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Abstract

This paper reports a series of investigations of stock-recruitment relations for
Atlantic salmon which we believe have wider implications. We regard these re-
lations as stochastic functions characterised by an expected stock-recruitment
relation (ESR) and a process noise component representing deviations from this
expectation driven by uncharacterised variability in the physical and biotic en-
vironment. We fit the ESR using non-linear least-squares minimisation and use
simulation techniques to derive confidence limits. We find that the process noise
is well represented by a negative binomial distribution with constant shape factor
and mean proportional to the expected recruitment. Analysis of stock recruit-
ment relations characterising various segments of the life-cycle of salmon from
the Girnock Burn in N.E. Scotland reveals two independent regulatory processes,
one between ova and fry and the other between fry and smolts, with the sur-
vival at sea being clearly density independent. Comparative studies of a group of
Atlantic salmon stock recruitment relations for populations in Scotland, Ireland
and Canada, together with a series of simulation studies reveals that low-stock
sigmoidality is a potentially common characteristic of salmon ESR’s. We demon-
strate the critical effect this may have on extinction probability and hence on
the choice and utilisation of ESR forms for precautionary management policy.

*Corresponding author
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Introduction
Overview

The stock-recruitment paradigm dates from the pioneering work of Ricker (1954)
and Beverton and Holt (1957). Despite evidence that some species have recruit-
ment dynamics too subtle to be readily summarised by a one to one relationship
with stock size (e.g. Roughgarden et al., 1988; Sakuramoto, 2005) this paradigm,
together with the related idea of maximum sustainable yield (e.g. Clark, 1990),
has been a mainstay of fisheries management for more than sixty years.

In many marine species, stock-recruitment observations are complicated by
measurement error (Needle, 2002) and difficulties in defining stock and recruits
(often for reasons of spatial or jurisdictional heterogeneity). For anadromous
fishes (such as salmonids) who return to their natal catchment with consider-
able accuracy, both definitional and observational errors can be much smaller.
However, even for salmonids in single large catchments, observed stock recruit-
ment relations (e.g. Crozier and Kennedy, 1995) are typically very noisy.

In view of the prevalence of both measurement and definitional error, the cen-
tral thrust of statistical work on stock-recruitment relations has been the use of
Baysian methods to define how well the parameters of a group of chosen func-
tional forms can be defined (e.g. Chen and Holtby, 2002; Schnute and Kronlund,
2002; Michielsens and McAllister, 2003), and the incorporation of environmen-
tal data (e.g. Chen and Irvine, 2001). In this paper we focus principally on a
salmonid dataset in which definitional uncertainty and measurement error are
both small and in which the remaining noise is process error associated with
unknown variability in the physical and biotic environment. We follow Needle
(2002) in arguing that this process noise will inevitably be large enough for the
stock-recruitment relationship to be considered as intrinsically stochastic.

We are thus concerned both with the expected stock recruitment relation
(formally the expected recruitment given stock abundance), and with the dis-
tribution and intensity of the process noise around this expected recruitment.
This recruitment process noise combines with the process noise in the remaining
(linear) part of the life-cycle to drive stochastic fluctations in stock abundance.

Even when the expected stock recruitment (ESR) relation and the expected
marine survival (or, more generally, linear-phase survival) combine to produce
a deterministically viable equilibrium, the fluctuations driven by variability in
recruitment and survival can be large enough to produce a high probability of
extinction, especially where the population exhibits an Allee effect (Chen et
al., 2002). We show that at any given level of process noise, the mean time to
extinction depends on the shape of the expected stock recruitment relation at
both very low and very high stocks — areas in which data necessarily tends to be
least available.

Our investigation shows that recruitment and linear-phase noise play distinct
roles in stock-recruitment function identification— with linear-phase noise playing
a positive role in allowing us to discern the ESR within an envelope of recruitment



W.S.C. Gurney et al.: Uncertainty in stock-recruitment relations 3

process noise. These findings allow us to define ‘stock’ and ‘recruits’ so as to
maximise the accuracy of our identification of the stock-recruitment relation.
They also allow us to define ESR functions yielding ‘worst-case’ estimates of
extinction time.

The data

A survey of Atlantic salmon stock-recruitment datasets in the N.E. Atlantic
has been complied by Chaput et al. (2003). Data for many species including
Atlantic salmon are given at http://www.mscs.dal.ca/ myers/welcome.html. The
work reported here began with an extended investigation of the rich, long-term,
dataset on Atlantic salmon from the Girnock Burn in N.E. Scotland, and was
later extended to include a selection of other datasets for the same species, chosen
to allow us to investigate key aspects of the stock-recruitment modelling process.

The Girnock Burn is a tributary of the River Dee in N.E. Scotland, whose
spawning population of Atlantic salmon has been the subject of intenstive mon-
itoring for over 40 years. The resulting dataset has been extensively described
by Gurney et al. (2009) and references therein. It contains almost complete se-
quences of numbers of spawners (distinguished by sea-age, river-age and sex)
and individuals emigrating down river to smolt (distinguished by age). It also
contains partial sequences of fry abundance (from autumn electro-fishing), aged
parr abundance (from electro-fishing and scale analysis) and parr growth per-
formance (from mark recapture studies, see Bacon et al., 2005).

A resistive fish-counter has been operated at the Logie weir on the N.FEsk,
in N.E. Scotland since 1981 and has yielded an acceptably accurate measure of
potential spawners (Shearer, 1990). Numbers of aged smolts emigrating are esti-
mate from a mark recapture process described by Chaput et al. (2003). Records
of the estuarine and coastal catches are used to calculate yearly estimates of
pre-fishery abundance.

An ova to smolt relation for the River Bush in Northern Ireland is described
by Crozier and Kennedy (1995), who also give a relation between ova numbers
and a semi-quantitative fry abundance index.

Locke and Mowbray (1995) describe an ova to fry stock recruitment relation
for the Nepisiguit River, New Brunswick, Fastern Canada. Fry abundance
was assayed at 16 sites by electrofishing removal between barrier nets. Incoming
spawners were counted using counting fences deployed from July to October and
ova numbers were calculated from number of female spawners.

Chaput and Jones (1992) describe an exceptionally long (1947-1992) series of
stock recruitment data for multi-sea-winter Atlantic salmon in the Margaree
River in Nova Scotia, Eastern Canada. ‘Stock’ is defined as spawning escape-
ment and recruits as returns to the river. Total returns were calculated as the
sum of the commercial catch and in-river returns. In-river returns were estimated
from angling catches, and escapement was defined as in-river returns minus an-
gling catch.
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Materials and Methods
Expected stock-recruitment curves

Most investigations of relations between the abundance of one stage in a popu-
lation’s life history (stock) and a later stage (recruits), centre on an an algebraic
expression describing the expected recruitment (ﬁ) for a given value of stock
abundance (S). In this investigation we shall use a number of forms for this
expected stock-recruitment (ESR) relation.

The first of these is a humped form based on the widely used relation due to
Ricker (1954), which we extend to allow positive curvature near the origin, by

setting
k
R= }A‘me {Si} exp {k (1 — SS )} ) (1)

In this extended Ricker (eRicker) form, ﬁmw represents the maximum possi-
ble expected recruitment, S,,.. represents the equivalent stock, and k is the
sigmoidality parameter. If £ > 1 then small stocks have reduced per-capita fe-
cundity, and the ESR curve has positive curvature near the origin. If £ < 1 then
small stocks have enhanced per-capita fecundity, and the slope near the origin
is larger than that given by the standard Ricker (sRicker) expression (equation
1 with & =1).

Provided that we avoid unbiological negative values of the sigmoidality param-
eter, all variants of equation 1 predict that as stock rises, expected recruitment
goes through a single maximum before proceeding asymptotically to zero. Al-
though some data sets appear consistent with this paradigm, many are equally
consistent with the supposition that as S becomes large, expected recruitment
approaches a finite asymptote from below. Hence, we add to our candidate ESR
curves, a version of the form proposed by Beverton and Holt (1957), adapted as
described by Myers et al. (1995) and Myers (2001) to provide the possibility of
positive curvature near the origin, thus

~ ~ Sk
R = Rmax ok 2
{S’WS,’J @)

In this extended Beverton-Holt (eBH) form, ﬁmax has the same interpretation
as before, S} is the stock at which R = ﬁmm/ 2, and k is the sigmoidality
parameter; with k£ = 1 leading to the standard Beverton-Holt (sBH) form, k& > 1
implying positive curvature at the origin, and k£ < 1 implying enhanced per-
capita fecundity at low stock.

A number of stock-recruitment datasets used to inform stock management
show little sign of non-linearity. Thus we complete our set of candidate ESR
curves with a group of linear and piece-wise linear forms. For a closed population
we expect that the ESR curve should pass through the origin, so we define a
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broken-stick (BS) form

5 (3)

A { [Roae/Si]S  if S < S,
Rz otherwise.
where Emax llas its usual interpretation and 5, is the stock abundance above
which R = R,,... We note that if S, becomes very large, equation 3 defines a
straight line through the origin (the L1 form). For completeness, we also include
an unconstrained straight line, which we call the L2 form, and write

R =R, + 3S. (4)

where /3 is the fecundity and Ry is the zero-stock recruitment.

Fitting stock-recruitment data

Early in this investigation we experimented with Markov-chain Monte-Carlo
methods to estimate the posterior distribution of the stock-recruitment param-
eters given a specific set of observations. We found that reasonable choices of
likelihood function often yielded implausibly precise posterior distributions, with
characteristics depending sensitively on the presence or absence of ‘influential
points’. We concluded that a more robust approach would fit ESR curves using
conventional non-linear minimisation and assess uncertainty by resampling from
simulated data sets generated assuming that the best-fit ESR curve and the ob-
served variability about it represent the underlying stochastic stock-recruitment
function (see e.g. Davidson and Hinkley, 1997).

In the work reported here we fitted candidate ESR curves by minimising
the sum of squared differences between observations and predictions using the
Nelder-Meade non-linear optimisation algorithm implemented in the R routine
‘optim’. A typical result, together with the correponding observations is shown
in Fig. 1a.

Examination of the standardised residuals yielded by the fitting process nor-
mally suggests (as in Fig. 1c) that their standard deviation is independent of
spawner numbers, implying that the (un-standardised) residuals at a given stock
have a standard deviation proportional to the ESR for that stock. This suppo-
sition is supported by Fig. 1d, where we compare the observations to the one
and two standard deviation contours implied by a standard deviation which is
proportional to expected fry abundance.

To determine confidence limits for the fitted curves we generated a thousand
(statistically equivalent) simulated data sets with points at the same spawner
numbers as the observed dataset. Output at those spawner numbers was drawn
from a normal distribution with mean equal to the best fit and standard deviation
equal to the product of that mean with the overall standard deviation of the
standardised residuals. We fitted each simulated dataset in the same way as the
observations (see Appendix, Fig. Al) and then scanned the envelope of fitted
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Figure 1: Fitting the Girnock Burn female spawner — autumn fry data with the
extended Ricker model. a) shows observations (open circles) and the best fit expected stock
recruitment curve (solid line, R? = 0.617). b) shows observations (open circles) and the 95%
confidence limits (solid lines) for the ESR curve determined from 1000 simulated datasets —
see text. ¢) shows the standardised residuals (s.d.=0.294) between the best fit ESR curve and
the observations. d) illustrates the data, the best fit (solid line ) and the 1 s.d.(dashed line)
and 2 s.d.(dotted line) contours implied by the assumption of constant c.v. residuals.

ESR curves to find the 2.5% and 97.5% percentiles for each input value. A typical
example of the resulting confidence limits is shown in Fig. 1b.

As a useful byproduct of this exercise, we obtain estimates for the distribu-
tion of the parameters which characterise the ESR relationship. As an example,
Fig. 2 shows frequency plots and correlograms for the fitted values of the three
parameters which define the eRicker form when fitted to the data in Fig. 1a.

These distributions frequently permit additional deductions about which char-
acteristics of the observations can safely be regarded as generic. For example
the results in Fig. 2 show that 70.9% of simulated datasets yield best fit ESR
curves with noticeably sigmoidal form (which we, rather arbitrarily, identify with
k > 1.2) and 39.9% yield ESR curves with a noticeably ‘humped’ shape (which
we, again rather arbitrarily, identify as having a maximum at less than 83%
of the maximum observed spawner abundance). They also show that the pa-
rameters R,,.. and S,,., have bimodal distributions with the majority of the
probability mass at values consistent with visual analysis of the observations,
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Figure 2: Parameter values and relationships for the simulated datasets used to cal-
culate the 95% confidence limits in Fig. 1. a) shows a frequency histogram for In(R,,4z)
implying that the great majority of the fitted values lie in the range 2.2 x 10* — 6.0 x 10*, with
a small subsidiary group in the range 1.2 x 105 — 4.8 x 10%. b) shows a frequency histogram for
the sigmoidality parameter k, which implies that 70% of simulated datasets have noticeably
sigmoidal form (k > 1.2). ¢) shows a frequency histogram for In(S,,4,) which implies that 38%
of the simulated datasets have Sy,q. < 0.83 max(Syps), the majority of the simulated datasets
have S,,qq in the range 55.6 — 403 with a subsidiary group in the range 1.3 x 10°> — 6.5 x 107.
d) to f) show correlograms for all pairwise combinations of the three fitted parameters.

accompanied by a very small subsidiary group in which these parameters have
very large (functionally infinite) values.

Taken together these parameter distributions give strong support to the view
that the stock recruitment observations in Fig. 1a imply an ESR curve which
has positive curvature near the origin, and negative curvature at higher spawner
numbers. However (as we might expect from visual examination) support for
falling expected recruitment at very high spawner numbers is weak.

Strategic simulations

Even when data (e.g. Fig. 1a) allows reliable definition of the expected stock
recruitment relation (ESR) there is considerable generation on generation vari-
ability around this curve. Any simulation which is to be useful for stock manage-
ment purposes must characterize this variability. Since we have neither detailed
knowledge of the underlying processes, nor information about their physical or
biological drivers, we have little option but to regard them as random.

In the case of the Girnock trap data the counts of spawning females are com-
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plete and thus essentially noise free. Although the accompanying fry abundance
estimates are subject to considerable systematic error from the scale-up process,
re-sampling calculations (J. Thorley, pers.comm.) showed this to be relatively
consistent from year to year. The majority of observed variability around the
ESR shown in Fig. 1la can thus be ascribed to process rather than observation
error, so the required random function should have statistical properties close to
those of the observed residuals. Specifically it should have a coefficient of varia-
tion which is independent of spawner numbers and whose value is close to that
of the observed standardised residuals.

For consistency with the minimisation process used to determine the ESR, the
dataset simulations from which we estimate confidence limits make the assump-
tion that observations are normally distributed. For simulations of fry ‘counts’
with a minimum expected value in excess of 2000 and a coefficient of variation
of 0.294, this assumption is relatively innocuous. However our strategic popula-
tion simulations will need to encompass the possibility of extinction, so we need
to adopt a characterisation of variability which is more plausible when spawner
(and hence expected fry) numbers are small.

Since the fry numbers are counts, a natural null model would be a Poisson
process. However for expectations in the range 2000-20000 a Poisson model would
predict s.d.’s in the range 45-141, compared to observed values of 588-5880.

An obvious choice for modelling such an over-dispersed Poisson process is
the negative binomial distribution, which, if it has mean A and shape factor @,
predicts fluctuations around the mean with coefficient of variation ¢ given by

1 1
2—_ —
=1ty (5)

For A in the range 2000 — 20000 and c in the range 0.1 — 0.3, this implies that
to a very good approximation ¢? ~ §~!. Hence we model the full (stochastic)
stock recruitment relation by writing

~

R(S) = Bn(R(5),0) (6)

where }A%(S ) is the best-fit expected stock recruitment relation (ESR) and By is
a negative binomially distributed random variable with shape factor 6 related to
the standard deviation of the standardised residuals about the ESR.

Results
Models and observations

As an exemplary application in the previous section, we used the extended Ricker
ESR form to fit data relating the number of female Atlantic salmon spawning in
the Girnock Burn to the abundance of fry the following autumn. In this section
we re-examine the same dataset using our remaining candidate ESR forms. The
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Figure 3: Fitting the Girnock Burn female spawner — autumn fry data with can-
didate ESR forms — eBH: row 1 (a — d), sBH: row 2 (e — h), sRicker: row3 (i — 1), BS: row
4 (m — p), L2: tow 5 (q — t), L1: row 6 (u — w). Column 1 (a,e,i,m,q,u) shows observations
(circles), best fit ESR (solid) and 95% confidence limits (dotted). Col 2 shows std. residuals.
Cols 3 and 4 show parameter distributions and correlations from simulated datasets.
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Table 1: Fitting the Girnock Burn female spawner — autumn fry data with can-
didate ESR forms. Fit characteristics for fits shown in Fig. 3.

Form R? Std. resid. Simulation features
s.d.
eRicker 0.617 0.29 70% k > 1.2, 38% Spmar > max(Seps)
eBH 0.618 0.43 80% k > 1.2
sBH 0.601 0.29
sRicker 0.606 0.28 4% Spaz > max(Sops)
BS 0.602 0.29
L2 0.563 0.33
L1 0.498 0.35

best fits are shown in Fig. 3 and the R? values, standardised residual properties
and any notable features of the fit are given in Table.1.

The results for the non-linear ESR forms are shown in the upper four rows of
Fig. 3, which illustrate fits with the extended Beverton Holt (eBH), the standard
Beverton-Holt (sBH), the standard Ricker (sRicker) and broken stick (BS) forms.
Comparing the eBH fit (Fig. 3 frames a — d) and the eRicker fit given in the last
section (Figs. 1 and 2) shows that both offer considerable support for positive
ESR curvature at low spawning stock. While the eRicker fit shows no obvious
bias in the distribution of standardised residuals, the eBH fit undershoots the
lowest stock observation, thus producing an obvious outlier in the standardized
residuals which is almost solely responsible for their large standard deviation.

The sBH (frames e—h) and sRicker (frames i—1) forms produce best fit curves,
confidence limits and standardized residual distributions which are essentially
indistinguishable. Their standardised residual distributions are clearly biased,
with residuals for stocks below 40 females being predominantly negative. In
common with the eBH and eRicker fits, both exhibit a small group of simulated
datasets with very large R,,,. indicating data whose form is linear.

By contrast, the broken-stick (BS) form produces an equally plausible fit, with
considerably less residual bias at low stocks and all simulated datasets showing
finite R0, This arises because the BS form can achieve a straight line through
the data by setting Ry,q. greater than the largest observed value, whereas the
curved forms must make R,,,, very large to achieve the same effect.

For completeness, we have also fitted two linear forms — an unconstrained
straight line (L2) and a straight line through the origin (L1). Both fits show
evidence of bias in the residuals; negative at high and low stocks and positive
between for the unconstrained line and a trend from positive towards negative
for the straight line through the origin. In both cases the R? values are lower
than those for the non-linear fits, with the L1 fit being the only one to explain
less than 50% of the variance.

Our overall conclusions are that the Girnock data robustly indicates an ex-
pected stock recruitment curve which saturates at high stock and which has
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positive curvature at low stock. The data give no robust support to the hypoth-
esis that at high stocks, recruitment decreases with increasing stock.

Life-history stages and stock-recruitment relations in the Girnock Burn

Aside from the length of time over which it has been collected, and the conse-
quent quantity of data it contains, the great power of the Girnock Burn dataset
lies in contemporaneous counts of different life-history stages and careful age-
determinations which allow us to allocate individuals to year classes. In this
section of the paper we use this data richness to investigate the nature of the
stock-recruit relationships between various way-points in the salmon life cycle.
We fit an extended Ricker (eRicker) ESR curve to each life-history segment
and compare this best fit, together with 95% confidence limits, with the data
(Fig. 4). In the same figure we show standardised residuals about the ESR and
parameter distributions from the simulated datasets used to determine the 95%
confidence limits. In Table 2 we summarise the properties of the best fits.

Table 2: Fitting life-cycle segments for Girnock Burn salmon. Fit characteristics for
the fits illustrated in Fig. 4. Columns 8 and 9 show the percentage of simulated datasets which
have visibly humped forms (S,,q. < max(Seps) and visibly knee’d forms (k > 1.2) respectively.

Stock Recruits R? Std. Resid. Best Fit Parameters Simulations

s.d. Rz Sax k Hump Knee

Ova/10* Fry 0.621 0.29 28736 60.6 1.40 3% 62%
Females Fry 0.617 0.29 28095 119 1.57 39% 74%
Females Smolts 0.419 0.32 4146 101 0.87 74% 23%
Fry Smolts 0.447 0.35 4794 40868 0.88 4% 34%
Females Females  0.100 0.65 63.7 136 0.54 50% 19%
Smolts  Females  0.284 0.62 9.6 x 10> 6.2x 107 1.12 1% 44%

In the first two rows of Fig. 4 and Table 2 we show fits to the relation between
the abundance of fry at the autumn fry survey and the number of ova which
produce them (frames a—d) or the number of adult females who produced the
ova (frames e—h). Since the count of adult females makes no differentiation
between grilse and multi-sea-winter salmon it comes as little surprise to observe
that the ova—fry relation has marginally more predictive power than that for
spawner—fry. However, both fits tell essentially the same story, namely that
there is a strongly density-dependent process occuring between ova deposition
and late autumn fry abundance whose expectation explains some 61% of the year
to year variation in fry recruitment, with the residual variability (standardised
residual c.v. 29%) being mainly attributable to year on year process variation.

Frames (m—p) of Fig, 4 show the relation between autumn fry abundance and
the resulting numbers of emigrants to sea (smolts — who, of course, emigrate at a
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Figure 4: Fitting life-cycle segments for Girnock Burn salmon. Col. 1 (a,e,i,m,q)
shows data (circles), best fit eRicker ESR (solid) and 95% confidence limits (dotted). Col 2
shows standardized residuals. Cols 3 and 4 show parameter frequency plots from simulated
data. Row 1 (a—d): ova (estimated) — autumn fry. Row 2 (e—h): female spawners — autumn
fry. Row 3 (i—1): female spawners — smolts. Row 4 (m—p): autumn fry — smolts. Row 5
(q—t): female spawners — female returners. Row 6 (u—x): smolts — female returners.
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range of ages). Again we see a clearly non-linear ESR, although its explanatory
power (45%) is rather less than the ova—fry case, and the year on year process
variation consequently higher (standardised residual c.v. 35%). This implies that
a second distinct density dependent process operates on the parr stage of the
lifecycle.

The serial combination of density dependence at the fry and parr stages clearly
underlies the observed relation between spawner and smolt numbers (Fig 4 i—1),
whose form, explanatory power and standardised residual c.v. closely resemble
that of the fry—parr relation displayed in frames (m—p). For future reference,
we note that although the best fit form of both fry—smolt and spawner—smolt
ESR relations has no sigmoidal (knee’d) character (i.e. k < 1.2), some 25% of
simulated datasets yield a sigmoidal ESR and consequently the lower side of the
95% confidence envelope is noticeably sigmoidal.

The bottom row of Fig. 4 (frames u—x) show the relationship between stock
at the beginning of the sea-phase of the life-cycle (smolts) and recruits at its
end (females returning spawn). For consistency we have fitted this data with the
eRicker form, but the results confirm what is evident from eye-balling the data
and simple linear regression; namely that this relation shows very considerable
year on year (process) variability but no discernably non-linearity. This confirms
that no density dependent processes operate on the sea-phase of the life-cycle.

Careful examination of the standardised residuals for the smolt—returner fit
demonstrates that although we can plausibly assume that the residual c.v. is
independent of stock size, the distribution of these residuals is significantly right-
skewed. The same phenomenon can be observed in the spawners—returners rela-
tion shown in frames (q—t), which has a non-linearity inherited from the spawner
to smolt relation (frames i—1) subsumed within it, almost buried behind the in-
tense, right-skewed, noise of sea-survival variation.

The conclusions from this stage of our investigation are simple and clear. Den-
sity dependence within the salmon life-cycle occurs only in the juvenile riverine
stages (fry and parr) with marine survival showing high (and right skewed)
density independent variability. Within the riverine phase two distinct density
dependent proceses operate, one on the ova—fry transition (i.e. on fry) and the
other on the fry—smolt transition (i.e. on parr). The second of these shows
considerably more variability than the first.

Salmon stock-recruitment relations in Scotland, Ireland and Canada

In this section we compare the stock-recruitment relations observed for Atlantic
salmon at various sites in eastern Scotland, Ireland and Atlantic Canada with
those for the Girnock Burn population discussed above. Three of the data sets use
ova numbers (estimated from female spawning stock) as their input (‘stock’) and
two of those use smolt numbers as output (‘recruits’). For purposes of comparison
we have evaluated the ova to smolt relationship for the Girnock population.
For consistency with our earlier treatment of the Girnock Burn data we have
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fitted each data set with an eRicker expected stock recruitment curve (ESR). In
general we performed the least squares minimisation without constraints on the
parameters other than that they take positive values, but in the case of the two N.
Esk datasets (for which the most parsimonious statistical model is a horizontal
straight line) we have constrained the sigmodiality parameter k& > 1 to avoid
numerical problems associated with & — 0. We show the fits, 95% confidence
limits, standardised residuals and parameter distributions from the simulated
data sets used to evaluate confidence limits in Fig. 5. We give the achieved R?,
the standardised residual c.v., the best fit parameters and the proportion of the
simulated data sets used to evaluate confidence limits which visible maxima and
sigmodiality (Table 3).

Table 3: Salmon stock-recruit relations from sites in Scotland and Canada. Fit
characteristics for fits shown in Fig. 5. Column 4 shows standardised residual c.v. Columns 8
and 9 show the percentage of simulated datasets which have visibly humped forms (S,q0: <
max(Syps) and visibly knee’d forms (k > 1.2) respectively.

Site Relation R? Resid. Best Fit Parameters Simulations
s.d. Rpar Smaz k Hump Knee

Nepisiguit ova—iry 0.318 0.56 21.75 87.9 167 92% 79%
Girnock ova—smolt 0.423 0.31 4183 50.1 0.77 75% 12%
Bush ova—smolt 0.227 0.33 25997 243 1.83 99% 80%
N. Esk ova—smolt  0.0012 0.18 1.7x10° 804 0.1 67% 1%
N. Esk adult—adult  0.015 0.20 21953 3890 0.1 83% 23%
Margaree adult—adult  0.275 0.33 4459 3914 044  55% 0%

One of the benefits of the kind of comparative study reported here is that we
can look for common features of ESR form. For example, although two of the data
sets shown in Fig. 5 (Girnock ova—smolt, and Margaree spawner—returner)
show no evidence of low-stock sigmoidality, the majority of fits either show sig-
moidal best fit ESR’s (the Nepisiguit and the Bush), or have low stock confidence
envelopes whose shape or width prevent our ruling out such sigmoidality (both
N. Esk data sets). We further note that in no case does the distribution of the
standardised residuals show any obvious pattern — thus supporting a model of
underlying process noise with a (system specific) coefficient of variation which
is independent of spawning stock size.

Comparing the fit qualities T given in Table 3 with the spawning stock ranges
and maximum recruitments shown in Fig. 5 reveals a clear correlation between

"In the case of the data from the River Bush we note that the achieved value of R? (0.227)
compares poorly with the value (0.422) reported by Crozier and Kennedy (1995) when fitting
the same data with a standard Ricker form. We have refitted this data using the same form
(not shown) and find R? = 0.183, which is very close to the value which would result if Crozier
and Kennedy had reported a value of R = 0.422 (which is much more commensurate with the
visual appearance of the data) as R2.
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Figure 5: Salmon stock-recruitment relations from Scotland, Ireland and Canada.
Col. 1 (a,e,i,m,q) shows data (circles), best fit eRicker ESR (solid) and 95% conf. lims. (dotted).
Col 2 shows std. resid. Cols 3 and 4 show frequency plots from simulated data. Sites: Nepisiguit
River (N.B.), ova—fry: row 1(a—d); Girnock Burn, ova—smolts: row 2(e—h); River Bush,
ova—smolts: row 3(i—l); North Esk, ova—smolts: row 4(m—p); North Esk, spawners—pre-
fishery returns: row 5(q—t); Margaree River (N.S.), spawners—returners: row 6(u—x).
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large spawning population, low achieved R? , and low standardised residual stan-
dard deviation. We shall argue below that this correlation arises because phys-
ically large systems frequently exhibit systematic environmental heterogeneity,
implying (region or site specific) heterogeneity in the competitive processes un-
derlying the stock-recruitment function.

Temporal stability of expected stock recruitment relations

A frequently posed question in regard to stock-recruitment relations is whether
the processes which produce them are in a statistical sense stationary over time.
Unfortunately, most such relationships are deduced from runs of data whose
overall length is barely adequate to allow any underlying relationship between
stock and expected recruitment to be visible through the combination of process
noise and measurement error. Subdividing such data sets in an effort to detect
long term trends in the ESR is thus unrewarding.

However, several of the data sets used in this investigation are long enough
for it to be possible to divide the time series into two parts and still obtain an
adequately defined ESR for each part. We show (Fig. 6) the results of such an
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Figure 6: Temporal stability of stock recruit relations in a) the Girnock Burn and
b) the Margaree River. The points show observations, circles show early years (1967-1976
in the Girnock and 1947-1972 in the Margaree) and squares show late years (1977-1999 in the
Girnock and 1973-1990 in the Margaree). The heavy line shows the best fit ESR for the data
as a whole, with the equivalent 95% confidence intervals shown by heavy dashed lines. The
best fit ESR for the early data is shown by a light dashed line and for the later data by a light
solid line.

exercise on Atlantic salmon data from the Girnock Burn, in eastern Scotland,
and the Margaree River in eastern Canada. In each frame of this figure we use
different symbols for the early and late parts of the time-series. We plot the
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best fit ESR determined from the whole data set together with the equivalent
95% confidence limits, and also the best fit ESR’s determined from each of the
sub-sets.

In the Girnock Burn dataset we can see that the decadal trend in spawner
numbers described by Gurney et al. (2009) results in stock data from the early
year subset clustering preferentially in the range 3 x 10> — 8 x 10° ova, while
the data from the later year subset cluster below 3 x 10% ova. None the less, the
best fit ESR for the early year subset is everywhere comfortably within the 95%
confidence range for the curve fit to the data as a whole, and the best fit ESR for
the later year subset only emerges from the whole data 95% confidence envelope
for stocks in between 4 x 10° and 5 x 10° ova, as a result of two apparent outliers
(1981 and 1989) both being contained in the later year subset.

For the Margaree data the situation is simpler. The data from both subsets is
similarly distributed across the range of spawners and the ESR from both sub
sets lies almost entirely within the 95% confidence range of the whole data ESR;
the only exception being the early years subset whose ESR just crosses the upper
boundary of the 95% confidence envelope for stocks in excess of 3000 spawners.
We thus conclude that for neither data set can we reject the null hypothesis that
the expected stock-recruitment relation is time independent.

Stock-recruitment identification in a noisy environment

It is clear from the observations reported above that even in the most favourable
circumstances the relationship between stock and recruitment will exhibit con-
siderable noise. While some of this may be measurement error, much is due to
variation in the underlying biology driven by unknown or unquantified physi-
cal or biotic factors. In this paper we regard this ‘process noise’ as part of the
stock recruitment relation. However, since we cannot characterised it indepen-
dently, its presence forms a significant obstacle to accurate identification of the
expected stock recruitment relation (ESR). Moreover, in the real world the ob-
servations from which such an identification may be made will necessarily span
a relatively short time period (typically a few tens of years) and be complicated
by (unrelated) environmental noise in the linear phase of the life-cycle

In this section we report a series of numerical experiments designed to de-
termine how effectively we can identify the underlying regularity of the stock-
recruitment relation (specifically its expected stock-recruitment curve and the
intensity of the process noise around it) in the presence of noise in both the
linear and the non-linear parts of the life-cycle.

A single population

We first investigate identification of the ESR for a single population. To simulate
the observations from which we shall attempt to reconstruct the ESR we assume
that we are observing a population of a semelparous organism charaterised by a
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stock recruitment function R(S) whose expected value for a given stock, R(S9),
is given by a standard Ricker function (equation 1 with & = 1), with process
noise about that expected value being negative binomially distributed with shape
parameter 6p. Thus if the stock at generation g is Sy, the resulting recruitment
R, is

R, = Bu(R(S,). 0r). (7)
where By (u, 6) is a random variable drawn from a negative binomial distribution
with mean p and shape factor 6.

To close the lifecycle we assume that the individuals who reproduce in gener-
ation g + 1 are the survivors of the offspring of generation g, that the expected
survival from recruit to spawner is F/, and that the actual number of spawners
is negative binomially distributed around the expected value with shape factor
fg, so that R

Sg+1 = BN(ERy, 0s). (8)

Our first series of experiments uses stock-recruitment functions with a stan-

~

dard Ricker ESR (R4 = 1000 and S, = 100) and expected survival (E = 0.1)
thus implying a deterministic equilibrium stock of 100 individuals. For each ex-
periment we select values for the process and survival noise (i.e. negative binomial
shape factors, g and 0g), run the model for a 300 generation spin-up period and
then generate a 30 year sequence of paired stock and recruitment values.

To simulate the possibility of the fitted model having a potentially different
functional form from the true underlying ESR we fit the simulated observations
with the eRicker ESR form — which is identical to the sRicker if £ = 1, but
which can also adopt a sigmoidal form (with £ > 1) or a flatter high-stock shape
(k < 1). We generate sets of 30 observations with three values of process noise
(equivalent to standardised residual standard deviations of 3%, 14% and 32%)
and two levels of linear-phase noise (c.v. of 51% and 21%). The resulting fits are
shown in Fig. 7 with their quantitative characteristics being given in Table 4.

Table 4: eRicker fits to simulated single population stock recruit data.

0r Og R? Resid Roax Smax k
s.d. 2.5% 97.5%  2.5% 97.5%  2.5% 97.5%
10° 0.945 0.038 991 1009 1027 96.6 99.7 103 oot 1.07 111

4
50 4 0.566 0.15 925 995 1072 93 102 112 o074 1.03 137
10 4 0.238 0.38 ss9 1089 136880 74 165 107 021 0.5 1.26
106 30 0.762 0.022 996 1006 1016 9%  98.3 101 102 0.5 1.53
50 30 0.081 0.16 938 991 20559 82 126 3x105 o010 0.58 210
10 30 0.21 0.28 1010 1148 5812 110 137 4x10° o025 1.20 242

The upper frames in Fig. 7 show experiments with constant 65 corresponding
to realised survivals with a coefficient of variation of approximately 50%. The
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Figure 7: Simulated stock-recruitment observations for a single population with a
standard Ricker ESR (R4 = 1000, S,,4. = 100) and expected survival E = 0.1.
Upper frames (a to ¢) show increasingly noisy stock recruit functions with survival c.v ~ 0.5
(0s = 4). Lower frames (d to f) show the same stock recruit functions with survival c¢.v.a 0.2
(fs = 30). Col 1 (a,d) shows O = 1 x 10° (c.v.= 3%). Col 2 (b,e) shows O = 50 (c.v.~ 14%).
Col 3 (c,f) shows O = 10 (c.v.~ 32%). Points show simulated data. Solid line shows the best
fit eRicker ESR, with 95% confidence limits shown by dashed lines. The dash-dotted line shows
the true ESR and the dotted straight line is the replacement line.

process noise in the stock-recruitment function varies from a pure Poisson process
(c.v.~3%) in frame a) to 8 = 10 (c.v.= 33%) in frame c). The lower row of
frames show experiments with the same sequence of process noise but survival
c.v. ~ 20%.

The right-most columns of Table 4 give the parameters of the best fit to the
simulated data in large type and the 5% and 97.5% percentiles from the con-
fidence limits calculations in small type. Comparing these fit statistics and the
visual fit quality illustrated (Fig. 7) we see that when survival noise is large and
process noise small the eRicker form yields a fit entirely consistent with the true
sRicker ESR, and parameter values very consistent with those used in the simu-
lations. Survival c.v &~ 50% and medium process noise (c.v. &~ 15%) yields a fit
with ESR parameters and residual s.d. very consistent with the underlying ESR
and process noise. Very intense process noise (c.v. ~ 33%) makes the parameter
determination much less precise and often (as in the example shown) yields a
fitted curve with £ < 1 indicating a data cloud with weak evidence of stock
dependence.
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The lower row of simulations and fits illustrates a similar sequence of outcomes,
except that the reduced survival noise implies that the (simulated) data covers a
smaller fraction of the stock-recruitment relation, thus making the task of ESR
identification commensurately harder.

We conclude that noise in the linear and non-linear parts of the life cycle has
diametrically opposed effects on stock-recruitment identification. Large variabil-
ity in the linear part is an essential prerequisite for accurate identification, while
process noise in the non-linear part operates in a more intuitive way to reduce
our ability to identify the shape of the expected stock-recruitment curve. How-
ever, even when the high process noise and short data run cause the fitting
process to mis-identify the ESR, the s.d. of the standardised residuals provides
an acceptable measure of process noise intensity.

We have repeated these experiments (not shown) with both longer and shorter
simulated data sequences. Exactly as one would expect, very short data se-
quences make the identification task progressively harder, with sequences of less
than 10 points being essentially useless for this purpose. Conversely longer se-
quences make matters much easier, although even a very long sequence will not
compensate for a very small range of stock values unless the process noise in the
function being sought is extremely small.

Two functionally identical sub-populations

In the last section we saw that while strong year to year variability in the linear
portion of the life cycle is a neccesary precondition for stock-recruitment function
identification, process noise in the function itself can render such identification
problematical. In this section we investigate the effects of analysing observations
in which independent sub-populations are regarded as a single unit. As before
we assume that the sub-populations have a standard Ricker ESR and negative
binomial process noise, so their dynamics are specified by equations (7) and (8).

In our first series of numerical experiments (Fig. 8 and Table 5) we explore a
situtation in which two indentical, but statistically independent sub-populations
(Rimaz = 15000, Sper = 250, £ = 0.02) are analysed as a unit. We contrast two
realisations of this situation, one in which the linear-phase (normally, but not
exclusively, marine) survivals for the two sub-populations are uncorrelated and
the other in which they are identical, with the observations which would result
if the assessment unit were, in fact, a single population with R, = 30000,
Smaz = 500, E = 0.02. In order to distinguish multiple-subpopulation effects
from the effects of short runs of data, we generate sets of simulated observations
containing a thousand points.

The first set of experiments concerns component populations with low process
noise stock-recruitment relations (§z = 10°) and highly variable linear-phase
survival (fs = 6). For a single sub-population, we accurately recover the un-
derlying population parameters and the ESR explains a high proportion of the
generation to generation variation (R?* = 0.996). Slightly more surprisingly, an
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Figure 8: Long-run stock-recruitment simulations for mixed and unitary popula-
tions. All have have 1000 observations on a population with sRicker ESR, F = 0.02 and highly
variable linear-phase survival (g = 6 < c.v.=0.41). Col 1 (a,d,g,j) shows a unitary popula-
tion with R4 = 30000, Si;nee = 500. Cols 2 and 3 show populations with two components,
each with R4z = 15000, S;0e = 250. In Col 2 the sub-populations have independent stock
recruitment noise and independent linear-phase survivals. In Col 3, linear-phase survivals are
completely correlated. Top two rows (a to f) shows results with pure Poisson stock-recruitment
noise (fg = 1 x 105 & c.v. = 0.006). Lower two rows (g to 1) shows results with moderate
stock-recruitment noise (fr = 30 < c.v.=0.18).
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Table 5: Simulated long-series stock-recruitment data for unitary and multiple
populations.

Simulation Fit Survival

Roax Simaz CVr | Rumazr Smax k CVr R? Correlation
30000 500 0.006 | 29996 500 1.003 0.006 0.996 -

2 x 15000 2 x 250 0.008 | 28614 495 0.93 0.06 0.451 No

2 x 15000 2 x 250 0.008 | 29992 500 1.004 0.006 0.997 Yes
30000 500 0.18 | 30355 509 1.03 0.18 0.417 -

2 x 15000 2 x 250 0.18 | 28345 502 0.90 0.14 0.175 No

2 x 15000 2 x 250 0.18 | 29786 511 0.97 0.14 0416 Yes

essentially similar situation obtains when the assessment unit comprises two
sub-populations with identical linear-phase survival; although the recovered pa-
rameters are now the sum of the two sub-populations.

When the assessment unit contains two independent sub-populations, although
our fit still recovers a parameter set very close to the sum of the two components,
the ESR now only explains 45% of the generation on generation variation and the
apparent process noise has a c.v. six times as big as that for the component sub-
populations (despite their fluctuations being uncorrelated !). The explanation
is that uncorrelated variations in the two sub-stocks mean that the per-capita
contribution of individuals in one sub-stock can be very different from that in
the other — a mechanism also responsible for the biassed residuals (Fig. 8e).
When the sub-population stock recruitment relations are themselves noisy, the
noise generating effects of uncorrelated sub-stock fluctuations are less spectacu-
lar, but are never the less clearly vsible in the low R? value implied by Fig. 8h
as compared with that in Fig. 8g and Fig. 8i.

Two distinct sub-populations

In view of the clear potential for uncorrelated sub-stock fluctuations to pro-
duce apparent process noise even when the sub-stocks have noise-free stock-
recruitment relations, our next numerical experiments (Fig. 9 and Table 6)
examine sets of simulated observations in which the assessment unit contains
sub-populations with distinct characteristics. In these experiments one sub-
population has high productivity (R = 15000, S,,. = 250) and low survival
(E = 0.02) while the other has low productivity (R,e: = 7500, Spee = 250) and
expected survivals in the range 0.04 — 0.1. In all cases the linear-phase survivals
of the two sub-populations are uncorrelated.

In the first series of experiments (Fig. 9a to f) the stock recruitment relations
of the component populations have very low process noise. In the first experiment
(Fig. 9a) the two populations have deterministic equilibria (the point at which
the replacement line and the ESR intersect) at the peak of the ESR and their
stock-recruitment responses are thus in proportion to their abundance in the
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Figure 9: Long-run stock-recruitment simulations for mixed populations with dis-
tinct properties. All have have 1000 observations on two populations with sRicker ESR
(Rimaz = 15000,5,,4. = 250 and R0 = 7500, Spae = 250 respectively) and highly variable
linear-phase survival (s = 6 < c.v.=0.41) uncorrelated between the two sub-populations.
Col 1 (a,d.g,j) shows results when expected survivals, E, for the more and less productive
sub-populations are 0.02 and 0.04 respectively. Col 2 has E = 0.02 and 0.08 respectively. Col
3 has F = 0.02 and 0.1 respectively. Rows 1 and 2 (a to f) show results for Poisson stock-
recruitment noise (fp = 10°) while rows 3 and 4 show results with moderate stock-recruitment
noise (g = 30 < ¢.v.=0.18).
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Table 6: Simulated long-series stock-recruitment data for population comprising
two sub-populations with sRicker ESR’s, one with R,,,, = 15000, S,.q. = 250
and the other with R, = 7500, S,qx = 250..

Simulation Fit
Ei E; CVi|Ryuz Smax k CVm R?
0.02 0.04 0.01 21476 502 0.93 0.0 0.44
0.02 0.08 0.01 20815 497 0.54 0.09 0.54
0.02 0.1 0.01 20472 501 0.47 0.10 0.55
0.02 0.04 0.18 21310 514 0.96 0.17 0.17
0.02 0.08 0.18 20832 500 0.67 0.17 0.30
0.02 0.1 0.18 20323 488 0.45 0.18 0.28

combined population. In this case we see pseudo process noise very comparable
to that in Fig. 8b.

However, as we increase the survival of the low-productivity population, thus
moving its deterministic equilibrium onto the falling portion of the Ricker curve,
we see a considerable increase in the CV of the pseudo process noise, as well as
a spectacular increase in the asymetry of the process noise distribution (Figs. 9e
and f). Accompanying these changes is a clear alteration in the shape of the
composite stock-recruitment relation (Figs. 9b and c), reflected in changes in the
fitted k£ towards values implying a slower decline at high stocks. Interestingly,
the R? for the fits is somewhat higher for the cases with higher pseudo process
noise — because in these cases the range of combined stocks generated by the
simulation is increased.

As before, this pattern is largely maintained when the component stock-
recruitment relations have significant process noise. We conclude that the combi-
nation of an alteration in shape towards less high-stock reduction in recruitment,
accompanied by increased process noise flowing from uncorrelated sub-stock vari-
ability will make stock-recruitment function identification from feasible sets of
composite observations, which seldom exceed 50 years in length, extremely prob-
lematical.

Discussion
Sigmoidality and the probability of extinction

Earlier in this paper we showed that several sets of stock-recruitment observa-
tions for Atlantic salmon, for example the Girnock ova-fry data, show evidence of
sigmoidality (positive curvature at low stock). Further datasets are either com-
patible with such sigmoidality (River Bush), or define the ESR so poorly that
sigmoidality cannot be ruled out (N.Esk). While the low stock ESR has little
influence on the mean abundance of a reasonably viable population — essentially
the crossing point of the replacement line and the ESR — it can have a pro-
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found influence on the time to extinction, and hence on successful conservation
of endangered stocks (Fig. 10).
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Figure 10: Times to extinction and deterministic dynamics a) shows eRicker ESR
curves with Ry,q; = 30000, Spee = 500 and & = 1(light), 2(heavy) and 3(dashed) compared
to the replacement line for E = 0.02(dotted). b) shows eRicker ESR curves with Ry, =
30000, Spmar = 500 and k = 1(light) and 2(heavy) compared to the replacement lines for
E = 0.006(dotted) and E = 0.012(dashed). c¢) and d) show mean times to extinction (points)
with 2.5 and 97.5 percentiles shown by error bars. In all cases the system had an eRicker
ESR with R4, = 30000 and S,,.. = 500 and process noise characterised by thetar = 30
(c.v.~18%). In ¢) all runs have E = 0.02. Circles show points for g = 6 (c.v.~41%) and
squares for g = 20(c.v.~22%). In d) all runs have g = 20. Circles show points for k£ = 1 and
squares for k = 2.

We can see why this occurs by noting that, provided the expected linear-phase
survival (F) exceeds a threshold value, a sigmoidal ESR crosses the replace-
ment line three times compared to the two crossings for a non-sigmoidal ESR
(Fig. 10a). In the non-sigmoidal case the crossing at zero stock is a deterministi-
cally repelling steady state (that is any small, positive deviation from it grows)
while the interior crossing is deterministically attracting (small deviations decay
over time). In the sigmoidal case the zero stock and the high stock crossings are
both deterministic attractors and the intermediate crossing is a deterministic
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repeller. The intermediate crossing is a thus threshold below which the deter-
ministic dynamics lead inexorably to extinction. We note from Fig. 10a that as
an ESR with constant peak height and position becomes more sigmoidal this
threshold moves closer to the upper deterministic steady state.

Although the dynamics of our stochastic model are potentially more subtle, we
might infer from the above discussion that a stochastic stock-recruitment driven
population model might exhibit extinction properties which depend strongly on
the low-stock shape of the ESR. In Fig. 10c we see that this expectation is
correct. The high noise case shows a time to extinction which drops four orders
of magnitude as £ is increased from 1.5 to 3. The same trend is visible in the
medium noise case albeit with longer extinction times. We note that with these
noise levels the time to extinction with & = 1 is essentially infinite (that is to
say so long that we cannot compute it accurately).

In a related way, the low-stock shape of the ESR has a profund influence on
the minimum expected linear phase survival probability at which a population
is viable, as we show in Fig. 10b and d. Part of this effect is simply the change in
the deterministic survival threshold (the value below which the replacement line
crosses the ESR only at the origin). However, although extinction time climbs
very steeply away from this threshol in the standard Ricker case (k = 1), the
sigmoidal case shows a much slower increase and remains vulnerable to extinction
for a range of linear-phase survivals which are deterministically viable.

Finally we note a further subtle effect of ESR shape, this time at high stocks.
For the sigmoidal case we observe that, for values of E exceeding the determin-
istic threshold (£ = 0.012), extinction time at first rises with increasing survival
and then appears to pass through a maximum value (just below E = 0. 02).
Continuing the extinction evaluation to even larger survival values (not shown)
reveals that beyond E = 0.02 extinction time falls with increasing E and even-
tually becomes very small. As noted by Ripa and Lundberg (2000) this effect
occurs with all Ricker-type ESR curves and is driven by their asymptotic ap-
proach to zero as S becomes large. Clearly, this effect will not occur if a sigmoidal
ESR curve is represented by an extended Beverton-Holt form (equation 2).

Lifecycle partitioning, multiple sub-populations and system identification

The datasets analysed in this paper show that for Atlantic salmon a wide range
of choices exists for both the ‘stock’ and ‘recruitment’ component of a putative
stock-recruitment relation. Pre-fishery adults, total spawners, female spawners,
ova, fry and smolts can all, in principle, fullfil either role. For management pur-
poses the most straightforward scheme is to choose a stock measure directly
related the viability of the fishery, such as ova or spawning population, and a
recruitment measure which has the property that all the non-linear effects (com-
pensation or depensation) occur earlier in the life-cycle than ‘recruitment’ so
the life-cycle closure is linear and the next stock estimate is proportional to
recruitment.
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For the Girnock Burn population, we have demonstrated that independent
non-linear effects occur in the transition from ova to fry and from fry to smolts.
We have also demonstrated a complete absence of non-linear effects between
emigration to sea and return to the river to spawn. Although we have formally
demonstrated this latter effect only for a single component of a catchment pop-
ulation it seems intuitively obvious that it must be a generic property. Thus a
pragmatic choice of roles would seem to be ova or spawning population as ‘stock’
and emigrating smolts as ‘recruits’.

Measuring the output of smolts attributable to a single year’s spawning activ-
ity requires not only the estimation of numbers of smolts emigrating every year,
but also the ageing of those emigrants so that they can be attributed to the
various spawning years from which they originate. Hence, a superficially appeal-
ing alternative choice is to use spawning stock as both stock and recruits, thus
ensuring linearity of closure (by eliminating it altogether) and minimisation of
measurement effort. However, this strategy has the effect of adding the (very)
noisy process of survival at sea to the process noise inherent in the non-linear part
of the process, thus producing a stock recruitment relation with very high levels
of process noise. Our simulation studies have shown that high levels of process
noise make accurate identification and quantification of both the deterministic
and the stochastic parts of the stock-recruitment function problematical.

As discussed by Chaput et al. (2003), a further cause of difficulty in system
identification is the possibility that single assessment units contain multiple sta-
tistically independent sub-populations with distinct properties — for example a
population component dominated by one sea-winter fish being combined with
another dominated by multi-seawinter individuals. In agreement with the find-
ings of Frank and Brickman (2000), our simulation studies show that even if the
true stock recruitment relations of the two population components are identical,
their non-linearity combined with the statistical independence of the component
populations can produce significant additional pseudo process noise in the com-
posite stock recruitment relation, thus making its accurate identification difficult.
Where the two components have very different properties in either the non-linear
or the linear portions of the life-cycle, the composite stock recruitment relation
shows low stock dependence, accompanied by intense, highly biassed, process
noise, thus making accurate reconstruction all but impossible.

Stock-recruitment observations and policy objectives

In traditional fisheries management practice, the concentration has been on at-
taining maximum sustainable yield (MSY) — a target which requires knowledge
of the shape of the expected stock-recruitment curve at healthy levels of re-
cruitment. However, in many jurisdictions, the response to steadily decreasing
numbers of Atlantic salmon has been to shift the emphasis to conservation of
potentially endangered stocks — a target which is critically dependent on the
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low-stock shape of the expected stock recruitment curve, on the process noise
around the ESR and on the levels of noise in the linear phase of the life-cycle.

In this paper we have shown that positive curvature (sigmoidality) in the low-
stock portion of the ESR can have profound effects on the viability of a stock.
Our examination of a representative selection of the richer stock-recruitment
datasets for Atlantic salmon show that a hypothesis of sigmoidality can be ru-
eled out in only a small minority of cases. Thus a prudent choice of ESR function
for conservation management use will be a function which is capable of exhibiting
this property. Of the two candidate functions with this capability examined in
this paper we note that the asymptotic approach of the eRicker to zero recruit-
ment at high stock can dominate estimates of time to extinction. Hence, unless
there is clear evidence of such a high-stock decline in production, we believe
the extended Beverton-Holt (eBH) form (equation 2) to represent a conservative
choice of candidate ESR function.

In this context we note that composite stock-recruitment relations derived
from data encompassing a group of disparate quasi-independent sub-populations
can exhibit a variety of apparent shapes, which are in addition often very hard
to discern amid the excess pseudo process noise such compositing generates. We
thus believe that a very high standard of proof would be required before an eR-
icker form would be a prudent choice of ESR form for conservation management
purposes. However, the eRicker form is arguably the most flexible and intutive
form to use in the course of data investigation, since its repertoire includes sig-
moidal, simple Ricker and essentially stock-independent shapes.

When considering the parameters to use in management evaluations it has
been conventional to utilise the best fit parameters for whatever candidate ESR
has been chosen. While this strategy arguably yields something close to a maxi-
mum likelihood estimate for the maximum sustainable yield, it does not yield a
suitably conservative estimate of extinction time for conservation use. To obtain
a ‘worst-case’ estimate of extinction time, one would fit a potentially sigmoidal
ESR form and use the lower limit of the ESR confidence envelope for extinc-
tion time evaluation. The appropriate confidence level for this envelope clearly
depends on the level of risk deemed acceptable. For most purposes 95% con-
fidence would seem a suitable choice, but for particularly valuable or sensitive
populations, 99% (or even more) could be needed.
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A. Fits to simulated Girnock spawner — fry datasets
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Figure A1l: Sixteen example fits of the eRicker model to simulated datasets gen-
erated by assuming that recruitment values at the same stock values present in
the observations are drawn from a normal distribution with the mean taken from
the best fit to the observations (Fig. 1a) and s.d. chosen to make the c.v. of ob-
servations at that stock equal to 0.294. a) to q) show fits to datset numbers 62, 124, 186,
248, 310, 372, 434, 496, 558, 620, 682, 744, 806, 868, 930 and 992 respectively out of a series
of 1000.



