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1. Executive Summary

This paper addresses the estimation and implications of the relationship between spawning
stock and recruitment in salmon populations. Although such relationships are without
exception highly stochastic they are often characterised by a smooth curve which formally
represents the mean recruitment outcome at each spawner abundance. We discuss the
estimation of mean stock recruitment curves and consider the identification of site to site
variations from typical datasets. We then discuss the implications of the estimation issues
for identification of the deterministic dynamics of a given stock.

We next consider stochastic stock-recruitment relations and investigate their influence
in driving generation to generation and year to year stock fluctuations. We develop a
computationally efficient stochastic sub-catchment population model, which we use to
consider the relation between year to year correlation in population fluctuations and the
temporal pattern of return to spawn. Finally we investigate the effects of conservation
limit driven management policies on the stability, persistence and yield of an exploited
salmon population. We conclude that:

• The shape of the mean stock-recruitment relation at low stock levels plays a critical
role in determining the degree to which demographic and environmental variability
influence population persistence.

• This low-stock shape is systematically poorly defined by empirical data, implying
that mechanistic descriptions of the underlying mechanisms form the only plausible
route to reducing uncertainty and consequent policy risks.

• The serial correlation of population fluctuations driven by recruitment and survival
variability is critically related to the age range of returning spawners. If all indi-
viduals return at the same age the population divides into a group of unconnected
‘lineages’ and there is no correlation between spawning populations in sequential
years. This has clear implications for management actions predicated on observa-
tions the previous year.

• Generational correlations can be positive, negative or insignificant according to the
shape of the stock-recruitment relation and the position of the mean population
with respect to the S-R maximum. Populations with mean stocks well below the S-R
maximum tend to be vulnerable and it may be possible to identify such vulnerability
from the ACF of an observed time-series.

• Short-term correlation in spawning stock fluctuations is frequently weak, in which
case conservation limit driven management policies will produce seriously deleterious
effects even when applied to a statistically uniform and well characterised population.

• Where spawners return uniformly over three years, CL driven exploitation system-
atically underexploits good years and overexploits bad ones, thereby inducing short
period population fluctuations of considerably greater intensity than those implied
by natural variability in recruitment and survival.

• Where spawners return predominantly at a single age, ‘pseudo-lineages’ are regularly
driven to extinction and only rekindled by leakage from their cousins. As a result
both the mean spawning stock and the long-run average catch are far below those
which would be obtained by constant effort exploitation.
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2. Modified Ricker stock-recruitment

Stock-recruitment relations are very often fitted using the standard Ricker form

Rt = Rmax

[
St

Smax

]
exp

[
1− St

Smax

]
(1)

where Rmax is the maximum possible population output of recruits and Smax is the num-
ber of reproductively active adults (spawning stock) who produce this output. In this
investigation we use a modified form of this relation, which allows the curve to have a
sigmoidal (or knee’d) form, namely

Rt = Rmax

[
St

Smax

]k

exp

[
k

(
1− St

Smax

)]
(2)

where Rmax and Smax retain their original interpretation and k is the sigmoidality param-
eter. When k ≤ 1 the slope of the stock-recuitment curve decreases monotonically as St

rises from zero, with the slope at zero being infinite for all k < 1 and finite for k = 1.
When k > 1 the slope at the orgin is zero and initially increases with St (see Fig. 1b).

If the species concerned is semelparous, the proportion of recruits who survive to spawn
is P and all individuals who spawn do so after g years then the population dynamics are
described by

St+g = PRmax

[
St

Smax

]k

exp

[
k

(
1− St

Smax

)]
(3)

Equilibrium in this system clearly requires each spawner to produce exactly one spawning
adult in the next generation, that is the net reproduction per individual spawner (r) must
be unity, i.e.

rt ≡
[
PRmax

Smax

] [
St

Smax

]k−1

exp

[
k

(
1− St

Smax

)]
= 1. (4)

If all a cohort’s members do not spawn simultaneously, the population’s transient dyam-
ics are no longer described by equation (3), but the requirement for equilibrium is still
equation (4).

Examination of Fig. 1a lets us identify the number and stability of stationary solutions
to equation (3). If k < 1 then there is always exactly one solution with S∗ > 0 which
is guaranteed to be an attractor. If k = 1, then there is a single attracting stationary
solution provided that r(0) is greater than 1, that is

PRmaxe
1

Smax

> 1 ⇔ P > PR
c ≡

Smaxe
−1

Rmax

, (5)

and no non-zero stationary solution otherwise. If k > 1 then there are two non-zero
solutions or none. If the maximum value of r is smaller than unity then there is a single
attracting solution at the origin (S∗ = 0). If it is larger than unity, this solution is joined
by two more, the lower one being a repeller and the upper an attractor. Thus, for k > 1
the system has one non-zero attracting solution, with a basin of attraction bounded below
by the second interior steady state. A few lines of elementary algebra suffice to show that
the requirement for the existence of such a solution is

P > PM
c ≡

Smaxe
−1

Rmax

.

[
k

k − 1

]k−1

. (6)
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Figure 1: The modified Ricker stock recruitment curve. a) and b) illustrate the behaviour of this
relation for k = 0.5 (green), k = 1 (blue) and k = 3 (red). a) shows the implied net individual reproductive
output (eqution 4) if the survival to spawn P = 0.005 compared to the equilibrium requirement (black line),
b) shows the gross population reproductive output (equation 2) compared to that needed for equilibrium
when P = 0.005 (solid line), P = 0.01 (dashed line) and P = 0.0025 (dotted). c) and d) show net
individual and gross population reproduction for the Girnock (spawner-fry) best fits (Rmax = 28095,
Smax = 118.7, k = 1.569) compared to the equilibrium requirement if P = 0.003, implying a steady state
population of about 70 females.

3. Fitting the MR curve to data.

To investigate the shape of observed stock-recruitment curves we have fitted the modified
Ricker (and some alternative forms) to a number of datasets. In each case we determined
the best fit to the data using the Nelder-Meade non-linear optimisation algorithm imple-
mented in the R routine ‘optim’. The best fit curves implied by this proceess, together
with the observations are shown in Fig. 2.

Examination of the standardised residuals yielded by the fitting process (see Appendix
A) suggests that their standard deviation at any given spawner number is proportional
to the fitted mean. To determine confidence limits for the fitted curves we generated a
thousand (statistically equivalent) simulated data sets with points at the same spawner
numbers as the observed dataset. Output at those spawner numbers was drawn from a
normal distribution with mean equal to the best fit and standard deviation equal to the
product of that mean with the overall standard deviation of the standardised residuals.
We fitted each simulated dataset in the same way as the observations and then scanned
the envelope of predicted curves to find the 2.5% and 97.5% percentiles for each input
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Figure 2: Modified Ricker SR curves fitted to data from the Girnock Burn and the rivers
Bush and N. Esk. In all cases the points show observations, the blue line shows the best fit and the
red lines show 95% confidence limits. a) shows a fit to the fry abundance in the Girnock determined
from electrofishing data for the years 1968-78, 1981-89 and 1999. Best fit parameters are Rmax = 28096,
Smax = 118.7, k = 1.569. b) shows a fit to Girnock smolt trap data for the years 1966-76,1981-89, 1992-
99. Best fit parameters are Rmax = 4145.9, Smax = 101.17, k = 0.87247. c) shows data on ova input and
smolt output for the river Bush for 1973-89 (http://ram.biology.dal.ca/ftp/pub/sr/ASALBUS2.dat). Best fit
parameters against ova ×10−5 are Rmax = 25997, Smax = 242.9, k = 1.828. d) shows data on spawners
and pre-fishery adult returners from the N. Esk, which were fitted with the constraint k ≥ 1. Best fit
parameters are Rmax = 21759, Smax = 7522, k = 1.000.

value. The resulting confidence limits are shown in Fig. 2. The full parameter distributions
and samples of the simulated data are shown in Appendix A.

We note from Appendix A.3 that the R2 for the Bush fit given here is 0.227 which
contrasts rather unfavourably with the value of 0.422 claimed by Crozier and Kennedy
when fitting the same data with a standard Ricker curve. We have refit this data with a
standard (two parameter) Ricker curve and find R2 = 0.183. Perhaps not coindidentally√

0.183 = 0.427 which is very close to Crozier and Kennedy’s result if they erroneously
identified R as R2.

We also note that the fit to the N. Esk data (which might arguably be more appropri-
ately fitted by a horizontal straight line – see Appendix A.8) was constrained to have the
sigmoidality parameter k ≥ 1, in contrast to the other three fits in which the constraint
was k > 0. Alternative fits to this data with weaker constraints showed that the best fit
value of k was always close to the constraint value, leading to best fit lines which are
essentially horizontal down to very low values of spawner numbers.
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4. Steady states, noise and persistence

To aid understanding of the way steady states vary with model parameters, we restate
equation (3) as a requirement that any equilibrium state S∗ must be a solution of

1

P
S∗ = Rmax

[
S∗

Smax

]k

exp

[
k

(
1− S∗

Smax

)]
(7)

The R.H.S. of this relation is just the stock recruitment curve, while the L.H.S is a
straight line through the origin with slope 1/P . An equilibrium occurs wherever these
two are equal, that is where the ‘replacement line’ intersects the stock recruitment curve.
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Figure 3: Stock-Recruitment Curves and Steady States. The three solid curves show possible stock-
recruitment curve shapes given by equation (2) with k=0.5 (green), 1 (blue) and 2(red). The dotted lines
show the renewal condition for five values of P ranging from 0.005 (extreme right) to 0.001 (extreme
left).

We illustrate this for three characteristic stock recruitment curve shapes in Fig. 3. When
the survival to spawn (P ) is ‘large’ then all three curve shapes predict an attracting steady
state. However, as P decreases the behaviour of the three curve types diverges. Only for the
(rather implausible) case of k < 1 does the steady state exist regardless of the value of P .
When k = 1 (that is for the standard Ricker) the interior (S∗ > 0) steady state exists only
so long as the slope of the replacement line (1/P ) is less than that of the stock-recruitment
relation at the origin. The requirement that this should be so is that P > PR

c given by
inequality (5). When this inequality is reversed the population experiences ‘deterministic
extinction’.

When k > 1 the behaviour is even more complex. Here there are two positive steady
states, the upper one being the attractor and the lower being a threshold below which
the population crashes to zero. When P is large the threshold steady state is close to
the origin and will have no practical effect. However as P decreases (the slope of the
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replacement line increases) the upper and lower steady states converge and eventually
meet when P = PM

c (equation 6). For P < PM
c the only steady state is the origin, so the

population crashes (deterministically) to extinction.
The foregoing discussion shows that sigmoidality of the stock-recruitment relation (the

value of k) has considerable influence on the survival to spawn at which the population
experiences deterministic extinction. However, its importance is greatly increased when
we take recruitment and survival variability into account. In Fig. 4 we show a series of
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Figure 4: Stochastic Simulations with recruitment negative binomially distributed (θ = 15 ⇒ c.v.
≈ 0.25 ) around the mean shown in Fig. 3 for k = 2 (left-hand frames) and k = 1 (right-hand frames)
and P normally distributed around 0.005 (upper frames) or 0.0035 (lower frames) with CV=0.1. The
mean time to extinction for the case in the lower left frame is 50.9 generations.

simulations in which we assume that for any given value of spawning stock the recruitment
is negatively binomially distributed around the mean recruitment appropriate to that
stock (see Fig. 3) with a shape factor θ = 15, which approximates to a c.v. of around 25%
for spawning stocks from 10-100 females. To add an additional element of realism we also
assume that the survival to spawn P is normally distributed around its designated mean
value with a c.v. of 10%.

In the upper frames of the figure we show simulations with mean survival to spawn
well above the critical value for k = 2 (PM

c = 0.0031). In this case the lower (threshold)
and upper steady states for k = 2 are about 20 and 100 females respectively and the
behaviour of the model with k = 2 is remarkable similar to that with k = 1. However,
with a mean survival to spawn of 0.0035 (which is still comfortably above the critical
level for deterministic extinction when k = 2), the lower and upper steady states are
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around 30 and 70 respectively and the stochastic population trajectory goes quite rapidly
to extinction – the mean time to extinction for these parameters being 50.9 generations.
By contrast the model with k = 1 (and hence critical survival to spawn PR

c = 0.0015)
shows continued statistically stable variability around the expected mean population.

These simulations show that the details of the low-stock shape of the stock recruitment
relation can have a very significant effect on the possibility of both stochastic and deter-
ministic extinction. This leads to a rather serious difficulty in setting conservation limits.
Few populations will explore the very low stock region of the S-R curve very frequently.
Indeed, if the curve is S-shaped, any stock which does so is bound for almost certain
extinction in the absence of remedial measures.

Hence, to add to the general chronic lack of stock recruitment data, we can add a
further impediment, that even good (long-term) data for spatially restricted regions such
as the Girnock are unlikely to define the low-stock behaviour well. Shorter term datasets
for spatially extended regions are likely to yield no useful information at all on this critical
region of the stock recruitment curve.

Prudent discussion of whether a stock is or is not endangered must take appropriate
account of the uncertainty in the low-stock shape of the S-R curve, and acknowledge the
possibility that it may be curved in such a way as to enhance the noise sensitivity of the
population and hence its probability of becoming extinct. The only practical way to meet
this requirement is to develop sufficient understanding of the mechanisms which determine
the stock-recruitment relationship, so that a fit to the high-stock region of the curve can
be confidently extrapolated to the low-stock region. To fail to do so, for example by simply
assuming that the S-R curve is a standard Ricker curve through a highly dispersed set of
data is likely to yield very poor management advice.

5. Population fluctuations in a single deme

The strategic population model defined by equation (3) assumes that offspring of indi-
viduals who reproduce in year y themselves reproduce in year y + g. The implication of
this assumption is that the population divides into g unconnected ‘lineages’ whose fluctu-
ations are completely uncorrelated (see Fig. 5). To develop a better understanding of the
fluctuations in real populations we need to represent the fact that even individuals who
return after a fixed number of sea winters may have spent different lengths of time in the
river and thus have spent different amounts of time since they were ova.

To facilitate development of a year-by-year (as opposed to generation by generation)
model we first define total age a as the age of a returner since it was spawned. We now
use Sy to represent the number of spawners in year y and Ry(Sy) to denote the number
of individuals recruited to the population as a result of the spawning activity in that
year. If the proportion of these recruits who survive to spawn (at any age) is Py and the
proportion of those survivors who spawn at total age a is Qy(a) then the total spawning
population in year Y is given by

SY =
Y−am∑
y=Y−1

Qy(Y − y)PyR(Sy) (8)

where am is the maximum age at which any individual ever returns to spawn.
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In the deterministic variant of this model the stock recruitment function Ry is a deter-

ministic function R̂, the spawning survival Py is a constant P̂ and the return fraction Qy

is a deterministic function Q̂. In this case the steady state S∗ is a solution of

S∗ =
Y−am∑
y=Y−1

Q̂(Y − y)P̂ R̂(S∗) = P̂ R̂(S∗)
Y−am∑
y=Y−1

Q̂(Y − y) = P̂ R̂(S∗), (9)

thus demonstrating that the equilibrum requirement is equation (4).
A plausible stochastic variant of the model continues to regard the return fraction Q(a)

as a deterministic funtion, but regards the stock recruitment and survival to spawn as
random variables. Following our earlier practice, we define the survival to spawn P as
a normally distributed random variable with mean P̂ , and the stock recruitment as a
negative binomially distributed random variable with (constant) shape factor θ and mean
related to the spawning stock by equation (2). This model is extremely simple to simulate
(R code to do so is given in Appendix B.1).
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Figure 5: Year by year stochastic simulations of the single deme model. Left hand frames show
a 1000 year simulated time series (top), a 50 year time-series segment (middle), and the autocorrelation
function (bottom) for a run with all spawners returning at total age a = 6 – corresponding to a two
sea-winter fish which spends three years in the river. The right hand frames show an identical simulation
except that the returning spawners arrive in equal numbers at ages 5 and 6. Comon model parameters
are: Rmax = 3× 104, Smax = 120, k = 1, θ = 10, P̂ = 0.006, CVP = 0.1.

Fig. 5 shows results of two simulations. Both depict a population of individuals who
return after two sea-winters to spawn with a mean output given by a standard Ricker
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stock recruitment relation with Smax = 120. The parameters are chosen so as to put the
deterministic steady state (S∗ = 168.5) well above the maximum of the S-R curve. One
simulation assumes that all individuals smolt after 3 years in the river (that is at a = 6)
while the other assumes that 50% of returners spawn at a = 5 while the remainder spawn
at a = 6.

Both simulations show statistically stationary fluctuations around means (162 for the
6 year return, 165.4 for the 5 and 6 year returns) which are close to the deterministic
stationary state. As we might expect the amplitude of the fluctuations is smaller in the
case where returns are spread over two years (six year returns ⇒ CVS = 35%, five and
six year returns ⇒ CVS = 25%). Again as we might expect, the ACF’s show that if
the returners from a given years spawning all arrive in a single year, the population in
effect consists of a group of independent (and thus uncorrelated) sub-units, whereas if
returners are spread over more than one year, there is significant year to year correlation
in fluctuations.

A final point of interest from the ACF’s shown in Fig . 5 is that the correlation between
generations is negative. We hypothesise that this occurs because the mean spawner pop-
ulation in these simulations is well above the maximum of the S-R curve. In this case a
larger than average spawner population will produce a smaller than average recruitment
and vice-versa. The suggests that if the mean spawner population is below the maximum
of the stock-recruitment curve we should expect a positive generational correlation.

This hypothesis is confirmed by the simulations shown in Fig. 6, which also demonstrate
that if the mean is close to the maximum of the S-R curve, the generational correlation
disappears. This experiment also demonstrates that the number of year-classes which
show positive year to year correlation is determined by the width of the return probability
distribution Q(a).

6. Managing a single deme - conservation limits

In this section we use the single deme model developed above to explore the implica-
tions of conservation limits in salmon management. We base our investigation on the
Girnock spawner-smolt data which we fit with a broken-stick stock recruitment curve (see
Appendix A.6). We postulate that the spawning population in year y is the difference
between the numbers returning to the coastal region and the catch in year y which we
denote by Cy. We examine two models. In the first model variant, post return exploita-
tion is supposed to remove a constant fraction of the returners (which we call the river
exploitation fraction and denote by ρ ). In the second, the number of individuals removed
after return to the coastal region is equal to the difference between a conservation limit
and the previous year’s spawning stock, or to the current spawning stock, whichever is
smaller.

We explore the effects of these models of exploitation on two systems. In one, the
returning spawners from a given hatch class arrive with equal probability at ages 5, 6 and
7, thus ensuring that the population fluctations have strong serial correlation. In the other
we assume that 80% of the returners are aged 6, with the remaining 20% divided equally
between ages 5 and 7. This implies population fluctuations with weak serial correlation.

The results of our simulations are shown in Fig. 7. We have set the combination of
river exploitation (50%) and the sea-survival (4%) so as to give a deterministic steady
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Figure 6: The effect of changing mean on the ACF of population fluctuations. This figure
shows a series of simulations with Rmax = 3× 104, Smax = 120, k = 1, θ = 10, CVP = 0.1 and spawner
return occuring with equal probabability at a =5,6 and 7. The top frames show a run with P̂ = 0.0025
implying Ŝ = 64.4. The middle frames show a run with P̂ = 0.004 implying Ŝ = 118.8. The bottom frames
show a run with P̂ = 0.006 implying Ŝ = 166.9.

state of 80 females. Constant effort river-exploitation gives a long-term mean population
of around 79 females and an almost exactly equal long-term mean yearly catch in both
the strong and weak serial correlation cases.

To apply the conservation limit policy we set the CL at 50 individuals, although we note
that this experiment is quite favourable to this policy. Appendix A.6 shows the confidence
limits on Smax to be such that we should expect to get its value wrong by as much as
20% even if we have correctly identified the functional form of the S-R relation. If we have
misidentified the shapw of the S-R relation then our likely error will be much larger.

Despite strong stuctural similarities between the strong and weak serial correlation
cases, the results of applying CL determined exploitation are much more severe in the
weak serial correlation case. In both cases we see that the tendency of the CL policy to
allow high exploitation after a strong returning year class and close down exploitation
after a weak one, produces periods of high-frequency population oscillations, which are
(not unexpectedly) less persistent in the case where the unmanaged population time-series
would show strong serial correlation. In the weak correlation case the induced fluctuations
are severe enough to repeatedly drive single pseudo lineages to extinction, requiring that
they be (slowly) replenished by leakage from their cousins spawing in nearby sequences
of years.

Examination of the catch time series also shown in Fig. 7 exposes the full inefficiency
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Figure 7: The effects of conservation limited exploitation. This figure shows a series of simulations
driven by a broken-stick stock recruitment curve with Rmax = 4 × 103, Smax = 50, θ = 10, mean sea-
survival P̂=0.04 and CVP = 0.1. In the left-hand column spawner return occurs with equal probabability
at a = 5,6 and 7. In the right-hand column 80% of return is at a = 6 with 10% in each of the preceeding
and succeeding years. The top frames show a run with river exploitation ρ = 0.5. The middle frames show
runs with a conservation limit of 50 females and catch in year y equal to the difference between spawners
in year y − 1 and the CL. The bottom frames show catches under constant effort (red) and CL driven
(blue) management.

of the CL driven management policy. In the strong serial correlation case the mean catch
is considerably more variable than the constant effort catch and its long-run average is
rather smaller, despite a small increase in the long-run average population. In the weak
correlation case, the CL driven policy actually manages to reduce the long-run mean
spawning stock to below 70 females, and reduce the long-run average catch to 21 fish
per year (compared to nearly 80 under the constant effort policy). The reason for this
reduction is the policy’s tendancy to produce near extinction of certain pseudo-lineages
which in turn imply multiple years in which the fishery is completely shut (an outcome
likely to imply disproportionate financial damage to the industry !).
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Appendix

A. Data fits

A.1. Modified Ricker: Girnock Spawner → Fry

Figure 8: Girnock Spawner-Fry Fits. a) Best fit with data. b) Standardised residuals c) Best fit with
95% conf. lims d) Data with implied mean (solid), one s.d (dashed) and two s.d. (dotted).
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Figure 9: Girnock Spawner-Fry Parameters. Top – histograms. Bottom – scattergrams.
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Figure 10: Girnock Spawner-Fry Simulations
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A.2. Modified Ricker: Girnock Spawner → Smolt

Figure 11: Girnock Spawner-Smolt Fits. a) Best fit with data. b) Standardised residuals c) Best fit
with 95% condfidence limits d) Data with implied mean (solid), one s.d (dashed) and two s.d. (dotted).
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Figure 12: Girnock Spawner-Smolt Parameters. Top – histograms. Bottom – scattergrams.
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Figure 13: Girnock Spawner-Smolt Simulations
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A.3. Modified Ricker: Bush Ova → Smolt

Figure 14: Bush Ova-Smolt Fits. a) Best fit with data. b) Standardised residuals c) Best fit with 95%
condfidence limits d) Data with implied mean (solid), one s.d (dashed) and two s.d. (dotted).
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Figure 15: Bush Ova-Smolt Parameters. Top – histograms. Bottom – scattergrams.
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Figure 16: Bush Ova-Smolt Simulations
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A.4. Modified Ricker: N. Esk Spawner → Pre-fisheries Returner

Figure 17: N. Esk Adult-Adult Fits. a) Best fit with data. b) Standardised residuals c) Best fit with
95% condfidence limits d) Data with implied mean (solid), one s.d (dashed) and two s.d. (dotted).
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Figure 18: N. Esk Adult-Adult Parameters. Top – histograms. Bottom – scattergrams.
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Figure 19: N. Esk Adult-Adult Simulations
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A.5. Broken Stick: Girnock Spawner → Fry

Figure 20: Girnock Spawner-Fry Fits. a) Best fit with data. b) Standardised residuals c) Best fit
with 95% condfidence limits d) Data with implied mean (solid), one s.d (dashed) and two s.d. (dotted).
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Figure 21: Girnock Spawner-Fry Parameters. Top – histograms. Bottom – scattergrams.
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Figure 22: Girnock Spawner-Fry Simulations
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A.6. Broken Stick: Girnock Spawner → Smolt

Figure 23: Girnock Spawner-Smolt Fits. a) Best fit with data. b) Standardised residuals c) Best fit
with 95% condfidence limits d) Data with implied mean (solid), one s.d (dashed) and two s.d. (dotted).
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Figure 24: Girnock Spawner-Smolt Parameters. Top – histograms. Bottom – scattergrams.
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Figure 25: GirnockSpawner-Smolt Simulations
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A.7. Straight line: Bush Ova → Smolt

Figure 26: Bush Ova-Smolt Fits. a) Best fit with data. b) Standardised residuals c) Best fit with 95%
condfidence limits d) Data with implied mean (solid), one s.d (dashed) and two s.d. (dotted).
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Figure 27: Bush Ova-Smolt Parameters. Top – histograms. Bottom – scattergrams.
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Figure 28: Bush Ova-Smolt Simulations
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A.8. Straight line: N Esk Spawner → Returner

Figure 29: NEsk Spawner-Returner Fits. a) Best fit with data. b) Standardised residuals c) Best fit
with 95% condfidence limits d) Data with implied mean (solid), one s.d (dashed) and two s.d. (dotted).
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Figure 30: NEsk Spawner-Returner Parameters. Top – histograms. Bottom – scattergrams.
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Figure 31: NEsk Spawner-Returner Simulations
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B. R code

B.1. The generation by generation single deme model

%***************************************************************

% R-code to simulate the simgle deme model

%****************************************************************

nextS<-function(S,Rmax=30000,Smax=120,k=1,

Theta=10,meanP=0.006,cvP=0.1)

{ meanR<-Rmax*(S/Smax)^k*exp(k-k*S/Smax);

Rnext<-rnbinom(1,size=Theta,mu=meanR);

P<-meanP*(1+rnorm(1,mean=0,sd=cvP))

Snext<-P*Rnext;

return(Snext);

}

make.sequence<-function(max.year=1000,

init.S=c(65,50,70,100,75),

prop.ret=c(0,0,0,0,1,1,0),

Rmax=30000,Smax=120,k=1,Theta=10,

meanP=0.006,cvP=0.1)

{ prop.ret<-prop.ret/sum(prop.ret);

sl<-length(prop.ret);

seq<-vector(mode=’double’,length=max.year+sl);

seq[1:length(init.S)]<-init.S;

for (y in 1:max.year)

{ new<-prop.ret*nextS(seq[y],Rmax,Smax,k,Theta,meanP,cvP);

seq[(y+1):(y+sl)]<-seq[(y+1):(y+sl)]+new;

}

o<-data.frame(year=0:(max.year-1),spawners=seq[1:max.year]);

return(o);

}
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B.2. The year by year single deme model

nextSC<-function(S,Rmax=4000,Smax=50,Theta=10,meanP=0.02,cvP=0.1)

{ meanF<-ifelse(S>Smax,Rmax,Rmax*S/Smax);

Rnext<-rnbinom(1,size=Theta,mu=meanF);

P<-meanP*(1+rnorm(1,mean=0,sd=cvP))

Snext<-P*Rnext;

return(Snext);

}

make.sequenceC<-function (max.year=1000,

init.S=c(65,50,70,100,75,63,80),

prop.ret=c(0,0,0,0,1,1,0),

Rmax=4000, Smax=50, sCL=NA, Rho=0.5,

Theta=10, meanP=0.04, cvP=0.1)

{ prop.ret<-prop.ret/sum(prop.ret);

if(!is.na(Rer)){init.S<-init.S/Rer;}

sl<-length(prop.ret);

seq<-vector(mode=’double’,length=max.year+sl);

cat<-seq;

seq[1:length(init.S)]<-init.S;

for (y in 2:max.year)

{ if (is.na(sCL)) {cat[y]<-seq[y]*Rho;}

else { allowed<-max(0,seq[y-1]-sCL);

cat[y]<-min(seq[y],allowed)

}

seq[y]<-seq[y]-cat[y];

new<-prop.ret*nextSC(seq[y],Rmax,Smax,Theta,meanP,cvP);

seq[(y+1):(y+sl)]<-seq[(y+1):(y+sl)]+new;

}

o<-data.frame(year=0:(max.year-1),

spawners=seq[1:max.year],

catch=cat[1:max.year]);

return(o);

}


