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Abstract In this paper, we propose a theoretical framework within which a unified
treatment of the key sources of size-at-age variability—size dependence of growth
rate, stochastic growth rate variations and individual-to-individual variability in
growth performance—is possible. We use this framework to develop a general cri-
terion for growth depensation in cohorts, which we define as the increase of the
coefficient of variation of size-at-age, with increasing age. We use this criterion
to show that size dependence of growth rate, acting alone, is depensatory only if
the growth rate increases faster than linearly with size (that is, if growth is faster
than exponential), while stochastic growth rate variation is invariably depensatory.
Many species exhibit growth rates that scale less than linearly with size; indeed
the commonly used von Bertalanffy model shows growth rates which actually de-
crease with size. In such a species, the size dependence of growth rate acts com-
pensatorily, while stochastic growth rate variability is depensatory. We show that
the tension between these two mechanisms leads to quasi-stationary size-at-age
variability, which we can calculate analytically in some special cases and obtain by
a simple numerical procedure where analysis is impractical.

Keywords Size-at-age variation · Growth rate variability

1. Introduction

Because all animals age at the same rate, understanding changes in population
age-structure is a relatively straightforward book-keeping exercise. In contrast,
the high variability in somatic growth rates, even between apparently similar in-
dividuals (Sebens, 1987; Pfister and Peacor, 2003), makes understanding popula-
tion size-structure a much more challenging exercise. A comprehensive theory of
the dynamics of population size structure remains one of the key challenges for
ecological theory.
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The importance of meeting this challenge is emphasised by the key role size-
structure plays in many ecological and management issues. In exploited popu-
lations subject to size-dependent exploitation (such as fisheries), changes in size
structure (of either anthropogenic or natural origin) can have significant economic
as well as ecological impacts (Rose, 2004). In unexploited populations, size struc-
ture can still be an important determinant of population dynamics; mediating
average population fecundity (Marteinsdottir and Begg, 2002), intraspecific inter-
actions such as cannibalism (DeAngelis et al., 1979; Brunkow and Collins, 1998)
and interspecific interactions such as predation (Wootton, 1992).

Increases in size variability with time or age are often referred to as ‘growth
depensation’ while decreases are termed ‘growth compensation’ (Ricker, 1958).
Pfister and Stevens (2002) have identified the three classes of mechanism that
can lead to growth depensation as: systematic size dependence of growth rate,
individual-to-individual growth rate variation consequent upon environmental,
behavioural or genetic differences, and stochastic variation of individual growth
performance, which is uncorrelated with that of other population members.

The first of two of these classes are the most amenable to analysis and have
thus been the subject of most previous work (e.g. DeAngelis and Huston, 1987;
de Roos et al., 1992; Pfister and Peacor, 2003). Stochastic variations of individual
growth performance complicate analysis considerably, and their obvious impor-
tance in determining size dispersion in many real populations has led to arguments
(e.g. Pfister and Stevens, 2002; Fujiwara et al., 2004, 2005) that explicit individual
by individual representations are the most fruitful route to a full understanding of
growth depensation. However, the possibility of using a more analytic approach is
suggested by the work of Bardos (2005) who describes the application of a proba-
bilistic variant of the Gompertz growth model (Gompertz, 1825) to the analysis of
size-increment data in abalone.

In this paper, we describe an analytic framework that allows integrated discus-
sion of the dynamics of size-at-age dispersion. We use this framework to derive a
general criterion for the occurrence of growth depensation, which we use to iden-
tify the shapes of deterministic growth trajectories that lead to amplification or
attenuation of size variation at recruitment, and to show that very narrow size at
recruitment distributions always show initial growth depensation under stochastic
growth rate variation.

We illustrate the utility of our results by investigating size dispersal in a pop-
ulation showing von Bertalanffy growth with randomly varying growth rates. We
find that the compensatory tendency of this mode of deterministic growth, com-
bined with the depensation inherent in random growth rate variations, produces
an initial-condition-independent trajectory of the size-at-age coefficient of varia-
tion (c.v.) that we can estimate analytically. We demonstrate the accuracy of this
estimate, together with the (rather small) effects of size-dependent mortality, by
comparison with simulation results.

2. Individuals and populations

We envisage a population as being made up of ‘families’ each comprising a set
of individuals characterised by age a and some measure of size or development,
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which, since weight is one of the more obvious choices of metric, we denote by w.
We represent the rate of change of the size measure for an individual in family i of
age a and size w by a function gi , which we henceforth refer to as the ‘development
rate.’ Families also share the same functional relationship between age, size and
mortality. The definition of family is perhaps most easily understood in terms of
genetically determined characteristics. The formalism might also be used to differ-
entiate between groups of genetically unrelated individuals exhibiting systematic
differences in the size dependence of growth or mortality due to environmental or
behavioural differences.

Changes in development rate with time and differences between individuals in
a single family are characterised by variations in the value of a single parameter γ .
That is, at every time, each individual in family i has a value of γi drawn from a
family-specific statistical distribution. Thus, the two quantities which characterise
the state of an individual in family i change with time according to

da
dt

= 1,
dw

dt
= gi (a, w, γi ). (1)

For example, later in the paper, we discuss a population composed of a single fam-
ily, which exhibits von Bertalanffy growth. Here, the size metric is normalised body
length (which, for consistency with the general literature, we denote by L) and we
show in Appendix D that the rate of change of L is related to its current value and
the normalised assimilation rate u, by g = [u − L]+ where [x]+ = max(0, x). We
shall identify the assimilation rate u as our varying parameter (i.e. γ ) and assume
its variations to be random.

We would expect to describe the status of family i at time t by counting the
number of individuals with age a and size w. However, if variations in γ (and
hence in g) are random, this count is itself a random variable that we can only
describe by a probability density function Pi (n, a, w, t) defined so that

Pi (n, w, a, t) dn dw da =

⎧
⎪⎨

⎪⎩

Probability that n → n + dn individuals

in family i have weight in w → w + dw

and age in a → a + da at time t

⎫
⎪⎬

⎪⎭
. (2)

To proceed further we need more detail about the nature of the variability in γi .
Our first assumption will be that all members of a single family exhibit variations
with the same statistical characteristics. Second, we assume that variations in de-
velopment rate for individuals in family i arise from white (i.e. temporally uncor-
related) variations in γi , which result in an expected development rate gi (a, w) and
(white noise) variations about that expected rate characterised by a power spectral
density 2Di (a, w).

In Appendix A, we show that under these assumptions the probability density
function for the family age-size distribution must obey the conservation equation

∂ Pi

∂t
+ ∂ Pi

∂a
+ ∂

∂n
[−mi nPi ] + ∂

∂w

[

gi Pi − Di
∂ Pi

∂w

]

= 0 (3)
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where mi represents the (age and size-dependent) per capita mortality rate for
family i .

Although a full description of family i ’s age-size dynamics requires us to define
the probability density function Pi , we seldom have data that would allow us to
estimate it. If our data comprises observations of a single population, then our best
estimate of the size-at-age distribution we should observe is the expected number
density of individuals in family i of size w at age a, which is related to Pi by

ni (a, w, t) =
∫ ∞

0
nPi (n, a, w, t) dn. (4)

Provided that the mortality function, mi , is not an explicit function of ni , it is
straightforward to show from Eq. (3) that the conservation equation for ni is

∂ni

∂t
+ ∂ni

∂a
+ ∂

∂w

[

gi ni − Di
∂ni

∂w

]

+ mi ni = 0. (5)

This dynamic equation is a natural extension of the McKendrick-von Foerster
equation (von Foerster, 1959) describing the deterministic growth of an age-size
structured population. Like its deterministic progenitor, it must be solved subject
to a condition at the age-zero boundary that describes the rate of recruitment of
new-born individuals. If the expected rate of recruitment of family i newborns
with sizes in w → w + dw at time t is Ri (w, t) dw then (recalling that da/dt = 1)
we require that

ni (0, w, t) = Ri (w, t). (6)

In some applications (for example, the model of irreversible von Bertalanffy
growth considered later, in which w is identified with the normalised length L), the
individual development rate g is constrained to be positive. Under these circum-
stances, a consistent determination of the age-size distribution function ni must
show the low L side of the distribution either stationary or moving towards higher
L. Inspection of Eq. (5) shows that this cannot be unequivocally true, since a large
enough positive L-gradient, accompanied by a small enough ni , will always cause
the net L-flux (the term in square brackets in Eq. (5)) to be negative.

To assess the seriousness of this problem, in Fig. 1, we compare the size-at-age
distributions for a single cohort exhibiting irreversible von Bertalanffy growth pre-
dicted by numerical solutions of Eq. (5) with distributions obtained from ensem-
bles of 10,000 individual-by-individual simulations. In all the cases discussed later
in the paper, we found essentially perfect agreement. Experiments under deliber-
ately extreme conditons generated detectable errors, but only at the level of a few
percent.
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Fig. 1 Comparison of solutions of Eq. (5) with probability density functions estimated from ex-
plicit simulations (dt = 0.1) of 10,000 individuals exhibiting ireversible von Bertalanffy growth
(see Appendix D) growing over 20 normalised time units with randomly varying growth rates
uniformly distributed over [0, 1]. and a gaussian initial distibution with mean 0.1 and S.D. = 0.03.

3. Population statistics

Although the expected size-at-age distribution for individual families is in principle
observable, the practical obstacles are formidable. Even if the ‘family’ is wholly
defined by genetics, assignment of individuals to families is expensive and time-
consuming. Size measurements are generally straightforward, but unambiguous
determination of age often requires microscopic examination of body structures
such as scales or otoliths. In practice, we are likely to possess only enough data
to define summary statistics (such as the mean and variance) for the size of all
individuals of a given age in the population.

The key step in relating these population-level statistics to the set of family ex-
pected size-at-age distributions is to define the moments (about the origin) of the
population size-at-age distribution. We denote the qth moment by Wq and recog-
nise that the moments of the population distribution are just the sum of the mo-
ments of the family distributions. Hence

Wq(a, t) =
∑

all i

∫ ∞

0
wqni (a, w, t) dw. (7)



866 Gurney and Veitch

Once we know the moments, we can easily calculate the mean and variance of
size-at-age, which we write as ŵ(a, t) and vw(a, t), from

ŵ(a, t) = W1

W0
, vw(a, t) = W2

W0
−

(
W1

W0

)2

. (8)

For future convenience, we define two further quantities—the mean age-specific
development rate

ĝ(a, t) = 1
W0

∑

all i

∫ ∞

0
gi ni dw (9)

and the covariance of size and development rate for individuals of age a,

cwg(a, t) =
[

1
W0

∑

all i

∫ ∞

0
wi gi ni dw

]

− ŵĝ. (10)

Our principal aim in this paper is to understand the changes in variability that oc-
cur as cohorts of individuals develop though their life-cycle. We thus wish to com-
pare the variability of groups of individuals whose mean size differs by as much as
several orders of magnitude. The natural statistic to use in this enterprise would
be the coefficient of variation (the ratio of the standard deviation to the mean),
but in the the interests of algebraic simplicity, we shall use the square of the co-
efficient of variation (c.v.), which we call the relative variance (r.v.), Vw ≡ vw/ŵ2.
This quantity is related to the moments by

Vw(a, t) =
[

W2W0

W2
1

− 1

]

. (11)

4. Age dependence of size-variability

In general, the family distributions that underlie our summary statistics will un-
dergo complex changes with age and time, reflecting growth, mortality and re-
cruitment. For the sake of simplicity, we consider a situation in which new-borns
are recruited to the population at a constant rate and grow thereafter in a statisti-
cally stationary environment. Under these circumstances, we normally expect the
population age-size distribution to converge to a stationary (time-independent)
form, which we write as n∗

i (a, w). In this case the population statistics will take
time-independent forms that we denote by W∗

q (a), ŵ∗(a), v∗
w(a), ĝ∗(a), c∗

wg(a) and
V∗

w(a). Substituting steady state quantities into Eq. (11) and differentiating with
respect to age shows that

dV∗
w

da
=

(
W∗

0 W∗
2

[W∗
1 ]2

)(
1

W∗
2

dW∗
2

da
− 2

W∗
1

dW∗
1

da
+ 1

W∗
0

dW∗
0

da

)

. (12)
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Equation (12) also describes a somewhat different situation that will be our pri-
mary concern for the remainder of this paper, namely the growth of a single cohort
all of whose members are aged zero at some initial time (say t = 0) and to which
no further recruitment takes place. In this case, we interpret n∗

i (a, w) as the size
distribution of those family i individuals who are still alive at age a.

Differentiating Eq. (7) with respect to a tells us that at the stationary state, the
rate of change of the qth moment of the population size-at-age distribution with
age is

dW∗
q (a)

da
=

∑

all i

∫ ∞

0
wq ∂n∗

i (a, w)
∂a

dw. (13)

Using Eq. (5) to relate the partial derivative of each family size-at-age distribution
to its growth and mortality functions allows us to rewrite this as

dW∗
q (a)

da
=

∑

all i

∫ ∞

0
wq

[

− ∂

∂w

(

gi n∗
i − Di

∂n∗
i

∂w

)

− mi n∗
i

]

dw. (14)

Integrating Eq. (14) by parts shows that provided n∗
i → 0 sufficiently fast as w → 0

and w → ∞
dWq

da
= G∗

q − M∗
q (15)

where

G∗
q =

⎧
⎪⎪⎨

⎪⎪⎩

∑

all i

∫ ∞

0

[

qwq−1gi + ∂

∂w

(
qwq−1 Di

)
]

n∗
i dw, if q > 0

0, otherwise

(16)

and

M∗
q =

∑

all i

∫ ∞

0
wqmi n∗

i dw. (17)

Substituting Eq. (15) into (12) shows that the rate of change with age of the r.v. for
the population size-at-age distribution is

dV∗
w

da
=

(
W∗

0 W∗
2

[W∗
1 ]2

) (
G∗

2

W∗
2

− 2G∗
1

W∗
1

−
[

M∗
2

W∗
2

− 2M∗
1

W∗
1

+ M∗
0

W∗
0

])

. (18)

We note that the validity of Eqs. (16) and (18) requires that n∗
i goes to zero ‘suffi-

ciently fast’ as w goes to zero. In the case of exponential growth, ‘sufficiently fast’
clearly implies ‘faster than exponentially.’ However no real individual can achieve
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infinite size, so a realistic population description must either incorporate an up-
per growth asymptote, or postulate mortality rates that ensure that no individual
survives beyond some (possibly arbitrary) maximum age.

While no sensible initial condition can place significant numbers of newborns at
w = 0, growth rates that are not constrained to be positive can result in (model)
individuals with weights that are zero (or even negative!). Although starvation re-
sistance varies greatly between species, individuals of a given species will die with
probability 1 as soon as they have lost some critical proportion of their body mass
(usually between 50 and 90%). Hence, we can argue that any sensible population
description must incorporate a mortality scheme that ensures that n∗

i (a, 0) = 0.
Any population description that obeys both of these requirements will ensure

the validity of Eqs. (16) and (18) and hence the applicability of the analysis in the
remainder of this paper.

5. Size-independent mortality

In the special case where the per-capita mortality rate is given by the same function
of age for all families (that is, mi = m(a) for all i) Eq. (17) implies

M∗
q = m

∑

all i

∫ ∞

0
wqn∗

i dw = mW∗
q . (19)

This, in turn, implies that the term in square brackets in Eq. (18) is identically zero,
so the expression for the rate of change of the size-at-age r.v. simplifies to

dV∗
w

da
=

(
W∗

0 W∗
2

[W∗
1 ]2

)(
G∗

2

W∗
2

− 2G∗
1

W∗
1

)

. (20)

This implies that the condition for the size-at-age r.v. to increase with age at the
steady state is

G∗
2

W∗
2

>
2G∗

1

W∗
1

(21)

with a decrease if the inequality is reversed and stasis if the two sides are equal.

5.1. Distinct individuals with constant properties

The first application of the general theory we have just set out is to a population
of genetically distinct individuals with size-independent per-capita mortality rate
and growth performance that remains constant with time. In the language of the
previous discussion, the population consists of N families each containing a sin-
gle individual with a time-independent development rate formally identical to gi .
Since the growth rate is time-independent, Di = 0.
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Because there is only one individual per ‘family,’ the expected steady-state fam-
ily age-size distribution contains one individual whose size-at-age a is exactly wi .
We represent this situation by writing the family age-size distribution as a Dirac
delta function (n∗

i (a, w) = δ(w − wi )).
Since the per-capita mortality rate is size-independent, the condition that the

size-at-age r.v. increases with age is given by Eq. (21), which is an inequality. When
n∗

i is a delta-function, this can be rewritten as

∑
i wi gi (wi )
∑

i w2
i

>

∑
i gi (wi )
∑

i wi
. (22)

Comparison of the components of this inequality with the population statistics de-
fined in Eqs. (8)–(10) shows that it can be rewritten as

c∗
wg >

(
ĝ∗

ŵ∗

)

v∗
w(a). (23)

Thus, in this special case, the size-at-age r.v. increases with age if and only if the
correlation of size and growth rate is large enough compared to the variance of w.

We now make an additional simplifying assumption, namely that the develop-
ment process is allometric, so that gi = αiw

β , where αi is a time-independent scal-
ing parameter that varies between individuals and β is an allometric power that
is constant across the population. With this assumption, and after some algebraic
manipulation, we can rewrite the condition for the steady state size-at-age r.v. to
increase with age, (Eq. 21), which is an inequality, as

∑

i

∑

j

[
αiw

β+1
i w j − α jw

β

j w
2
i

]
> 0, (24)

which (as we show in appendix B) can be re-written in the form

∑

i

∑

j<i

[
wiw j (wi − w j )

(
αiw

β−1
i − α jw

β−1
j

)]
> 0. (25)

We now assume that we have arranged the list of families in weight order so that
wi > w j for all i > j . In the special case of identical individuals (αi = α for all
i) we see that Eq. (24), which is an inequality, is guaranteed to be true if and
only if β > 1. This tells us that recruitment size variations of a group of identical
individuals will be amplified by subsequent development if development is faster
than exponential and will be attenuated if growth is slower than exponential.

Where there is individual variability (αi �= α j ), the position is more complex. If
α is positively correlated with w, then ordering individuals by weight also orders
them by α, and β > 1 guarantees that Eq. (25), which is an inequality, is true. How-
ever, β < 1 no longer guarantees that Eq. (25) is false. Where there is no size vari-
ability at recruitment, it is easy to see that Eq. (25) is always true for linear growth
(β = 0) and we conjecture (supported by a number of numerical experiments) that
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it is true for all β > 0. This would be consistent with the intuitively obvious state-
ment that a group of initially identical individuals growing allometrically with dif-
fering development rates will show steadily increasing size variability.

5.2. One family with randomly varying development

We next consider a population of genetically identical individuals (a single fam-
ily) with size-independent per-capita mortality and development rates that vary
randomly and independently with time and between individuals, so that

g(a, w) = g(w) + γ (t) (26)

where γ (t) is a white noise with mean zero and power spectral density 2D.
In this case, the condition for the size-at-age r.v. to increase with age, i.e.

Eq. (21), which is an inequality, can, after substitutions from Eqs. (8)–(10)
followed by a little algebraic manipulation, be written as

c∗
wg >

ĝ
ŵ

vw − D. (27)

As in the previous special case (c.f Eq. 23, which is an inequality), this shows that
the size-at-age r.v increases with age if the covariance of size and development rate
is large enough. However, here we also see that increasing D, makes this inequality
easier to satisfy, and sufficiently large D guarantees that it must be satisfied for any
non-negative c∗

wg .
We now repeat the restrictive assumption used in the above discussion of in-

dividuals with time-independent demographic properties, namely that the deter-
ministic part of the growth process is allometric so that g = αwβ . Under this as-
sumption, the condition that the size-at-age r.v. increases with age can be written
as

∫ ∞

0

∫ ∞

0

[
αwβ+1x + Dx − αwβ x2] n∗(a, w)n∗(a, x) dw dx > 0, (28)

which (see Appendix C) can be re-written in the form

∫ ∞

0

∫ x

0
�(w, x)n∗(a, w)n∗(a, x) dw dx > 0 (29)

where

�(w, x) ≡ αwx(x − w)(xβ−1 − wβ−1) + D(x + w). (30)

Clearly β > 1 guarantees that � is non-negative for all w < x, so allometric growth
with an allometric constant greater than 1 (that is growth that is faster than expo-
nential) will cause the size-at-age relative variance to increase with age whatever
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the random variability in individual development rates. Equally clearly, growth
rate variability will increase the rate at which Vw increases with age.

In the special case of exponential growth, β = 1, we note that if D = 0 then
� = 0 for all w < x, but if D > 0, then � > 0 for all w < x. Thus, pure exponential
growth, which, in the absence of growth rate fluctuations, exactly maintains the
size at recruitment r.v. throughout development, produces steadily increasing Vw

if individual development rates fluctuate.

6. Size-dependent mortality

Equation (18) shows that if the mortality rate is size-dependent, the condition for
the stationary size-at-age r.v. to increase with age is

G∗
2

W∗
2

>
2G∗

1

W∗
1

+ µ, where µ ≡ M∗
2

W∗
2

− 2M∗
1

W∗
1

+ M∗
0

W∗
0

. (31)

We consider the special case where all families have the same size-dependent mor-
tality rate mi (w) = m0 + κw. In this case, Eqs. (17) and (7) show us that

µ = κ

[
ŵ3

ŵ2
− 2

ŵ2

ŵ
+ ŵ

]

. (32)

We now recall that the second and third moments of the size-at-age distribution
obey ŵ2 = (ŵ)2 + vw and ŵ3 = (ŵ)3 + 3vwŵ + vw

√
vw S, where S is the skewness

coefficient. Hence, after some algebraic manipulation we can write µ as

µ = −κ

[
vw

√
vw

ŵ

] [
2
√

vw − ŵS
(ŵ)2 + vw

]

. (33)

If µ is positive, it increases the R.H.S. of Eq. (31), which is an inequality, thus de-
creasing the propensity of the size-at-age r.v. to increase with age, with the reverse
being true if µ < 0. So long as

S < 2
√

(Vw) = 2
√

vw

ŵ
(34)

then µ has the opposite sign to κ , with the opposite being true if the inequality is
reversed. This implies that, so long as the size-at-age distribution is not too pos-
itively skewed, mortality which increases with age tends to increase size-at-age
dispersion, with the reverse being true if mortality decreases with age.

7. Irreversible von Bertalanffy growth

As an application of the body of theory developed in the foregoing part of this
paper, we now consider a population of genetically identical organisms (a single
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family) exhibiting von Bertalanffy growth (von Bertalanffy, 1938) with a randomly
varying feeding rate. In Appendix D, we show that under an appropriate scaling
this model can be expressed as

g(L, u) = [u − L]+, (35)

where L is the normalised body length, u is the normalised assimilation rate, and
[x]+ = max(0, x).

To describe the variability in the normalised assimilation rate u, we consider re-
peated evaluations averaged over 2τm normalised time units and express the result
as a probability density function φ(u). As a strategic approximation, we assume
that u is uniformly distributed between 1 − α and 1. That is,

φ(u) =
{

α−1, if 1 − α ≤ u ≤ 1

0, otherwise.
(36)

We note from Eq. (35) that an individual of normalised length L experiences zero
growth unless u exceeds L. Thus, when we evaluate the expected growth rate g,
we count the growth rate as u − L only for u > L and as zero for all u < L. Hence
g becomes an integral over all possible values of u, greater than L, thus giving

g = 1
α

∫ 1

max(L,1−α)
[x − L]+ dx. (37)

Evaluating this integral leads to

g =

⎧
⎪⎨

⎪⎩

(1 − α/2) − L, L < 1 − α

(1 − L)2
/2α, 1 − α ≤ L < 1

0, L ≥ 1

. (38)

Similarly, the power spectral density of the growth rate variation (D) is

D = τm(g2 − (g)2). (39)

That is

D =

⎧
⎪⎪⎨

⎪⎪⎩

α2τm/12, L < 1 − α

τm(1 − L)3[4α + 3(L− 1)]/(12α2), 1 − α ≤ L < 1

0, L ≥ 1

(40)

Equations (38) and (40) tell us that the expected growth rate g and the diffusion
rate D both fall smooothly to zero as L approaches 1 and are identically zero when
L > 1. This implies that biologically sensible initial size-at-age distributions cannot
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contain any individuals with L > 1 and that subsequent evolution of the size-at-age
distribution cannot result in individuals with L > 1.

7.1. Size-independent mortality: analysis for L < 1 − α

If the mortality rate is size-independent (that is m depends on age but not size) the
condition for the steady state size-at-age variability to increase with age is Eq. (21),
which is an inequality. We initially restrict our consideration to the size-at-age
distributions for ages such that no individual can have a scaled length exceeding
(1 − α). In this case, the key components of Eq. (21), which is an inequality, are

G∗
1 =

∫ 1−α

0

[
1 − α

2
− L

]
n∗ dL (41)

and

G∗
2 = 2

∫ 1−α

0

[

L
(

1 − α

2
− L

)
+ α2τm

12

]

n∗ dL. (42)

When there is no variability in u (α → 0), we can use the methods employed in
earlier sections to show that Eq. (21), which is an inequality, can be re-expressed
as

I ≡
∫ 1−α

0

∫ L

0

[−(L− X)2] n∗(X)n∗(L) dXdL. > 0. (43)

Since the integrand is inevitably negative, this inequality is never true, which
clearly shows that with no variability in u the effect of von Bertalanffy growth
is to attenuate any pre-existing variability.

Conversely, if n∗ is a delta function at (say) the recruitment weight LR, then it is
easy to show that Eq. (21), which is an inequality, reduces to

α2τmLR

12
> 0, (44)

which cannot be false, thus demonstrating that growth rate variability acting alone
inevitably causes size-at-age variability to increase with age.

In this model, deterministic growth tends to decrease size-at-age variability and
growth rate variability tends to increase it. The latter tendency clearly predomi-
nates when the size-at-age distribution is narrow enough, while we might expect
the former to dominate when the size-at-age distribution is wide.

To explore this possibility further, we note that whatever the shape of n∗, pro-
vided it is confined to the range L < 1 − α, we can re-write G∗

1 and G∗
2 as

G∗
1

W∗
0

=
(

1 − α

2

)
− L̂,

G∗
2

2W∗
0

=
(

1 − α

2

)
L̂− L̂2 + α2τm

12
. (45)
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In this case, Eq. (21), which is an inequality, can be re-expressed as

V∗
L ≡ v∗

L

(L̂)2
<

α2τm

6L̂(2 − α)
, (46)

thus demonstrating that if the relative variance of size at a given age is less than the
R.H.S. of Eq. (46), which is an inequality, then it rises, while if it is greater
then it falls. This raises the possibility that a given level of growth rate varia-
tion implies a quasi-steady state level of size-at-age variability, which we can cal-
culate by replacing Eq. (46), which is an inequality, with an equality. We note
that this ‘quasi-steady state’ relative variance falls in inverse proportion to the
mean length, thus implying that tight initial length distributions will give rise to
humped trajectories of r.v. against age, while highly dispersed initial length distri-
butions will give rise to monotone decreasing trajectories of size-at-age r.v. against
age.

We demonstrate the utility of this insight in Fig. 2 where we show the results
of a series of ensembles of 10,000 individual-by-individual simulations. In Fig. 2a
we show the size-at-age c.v. (the square root of the size-at-age r.v.) for two en-
sembles where each individual grows with normalised assimilation rate uniformly
distributed between 0.8 and 1. The two ensembles are distinguished only by the
width of the initial length distribution, and we see that the delta-function initial
distribution produces a humped trajectory of c.v. against age, whereas the wide
initial distribution produces a monotone decreasing trajectory.

Even more interestingly, we see that the two trajectories converge extremely
quickly, suggesting that the ‘tipping point’ of Eq. (46), which is an inequality, is
a strong attractor. Since the value of c.v implied by this attractor (shown by the
dotted line in the figure) clearly decreases as the mean length rises, we are not
surprised that the measured values are systematically above the tipping point over
the range where we might expect Eq. (46), which is an inequality, to apply (Lmax <

1 − α = 0.8).

7.2. Size-independent mortality: analysis for L > 1 − α

Given the success of Eq. (46), which is an inequality, we now seek a similar result
when the distribution is confined to L > 1 − α. This turns out to be a much more
serious algebraic challenge and we have not been able to obtain an exact result.
However, some heroic approximations yield a workable estimate.

We begin by noting that if we neglect terms in ∂ D/∂L on grounds that they are
likely to be quite small in comparison with D, then we can write G∗

1 and G∗
2 for

distributions confined to L > 1 − α as

G∗
1

W∗
0

= 1
2α

(1 − 2L̂+ L̂2),
G∗

2

W∗
0

= 1
α

(L̂− 2L̂2 + L̂3) + 2D̂. (47)
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Fig. 2 Simulations of an ensemble of 10,000 individuals growing with randomly varying growth
rates. The points in (a) show

√
VL against t for two initial conditions with α = 0.2 and τm = 0.25.

One replicate has all individuals the same initial length, while the other has initial lengths spread
uniformly between 0.07 and 0.13. (b) shows the mean length ± 3 S.D. for the same system. The
points in (c) show the variability with α = 1 and τm = 0.05. One replicate has a delta function
initial length distribution, while the other has initial lengths spread uniformly between 0.001 and
0.19. (d) shows mean length and mean length ± 3 S.D. for this simulation. The dash-dotted line in
(a) shows

√
VL defined by the ‘tipping point’ of Eq. (46), which is an inequality. The dashed lines

in (a) and (c) show
√

VL defined by the tipping point of Eq. (49), which is an inequality.

Recalling that L̂2 = (L̂)2 + vL and L̂3 = (L̂)3 + vL[3L̂+ (vL)
1
2 S] where S is the

skewness coefficient, allows us rewrite the condition for size-at-age r.v to rise with
age (Eq. 21, which is an inequality) as

2αD̂ >
v∗

L

L̂

[
v∗

L + (1 − L̂2) − (v∗
L)

1
2 L̂S

]
. (48)

We now adopt two further heroic approximations, which stand or fall on the ability
of the resulting estimator to match our simulation results. We first approximate D̂
by D(L̂) and second we regard the skewness of the distribution as small, so that
we can set S = 0. The resulting approximation to the condition for size-at-age r.v.,
V∗

L, to increase with age is
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2αD(L̂)

(L̂)3
> V∗

L

[

V∗
L +

(
1

(L̂)2
− 1

)]

(49)

where, from Eq. (40) the diffusion coefficient D(L̂) is given by

D(L̂) = τm(1 − L̂)3

12α2

[
4α + 3(L̂− 1)

]
. (50)

Eq. (49), which is an inequality, gives us a cumbersome but entirely soluble
quadratic for the value of size-at-age r.v. that defines the tipping point for this case.
The dashed lines in Fig. 2a and c show that this tipping point implies an acceptable
estimator of the measured size-at-age c.v. for cases where Lmin > 1 − α.

7.3. Size-dependent mortality

To complete our investigation of the implications of von Bertalanffy growth with
randomly varying growth rates, we repeat the numerical experiments shown in the
lower frames of Fig. 2 with length-dependent mortality rates. In the upper frames
of Fig. 3 we show two simulations with per capita mortality increasing linearly
with length and in the lower two frames we show two simulations with per capita
mortality decreasing linearly with length.

From Eqs. (31)–(33) and the accompanying discussion, we expect size-at-age
dispersion to be increased by mortality, which increases with length and decreased
by mortality, which decreases with length. Figure 3 shows that this expectation
is correct. It also shows that the trajectory of size-at-age c.v rapidly ‘forgets’ the
initial size distribution and follows an attracting trajectory similar to that shown in
Fig. 2. We note that, despite the large amplitude of the assumed mortality changes,
the resultant change in size-at-age c.v. is small enough to be undetectable under
normal experimental protocols.

8. Discussion

8.1. Summary

In the literature on size-at-age variability (e.g. Ricker, 1958), a growth pattern in
which size variability increases with age has been regarded as depensatory, while
decreasing variability with age has been deemed compensatory. In this paper, we
have adopted a rather stricter definition—regarding as depensatory, only those
growth patterns which increase the coefficient of variation of size-at-age.

We followed Pfister and Stevens (2002) in identifying three classes of causation
for changes in size-at-age variability—size dependence of growth rate, long-lived
inter-individual differences in growth performance, and short-term statistically in-
dependent growth rate variability. We first developed a formal structure (Eqs. 3
and 5) within which variability arising from these causes can be discussed. We then
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Fig. 3 Simulations of an ensemble of 50,000 individuals growing over 10 normalised time units
with randomly varying growth rates and length-dependent mortality. The points in (a) show

√
VL

against t for two initial conditions with α = 1, τm = 0.05 and m = 10L. One replicate has all indi-
viduals the same initial length, while the other has initial lengths spread uniformly between 0.001
and 0.19. (b) shows mean length ± 3 S.D. for the same system. The points in (c) show variabil-
ity with m = 10 − 10L. One replicate has a delta function initial length distribution, while the
other has initial lengths spread uniformly between 0.001 and 0.19. (d) shows mean length ± 3
S.D. for this simulation. The solid lines in (a) and (c) show

√
VL for the same system with length-

independent mortality.

derived a condition for growth at a stationary state to be depensatory. In its most
general form this condition is

G∗
2

W∗
2

>
G∗

1

W∗
1

+ µ (51)

where G∗, W∗ and µ are defined in Eqs. (16), (7) and (32), respectively.
This rather intimidating object turns out to be much more useful than one might

at first suppose. First, when the mortality rate mi is not specifically size-dependent,
we can show that µ is identically zero, thus simplifying matters considerably. In
this regime we show that, whatever the nature of the stationary state size distri-
bution(s), growth which proceeds allometrically with constant coefficients is only
depensatory if the rate rises faster than proportionately with size, and is compen-
satory otherwise.
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Second, we have shown that random growth rate variability is invariably depen-
satory. So, in general, is long-term individual-to-individual growth performance
variation. An important exception in this latter case (see Eq. 25 and subsequent
discussion) are the transient effects that occur where newly recruited individuals
have size and growth rate correlated in such a way that initially larger individuals
have systematically slower growth rates.

8.2. Quasi-stationary size-at-age c.v.

Where all three sources of size-at-age variation are depensatory, there is little fur-
ther to say. However, in systems (such as those exhibiting von Bertalanffy growth)
where size dependence implies compensation but growth rate variability is depen-
satory, there is the possibility that tension between these two effects will give rise
to an attracting trajectory of size-at-age c.v. against age.

For the von Bertalanffy growth model, under the assumption that the scaled
assimilation rate (u, defined in Eq. 35) is uniformly distributed over a range lying
within [0, 1], we were able to explore this possibility analytically. To demonstrate
that the existence of these quasi-stationary trajectories is not an artifact of this
special (and grossly unrealistic) assumption, we now show a series of numerical
experiments using more defensible forms of growth rate variation.

In Appendix D, we give a complete description of the model used, but the key
feature is that the normalised assimilation rate is assumed to bear a Michaelis–
Menton relationship (u = f/(1 + f )) to food availability f , which is itself assumed
to be log-normally distributed. The resulting probability density distributions for
u are shown in Fig. 4c.

The simulation results, shown in Fig. 4a and b, are clear. Under the new as-
sumptions, and irrespective of the chosen parameters, the trajectory of size-at-age
c.v. against age rapidly converges to an initial-condition-independent attractor that
varies with model parameters. Although we can no longer calculate this attracting
trajectory analytically, it is quite straightforward to obtain a numerical solution
to the equation that results from turning Eq. (51), which is an inequality, into an
equality.

The only approximation involved in this process is the assumption that size-at-
age is normally distributed about its mean value. For a given mean and standard
deviation, we can evaluate the two sides of the equation numerically and use stan-
dard numerical optimisation procedures to determine the value of standard devia-
tion that causes the equation to be true for a given value of mean size (length). We
see from the dashed lines in Fig. 4a and b that the relation between size-at-age c.v.
and size thus determined is a good estimate of that observed—the residual discrep-
ancy being a product of the assumption of normality in the size-at-age distribution.

8.3. Combined individual and stochastic variability

The area in which we have been able to make the least analytic progress in this
paper, is where stochastic environmental variability is combined with permanent
individual-to-individual differences, which are characterised in our earlier discus-
sion as family-to-family differences. To illustrate the potential importance of these



The Dynamics of Size-at-Age Variability 879

0 5 10 15 20

0.
0

0.
1

0.
2

0.
3

a) CV: E{u}=0.4, SD{U}=0.2

normalised time

st
an

da
rd

de
vi

at
io

n/
m

ea
n

0 5 10 15 20

0.
00

0.
10

0.
20

b) CV: E{u}=0.6, SD{U}=0.2

normalised time

st
an

da
rd

de
v i

at
io

n/
m

ea
n

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

c) p.d.f. for u

u

P
ro

ba
bi

lit
y

d e
ns

ity

0 5 10 15 20

0.
0

0.
4

0.
8

d) Mean length

normalised time

no
rm

al
is

ed
le

ng
th

Fig. 4 Simulations of an ensemble of 10,000 individuals exhibiting ireversible von Bertalanffy
growth over 20 normalised time units in increments of 0.5 time units with randomly varying growth
rates u = f/(1 + f ) where f is lognormally distributed. The points in (a) show

√
VL against t for

two initial conditions with u having a mean of 0.4 and a S.D. of 0.2. One replicate has all indi-
viduals the same initial length, while the other has initial lengths spread uniformly between 0.05
and 0.15. (b) shows two similar replicates of a system with u having mean 0.7 and standard devi-
ation 0.2. (c) shows the probability density functions for the u in the runs in frame a (dotted line)
and b (dashed line). (d) shows the mean length against time for the runs in frames a (solid) and
b (dashed).

effects, we again resort to numerical experimentation with a cohort exhibiting von
Bertalanffy growth. However, in this case, we assume that each family has a dis-
tinct relation between assimilation rate and food abundance, so that for family i
(see Appendix D) Eq. (35) becomes

gi (L, u) =
[

ξi

ξ1
u − L

]+
, (52)

Our experiment, whose results are shown in Fig. 5, assumes that u is uniformly
distributed between 0 and 1, and that each family has a time-independent value of
the ratio ξi/ξ1, which is drawn from a normal distribution with mean 1 and stan-
dard deviation σξ . To maximise the effect of individual-to-individual variation, we
simulate a cohort containing exactly one representative of each family.
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Fig. 5 Simulations of an ensemble of 10,000 individuals exhibiting ireversible von Bertalanffy
growth according to Eq. (52) over 30 normalised time units in increments of 0.1 time units with
randomly varying growth rates u uniformly distributed over [0, 1]. The values of normalised as-
similation rate scale (ξi /ξ1) are normally distributed with mean 1 and S.D. σξ and each family
contributes exactly one member to the cohort. Each frame shows two runs, one started with all
individuals at length L = 0.1 and the other with individual initial sizes uniformly distributed over
[0.001,0.19]. Frames (a) and (b) show the results of runs with σξ = 0, and frames (c) and (d) show
the results of runs with σξ = 0.08.

If σξ = 0 (Fig. 5a and b) we expect to reproduce the results shown in Fig. 2c and
d. In particular, we notice that in this case, as we would expect from Eq. (50), the
length c.v. goes to zero as the mean length approaches 1—reflecting the fact that
all individuals eventually reach normalised length 1.

Although we have no formal treatment of the case where individual and stochas-
tic variability are combined, our earlier discussion makes it quite straightforward
to infer the qualitative detail of what we expect when σξ is finite but not too
large. When the mean length is much lower than its asymptotic value we expect
most variability to be the result of stochastic growth rate variation. As the mean
length approaches 1, we expect most individuals to have reached their individual
asymptotic lengths and thus we expect the length variability to ever more exactly
reflect the distribution of σξ . Examination of Fig. 5c and d shows this to be exactly
what we observe. Finally, we note that the initial-condition independence of the
trajectory of length-at-age c.v. is maintained when individual-to-individual growth
performance variability is an important source of population size variability.
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These experiments indicate that individual-to-individual parameter variability
can have very marked effects on the trajectory of size-at-age c.v. and, conversely
that the asymptotic behaviour of this trajectory can provide a powerful diagnostic
of the relative importance of individual-to-individual variation in some parameters
as against stochastic environmental variation.

9. Conclusion

In this paper we have shown that a systematic framework can be established that
allows the main sources of size-at-age variability to be described rigorously. This
framework lends itself to analytic as well as numerical treatment, thus providing an
alternative to the exhaustive individual-by-individual modelling studies that have
been the technique of choice heretofore.

Using this framework, we have established that deterministic growth depensa-
tion (which we define as the increase of size-at-age c.v. with age) requires a growth
rate which rises faster than proportionately with size, with less marked size depen-
dence giving rise to compensatory effects in the absence of growth performance
variability. Such variability, whether in the form of rapid, uncorrelated variation
of realised growth, or longer-term (possibly) genetic individual-to-individual dif-
ferences, is always depensatory in the long term.

Where a system exhibits a combination of deterministic compensation and
growth rate variability-driven depensation, there is the possibility of a state that
represents an attractive balance between these two effects—thus giving rise to an
initial-condition-independent relation between size-at-age c.v. and size, which can
sometimes be determined analytically, but which is always accesssible to numerical
determination.
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Appendix

A. Continuity equation for the family age-size PDF

In this section, we derive the continuity equation for the probability density func-
tion describing the age-size distribution of a single family under the assump-
tion that each individual’s development rate parameter (γ ) varies randomly.
For compactness, we shall drop the family designator and denote the pdf by
P(n, a, w, t), the family growth function by g(a, w, γ ).

We consider a time step dt during which we regard each individual’s value of γ

as an independent constant drawn from a family-specific distribution characterised
by a probability density function φ(γ ) . We note that all individuals with a given
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value of γ in a volume element dV ≡ dn da nw at (n, a, w) at time t must be the
survivors of those found at time t − dt in a volume

dV′ = dn
[

1 + ∂(nm)
∂n

dt
]

dw

[

1 − ∂g
∂w

dt
]

da (A.1)

at (n + mn dt, w − g dt, a − dt).
The proportion of the family members in dV who have parameters in γ → γ +

dγ is φ(γ )dγ . Hence we can see that the probability density in dV at time t is
related to the probability density function at time t − dt by

P(n, w, a, t)dV =
∫ ∞

−∞
φ(γ )P(n + mn dt, w − g dt, a − dt, t − dt) dV′dγ. (A.2)

Expanding the source density to second order in dt , collecting up terms and divid-
ing through by dn dw da dt shows that

∂ P
∂t

+ ∂ P
∂a

− ∂(mnP)
∂n

+
∫ ∞

−∞
φ

∂

∂w

[

g P − g2dt
2

∂ P
∂w

]

dγ + O(dt) = 0. (A.3)

Recalling that only the development rate function (g) depends explicitly on γ , and
using an overbar to denote the expectation of any quantity depending on γ over
the probability density function φ allows us to rewrite this as

∂ P
∂t

+ ∂ P
∂a

− ∂(mnP)
∂n

+ ∂

∂w

[

g P − g2 dt
2

∂ P
∂w

]

+ O(dt) = 0. (A.4)

The reason for retaining a term of O(dt) in the square brackets is that we assume
that the noise process driving variation in γ is ‘white’—implying that it has a con-
stant power spectral density (2D) over all possible frequencies. This, in turn, im-
plies that while the mean of the process will remain finite as dt → 0, the variance,
σ 2

g = 2Ddt−1, will go to ∞ as dt−1 (Nisbet and Gurney, 2003).

Hence, recalling that σ 2
g = g2 − (g)2, we see that as we proceed to the limit of

very small time increments, our dynamic equation for the family age-size proba-
bility density function becomes

∂ P
∂t

+ ∂ P
∂a

− ∂(mnP)
∂n

+ ∂

∂w

[

g P − D
∂ P
∂w

]

= 0. (A.5)

B. Double sum of a function

We consider a function φi, j , which is defined for i, j ∈ [1, N]. Our interest is in the
sum of φ over its entire domain, that is in

S ≡
∑

i

∑

j

φi, j . (B.1)
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Clearly, we can rewrite S as

S =
∑

i

∑

j<i

φi j +
∑

i

∑

j≥i

φi j . (B.2)

By performing the second of these double summations in reverse order we get

S =
∑

i

∑

j<i

φi j +
∑

j

∑

i< j

φi j . (B.3)

Finally, we interchange i and j in the second term, and amalgamate the resulting
sums, to obtain

S =
∑

i

∑

j<i

[φi j + φ j,i ] . (B.4)

C. Double integral of a function

We consider a function φ(x, y). Our interest is in the double integral

I ≡
∫ ∞

0

∫ ∞

0
φ(x, y) dx dy. (C.1)

Clearly we can rewrite I as

I =
∫ ∞

0

∫ y

0
φ(x, y) dx dy +

∫ ∞

0

∫ ∞

y
φ(x, y) dx dy. (C.2)

By performing the second of these double integrals in reverse order, I becomes

I =
∫ ∞

0

∫ y

0
φ(x, y) dx dy +

∫ ∞

0

∫ x

0
φ(x, y) dy dx. (C.3)

Finally, interchanging x and y in the second term, yields

I =
∫ ∞

0

∫ y

0
[φ(x, y) + φ(y, x)] dx dy. (C.4)

D. The von Bertalanffy growth model

One standard derivation of the von Bertalanffy growth model asserts that the
weight and length of an animal are related by

W′ = χ L′3, (D.1)

its basal metabolic costs are proportional to weight (with constant of proportion-
ality b′) and its uptake rate in the presence of food at density f ′ is proportional
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to its cross-sectional area (L′2) and to a Michaelis–Menton factor related to food
density ( f ′). Thus

u′ = ξ L′2 f ′

fH + f ′ . (D.2)

Hence, assuming that it is reproductively inactive, so that somatic growth and basal
metabolism are its only expenditures, the rate of change of weight is

dW′

dt ′ = 3χ L′2 dL′

dt ′ = ξ L′2 f ′

f ′
H + f ′ − b′χ L′3. (D.3)

If we define t = b′t ′/3, L = b′χ L′/ξ and f = f ′/ f ′
H, this reduces to

dL
dt

= u − L, where u = f
1 + f

. (D.4)

If, in addition we assert that when u < L the animal cannot shrink, but instead
retains its existing length, then the model becomes

dL
dt

= [u − L]+, where [x]+ = max(0, x). (D.5)

To simulate this growth process, we assume that over some time increment t →
t + dt , u remains constant at a value ut , so that

Lt+dt =
⎧
⎨

⎩

ut + (Lt − ut ) e−dt , if ut > Lt

Lt , otherwise. (D.6)

We note that, if the normalised food density f is lognormally distributed with
mean m and standard deviation s, that is

φ f = NL( f, m, s), (D.7)

then u is distributed over [0, 1] with a probability density function

φ(u) = 1
(1 − u)2

φ f

(
u

1 − u
, m, s

)

. (D.8)

In the case where we wish to represent multiple families, each with a distinct value
of the assimilation rate scale ξi , the above discussion repeats almost exactly except
that we need to choose the value for a single family (say i = 1) to define our scaling,
that is we define L = b′χ L′/ξ1. Hence, our final model for family i is

dLi

dt
= ξi

ξ0
u − Li , where u = f

1 + f
. (D.9)



The Dynamics of Size-at-Age Variability 885

References

Bardos, D.C., 2005. Probabilistic Gompertz model of irreversible growth. Bull. Math. Biol. 67,
529–545.

Brunkow, P.E., Collins, J.P., 1998. Group size structure affects patterns of aggression in larval
salamanders. Behav. Ecol. 9, 508–514.

DeAngelis, D.L., Huston, M.A., 1987. Effects of growth rates in models of size distribution for-
mation in plants and animals. Ecol. Modell. 36, 119–137.

DeAngelis, D.L., Cox, D.C., Coutant, C.C., 1979. Cannibalism and size dispersal in young of the
year large-mouth bass: Experiments and model. Ecol. Modell. 24, 21–41.

de Roos, A.M., Diekmann, O., Metz, J.A.J., 1992. Studying the dynamics of structured population
models: A versatile technique and its application to Daphnia population dynamics. Am. Nat.
139, 123–147.

Fujiwara, M., Kendall, B.E., Nisbet, R.M., 2005. Growth autocorrelation and animal size variation.
Ecol. Lett. 7, 106–113.

Fujiwara, M., Kendall, B.E., Nisbet, R.M., Bennett, W.A., 2005. Analysis of size trajectory data
using an energetic-based growth model. Ecology 86, 1441–1451.

Gompertz, B., 1825. On the nature of the function expressive of the law of human mortality, and
on a new mode of determining the value of life contingencies. Philos. Trans. R. Soc. Lond.
115, 513–585.

Imsland, A.K., Nilsen, T., Folkvord, A., 1998. Stochastic simulation of size variation in Turbot:
Possible causes analysed with an individual-based model. J. Fish. Biol. 53, 237–258.

Marteinsdottir, G., Begg, G., 2002. Essential relationships incorporating influences of age, size
and condition on variables required for estimation of reproductive potential in Atlantic cod
(Gadus morhus) stocks. Mar. Ecol. Prog. Ser. 235, 235–256.

Nisbet, R.M., Gurney, W.S.C., 2003. Modelling Fluctuating Populations. Blackburn, Caldwell, NJ,
pp. 243–250.

Pfister, C.A., Stevens, F.R., 2002. The genesis of size variability in plants and animals. Ecology 83,
59–72.

Pfister, C.A., Peacor, S.D., 2003. Variable performance of individuals: The role of population
density and endogenously formed landscape heterogeneity. J. Anim. Ecol. 72, 725–735.

Ricker, W.E., 1958. Handbook of Computations for Biological Statistics of Fish Populations. Fish-
eries Research Board of Canada, Nanaimo, BC, Canada. Bulletin 119.

Rose, G., 2004. Reconciling overfishing and climate changes with stock dynamics of Atlantic cod
(Gadus morhua) over 500 years. Can. J. Fish. Aquat. Sci. 61, 1553–1557.

Sebens, K.P., 1987. The ecology of indeterminate growth. Ann. Rev. Ecol. Syst. 18, 371–407.
von Bertalanffy, L., 1938. A quantitative theory of organic growth (inquiries on growth laws) II.

Hum. Biol. 10, 181–213.
von Foerster, H., 1959. Some remarks on changing populations. In: Stohlman, F. (Ed.), The Ki-

netics of Cellular Proliferation. Grune and Stratton, New York.
Wootton, J.T. 1992. Indirect effects, prey susceptibility and habitat selection: Impacts of birds on

limpets and algae. Ecology 73, 981–991.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


