. In other words, it may simply be a fluctuation rather than systematic
change in December values. The GAMs are clearly sensitive to any kind of change in
the seasonals. For example, the change in the size of the seasonals in the December
months in the series may be the reason for this result. Since we are only interested in
systematic shifts and not random changes the House series is found to have a stable

seasonal pattern.

Figures: and show the diagnostic plots from the NS and TS models. The
NS QQ plot and histogram show a violation in the Gaussian assumption while there
is some remaining pattern in the residuals. Even though this is far from satisfactory
it is to be expected since this series is suspected and tested positive for presence of
seasonality. The TS model’s diagnostic plots are better. There is a slight deviation
from normality shown in the QQ plot and in the histogram of the residuals. The

other plots, however, show no problems so the fit was found acceptable.
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Figure 4.3: Residuals plots from the NS model for the House data. From the upper left
corner clockwise: residual QQ plot, residuals plotted against the response, the
residuals themselves and the residuals’ histogram.
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Figure 4.4: Diagnostic plots for the TS model for the House data.
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Figure 4.5: The diagnostic plots for the SS GAM fitted to the House data.

In Figure we see some diagnostic plots for the chosen GAM with the stable sea-
sonal pattern. The QQ plot shows that there is no serious violation of the Gaussian
assumption which is further verified by the histogram, which is not ideal but sat-
isfactory. The plot of the residuals against the response does not show a violation
of the constant variance assumption. Finally, there are no patterns apparent in the

plot of the residuals.

Unemployment Data

The GCV score suggests the T'S model as most suitable for the Unemployment data,
as with Resampling, Table [4.1]
GCV Score: Non-Seas: 0.104, Stable: 0.049 & Trending: 0.046

Table 4.4: Unemployment Data ANOVA

Resid. Df | Resid. Dev | Df | Deviance F Pr(>F)
NS | 121.857 11.102
SS | 110.306 3.877 11.551 7.225 17.796 | < 2.2e-16
TS | 96.287 2.397 14.019 1.48 4.24 | < 2.2¢-16
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Table 4.5: Unemployment Data AIC & BIC:

Non-Seasonal | Stable Seasonal | Trending Seasonal
df 10.143 21.694 35.713
AIC 68.725 -45.992 -80.941
BIC 97.965 16.548 22.013

The ANOVA, Table [£.4] between the models indicate that the series is seasonal with

a trending seasonal pattern.
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Figure 4.6: The Unemployment data with the trend from the SS model in red, the stable
seasonals and the data as dots with stable (red) and trending (blue) GAM fits
are depicted clockwise from upper left.

The SS and TS fits in Figure (4.6]) indicate that the TS model is better. Also, in the

same Figure, the terms of the SS model are plotted.

The twelve trending seasonals for the Unemployment data are shown in Figure (4.7)).
February, July and August seem to deviate from a straight line with their C.I. ex-

cluding zero for some points.

The BIC, Table 4.5] conservatively points to a stable seasonal pattern while the AIC
recognizes a trending one. The BIC seems to favour smoother models while the AIC

more closely fitted ones.
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Figure 4.7: The smooth functions of the TS model of the Unemployment data, corresponding
to the twelve months.
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Figure 4.8: Diagnostic plots for the TS model of the Unemployment data. Clockwise from
top left: a QQ plot of the residuals, the residuals plotted against the response,
the residuals plot and histogram.
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Figure 4.9: Diagnostic plots for the TS model with a larger basis dimension, 12, of the
Unemployment data. Clockwise from top left: a QQ plot of the residuals, the
residuals plotted against the response, the residuals plot and histogram.

The residual plots for the chosen TS model in Figure show a slight deviation
from the normality assumption in the QQ plot and histogram of the residuals. This
is mainly evident in the tails of the distribution. In addition, there is some remaining
pattern in the residuals as the model does not go high enough in the peaks and low

enough in the troughs.

Trying to accommodate the remaining pattern we fitted the TS model with basis
dimension equal to 12. The checking plots in Figure , however, are not satis-
factory. The QQ plot shows a deviation from normality which is further verified by
the histogram which shows that the distribution of the residuals is left skewed. The
skewness is caused by the fact that the new model is going high in to the peaks of
the series but not low enough in to the troughs thus creating more negative residuals
than positive ones. The pattern in the residuals now is not so profound at the begin-
ning but continues the same in the middle and end of the series. Thus, since none

of our results where affected by this change, we decided that the first TS model, in
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Figure (4.8]), is more satisfactory.

Kola Data

The Kola data are deemed to have a stable pattern according to the GCV score,
which agrees with the Resampling result in Table [4.1]

GCV Score: Non-Seas: 0.691, Stable: 0.155 & Trending:0.168

Table 4.6: Kola Data ANOVA

Resid. Df | Resid. Dev | Df | Deviance F Pr(>F)
NS | 121.857 11.102
SS | 110.306 3.877 11.551 7.225 17.796 | < 2.2e-16
TS | 376.094 54.382 10.998 0.322 0.203 0.997

The ANOVA, Table [4.6] between the models further reinforces the opinion that the

series is seasonal with a stable seasonal pattern.
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Figure 4.10: The upper left plot depicts the Kola data with the trend from the SS GAM
in red. The stable seasonals and the data as dots with the stable (red) and
trending (blue) fitted GAMs, follow clockwise.

In Figure (4.10)) we see the fits of the SS and TS models and the terms of the

former. The stable seasonals look a lot like a sinewave which is expected since as a
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temperature series it should follow a smooth pattern of change. The trend reflects

the changes in the level of the series.
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Figure 4.11: The smooth trending seasonals estimated in the TS model for the Kola data.

The trending seasonals can further be examined by looking at Figure (4.11]). No

month has a slope that is significantly different from zero.

Table 4.7: Kola Data AIC & BIC:

Non-Seasonal | Stable Seasonal | Trending Seasonal
df 10.553 21.908 32.906
AIC 1001.01 381.864 401.449
BIC 1043.34 469.743 533.442

BIC and AIC, Table recognize a stable seasonal pattern. The Kola data are
temperature data so they exhibit a very well behaved stable pattern that does not
change in time in any way and thus, even the GAMs, which are sensitive to any kind

of change, do not pick up a trend in the seasonals.

Since the SS model is chosen for this series, its residual checking plots are shown in
Figure (4.12). There seem to be no violations of the assumptions but the residuals
still show a pattern in them. This is because the SS GAM, as well as the TS, fails
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Figure 4.12: Here the residual checking plots for the stable GAM of the Kola data.

to capture all the variability in the series. Thus, they do not go as high in the peaks
of the data or as low in the troughs, hence leaving some seasonality not included in
the model.

4.3.3 Discussion

The GAMs offer a simple and straightforward way to construct hypothesis about the
nature of the seasonal components in the series. The results from tests between the
constructed models are easily interpreted. However, as seen through the examples,
the GAMs are very sensitive and are quite close to performing twelve tests for unit
roots, when dealing with monthly series as the above examples, or fifty-two when
dealing with weekly series as the data sets from Stonehaven. Nevertheless, the only
assumption made in the construction of these models is a distributional one for the
response variable and thus are more robust when testing between different kinds of
seasonality. The following chapter presents a sensitivity analysis and a comparison

of the two testing methodologies discussed in this chapter. Furthermore, ways to
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control various kinds of change in the seasonals are investigated as sometimes the
presence of one change in the seasonals can interfere with the identification of a

systematic shift in time.



Chapter 5

Comparison of Methods

5.1 Comparison of Methods

In order to compare the methodologies presented in the previous chapter and to
evaluate their shortcomings and advantages a brief sensitivity analysis is conducted
and the summary of the results is given in this chapter. We create two different
seasonal patterns to correspond to the environmental series and to the densities
of the zooplankton and phytoplankton species. We then simulate different types
of changes and try to measure the ability of the Resampling and the GAMs to

distinguish between a stable and a trending seasonal pattern.

The first pattern we will examine is the seasonal pattern of the Temperature 45m
series from Stonehaven and is denoted by S,,,. This is estimated using Friedman’s
super-smoother on the de-trended series and is a sinewave with amplitude of 6.7.
The second set of seasonals, Sge,s, corresponds to the densities of the zooplankton
and phytoplankton species. In order to construct density data with zero values
we generate Negative Binomial random variables with means equal to the seasonal
pattern of the C. finmarchicus C5 series from Stonehaven as this is estimated by CSD

methods using Friedman’s super-smoother. These random variables are divided by a

123
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set volume of 200ml to generate densities. The levels of noise in the generated series
are controlled by the # parameter of the Negative Binomial distribution. Figure

shows the created patterns.
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Figure 5.1: The seasonal patterns. From the top the pattern corresponding to the envi-
ronmental data, the mean used for the Negative Binomial distribution and the
pattern corresponding to densities, derived as a random Negative Binomial vari-
able with the previous plotted mean.

We manipulate these seasonal patterns accordingly to construct different types of
seasonality as presented in section 2.2 and use the Resampling and GAMs to test the
patterns. Once the seasonals from the S.,, pattern have the appropriate behaviour
we add to them white noise of different variances. The TS GAM fitted to the
Temperature 45m series had residuals with s.d. = 0.46 giving a signal to noise ratio
of 3.35/0.46 = 7.283. Thus, we create noise with s.d. equal to 1, 0.5 and 0.25 and
then depending on how well or badly the method performs we also use noise with

s.d. equal to 2 or 0.1, respectively.

The C. finmarchicus C5 series has a mean i = 1.75 and a variance of 62 = 33.07ﬂ

Assuming the Negative Binomial distribution, the § parameter can be calculated as

162 . =17.14

Tes
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0 = [i%/(6% — ) since 62 = fi + /i2/0. This gives a value of 0.09 for 6. Therefore,
for the Sge,s pattern we use values of 0.5 and 0.03 for the 6 parameter. We note that
the variance (i.e. noise) for a Negative Binomial variable decreases as the value of
the 0 parameter increases. When the method performs badly we also use a value of
1 for the parameter while if the method performs well we also use § = 0.01. For the
rest of this chapter, we denote by S.,, and Sg.,s the patterns after the appropriate

manipulations according to the type of change examined are performed.

We should note that when creating random changes, systematic ones may be created
by chance. Since we generate 11 years of observations for the simulations, we used a
sequence of values, 1 : 11, to estimate the random occurrence of systematic changes.
Thus, we created 1000 random ordered samples without replacement from the set
of 1:11. Then the correlations between the randomly created sets and the original
ordered sequence were computed. From those, 29 correlations were found greater
in absolute value from 0.7. A histogram of them is shown in Figure 5.2, In 1000
randomly created sets 29 were found highly correlated. This in the context of this
chapter means that when we are constructing random changes there is roughly a

chance of 2.9% that a systematic one will occur.

We avoid running weekly GAMs because they are computationally intensive and
instead create monthly series for GAMs while we use weekly for the Resampling.
Both weekly and monthly series run for eleven years and the monthly ones are simply
monthly aggregates of the weekly series, assigning four weeks to each month with 13

months within a year.

For each type of seasonality simulated we create 100 random instances that are
examined by the two methods. For random changes in the S,,, pattern we create
100 random changes and add to them randomly generated noise while for systematic
ones, where only one pattern can be created, random instances are created by adding
100 different random noise sequences. Random instances for the Sy, are easily

created as we generate 100 different sets of observations from a Negative Binomial

20.199 with 62

res
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Figure 5.2: The computed correlations between 1 : 11 and the 1000 randomised ordered sets
of them. The dotted lines mark 0.7 and —0.7.

distribution. Furthermore, while for systematic changes the change in each year is
relative to the previous one, e.g. when shifted earlier in time this is relative to the
previous year, for random changes the change is always relative to the starting year,
e.g. shifting randomly in time by an equal amount each year having as starting point

the time in the first year.

For model choice for the GAMs we note the GCV, AIC and BIC scores and the
ANOVA between the SS and TS models. All Resampling tests below are between
SS and TS. For the S, created series we use the logarithm of the series plus 1 for
the Resampling and a log-Normal distribution for the GAMs while the original series

and a Normal distribution are used for the S,,, pattern.

5.1.1 Stable Seasonality

We start by examining the ability of the Resampling and the GAMs to identify

a stable seasonal pattern that exhibits no changes. Thus, we keep the patterns
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unchanged and start by testing with Resampling between SS and TS. Tables are
produced to summarise the percentage of correct results for each series. A correct

result in this case is stable seasonality.

In Table we see that the Resampling identifies the stable seasonality every time
when the added noise has s.d.< 1 and more than 90% of the time with s.d.= 2 for
the S, pattern.

Table 5.1: Stable Seasonality - S¢,, Resampling Results

Seasonals Noise s.d.
2 1 0.5 0.25
Senv 96% | 100% | 100% | 100%

Table shows the Resampling results for the Sy, pattern. Similar to the results
for the S,, one, the Resampling performed on the Sy.,s pattern recognises stable

seasonality all the time, even when 6 = 0.01.

Table 5.2: Stable Seasonality - Sgens Resampling Results

Seasonals Theta
0.5 0.03 | 0.01
Sdens 100% | 100% | 100%

The GAMs do well in identifying a SS pattern in both occasions, Tables [5.3 and
Therefore, we also use noise with s.d. equal to 2 for the S,,, pattern and 8 = 0.01
for the Syens. The GAM results for the S.,, pattern improve as the size of the noise

is reduced and overall are satisfactory.

For the Sgens pattern the GAM results are also very good, see Table[5.4] As the value

of the 6 parameter increases the percentage of correct results increases, too.



128

Table 5.3: Stable Seasonality - Se, GAMs Results

Criterion
Seasonals | Noise s.d. | GCV | ANOVA | AIC | BIC
2 100% 7% 76% | 100%
S 1 100% 85% 82% | 100%
0.5 100% 93% 90% | 100%
0.25 100% | 100% | 100% | 100%

Table 5.4: Stable Seasonality - Sgens GAMs Results

Criterion
Seasonals | Theta | GCV | ANOVA | AIC | BIC
1 100% 78% 81% | 100%
S 0.5 97% 75% 79% | 99%
0.03 | 93% 1% 7% | 96%
0.01 | 90% 67% 73% | 95%
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5.1.2 Systematic Time Shift

Now we examine the ability of the resampling and the GAMs to identify a systematic
shift in time as trending seasonality. To simulate small systematic changes in time
we fit a spline to the seasonals and then predict 520 points within a year. Thus, we
can now move the patterns by tenths of a week per year. We examine the situations
in which the pattern moves by one, two, three or four tenths of a week per year. For
our analysis with GAMs we use monthly data with the equivalent monthly shifts,
e.g. 1/40 of a month per year. Then we evaluate the ability of the two methods to
identify the trending patterns.

Systematic Time Shift by 1/10 of a week per year

We simulate a systematic shift in time for the patterns, shifting them by one tenth
of a week earlier every year. In table [5.5 we see the result from the Resampling for
the S.,, created series. The pattern is correctly identified as trending only about a
quarter of the time when the noise has a s.d. equal to 0.5. When the noise is reduced
further (s.d. = 0.25 and 0.1) the Resampling identifies the time shift 80% and 100%
of the time, respectively. This shift is very small and therefore we did not expect
it to be easily detectable after we add noise to the pattern. Nonetheless, there is
an improvement as the size of the noise is reduced and when the noise is small the

Resampling test always identifies the pattern as trending.

Table 5.5: Systematic Time Shift by 1/10 of a week - S, Resampling Results

Seasonals Noise s.d.
1 0.5 | 0.25 0.1
Senv 10% | 24% | 80% | 100%

Table [5.6] summarises the results for the Sy, created series. The Resampling does
not perform very well for the Sy, with correct results less than 55% of the time

for all attempted 6 values.
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Seasonals Theta
1 0.5 | 0.03
Sdens 52% | 17% | 3%

Table 5.6: Systematic Time Shift by 1/10 of a week - Sgens Resampling Results

The GAM results for the S,,, are presented in Table 5.7 It is interesting that for
the S.,, pattern the ANOVA and the AIC, when the size of the noise is equal to 1,
almost always detect a T'S pattern while the GCV score and the BIC detect a stable
pattern. As the s.d. of the noise is reduced the results improve and when the s.d. of

the noise is 0.25 all criteria always point to a trending pattern.

Table 5.7: Systematic Time Shift by 1/40 of a month - S,,, GAMs Results

Criterion
Seasonals | Noise s.d. | GCV | ANOVA | AIC | BIC
1 25% 92% 94% | 4%
S 0.5 100% | 100% | 100% | 91%
0.25 100% | 100% | 100% | 100%

In Table [5.8] the criteria for the GAMs mostly fail to identify the change for the
Sgens for all @ parameter values examined. The ANOVA and AIC point to T'S more

often than not when 0 = 1.

Table 5.8: Systematic Time Shift by 1/40 of a month - Sg.,s GAMs Results

Criterion
Seasonals | Theta | GCV | ANOVA | AIC | BIC
1 ™% 84% 2% | 1%
S 0.5 6% 47% 36% | 1%
0.03 6% 23% 14% | 1%
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Systematic Time Shift by 2/10 of a week per year

Here we simulate again a systematic shift in time for the patterns, but shifting
them by two tenths of a week earlier every year. This is twice the shift attempted

earlier.

The Resampling results for the S.,,, Table have improved from the previous 1/10
of a week shift results. We also note the great improvement with the reduction of
the size of the noise. The shift is now always identified when the s.d. is equal to 0.25
instead of 0.1 that was previously. Nonetheless, the shift remains mostly unidentified

when a noise with s.d. greater than 0.5 is used.

Table 5.9: Systematic Shift 2/10 of a week - Sen,, Resampling Results

Seasonals Noise s.d.
1 0.5 | 0.25
Senv 18% | 77% | 100%

In Table we see that the results for the Sy..s pattern have not improved
greatly.

Table 5.10: Systematic Shift 2/10 of a week - Sg.,s Resampling Results

Seasonals Theta
1 0.5 | 0.03
Sdens 60% | 29% | 16%

Looking at the results from the GAMs, Tables and [5.12] we notice that they
have improved overall for the S,,, series and now the systematic time shift is always
identified by the GCV score, the ANOVA and the AIC when the noise has s.d. equal
to 1. The BIC identifies TS 92% of the time with s.d.= 1 and always for smaller
noise. Hence, we attempted adding noise with s.d.= 2. The ANOVA and AIC still
identify a trending pattern more than 90% of the time.

The results for the Sg.,s have also improved. For all attempted values of 6 the
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Table 5.11: Systematic Shift 2/40 of a month - S, GAMs Results

Criterion
Seasonals | Noise s.d. | GCV | ANOVA | AIC | BIC
2 30% 94% 9%5% | 0%
S 1 100% | 100% | 100% | 92%
0.5 100% | 100% | 100% | 100%
0.25 100% | 100% | 100% | 100%

trending seasonality remains undetected by the GCV score and the BIC most of the
time. When 6 = 1, though, the ANOVA and AIC point to a TS.

Table 5.12: Systematic Shift 2/40 of a month - Sg.,s GAMs Results

Criterion
Seasonals | Theta | GCV | ANOVA | AIC | BIC
1 16% 88% 5% | 8%
S 0.5 ™% 60% 38% | 4%
0.03 5% 34% 21% | 3%
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Systematic Time Shift by 3/10 of a week per year

Now we create series based on the two patterns after we shift them by 3/10 of a week

per year.

We notice that the percentage of correct Resampling results for the S.,, pattern,
Table has doubled from the previous section for noise with s.d. greater than
0.5.

Table 5.13: Systematic Time Shift by 3/10 of a week - S,,,, Resampling Results

Seasonals Noise s.d.
1 0.5 0.25
Senv 44% | 100% | 100%

The Resampling results for the Sy.,s series have also improved, Table [5.14] The
trending pattern is identified by the Resampling 82% of the time for 6 = 1. For

0 < 1, however, the pattern is mistaken for stable.

Table 5.14: Systematic Time Shift by 3/10 of a week - Sy.,,s Resampling Results

Seasonals Theta
1 0.5 | 0.03
Siens 82% | 51% | 26%

The percentages of correct results from the criteria used on GAM selection are pre-
sented in Tables[5.15 and [5.16 For the S.,, series there is a significant improvement
with all criteria identifying the shift 100% of the time when the signal to noise ratio
is 3.35/1 = 3.35. For added noise with s.d.= 2 the GCV score, the ANOVA and the
AIC point to a TS pattern more than 90% of the time while the conservative BIC
only 40%.

There is a slight improvement for the Sy, series but still the shift is mostly unde-

tected when 6 < 1. The results improve as the level of noise is decreased.
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Table 5.15: Systematic Time Shift by 3/40 of a month - S, GAMs Results

Criterion
Seasonals | Noise s.d. | GCV | ANOVA | AIC | BIC
2 91% 99% 99% | 40%
S 1 100% | 100% | 100% | 100%
0.5 100% | 100% | 100% | 100%
0.25 100% | 100% | 100% | 100%

Table 5.16: Systematic Time Shift by 3/40 of a month - Sg.,,s GAMs Results

Criterion
Seasonals | Theta | GCV | ANOVA | AIC | BIC
1 25% 90% 82% | 4%
S 0.5 13% 1% 2% | 3%
0.03 5% 40% 29% | 1%
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Systematic Time Shift by 4/10 of a week per year

Finally, we create a shift of a 4/10 of a week per year, equivalent to 4/40 of a month
per year. The Resampling results for the S.,,, Table[5.17], are further improved and
now identify trending seasonality more than 50% when used on a series with added
noise with s.d.= 1. The results for the Sg.,s have also improved and now is identified

as trending seasonality 93% of the time with § = 1.

Table 5.17: Systematic Time Shift by 4/10 of a week - S,,,, Resampling Results

Seasonals Noise s.d.
1 0.5 0.25
Senv 52% | 100% | 100%

Table 5.18: Systematic Time Shift by 4/10 of a week - Sy.,,s Resampling Results

Seasonals Theta
1 0.5 | 0.03
Siens 93% | 62% | 32%

The criteria used for the GAMSs created for the S,,,, series almost always identify the
trend in the series, Table [5.19} The percentage of correct results has improved and
now the GCV score also points to a T'S pattern always when the noise has s.d. = 2.
In Table we see that the results for the Sg.,,s have improved, as well, and the T'S
is identified more than half the time by the ANOVA and the AIC with § = 1.

Table 5.19: Systematic Time Shift by 4/40 of a month - S, GAMs Results

Criterion
Seasonals | Noise s.d. | GCV | ANOVA | AIC | BIC
2 100% 100% 100% | 89%
S 1 100% 100% 100% | 100%
0.5 100% | 100% | 100% | 100%
0.25 100% 100% 100% | 100%
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Table 5.20: Systematic Time Shift by 4/40 of a month - Sge,s GAMs Results

Criterion

Seasonals | Theta | GCV | ANOVA | AIC | BIC
1 52% 97% 91% | 19%

0.5 21% 82% 48% | ™%

0.03 9% 58% 34% | 5%

Sdens

5.1.3 Random Time Shift

We simulate a random change in time, shifting the patterns by one tenth of a week.
The starting point of the shift is always the timing of the peak in the first year. The
direction is chosen randomly, allowing also the pattern to not move, i.e. stay at the
starting point. A pattern that exhibits random changes in time is considered a stable

pattern, as it is pseudo-trending.

The percentage of correct Resampling test results for trending seasonal pattern in
the S.,, series are given in Table[5.21] The random change in time is never confused

for a systematic change by the Resampling algorithm.

Table 5.21: Random Time Shift 1/10 of a week - S¢,,, Resampling Results

Seasonals Noise s.d.
2 1 0.5 0.25
Seno 100% | 100% | 100% | 100%

In Table [5.22] we see that the Resampling results for the Sgens also do not confuse
the random shift in time with a systematic one. For all attempted values of 6 for the

generated Negative Binomial variables more than 90% of them are found stable.

In Tables and we see the percentage of correctly identified SS by the different
criteria used on the constructed GAMs. For the S.,, series the GAMs correctly

identify a stable pattern most of the time. As the size of the noise is decreased the
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Seasonals Theta
0.5 | 0.03 | 0.01
Sdens 96% | 96% | 93%

Table 5.22: Random Time Shift 1/10 of a week - Sgens Resampling Results

ANOVA and AIC results improve while the GCV and BIC identify it as stable even

when adding a noise with s.d. equal to 2.

Table 5.23: Random Time Shift 1/40 of a month - S,,,, GAMs Results

Criterion
Seasonals | Noise s.d. | GCV | ANOVA | AIC | BIC
2 100% 65% 63% | 100%
S 1 100% 79% 7% | 100%
0.5 100% 81% 80% | 100%
0.25 100% 80% 78% | 100%

For the Sy, series the GAMSs also, more often than not, say that it is stable. The
above imply that the random shift in time is not treated by the GAMs as a trend in
the seasonals, which would not necessarily be wrong but according to our definition

of trending seasonality it is undesirable.

Table 5.24: Random Time Shift 1/40 of a month - Sy.,s GAMs Results

Criterion
Seasonals | Theta | GCV | ANOVA | AIC | BIC
1 87% 59% 79% | 100%
S 0.5 96% 49% 65% | 99%
0.03 | 93% 65% 73% | 98%
0.01 | 93% 54% 67% | 100%




138

5.1.4 Systematic Amplitude Change

We simulate a systematic amplitude change (increase) by a 1/10 of the amplitude
size per year. We consider this trending seasonality as the change is of a systematic

nature.

The Resampling test results for the S,,, pattern are presented in Table [5.25 The

resampling always detects the trending pattern.

Table 5.25: Systematic Amplitude Change - S.,, Resampling Results

Seasonals Noise s.d.
2 1 0.5 0.25
Senv 98% | 100% | 100% | 100%

The Resampling results for the Sg.,s series are presented in Table [5.26] For 6 = 1
the Resampling always identifies a T'S pattern.

Table 5.26: Systematic Amplitude Change - Sge,s Resampling Results

Seasonals Theta
1 0.5 | 0.03
Siens 100% | 60% | 25%

In Table the results from the GAMSs for the S.,, series are summarised. The
results look good and the size of the noise does not appear to influence the ability of

the GAMs to identify trending seasonality.

The results for the Sy.,.s are at about the same level as the ones for the systematic
time shift by 4/40 of a month. The ANOVA and the AIC are the two criteria that

more often recognise the trend in the seasonals.
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Table 5.27: Systematic Amplitude Change - S, GAMs Results

Criterion
Seasonals | Noise s.d. | GCV | ANOVA | AIC | BIC
2 100% | 100% | 100% | 100%
S 1 100% | 100% | 100% | 100%
0.5 100% | 100% | 100% | 100%
0.25 100% | 100% | 100% | 100%

Table 5.28: Systematic Amplitude Change - Sgens GAMs Results

Criterion
Seasonals | Theta | GCV | ANOVA | AIC | BIC
1 48% 92% 87% | 13%
o 0.5 13% 67% 56% | 2%
0.03 5% 42% 26% | 0%
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5.1.5 Random Amplitude Change

We now create random amplitude changes in the two seasonal patterns. The change is
by 1/10 of the size of the pattern and the direction (increase or decrease) is randomly

chosen. This type of pattern is considered pseudo-trending and thus stable.

The Resampling results for the S.,, series are presented in Table [5.29] Even when
the noise is big the pattern is always identified as stable while when the noise is
significantly reduced it is identified as stable only 97% of the time. This could be
attributed to the fact that since the direction of the changed is randomly chosen
systematic changes (i.e. in one direction) may in fact be created. We, nonethe-

less, believe that the Resampling does not recognise a random amplitude change as

TS.

Table 5.29: Random Amplitude Change - S.,, Resampling Results

Seasonals Noise s.d.
2 1 0.5 0.25
Senw 100% | 100% | 100% | 97%

The results from the Resampling on the Sy, series are summarised in Table [5.30]
The Sgens series is more than 90% of the time recognised as SS when in the presence
of noise, even when using § = 0.01. We thus, believe that the fluctuation in the

amplitude is identified as stable by the Resampling.

Table 5.30: Random Amplitude Change - Sges Resampling Results

Seasonals Theta
0.5 | 0.03 ] 0.01
Sdens 96% | 94% | 93%

The GAM results for the S.,, are presented in Table The ANOVA and AIC
results deteriorate when the noise is reduced. This can be translated to mean that
these two criteria identify random amplitude change as T'S but in the presence of a big

noise it remains undetected. Therefore, we also use noise with s.d.= 2 and s.d.=0.01



141

to have a clearer picture of the behaviour of the results. We believe that the ANOVA

and AIC identify a random amplitude change as trending seasonality.

Table 5.31: Random Amplitude Change - S.,,, GAMs Results

Criterion
Seasonals | Noise s.d. | GCV | ANOVA | AIC | BIC
2 100% 65% 57% | 100%
S 1 100% 27% 16% | 100%
0.5 99% 1% 1% | 100%
0.25 100% 0% 0% | 100%
0.01 100% 0% 0% | 100%

The results for the Sy.,s are similar to the ones for the S.,, pattern. As the noise
decreases the results from the GCV score and the BIC improve while the AIC and
ANOVA detect more frequently a TS pattern. Again, this verifies that the ANOVA

and AIC treat a random amplitude change as trending seasonality.

Table 5.32: Random Amplitude Change - Sgens GAMs Results

Criterion
Seasonals | Theta | GCV | ANOVA | AIC | BIC
1 90% 27% 42% | 100%
S, 0.5 91% 39% 61% | 100%
0.03 | 90% 57% 75% | 100%
0.01 | 8% 61% 1% | 99%
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5.1.6 Systematic Time Shift and Random Amplitude Change

Since in most marine biological data-sets the aforementioned changes rarely occur
alone we will now examine the most interesting case, for the purpose of this thesis,
of simultaneously occurring changes. We care mostly about systematic shifts in
time and thus, we would like to evaluate how our methods respond in the presence
of a systematic time shift and a random amplitude change. This stems from our
concern that a random change may mask a systematic one and thus we are not that
concerned with the cases of two random, or two systematic changes occurring in the

same pattern.

Systematic Time Shift 1/10 of a week and Random Amplitude Change

We shift the pattern by 1/10 of a week per year or 1/40 of a month per year and
allow the amplitude to change randomly by a 1/10 of its size per year.

The Resampling results for the S.,, series are given in Table [5.33] We see that the
Resampling almost always fails to detect the systematic shift in the presence of a
random amplitude change, when the noise has s.d.> 0.5. This not surprising as the
time shift is very small and was not easily detected in the presence of noise when no

amplitude change was occurring.

Table 5.33: Systematic Time Shift 1/10 and Random Amplitude Change - S, Resampling
Results

Seasonals Noise s.d.
1 0.5 1025 | 0.1
Senv 8% | 17% | 69% | 98%

The Resampling results for the Sg.,s series can be seen in Table [5.34, The Sgens
series is hardly ever found trending. The systematic shift of 1/10 is too small to be

detected in the presence of a random amplitude change.
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Table 5.34: Systematic Time Shift 1/10 and Random Amplitude Change - Sge,s Resampling

Results
Seasonals Theta
1 0.5 | 0.03
Sdens 11% | 4% | 1%

The
results improve as the noise decreases in size. All the criteria point to a T'S pattern
when the added noise has s.d.< 1.

The percentage of correct GAM results for the S.,, are shown in Table [5.35]

Table 5.35: Systematic Time Shift 1/40 and Random Amplitude Change - Se,,, GAMs Results

Criterion
Seasonals | Noise s.d. | GCV | ANOVA | AIC | BIC
2 89% 100% | 100% | 32%
S 1 100% | 100% | 100% | 100%
0.5 100% | 100% | 100% | 100%
0.25 100% | 100% | 100% | 100%

The Sgens is rarely recognised to have a TS pattern when # = 0.03. Decreasing the
noise in these series, using ¢ = 1, all criteria, except the BIC, more often than not

recognise a T'S pattern when 6 > 0.5.

Table 5.36: Systematic Time Shift 1/40 and Random Amplitude Change - Sgc,s GAMs Re-

sults
Criterion
Seasonals | Theta | GCV | ANOVA | AIC | BIC
1 58% 85% 73% | 41%
o 0.5 35% 65% 51% | 27%
0.03 | 25% 34% 28% | 9%
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Systematic Time Shift 2/10 of a week and Random Amplitude Change

Since a shift of 1/10 of a week per years is quite small we double the shift but keep
the amplitude change the same. The Resampling results for the S.,,, Table |5.37
have improved with TS being identified 100% of the time when the noise is small,
s.d.=0.1.

Table 5.37: Systematic Time Shift 2/10 and Random Amplitude Change - S, Resampling
Results

Seasonals Noise s.d.
1 0.5 0.25
Senv 16% | 68% | 100%

In Table the Resampling results have significantly improved for the Sy, series.
Nonetheless, the trending pattern is still only recognised 34% of the time when
0=1.

Table 5.38: Systematic Time Shift 2/10 and Random Amplitude Change -Sge,s Resampling
Results

Seasonals Theta
1 0.5 | 0.03
Siens 34% | 18% | 3%

The GAM results for the S,,, series are presented in Table The series is now

recognised to have a trending pattern by all criteria even with s.d.= 2.

The results for the Sg.,s series, also have improved. The ANOVA and the AIC
continue to point to a T'S pattern when 8 > 0.5 but the GCV score and the BIC still
identify a seasonal pattern stable when 6 = 0.03.
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Table 5.39: Systematic Time Shift 2/40 and Random Amplitude Change - S,,,, GAMs Results

Criterion
Seasonals | Noise s.d. | GCV | ANOVA | AIC | BIC
2 100% | 100% | 100% | 100%
5. 1 100% 100% 100% | 100%
0.5 100% 100% 100% | 100%
0.25 100% 100% 100% | 100%

Table 5.40: Systematic Time Shift 2/40 and Random Amplitude Change - Sge,,s GAMs Re-

sults
Criterion
Seasonals | Theta | GCV | ANOVA | AIC | BIC
1 80% 100% | 100% | 53%
S, 0.5 66% 84% 79% | 40%
0.03 | 31% 51% 48% | 23%
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5.1.7 Discussion of Results

Though the above sensitivity analysis is far from complete it gives us an idea of how
our methodologies behave, indicating their strengths and weaknesses. We observe
the different behaviours of the methods towards the two distinct patterns employed
above. Overall, the Resampling seems more reliable when testing the S.,, pattern

while the methods do overall equally well for the Sgeps.

Both methods identify a systematic change as TS, with the GAMs being the more
sensitive of the two in the case of the S,,,,. Similarly, both methods consider a random
shift in time mostly as SS. A random amplitude change, however, is considered stable
by the Resampling for the S.,, and Sy.,s while found trending by the ANOVA and
AIC criteria for both patterns. In addition, the GAMs appear to be more sensitive
towards systematic shift in time in the presence of a random amplitude change than
the Resampling. The difference between the results from the two methods is more
pronounced for the Sg.,s pattern. This, however, could be attributed to the fact that

the GAMs identify a random amplitude change as trending seasonality.

Generally, the ANOVA and AIC seem to identify small random changes in the noise
added to the pattern as trends in the seasonals. From all criteria used for model
selection the ANOVA is the least conservative, often favouring the TS model while
the BIC is the most conservative one, pointing to a stable pattern even when all
other criteria disagree. Nonetheless, under extreme circumstances (when there is
a great trend in the seasonals or no trend at all) they both succeed in identifying
the appropriate type of model, TS or SS. The ANOVA identifies correctly as stable
seasonals the random time shift 80% of the time for the S,,, when the noise s.d. is
equal to 0.5 and the BIC, even though conservative, does point to T'S 100% of the
time for the S, when exhibiting a systematic time shift of 4/40 of a month per year
or a shift of 3/40 but with small noise.

Another interesting point is that if there is a systematic shift in time along with a

random change in the amplitude of the pattern the methods’ successful detection of
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a trending seasonality depends on the size of the shift relatively to the size of the
random amplitude change. In view of this, it is recommended that once a change
of the seasonals has been observed and possibly even verified with some tests the
series should be scaled to accommodate this and then the above tests should be

conducted.

The above means that if the Resampling algorithm indicates a trending seasonality
for a series similar to the S.,,, this is always of the systematic type. In addition,
however, it implies that when the Resampling finds a stable seasonality, there is
still a probability that a systematic shift in time exists but in the presence of a
random change in the size of the seasonals or that the noise in the series is too
big. To summarise, the Resampling does not appear to give false alarms of trending

seasonality but may fail to detect one under specific conditions.

For the GAMs, however, the interpretation of the results is not as straightforward.
It seems that small changes, which could in fact be simple noise, can bias the results
towards trending seasonality. Therefore, the GAMs are considered more sensitive to
any kind of change than the Resampling. Looking closely at the output available from
the GAMs, one can, nonetheless, see whether the trend identified in the seasonals
is of a systematic nature. The plots of the smooth functions fitted to the trending
seasonals can shed light to the nature of the detected change. A systematic change
(time or amplitude) is manifested as a monotonic line or curve while anything else

points to a random change.

Neither approach performs as well on the Sy.,s as on the S,,, series. The sudden
changes in the pattern itself make it hard to detect changes of a smooth nature.
In addition, the Resampling is very conservative towards the Negative Binomial
created data as systematic changes are often found stable. The GAMs do not perform
very well for the Negative Binomial data either but outperform the Resampling in
most situations. The Sg.,s pattern corresponds to densities and thus, behaves very

differently from the S.,, pattern.

As a final note the reader is reminded that in nature a change in the seasonal pattern
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hardly ever is of only one type. Issues arise when testing for a specific type of change
in the presence of other types, “unattended”, changes. This is similar to conducting
seasonal unit root tests for specific roots in the presence of other “unattended” unit
roots. Therefore, the above methodologies should be applied with care and if possible
together as they have different strengths and weaknesses and thus, compliment each
other.



Chapter 6

Stonehaven Results

6.1 The Data

In the following two chapters we present the results from our analysis of the data
from Stonehaven. The data consists of weekly samples since January 1997 from the
Stonehaven long-term monitoring station, western North Sea (56°57.8'N 02°06.2"W),
in water depth of around 50m. The data can be broken down into three main
categories: the environmental series, such as temperature, salinity and nutrients
in the water, the phytoplankton, diatoms and dinoflagellates, and the zooplankton
series. The length of the examined series varies. The environmental and zooplankton
series run from the start of 1997 to the end of 2007 while the phytoplankton series
from the start of 2000 to the end of 2008. The phytoplankton series is shorter as, in
the beginning of 2000, a new, more reliable, way to count them was introduced. We

examine 13 environmental series, 5 phytoplankton and 37 zooplankton series.

Due to unforeseen weather conditions, the samples are not taken on pre-specified
dates and so they are not equi-spaced in time. For our analysis we divide the year
in 52 weeks and then allocate the observations to weeks according to their sampling

dates. The 26" of December is not included in any week but no problems should

149
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occur since there is no sampling taking place on that date. We made no adjustments
for the leap years, 2000, 2004 and 2008, as there are no observations taken on the

29t of February in any leap year.

Another option we considered, was to compute monthly averages of the series. Since,
however, we are investigating shifts of seasonality and we would expect them to be
usually small, hardly by a month, we would risk not capturing them. Looking at
the data as daily observations, i.e. Julian datedﬂ, was also considered as an option
but the number of missing values is too great to lead to accurate interpretation of
the results. Therefore, we choose to treat the measurements as weekly observations
(taking the average on rare occasions when there was more than one observation in

a week), since there is no consistency of the sampling dates through the years.

There is, however, a notable trend in the sampling dates. In most weeks the dates
of sampling are decreasing, i.e. 25", 24" 23" of January, in consecutive years. A
possible reason for this is that they are actually sampling on the same day, e.g.
Mondays. Under our assumption of weekly aggregates this causes no problem but if
the analysis shows any effects then we can run it through actual dates as mentioned

above.

Nonetheless, there are weeks, as defined by us, with no samples and some with more
than one sample. Having weeks with no data, introduces missing values in the series
that have to be dealt with. Substitution of the missing values will introduce more
uncertainty in our analysis, especially since there are many such runs, hence it is
avoided. Instead of using interpolation and extrapolation methods to substitute the
missing values we settle on using decomposition techniques that will allow for the

existence of internal and external missing values in the series.

In addition, one should note that there are no samples taken in very bad weather.
Since the collection of samples involves going to sea, no samples are collected when

that is thought unsafe. Therefore, the months in winter time (December, January)

IThe sampling dates include leap years so a total of 4017 days for environmental and zooplankton
series and 3288 days for the phytoplankton series.
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are more sparsely sampled than the rest. That is to say that for some weeks in
these months only few samples exist, e.g. only four samples are collected in week 1
as defined by us, between the 27" of December of one year and the 2°¢ of January

of the next year.

6.2 Methodologies

An outline of the general adjustments made to the methodologies presented in Chap-
ter 4, in order to be used for our analysis of the data, follows. Further modifications
are needed to suit the individual characteristics of each type of data- environmental,
phytoplankton or zooplankton. A section is devoted to each type of data, with de-
tails of the data set’s collection method and the exact specifications of the methods

used discussed.

6.2.1 Resampling

As mentioned before, when allocating observations to weeks within a year, missing
values are produced. These missing values present an issue with the Resampling
techniques. Resampling, as presented in Chapter 4, cannot be employed on a series
with missing values so a modification is devised. The MAs used in the Resampling
algorithms to extract the trends in the series cannot be computed in the presence
of missing values. Thus, they are substituted by Friedman’s super-smoother. The
super-smoother can deal with missing values allowing the rest of the Resampling
algorithms to remain unchanged. Furthermore, using the super-smoother instead of
the MA to compute the trend helps ensure that no seasonality is induced into the

series during the extraction of the trend.

Furthermore, the Resampling requires the data to be in the form of a time series
so averages of all observations within one defined week are taken. Missing values

are allocated to the weeks with no observations. The p-values corresponding to the
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appropriate tests, i.e. NS v.s. SS and then either SS v.s. TS or NS v.s. TS, for each

series are reported and interpreted.

6.2.2 GAMs

The construction of GAMs does not require the data in the form of a time series.
Furthermore, it allows for more than one value per week thus utilizing all collected
samples. We construct the three GAMs - NS, SS and TS- and using a number of

criteria we then choose the model that best describes the data.

Thin plate regression splines are used to model the trend and trending seasonals.
The dimension of the basis for the trend is the default, 10, while higher values
are attempted when it is needed. The basis dimension for the trending seasonals,
however, has to be specified for the model to be computed, due to convergence issues.
We use three knots per season for the trending seasonals since we have at most eleven

years of data, meaning at most 5 values to smooth over.

The nature of the data is such that one expects a smooth stable pattern without
spikes. Using seasonal factors to model the stable seasonals provides a better fit
to the data while a cyclic smoother may be closer to the Natural seasonal pat-
terns and the interpretation of the series. Some seasonal patterns in the data are
sharply defined, for particular species for example, and thus it can be difficult for a
smoother to capture them but, nonetheless, any systematic changes are unlikely to
be spiky. Seasonal factors allow big, abrupt changes to happen while a systematic
change takes place more gradually. Furthermore, a seasonal factor corresponds to a
whole week making the detection of small changes more difficult. A smooth curve
produces a shape closer to the truth and makes the detection of systematic changes
easier. Therefore, using seasonal factors for the stable seasonals does not always seem

appropriate as the results would not be smooth for the species time series.

Nonetheless, for the environmental series, the factors are deemed appropriate as the

patterns to be estimated are quite smooth and thus the seasonalities produced using
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the factors will not be highly variable. Thus, for demonstration purposes, factors
will be used to estimate the stable seasonals of all environmental series while a cyclic
smoother will be employed for all the species series. This way we can demonstrate
both methods.

In addition, in order, again, to favour smoother fits we are using v = 1.4 instead
of the default value of 1 in the construction of the GCV score as per Kim and Gu
(2004).

6.3 Environmental Series Results

The environmental series consist of two measurements, one taken at surface level and
one at approximately 45m depth. Thus, for example, we have surface Temperature
(at 1m) and Temperature at 45m measurements. The one exception is Chlorophyll a
for which we have only one series. The samples for Chlorophyll a detection are taken
from a 10m integrating tube sampler (Lund sampler). Fluorometry is the method
used to measure Chlorophyll a. A one litre sub-sample from the contents of the
tube sampler is filtered to a glass fibre filter paper (GF/F, nominal 0.7 micron pore
size). The pigments are extracted from the filter paper by soaking in 90% buffered
acetone for 16 to 30 hours and measured on a fluorometer, as described in Smith
et al|(2007).

For most environmental series (exceptions are Temperature, Salinity and surface
Silicate) a second sub-sample is taken from the sample to create ‘duplicate’ mea-
surements. When there is a discrepancy between the two measurements the average
is used as the appropriate measurement for that collection date. In Resampling the
data needs to be in the form of a time series and thus, the averages of the dupli-
cate measurements are taken. Furthermore, in Resampling we are also averaging
measurements taken on the same week, using weeks as defined by us. Nevertheless,
as mentioned before, the GAMs allow for multiple entries per week and thus no

averaging is done, neither for duplicates nor for weekly measurements.
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The nutrients are measured by taking a sample of sea-water using Niskin bottles and
then a sub-sample is measured in an automated nutrient analyser. The equipment
used to measure nutrients in the water has a detection limit of around 0.01, below
which zero values are reported. Since the equipment used to collect nutrient infor-
mation has a detection limit, the zeros in the database most probably correspond to
very small, undetectable traces of nutrients rather than their absence. Hence, for our
analysis we substitute these zero values by very small but non-zero ones. We create
random values in the range of 0 — 0.001 using a Uniform distribution. This ensures
that we have non-zero values for our analysis but also that the values entered are
random and a lot smaller than the detection limit of the equipment used. The series
that have zero values that are substituted in this way are: Nitrate at 1m (surface),

Ammonia at 1m, Phosphate at 1m, Chlorophyll a and Silicate at 45m.

We also have to consider the extreme values in the database. Extreme values could
be caused by malfunctioning equipment or contamination of the sample and thus
when one is observed we evaluate whether it is a true value. Examining the original
values instead of the averaged ones and reading the various notes on that collection,
reporting on malfunctioning equipment etc., we decide what the case is. Because
we are interested in the seasonal pattern of these series, it is thought that extreme
values, even when correctly recorded, will not contribute to a better estimation of
the seasonal effects. Nonetheless, we only remove extreme values that are verified as

erroneous. Where an extreme value is removed a missing value is introduced.

A special case of extreme values is the contamination of the Phosphate samples
in 2006. All measurements from the 13" of June to the 2°¢ of October 2006 for
Phosphate 45m and from the 13" of June 2006 to the 10" of January 2007 for
Phosphate 1m are removed from the database. Missing values are placed in their

space.

For the majority of the series presented in this section the Gaussian family is assumed
with the identity link function for the construction of GAMs while for a few a log

link is used. The Temperature, Salinity, Ammonia, Phosphate and Nitrate series are
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modelled using the identity link, thus assuming a decomposition structure:

Xo=p =T+ S + R, (6.1)

as the seasonals and the residuals are unaffected by the trend. On the other hand,
the two Silicate series are modelled using a log link which implies a different structure

to the above:

Xt = ,u/t = €St+Tt + Rt (63)
and thus,
Xt = GSt * GTt + Rt' (64)

For these series the seasonals increase as the trend increases and decrease as the trend
decreases, hence we assume a multiplicative relationship between these two compo-
nents. The residuals are not affected by the changes in the level of the trend and
therefore, they are added and not multiplied to the other two components. Durbin &
Murphy| (1975) discuss seasonal decomposition using mixed additive-multiplicative
models similar to the one above. When the structure in is assumed appropriate

plots verifying this assumption will be presented.

The Chlorophyll a series is modelled using the Gamma family and the log link as the

Gaussian models provided a very bad fit.

Furthermore, the seasonal pattern for each series is extracted using factors. The
Chlorophyll a series, however, is an indicator of the phytoplankton biomass and is
highly variable. Thus it will be modelled using the aforementioned cyclic smoothers.
We believe that since we will use the cyclic components to model the stable season-

ality in the individual species series it is appropriate to use it also for the Chlorophyll
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a series. For the majority of the environmental series presented in this chapter,
however, the two ways to model the stable seasonals differ only slightly but when
the seasonals are very smooth or the series is noisy the cyclic smoothers or factors,

respectively, could be used to estimate a smooth seasonal pattern.

All the environmental series are found seasonal, as it was expected. Therefore,
in the following discussion of the results of our analysis we focus on whether the
seasonality is stable or trending (i.e. exhibits systematic change). Resampling results
are only presented for the stable seasonal (SS) vs trending seasonal (TS) test while
all constructed GAMs are reported. The GCV score of GAMs can be used to choose
between nested models with the lowest score being preferable. Therefore, for model
selection we note the GCV score of the three GAMs, conduct ANOVA between
the three models and report AIC and BIC scores. We also report the percentage
deviance explained by each GAM as a measure of fit. Furthermore, when we suspect
that the series has a trending seasonal pattern we look at the fitted smooth functions
corresponding to each week to further verify this. Once we decide that a series is
shifting in time we attempt to quantify the shift by examining the occurrence of
some easily identifiable peaks in the de-trended fitted values of the TS GAM. This,
nonetheless, is not always possible as there may not be identifiable peaks and /or the

shape of the seasonal pattern may change greatly over time.

To check our GAMs for violations of any assumptions we create diagnostic plots.
Using standardized deviance residuals, czst, we create a QQ plot for normality, a
plot of the residuals against the response, the residual histogram and a residual plot.
When referring to ‘residuals’ below in the context of diagnostic plots we mean the

previously defined standardized deviance residuals.

Table [6.1] summarises the results for all environmental series analysed. However, for
most series only the surface measurement is presented in the main section of this

thesis as similarities occur between the surface and the 45m measurements. Both

2dstdﬂ» = (dAz — c?)/ (& (1- HZ)), where H;; are the elements on the leading diagonal of the

hat matrix, H, and d the average of the deviance residuals d;.
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series of Salinity and Ammonia are discussed as their behaviours differed slightly. A
full description of all results can be found in the electronic Appendix located at the
back of the thesis. Plots and tables of results are presented only when they appear

noteworthy for the particular series.

Table 6.1: Environmental Series Results

Series Pattern
1m Pseudo-trending in Amplitude
Temperature
45m Pseudo-trending in Amplitude
. Im Trending (Time Shift Earlier)
Salinity
45m Trending (Time Shift Earlier)
o 1m Pseudo-trending in Amplitude
Silicate
45m Pseudo-trending in Amplitude
1m Pseudo-trending in Amplitude
Phosphate
45m Pseudo-trending in Amplitude
) 1m Trending (Time Shift Earlier)
Ammonia
45m Trending (Time Shift Earlier)
_ Im Trending (Time Shift Earlier)
Nitrate
45m Trending (Time Shift Earlier)
Chlorophyll a Trending (Amplitude Decreasing & Time Shift Earlier)
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6.3.1 Temperature

Temperature data usually have a stable seasonal pattern, much like the Kola data
discussed in Chapter 4. Sea water temperatures are affected by various factors.
[ACMST| (2001) reports that changes in the local surface heat exchange, local wind
field, influx of oceanic water and freshwater run-off are all contributors towards the
changes in temperature. For example, uncommonly cold or warm years cause changes
in the size of this pattern. If the years are getting colder or warmer gradually, the
change will be systematic while if random climatological effects occur the pattern
will fluctuate in size and/or timing of occurrence. The two Temperature series are

modelled using the Gaussian family with an identity link.

Temperature - 1m

We start by examining the surface temperature (Temperature 1m). This series will
be examined first using factors and then using a cyclic component for the seasonals.
Thus, we will demonstrate that both methods of modelling the seasonal component
produce the same results. This is especially true in the case of the following environ-
mental series while for the species time series the cyclic component will be preferred

due to the noise in those series.

The Resampling test between stable and trending seasonality indicates a stable sea-

sonal pattern.
Resampling Testing Stable vs Trending: p = 0.649 — Stable

This is further verified by the GCV score of the GAMs:
GCYV Score: Non-Seas: 7.328, Stable: 0.619 & Trending: 0.759

The percentage deviance explained by each GAM is presented below:
% Deviance Explained: Non-Seas: 1.01, Stable: 94 & Trending: 95.1

The ANOVA, in Table [6.2)however, points to the TS GAM.
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Table 6.2: Temperature Im ANOVA

Resid. Df | Resid. Dev | Df | Deviance F Pr(>F)
NS 520 3784.289
SS | 462.633 228.53 57.367 | 3555.759 | 125.477 | < 2.2e-16
TS | 406.649 188.96 55.984 39.57 1.521 0.013
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Figure 6.1: The upper left plot depicts the Temperature at 1m with the trend from the SS

GAM as a red line. The stable seasonals and the Temperature 1m marked by
dots with the stable (red) and trending (blue) fitted GAMs, follow clockwise.
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Figure[6.1] shows the trend of the SS GAM as a red line over the Temperature at 1m

series, marked by a black line. In the same Figure the seasonals from the SS model
are also plotted and the two fits for the SS (red) and TS (blue) models.

Factors

-2 0 2

Cyclic

-2

0 10 20 30 40 50

Whooks

Figure 6.2: The upper shows the stable seasonals estimated by the SS GAM when using
factors while the bottom one when using a cyclic component.

As mentioned before, here the stable seasonals in the GAM are estimated using
factors. In Figure we see the stable seasonals estimated using factors (above)
and using a cyclic component (below). To aid comparison we plot only the estimated
seasonals without adding the average trends estimated by the two SS models, with
factors and with a cyclic component. The estimated patterns are very similar with

the lower being a smoother version of the upper.

The smooth functions corresponding to the trending seasonals as estimated by the
TS GAM are plotted in Figures and [6.4,. Weeks 31 and 50 deviate greatly from
a straight line with their C.I. not always including the zero value. Nevertheless, a
curve like the one for week 50, in Figure[6.4] is not of much interest to us as it simply
implies a random and not systematic change. What is of great importance to our

study is a significant monotonic upwards or downwards slope since that would be an
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Figure 6.3: The smooth trending seasonals for weeks 1-36 estimated in the TS model for
Temperature 1m.

indication of a systematic change, time shift or amplitude change. This leads us to

believe that there is not a systematic change occurring in these weeks.

In addition, we would hardly expect a change in the seasonal pattern to occur in

only two specific weeks (i.e. weeks 31 and 50) every year. We expect a sequence

of trending weeks that would then indicate a change in the seasonals. Therefore,

our decision is that this series has a stable seasonal pattern in terms of systematic

changes but may exhibit a random change.

Table 6.3: Temperature 1m AIC & BIC

Non-Seasonal | Stable Seasonal | Trending Seasonal
df 3 60.367 116.351
AIC 2521.426 1170.935 1183.652
BIC 2534.221 1428.418 1679.923

Furthermore, the AIC and BIC scores in Table [6.3] verify the choice of stable season-

ality.

Nevertheless, to further examine the above identified as potential trending weeks, 31
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Figure 6.4: The smooth functions fitted by the TS GAM, corresponding to the trending
seasonals for weeks 37-52 for the Temperature 1m.
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Figure 6.5: The stable seasonal pattern (red) and the trending seasonal pattern (blue) from
the TS GAM fitted to the Temperature at 1m series.
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& 50, we look at a graph the stable (red) and trending (blue) seasonals from the TS
GAM, Figure Using the stable seasonals as a point of reference we can note any
changes in the size or the timing of peak of the trending seasonals. In addition, we
can examine whether the change is occurring in one direction, systematic change,
or both, random change. We thus verify that no systematic change occurs in the
pattern of the Temperature at 1m series. There is, however, a small fluctuation in the

size of the seasonals which points to a pseudo-trending in amplitude pattern.

We believe that the Temperature 1m series has a stable seasonal pattern and the
ANOVA results are influenced by a very small random change in the size of the

seasonals.

In Figures and we see some residual plots for the SS and TS GAMs. The
plot on the top left corner is a QQ plot of the residuals. For both models this plot
shows that the upper end of the series deviates from normality. The top right plot
shows the residuals plotted against the response and is satisfactory. Similarly, the
histograms are acceptable. The plots of the residuals from both models show some
remaining pattern. This occurs because the fits of the SS and TS models do not
go high enough in all the peaks and low enough in all the troughs and thus, some

pattern is still left in the residuals.
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Figure 6.6: The residual checking plots for the SS GAM of the Temperature 1m data. No
problems are highlighted.
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Figure 6.7: Residual checking plots for the TS GAM of the of the Temperature 1m data. No
violations are noted.
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Using a Cyclic Component to Model the Stable Seasonals

We examine now the surface temperature (Temperature 1m) using a cyclic compo-
nent to model the stable seasonality. The GCV score of the GAMs points to the
stable seasonal model:

GCYV Score: Non-Seas: 7.328, Stable: 0.508 & Trending: 0.759

The percentage deviance explained by each GAM is presented below:
% Deviance Explained: Non-Seas: 1.01, Stable: 93.6 & Trending: 95.1

Table 6.4: Temperature Im ANOVA - Cyclic Component

Resid. Df | Resid. Dev Df Deviance F Pr(>F)
NS 520 3784.289
SS | 508.406 246.091 11.594 | 3538.198 | 630.495 | < 2.2¢-16
TS | 406.653 188.966 101.753 | 57.125 1.208 0.104

The ANOVA, in Table [6.4, now also points to the SS GAM.
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Figure 6.8: The upper left plot depicts the Temperature at 1m with the trend from the SS

GAM as a red line. The stable seasonals and the Temperature 1m marked by
dots with the stable (red) and trending (blue) fitted GAMs, follow clockwise.
Both GAMs use a cyclic component for stable seasonality.

Figure [6.8] shows the trend of the SS GAM as a red line over the Temperature at 1m
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series, marked by a black line. In the same Figure the seasonals from the SS model
are also plotted and the two fits for the SS (red) and TS (blue) models.

Table 6.5: Temperature 1m AIC & BIC - Cyclic Component

Non-Seasonal | Stable Seasonal | Trending Seasonal
df 3 14.594 116.347
AIC 2521.426 1118.033 1183.661
BIC 2534.221 1180.167 1679.026

Furthermore, the AIC and BIC scores in Table [6.5| verify the choice of a stable

seasonal pattern.

In Figures and we see the residual plots for the SS and TS GAMs. They are

similar to the ones produced when the stable seasonals were fitted by factors.
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Figure 6.9: The residual checking plots for the SS GAM (using a cyclic component) of the
Temperature 1m data. No problems are highlighted.

The two methods for modelling the stable seasonal component in the GAMs produce
similar results that lead us to choose the SS GAM.

The results for the Temperature series at both 1m and 45m are similar and have

shown that these series have stable seasonal patterns in terms of systematic shifts in
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Figure 6.10: Residual checking plots for the TS GAM (using a cyclic component) of the of
the Temperature 1m data. No violations are noted.

time. In particular, both patterns are pseudo-trending in amplitude. The existence
of an underlying gradual rise in annual average temperatures (increasing trend) does

not affect our results and reflects the general patterns seen in the wider northeast

Atlantic Ocean of which the North Sea is an attached region (ICES| [2009).
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6.3.2 Salinity

Salinity levels are affected by in-flowing oceanic water, freshwater run-off and local
evaporation/ precipitation changes according to TACMST]| (2001)). Therefore, salinity
data are generally more variable than temperature data. The salinity levels at 1m
are also easily affected by rainfall and river inflow since the fresh water is input to
the sea surface layers. The salinity levels at 45m, on the contrary, are less affected
by rapid fluctuations caused by freshwater influences and are thus expected to be

less noisy.

Oceanic water has generally a higher salinity than coastal water, thus water with a
high oceanic content that is advected into the sampled area will be indicated in the
data by an increase in salinity values. Both salinity levels, however, are generally
higher in late summer when the influx of coastal water, often mixed with increased
oceanic water, penetrates down along the Scottish east coast (Hay, |pers. comm.,
2009).

The GAMs constructed for the two Salinity series use an additive structure, as in
(6.1), using the Gaussian family with the identity link function. The seasonal com-
ponent and the residuals are not affected by changes in the level of the trend. Hence,

all three components are added to create the series.

Salinity - 1m

The Resampling test for the Salinity at 1m (Salinity 1m) series identifies a stable
seasonal pattern.

Resampling Testing Stable vs Trending: p = 0.340 — Stable

The GCV score of the three GAMs also points to that conclusion:
GCV Score: Non-Seas: 0.063, Stable: 0.053 & Trending: 0.061
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The percentage deviance explained by each GAM is presented below:
% Deviance Explained: Non-Seas: 14.6, Stable: 46.9 & Trending: 60.3

This series is noisy, hence the percentage explained deviance by the GAMs is small

compared to the percentage deviance explained for the Temperature series.

Table 6.6: Salinity Im ANOVA

Resid. Df | Resid. Dev | Df | Deviance | F Pr(>F)
NS | 501.482 30.564
SS | 449.529 19.001 01.954 | 11.563 | 5.265 | < 2.2e-16
TS | 392.005 14.199 D7.523 4.802 2.305 | 1.540e-06

The ANOVA results, given in Table [6.6], however, favour the TS GAM.
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Figure 6.11: The upper left plot depicts Salinity at 1m with the SS model’s trend as a red
line. The stable seasonals and the Salinity 1m marked by dots with the stable
(red) and trending (blue) fitted GAMs, follow clockwise.

The two fits (SS and TS) of the GAMs for Salinity 1m are shown in the lower graph
in Figure The TS fit is better than the SS one as it goes higher into the peaks
and lowers into the troughs of the series. The trend and stable seasonals from the

SS GAM are depicted in the same picture.
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Figure 6.12: The smooth trending seasonals for weeks 1-36, estimated in the TS model for
the Salinity 1m data.

In Figures [6.12 and we can see the fifty two smooth functions fitted by the TS

GAM for the trending seasonals. Many weeks deviate from a straight line parallel

to the x-axis. The majority of them, however, is not monotonically increasing or

decreasing indicating a random change. Nonetheless, there a few weeks, 6 and 19-

22 that point to a systematic change.

There is the possibility of a systematic shift in time, that is being initialised towards

the end of the series and thus, it cannot easily be detected.

Table 6.7: Salinity 1m AIC & BIC

Non-Seasonal | Stable Seasonal | Trending Seasonal
df 8.518 60.471 117.995
AIC 29.895 -108.142 -141.386
BIC 66.227 147.8 358.02

The AIC, Table favours the TS GAM while the BIC, in the same table, chooses
the NS model. The AIC, similarly to the ANOVA, is more sensitive and points to

the TS GAM.
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Figure 6.13: The smooth trending seasonals estimated in the TS model for the Salinity 1m
series, here weeks 37-52.
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Figure 6.14: The stable seasonals, red, and the trending seasonals, blue, from the TS GAM
fitted to the Salinity at 1m series.
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To further investigate whether there is a systematic change in the timing of the sea-
sonal pattern and identify its direction we plot the stable seasonals and the trending
seasonals, as estimated by the TS GAM, on the same plot, Figure [6.14, We note
a random amplitude change with the amplitude being bigger towards the start and
end of the examined series. There is also a slight shift of the seasonals earlier over
the years. This, however, is hard to quantify as there is a change in the size and
shape of the seasonals for these years. There appears to be a transition from one

seasonal pattern to another one with a slightly different from.
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Figure 6.15: The residual checking plots for the SS GAM of Salinity 1m show a deviation
from normality.

In Figures [6.15] and [6.16] we see some diagnostic plots for the SS and TS GAMs.

The QQ plots and histograms show a deviation from normality near the extremes

of the series. These models are not well fitted to the data but were found the most

appropriate ones from those attempted.
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show a deviation from normality.
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Salinity - 45m

As mentioned above, Salinity at 45m is not as easily affected by rainfall and river in-
put as the surface Salinity and thus, the series is more well behaved. The Resampling

test finds this series to have a trending seasonal pattern.
Resampling Testing Stable vs Trending: p = 0.018 — Trending

The GCV score, however, of the SS and TS GAMs is almost the same:
GCYV Score: Non-Seas: 0.027, Stable: 0.017 & Trending: 0.018

The percentage deviance explained by each GAM is presented below:
% Deviance Explained: Non-Seas: 27, Stable: 66.5 & Trending: 76.1

The GAMs are able to explain a greater portion of the variability in this series than

they were for the Salinity at 1m.
Table 6.8: Salinity 45m ANOVA

Resid. Df | Resid. Dev | Df | Deviance F Pr(>F)
NS | 498.66 13.04
SS | 447.537 5.978 51.123 7.062 10.342 | < 2.2e-16
TS | 390.533 4.265 57.004 1.713 2.752 | 4.824e-09

In Table [6.8 the ANOVA favours the TS GAM.

The Salinity 45m series along with the fits of the SS (red) and TS (blue) GAMs
are shown in Figure [6.17. The terms of the SS GAM are also plotted in the same

picture.

In Figures and we can see the fifty two smooth functions for the trending
seasonals in the TS model. A number of weeks (2, 6, 20-26, 36, 39 and 49) deviate
from a straight line parallel to the x-axis. Furthermore, a monotonic curve like that

for weeks 20-26 indicates a systematic change.

The AIC score, Table [6.9] is lower for the TS GAM, thus preferring it. In the same
table, the BIC points to the SS GAM.
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Figure 6.17: Clockwise from top left the Salinity 45m series with the trend from the SS GAM
(red line), the stable seasonals and the Salinity 45m series (dotted) with the
stable (red) and trending (blue) fitted GAMs.

Table 6.9: Salinity 45m AIC & BIC

Non-Seasonal | Stable Seasonal | Trending Seasonal
df 10.34 13.943 72.595
AIC -398.205 -692.167 -749.727
BIC -354.101 -432.148 -248.555

In Figure we see the stable (red) and trending (blue) seasonals from the T'S
GAM. The amplitude of the seasonals fluctuates in the same way as for the seasonals
The amplitude in the first three and the last two

observed years is greater than for the rest of the years. Furthermore, we notice that

in the Salinity at 1m series.

the trending seasonal peak at the beginning of the series occurs just after the stable
seasonal one and gradually shifts earlier in the year to occur just before the stable
peak towards the end of the series. Finally, for week 1 the stable seasonals attribute

a low value while the trending ones a high one.

To further observe the changes in the seasonal pattern of Salinity 45m we choose to
examine the de-trended fitted values of the TS GAM rather than the original series

since the latter is very noisy. In Figure [6.21| we see the de-trended fitted values from
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Figure 6.20: The stable seasonals, red, and the trending seasonals, blue, from the TS GAM
fitted to the Salinity at 45m series.

the TS GAM for Salinity 45m. The trough is marked by dotted lines at weeks 10 and
30. The peak is shifting earlier in the year while the size and shape of the seasonals

also seems to be changing.

Figures and show some diagnostic plots for the SS and TS GAMs. There

are no problems with the models.

Salinity at 1m is more easily affected by river input and rain and can thus, change
randomly in size and timing. Hence, it is easier to detect a systematic change when
looking at a depth of 45m than the surface, as the results have demonstrated. The
Resampling results for Salinity 1m can have been affected by the fluctuation in the
size of the seasonals and thus, have greater difficulty in detecting a systematic shift.
Nonetheless, the GAMs for Salinity at 1m identified the changes in the seasonals.
Both Salinity series have patterns with fluctuating amplitude that are also shifting

earlier in the year.
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Figure 6.21: The de-trended fitted values from TS GAM for Salinity 45m. The vertical lines
mark weeks 10 and 30. The peak appears to shift earlier in the year.
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Figure 6.22: The residual checking plots for the SS GAM of Salinity 45m show no violations.



179

o> Baovwl O P . - Resicn v Rarpooms
- -
.‘g
1
»

- e
Y ‘1 - \J ]

L tmrn":u‘n ‘

- Hwgras of residass
L)
B
R.
i 3 ) i i () » (L TG I ) Fe )

Figure 6.23: The standardized deviance residuals’ checking plots from the TS GAM of Salin-
ity 45m show no violations of the assumptions of the model.



180

6.3.3 Silicate

Silicate, phosphate and nitrate are the three key nutrients used by phytoplankton in
their growth that we are examining from the Stonehaven database. |Parsons et al.
(1988)) say that silicate is usually higher in river water than in sea water. Thus,
silicate builds up during winter time from river inputs and sea sediments. It is
consumed mainly by diatoms to create their ‘glass’ exoskeleton. The levels of the
surface silicate are more easily affected by extreme events in external conditions such
as floods, increased run-off from the land etc.; thus we expect the surface series to

be more noisy than the 45m one.

Both Silicate series exhibit a winter peak. Because the weather in winter is poorer
than other seasons the sampling during the winter weeks is more often prohibited by
the weather conditions than for other weeks in the year. This means that we may
not have as much information about the peak of these series as we have for other
series that peak in the summer, spring or autumn. From an ecological perspective,
however, the spring time when silicate starts being consumed and the autumn when
silicate begins to replenish are more critical periods in the annual cycle of these series

(Hay, pers. comm., 2009).

Silicate - 1m

The Silicate at 1m (Silicate 1m) data have a stable seasonal pattern according to the

Resampling test results.
Resampling Testing Stable vs Trending: p = 0.191 — Stable

For this series we use the log link with the Gaussian family to build the GAMs. In
Figure we see two plots. The top plot shows the mean value of the series for
each year plotted against the range of the series for that year. We see a positive
connection between them which is further verified by the correlation, 0.442. Thus,

the amplitude of the seasonals changes with changes in the level of the trend. It



181

increases when the trend increases and decreases when the decreases. Hence these

two components, trend and seasonal, are multiplicative.

The lower plot in Figure [6.24] shows the fitted values from the SS GAM using a
log link and a Gaussian family plotted against the absolute value of the Pearson
residuals from that model. We fit a super-smoother, marked by the red line, to
check for any relationship between them. The produced line is almost parallel to
the x-axis indicating that the residuals are not affected by changes in the trend and
thus, should be added to the other two components and not multiplied. Therefore,
the log link is appropriate.
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Figure 6.24: The top plot shows the mean value of the Silicate at 1m series for each year
against the range of the series for that year. The bottom plot shows the fitted
values from the SS GAM plotted against the absolute residuals from that model
with a smoother running through them, red line.

The GCV score agrees with the Resampling results and also points to the SS GAM:
GCV Score: Non-Seas: 4.126, Stable: 1.374 & Trending: 1.410

The percentage deviance explained by each GAM is presented below:
% Deviance Explained: Non-Seas: 8.67, Stable: 77.5 & Trending: 84

The ANOVA in Table [6.10] favours the TS GAM.
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Table 6.10: Silicate 1Im ANOVA

Resid. Df | Resid. Dev |  Df | Deviance F Pr(>F)
NS | 55841 2270.386
SS | 502.627 558.739 95.775 | 1711.552 | 27.605 | < 2.2¢-16
TS | 445.331 397.104 57.296 | 161.635 | 3.164 | 8.225e-12
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Figure 6.25: Clockwise from top left the Silicate 1m series with the trend from the SS GAM,
the stable seasonals and Silicate 1m (dotted) with the stable (red) and trending
(blue) fitted GAMs.

The Silicate 1m series along with the fits of the SS (red) and TS (blue) GAMs are
shown in Figure 6.25 The trend and seasonals of the SS GAM are also plotted in

the same picture.

In Figures and we can see the fifty two smooth functions for the trending
seasonals in the TS model. Weeks 18 and 33 deviate from a straight line. These type

of curves though correspond to a random and not a systematic type of change.

Table depicts the AIC and BIC scores for the three GAMs. The AIC points to
the TS GAM while the BIC the SS model.

This series has a pseudo-trending in amplitude seasonal pattern. This fluctuation
in the size is probably the reason that the AIC and the ANOVA point to the TS
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Figure 6.26: The smooth trending seasonals for weeks 1-36, estimated in the TS model for
the Silicate 1m data.
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Figure 6.27: The smooth trending seasonals estimated in the TS model for the Silicate 1m,
weeks 37-52.

Table 6.11: Silicate 1m AIC & BIC

Non-Seasonal | Stable Seasonal | Trending Seasonal
df 5.598 61.373 118.669

AIC 2393.966 1716.193 1638.53

BIC 2418.536 1982.139 2152.755
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GAM. Nevertheless, this is considered a stable seasonal pattern in the context of this

study.

Figures and show the diagnostic plots for the SS and TS GAMs which seem

fine.
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Figure 6.28: The residual checking plots for the SS GAM of Silicate 1m show no violations.

Both Silicate measurements appear to have pseudo-trending in amplitude seasonal

patterns. As this chemical is a strongly limiting factor in the growth of diatoms we

might expect to see similar patterns with these when we examine the phytoplankton

series, as is verified later.
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Figure 6.29: The standardized deviance residuals’ checking plots from the TS GAM of Sili-
cate Im show no violations of the assumptions of the model.
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6.3.4 Phosphate

As with other nutrients the phosphate concentration is increasing during winter to
be consumed by phytoplankton during the rest of the year. |Parsons et al. (1988)
point out that the phosphates concentration may in fact be below the detection
limit after a phytoplankton bloom. Hence, changes in phosphate concentration are
closely linked to the biological demands of the phytoplankton species. Nonetheless,
phosphate is not usually a limiting nutrient for phytoplankton growth in the sea;
whereas in freshwater systems it is. In the following series the majority of 2006
data had to be removed due to a contamination of the samples. Missing values were

introduced.

Both Phosphate series are modelled using a Gaussian distribution with the identity

link function.

Phosphate - 1m

The Resampling results for Phosphate at 1m (Phosphate 1m) indicate a stable sea-
sonal pattern.

Resampling Testing Stable vs Trending: p = 0.316 — Stable

The GCV scores of the three GAMs, also, point to the SS model:
GCYV Score: Non-Seas: 0.037, Stable: 0.022 & Trending: 0.024

The percentage deviance explained by each GAM is presented below:
% Deviance Explained: Non-Seas: 17.7, Stable: 60.8 & Trending: 68.5

Table 6.12: Phosphate Im ANOVA

Resid. Df | Resid. Dev | Df | Deviance F Pr(>F)
NS | 642.222 23.201
SS | 591.532 11.055 50.689 | 12.147 | 12.823 | < 2.2¢-16
TS | 536.782 8.872 54.751 | 2.183 2.412 | 2.978e-07
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The ANOVA results, presented in Table favour the TS GAM, however.
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Figure 6.30: The Phosphate 1m series is plotted in the top left with the trend from the SS
GAM (red line). The stable seasonals and the Phosphate 1m (dotted) with the
stable (red) and trending (blue) fitted GAMs follow clockwise.

In Figure the series of Phosphate 1m with the fits of the SS (red) and TS (blue)
GAMs are plotted. The trend and seasonals of the SS GAM are also plotted in the
same picture. In addition, in this plot we note that years 2003 and 2004 behave

differently to the previous years.

Table 6.13: Phosphate 1m AIC & BIC

Non-Seasonal | Stable Seasonal | Trending Seasonal
df 10.778 61.468 116.218
AIC -303.114 -685.1 -719.032
BIC -254.826 -409.722 -198.369

The AIC and BIC scores in Table [6.13] point to the TS and SS GAMSs, respec-
tively.

Examining further the series, see Figure [6.31], we notice that the size of the season-

als fluctuates while the series has a stable seasonal pattern in terms of systematic
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Figure 6.31: The stable seasonals, red, and the trending seasonals, blue, from the TS GAM
fitted to the Phosphate at 1m series.

changes. Additionally, from 2002 onwards the main peak is split into two peaks, thus

changing the shape of the seasonals.

Figures and show some diagnostic plots for the SS and TS GAMs. There
are no major problems with the models even though the upper tail of the distribution

of the residuals deviates from the Gaussian family.

Our analyses do not show any systematic changes in the patterns of both phosphate
measurements. This is partly expected as phosphate is seldom a limiting nutrient
hence an increase or decrease in supply and demand may be less evident for phosphate

than for example Nitrate which is a limiting nutrient in the sea.
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Figure 6.32: The residual checking plots for the SS GAM of Phosphate 1m show no viola-

tions.
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Figure 6.33: The standardized deviance residuals’ checking plots from the TS GAM of Phos-
phate 1m show no violations of the assumptions of the model.
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6.3.5 Ammonia

Ammonia in the water is derived as an excretion product of the animal zooplankton
as well as being produced during their death and decay. Ammonia is also rapidly
taken up by phytoplankton. The amount produced by the zooplankton in the water
may be rapidly consumed by the phytoplankton. Thus a low value of ammonia
may reflect a small number of zooplankton present or a rapid consumption rate and
should be carefully interpreted. Generally, the level of ammonia increases during the
months of high zooplankton abundance. Rapid changes in ammonia levels are hard
to interpret. Ammonia samples can easily be contaminated during collection and

handling (Hay, pers. comm., 2009)).

The GAMs for both Ammonia series are constructed using an additive structure

(identity link function) as no evidence to the contrary were found.

Ammonia - 1m

The Resampling results for Ammonia at 1m (Ammonia 1m) indicate a stable seasonal
pattern.

Resampling Testing Stable vs Trending: p = 0.285 — Stable

The GCV scores disagree with the choice of the SS model:
GCYV Score: Non-Seas: 0.494, Stable: 0.464 &Trending: 0.450

The percentage deviance explained by each GAM is presented below:
% Deviance Explained: Non-Seas: 4.3, Stable: 27.9 & Trending: 40.9

Table 6.14: Ammonia 1m ANOVA

Resid. Df | Resid. Dev | Df | Deviance | F Pr(>F)
NS | 692.948 336.992
SS | 641.501 253.957 01.448 | 83.035 | 4.077 | < 2.2e-16
TS 585.16 208.242 06.341 | 45.715 2.28 | 1.135e-06
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In addition, the ANOVA | in Table [6.14] is in favour of the TS one.
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Figure 6.34: Clockwise from top left the Ammonia 1m series with the trend from the SS
GAM marked by a red line, the stable seasonals and Ammonia 1m (dotted)
with the stable (red) and trending (blue) fitted GAMs.

In Figure the series of Ammonia 1m with the fits of the SS (red) and TS (blue)
GAMs are plotted. The trend and seasonals of the SS GAM are also plotted.

Figures and show the smooth functions fitted to each week for the trending
seasonals by the TS GAM. Weeks 2, 19, 35, 37, 40, 41 and 42 differ from a straight line
parallel to the x-axis. This indicates that the smooths for these weeks are significant
and should be included in the model.

Table 6.15: Ammonia 1m AIC & BIC

Non-Seasonal | Stable Seasonal | Trending Seasonal
df 7.052 58.499 114.84
AIC 1487.794 1392.946 1366.903
BIC | 1519.876 1659.098 1889.385

The AIC and BIC scores in Table [6.15 point to the TS and NS GAMSs, respec-
tively.
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Figure 6.35: The smooth fitted functions for weeks 1-36, in the TS model for the Ammonia

1m data.
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Figure 6.36: The smooth trending seasonals estimated in the TS model for the Ammonia

1m, weeks 37-52.

4 0 %

L2 BB SR |

0 ¥ e

20 2 2




193

20

||

|
|

Ll
|

10

a5

| ‘ [
L R A A R
| lt W L, A LW MY iyt ] -'v'!r'\! W'l i\ ! ‘ \\‘ Wi

i ‘ 4 |

oo

05

1568 2000 2002 Yoars 2004 2006 2008

Figure 6.37: The stable seasonals, red, and the trending seasonals, blue, from the TS GAM
fitted to the Ammonia at 1m series.

In Figure the stable (red) and trending (blue) seasonals from the TS GAM are
plotted over each other. There is a fluctuation in the size of the seasonals of this
series. This, however, could hinder the Resampling test’s ability to identify a shift
in time. There is probably a systematic shift in time that is very small and thus,

easily disguised by the random amplitude fluctuations.

In Figures [6.38) and |6.39| the diagnostic plots for the SS and TS GAMs show a

deviation from normality.
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Figure 6.38: The residual checking plots for the SS GAM of Ammonia 1m.
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Figure 6.39: The residual checking plots from the TS GAM of Ammonia 1m.
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Ammonia - 45m

The Resampling results for Ammonia at 45m (Ammonia 45m) indicate a trending
seasonal pattern.

Resampling Testing Stable vs Trending: p = 0.019 — Trending

The GCV score of the three GAMs, however, points to the SS model:
GCYV Score: Non-Seas: 0.486, Stable: 0.436 & Trending: 0.452

The percentage deviance explained by each GAM is presented below:
% Deviance Explained: Non-Seas: 5.04, Stable: 32 & Trending: 46.5

Table 6.16: Ammonia 45m ANOVA

Resid. Df | Resid. Dev | Df | Deviance | F Pr(>F)
NS | 687.936 328.899
SS | 635.569 235.522 | 52.367 | 93.377 | 4.812 | < 2.2e-16
TS | 579.177 185.188 56.392 | 50.334 | 2.792 8e-10

The Resampling result is further enforced by the ANOVA, in Table which is in
favour of the TS GAM, too.

In Figure we see the series of Ammonia 45m with the trend from the SS GAM.
The stable seasonals and the fitted values of the SS (red) and TS (blue) GAMs are
also plotted.

Figures and show the smooth functions fitted to each week for the trending
seasonals by the TS GAM. Weeks 22, 24, 25, 29, 31, 35, 37, 39, 40, 41, 42 and 50

deviate significantly from a straight line parallel to the x-axis.

Table 6.17: Ammonia 45m AIC & BIC

Non-Seasonal | Stable Seasonal | Trending Seasonal
df 7.064 59.431 115.823

AIC 1465.391 1338.366 1284.29

BIC 1497.78 1608.33 1810.411
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Figure 6.40: Clockwise from top left the Ammonia 45m series with the trend from the SS
GAM, the stable seasonals and Ammonia 45m (dotted) with the stable (red)
and trending (blue) fitted GAMs.

The AIC and BIC scores in Table point to the TS and NS GAMs, respec-
tively.

In Figure we see the stable (red) and trending (blue) seasonals from the TS
GAM. The peak shifts systematically earlier in time while there is also a random

amplitude change.

Similarly to Salinity, finding Ammonia at 45m to have a trending seasonal pattern
verifies our thoughts about a systematic shift masked by the fluctuation in the size
of the pattern for the Ammonia at 1m series. Ammonia at 1m could be trending but
the series maybe too noisy for it to be detected. Weeks 40, 41 and 42 were found

trending for the Ammonia at 1m as well as for the Ammonia at 45m.

To estimate the shift in time we plot the de-trended fitted values from the TS of this
series and then note the occurrence of the main peak, see Figure [6.44] With a black
dotted line we mark week 20 and with a red line week 50 in all years. The main peak

seems to be shifting earlier in each year.

Figures [6.45] and [6.46] show some diagnostic plots for the SS and TS GAMs. No
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Figure 6.41: The smooth fitted functions for weeks 1-36, in the TS model for the Ammonia

45m data.
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Figure 6.43: The stable seasonals, red, and the trending seasonals, blue, from the TS GAM
fitted to the Ammonia at 45m series.
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major issues appear with the models even though there is a deviation from normality

especially at the upper tail of the series.

Paovwi O-Q P Reski vu Rarporms

i ey
o . w22 Py
] 1 QTN e  Jargy e
2 § | igad T hIA S0
2 ot S s
] = BRI e
"‘ e --~.~P: J‘("-""' N
'
- 3 " -
' () TP, P ) & ' Repome |
Waogram of residasis Fxszaan
- .«_ i) o :L. -
& £ 0» vi 0l 4 e | 4
;“ [l oniiesfi el Lio s
z Stk 2R e TG TN o
" I PR S R N
ht [ i 3 e R R
% o
- o » J 47 - xod ARy : an. =3 e

Figure 6.45: The residual checking plots for the SS GAM of Ammonia 45m.

There is evidence of a shift earlier in the year for the seasonals of both Ammonia
series. This bears a striking resemblance to that seen in the Salinity data. We
perceive a shift through some transitory years from one state to another rather than
an entirely smooth trend. This may be a reflection of the pattern of zooplankton

abundance and decay as they are mainly responsible for the ammonia signal.
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Figure 6.46: The standardized deviance residuals’ checking plots from the TS GAM of Am-
monia 45m.



201

6.3.6 Nitrate

Nitrate is the main nutrient in the water that drives the marine phytoplankton
production and is quite often present in limiting concentrations. It has a seasonal
nature with slow build up in winter months and rapid decline in spring as the light
levels increase to allow the phytoplankton community to begin their photosynthesis.
When there is sufficient light phytoplankton is reproduced and the levels of nitrate

in the water decrease (Hay, [pers. comm., 2009)).

The GAMs for both Nitrate series examined below are based on an additive structure,

using the identity link function, and a Gaussian family.

Nitrate - 1m

The Resampling results for Nitrate at 1m (Nitrate 1m) indicate a stable seasonal

pattern. We do note that the p-value is quite small though.
Resampling Testing Stable vs Trending: p = 0.075 — Stable

The GCV score of the three GAMs rejects the choice of the SS model in favour of
the T'S one:
GCYV Score: Non-Seas: 13.292, Stable: 3.130 & Trending: 3.04

The percentage deviance explained by each GAM is presented below:
% Deviance Explained: Non-Seas: 2.98, Stable: 82.1 & Trending: 86.7

Table 6.18: Nitrate Im ANOVA

Resid. Df | Resid. Dev | Df | Deviance F Pr(>F)
NS | 699.902 9229.376
SS | 643.064 1706.362 | 56.838 | 7523.014 | 49.881 | < 2.2e-16
TS | 5H87.779 1267.405 | 55.285 | 438.956 | 3.682 | 1.68e-15

This is further enforced by the ANOVA, in Table [6.18] which is in favour of the TS
GAM, too.
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Figure 6.47: Clockwise from top left the Nitrate 1m series with the trend from the SS GAM,
the stable seasonals and the Nitrate 1m series marked with dots with the stable
(red) and trending (blue) fitted GAMs.

In Figure the series of Nitrate 1m with the fits of the SS (red) and TS (blue)
GAMs are plotted. The trend and residuals of the SS GAM are also plotted. For
years 2000 and 2001 neither fit goes low enough in the trough, both overestimating
the levels of Nitrate.

Figures [6.48] and [6.49| depict the smooth functions fitted to each week by the TS
GAM. The C.Is of weeks 2, 11-18, 43 and 48-50 differ from a straight line parallel to

the x-axis, marking them significant in our model. In particular, for weeks 12-17 the

fitted smooth functions exhibit a monotonic behaviour indicating a trending seasonal

pattern.

Table 6.19: Nitrate Im AIC & BIC

Non-Seasonal | Stable Seasonal | Trending Seasonal
df 4.098 60.936 116.221

AIC 3813.3 2740.293 2641.797

BIC 3831.967 3017.879 3171.226
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Figure 6.48: The smooth fitted functions for weeks 1-36, in the TS model for the Nitrate

1m data.
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Figure 6.49: The smooth trending seasonals estimated in the TS model for the Nitrate 1m,

weeks 37-52.
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The AIC and BIC scores in Table [6.19) point to the TS and SS GAMs, respec-
tively.
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Figure 6.50: The stable seasonals, red, and the trending seasonals, blue, from the TS GAM
fitted to the Nitrate at 1m series.

The two seasonal patterns, stable and trending, estimated by the TS GAM are
plotted in Figure [6.50, The peak of the trending seasonals, blue, at the start of the
series appears to the right of the stable seasonals, red, and moves gradually earlier
in the year. Thus, towards the end of the series the peak of the trending seasonals
is located just to the left of the stable one. Furthermore, we can verify that there is
a random amplitude change as the overall size of the estimated trending seasonals

first decreases and then increases.

To further examine the shift, in Figure [6.51] we see the de-trended fitted values from
the TS GAM for Nitrate at 1m plotted by year. Dotted vertical lines are drawn to
mark weeks 20 (black) and 50 (red). The summer trough appears to shift gradually

earlier in time.

Figures and show some diagnostic plots for the SS and TS GAMs. The
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Figure 6.51: The de-trended fitted values from TS GAM for Nitrate Im. The vertical lines
mark weeks 20 and 50 in black and red, respectively.
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Figure 6.52: The residual checking plots for the SS GAM of Nitrate 1m.
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assumption of normality is violated at the extremes of the series. In addition, there

are some high residual values due to the model fits over-predicting or under-predicting
the Nitrate levels.
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Figure 6.53: The standardized deviance residuals’ checking plots from the TS GAM of Nitrate
Im.

The apparent shift earlier in the Nitrate seasonal pattern indicates that there may
be evidence of earlier uptake by the phytoplankton and so a shift in the timing of
the spring bloom. Nevertheless, the point in time that the Nitrate levels begin to
replenish does not appear to be shifting earlier in the year as does the point of its

decline. This could possibly translate to a longer period during which blooms take
place.
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6.3.7 Chlorophyll a

Smith et al| (2007) state that Chlorophyll a is the primary pigment of interest in
monitoring programmes as it is the most abundant in photosynthesising plants and
is also readily detected by fluorescence detection. Most of the phytoplankton species
contain Chlorophyll a. The Chlorophyll a (Chlorophyll) series gives an indication
of the phytoplankton biomass and not rate of production as for example there may
be a huge population of zooplankton consuming it and thus very little biomass as

Chlorophyll evident in the water samples (Bresnan, pers.comm., 2008]).

The GAMs for this series assume a Gamma family with a log link and a cyclic com-
ponent for the trending seasonals extraction. The diagnostic plots for the Gaussian
family models were very poor indicating that a different family would be more ap-
propriate. Though the diagnostic plots for the Gamma family are not ideal, Figures
and [6.60] are an improvement from the ones for the Gaussian family.

When using a cyclic component to model the stable seasonality there are two choices
for the construction of the TS GAM. One can choose to include or exclude the term
corresponding to the stable seasonal (i.e. the cyclic smoother) in the TS model.
Including the stable seasonal term ensures that the models are properly nested and
thus the ANOVA and the GCV score can be used for comparison. The goodness of

fit measures are essentially the same on both occasions.

Nonetheless, the confidence intervals for the smooth terms corresponding to the
trending seasonals are wider when the stable term is included. This is an indication
that the contribution of the stable cyclic component affects the estimation of the
standard error of the trending seasonals. No other differences occur and to better
demonstrate the above issue, for this series we will present the results for both ways.
For the rest of this thesis, when a series is modelled using a cyclic component for the
stable seasonals both models are examined and the plots of the smooth functions are

always from the TS GAM without the stable component.

The Resampling results for Chlorophyll indicate a stable seasonal pattern.
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Resampling Testing Stable vs Trending: p = 0.138 — Stable

Including the Stable Seasonals’ Term in the TS GAM
In agreement with the Resampling results the GCV score, also, prefers the SS model:
GCV Score: Non-Seas: 1.042, Stable: 0.424 & Trending: 0.532

The percentage deviance explained by each GAM is presented below:
% Deviance Explained: Non-Seas: 3.32, Stable: 62.1 & Trending: 70.5

Table 6.20: Chlorophyll ANOVA

Resid. Df | Resid. Dev Df Deviance F Pr(>F)
NS | 689.929 709.733
SS | 680.915 278.136 9.015 431.599 | 117.211 | < 2.2¢-16
TS | 578.751 216.898 | 102.164 | 61.239 1.599 | 4.887e-04

The ANOVA, in Table [6.20] is in favour of the TS GAM, however.
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Figure 6.54: Clockwise from top left the Chlorophyll series with the trend from the SS GAM,
the stable seasonals and Chlorophyll (dotted) with the stable (red) and trending
(blue) fitted GAMs.

In Figure the series of Chlorophyll with the fits of the SS (red) and TS (blue)
GAMs are plotted. The trend and seasonals of the SS GAM are also plotted.
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Figure 6.55: The smooth fitted functions for weeks 1-36, in the TS model for the Chlorophyll
data.

Figures and show the smooth functions fitted to each week for the trending
seasonals by the TS GAM. Weeks 25, 35 and 36 differ significantly from a straight
line parallel to the x-axis. The smooth functions corresponding to these weeks are

not monotonic and thus they indicate a random change.

Table 6.21: Chlorophyl!l AlC & BIC

Non-Seasonal | Stable Seasonal | Trending Seasonal
df 6.07 15.085 117.249
AIC 1810.663 1108.8 1130.208
BIC 1838.246 1177.345 1662.976

The AIC and BIC scores in Table both point to the SS GAM.

Figure shows the stable (red) and trending (blue) seasonals estimated by the
SS and TS GAMSs, respectively. It could be considered that there is a systematic
amplitude change as the size of the pattern decreases until 2005 and then increases

only slightlyﬂ . In addition, the shape of the seasonals changes. The sharp peak

3The actual ranges corresponding to years 1997-2008 are: 4.357, 3.921, 3.562, 3.285, 3.070, 2.910,
2.706, 2.631, 2.667, 2.776, 2.912.
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Figure 6.56: The smooth trending seasonals estimated in the TS model for Chlorophyll ,
weeks 37-52.

during the first three years is joined by a second one later in the year, almost forming
one wider peak. In the last two observed years, however, the shape of the pattern

resembles the first years, with a narrower peak.

In Figure [6.58 we see the de-trended fitted values for Chlorophyll by the TS GAM.
The vertical lines mark weeks 18 and 42 in black and red, respectively. The peak
itself changes in size and shape while the timing of its descend appears to shift a

little earlier in the year.

Figures and show some diagnostic plots for the SS and TS GAMs. There

is a deviation from normality at the extremes of the series.
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Figure 6.57: The stable seasonals, red, and the trending seasonals, blue, from the SS and
TS GAM, respectively, fitted to the Chlorophyll series.
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Figure 6.58: The de-trended fitted values from TS GAM for Chlorophyll a. Weeks 18 and
42 are marked by vertical lines in black and red, respectively.
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Figure 6.59: The residual checking plots for the SS GAM of Chlorophyll show a deviation
from normality at the extremes of the series.
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Figure 6.60: The standardized deviance residuals’ checking plots from the TS GAM of
Chlorophyll show a deviation from normality at the lower end of the series.
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Without the Stable Seasonals’ Term in the TS GAM
The GCV score of the new TS GAM is:
GCYV Score: Trending: 0.532

The percentage deviance explained by each GAM is presented below:
% Deviance Explained: Non-Seas: 3.32, Stable: 62.1 & Trending: 70.5
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Figure 6.61: Clockwise from top left the Chlorophyll series with the trend from the SS GAM,
the stable seasonals and Chlorophyll (dotted) with the SS (red) and TS (blue)
fitted GAMs. The TS GAM does not include the stable cyclic smoother.

In Figure the series of Chlorophyll with the fits of the SS (red) and TS (blue)
GAMs are plotted. The trend and seasonals of the SS GAM are also plotted.

Figures and show the smooth functions fitted to each week for the trending
seasonals by the TS GAM. Weeks 25, 35 and 36 differ significantly from a straight
line parallel to the x-axis. The smooth functions corresponding to these weeks are

not monotonic and thus they indicate a random change.
The AIC and BIC scores in Table both point to the SS GAM.

The diagnostic plots for the TS GAM are shown in Figure[6.64] There is a deviation

from normality at the extremes of the series.
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Figure 6.62: The smooth fitted functions for weeks 1-36, in the TS model (without the stable
cyclic smoother) for the Chlorophyll data.

Table 6.22: Chlorophyl!l AlC & BIC

Non-Seasonal | Stable Seasonal | Trending Seasonal
df 6.07 15.085 117.317
AIC 1810.663 1108.8 1130.374
BIC 1838.246 1177.345 1663.451

The analyses with either TS GAM points to the existence of trending seasonality.
Furthermore, we note that the scores and test results from the goodness of fit mea-
sures that are used are very similar in both occasions. We prefer, however, to use
the ANOVA and the GCV score for inference and thus we prefer the T'S model that
includes the stable term. When looking at the smooth functions fitted to each week
the other TS GAM provides tighter confidence intervals and will thus be preferred
for that particular purpose. For the rest of this thesis both models will be exam-
ined. The ANOVA results and the GCV scores comparisons will always correspond
to the T'S model that includes the stable component while when plots of the smooth
functions are presented these will be from the TS GAM without the stable seasonal
term. The AIC and BIC values are always very similar and will thus not be reported

twice.
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Figure 6.63: The smooth trending seasonals estimated in the TS model (without the stable
cyclic smoother) for Chlorophyll , weeks 37-52.

In the Chlorophyll series analysis we note systematic changes in the pattern. There
is evidence that the size of the pattern (amplitude) is gradually decreasing with time.
In the first three years there seems to be a more sudden decline in spring. Ensuing
years show a more stable pattern while in the last three a slight increase in the size
is noted. There is also an indication of an earlier decline in the concentration of

Chlorophyll through autumn.
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Figure 6.64: The standardized deviance residuals’ checking plots from the TS GAM of
Chlorophyll show a deviation from normality at the lower end of the series.
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6.4 Phytoplankton Series Results

The phytoplankton data consist of diatoms and dinoflagellates. Bresnan et al.| (2009)
describe the procedure of collecting and analyzing phytoplankton samples. A 10m
Lund tube is used and one litre of sea water is preserved. A 50ml subsample is
analysed under an inverted microscope. After the homogeneity of the sample is
verified all species present are recorded. The species in ten random fields of view are

counted and multiplied up to give densities in one litre of water.

The phytoplankton series are densities derived from counts, and thus no malfunc-
tioning equipment could interfere with the data. Phytoplankton species reproduce
by cell division (< 2 days/division), therefore very rapid population growth is com-
mon when growth conditions are good. Extreme values are considered correct and
are included in the analysis. Each species is generally adapted to grow optimally in
the environmental conditions during a part of Nature’s seasonal cycle. Because they
are based on counts there are many zero values in the data. For some species there
are more zero values than non-zero ones. Furthermore, commonly the sharp rises in

the population of the phytoplankton create high spikes in the series.

When conducting the Resampling tests we use the logarithm of the examined series
after we add 1 to it. We are thus, accommodating for the high variability in the
spikes of the seasonal pattern. For Resampling tests we take the average of multiple

entries in one pre-defined week to create a time series. This is not necessary for the
GAMs.

Since we are analysing densities the Gamma and then the Normal families were
assumed for our models. Two series, the Total Diatoms and Total Phytoplankton,
included a small number of zeroes and thus we are able to fit the GAMs using a log
Normal distribution with the identity link. Hence, we use the logarithm of the series

after we add 1 to all values and fit using the Normal family.

Nevertheless, for the majority of the series of phytoplankton species and groups, the

number of zero values is restrictive and the models cannot be fitted or when they
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are fitted the fit is very poor. Therefore, we use Binomial models for most series,
trying in this way to model the presence or absence of each species. All the non-zero
values in a series are substituted by ones and then the models are fitted. We create
the same three GAMs as before, NS, SS and TS, but now we assume the Binomial

family with a logit link function, where:

logit(p) = log (L> . (6.5)

1—-p

Considering the UBRE, AIC and BIC score of the three models and the results
from the ANOVA between the models we choose the most appropriate GAM. To
evaluate the fit of the GAMs we cannot perform the usual checks when dealing
with Binomial models as the asymptotic results supporting the usual Chi-Squared
approximation involved in the likelihood-ratio tests is unreliable (Dobsonl, [2002]).
Instead, we compare the residual deviance of the model under examination, as fitted
to the original series, with the residual deviances of the same model when fitted to

99 randomized series that have the same distribution as the original series.

We create 99 random uniform sets, Uy, equal to the length of the data and compare
them to the fitted values, Y; from the GAM in question. Thus, we create 99 series,
FY, i=1,...,99, as in to which the model is fitted.

F'=0, U>Y, & F =1, U <Y, (6.6)

Then we compare the deviance of the GAM fitted to the original series to the 99
deviances obtained by fitting the same GAM to the F} series. If the GAM is a good
fit then its deviance should belong to the distribution of the other 99 deviances.

The seasonal patterns of the series fitted by Binomial GAMs have sudden sharp
peaks and thus, we believe that a trend in the seasonals would be traceable looking

at the presence or absence of the species.
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The diagnostic check for the log Normal models is done by examining the standard-
ized deviance residuals. As in the previous section we create a QQ plot, a plot of
the residuals against the response, the residual histogram and a residual plot. When
referring to ‘residuals’ below in context of diagnostic plots we mean the previously

defined standardized deviance residuals.

The Resampling tests are always performed on the densities of the series. All the se-
ries in this section were found seasonal when testing for seasonality with Resampling.
Therefore, only the Resampling test results between stable and trending seasonality

are reported.

All phytoplankton series analysed are found to have seasonal patterns that are stable
in terms of systematic shifts. Only selected results are described below as many series
exhibit similar behaviour. A full description of the results for all series examined can
be found in the electronic Appendix I at the end of this thesis. First the results for
the diatoms are presented and then for the dinoflagellates while lastly we include
the results for the Total Phytoplankton series which is an aggregate of all observed

species.

6.4.1 Diatoms

Diatoms are photosynthesising algae that have a siliceous skeleton. They need sun-
light and chemical nutrients for growth thus, are found closer to the surface (Uni-
versity College London, [2009). Furthermore, diatoms need silicate for their silicate
outer wall. This nutrient in particular is important for diatom growth and can limit

the amount of diatoms present in the water.
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Chaetoceros

The Chaetoceros series includes the total of all observed Chaetoceros species as it
is hard to accurately distinguish between them. They are most active in the up-
per depths that receive sunlight and are prey to many zooplankton species such as

copepods (Bresnan, pers.comm., 2008]).

This is an aggregate series of several species of different sizes that may exhibit peaks
at different periods (i.e. have slightly different seasonal cycles). Additionally, due
to the fast reproductive and adaptive abilities of these species we might not be able
to perceive a seasonal change without examining individual species time series. It
is also possible that existing species may be supplemented or replaced by new ones
carried into the region by advection from adjacent regions. The above is true for
all series examined in this section, as identifying individual species is not always
feasible and thus we look at aggregates. Nonetheless, we believe that these analyses,
limited as they are, constitute a first attempt at exploring these species’ seasonal

patterns.
The Resampling results for Chaetoceros indicate a stable seasonal pattern.
Resampling Testing Stable vs Trending: p = 0.144 — Stable

Additionally, the UBRE score prefers the SS model.:
UBRE Score: Non-Seas: 0.157, Stable: —0.067 & Trending: 0.111

The percentage deviance explained by each GAM is presented below:
% Deviance Explained: Non-Seas: 1.15, Stable: 24.5 & Trending: 42.6

Table 6.23: Chaetoceros ANOVA

Resid. Df | Resid. Dev | Df | Deviance | P(> |Chil)
NS | 416.193 476.899
SS | 409.491 364.318 6.701 | 112.590 | 1.707e-21
TS | 349.680 276.858 59.81 | 87.440 0.01

The ANOVA results, however, presented in Table [6.23] favour the TS GAM.
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Figure 6.65: Clockwise from top left Chaetoceros with the trend (red line) from the SS
model, the stable seasonals and Chaetoceros (dotted) with the stable (red) and
trending (blue) fitted GAMs.

In Figure the series of Chaetoceros with the fits of the SS (red) and TS (blue)
GAMs, the trend and seasonals from the SS model are plotted.

Table 6.24: Chaetoceros AIC & BIC

Non-Seasonal | Stable Seasonal | Trending Seasonal
df 2.807 9.509 69.319
AIC 482.513 383.324 415.498
BIC 493.851 421.720 695.397

The AIC and BIC scores in Table agree with the choice of the SS GAM. We

believe that this series has a stable seasonal pattern.

Diagnostic checking was performed for the SS and TS models as described above.

The original deviance for the TS model is greater than the 99 other derived deviances.

This indicates that the T'S model is not a good fit. The SS model, however, is a good

fit as the original deviance is the 415 percentile of the 99 deviances.
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Total Diatoms

This series includes all diatoms in the Stonehaven database. Since this series has a
sufficient number of non zero values we use a log Normal distribution for the GAMs.
The series, however, exhibits very sudden high spikes, for example, going from 0 to
3000000 with a seemingly random allocation of zero values, see Figure of the
logged values. This is very hard to model, therefore, we remove the zero values from
the series, inserting missing values in their place, when creating the GAMs. The
three GAMs are created for the logged series after the missing values are removed.
We thus, find a model for the series conditioned on the presence of diatoms. There
are 35 zeroes in a total of 419 samples giving a probability of 0.084. Dividing the

obtained conditional model by 0.084 we obtain the unconditional model.

This is an aggregate of many different species that have various patterns. As a result
the interpretation of the following analysis is very hard. From a biological point of
view, however, the behaviour of the seasonal pattern of all diatoms is interesting
as the diatoms share the same characteristics, for example need silicate and are
all photosynthesising. Thus, diatoms are more sensitive to a change in the spring

weather conditions (Bresnan, pers.comm., 2008).
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Figure 6.66: The Logged series of Total Diatoms, after adding 1.
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The Resampling results for the Total Diatoms series indicate a stable seasonal pat-

tern. Resampling Testing Stable vs Trending: p = 0.40 — Stable

Additionally, the UBRE score also prefers the SS model:

UBRE Score:

Non-Seas: 3.324, Stable: 1.761 & Trending: 3.051

The percentage deviance explained by each GAM is presented below:
% Deviance Explained: Non-Seas: 0.064, Stable: 48.9 & Trending: 64.9

Table 6.25: Total Diatoms ANOVA

Resid. Df | Resid. Dev | Df | Deviance F Pr(>F)
NS | 382.000 1257.715
SS | 377.096 642.522 4.904 | 615.192 | 73.623 | <2.2e-16
TS | 278.194 442.035 98.901 | 200.487 | 1.276 0.064

The ANOVA results, presented in Table [6.25] favour the SS GAM.
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Figure 6.67: Clockwise from top left the logged Total Diatoms series with the trend (red
line) from the SS GAM, the stable seasonals and the series (dotted) with the
stable (red) and trending (blue) fitted GAMs.

In Figure the series of Total Diatoms with the fits of the SS (red) and T'S (blue)
GAMs are plotted. In the same Figure, we see the trend and seasonals from the SS

model.
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Table 6.26: Total Diatoms AIC & BIC

Non-Seasonal | Stable Seasonal | Trending Seasonal
df 3.000 7.904 106.806
AIC 1551.326 1303.220 1357.403
BIC 1563.178 1334.447 1779.353

Both the AIC and BIC scores in Table [6.26] point to the SS GAM. This series’
seasonal pattern is stable.

In Figures and we see the residual plots for the SS and TS models, respec-
tively. The SS model’s QQ plot does not show any deviation from normality, while
the T'S’s one is problematic at the lower end of the series.
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Figure 6.68: Diagnostic plots for the Total Diatoms SS model.
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Figure 6.69: Diagnostic check for the Total Diatoms TS model.

6.4.2 Dinoflagellates

Dinoflagellates are usually more abundant during late spring and summer and in some
occasions can form massive algal blooms. Unlike the diatoms’ silicate exoskeleton,
the dinoflagellates’ one is made of cellulose. In addition, not all dinoflagellates have
Chlorophyll a. Other pigments are often present and many species are mixotrophic;
i.e. able to photosynthesise or feed on other organisms. Some other dinoflagellates
are fully heterotrophic feeding only on other species. As with many diatoms, the
dinoflagellate species are able to survive as resting cysts and resistant stages in

sediments. The environmental cues that trigger excystment and often blooms are

very poorly understood (Amorim, [pers. comm., 2009).

Alexandrium

The genus Alexandrium includes a few species, some being toxic dinoflagellates that

can be responsible for seasonal harmful algal blooms. The series Alexandrium is a



total of all recorded Alexandrium species. The Resampling results for Alexandrium
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indicate a stable seasonal pattern.

Resampling Testing Stable vs Trending: p = 0.114 — Stable

The UBRE score, however, prefers the TS model:

UBRE Score: Non-Seas: —0.513, Stable: —0.615& Trending: —0.662

The percentage deviance explained by each GAM is presented below:
% Deviance Explained: Non-Seas: 9.05, Stable: 37.1 & Trending: 76.4

Table 6.27: Alexandrium ANOVA

Resid. Df | Resid. Dev | Df | Deviance | P(> |Chi|)
NS | 414.640 191.752
SS | 408.724 132.528 5.900 09.224 5.707e-11
TS | 385.169 49.692 23.555 | 82.836 1.592¢-08

The ANOVA results, presented in Table favour the TS GAM, too.
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Figure 6.70: The Alexandrium series with the trend (red line) from the SS GAM, the stable
seasonals and the series as dots with the stable (red) and trending (blue) fitted
GAMs.

In Figure the series of Alezandrium with the fits of the SS (red) and TS (blue)
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GAMs and the terms of the SS GAM are plotted.

Table 6.28: Alexandrium AIC & BIC

Non-Seasonal | Stable Seasonal | Trending Seasonal
df 4.376 10.276 33.831
AIC 200.504 153.080 117.354
BIC 218.174 194.574 253.960

The AIC and BIC scores, in Table [6.28] point to the TS and SS GAM, respectively.
This series has a pseudo-trending seasonal pattern and this random change in the
size of the seasonals is the reason that the ANOVA and the AIC prefer the TS
GAM.

Diagnostic checking was performed for the SS and TS models as described above. The
original deviance for the TS model is the 60" percentile of the other 99 deviances.
This indicates that the TS model is a good fit. The SS model is, also, a good fit as

the original deviance is the 50" percentile of the 99 deviances.

Total Dinoflagellates

The Total Dinoflagellates series includes all dinoflagellates species in the Stonehaven
database. The Resampling results for Total Dinoflagellates indicate a stable seasonal

pattern.

As this is an aggregate series of many different species that have various patterns
the interpretation of the following analysis is not straightforward. Nevertheless,
as with the Total Diatoms series, all dinoflagellates share some characteristics and
from a biological point of view the behaviour of the Total Dinoflagellates series is

important.
Resampling Testing Stable vs Trending: p = 0.277 — Stable

Additionally, the UBRE score prefers the SS model:
UBRE Score: Non-Seas: 0.296, Stable: —0.050 & Trending: 0.024
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The percentage deviance explained by each GAM is presented below:

% Deviance Explained: Non-Seas: 3.83, Stable: 32.1 & Trending: 60.6

Table 6.29: Total Dinoflagellates ANOVA

Resid. Df | Resid. Dev | Df | Deviance | P(> |Chi|)
NS | 415.518 533.046
SS | 411.166 375.779 4.352 | 157.267 1.12e-32
TS| 311.353 184.04 99.813 | 191.739 | 9.055e-08

The ANOVA results, presented in Table favour the TS GAM, however.
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Figure 6.71: The Total Dinoflagellates series with the trend (red line) from the SS GAM,
the stable seasonals and the Total Dinoflagellates series marked by dots with
the stable (red) and trending (blue) fitted GAMs.

Figure|6.71] shows plots of the series of Total Dinoflagellates, the trend and seasonals
of the SS GAM and the series as dots with the fits of the SS (red) and TS (blue)
GAMs are plotted.

In Table both the AIC and the BIC scores point to the SS one. We believe that

this pattern is

stable.

Diagnostic checking was performed for the SS and TS models as described above.

The original deviance for the TS model is greater than the 99 other derived deviances.
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Table 6.30: Total Dinoflagellates AIC & BIC

Non-Seasonal | Stable Seasonal | Trending Seasonal
df 3.482 7.834 107.647
AIC 540.008 391.447 399.334
BIC 554.082 423.081 833.999

This indicates that the TS model is not a good fit. The SS model, however, is a good

fit as the original deviance is the 30'" percentile of the 99 deviances.

6.4.3 Total Phytoplankton

The Total Phytoplankton series includes all phytoplankton species in the Stonehaven
database. Similarly to the Total Diatoms series, we remove the zero values from this
series and use a log Normal distribution for the GAMs.
randomly, see Figure [6.72] with a total of 27 in 419 measurements, giving thus a

probability of 0.064 for absence.

)

2000

Figure 6.72

The Resampling results for Total Phytoplankton indicate a stable seasonal pat-

tern.
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: The logged series of Total Phytoplankton.

The zero values occur



Resampling Testing Stable vs Trending: p = 0.116 — Stable
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Additionally, the GCV score prefers the SS model:

GCYV Score:

Non-Seas: 3.216, Stable: 1.516 & Trending: 2.538

The percentage deviance explained by each GAM is presented below:
% Deviance Explained: Non-Seas: 0.454, Stable: 54.9 & Trending: 66.9

Table 6.31: Total Phytoplankton ANOVA

Resid. Df | Resid. Dev | Df | Deviance F Pr(>F)
NS | 389.488 1238.050
SS | 384.168 561.386 5.319 | 676.661 | 87.052 | <2.2¢-16
TS | 284.491 377.569 99.678 | 183.817 1.39 0.019

The ANOVA results, presented in Table favour the TS GAM, however.
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Figure 6.73: Clockwise from top left the Total Phytoplankton series with the trend (red
line) from the SS GAM, the stable seasonals and the logged series of Total
Phytoplankton marked by dots with the stable (red) and trending (blue) fitted

In Figure the series of Total Phytoplankton with the fits of the SS (red) and TS

(blue) GAMs are plotted. In the same Figure we see the stable seasonals and trend

GAMs.

from the SS model.
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Table 6.32: Total Phytoplankton AIC & BIC

Non-Seasonal | Stable Seasonal | Trending Seasonal
df 3.512 8.832 108.509
AIC 1570.284 1270.897 1314.763
BIC 1584.232 1305.970 1745.681

Both the AIC and BIC scores in Table [6.32] point to the SS GAM. There is a fluctu-

ation of the size of the seasonals of this series but the pattern is stable in terms of
systematic shifts in time.
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Figure 6.74: Diagnostic check for the Total Phytoplankton SS model.

In Figures [6.74] and residual plots for the SS and TS model are shown. There is
a slight violation of normality at the ends of the series.
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Figure 6.75: Diagnostic check for the Total Phytoplankton TS model.
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6.5 Notes on Results

Both seasonal decomposition based testing procedures, Resampling and the GAMs,
are used to test in each case a specific hypothesis under the specified models. Thus,
the Resampling result is dependent on the estimated trends and stable/trending
seasonals. Similarly, the criteria used for GAM selection test not whether the series
has stable or trending seasonality but if the specified stable or trending model is a
better fit to the data. This implies that a ‘poor’ stable model could give a trending
result and the opposite. In addition, the BIC is more conservative and thus, it has
been observed that if the series seems to be trending (the other results point us in that
direction) then the BIC often indicates a stable model while if the series seems stable
then the BIC points to a non-seasonal model. The ANOVA is more sensitive than
the rest of the criteria used and is influenced by any type of change, thus preferring
trending than stable models. Nevertheless, when there is no change in the seasonals
the ANOVA correctly points to the SS GAM while if there is a big systematic change
in the seasonals the conservative BIC will identify a TS GAM.



Chapter 7

Stonehaven Zooplankton Results

7.1 The zooplankton data

The results from the analysis of the zooplankton time series from Stonehaven are
presented in this chapter. The zooplankton series share some similarities with the
environmental and phytoplankton series of the previous section. They also are weekly
observations but unlike the environmental series these are counts much like the phy-
toplankton, and not measurements. Thus, a zero in the series cannot be attributed
to the detection limit of the equipment but can mean either a zero in the population

or a zero in the sample.

The sampling procedure involves lowering a plankton netF_-] to a depth of 45m and
hauling vertically to sample the water column from 45m near the seabed at around
50m. The sample is preserved in 4% buffered formaldehyde and returned to the
laboratory for species identification and counts. After removing the big species for
direct count the sample is made up to a standard volume of 200ml and a sub-sample
of suitable volume (2.5, 5 or 10ml) is then extracted and everything in it is identified

to a suitable taxonomic level and counted. The raw numbers of count are derived

'a bongo net with 40 cm diameter and 200 gm mesh
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by multiplying up the counts from the sub-sample to the standard (200ml). These
species counts per sample are then corrected to generate average densities of the
species in the water column, expressed as numbers per cubic metre or as standing
stock (i.e. the number beneath a square meter of water surface). This assumes the

net samples a cylindrical volume with 70% efficiency.

The database does not include information on the volume of the sub-sample used
which would be very useful so as to consider the weight that each observation carries.
In year 1999 (16th of March) the diameter of the net changed from 30 to 40cm (BO200
to BG200) which caused the value of that constant to change. In this section we are

examining the densities of some zooplankton species.

7.1.1 Resampling

The Resampling testing techniques presented in chapter 4 are used with the same
modifications discussed previously to allow for the many missing values in the series.
The observations are allocated weeks in the year (52 in total, not including the 26th
of December) according to the collection date. In order to form time series, when
two or more observations fall in the same week, averages are used. The zooplankton
series often exhibit high spikes, large differences in the counts, so the logarithm of

the series is computed and tested using these procedures E]

All the reported testing results refer to tests of whether the seasonal pattern is stable
or trending since the nature of the data implies that they are in fact all seasonal; all

results between non-seasonal or seasonal verify this, unless stated otherwise.

2More accurately, the logarithm of the series plus one log(z; + 1), to account for the zeros in the
series.
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7.1.2 GAMs

GAMs are used creating the aforementioned three types of models: non-seasonal,
NS, (smooth function of time), stable seasonal, SS, (smooth function of time and a
cyclic component for seasons) and trending seasonal, T'S, (smooth function of time,
a cyclic component for seasons and smooth function of time by factors of seasons)

and testing for the best suited one.

The data are not used in the form of a time series so multiple entries for one week
are allowed, thus utilizing all available data points. The Poisson family was at first
assumed, as the data are in the form of counts, with the log link function, but there
arose issues caused by overdispersion and zero inflated counts. Furthermore, the
variation in the exact volume of the sample actually counted drew us to look at the
densities of the zooplankton database instead of the raw counts. For most series
a log Normal distribution gives an adequate fit while Gamma distribution was also
examined but rejected. The constant relating to the volume of water sampled is used
as an offset to account for the change in the width of the net. The stable seasonals
are estimated by a cyclic polynomial with 10 knots and the number of knots for the

trending seasonality terms are set equal to three as in the previous chapter.

For the Gaussian family GAMs use GCV score, an estimate of the prediction error,
to find the appropriate smoothness for each applicable model term. To avoid over-
fitting and to favour smoother fits we are using v = 1.4 instead of the default value
1 in the construction of the model as advocated by Kim & Gul (2004). ANOVA
is used between non-seasonal versus seasonal and stable seasonal versus trending
seasonal models. Most series were found seasonal so only the stable versus trending
p-values are reported for the majority of them while values for non-seasonal versus
stable seasonal and non-seasonal versus trending seasonal are reported for the series
that were tested non seasonal. Finally AIC and BIC values for all three models are
reported with the minimum highlighted in bold. For each model the GCV score
is also presented with the lowest in bold. We also report the percentage deviance

explained by each GAM as a measure of fit. When the results point to a trending
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seasonal pattern we further examine the smooth terms fitted to each week by looking

at plots of each smooth function.

When fitting GAMs one has to check for any assumptions violations by checking the
residuals through diagnostic plots. As before, we are using standardised deviance
residuals, cist for our diagnostic plots. We construct a QQ plot and a histogram
of the residuals to test the assumption of normality. A plot of the residuals against
the response is also examined. The residuals should appear evenly scattered while a
trend in the variability of the residuals would flag a violation of the constant variance
assumption. Finally, we look at the residual values. There should be no patterns in
them as that would indicate that there is still information to be extracted from them

and they are not just ‘noise’.

The results are presented by genus and then species. In Table the results for
all zooplankton series examined are summarised. Only the most commonly known
species and series with interesting results are presented in this section. For the first
series of each species presented the results from the GAMs are more extensively
given, including a variety of plots and tables. When similarities occur, the results
for the rest of the series of the same species are not presented. Extensive plots
and tables of results are presented only when they appear noteworthy or in need
of further interpretation. A full description of the results for all zooplankton series
examined can be found in the form of an electronic appendix at the end of this thesis.
As the Resampling is used on the logged data and the GAMs assume a log Normal
distribution, all plots shown below are with regards to the logged data.

Not all species reported here were recorded since 1997. Acartia, Centropages, Temora,
Metridia lucens, Paracalanus parvus and Pseudocalanus elongatus were included in

the database in 1999 so these series are shorter by two years.

3cistd,i = (ch — c?)/ (& (1- Hz)), where H;; are the elements on the leading diagonal of the

hat matrix, H, and d the average of the deviance residuals d;.
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Table 7.1: Zooplankton Series Results

Species & Copepodite Stage Pattern
. ‘ 4, 5, 6f Pseudo-trending in Amplitude
Acartia clausi
6m Trending (Time Shift earlier)
Total Acartia Pseudo-trending in Amplitude
, 1-5 and 6m Pseudo-trending in Amplitude
Centropages typicus
6f Pseudo-trending in Amplitude and Phase
Centropages hamatus 4-6 Pseudo-trending in Amplitude
_ 5 Trending (Time Shift earlier)
Calanus finmarchicus
6f and 6m Pseudo-trending in Amplitude
5 Trending (Time Shift Earlier)

Calanus helgolandicus

6f and 6m | Trending (T Amplitude & Time Shift Earlier)

Juvenile Calanus 1-4 Trending (T Amplitude & Time Shift Earlier)
Calanoid Copepods Pseudo-trending in Amplitude
Temora longicornis 1-6 Pseudo-trending in Amplitude

Total Temora Pseudo-trending in Amplitude
Paracalanus parvus 1-6 Pseudo-trending in Amplitude
Pseudocalanus elongatus 1-6 Pseudo-trending in Amplitude
Metridia lucens 1-5 and 6m Pseudo-trending in Amplitude

6f Non Seasonal
Oithona 1-6 Pseudo-trending in Amplitude
Total Oithona Pseudo-trending in Amplitude

Lamellibranchiata Pseudo-trending in Amplitude
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7.2 Results by species

Copepods

Copepods are small crustaceans that are so abundant that often represent more than
90% of the biomass in mesozooplankton samples. They are mainly herbivores and
as such represent a major pathway for the transfer of energy up the marine food
web. Some copepod species exist in the water all year and some produce resting
stages that allow them to survive winter. It is a feature of most copepods that the
adult males either do not feed or feed less and consequently have a shorter life span
than adult females; whose feeding as adults is translated mainly into egg production

rather than somatic growth (Hay, pers. comm., 2009).

7.2.1 Acartia

Acartia is a small calanoid copepod that is found in shelf seas. The genus Acartia
is common and abundant all around the world’s oceans. It is an important link
in the food chain as it is largely a herbivore mediating energy transfer between
phytoplankton and developing larvae of commercial fish species. Acartia clausi is
resident in the North Sea all year, but late in the year the eggs produced are able
to delay hatching and so rest in the seabed sediments to hatch in spring through
early summer (Hay, [pers. comm., 2009). We look at some developmental stages of
Acartia clausi and the total counts of Acartia, including all observed stages of clausi,
longeremus, discudata and bifilosa, which are, relative to claust, rare species in the

samples .

Acartia clausi

Acartia claust has a life-cycle that consists of six naupliar stages followed by five

copepodid larval stages to reach adulthood in stage 6. We examine densities of
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Acartia clausi copepodite stages 4 (C4), 5 (C5) and 6 (C6f) females and males
(Cém). The 200 micron net mesh of the sampler does not trap the early nauplii
or the first three copepodite stages in a quantitative way as they pass through this

mesh. Acartia clausi exhibits one peak per year for all examined stages.

Acartia claust copepodite stage 4

Acartia clausi C4 exhibits one major peak per year and appears to have a stable
seasonal pattern. The Resampling test yields an insignificant p-value when used
on the logged Acartia clausi C4 series to test for trending seasonality. The p-value

indicates a stable seasonal pattern.
Resampling Testing Stable vs Trending: p = 0.312 — Stable

This is further verified by the GCV score of the GAMs:
GCV Score: Non-Seas: 4.774, Stable: 1.297 & Trending: 2.059

The percentage deviance explained by each GAM is presented below:
% Deviance Explained: Non-Seas: 0.762, Stable: 75.2 & Trending: 83.3

Table 7.2: Acartia clausi C4 ANOVA

Resid. Df | Resid. Dev | Df | Deviance F Pr(>F)
NS | 429.842 2033.470
SS | 417.326 508.417 12.516 | 1525.058 | 100.018 | < 2.2e — 16
TS | 314.726 341.736 102.6 | 166.681 1.496 0.005

Looking at the ANOVA results, Table [7.2], the trending model is preferred.

In Figure (7.1} we see the logged Acartia clausi C4 with the fitted values from the two,
SS (red) and TS (blue), models. In the same Figure the trend and seasonals from
the SS GAM are also plotted.

The AIC and BIC scores, in Table [7.3] point to the SS GAM. The GAMs, as men-
tioned before, are sensitive to any kind of change and the change in the amplitude of
the seasonals, see Figure [7.1], could be the reason the ANOVA prefers the trending

model. This series has a pseudo-trending in amplitude seasonal pattern.
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Figure 7.1: The logged Acartia clausi C4 series with the trend from the SS model, the stable
seasonals and the series as dots with the fits from the stable (red) and trending
(blue) GAMs. Dotted lines denote the years.

Nevertheless, this amplitude change could affect the sensitivity of the above Resam-
pling testing procedure. Thus, the series could be trending in time but the above
test fails to detect it. One should attempt to accommodate for these changes in the
size of the seasonals and then test again the series for trends in time. Testing for

one specific type of change (for us systematic time shift) in the presence of other
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unattended changes can lead to ambiguity in the interpretation of the results.

We, nonetheless, believe that this series’ seasonal pattern does not exhibit a system-

atic change, only a random amplitude change.

Table 7.3: Acartia clausi C4 AIC & BIC

Non-Seasonal | Stable Seasonal | Trending Seasonal
df 3.158 15.667 118.274
AIC 1901.480 1327.674 1361.256
BIC 1914.329 1391.443 1842.447

The diagnostic plots for the SS models are shown in Figure [7.2l The QQ plot is

satisfactory as the residuals display only little deviation from the theoretical quantiles
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at the extremes of the series. Nevertheless, the histogram of the residuals looks
good. The plot of residuals against the fitted values seems fine and the lower right
plot of the residuals themselves shows a slight remaining pattern, but not anything

problematic.

Figure shows the diagnostic plots for the TS model. The plots look similar to
those for the SS model. The QQ plot shows a slight deviation from normality at the
extremes of the series which is also seen in the histogram of the residuals. The plot of
the residuals against the fitted values and the residuals themselves show no problems.
The appearance of straight lines in this plot is due to the fact that the residuals take
a small number of values for the corresponding low values of the response and thus,

it is not regarded as a problem.

The Acartia clausi C5 and C6f series examined behave similarly to Acartia clausi

(4, see electronic appendix for details.
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Figure 7.2: Diagnostic plots for the SS GAM for Acartia clausi 4. The QQ plot shows a
slight problem with the Gaussian assumption at the extremes of the series.
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Figure 7.3: Diagnostic plots for the TS GAM for Acartia clausi 4. The QQ plot shows a
small problem with the Gaussian assumption at the extremes of the series.
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Acartia claust copepodite stage 6 males

The Acartia clausi Cém series has a seasonal cycle that changes systematically in

time. The Resampling test for trending seasonality points to stable seasonality.
Resampling Testing Stable vs Trending: p = 0.07 — Stable

The GCV score of the GAMs also favours stable seasonality:
GCYV Score: Non-Seas: 4.935, Stable: 1.381 & Trending: 2.076

The percentage deviance explained by each GAM is presented below:
% Deviance Explained: Non-Seas: 0.596, Stable: 74.7 & Trending: 83.3

Table 7.4: Acartia clausi Cbm ANOVA

Resid. Df | Resid. Dev | Df | Deviance F Pr(>F)
NS | 429.94 2103.506
SS 416 536.255 13.94 | 1567.251 | 87.214 | < 2.2e — 16
TS | 316.876 352.461 99.124 | 183.793 | 1.667 4.913e-4

The ANOVA, however, supports a trending seasonal pattern, Table [7.4]
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Figure 7.4: Clockwise from top left corner, the logged Acartia clausi Com with the trend
from the SS model, the stable seasonals and the series as dots with the fitted

values from the stable (red) and trending (blue) GAMs.
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Figure [7.4] show the Acartia clausi C6m logged densities with the prospective fits

from the SS (red) and TS (blue) models. In the same Figure the trend and seasonals
from the SS GAM are plotted.
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Figure 7.5: The smooth fitted functions for weeks 1-36, in the TS model for the Acartia
clausi Cém data.

In Figures [7.5] and the smooth functions fitted to each week by the TS GAM

are shown. The smooth functions corresponding to a number of weeks differ from

a straight line parallel to the x-axis.

Specifically, the smooth functions of some

weeks like weeks 16-18, 37 and 38 are monotonic indicating a possible systematic

change.

Table 7.5: Acartia clausi Com AIC & BIC

Non-Seasonal | Stable Seasonal | Trending Seasonal
df 3.06 17 116.124
AIC 1915.91 1353.354 1370.306
BIC 1928.359 1422.518 1842

The AIC and BIC scores point to the SS GAM, however.

To further examine the type of changes the seasonal pattern exhibits, we plot the
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Figure 7.6: The smooth fitted functions for weeks 37-52, in the TS model for the Acartia
clausi Cém data.

stable (red) and trending (blue) patterns estimated by the SS and TS GAMs, respec-
tively, Figure [7.7 There is a random change in the size of the estimated trending
seasonals but also there appears to be a slight systematic shift earlier in the year.

In particular it is the descend from the peak that appears to be shifting earlier in

time.

Our decision is that the pattern exhibits a random amplitude change but also starts

shifting slightly earlier in the year.

The diagnostic plots for the SS and TS GAMs are similar to the ones presented for
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Figure 7.7: The stable seasonals, red, and the trending seasonals, blue, from the SS and TS
GAMs, respectively, fitted to the Acartia clausi Com series.

Total Acartia

The total of all Acartia series available in the database includes all observed stages of
clausi, longeremis, discudata and bifilosa. It has a stable seasonal pattern that does

not shift with time. The Resampling results point to a stable seasonal pattern.
Resampling Testing Stable vs Trending: p = 0.784 — Stable

The GCV score of the GAMs coincides with the Resampling results:
GCV Score: Non-Seas: 4.736, Stable: 1.191 & Trending: 2.043

The percentage deviance explained by each GAM is presented below:
% Deviance Explained: Non-Seas: 6.88, Stable: 77.9 & Trending: 83.7

Table 7.6: Total Acartia ANOVA

Resid. Df | Resid. Dev Df Deviance F Pr(>F)
NS | 424.141 1943.114
SS | 415.537 461.211 8.604 | 1481.903 | 155.174 | < 2.2e — 16
TS | 314.972 340.008 | 100.565 | 121.203 | 1.116 0.238
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All the results, Tables [7.6] and [7.7], point to a stable seasonal pattern.

The terms of the fitted GAM with stable seasonality are plotted in Figure [7.8 In
the same Figure we see the series with the fitted values from the stable (red) and
trending (blue) GAMs.

This series has a stable seasonal pattern in terms of systematic changes. It does

exhibit though a random amplitude change.
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Figure 7.8: Total Acartia logged densities with the trend, as a red line, and seasonals from
the SS GAM. The lower plot shows the series as dots with the fits from the SS

(red) and TS (blue) GAMs.

Table 7.7: Total Acartia AIC & BIC

Non-Seasonal | Stable Seasonal | Trending Seasonal
df 8.859 17.463 118.028
AIC 1893.245 1289.154 1358.574
BIC 1929.286 1360.201 1838.763
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7.2.2 Centropages

Centropages is a common genus of calanoid copepods. We will be looking at Cen-
tropages typicus (C. typicus) and Centropages hamatus (C. hamatus). At Helgoland
Roads, these two Centropages species coexist and a seasonal succession is noticed be-
tween C. hamatus and C. typicus. C. typicus prefers the saline and relatively warm
waters of Atlantic origin and is more abundant there in the second half of the year
while maximum abundances of C. hamatus are usually found, before the C. typicus

seasonal peak (Bonnet, 2007)).

C. typicus is a larger species with a more carnivorous diet and being optimally
adapted to warmer waters it is found abundantly only through the warmer months.
C. hamatus is a North Sea resident and more abundant species that is more om-
nivorous in its diet. Like Acartia it is known to produce resting eggs later in the
year that overwinter in the seabed sediments and hatch in Spring to develop a new
population, which reproduces with subitaneous eggs that develop normally to hatch

into naupliar stages (Hay}, pers. comm., 2009).

Centropages typicus

C. typicus is a calanoid copepod with a wide range of distribution in the North
Atlantic and adjacent shelf seas. It feeds on a wide range of prey both phytoplankton
and animal prey (e.g. nauplii of copepods). Stocks increase in temperatures between
13°C and 20°C causing a seasonal peak in summer and up to early winter in the North
Sea. Its over-wintering behaviour is not understood but since it cannot survive in
the North Sea it is associated with influx of water from the Atlantic ocean (Carlotti

& Harris, [2007; Bonnet), 2007).

C. typicus copepodite stages 1 to 4

C. typicus copepodite stages 1 to 4 (C1-4) exhibits a stable seasonal pattern with

one peak per year. The Resampling test points to a stable seasonal pattern.
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Resampling Testing Stable vs Trending: p = 0.809 — Stable

The GCV score of the GAMs agrees with the Resampling results:
GCYV Score: Non-Seas: 0.839, Stable: 0.572 & Trending: 0.916

The percentage deviance explained by each GAM is presented below:
% Deviance Explained: Non-Seas: 15.1, Stable: 44.5 & Trending: 64.6

Table 7.8: C. typicus C1-4 ANOVA

Resid. Df | Resid. Dev Df Deviance F Pr(>F)
NS | 422.475 340.473
SS | 416.198 222.515 6.278 117.958 | 35.145 | < 2.2e — 16
TS | 308.248 141.977 107.949 | 80.538 1.62 0.001

The ANOVA | Table[7.§] is in favour of a trending seasonal model while the Resam-
pling p-value, the GCV score, the AIC and BIC, Table [7.9] a stable one. There is
a random change in the size of the seasonals and, as explained before, the GAMs
are very sensitive to any kind of change. We believe that there is a fluctuation in
the size of the seasonals but not a systematic shift in time, i.e. pseudo-trending

seasonality:.

In Figure [7.9 we see the logged series of C. typicus C1-4 with the terms from the SS
GAM and the SS (red) and TS (blue) fitted GAMs.

Table 7.9: C. typicus C1-4 AIC & BIC

Non-Seasonal | Stable Seasonal | Trending Seasonal
df 10.525 16.802 124.752
AIC 1144.157 972.965 994.753
BIC 1186.975 1041.324 1502.296

Figures and show the diagnostic plots for the two GAMs. Both QQ plots

show a deviation from normality.

Finally, as a note we mention that the somewhat intriguing pattern that appears in

the residuals is just a product of the smooth fit. The models fit smooth and gradual
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Figure 7.9: C. typicus C1-4 with the trend from the SS model, the stable seasonals and
the series (marked as dots) with the two fits from the stable (red) and trending
(blue) GAMs.

increases and decreases in the numbers of C. typicus C1-4 but the real data exhibits
very sharp rises and falls which causes a pattern to appear in the residuals. This
could be seen as an indication that these type of time series (rapid increase and
decrease) are not suitably modelled by GAMs. Another possibility is to model them
as binary data with the Binomial family as we did for most phytoplankton series in

the previous chapter.

The results for the other C. typicus series are very similar to those for C. typicus
C1-4. The series of C. typicus C6m, however, has only 75 non zero values and the
diagnostic plots for the GAMs show a poor fit. Modelling it as a binary variable
with a Binomial GAM would be better suited. For detailed results for these series

please see the electronic appendix.
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Figure 7.11: C. typicus C1-4 diagnostic plots for the TS GAM.
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Centropages hamatus

Centropages hamatus (C. hamatus) is like C. typicus a very abundant calanoid cope-
pod. However, contrary to C. typicus, resting eggs of C. hamatus have been identified
in the Southern North Sea. This is commonly interpreted to mean that these eggs
initiate a first generation which hatches and then develops to adult-hood during
March, when the first females are recorded in the plankton (Bonnet, 2007). All anal-
ysed hamatus series that follow are found to have a seasonal pattern which is stable

n time.

Centropages hamatus copepodite stage 4

C. hamatus C4 exhibits one major peak per year. It starts in spring and lasts till

autumn. The Resampling results identify a stable seasonal pattern.
Resampling Testing Stable vs Trending: p = 0.531 — Stable

This is further verified by the GCV score of the GAMs:
GCYV Score: Non-Seas: 1.475, Stable: 0.791 & Trending: 1.181

The percentage deviance explained by each GAM is presented below:
% Deviance Explained: Non-Seas: 2.51, Stable: 49.5 & Trending: 66.5

Table 7.10: C. hamatus C4 ANOVA

Resid. Df | Resid. Dev Df Deviance F Pr(>F)
NS 430 628.765
SS | 424.657 325.462 5.343 303.303 | 74.062 | < 2.2e — 16
TS | 324.255 216.137 100.402 | 109.326 | 1.634 0.001

The seasonality of the series changes in terms of size in a random way, see Figure
[7.12] The ANOVA, Table[7.10] probably picks up this variation in size and proposes
the trending GAM. However, the GCV score, the p-value from the Resampling and
the AIC and BIC scores, Table [7.11], all indicate a stable model. This pattern is

pseudo-trending in amplitude.
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Figure 7.12: Clockwise from top left: C. hamatus C4 with the trend from the SS model,

the stable seasonals and the series, marked as dots, with the fit from the stable
(red) and trending (blue) GAMs.

In Figure the logged C. hamatus C4 series with the two prospective fits from
the SS (red) and the TS (blue) models are shown. In the same Figure the trend and
seasonals from the SS GAM are also plotted.

Table 7.11: C. hamatus C4 AIC & BIC

Non-Seasonal | Stable Seasonal | Trending Seasonal
df 3 8.343 108.745
AIC 1394.106 1120.316 1144.287
BIC 1406.312 1154.261 1586.708

Figures [7.13] and [7.14] show the diagnostic plots for the two GAMs. Both the SS
and the TS GAMs give an adequate fit. They both exhibit a small deviation from
the normality assumption in the QQ plots and histograms but that does not look

significant enough to prove them inappropriate.

The other C. hamatus series (C5, C6f and C6m) behave similarly to this one and

thus their results will not be presented here.
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Figure 7.13: C. hamatus C4 diagnostic plots for the SS GAM.
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Figure 7.14: C. hamatus C4 diagnostic plots for the TS GAM.
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7.2.3 Pseudocalanus elongatus copepodite stages 1 to 6

Pseudocalanus is considered one of the most common and typical coastal copepods
in the North Sea. It is a largely herbivorous species with no resting/overwintering
developmental stage (Hay, pers. comm., 2009). Pseudocalanus elongatus has six
naupliar stages and five copepodite stages before it reaches adulthood in copepodite
stage 6. It favours temperature of 5° — 15°C while reduced growth has been verified
at 20°C (Stegert et al., 2007)). Pseudocalanus elongatus C1-6 has seasonals that peak
twice within a year. The first peak is in spring while the second in autumn. The
pattern appears to be stable in terms of systematic shifts but the size of the seasonals

changes randomly over the years.

Lopged F;oa:u‘(am*u: vongahs 016 { , O | Siabie Seascnoe

4 6 B

0 2
0 0o

]

Logped Pseudocalanus elongatus C1-6

2000 a2 204 2006 2008
Yaars

Figure 7.15: Clockwise from top left: the logged Pseudocalanus elongatus C1-6 with the
trend from the SS model, the stable seasonals and the logged series (dotted)
with the fitted values of the SS (red) and TS (blue) GAMs.

In Figure [7.15| we see the logged Pseudocalanus elongatus C1-6 series, the terms and
fitted values from the SS GAM and the fitted values from the TS GAM.
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7.2.4 Temora longicornis

Temora longicornis (T. longicornis) is a small, common and often abundant copepod
species endemic to the region and an important component of the plankton commu-
nity. This small copepod is omnivorous, also able to produce resting eggs when
conditions are poor, enabling it to overwinter in a resting state in the sediments;
to reappear when conditions improve in spring (Hay, pers. comm., 2009). All the
following Temora series are T. longicornis and are found to have a stable seasonal
pattern in time with two seasonal peaks. It should be noted that the 200 micron
mesh of the sampler does not catch the small C1- C3 copepodites of this small species

very well.

Temora longicornis copepodite stage 1

The series of T. longicornis C1 has a stable seasonal pattern according to the Re-

sampling results.
Resampling Testing Stable vs Trending: p = 0.241 — Stable

The GCV score of the GAMs agrees with the Resampling conclusion:
GCV Score: Non-Seas: 0.851, Stable: 0.737 & Trending: 1.136

The percentage deviance explained by each GAM is presented below:
% Deviance Explained: Non-Seas: 0.308, Stable: 20.6 & Trending: 47.3

Table 7.12: T. longicornis C1 ANOVA

Resid. Df | Resid. Dev Df Deviance | F Pr(>F)
NS 430 362.798
SS | 417.485 289.028 12.515 73.77 8.514 | 5.696e-15
TS | 316.323 191.856 101.162 | 97.173 | 1.584 0.001

All the tests and criteria, except the ANOVA point to the selection of the stable
seasonal GAM, Tables and
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Figure 7.16: From top left, clockwise wee see the logged series of T. longicornis C1 with the
trend from the SS model, the stable seasonals and the logged series marked as
dots with the fitted values from the SS (red) and TS (blue) GAMs.

In Figure we see the fitted values from the SS (red) and TS (blue) models
and the terms of the SS one. The size of the seasonal pattern changes randomly in

time. The ANOVA probably prefers the TS GAM because it picks up this random
change.

Table 7.13: Temora C1 AIC & BIC

Non-Seasonal | Stable Seasonal | Trending Seasonal
df 3 15.515 116.677
AIC 1156.545 1083.372 1108.67
BIC 1168.75 1146.493 1583.36

Figures and show the diagnostic plots for the two GAMs. The normality
assumption is violated in both models.

The other Temora longicornis series behave similarly to this one but have better

diagnostic plots for both GAMs, see electronic appendix.
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Figure 7.17: The diagnostic plots for the SS model of T. longicornis C1.
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Figure 7.18: The diagnostic plots for the TS model of T. longicornis C1.



260

Total Temora longicornis

The Total T. longicornis series includes all the observed stages of Temora longicornis.
It has a small peak in spring and a bigger one in autumn. This is an aggregate
series of the developmental stages and thus, the interpretation of the results is more
difficult.

Logged oty T nyoema |

\ N Sinble Seasonys
) | " -
\ L b ‘

o

)
! } LR I T i | {
@~ ' ' by \ & | I
g- o ‘ L iv |
B 000 0 004 2006 2008 T 0 30 40
2
g
ha p '
- 1 |
B f , i § g
| | / f \
% | | i } \ / \
Gl 1 1 |
\ ,
1
2000 w0z 2004 2006 2008
Yaars

Figure 7.19: Clockwise from top left: the logged Total T. longicornis with the trend from the
SS model, the stable seasonals and the logged series (dotted) with the fitted
values of the SS (red) and TS(blue) GAMs.

In Figure[7.19 we see the logged Total T. longicornis series, the terms and fitted val-
ues from the SS GAM and the fitted values from the TS GAM. The pattern changes
randomly in size but is stable in terms of systematic changes. This series has a pat-

tern whose amplitude fluctuates but does not exhibit any systematic changes.
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7.2.5 Paracalanus parvus copepodite stages 1 to 6

Paracalanus parvus is a small, mainly herbivorous coastal copepod found in temper-
ate waters. Usually in the northern North Sea Paracalanus appears less abundant
than other small copepods such as Pseudocalanus, Acartia and Temora. Like Pseu-
docalanus it has no resting stage for overwintering; instead it survives as best it can
on the food available or stored as lipid in its body (Hay], ipers. comm., 2009)). Para-
calanus parvus C1-6 series has a seasonal pattern with two peaks, one in spring and

one in autumn. We believe that the seasonal pattern does not exhibit systematic

shifts but a random amplitude change.
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Figure 7.20: Clockwise from top left: the logged Paracalanus parvus C1-6 with the trend
from the SS model, the stable seasonals and the logged series (dotted) with the
fitted values of the SS (red) and TS(blue) GAMs.

In Figure we see the logged Paracalanus parvus C1-6 series, the terms and fitted
values from the SS GAM and the fitted values from the TS GAM.
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7.2.6 Small Calanoid Copepods copepodite stages 1 to 6

The small Calanoid Copepods group is compounded of a number of species mainly
Acartia, Temora, Pseudocalanus, Paracalanus and Centropages. It is of interest to
look at the whole group as any trends would be very significant for overall food web
dynamics in the region. It should be noted that the 200micron mesh size of the
sampling net does not catch the C1 -C3 very well as they are too small. The series
of Small Calanoid Copepods copepodite stages 1 to 6 (C1-6) has a stable seasonal

pattern in terms of systematic changes according to the Resampling results.
Resampling Testing Stable vs Trending: p = 0.271 — Stable

The GCV score of the GAMs also points in the same direction:
GCV Score: Non-Seas: 1.777, Stable: 0.919 & Trending: 1.301

The percentage deviance explained by each GAM is presented below:
% Deviance Explained: Non-Seas: 14.6, Stable: 57.6 & Trending: 68.2

Table 7.14: Small Calanoid Copepods C1-6 ANOVA

Resid. Df | Resid. Dev | Df | Deviance F Pr(>F)
NS | 517.359 892.112
SS | 509.714 442.351 7.644 | 449.761 | 67.797 | < 2.2e — 16
TS | 411.838 331.725 97.877 | 110.626 | 1.403 0.013

The ANOVA, Table [7.14] points to a trending seasonal pattern while all other test

results and criteria, Table [7.15], employed point to the stable seasonal model.

In Figure the fitted values of the SS (red) and TS (blue) GAMs and the esti-
mated terms of the SS GAM are shown. There are two main peaks in the seasonal

pattern.

There is a fluctuation in the size of the seasonals, see Figure[7.21], but no change of a
systematic nature occurs. This fluctuation could be the reason the ANOVA prefers
the TS GAM.
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Figure 7.21: The logged series of Small Calanoid Copepods C1-6 with the trend from the
SS model, the stable seasonals and the logged series plotted as dots with the
fitted values from the SS (red) and TS (blue) GAMs.

Table 7.15: Small Calanoid Copepods C1-6 AIC & BIC

Non-Seasonal | Stable Seasonal | Trending Seasonal
df 9.641 17.286 115.162
AIC 1789.887 1436.193 1480.565
BIC 1831.01 1509.921 1971.766

Figures and show the diagnostic plots for the two models. The QQ plots
and histograms betray a deviation from the assumption of normality towards the

lower values of the series.



264

o » e ) H L R T

Figure 7.22: The diagnostic plots for the SS model of Small Calanoid CopepodsC1-6.
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Figure 7.23: The diagnostic plots for the TS model of Small Calanoid CopepodsC1-6.
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7.2.7 Calanus finmarchicus

Calanus finmarchicus (C. finmarchicus) is one of the most common copepods in the
North Sea. It is an important component of the North Sea food web as its juveniles
are food for a lot of commercial fish in spring and early summer. This species is
largely herbivorous although able to feed on some microzooplankton and even its
own eggs. Its life-cycle consists of egg, six naupliar stages and five copepodid stages
(Hay, pers. comm., 2009). In stage 5 finmarchicus goes into diapause through the
winter, descending to depths over 500m off the edge of the continental shelf, to

emerge in early spring as a stage six adult.

The exact environmental conditions that trigger and stop the diapausing stage are
not known. C. finmarchicus exhibits a reproductive peak in April till June while later
the diapausing stages (C5 and some C6 females) sink to the bottom to over-winter.
It favours cool waters 0° - 15° and it is believed to have no resident population in the
North Sea (Bonnet et al. 2005). The North Sea is shallow and thus, animals enter
diapause partially which leads to low survival rates (Hirche, [1983). General belief is
that the population is re-initiallized every year by inflow of adults from the North
Atlantic.

In recent years research shows that changes of the climatological conditions impact
on the number and distribution of C. finmarchicus. Work on the CPRJ] data shows
that in the last 40 years it has shifted progressively northwards with its numbers
decreasing (Reid et al. 2003).

Calanus finmarchicus copepodite stage 5

The C. finmarchicus C5 series exhibits two (major) peaks in the year. The first
one can be attributed to population development within the influx of water from

the North Atlantic while the next one is a first reproduced generation. Although as

4Continuous Plankton Recorder
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with most copepods reproduction is continuous while food resources are sufficient,
climatological factors influence the reproduction stages of C. finmarchicus so more
generations can be produced under appropriate circumstances. These could manifest

as other peaks within a year (Hay, pers. comm., 2009).

The results from the Resampling tests for trending seasonal pattern on the logged
series suggest a systematic time shift in the occurrence of the peaks and troughs of

the series, i.e. of the periodic component.
Resampling Testing Stable vs Trending: p = 0.001 — Trending

The GCV score of the GAMs, however, points to a stable seasonal pattern:
GCYV Score: Non-Seas: 5.35, Stable: 0.439 & Trending: 0.550

The percentage deviance explained by each GAM is presented below:
% Deviance Explained: Non-Seas: 0.762, Stable: 29.2 & Trending: 51.8

Table 7.16: C. finmarchicus C5 ANOVA

Resid. Df | Resid. Dev | Df | Deviance F Pr(>F)
NS 524 282.883
SS | 509.998 211.56 14.002 | 71.322 | 12.279 | < 2.2e — 16
TS | 415.402 144.086 94.596 | 67.474 2.056 | 6.844e — 07

The existence of trend in the seasonals is further verified by the GAMSs’ results.
The ANOVA, Table[7.16| and AIC, Table[7.17, agree with the Resampling outcome
while the more conservative BIC does not recognise the benefit of including trending

seasonals in the model.

In Figure the logged series of C. finmarchicus C5 with the SS terms and the
fit from both the SS and the TS GAMs. The fit from the TS GAM seems better.
Looking at the first plot in Figure we notice the change in the size of the
seasonals but in this case it is not big enough relatively to the rate of shift to mask

it from the Resampling test.

The smooth trending seasonals as fitted to each week are shown in Figures
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Figure 7.24: The logged series of C. finmarchicus C5 with the trend from the SS model, the
stable seasonals and the series as dots with the fit from the SS (red) and TS
(blue) GAMs.

and [7.260, Weeks 29-31 differ from a straight line parallel to the x-axis and are

monotonic.

In Figure we see the two seasonal patterns, stable (red) and trending (blue),
estimated by the SS and TS GAMs, respectively, for the C. finmarchicus C5 series.
There is a fluctuation in the size of the seasonals and a shift earlier in the year.
We note that the pattern changes throughout the years and the second peak slowly
becomes the dominant one. Specifically, the declining slope of the major peak and

the small winter peak appear to be shifting earlier in time.

In Figure [7.2§ we see a plot of the de-trended fitted values from TS GAM for C.
finmarchicus C5 with weeks 17, 22, 34 and 39 marked by vertical lines in black, red,
green and blue colour, respectively. We are using the vertical lines to highlight some
peaks and troughs in the seasonals in order to observe the shift earlier in time. This
means that we use the peaks and troughs to quantify the rate of change while marine
biologists would probably use the time of first rise to the peak, however, this is hard

to identify.
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Figure 7.25: The smooth trending seasonals for weeks 1-36 estimated in the TS model for
the log of C. finmarchicus C5.
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Figure 7.26: The smooth trending seasonals for weeks 37-52 estimated in the TS model for
the log of C. finmarchicus C5.
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Figure 7.27: The stable (red) and trending (blue) seasonal patterns from the SS and TS
GAMs, respectively, for C. finmarchicus Cb.
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Figure 7.28: The de-trended fitted values from the TS GAM for C. finmarchicus C5. Weeks
17, 22, 34 and 39 are marked by dotted lines in black, red, green and blue,
respectively.
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Table 7.17: C. finmarchicus C5 AIC & BIC

Non-Seasonal | Stable Seasonal | Trending Seasonal
df 3 17.002 111.598
AIC 1172.462 1047.651 1034.808
BIC 1185.258 1120.170 1510.809

Figures [7.29] and [7.30] depict the diagnostic plots for the SS and TS fitted GAMs.
The QQ plots and histograms of the residuals show a right skewed distribution of
residuals for both models. Nonetheless, there is an apparent gradual improvement

as we move from the SS to the TS GAM.
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Figure 7.29: The diagnostic plots for the SS GAM of C. finmarchicus C5.
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Figure 7.30: The diagnostic plots for the TS GAM of C. finmarchicus C5.

Calanus finmarchicus copepodite stage 6 females

The Resampling test results for trending seasonality for the C. finmarchicus C6f

logged series show that there is no systematic time shift in its pattern.
Resampling Testing Stable vs Trending: p = 0.087 — Stable

The GCV score of the GAMs reinforces the belief of a stable seasonal pattern:
GCV Score: Non-Seas: 0.183, Stable: 0.162 & Trending: 0.226

The percentage deviance explained by each GAM is presented below:
% Deviance Explained: Non-Seas: 2.88, Stable: 17.5 & Trending: 40.1

Table 7.18: C. finmarchicus C6f ANOVA

Resid. Df | Resid. Dev Df Deviance F Pr(>F)
NS 024 95.327
SS | 516.436 80.943 7.564 14.384 | 12.133 | 2.851e-15
TS | 414.763 28.834 101.673 | 22.109 1.533 0.002

Figure shows the fit of the stable (red) and trending (blue) GAMs to the logged
C. finmarchicus C6f series and the terms of the SS model.
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Figure 7.31: The series of C. finmarchicus C6f with the trend from the SS model, the stable
seasonals and the series marked by dots with the fit from the SS (red) and TS
(blue) GAMs, appear clockwise from top left.

The ANOVA indicates the existence of a trend in the seasonals but it is of a random
change in the amplitude of the pattern and not a systematic change. There is also
the possibility that there is a small shift in time but it is only now starting and
hence, it is not detected by the Resampling. In this occasion re-scaling the series
to accommodate for the rapid changes in the amplitude of the seasonals and then

testing again could help detect it.

Table 7.19: C. finmarchicus C6f AIC & BIC

Non-Seasonal | Stable Seasonal | Trending Seasonal
df 3 10.564 112.237
AIC 600.323 529.412 564.949
BIC 613.119 574.472 1043.672

The AIC and BIC scores, Table [7.19] verify our decision of stable seasonality.

The diagnostic plots for the GAMs are similar to the ones for C. finmarchicus
C5.
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Calanus finmarchicus copepodite stage 6 males

The results for C. finmarchicus C6m series are similar to the ones for C6f. The series

has a seasonal pattern that does not exhibit a systematic shift in time.
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Figure 7.32: Clockwise from top left: logged C. finmarchicus C6m with the trend from the
SS model, the stable seasonals and the series as dots with the fitted values from
the SS (red) and TS (blue) GAMs.

Figure shows the SS (red) and TS (blue) GAMs’ fitted values and the terms of

the SS one. This series has a pseudo-trending in amplitude seasonal pattern.
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7.2.8 Calanus helgolandicus

Calanus helgolandicus (C. helgolandicus) is a southern temperate species that has
not been studied as extensively as C. finmarchicus and thus less is known about its
life-cycle. It is not thought to have a diapause stage like C. finmarchicus but like
its congener it is largely herbivorous (Hay, pers. comm., 2009). It favours warmer
waters than C. finmarchicus but as the water temperature increases in the North Sea
greater numbers of C. helgolandicus are observed. It has a resident population and
at cold temperatures -around 6°C or less- it cannot reproduce and barely survives.
It exhibits two peaks, one in spring and one in autumn but there is a variation in

occurrence (Bonnet et al., 2005).

Calanus helgolandicus copepodite stage 5

When the logged C. helgolandicus C5 series is tested there is evidence of a trending
seasonal pattern. The Resampling p-value indicates that the pattern is not sta-
ble.

Resampling Testing Stable vs Trending: p = 0 — Trending

The GCV score of the GAMs, however, favours the SS GAM:
GCV Score: Non-Seas: 1.444, Stable: 0.931 & Trending: 1.144

The percentage deviance explained by each GAM is presented below:
% Deviance Explained: Non-Seas: 11.2, Stable: 46.2 & Trending: 65.4

Table 7.20: C. helgolandicus C5 ANOVA

Resid. Df | Resid. Dev | Df | Deviance F Pr(>F)
NS | 521.451 741.384
SS 510.049 449.106 11.402 | 292.279 | 29.113 | < 2.2e — 16
TS | 410.449 288.613 99.601 | 160.492 | 2.292 6.247¢-09

The ANOVA, Table [7.20] agrees with the Resampling result and points to the TS
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model.

The BIC, Table and the GCV score prefer the stable seasonal GAM while all

other criteria used for GAM selection coincide with the above verdict of trending

seasonality.
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Figure 7.33: Clockwise form top left we see the logged C. helgolandicus C5 series with the
trend from the SS model, the stable seasonals and the logged series as dots
with the fitted values of the SS (red) and TS (blue) GAMs.

In Figure we see the fits of the SS (red) and TS (blue) models and the terms of
the SS one. The TS one provides a better fit.

The series has two main peaks, the first one (spring) can be attributed to influx of
mixed coastal and oceanic water from the warmer south and west, since it overwinters
with very poor survival while the second peak (early autumn) is the main generation
population. There is a third peak in late autumn that could be another generation.

All three peaks are shifting slightly earlier every year, Figure [7.33]

The smooth functions fitted to the trending seasonals by the TS GAM are shown in
Figures and [7.35] Weeks 29, 30, 32-37, 39, 41, 46 and 47 differ greatly from a
straight line parallel to the x-axis. From these Figures we can also see the nature
of the change. Weeks 29, 30, 32-37 and 47 exhibit a monotonic increase of value
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Figure 7.34: The smooth trending seasonals for weeks 1-36 estimated in the TS model for
the log of C. helgolandicus C5.

which points to a systematic change while weeks 39, 41 and 46 exhibit an increase
and decrease in value which points to a fluctuation in either phase or amplitude of

the seasonals.

Table 7.21: C. helgolandicus C5 AIC & BIC

Non-Seasonal | Stable Seasonal | Trending Seasonal
df 5.549 16.951 116.551
AIC 1684.354 1443.494 1410.114
BIC 1708.022 1515.795 1907.240

In Figure we see the two seasonals estimated by the SS and TS GAMs, respec-
tively, fitted to the C. helgolandicus C5 series. The stable one is marked by a red
line and the trending by a blue line. The pattern is shifting earlier in the year. The
amplitude of the individual peaks changes randomly with time while overall the size

of the pattern is increasing systematically.

The de-trended fitted values from the TS model are plotted in Figure [7.37, Weeks
16, 22, 37 and 46 are marked by vertical lines in black, red, green and blue colours,

respectively. These vertical lines are marking the most prevalent peaks in the series.
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Figure 7.35: The smooth trending seasonals for weeks 37-52 estimated in the TS model for
the log of C. helgolandicus C5.

We can further verify with this plot that the peaks shift earlier in the year.

Figures [7.38] and [7.39] show the diagnostic plots for the two models. The models’

QQ plots and histograms betray a slight deviation from the assumption of normal-

ity.
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Figure 7.36: The stable, red, and trending, blue, seasonals estimated by the SS and TS
GAMs, respectively, for the C. helgolandicus C5 series.
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Figure 7.37: The de-trended fitted values from the TS model for the C. helgolandicus C5
series. Marked by the black, red, green and blue line are, respectively, weeks
16, 22, 37 and 46.
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Figure 7.38: The diagnostic plots for the SS model of C. helgolandicus C5.

Figure 7.39: The diagnostic plots for the TS model of C. helgolandicus C5.
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Calanus helgolandicus copepodite stage 6 females

The C. helgolandicus C6f series appears to have a trending seasonal pattern according

to the Resampling results.
Resampling Testing Stable vs. Trending: p = 0 — Trending

The GCV score of the GAMs points to the SS GAM but the score of the TS one is
only slightly greater:
GCYV Score: Non-Seas: 1.228, Stable: 0.817 & Trending: 0.851

The percentage deviance explained by each GAM is presented below:
% Deviance Explained: Non-Seas: 11.3, Stable: 43.2 & Trending: 69.9

Table 7.22: C. helgolandicus C6f ANOVA

Resid. Df | Resid. Dev Df Deviance F Pr(>F)
NS 024 639.012
SS | 516.917 409.27 7.083 229.742 | 40.966 | < 2.2e — 16
TS| 411.811 216.791 105.105 | 192479 | 3.479 | <2.2e — 16

The Resampling p-value, the ANOVA, Table and the AIC, Table[7.23] all point
to the existence of a trending seasonal pattern. Hence, the GAM that best describes

the data is the trending seasonal model.

Figure shows the fitted values of the SS (red) and TS (blue) models and the
terms of the SS one. C. helgolandicus C6f exhibits a variety of peaks per year.

The smooth functions fitted by the TS GAM for the trending seasonals are plotted in
Figures and [7.42] Many weeks deviate from a straight line parallel to the x-axis,
for example weeks 29-42. In particular, weeks 29-37 are monotonically increasing

indicating a systematic change.

Figure shows the stable (red) and the trending (blue) seasonals estimated by
the SS and TS GAMs, respectively, for the C. helgolandicus C6f series. The pattern

exhibits a systematic increase in amplitude and a systematic phase change.
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Figure 7.40: The logged C. helgolandicus C6f series with the trend from the SS model, the
stable seasonals and the series, this time marked by dots, with the fitted values
from the SS (red) and TS (blue) GAMs.

Table 7.23: C. helgolandicus Co6f AIC & BIC

Non-Seasonal | Stable Seasonal | Trending Seasonal
df 3 10.083 115.189
AIC 1601.094 1380.902 1256.871
BIC 1613.890 1423.910 1748.185

In Figure [7.44] we see a plot of the de-trended fitted values of the TS GAM fitted
to the logged data. Weeks 30 and 46 are marked by vertical lines in black and red,
respectively. These lines mark the autumn peak of C. helgolandicus C6f. The peak
shifts earlier in the year while it increases with time.

Figures [7.45] and [7.46] show the diagnostic plots for the SS and TS models. Both

models deviate slightly from normality but there is nothing alarming about these
plots.
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Figure 7.41: The smooth trending seasonals for weeks 1-36 estimated in the TS model for

the log of C. helgolandicus C6f.
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Figure 7.42: The smooth trending seasonals for weeks 37-52 estimated in the TS model for

the log of C. helgolandicus C6f.
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Figure 7.43: The stable (red) and trending (blue) seasonals from the SS and TS models,
respectively, for the C. helgolandicus C6f series.
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Figure 7.44: The de-trended fitted values from the TS model for the C. helgolandicus C6f
series. Marked by the black and red lines are, respectively, weeks 30 and 46.
The pattern shifts earlier in the year.
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Figure 7.45: The diagnostic plots for the SS model of C. helgolandicus C6f.
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Figure 7.46: The diagnostic plots for the TS model of C. helgolandicus C6f.
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Calanus helgolandicus copepodite stage 6 males

The C. helgolandicus copepodite stage 6 males exhibit a behaviour very similar to
the females of that stage. Thus, the Resampling test points to a trending seasonal

pattern.

Resampling Testing Stable vs. Trending: p = 0 — Trending

The GCV score of the GAMs reinforces the belief of a trending seasonal pattern:
GCV Score: Non-Seas: 0.658, Stable: 0.422 & Trending: 0.381

The percentage deviance explained by each GAM is presented below:
% Deviance Explained: Non-Seas: 9.31, Stable: 44.1 & Trending: 73.5

Table 7.24: C. helgolandicus Com ANOVA

Resid. Df | Resid. Dev Df Deviance F Pr(>F)
NS 524 342.428
SS | 516.678 211.141 7.322 131.287 | 43.877 | < 2.2e — 16
TS | 415.934 100.196 100.744 | 110.945 | 4.572 | < 2.2e — 16

Similar to the females of C. helgolandicus all testing methods, Tables and

apart from BIC, point to a trending seasonal pattern.

In Figure we can see the fitted values if the SS (red) and TS (blue) GAMs and
the terms of the SS one. The TS model provides a better fit to the data.

Figures [7.48] and [7.49| show the fifty-two smooth functions fitted for the trending
seasonals in the TS GAM. Weeks 28-39 deviate from a straight line parallel to the

x-axis. The monotonic nature of weeks 29-37 indicates a systematic change.

To examine further the types of change in the pattern of the C. helgolandicus Cém
series we plot the two patterns estimated by the SS and TS GAMs together, see
Figure [7.50, The pattern changes systematically in amplitude and phase. The size
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Figure 7.47: The logged C. helgolandicus Coém series with the trend from the SS model, the
stable seasonals and the series, this time marked by dots, with the fitted values
from the SS (red) and TS (blue) GAMs.

Table 7.25: C. helgolandicus Com AIC & BIC

Non-Seasonal | Stable Seasonal | Trending Seasonal
df 3 10.322 111.066
AIC 1272.944 1033.247 842.657
BIC 1285.739 1077.274 1316.387

of the pattern increases over the years and the pattern itself is shifting earlier in the

year.

Figure [7.51| shows a plot of the de-trended fitted values of the TS GAM fitted to the
logged data. Week 31 is marked by a black vertical line while week 41 by a red one.
The peak that develops between these two vertical line slowly shifts forward in the

year while it increases in size.

Figures and show the diagnostic plots for the two GAMs. The QQ plots

and histograms show a slight deviations from the normality assumption.
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Figure 7.48: The smooth trending seasonals for weeks 1-36 estimated in the TS model for
the log of C. helgolandicus Com.
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Figure 7.49: The smooth trending seasonals for weeks 37-52 estimated in the TS model for
the log of C. helgolandicus Com.
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Figure 7.50: The stable (red) and trending (blue) seasonal patterns estimated by the SS and
TS GAMs, respectively, for the C. helgolandicus Com series.
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Figure 7.51: The de-trended fitted values from the TS model for the C. helgolandicus Com
series. Marked by the black and the red lines are, respectively, weeks 31 and
41,
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Figure 7.52: The diagnostic plots for the SS model of C. helgolandicus Céom.
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Figure 7.53: The diagnostic plots for the TS model of C. helgolandicus Cém.
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7.2.9 Juvenile Calanus copepodite stages 1 to 4

Calanus in the early copepodite stages 1-4 (C1-4) cannot be accurately distinguished
between the two dominant species, finmarchicus and helgolandicus. Therefore, the

Juvenile Calanus stages 1-4 series includes juveniles from both species.
The Resampling test indicates that this series has a trending seasonal pattern.
Resampling Testing Stable vs Trending: p = 0.002 — Trending

The GCV score of the GAMs, however, is lower for the SS model:
GCV Score: Non-Seas: 2.471, Stable: 1.338 & Trending: 1.594

The percentage deviance explained by each GAM is presented below:
% Deviance Explained: Non-Seas: 9.84, Stable: 53.4 & Trending: 70.8

Table 7.26: Juvenile Calanus C1-4 ANOVA

Resid. Df | Resid. Dev | Df | Deviance F Pr(>F)
NS | 522.078 1272.507
SS | 513.365 657.018 8.713 615.49 | 55.193 | < 2.2e — 16
TS | 413.791 412.421 99.574 | 244.596 | 2.465 2.291e-10

The BIC, Table [7.27, and the GCV score select the stable GAM but the AIC, the
ANOVA, Table[7.26], and the Resampling results point to a trending seasonality.

In Figure we see the terms of the SS GAM and the fitted values of the the SS
(red) and TS (blue) GAMs. The seasonal pattern appears to change in size.

Figures [7.55| and [7.56] show the fifty-two smooth functions fitted for the trending
seasonals in the TS GAM. Weeks 26-36, 37 and 38 deviate from a straight line parallel

to the x-axis. Weeks 27-36 are monotonic thus indicating a systematic change.

Figure depicts the stable (red) and trending (blue) seasonals as estimated by
the SS and TS GAMs, respectively, fitted to the Juvenile Calanus C1-4 series. The

amplitude of the seasonals fluctuates. Both peaks appear to systematically shift
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Figure 7.54: Clockwise from top left: the logged Juvenile Calanus C1-4 with the trend from
the SS model, the stable seasonals and the logged series plotted as dots with
the fitted values of the SS (red) and TS (blue) models.

Table 7.27: Juvenile Calanus C1-4 AIC & BIC

Non-Seasonal | Stable Seasonal | Trending Seasonal
df 4.922 13.635 113.209
AIC 1967.258 1636.981 1591.188
BIC 1988.251 1695.139 2074.058

earlier in the year but it is more pronounced for the second peak. Furthermore, the
amplitude of the second peak is gradually increasing while the amplitude of the first

one fluctuates.

In Figure we see a plot of the de-trended fitted values from the TS model. Weeks
14, 23, 32 and 41 are marked by dotted vertical lines in black, red, green and blue,
respectively. The Juvenile Calanus C1-4 series has two main peaks, one in spring
and one in autumn. The second peak, marked by the green and blue lines, moves
earlier in the year. The same is true for the first peak, marked by the black and red

lines, but the shift is not of the same rate, i.e. shifts slower.

It is likely, from what we know of the differences in C5 and adult seasonal abundances
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Figure 7.55: The smooth trending seasonals for weeks 1-36 estimated in the TS model for
the log of Juvenile calanus C1-4.
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Figure 7.56: The smooth trending seasonals for weeks 37-52 estimated in the TS model for
the log of Juvenile calanus C1-4.
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Figure 7.57: The stable (red) and trending (blue) seasonal patterns from the SS and TS
models, respectively, for the Juvenile Calanus C1-4.

and biology, that a significant number of juvenile Calanus in the first peak are C.
finmarchicus, whereas the majority in the second peak are C. helgolandicus. This
fits with the analysis results for the C. finmarchicus C5 trend and with the trends
seen in all the C. helgolandicus data series. i.e. the C. helgolandicus trend indicates

a more pronounced shift than is evident for C. finmarchicus.

Figures and show the diagnostic plots for the two models. Both models are

satisfactory.
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Figure 7.58: The de-trended fitted values from the TS model for the Juvenile Calanus C1-4.
Vertical lines mark weeks 14, 23, 32 and 41 in colours black, red, green and
blue, respectively.
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Figure 7.59: The diagnostic plots for the SS model of Juvenile Calanus C1-4.
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Figure 7.60: The diagnostic plots for the TS model of Juvenile Calanus C1-4.
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7.2.10 Ozthona

Oithona is a very small non-calanoid copepod belonging to the order Cyclopoida
that is an omnivorous ambush feeder, feeding on large phytoplankton cells and mi-
crozooplankton. The Oithona genus is found very commonly in the North Sea and
mainly as the very abundant species Oithona similis. Two other species of Oithona
are found in smaller abundances. These are O. nana, a small inshore species, occa-
sionally abundant, and O. plumifera that is an oceanic species and occasional visitor
to the samples off Stonehaven. The adult copepods can be distinguished but juvenile
stages are difficult to separate into species. As with the other small copepods the
juvenile C1 - C3 stages are not sampled by the 200 micron plankton net with the

same efficiency as the larger, later developmental stages (C4 - C6).

Nielsen & Sabatini (1996) state that the Oithona species do not exhibit as much
variation as the calanoid copepods in terms of their biomass and production. We

examine an aggregate series of Oithona stages C1-6.

Oithona copepodite stages 1 to 6

The Oithona C1-6 has a seasonal pattern that peaks in spring and summer. The

Resampling recognises a stable seasonal pattern.
Resampling Testing Stable vs. Trending: p = 0.083 — Stable

The GCV score of the GAMs also points to a stable seasonality:
GCYV Score: Non-Seas: 1.453, Stable: 1.295 & Trending: 1.687

The percentage deviance explained by each GAM is presented below:
% Deviance Explained: Non-Seas: 45.9, Stable: 53.5 & Trending: 68.3

The Resampling p-value, the GCV score and the BIC suggest a stable seasonal
pattern. However, the ANOVA, Table[7.28, and AIC, Table[7.29] indicate a trending

model as appropriate.
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Table 7.28: Oithona C1-6 ANOVA

Resid. Df | Resid. Dev Df | Deviance F Pr(>F)
NS | 517.528 730.096
SS | 511.054 627.93 6.474 | 102.167 | 12.844 | 2.368¢-14
TS | 411.132 427.698 ] 99.922 | 200.232 | 1.926 | 4.315e-06
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Figure 7.61: Clockwise from top left: the logged Oithona C1-6 with the trend from the SS
model, the stable seasonals and the logged series (dotted) with the fitted values
of the SS (red) and TS (blue) GAMs.

In Figure [7.61] we see the logged Oithona C1-6 series, the terms and fitted values
from the SS GAM and the fitted values from the TS GAM.

The seasonal pattern of the series changes randomly in size. This is probably the
reason that ANOVA and AIC favour the TS GAM.

In Figures and the diagnostic plots for the two GAMs are shown. In both
QQ plots there is a deviation from normality at the lower end of the series. This is

seen as a long left tail in the histograms. The plots are nonetheless satisfactory.
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Figure 7.62: Diagnostic plots for the stable seasonal GAM for Oithona C1-6.

Figure 7.63: Diagnostic plots for the trending seasonal GAM for Oithona C1-6.
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Table 7.29: Oithona C1-6 AIC & BIC

Non-Seasonal

Stable Seasonal

Trending Seasonal

df 9.472 15.946 115.868
AIC 1684.13 11617.784 1615.639
BIC 1724.53 1685.797 2109.85
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7.2.11 Lamellibranchiata

Lamellibranchiata is a class of Phylum Mollusca and in the plankton samples it is the
larvae of these bottom dwelling adult molluscs with opposing shells, that includes
species such as scallops and cockles, that are caught in the sampler. There are a
number of species of lamellibranch mollusc in the region and so, since their larvae
cannot be distinguished easily even under the light microscope, they are aggregated
into the general category here. It is a feature of the plankton that many bottom
dwelling organisms produce planktonic larvae. Other common examples would be
echinoderms (starfish), polychaetes (worms), decapods (crabs) and the gastropod (spi-
ral shelled) molluscs. It exhibits one major peak in its seasonal pattern in the late

summer. The Resampling find this series to have a stable seasonal pattern.
Resampling Testing Stable vs. Trending: p = 0.568 — Stable

The GCV score of the GAMs, also, chooses stable seasonality:
GCV Score: Non-Seas: 3.563, Stable: 1.521 & Trending: 1.806

The percentage deviance explained by each GAM is presented below:
% Deviance Explained: Non-Seas: 11.6, Stable: 63.7 & Trending: 77.7

Table 7.30: Lamellibranchiata ANOVA

Resid. Df | Resid. Dev Df Deviance F Pr(>F)
NS | 521.601 1830.72
SS | 514.772 752.702 6.83 1078.018 | 107.947 | < 2.2e — 16
TS | 412.525 462.851 102.247 | 289.851 2.527 4.891e-11

The series has a stable seasonal pattern in terms of systematic shifts. There is a
fluctuation in the size of the seasonals for some years and that is probably the cause
for the ANOVA, Table [7.30, and AIC, Table [7.31], choosing the trending model.
Nevertheless, the Resampling, the BIC and GCV score indicate that a stable model

is preferable.

In Figure we see the logged Lamellibranchiata series, the terms and fitted values
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7.64: Clockwise from top left: the logged Lamellibranchiata with the trend from the
SS model, the stable seasonals and the logged series (dotted) with the fitted
values of the SS (red) and TS (blue) GAMs.

Figure

from the SS GAM and the fitted values from the TS GAM.

Table 7.31: Lamellibranchiata AIC & BIC

Non-Seasonal | Stable Seasonal | Trending Seasonal
df 5.399 12.228 114.475
AIC 2159.528 1705.682 1654.400
BIC 2182.555 1757.839 2142.670

In Figures and the diagnostic plots for the two GAMs are shown. Both mod-
els’ QQ plots betray a deviation from normality at the extremes of the series.
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Figure 7.65: Diagnostic plots for the SS GAM for Lamellibranchiata.
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Figure 7.66: Diagnostic plots for the TS GAM for Lamellibranchiata.
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7.3 Discussion

In this section we presented our analysis of some zooplankton species from the
Stonehaven database. The series of Acartia clausi copepodite stage 6 males (C6m),
Calanus finmarchicus Ch and Calanus helgolandicus C5 were found to have patterns
systematically shifting earlier in time. Calanus helgolandicus C6f and Cém and Ju-
venile Calanus copepods C1 - 4 were recognised to have seasonal patterns whose
amplitude is systematically increasing as well as shifting earlier in the year. These
systematic changes may be linked to climate change. Especially the identified shifts
in the patterns of the two main Calanus species are important because of their role as

prey in the life cycle of commercially important fish such as cod and haddock.

There are a number of issues that arise from the analyses of the above zooplankton
series. We are using the GAMs to model smooth functions that in some cases, for
example the Lamellibranchiata series, do not seem to capture all the signal in the
series. This can be seen in Figure where the fitted values of both the SS and
the TS GAMs do not go high enough into the peaks and low enough into the troughs

of the series. The results of this ‘imperfect’ fit is seen as remaining pattern in the

residual plots in Figures and [7.66]

In addition, the GAMs do not fit well series that have high variability such as the
T. longicornis C1 series. In Figure the series exhibits high spikes. These large
differences in the densities are hard to model, especially using smooth functions as

we are.

Fitting the GAMs we are trying to model the periodicity in the series as a smooth
cyclic component that exhibits smooth changes either systematic or fluctuations.
We are interested in these smooth gradual changes because the effect of climate
change and general long term environmental changes is expected to be slow and
progressive. Nonetheless, for some of the examined series it can be seen that the
periodic component is not very smooth as, especially in terms of the species series,

the populations are sporadically distributed and affected by the currents. This means
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that there is great variability within the samples.

This may affect the comparison of the GAMs when choosing the appropriate type
of seasonality. As mentioned before, the main assumption underlying our testing
techniques is that we are testing between the constructed models to infer about
seasonality and thus if the models are not modelling each term, trend, stable and

trending seasonality, correctly, our conclusions may be biased.

Finally, when a series has more zero values than non-zero ones, for example the
Acartia clausi series, the GAMs with the log Normal distribution do not provide a
good fit. As previously discussed, one could convert the series to a binary one (sub-
stituting all non-zero values with ‘1’s)and fit GAMs with the Binomial distribution.
This would be the same as what was done with some of the phytoplankton series in
Chapter 6. It is our belief that a systematic shift in time would still be recognized by
examining seasonal trends in the presence and absence of the series but nonetheless,

some information would be lost.



Chapter 8

Discussion

8.1 Discussion on Results

In this thesis we have considered ways to examine the nature of seasonality in some
marine biological time series and note the existence of systematic changes in them.
Systematic changes would relate to climate change and its effects on marine life. Some
commonly used testing methodologies, mostly from econometrics, are considered
but are, however, not ideally suited to solve our problem. Thus, we introduced
Resampling tests which are robust and simple to use. Additionally, we present a way
to use GAMs to test for changes in the seasonals. The construction of the GAMs has
to be modified appropriately depending on the nature and behaviour of the series

but nonetheless, they have proved a useful tool.

A brief sensitivity analysis of both methodologies in order to appreciate their strengths
and weaknesses was conducted. We have noted that the Resampling almost always
detects a systematic change, never detects a random change, in time or in the size
of the seasonals, and can fail to detect a systematic one if it is masked by a random

change in the size of the seasonals or by noise. Furthermore, in the context of the
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GAMs, we verified that the BIC is a more conservative criterion than the AIC, point-
ing more often to stable seasonality, and that the ANOVA is highly sensitive to any
kind of change and favours a verdict of trending seasonality. In addition, one great
difference between these two methods, Resampling and GAMs, is that the GAMs
recognise a random change in the seasonals as trending seasonality while the Resam-

pling does not. Overall the GAMs are more sensitive to any kind of change.

Using the above methodologies, we analysed time series from the Stonehaven long-
term monitoring station and presented our results. We have established some envi-
ronmental series that are shifting systematically earlier in time, Salinity, Ammonia
and Nitrate while the Chlorophyll a series is shifting earlier in time and exhibits a
systematic change in the size, decreasing. Furthermore, we examined some phyto-
plankton series from which none were found to exhibit systematic change. Finally,
we found some zooplankton series, Acartia clausi Com, C. finmarchicus C5, C. hel-
golandicus C5, C6f and Cém and Juvenile Calanus C1-4, that shift earlier in time. In
particular, C. helgolandicus C6f and C6ém and Juvenile Calanus C1-4, have patterns

whose amplitude increases systematically in time.

8.2 Areas for Further Work

8.2.1 Statistical Interest

There are many ways in which the methodologies used can be improved and fur-
ther developed. The Resampling methodology handles well smooth patterns, as for
example the one from the Temperature data, but is not very accurate when used
on densities or count data. Modifying the way that the seasonal decomposition is
performed within this algorithm could greatly improve this issue. The Resampling
algorithm as is explained here aims to be a simple yet robust testing framework.
Nonetheless, it is possible to create different versions of it according to the data in

question.
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From our analysis of the phytoplankton and zooplankton series we know that the
GAMs are not very appropriate when the pattern in a series is not smooth. Most
series change smoothly in time, meaning that even when they include many zeroes
and high peaks the mean changes gradually. Nonetheless, for some the peaks are very
sudden. This kind of behaviour cannot be successfully modelled in terms of smooth
functions, as in GAMs. Our suggestion was to convert the series into binary and still
use GAMs but assuming the Binomial family. We believe this to have proven valid
but still believe that a different method altogether could be devised for this type of
series. Reducing the patterns of species to presence-absence causes a significant loss
of information. In population studies it is often the rates of population growth or
decline, implied or demonstrated by the abundance data, that may yield the best

indicator of change or effect.

Another suggestion for future work is to attempt to combine the two methodologies
together. Meaning that the residuals from the appropriate GAM could be used in
the Resampling algorithm, treating GAM as a means to seasonally decompose the
different types of series. Those residuals would then be repeatedly randomized and
the above GAM fitted many times so that the residuals could be used for inference.
The GAMs are computationally intensive and this was the main reason we did not
try to combine the two methods. Nonetheless, this could prove to be a successful

testing framework.

In this thesis we attempt to find ways to test for systematic changes in the seasonal
pattern with specific interest in systematic time shifts. Nonetheless, since patterns
in nature exhibit more than one change simultaneously we believe that it would be
worth while trying to find ways to isolate the different types of change. This should
be done after a specific type of change is verified. Isolating the type of change we
are interested in by controlling for all others present would increase the reliability of
the testing results as no interference would be present. For example, we know that
systematic time shift cannot always be detected in the presence of random amplitude
change and have thus suggested re-scaling the series in order to remove the effects of

this random change.
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A more in-depth sensitivity analysis of the methods would provide further insight
into the ways they need to be improved. We have only examined a few interesting
cases in Chapter 5 and feel that many more questions regarding the performance
of the two methods could be answered by a more thorough sensitivity analysis. In
particular, a sensitivity analysis combined with different types of controls used to
isolate the different types of changes present in a series would be of great benefit.
This would provide us with information on how the methods perform but also how

successful our attempts to isolate the changes are.

The model selection for the GAMs is based on a number of criteria which, valid as
they are, prove to be too sensitive or too conservative for our purposes. A more
suitable criterion could be constructed to be used for model selection for similar to
the above analyses. The effectiveness of this new criterion could be benchmarked

against the other criteria with a sensitivity analysis.

Furthermore, when using GAMs we are modelling the mean of the series, for example
of a Normal distribution. We could, however, attempt to model in a similar fashion
the variability present in the series. Thus, for example, in addition to modelling the
p for a Gaussian GAM we could try to model the o2, Creating again three models,
NS, SS and TS, we could then choose the best model that describes the variance of
the data. In the context of testing for seasonality both results would be taken into
consideration for the final verdict of whether the series exhibits systematic changes
or not. However, if one wished to use the GAMs as a means to forecast the future,
the two chosen models, one for the mean and one for the variability could be used
together to forecast future values. This, however, would not be straightforward as

the way the results will be combined is not clear.

In our analysis, when a systematic shift in time is successfully detected we attempt
to estimate the rate of change. Our method is an ad hoc one, examining major peaks,
that does not correspond to the one marine biologists would often find more suitable
in studies of species phenology, examining the timing of first occurrence. We use the

occurrence of easily identifiable peaks to measure the shift while biologists might be
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more interested in a shift in the initial rise of the peaks. As mentioned before, this is
hard to identify in highly variable series and thus, was not used by us. Nonetheless, a
more scientific way to measure the rate of shift, possibly producing C.I.s for it could

be developed.

8.2.2 Biological Interest

We have examined the types of seasonality in a number of series from Stonehaven
but have made no attempts to consolidate our results. Further investigation of the
existing results would be useful to marine biologists. For example, when two series
are shifting earlier in time it is possible that one is influenced by the other or that

both are influenced by a third unobserved source.

Especially, since we have analysed environmental series which provide the condition
for the blooms in marine species, as well as phytoplankton and zooplankton series,
which are thought to be all part of the food chain, connections between the be-
haviours of some of these series are inevitable. A crude example would be that more
Nitrate/ Nutrients in the water encourages the production of more phytoplankton
which in turn could yield higher zooplankton levels. Else, as may become evident
from fuller analysis of these results, those species which are at the edges of their
adaptive ranges, such as the two Calanus species, may show greater sensitivity to
changes in their environment; than species more fitted to the range of environmen-
tal factors measured. It is also the case that there may be other factors not yet

considered that might affect species population behaviours and sensitivities.

In marine science many types of complex models connecting different series exist.
Similar models could be developed to model series for which a connection is identified
from extending our analysis. The purpose of these models would be to forecast future

populations.

In this study we have focused on the most important and common species of zoo-

plankton and phytoplankton. The Stonehaven long-term monitoring station has a
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wealth of time series covering many other species and groups of organisms, that we,
due to time constraints, did not analyze. Analyzing and comparing more series could

help shed light on their behaviours and help marine biologists in their work.

In addition, there is a second Scottish monitoring station, in Loch Ewe, whose series
do not run as far back as the Stonehaven ones but nonetheless, include almost the
same variety of species. There are also similar time series in other regions (e.g.
Helgoland station in the German Bight of the North Sea or station L4 in the English
channel). These stations are set, so that apart from individual monitoring, their
results can also be compared to draw conclusions based on similarities and differences

in the behaviour of the various series in the different environments.

Finally, we have mentioned the fact that most of the series analyzed here are affected
by many phenomena that are not examined. Series like river inflow and rainfall data
are available and could be examined to enhance our study and look for correlations
between them. Equally interesting results are anticipated if series like the North At-
lantic Oscillation (NAO) and the Joint North Sea Information System (JONSIS, line
east of Orkney Isles) are examined as the influences of the climatic and hydrographic
factors they represent, on the distribution and population of mainly the zooplankton

species, is currently much debated.

The time series analyses presented here consist a step towards moving from finding or
expecting correlations between natural phenomena and understanding the causality
and mechanisms involved. Such insights and models will be critical to developing

understanding and management of ecosystems in the future.
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