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Abstract

We consider the nonlinear systems of equations that result from discretizations of a prototype vari-
ational model for the equilibrium director field characterizing the orientational properties of a liquid
crystal material. In the presence of pointwise unit-vector constraints and coupled electric fields, the
numerical solution of such equations by Lagrange-Newton methods leads to linear systems with a dou-
ble saddle-point form, for which we have previously proposed a preconditioned nullspace method as an
effective solver [A. Ramage and E. C. Gartland, Jr., SIAM J. Sci. Comput., 35 (2013), pp. B226–B247].
Here we propose and analyze a modified outer iteration (“Renormalized Newton Method”) in which the
orientation variables are normalized onto the constraint manifold at each iterative step. This scheme
takes advantage of the special structure of these problems, and we prove that it is locally quadrati-
cally convergent. The Renormalized Newton Method bears some resemblance to the Truncated Newton
Method of computational micromagnetics, and we compare and contrast the two. This brings to light
some anomalies of the Truncated Newton Method.
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1 Introduction

Many continuum models for the orientational properties of liquid crystals involve one or more state variables
that are vector fields of unit length. The pointwise unit-vector constraints associated with discretizations
of equilibrium models of such systems give rise to indefinite linear algebraic equations of saddle-point form
when these constraints are imposed via Lagrange multipliers. In problems such as these, indefiniteness also
frequently manifests itself due to another influence, coupling with applied electric fields, and this leads to
a double saddle-point structure. Models with some similar features arise also in the area of computational
micromagnetics.

In [24] we analyzed a model problem of this type and proposed a nullspace method using MINRES with
diagonal block preconditioning as a natural approach to solve the linear systems that result when Newton’s
method is applied to the Lagrangian. The main ideas are briefly summarized below. These models are
nonlinear and depend on multiple physical and geometric parameters, and it is typical for the equilibrium
solutions (phases) to undergo transitions at critical values of certain of these parameters. The context we
imagine is the numerical bifurcation and phase analysis of a discretization of a model for a realistic device or
experiment in the large scale regime—this is the main motivation for this work. In such a setting, parameter
continuation leads to the repeated solution of systems of the type we are studying. In the course of such path
following, good initial guesses are available, however, and global Newton methods are generally employed.

At each computed equilibrium point along a branch of solutions, one performs auxiliary calculations of
the free energy and the local stability of the solution—it is necessary to be able to compute both stable
and unstable solutions. For parameter ranges in which multiple equilibrium solutions exist, the solution of
least free energy gives the globally stable phase of the system. Local stability is characterized by certain
eigenvalue calculations and identifies equilibria that have the potential of being globally stable. Aspects of
this are discussed in [12] and [13].
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The objectives of this present paper are to introduce and analyze an alternative outer iteration (“Renor-
malized Newton Method”), which is a variation of Newton’s method that takes greater advantage of the
special structure of such problems and which we prove retains the local quadratic convergence properties
of Newton’s method. Also presented are results of numerical experiments comparing the performance of
the basic Newton Method and the Renormalized Newton Method on a model problem that admits multiple
distinct solutions, one with a defect (singularity) and two others without. In addition, comparisons are
made between the Renormalized Newton Method and the “Truncated Newton Method” of computational
micromagnetics [10, §4.2], for which we also provide some analytical observations.

2 Liquid crystal director models

Many experiments and devices involving liquid crystal materials can be effectively modeled using a macro-
scopic continuum framework in which the orientational state of the system is described by a director field (a
unit-length vector field representing the average orientation of the molecules in a fluid element at a point),
traditionally denoted by n:

n = n1e1 + n2e2 + n3e3, |n|2 = n2
1 + n2

2 + n2
3 = 1.

One of the main difficulties in dealing with models such as these numerically is the unit-vector constraint
on n, which must be satisfied at each point in the region occupied by the liquid crystal material. If the
director field is simple enough (e.g., a modest tilting or twisting), this can be managed by representing n

in terms of orientation angles (e.g., n = cos θ e1 + sin θ e2, in a 2-D setting), which recasts the problem as
an unconstrained problem for the scalar fields associated with these angles. For more complicated director
fields, there can be degeneracies associated with the orientation angles, and an angle representation can’t be
employed. In such cases, it is common to enforce the constraint |n| = 1 either by Lagrange multipliers or by
penalty methods. Several other liquid crystal models involve unit-length vector fields and constraints—see
[24] for more discussion. Standard references on liquid crystals include [3, 5, 25, 26]. Unit-vector constraints
arise in other areas as well, including the modeling of ferromagnetic materials—see [10, 19, 23].

2.1 Coupled electric fields

Most devices and many experiments involve the interaction between a liquid crystal material and an applied
electric field (which is used to control the liquid crystal orientational properties). The electric fields are
usually created by sandwiching a liquid crystal film between electrodes to which a voltage is applied. This
is a coupled interaction, with the electric field influencing the orientations of the liquid crystal molecules
and the molecular orientational properties in turn influencing the local electric fields through their effect
on the dielectric tensor. The free energy (expressed as an integral functional of the field variables) is the
thermodynamic potential that determines equilibrium states of systems such as these. For a uniaxial nematic
liquid crystal material in equilibrium with a coupled electric field (at constant potential), the free energy
has the generic form

F =

∫

Ω

[
W (n,∇n)−

1

2
D ·E

]
, D = ε(n)E, E = −∇U.

Here Ω is the region occupied by the liquid crystal, W is the distortional elastic energy density, D is the
electric displacement, E is the local electric field, ε is the dielectric tensor, and U is the electrostatic potential.

The form of W commonly used to model experiments and devices with real (uniaxial nematic) materials
is the Oseen-Frank model [25, §2.2], [26, §3.2]:

2W = K1(divn)
2 +K2(n · curln)

2 +K3|n× curln|2

+ (K2 +K4)
[
tr(∇n)2 − (divn)2

]
,

(2.1)

whereK1, . . . ,K4 are material-dependent and temperature-dependent “elastic constants.” A simplified form,
which embodies the essential features of importance to us here, is the so-called “equal elastic constant” model:

W =
K

2
|∇n|2, |∇n|2 =

3∑

i,j=1

(
∂ni

∂xj

)2

, K > 0.

This is the form that we shall use in what follows. We emphasize that this is done for simplicity and does
not limit the applicability of the ideas or analysis.
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The anisotropy of the medium is reflected in the tensorial nature of the “dielectric constant,” which here
corresponds to the real, symmetric, positive-definite tensor field ε (which is a function of n). At a point in
a uniaxial nematic liquid crystal, the ε tensor is transversely isotropic with respect to the local director n,
that is, it has a distinguished eigenvector parallel to n and a degenerate eigenspace perpendicular to n:

ε(n) = ε0
(
ε⊥I+ εan⊗ n

)
↔ εij = ε0(ε⊥δij + εaninj), εa := ε‖ − ε⊥. (2.2)

In an eigenframe with third eigenvector n at a point, for example, the ε tensor would have Cartesian
components

ε = ε0



ε⊥

ε⊥

ε‖



l,m,n

, l,m,n = orthonormal triple.

Here ε0 is a positive constant, and ε‖ and ε⊥ are positive, material-dependent, relative dielectric permittivities
(for E oriented “parallel” to n, as opposed to “perpendicular” to n). For situations involving AC electric
fields (with the liquid crystal director responding to the time-averaged electric field, at sufficiently high
frequencies), ε‖ and ε⊥ would also depend on the frequency of the AC field. The dielectric anisotropy εa can
be positive or negative.

The total free energy of our simplified model then takes the form

F [n, U ] =
1

2

∫

Ω

[
K|∇n|2 − ε(n)∇U · ∇U

]
. (2.3)

This is the simplest prototype model that contains the essential features of importance to us. One can see
the intrinsic saddle-point nature of the electric-field coupling: equilibria are minimizing with respect to n

but maximizing with respect to U . In a generic sense, the variational problem has the form

min
|n|=1

max
U
F [n, U ],

where the extremal elements are sought over sufficiently regular fields that conform to any essential boundary
conditions. The strong form of the constrained equilibrium equations for (2.3) (with ε of the form (2.2)) is

−K∆n = λn+ ε0εa
(
∇U · n

)
∇U, div

(
ε(n)∇U

)
= 0, |n| = 1, (2.4)

which is to be solved in Ω subject to appropriate boundary conditions on n and U . The Lagrange multiplier
field λ is associated with the pointwise unit-vector constraint. In terms of Cartesian components (with
respect to a fixed frame), the electrostatics equation takes the form

div
(
ε(n)∇U

)
=

∑

i,j

∂

∂xi

(
εij

∂U

∂xj

)
= 0. (2.5)

Here one again sees the coupled nature of the problem, the electric field influencing the director equilib-
rium solution via the ∇U terms in the first equation of (2.4) and the director field influencing the electric
potential through ε(n) in the second equation. Modeling a realistic system of interest can bring in multiple
other complications (in addition to the extra distortional elastic terms in (2.1)), including chirality (favored
spontaneous twisting distortions of the director field), polarization (existence of a net, macroscopic, electric
dipole moment per unit volume), weak boundary conditions and surface anchoring potentials, periodic solu-
tions with a-priori unknown periodicity, extended electric fields (if the region Ω is not completely enclosed
by electrodes), etc. See [11] for a recent example.

2.2 Comparison with ferromagnetics

The Landau-Lifshitz free energy provides a phenomenological model for equilibrium states of magnetization
in ferromagnetic materials and bears some similarity to the Oseen-Frank model for liquid crystals [10, 19,
23]. The free-energy density is expressed in terms of a unit-length vector field m, which corresponds to
a normalized (saturated) magnetization vector M , analogous to the liquid crystal director n but differing
from it in the sense that m is a proper vector (m and −m are not equivalent). The density contains terms
proportional to |∇m|2, penalizing spatial variations in m (as do the terms in W (n,∇n) to n). The magnetic
stray field is given in terms of a magnetostatic potential via Hs = −∇U (as with the local electric field and
electrostatic potential in liquid crystals, E = −∇U). The magnetic medium can be regarded as isotropic
and homogeneous, however, so that the magnetic potential solves ∆U = divM (in the material domain);
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whereas the electric potential for liquid crystals satisfies div
(
ε(n)∇U

)
= 0. This last equation would become

div
(
ε(n)∇U

)
= divP in a ferroelectric liquid crystal with polarization P .

The contribution of the (spontaneous) stray field to the magnetic free-energy density is positive (12B ·
Hs, B = µ0(Hs +M)); whereas in a liquid crystal system at constant voltage, the coupling to an applied
electric field is negative (− 1

2D · E, D = ε(n)E). Any externally applied magnetic field He is treated as
uniform throughout the sample and acts as a fixed force (or torque) on the magnetization in much the same
way that external magnetic fields influence liquid crystals. Juxtaposing the two free energies (for our model
problem with an external magnetic field contribution included), we would have

F [n] =
1

2

∫

Ω

[
K|∇n|2 − ε(n)∇U · ∇U − µ0∆χ(He · n)

2
]

div(ε(n)∇U) = 0 in Ω, plus BCs

versus

F [m] =

∫

Ω

[
Cex|∇m|

2 +
µ0

2
|∇U |2 − µ0He ·M +Φ(m)

]
+

µ0

2

∫

Rd\Ω

|∇U |2

∆U =

{
divM , in Ω

0, in R
d\Ω

, plus BCs and interface conditions.

Here µ0 is the vacuummagnetic permeability (the magnetic analogue of ε0), ∆χ is the diamagnetic anisotropy
of the liquid crystal material (the magnetic analogue of εa), Cex is the exchange constant, and Φ(m) is the
anisotropy energy density of the ferromagnetic material (a potential favoring certain preferred directions
of magnetization). See, for example, [25, §2.2 and §2.3] or [26, §3.2 and §4.1] concerning the Oseen-Frank
expression, and [10, §1], [19, §1], or [23, Part I, Summary and Results] for the Landau-Lifshitz expression.

Thus, while ferromagnetic systems have to deal with the extended nature of the magnetic stray field and
potential U , they do not have to cope with the indefiniteness that the U variables cause in liquid crystal
systems. Furthermore, in the liquid-crystal setting, it is not possible to introduce a Newtonian potential
representation for U , as is done in computational micromagnetics, since the liquid crystal electrostatic
problem div(ε(n)∇U) = 0 (or div(ε(n)∇U) = divP ) does not reduce to a Laplace (or Poisson) equation.
The combination of inhomogeneity, anisotropy, and negative-definiteness of the coupling between n and U
add to the challenge of numerical modeling of liquid crystal systems.

2.3 Non-dimensionalization

It is convenient for the analysis that follows and appropriate for numerical explorations in general to express
all aspects of the problem (free-energy functional, Euler-Lagrange equations, etc.) in dimensionless form.
This renders all variables independent of changes of the system of units employed, reduces the total number
of parameters, and identifies the combinations of parameters upon which the equilibrium solutions actually
depend. If the problem were to be left in fully dimensional form, then the vectors of unknowns in the dis-
cretized model in the following sections would contain mixtures of quantities of different physical dimensions,
and the norms of these vectors that are employed in our analysis would need to contain additional weight
factors to balance these physical dimensions appropriately. From this point on, then, we shall assume that
the problem has been non-dimensionalized in some reasonable way.

As an example, consider the model free-energy functional F in (2.3) in d space dimensions (Ω ⊂ R
d).

The director n is dimensionless by definition, as are ε‖ and ε⊥, their difference εa, and the relative dielectric
tensor

εr :=
1

ε0
ε = ε⊥I+ εan⊗ n.

One can scale lengths by the diameter of Ω and scale the electrostatic potential by the applied voltage V ,

xi :=
xi

L
, L := diam(Ω), U :=

U

V
,

to obtain the following dimensionless form:

F [n, U ] =
1

2

∫

Ω

[
|∇n|2 − α2

εr(n)∇U · ∇U
]
, F :=

F

KLd−2
, α2 :=

ε0V
2

K
.

Here Ω is the domain Ω in the rescaled coordinate system, and ∇ is the spatial gradient operator with
respect to the rescaled coordinates (∇ = L−1∇). The functional has the same form as before in (2.3) but
now with K = 1 and ε0 = α2 (and all quantities dimensionless). The Euler-Lagrange equations (2.4) would
transform in a similar way. Again, we assume from now on that the problem has been non-dimensionalized
in a reasonable way such as this, but we shall drop the overbars for convenience of notation.



RENORMALIZED NEWTON METHOD FOR POINTWISE UNIT-VECTOR CONSTRAINTS 5

3 Lagrange-Newton scheme and nullspace method

One can discretize a coupled, constrained equilibrium problem of the type presented in §2 in a variety of
ways, starting from weak or strong formulations of (2.4) and utilizing various types of finite elements or finite
differences or other discretization methods. Our preference is to approximate the free energy functional F
directly by some appropriate finite elements and quadrature scheme, obtaining

F [n, U ] ≈ f(n,U), n = (n1, . . . ,nn), nj ∈ R
3, U = (U1, . . . , Un),

where n and U contain the discrete director and electric potential degrees of freedom in some ordering. Here
n represents the total number of free nodes in the discrete model. The precise details of the discretization,
which can be in any number of space dimensions, are not important. The unit-length constraint is to be
imposed on the local director at each free node. This can be done using either Lagrange multipliers or
penalty methods, for example. Our preference is for the former, because of issues related to conditioning,
choosing penalty parameters, and the like. Augmented Lagrangian methods have also been suggested for
such problems—see [15, §3.7].

In our approach, the full set of discrete, coupled, equality constrained equilibrium equations derives from
a Lagrangian:

∇L = 0, where L(n,λ,U) = f(n,U) +

n∑

j=1

λjgj(n), gj(n) :=
1

2

(
|nj |

2 − 1
)
. (3.1)

Here λ = (λ1, . . . , λn) is the vector of Lagrange multipliers. In most circumstances, the system (3.1) can be
seen to be a consistent approximation to (2.4) (in an appropriate scaling)—see [24] and §5.1 below for specific
examples. The same basic idea can be used for problems in any number of space dimensions. In one, two, or
three dimensions, the single, double, or triple integrals defining F would give rise to discretized equilibrium
equations (and Hessian blocks below) that scale differently with respect to mesh parameters. While such
aspects have the potential to affect condition numbers and scaling strategies (which will be addressed in
[13]), they are not of concern for the analysis that follows, which is for a discretized problem on a fixed grid.

3.1 Newton equations

A global Newton method applied to the system ∇L = 0 in (3.1) above leads to a linear system for the
Newton corrections of the form




A B D
BT O O
DT O −C





δn
δλ

δU


 = −



∇nL
∇λL
∇UL


, (3.2)

where
A = ∇2

nn
L, B = ∇2

nλ
L, D = ∇2

nU
L, C = −∇2

UU
L,

andO denotes a zero matrix of appropriate dimensions. Our main interest is in effective numerical bifurcation
and phase exploration of problems with such structure in the large scale regime, where iterative methods
are called for, and where one must be able to compute both stable and unstable solutions. This requires
efficient solvers for the the linear system above, which must be solved repeatedly in parameter-continuation
mode. One can contemplate a number of approaches to solving systems of the form (3.2). It is important
to appreciate that the A matrix block in (3.2) need not be positive definite or even nonsingular—this is
demonstrated in the numerical experiments in §5 below.

For a particular application, the specific form of f(n,U) in (3.1) depends upon the form of F [n, U ] and
on the details of the discretization used. Thus the composition of the Hessian matrix is somewhat problem
dependent. Exact Hessians (not approximated ones) are used in general, and in [24] the structure of the
matrix blocks in (3.2) is described in detail for a specific model problem discretized via piecewise-linear finite
elements. There are some features of the Hessian matrix that are common to all problems. Observe that

L = f +

n∑

j=1

λjgj ⇒ ∇nL = ∇nf +

n∑

j=1

λj∇ngj ,

with gj =
1
2 (|nj |2 − 1), from which follows

∇ngj = [0, . . . ,0,nj ,0, . . . ,0]
T and ∇2

nn
gj = diag(O, . . . , O, I, O, . . . , O).
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Here nj is in the j-th position in the column vector ∇ngj (and the zero vectors are 3-vectors), and I is in
the (j, j) position in ∇2

nn
gj (and the zero matrices and identity matrix are 3× 3). We see that the A matrix

is 3n× 3n and has the general form

A = ∇2
nn

L = A0 + Λ, A0 = ∇2
nn

f, Λ =



Λ1

. . .

Λn


, Λj =



λj

λj

λj


. (3.3)

For our model problem (2.3), the leading terms of A0 would resemble a discretization of −K∆n (in a certain
scaling), although lower-order terms could cause loss of positive definiteness. We also see that the B matrix
is 3n× n and is given by

B = ∇2
nλL = [∇ng1, . . . ,∇ngn] =



n1

. . .

nn


. (3.4)

Under a reasonable discretization, the n × n matrix C will be real, symmetric, and positive definite, cor-
responding to the coefficient matrix associated with a discretization of (2.5). The matrix D is 3n× n and
embodies the coupling between δn and δU. See [24, §3.3] or §5.1 below for specific examples.

A point to keep in mind is that in general, the matrix A depends on all of n, U, and λ:

A = A(n,λ,U) = A0(n,U) + Λ(λ).

For our simplified model problem (2.3), though, A0 (and hence A) is independent of n. The positive
definiteness of C generally derives from the uniform ellipticity of the electric potential terms in F :

ε0 min{ε‖, ε⊥}

∫

Ω

|∇U |2 ≤

∫

Ω

ε(n)∇U · ∇U ≤ ε0 max{ε‖, ε⊥}

∫

Ω

|∇U |2.

The specific details of the confinement of the sample and the boundary conditions on U play a role, and
these vary from problem to problem.

At regular solution points (away from bifurcation points and turning points), the coefficient matrix is
symmetric, non-singular, and indefinite—that is, it has both positive and negative eigenvalues—and the
linear system is in so-called saddle point form. Note that when both pointwise unit-vector constraints and
coupled electric fields are present, these problems have a double saddle-point structure, as seen in (3.2). For
a model with no electric field or for one with no unit-vector constraints (for example, if one were able to use
an angle representation for n), one would obtain instead either of the more common saddle-point forms

[
A B
BT O

]
or

[
A D
DT −C

]
.

3.2 Nullspace method

The nullspace method (or reduced Hessian method) is a technique for eliminating constraint blocks in systems
such as these ((3.2) or systems with a coefficient matrix like the left side above), by using a matrix, which
we denote Z, whose column space is the null space of BT—see for example [2, §6]. As we have shown in
[24], it is trivial to construct such a matrix for problems such as ours, and it takes the form

Z =




l1 m1

l2 m2

. . .

ln mn


. (3.5)

Here lj and mj are local 3-vectors and are constructed by simple formulas from nj such that, at each node,
lj, mj , nj form an orthogonal triple, and we assume that nj 6= 0, ∀j (the “non-degeneracy condition” of
[24]).

Consider now the second block equation of (3.2),

BT
δn = −∇λL, (3.6)
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which is an under-determined system of n equations in 3n unknowns. Assuming non-degeneracy of the
current local directors (nj 6= 0, ∀j), the columns of both B and Z are linearly independent and together
form an orthogonal basis for R3n, as a result of which we have

BTZ = On×2n, ZTB = O2n×n, BTB, ZTZ diagonal and nonsingular,

and (3.6) is guaranteed to be consistent. Decomposing a solution of (3.6) into its components in the normal
space to the constraint manifold at n and those in the tangent space,

δn = Br+ Zp, r ∈ R
n, p ∈ R

2n,

and substituting this decomposition into (3.6), one obtains

BT
δn = BTB r+BTZ p = BTB r = −∇λL ⇒ r = −(BTB)−1∇λL,

and we see that the solution set of (3.6) can be written

δn = δ̂n+ Zp, δ̂n := −B(BTB)−1∇λL, p arbitrary. (3.7)

Projecting the first block equation of (3.2),

A δn+B δλ +D δU = −∇λL,

into its normal-space and tangent-space components gives

BTA δn+BTB δλ +BTD δU = −BT∇nL

ZTA δn+ ZTB δλ+ ZTD δU = −ZT∇nL.

The first equation above can be solved for δλ once δn and δU have been determined:

δλ = −(BTB)−1BT (∇nL+A δn +D δU). (3.8)

Substituting the representation (3.7) into the second equation (and using ZTB = O) gives

ZTAZ p+ ZTD δU = −ZT∇nL− ZTA δ̂n,

while using the same representation δn = δ̂n+ Zp in the third block equation of (3.2) gives

DT
δn− C δU = −∇UL ⇒ DTZ p− C δU = −∇UL−DT

δ̂n.

The equations for p and δU (uncoupled now from the equations for δλ) can thus be written as a reduced
3n× 3n system: [

ZTAZ ZTD
DTZ −C

] [
p
δU

]
= −

[
ZT

(
∇nL+A δ̂n

)

∇UL+DT
δ̂n

]
. (3.9)

Note again that BTB is a diagonal matrix, and this is true in any number of space dimensions—once a
consistent ordering of the nodes and constraints is decided upon, the B matrix always has the generic form

(3.4). Thus the computation of δ̂n and δλ is quite simple. This approach is examined analytically and
through numerical experiments in [24] on a specific model problem. Systems of the form (3.2), (3.3), (3.4)
can be obtained by other discretization approaches, and many of the ideas here (type of Hessian reduction,
Renormalized Newton Algorithm below) would apply to these as well.

3.3 Geometric interpretation

The particular solution δ̂n in (3.7) can be seen to be the minimum 2-norm solution of BTδn = −∇λL (since

‖δn‖22 = ‖δ̂n‖22 + ‖Zp‖22 in (3.7), by virtue of the mutual orthogonality of the columns of B and those of
Z). Pointwise it has the explicit form

(δ̂n)j =
1

2

(
1− |nj |2

|nj |2

)
nj , j = 1, . . . , n. (3.10)

Thus the representation (3.7) decomposes the increment δn at each point into a component parallel to nj

((δ̂n)j above) and a component perpendicular to nj ((Zp)j = pjlj + qjmj , where p = [p1, q1, . . . , pn, qn]
T ).



RENORMALIZED NEWTON METHOD FOR POINTWISE UNIT-VECTOR CONSTRAINTS 8

The component (δ̂n)j is local, completely driven by the pointwise unit-vector constraint, and independent
of the liquid crystal distortional elasticity (which is captured by the components of Zp). It can be seen as a
linearized correction in the nj direction towards satisfying the unit-vector constraint at the j-th grid point:
setting

gj(n+ δn) =
1

2
[(nj + δnj) · (nj + δnj)− 1] ≈

1

2
(|nj |

2 − 1) + nj · δnj = 0

together with δnj = ηjnj implies

ηj =
1

2

(
1− |nj |2

|nj |2

)
,

exactly as in (3.10).

One can compare (δ̂n)j in (3.10) with the true increment (in the nj direction) that would be needed to
bring an un-normalized local director nj onto the local constraint manifold |nj | = 1:

nj 7→
nj

|nj |
= nj + δntrue

j ⇒ δntrue
j =

1− |nj |

|nj |
nj =

2|nj |

1 + |nj |
(δ̂n)j .

Since
2|nj |

1 + |nj |
> 1 ⇔ |nj | > 1 and

2|nj|

1 + |nj |
< 1 ⇔ |nj | < 1,

we see that (δ̂n)j is too large if |nj | < 1 and too small if |nj | > 1. We conclude that the calculated Newton

correction δn = δ̂n+ Zp necessarily produces a new local director

nj + δnj = nj + (δ̂n)j + (Zp)j , (δ̂n)j ‖ nj , (Zp)j ⊥ nj

that satisfies
|nj + δnj | ≥ 1,

with equality above if and only if |nj | = 1 (which implies that (δ̂n)j = 0) and (Zp)j = 0. Thus successive
Newton iterates generally exceed the pointwise unit-vector normalization, approaching it in the limit as the
Newton iteration converges. We will use these observations in an attempt to accelerate this process.

4 Alternative outer iteration: Renormalized Newton Method

While a global Newton scheme is a natural choice for an outer iteration, specific features of problems such
as these (with such pointwise unit-vector constraints) suggest some simplifications, which lead to a closely
related variant. In particular, we have already observed the simplifications that accompany the circumstance
in which the current approximate n is normalized : |nj | = 1, j = 1, . . . , n. In this situation, lj , mj, nj form

an orthonormal triple at each grid point, and BTB = I. Since ∇λL = 0, δ̂n = 0, and δnj ⊥ nj for all j,
the nullspace-method equations (3.9) and (3.8) take the simpler form

[
ZTAZ ZTD
DTZ −C

] [
p
δU

]
= −

[
ZT∇nf
∇Uf

]
, δn = Zp,

δλ = −BT(∇nf +A δn+D δU).

Here we have used the facts that

∇nL = ∇nf +Bλ ⇒ ZT∇nL = ZT∇nf,

since ZTB = O by construction, and ∇UL = ∇Uf. By virtue of the simple, local nature of our constraints,
it is quite easy to force them upon any approximate discrete director field n by simply normalizing each
local director. Furthermore, we know from the discussion in §3.3 that the basic Newton iteration produces
local directors that are systematically too long (|nj | > 1).

Also, the Lagrange multipliers occur in a simple way, linearly in the ∇nL = 0 equations, and in general
these are not of the same level of physical interest as are n and U. Given the n∗ and U∗ components of an
exact solution of ∇L(n∗,λ∗,U∗) = 0, the Lagrange multipliers can be computed directly (and locally) via

∇nL = ∇nf +Bλ = 0 ⇒ λ
∗ = −B(n∗)T∇nf(n

∗,U∗)

⇔ λ∗
j = −∇nj

f(n∗,U∗) · n∗
j , j = 1, . . . , n.
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When n and U correspond to the components of an approximate (not yet converged) solution of ∇L = 0, the
over-determined system ∇nf +Bλ = 0 (viewed as 3n equations in λ1, . . . , λn) is not necessarily consistent,
and the formulas above give the linear least squares solution:

min
λ

‖∇nf +Bλ‖2 ⇔ λ = −(BTB)−1BT∇nf = −BT∇nf.

These then are the features we will exploit: renormalizing the discrete director at each outer iterative step
and eliminating the Lagrange multipliers by the formulas above. Our algorithm for the “Renormalized
Newton Method” takes the following form.

Algorithm 4.1 (Renormalized Newton Method) Repeat until convergence:

1. in: n, U satisfying |nj | = 1, j = 1, . . . , n

2. build B(n) and ∇nf(n,U)

3. set
λ = −BT∇nf (4.1)

4. build A(n,λ,U) = A0(n,U) + Λ(λ), C(n), D(n,U), Z(n), and ∇Uf(n,U)

5. solve [
ZTAZ ZTD
DTZ −C

] [
p
δU

]
= −

[
ZT∇nf
∇Uf

]

6. update and normalize:

δn = Zp, nRN
j =

nj + δnj

|nj + δnj |
, j = 1, . . . , n, URN = U+ δU

7. out: nRN, URN satisfying |nRN
j | = 1, j = 1, . . . , n

We note that the gradient∇nf(n,U) used to calculate λ above is already needed and that the calculation
is simply done componentwise: λj = −∇nj

f · nj , j = 1, . . . , n. The other matrix and vector components
above are computed exactly as before, the Lagrange multipliers entering only in A. If we compare this
modified step with the basic Newton step (nN,λN,UN) from (n,λ,U), with the same input n and U and
with λ computed as above, we see that nRN is simply a renormalized version of nN = n+ δn, λ is treated
as an intermediary (and computed differently than λN = λ + δλ, only when needed at the next step), and
URN = UN = U+ δU.

As is proven below, this scheme is locally quadratically convergent, and so stopping criteria generally
used for Newton-like iterations can be used here. These can be based on relative nonlinear residuals of
ZT∇nf and ∇Uf , for example. More simply, one can just monitor the magnitudes of the corrections δn
and δU, relying on the property

‖x(k) − x∗‖ = ‖x(k+1) − x(k)‖+O
(
‖x(k) − x∗‖2

)
, x = (n,U), x∗ = (n∗,U∗).

The entries of n are O(1) by nature. If the problem has been well scaled (as in §2.3), then so will the entries
of U be. Otherwise, one can take into account a scale factor for U and use a stopping condition of the form

‖δn‖∞ ≤ tol and ‖δU‖∞ ≤ tol ∗ (scale for U).

See for example [18, §5.2].
Besides the modest analytical simplifications gained by this scheme, it is physically intuitive and some-

what analogous to other numerical approaches that have been applied to related problems. The numerical
device of renormalizing after each step has been used by computational physicists in this area for a long
time (in the context of the pseudo-time-relaxation approach to computing constrained equilibria) and has
also been employed by numerical analysts in the context of both relaxation and gradient methods [1, 4, 20].
Analogous ideas have been used in the area of micromagnetics—see [10, §4], [19, §2.2.1], or [23, Ch. 4]. In §4.4
below, we explore the relationship of the Renormalized Newton Method to the Truncated Newton Method
of computational micromagnetics.
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4.1 Local quadratic convergence analysis of the Renormalized Newton Method

In spite of the attractive features discussed above, one would not contemplate using such an alternative outer
iteration if it did not preserve the quadratic local convergence properties of the basic Newton method. In
fact it does, which we will now prove. The analysis relies upon the following two facts: first, that the error
in λ computed by (4.1) as an approximation to the Lagrange multiplier vector λ∗ of the exact solution (n∗,
U∗) is of the same order as the errors in n− n∗ and U −U∗, and second, that the renormalization step is
second order in the Newton correction δn. We establish these preliminary results in two lemmas, after first
introducing some notation and recalling some local convergence results for the basic global Newton iteration.

Let x∗ = (n∗,λ∗,U∗) be a regular discrete constrained equilibrium solution, that is,

∇L(x∗) = 0, ∇2L(x∗) non-singular. (4.2)

We note that this can include locally unstable solutions as well as locally stable solutions. The only situ-
ation excluded is that of singular equilibrium solutions, at which ∇L(x∗) = 0 but the Hessian ∇2L(x∗) is
singular—in a typical parameter study, such situations would occur at bifurcation and turning points, for
example.

For convenience, we work with vector and matrix 2-norms, and adopt the notation

Bε(x
∗) =

{
x | ‖x− x∗‖2 ≤ ε

}

=
{
(n,λ,U) | ‖n− n∗‖22 + ‖λ− λ

∗‖22 + ‖U−U∗‖22 ≤ ε2
}
,

B′
ε(x

∗) =
{
(n,U) | ‖n− n∗‖22 + ‖U−U∗‖22 ≤ ε2

}
,

B′′
ε (x

∗) =
{
(n,U) ∈ B′

ε(x
∗) | |nj | = 1, j = 1, . . . , n

}
.

We recall that we assume that our problem has been non-dimensionalized, so that n, λ, U, and x are all
dimensionless. We note that B′

ε(x
∗) corresponds to the λ = λ∗ section of Bε(x∗) and that (n,λ,U) ∈

Bε(x∗) implies (n,U) ∈ B′
ε(x

∗), while B′′
ε (x

∗) is a subset of B′
ε(x

∗), adding only the requirement that
n be normalized. For conventional discretizations, the discrete Lagrangian L is an algebraic function (a
multivariate polynomial in the components of x) and is therefore infinitely continuously differentiable. As
such, it satisfies any needed regularity hypotheses, and standard results on the local convergence of Newton’s
Method hold—see for example [6, §5.2], [18, §5.1], or [22, §10.2.2]. A sufficient (lesser) hypothesis for the
analysis that follows is that the Hessian ∇2L be Lipschitz continuous on a neighborhood of x∗.

Theorem 4.2 (Local Newton Convergence) Let x∗ be a regular critical point of L, as in (4.2), with ∇2L
Lipschitz continuous on a neighborhood of x∗, then there exist positive constants CN and εN satisfying CNεN <
1, such that for any x ∈ BεN(x

∗), the Newton step xN is well defined and satisfies

‖xN − x∗‖2 ≤ CN‖x− x∗‖22. (4.3)
We recall that from this basic estimate it follows that the Newton iteration is quadratically convergent

from any initial guess x(0) ∈ BεN(x
∗) by arguing as follows:

‖x(1) − x∗‖2 ≤ CN‖x
(0) − x∗‖22 ≤ CNεN‖x

(0) − x∗‖2,

which implies {x(k)}∞k=0 ⊂ BεN(x
∗) (since CNεN < 1),

‖x(k) − x∗‖2 ≤ (CNεN)
k‖x(0) − x∗‖2 → 0, as k→∞,

and
‖x(k+1) − x∗‖2 ≤ CN‖x

(k) − x∗‖22, k = 0, 1, . . . .

Our objective here is to establish an analogous result for the Renormalized Newton scheme. The following
lemma shows that if (n,U) is sufficiently close to (n∗,U∗), then (n,λ,U) (with λ calculated using (4.1)) is
guaranteed to be within the region of attraction of the basic Newton iteration.

Lemma 4.3 Let x∗ be a regular critical point of L, as in (4.2), with ∇2L Lipschitz continuous on a neigh-
borhood of x∗, then there exist positive constants C1 and ε1 such that

(n,U) ∈ B′
εN
(x∗) ⇒ ‖λ− λ

∗‖2 ≤ C1

√
‖n− n∗‖22 + ‖U−U∗‖22

and
(n,U) ∈ B′

ε1
(x∗) ⇒ (n,λ,U) ∈ BεN(x

∗),

with λ computed from (n,U) using (4.1). Here εN is the local Newton radius of Theorem 4.2.
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Proof 4.3 Let (n,U) be in B′
εN
(x∗). The approximate λ computed using (4.1) and the exact Lagrange

multiplier vector λ∗ satisfy

λ = −B(n)T∇nf(n,U), λ
∗ = −B(n∗)T∇nf(n

∗,U∗).

Subtracting these and using the fact that the matrix function B is linear in its argument (B(n) = B(n −
n∗) +B(n∗)), we obtain

λ
∗ − λ = B(n∗)T

[
∇nf(n,U)−∇nf(n

∗,U∗)
]
+B(n− n∗)T∇nf(n,U),

which implies

‖λ− λ
∗‖2 ≤ ‖B(n∗)T‖2‖∇nf(n,U)−∇nf(n

∗,U∗)‖2 + ‖B(n− n∗)T‖2‖∇nf(n,U)‖2. (4.4)

The difference of the gradients above can be estimated using remainder formulas, such as in [6, §4.1] or [22,
§3.2]:

‖∇nf(n,U)−∇nf(n
∗,U∗)‖2 ≤ max

0≤t≤1
‖∇2

nnf(n
∗ + t(n− n∗),U∗ + t(U −U∗))‖2‖n− n∗‖2

+ max
0≤t≤1

‖∇2
nU

f(n∗ + t(n− n∗),U∗ + t(U−U∗))‖2‖U−U∗‖2

≤ M1‖n− n∗‖2 +M2‖U−U∗‖2,

with
M1 := max

(n,U)∈B′
εN

(x∗)
‖∇2

nn
f(n,U)‖2, M2 := max

(n,U)∈B′
εN

(x∗)
‖∇2

nU
f(n,U)‖2. (4.5)

The matrix 2-norms of B(n∗)T and B(n− n∗)T can be estimated by observing that they both stem from
matrices of the general form

B(b) =



b1

. . .

bn


, b = (b1, . . . ,bn), b1, . . . ,bn ∈ R

3,

for which

B(b)B(b)T =



b1b

T
1

. . .

bnb
T
n


.

It follows that

‖B(b)T ‖2 =
√
λmax(B(b)B(b)T ) = max

{
|b1|, . . . , |bn|

}
.

Thus
‖B(n∗)T ‖2 = max

{
|n∗

1|, . . . , |n
∗
n|
}
= 1

and
‖B(n− n∗)T ‖2 = max

{
|n1 − n∗

1|, . . . , |nn − n∗
n|
}
≤ ‖n− n∗‖2.

With the help of these estimates, it follows from (4.4) that

‖λ− λ
∗‖2 ≤M1‖n− n∗‖2 +M2‖U−U∗‖2 +M3‖n− n∗‖2,

with
M3 := max

(n,U)∈B′
εN

(x∗)
‖∇nf(n,U)‖2, (4.6)

which in turn implies that

‖λ− λ
∗‖2 ≤ C1

√
‖n− n∗‖22 + ‖U−U∗‖22 , with C1 :=

√
(M1 +M3)2 +M2

2 . (4.7)

If we now take

ε1 :=
εN√
C2

1 + 1
,

we obtain

(n,U) ∈ B′
ε1
(x∗) ⇒

‖n− n∗‖22 + ‖λ− λ
∗‖22 + ‖U−U∗‖22 ≤

(
C2

1 + 1
)(
‖n− n∗‖22 + ‖U−U∗‖22

)

≤
(
C2

1 + 1
)
ε21 ≤ ε2N ⇒ (n,λ,U) ∈ BεN(x

∗).
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The above is consistent with general results for “least squares multipliers”—see for example [14, §6.6] or
[21, §18.3]. Thus, for (n,U) ∈ B′

ε1
(x∗), the Newton step (from (n,λ,U), with λ as in (4.1)) is well defined,

and hence so is the Renormalized Newton step. Our next preliminary result shows that the renormalization
step is second order in δn and therefore preserves the order of accuracy of the basic Newton step.

Lemma 4.4 Let x∗ be a regular critical point of L, as in (4.2), with ∇2L Lipschitz continuous on a neigh-
borhood of x∗, then there exists a positive constant C2 such that

(n,U) ∈ B′′
ε1
(x∗) ⇒ ‖nRN − n∗‖2 ≤ C2‖x− x∗‖22,

where ε1 is as in Lemma 4.3 and x = (n,λ,U), with λ computed as in (4.1).

Proof 4.4 We know from Lemma 4.3 that for (n,U) ∈ B′′
ε1
(x∗) ⊂ B′

ε1
(x∗), the point (n,λ,U) is in BεN(x

∗)
and that the Newton step from (n,λ,U) is well defined and satisfies the inequality (4.3). The Renormalized
Newton step is also well defined, and the local geometry relating the two is as follows. For j = 1, . . . , n,

nN

j = nj + δnj , |nj | = 1, nj · δnj = 0, |nN

j | ≥ 1, nRN
j =

nN

j

|nN

j |
,

from which follows
nN

j − nRN
j = (|nN

j | − 1)nRN
j

and

|δnj |
2 = |nN

j |
2 − 1 = (|nN

j | − 1)(|nN

j + 1) ⇒ |nN

j | − 1 =
|δnj |2

|nN

j |+ 1
≤

1

2
|δnj |

2.

With this we can estimate

‖nRN − nN‖2 ≤
n∑

j=1

‖nRN
j − nN

j ‖2 ≤
1

2

n∑

j=1

|δnj |
2 =

1

2
‖δn‖22. (4.8)

To proceed, we must relate the Newton correction δn to the errors in the initial vectors (n,λ,U), which can
be done as follows:

nN = n+ δn ⇒ nN − n∗ = n− n∗ + δn

⇒ ‖δn‖2 ≤ ‖n
N − n∗‖2 + ‖n− n∗‖2

≤ CN‖x− x∗‖22 + ‖x− x∗‖2, using (4.3)

≤ (CNεN + 1)‖x− x∗‖2, using ‖x− x∗‖2 ≤ εN,

≤ 2‖x− x∗‖2, using CNεN < 1

⇒
1

2
‖δn‖22 ≤ 2‖x− x∗‖22. (4.9)

Combining (4.8) and (4.9) with (4.3), we obtain

‖nRN − n∗‖2 ≤ ‖n
RN − nN‖2 + ‖n

N − n∗‖2

≤
1

2
‖δn‖22 + ‖n

N − n∗‖2

≤ (2 + CN)‖x− x∗‖22.

Thus the lemma is proved with C2 := 2 + CN.

With the help of these lemmas, we can now prove the basic result that establishes the local quadratic
convergence of the Renormalized Newton Method algorithm.

Theorem 4.5 Let x∗ be a regular critical point of L, as in (4.2), with ∇2L Lipschitz continuous on a
neighborhood of x∗, then there exist positive constants CRN and εRN satisfying CRNεRN < 1, such that for
any (n,U) ∈ B′′

εRN
(x∗), the Renormalized Newton step (nRN,URN), calculated via Algorithm 4.1, is well

defined and satisfies

√
‖nRN − n∗‖22 + ‖U

RN −U∗‖22 ≤ CRN

(
‖n− n∗‖22 + ‖U−U∗‖22

)
.
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Proof 4.5 Given any (n,U) in B′′
ε1
(x∗), with ε1 as in Lemma 4.3, define λ as in (4.1). Lemma 4.3

guarantees that x = (n,λ,U) ∈ BεN(x
∗), and so the Newton and Renormalized Newton steps are well

defined. Lemma 4.4 guarantees that

‖nRN − n∗‖2 ≤ C2‖x− x∗‖22,

with C2 as in Lemma 4.4, and we also have

‖URN −U∗‖2 ≤ CN‖x− x∗‖22

from (4.3), because URN = UN. It follows that
√
‖nRN − n∗‖22 + ‖U

RN −U∗‖22 ≤
√

C2
2 + C2

N ‖x− x∗‖22.

Now

‖x− x∗‖22 = ‖n− n∗‖22 + ‖λ− λ
∗‖22 + ‖U−U∗‖22

≤
(
C2

1 + 1
)(
‖n− n∗‖22 + ‖U−U∗‖22

)
,

where C1 is as in (4.7). We thus have
√
‖nRN − n∗‖22 + ‖U

RN −U∗‖22 ≤
√
C2

2 + C2
N

(
C2

1 + 1
)(
‖n− n∗‖22 + ‖U−U∗‖22

)

and can take

CRN :=
√
C2

2 + C2
N

(
C2

1 + 1
)

and choose εRN ≤ ε1 such that CRNεRN < 1.

One can now use exactly the same arguments as in the basic local Newton Convergence Theorem (sketched
after the statement of Theorem 4.2) to show that the Renormalized Newton iteration is well defined and
quadratically convergent from any initial point in B′′

εRN
(x∗).

In the analysis above, the various constants (C1, C2, ε1, . . . ) depend on the discrete Lagrangian L in
(3.1) through the bounds M1, M2, and M3 in (4.5) and (4.6), and these will change from problem to problem.
For example, consider the model problem in two dimensions used for the numerical experiments in §5:

F [n] =
1

2

∫

Ω

|∇n|2, n = n(x, y), Ω = (0, 1)2.

Discretized as in §5 on a uniform mesh with n2 mesh cells of edge length h = 1/n (and (n− 1)2 free interior
nodes), one has the discrete free energy

f(n) =
1

4

n−1∑

i,j=0

[
|ni+1,j − nij |

2 + |ni+1,j+1 − ni,j+1|
2

+ |ni,j+1 − nij |
2 + |ni+1,j+1 − ni+1,j |

2
]
.

Formulas for ∇nf and ∇2
nnf are given in (5.2) and (5.5) respectively. Note that for this model problem,

A0 = ∇2
nn

f is constant, independent of n, and ∇nf(n) = A0n (see §5.1).
The constants M1 and M3 can be estimated from these formulas—there is no electric field in this model

problem, and so there is no M2 to estimate. For M1 we obtain an exact expression:

M1 = max
n∈BεN

(n∗)
‖∇2

nnf(n)‖2 = ‖A0‖2 = λmax(A0) = 8 sin2
π(n− 1)

2n

⇒ M1 < 8 and M1 = 8(1 +O(h2)), as h→ 0. (4.10)

For M3 we obtain a bound:

‖∇nf(n)‖2 = ‖A0n‖2 ≤ ‖A0‖2(‖n− n∗‖2 + ‖n
∗‖2)⇒ M3 = max

n∈BεN
(n∗)
‖∇nf(n)‖2 ≤ 8(εN + n). (4.11)

Here we have used (4.10), the definition of BεN(n
∗), and ‖n∗‖22 =

∑n−1
i,j=1 |n

∗
ij |

2 = (n − 1)2 (since |n∗
ij | =

1, ∀ i, j). That ‖n∗‖2 = n− 1 (and ‖∇nf(n
∗) = O(n) above) is due to the definition of the vector 2-norm

(the standard definition, as used above). Thus for this example we have M1 = O(1) and M3 = O(n),
as n → ∞. If the vector 2-norm were defined instead to be consistent with the continuous 2-norm (e.g.,

‖n‖22 = h2
∑n−1

i,j=1 |nij |2), then both ‖n∗‖2 and ‖∇nf(n)‖2 would be O(1), and M1 would remain O(1).
If the same model problem were discretized in the same way in one or three space dimensions (with

Ω = (0, 1) or Ω = (0, 1)3 respectively, say), then we would obtain instead M1 = O(1/h), M3 = O(1/h2) (in
one dimension) and M1 = O(h), M3 = O(1) (in three dimensions). The analysis in this sub-section is for a
problem (in any space dimension) on a fixed grid.
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4.2 Lack of an energy decay property in general

Those familiar with the analysis of Alouges of the “harmonic mapping case” [1] will wonder if any of those
results are relevant here. We address this now. The “Harmonic Mapping Problem” is a special case of the
types of models we consider here. It consists of a normalized equal-elastic-constant model with no magnetic
or electric fields (the “Dirichlet Energy”):

F [n] =
1

2

∫

Ω

|∇n|2, minF [n], subject to |n| = 1 in Ω, n = n0 on ∂Ω.

In [1], Alouges presented a convergence analysis for an iterative scheme that involved a renormalization
step (n ← n/|n|) similar to that employed in Algorithm 4.1 here. The analysis relied upon the fact that
renormalizing a director field that is greater than unit length necessarily reduces the Dirichlet energy:

|n| ≥ 1 on Ω ⇒ |∇(n/|n|)| ≤ |∇n| ⇒ F [n/|n|] ≤ F [n].

Unfortunately, this decay property seems to be tied to the simple form of the Dirichlet energy and does
not hold for general liquid crystal free-energy functionals (with unequal elastic constants or external magnetic
fields or coupled electric fields). To see this, consider, for example, an equal-elastic-constant model with an
external magnetic field:

F [n] =
1

2

∫

Ω

[
K|∇n|2 − µ0∆χ(H · n)2

]
, H = const, K, µ0,∆χ > 0. (4.12)

If n is un-normalized with |n| ≥ 1 on Ω, then rescaling n ← n/|n| will lower the contribution of the
distortional elasticity (|∇n|2 term) but will increase (make less negative) the contribution of the magnetic
energy density ((H ·n)2 term). Thus one may have in principle either F [n/|n|] ≤ F [n] or F [n/|n|] > F [n].
For the special case of rescaling n in (4.12) by a constant multiplicative factor, we would have

F [cn] = c2F [n], c = const,

for which
|c| < 1 and F [n] < 0 ⇒ F [cn] > F [n].

It is common to have negative free energies for stable liquid crystal equilibrium director fields with external
magnetic fields or coupled electric fields, and this is the case, for example, with all Fréedericksz-transition
problems (classical magnetic-field or electric-field induced distortions) beyond the “switching threshold”—see
for example [25, §3.4 and §3.5] or [26, §4.2].

We do not know under what circumstances one can have an energy decay property for the general
Oseen-Frank distortional elastic energy density (2.1) (with unequal elastic constants), even in the absence of
magnetic or electric fields. The problems mainly of interest to us (with coupled electric fields) are not even
free-energy minimization problems. They are minimax problems, and our analysis in the previous subsection
applies to any regular saddle-point equilibrium solution of such problems (locally stable or unstable).

4.3 Director fields with defects

The Lagrangian L consists of the discretized free energy f(n,U) ≈ F [n, U ] and the Lagrange multipliers
and constraints

∑
λj

(
|nj |2 − 1

)
. For standard finite difference or finite element models, the discrete free

energy f will simply be a polynomial function of the components of the discrete director and potential n
and U—a specific example is given in §5.1 below for a model problem in two dimensions. So in principle,
there is no issue concerning the regularity of L: it is an infinitely differentiable function of its arguments for
the situations of interest to us.

An issue that could complicate matters is the possible presence of defects in the domain of the liquid
crystal. These are singularities in the director field n, usually caused by boundary conditions or some other
form of frustration. The two canonical examples are radial line and point sources:

n(x, y) =
1

r

[
(x − xd) ex + (y − yd) ey

]
, r2 = (x − xd)

2 + (y − yd)
2 (4.13)

and

n(x, y, z) =
1

r

[
(x− xd) ex + (y − yd) ey + (z − zd) ez

]

r2 = (x− xd)
2 + (y − yd)

2 + (z − zd)
2.

(4.14)
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The first is referred to as a “disclination line” (and is uniform in the z direction), and the second, a “point
defect.” The director field is undefined at the defect location, and the singularity is not removable. For the
fields above, one can calculate

|∇n| =





1

r
, for (4.13)

2

r
, for (4.14)

. (4.15)

We see that |∇n|2 is integrable in 3-D but not in 2-D, and so point defects have finite free energy in
Oseen-Frank models, while disclination lines do not.

The analysis of [16] shows that the equilibrium director fields associated with Oseen-Frank models (with
or without electric and/or magnetic fields) are infinitely differentiable in the interior of the domain away
from defects. In many liquid-crystal-based devices or experiments, defects are not present; in many other
cases, however, they are. The accurate numerical modeling of director fields with defects is a challenging
problem in its own right and is beyond the scope of this paper. Local mesh refinement and such are required
to resolve the rapid variation of n near the defect, and some cutoff or excision is required, since the director
field is not even defined at the defect location. If one were to model a director field with a defect using
a finite-difference grid or finite-element mesh, then the free-energy-minimizing discrete director field would
position the defect location off the grid/mesh, and calculated solutions would sometimes obtain a slightly
inaccurate defect location due to “trapping” of the defect in the wrong grid cell.

The analysis of the previous sub-section should remain valid for most reasonable discretizations (on a
fixed grid or mesh) of problems with defects, although one would expect the various constants and bounds
and regions of attraction of the Newton schemes to be affected. The analysis certainly remains valid for
the case of standard finite-element schemes: for a given, fixed mesh, the discrete Lagrangian is still just
a polynomial function of the components of the discrete director n, the Lagrange multipliers λ, and the
potential U, and the bounds M1, M2, and M3 are still finite. In numerical experiments in §5 below, we
illustrate the robustness of both the basic Newton iteration and the Renormalized Newton Method for a
model problem with a defect.

4.4 Comparison with the Truncated Newton Method of computational micro-

magnetics

The closest analogue to the Renormalized Newton scheme of which we are aware is the Truncated Newton
Method utilized in micromagnetics [10, §4.2], and it is natural and interesting to compare the two. The
Truncated Newton Method (as adapted to micromagnetics) is used to minimize a discretization of the
Landau-Lifshitz free energy of a ferromagnetic material subject to pointwise unit-length constraints on the
normalized magnetization vector field, which is usually denoted by m and is analogous to the liquid crystal
director field n—see §2.2 above. In our setting, the approach amounts to the following. Let f(n1, . . . ,nn) be
a discretized free energy, with n = (n1, . . . ,nn), nj ∈ R

3 a current approximate director (or magnetization)
field, normalized so that |nj | = 1, ∀j. One develops a constrained local quadratic model using paths of the
form

nj(ε) =
nj + εpj

|nj + εpj |
, −ε0 < ε < ε0, so that |nj(ε)| = 1 and nj(0) = nj . (4.16)

Here p is an arbitrary direction

p =



p1

...
pn


, p1, . . . ,pn ∈ R

3.

We note that this kind of device is commonly used for analytical as well as numerical purposes in both
the liquid crystals and the micromagnetics areas—see for example [26, §3.5], where it is used systematically
to derive constrained equilibrium equations, natural boundary conditions, and the like for the Oseen-Frank
elastic model for nematic liquid crystals. The constrained local quadratic model follows by expanding

f(n1(ε), . . . ,nn(ε)) = f(n) + εG(n) · p+
ε2

2
H(n)p · p+ · · · ,

where G(n) and H(n) are the constrained/projected gradient and Hessian evaluated at n(0) = n. The
constrained Newton direction is characterized by

H(n)p = −G(n),
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which corresponds to Eqn. (65) of [10]—here we have absorbed the ε into p.
If one performs the necessary calculus, one finds that

G =



G1

...
Gn


, Gj = ∇nj

f − (∇nj
f · nj)nj = Πj∇nj

f, Πj := I − njn
T
j , (4.17)

which is Eqn. (62) of [10]. Here Πj is the local orthogonal projector transverse to nj , which is commonly
denoted P (n) = I− n⊗ n in the liquid crystals area (see [26]), and we can write

G = Π∇nf, Π =



Π1

. . .

Πn


.

Recall that in our Renormalized Newton Method, the approximate Lagrange multipliers are computed via
(4.1) as

λ = −B(n)T∇nf(n) ⇔ λj = −∇nj
f · nj , j = 1, . . . , n. (4.18)

In terms of this, then, we can write

Gj = ∇nj
f + λjnj ⇔ G = ∇nf +B(n)λ = ∇nL,

and we see that our formulas for the λj arise naturally in this expansion calculus and that the projected
gradient G is precisely the gradient with respect to n of the Lagrangian L in (3.1) when the Lagrange
multipliers are given by the formulas (4.18) above (which are the same as (4.1) before). The projected
Hessian takes the form

H = Π∇2f Π+ ΛΠ−H2, (4.19a)

where the diagonal matrix of approximate Lagrange multipliers Λ is as given in (3.3) (again with λj evaluated
by (4.18) above), and

H2 :=



n1G

T
1 +G1n

T
1

. . .

nnG
T
n +Gnn

T
n


. (4.19b)

This is equivalent to Eqn. (63) of [10]. The 3n× 3n matrices H and H2 are real and symmetric.
The projection Π can be seen to be related to the matrices B and Z utilized in our Renormalized Newton

algorithm via
Π = I −BBT = ZZT.

Using also the observation that ΛΠ = ΠΛΠ, one is able to compare directly the Truncated Newton step

H(n)p = −G(n), H = ZZT(∇2
nn

f + Λ)ZZT −H2, G = ZZT∇nf (4.20)

with the Renormalized Newton step

ZT(∇2
nnf + Λ)Zq = −ZT∇nf, p = Zq. (4.21)

In both instances, the Lagrange multipliers that form Λ are given by the explicit formulas (4.1), (4.18).
Observe that ∇2

nn
f + Λ is simply the A block of the Hessian of the Lagrangian L in the notation of §3

here. Also note that at equilibrium, the projected gradient must necessarily vanish (ZT∇nf = 0 ⇒ G =
ZZT∇nf = 0) and so, therefore, must the H2 part of the projected Hessian matrix H . The convergence
analysis of §4.1 here shows that this H2 term is not needed for local quadratic convergence anyway.

We see that there is a definite relationship between the Truncated Newton Method of computational
micromagnetics and the Renormalized Newton Method we have developed here. There are also important
differences. The Truncated Newton system (4.20) is of size 3n, whereas (4.21) is of size 2n. This is reflective
of the essential analytical difference between the two schemes: in the Truncated Newton step, the Hessian
∇2

nn
L = ∇2

nn
f + Λ is flanked by a projection (Πx = ZZTx is the orthogonal projection of x onto the

tangent space to the constraint manifold at n), whereas in the Renormalized Newton step, the Hessian is
flanked by a coordinate map (ZTx gives the coordinates of the tangent-space component of x with respect
to the orthonormal basis provided by the columns of Z). The Truncated Newton scheme leaves the problem
in R

3n (even though there are only 2n degrees of freedom locally on the constraint manifold), whereas the
Renormalized Newton scheme moves the problem to a 2n-dimensional setting. The unnecessary extra degrees
of freedom in the Truncated Newton approach contribute to the degeneracies identified in the next section.
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4.5 Convergence issues for the Truncated Newton Method

We further our comparison of the Renormalized Newton Method and the Truncated Newton Method, con-
tinuing to consider the problem of minimizing a general discretized free energy f(n1, . . . ,nn) subject to
|nj | = 1, j = 1, . . . , n, with associated Lagrangian L(n,λ) = f(n) +

∑n

j=1 λjgj(n), as in (3.1) (but with no

electric field). At any regular constrained equilibrium point n∗, we have ∇L(n∗,λ∗) = 0 and ∇2L(n∗,λ∗)
nonsingular, where here

∇2L =

[
∇2

nn
L ∇2

nλ
L

∇2
λn

L ∇2
λλ

L

]
=

[
A B
BT O

]
, A = ∇2

nnf + Λ.

With n∗ normalized (|n∗
j | = 1, ∀j) and B and Z constructed as before in (3.4) and (3.5) (mutually or-

thonormal columns, BTZ = O, ZTB = O), the Lagrange multipliers associated with n∗ are given by
λ∗ = −B(n∗)T∇nf(n

∗), and it can be shown that

[
A B
BT O

]
is nonsingular ⇔ ZTAZ is nonsingular.

It follows that the coefficient matrix of the Renormalized Newton step (4.21), namely ZT (∇2
nnf + Λ)Z, is

nonsingular at (n∗,λ∗), and by continuity at any (n,λ) sufficiently close to (n∗,λ∗).
Consider on the other hand the coefficient matrix H(n) (4.19) of the Truncated Newton step (4.20). As

already observed, at n = n∗, we must have G(n∗) = 0, which implies that H2(n
∗) = O and

H(n∗) = Π (∇2
nn

f + Λ)Π = ZZT(∇2
nn

f + Λ)ZZT.

This matrix is necessarily singular, with a nullity at least n (since ZT has an n-dimensional null space). To
be precise, we have the following.

Proposition 4.6 Let n∗ be any constrained stationary point of the discretized free energy f(n1, . . . ,nn)
subject to |nj | = 1, j = 1, . . . , n. Then the projected Hessian H(n) (4.19) of the Truncated Newton step
(4.20) evaluated at n = n∗ has the form

H(n∗) = ZZT
(
∇2

nn
f(n∗) + Λ(λ∗)

)
ZZT, λ

∗ = −B(n∗)T∇nf(n
∗),

with Λ, B, and Z as in (3.3), (3.4), and (3.5). As a consequence, the matrix H(n∗) is singular, and
N (H(n∗)) ⊃ N (ZT ), which implies that nullity(H(n∗)) ≥ n. If in addition n∗ is regular, then

N (H(n∗)) = N (ZT ) and nullity(H(n∗)) = n.

Here N (M) denotes the nullspace of the matrix M .

Proof 4.6 The facts that the nullspace of H(n∗) contains the nullspace of ZT and that the nullity of H(n∗)
is greater than or equal to n are clear from the preceding discussion and from the form of H(n∗) above. It
only remains to be shown that if n∗ is a regular constrained equilibrium point of f , then N (H(n∗)) ⊂ N (ZT ),
which can be seen as follows. At a regular point n∗, ZTAZ is nonsingular and

p ∈ N (H(n∗)) ⇒ ZZTAZZTp = 0

⇒ ZTZZTAZZTp = 0

⇒ ZTAZZTp = 0, since ZTZ = I

⇒ ZTp = 0, since ZTAZ is nonsingular

⇒ p ∈ N (ZT ).

Therefore, when n∗ is regular, the nullspace of H(n∗) coincides with the nullspace of ZT , and the nullity of
H(n∗) is exactly n.

Thus the coefficient matrix of the linear system (4.20) is necessarily singular (with a large nullity) at
the local minimizers being sought, and the system will be very ill-conditioned in neighborhoods of any such
points. Another difficulty with the Truncated Newton Method is that the linear system H(n)p = −G(n)
for the projected Newton correction p is in fact solved by the current approximate discrete director field n.
We have the following.
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Proposition 4.7 Let n be a normalized discrete director field (n = (n1, . . . ,nn), |n1| = · · · = |nn| = 1),
f(n) a discrete free energy, and G(n) and H(n) the projected gradient and Hessian of the Truncated Newton
Method, (4.17) and (4.19) respectively. Then the linear system for the Truncated Newton step H(n)p =
−G(n) is solved by p = n:

H(n)n = −G(n).

Proof 4.7 This can be verified directly:

ZTn = 0 ⇒ Hn = −H2n = −




...
(Gi · ni)ni + (ni · ni)Gi

...


 = −




...
Gi

...


 = −G,

since Gi · ni = 0 and ni · ni = 1, i = 1, . . . , n. This can also be seen from (63) of [10], by directly verifying
that H [m]m = −G[m] (in the notation of that paper).

Thus the linear system for the Truncated Newton step (4.20) is always consistent and always admits the
solution p = n. If H is nonsingular, then p = n is the only solution. The difficulty with this is that the
vector p = n does not provide a descent direction to use in a line search: it is in the normal space to the
constraint manifold at n and has no component in the tangent space. In the notation used for the search
paths in (4.16), with pj = nj we would have

nj(ε) =
nj + εpj

|nj + εpj |
=

nj + εnj

|nj + εnj |
= nj , ∀ε.

That is, the “path” degenerates to a point. Both of these properties (singularity of H(n∗) and p = n solution
of H(n)p = −G(n)) are confirmed by numerical experiments in §5.2.

One must keep in mind that the Truncated Newton step (4.20) is just a part of an energy minimization
algorithm. As described in [10], this system is solved approximately via a Preconditioned Conjugate Gradient
method, and the approximate solution vector p is tested to see if it is a descent direction for the discretized
Landau-Lifshitz free energy. If it is, then it is used in the subsequent line search; if not, another p is
used (the steepest-descent direction p = −G(n), one would suppose). Codes based upon the Truncated
Newton Method energy minimization approach have been used to compute interesting domain patterns and
structures in thin magnetic films [7, 8, 9, 10], and it is indicated in those references that the same solutions
have also been obtained by separate codes using a different approach (time relaxation to steady state).
We can only assume that in the energy minimization code, either the approximately computed solution to
H(n)p = −G(n) has enough of a component in the tangent space for it to be used in a line search or that
the steepest-descent direction is chosen instead in the logic of the code at that stage. It does not seem
possible for the Truncated Newton Method, as described in the references above, to be locally quadratically
convergent, and we are not aware of any analysis or numerical benchmarking in support of that.

5 Numerical examples

We contrast some numerical aspects of the basic Newton Method and the Renormalized Newton Method on
a model problem in two space dimensions. The problem admits multiple solutions, equilibrium director field
solutions with defects as well as solutions that are defect free.

5.1 Model problem and discretization

We consider the “Harmonic Mapping Problem” associated with an equal-elastic-constant free energy func-
tional, with no electric or magnetic field, rescaled to the unit square, and subject to the boundary conditions
of a line disclination (as in (4.13)):

min
|n|=1

F [n], F [n] =
1

2

∫

Ω

|∇n|2 dA =
1

2

∫

Ω

[
|∇u|2 + |∇v|2 + |∇w|2

]
dA

n = u(x, y) ex + v(x, y) ey + w(x, y) ez , Ω = (0, 1)2

n = nb on ∂Ω, nb(x, y) =
(x − xd) ex + (y − yd) ey√

(x − xd)2 + (y − yd)2
.

(5.1)

The defect location is taken to be (xd, yd) = (1/3, 2/3) in the examples computed below. For this combination
of geometry and boundary conditions, we anticipate (and find) three equilibrium solutions: an xy-planar
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Figure 5.1: Equilibrium director fields of Harmonic Mapping Problem (5.1): planar disclination line (left,
locally unstable), upward “escape” solution (right, locally stable). Not displayed is a downward “escape”
solution, which is the mirror image with respect to the xy plane of the pictured upward “escape” solution.

line disclination (which is uniform in the z direction and is locally unstable) and a pair of solutions that are
mirror images of each other (across the xy plane) and which avoid the singularity of the planar solution by
“escaping into the third dimension”—see Fig. 5.1. The two “escape” solutions are locally stable—appropriate
criteria for local stability for discretizations of such problems are derived in [12, 13] and discussed below. The
disclination line solution is technically inadmissible for an Oseen-Frank free energy—the integral functional
is divergent, as was pointed out in §4.3—but it satisfies the Euler-Lagrange equations away from the defect
point and is useful for numerical illustrations.

This model problem is discretized with bilinear finite elements on a uniform mesh, in the notation

nij ≈ n(xi, yj), xi = ih, yj = jh, i, j = 0, . . . , n, h = 1/n.

A four-point, nodal quadrature rule is used,

∫ yj+1

yj

∫ xi+1

xi

W (x, y) dx dy ≈
h2

4

[
Wij +Wi+1,j +Wi,j+1 +Wi+1,j+1

]
,

resulting in the discretized free energy

f(n) =
1

4

n−1∑

i,j=0

[
|ni+1,j − nij |

2 + |ni+1,j+1 − ni,j+1|
2

+ |ni,j+1 − nij |
2 + |ni+1,j+1 − ni+1,j |

2
]
.

In the above expression, appropriate boundary values are used for nij at all boundary nodes. The constrained
equilibrium equations derive from the Lagrangian, as in (3.1), and take the form

∇nij
L = ∇nij

f + λijnij = −∆hnij + λijnij

∆hnij := ni,j−1 + ni−1,j + ni+1,j + ni,j+1 − 4nij ,
(5.2)

giving the difference equations (from ∇nL = 0)

−∆hnij + λijnij = 0, |nij | = 1, i, j = 1, . . . , n− 1

nij = nb
ij , i or j = 0 or n.

(5.3)

This scheme is readily seen to be O(h2) consistent with the Euler-Lagrange equations of the continuous
problem, which are usually written

∆n+ λn = 0, |n| = 1 in Ω, n = nb on ∂Ω, (5.4)

although the signs and scalings of the Lagrange multipliers are different. The Lagrange multiplier field for
a solution to (5.4) above can be derived using n · n = 1 and is given by

λ = −∆n · n = |∇n|2,

which is O(1) away from defects but O(1/r2) near them—here r is the distance to the defect point.
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Table 5.1: Convergence behavior of the basic Newton Method versus the Renormalized Newton Method
for the model Harmonic Mapping Problem (5.1), discretized as in (5.3), with n = 128 (N = 1272 interior
nodes). Final computed solution is the planar line disclination as in Fig. 5.1 left (with a defect at the point
(xd, yd) = (1/3, 2/3)), from the initial guess (5.6) with α = 0.3.

Newton Renormalized

iter ‖∇nL‖∞ ‖∇λL‖∞ ‖δn‖∞ ‖δλ‖∞ ‖ZT∇nf‖∞ ‖δn‖∞

1 9.71(−01) 2.22(−16) 1.28(+00) 1.53(+00) 1.06(+00) 1.28(+00)
2 7.15(−01) 9.75(−01) 1.53(+00) 3.26(−01) 3.38(−01) 6.64(−01)
3 1.73(−01) 1.21(+00) 8.66(−01) 7.55(−01) 4.44(−01) 5.42(−01)
4 4.23(−01) 4.46(−01) 3.23(−01) 5.89(−01) 1.64(−01) 2.19(−01)
5 1.07(−01) 9.99(−02) 1.57(−01) 1.25(−01) 6.35(−02) 6.43(−02)
6 1.81(−02) 1.26(−02) 1.85(−02) 2.10(−02) 1.86(−03) 1.49(−03)
7 3.90(−04) 1.96(−04) 4.25(−04) 2.56(−04) 4.32(−06) 1.50(−05)
8 1.09(−07) 1.03(−07) 1.55(−07) 2.47(−07) 5.55(−11) 3.05(−11)
9 3.82(−14) 1.24(−14) 4.56(−14) 1.58(−14) 1.00(−15) 2.10(−15)

10 9.97(−16) 2.22(−16) 3.86(−15) 1.33(−15) 9.07(−16) 1.74(−15)
11 9.60(−16) 2.22(−16) 3.00(−15) 1.33(−15) 1.02(−15) 2.50(−15)

Numerical experiments were conducted in Matlab using both the basic Newton scheme (§3 above) and
the Renormalized Newton scheme (§4 above) for this discretized model problem. Linear systems were solved
by the Matlab backslash operator using sparse direct numerical linear algebra. The blocks of the Hessian
were built as in §3, with the A0 matrix of (3.3) here given by

A0 = ∇2
nn

f = −



∆h

∆h

∆h


 (5.5)

(with ∆h the matrix of the 2-D discrete Laplacian associated with the difference operator of (5.2)) with
respect to the ordering

n = (u1, . . . , uN , v1, . . . , vN , w1, . . . , wN ), N = (n− 1)2.

Initial guesses were constructed by blending the true continuous line-disclination solution with a vertical
field in the interior:

ninit
ij =

(1 − |α|)nb
ij − α ez

|(1 − |α|)nb
ij − α ez|

, i, j = 1, . . . , n− 1, −1 ≤ α ≤ 1, (5.6)

with nb as in (5.1). Positive α’s correspond roughly to upward escape, while negative α’s correspond to
downward escape. For α ∈ [−0.3, 0.3], we normally obtained convergence to the planar solution; while with
α ≈ 0.6 or −0.6, we normally obtained the upward or downward “escape” solution respectively. The values
α = 0.3 and α = 0.6 were used in most of the experiments below.

5.2 Numerical results

In the absence of any electric or magnetic field, the basic Newton step (3.2) takes the form

[
A B
BT O

] [
δn
δλ

]
= −

[
∇nL
∇λL

]
, n← n+ δn, λ← λ+ δλ, (5.7)

while the Renormalized Newton step becomes

ZTAZp = −ZT∇nf, δn = Zp, nij ←
nij + δnij

|nij + δnij |
.

Here A = A0 + Λ(λ) as in (3.3), with λ given by the current approximate λ for the Newton step versus
λ = −B(n)T∇nf(n) for the Renormalized Newton step. Both iterations were started from the same initial
guess, as in (5.6), with λinit = −B(ninit)

T∇nf(ninit) used to initialize the Lagrange multipliers for the
basic Newton iteration—thus both n and λ coincide entering the main loops for both iterative solvers.
Representative data for the convergence behavior of the two methods are given in Tables 5.1 and 5.2 with
n = 128 for both the planar disclination-line solution (which is locally unstable) and the (upward) “escape”
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Table 5.2: Convergence behavior of the basic Newton Method versus the Renormalized Newton Method for
the model Harmonic Mapping Problem (5.1), discretized as in (5.3), with n = 128 (N = 1272 interior nodes).
Final computed solution is the upward “escape” solution as in Fig. 5.1 right (which is defect free), from the
initial guess (5.6) with α = 0.6.

Newton Renormalized

iter ‖∇nL‖∞ ‖∇λL‖∞ ‖δn‖∞ ‖δλ‖∞ ‖ZT∇nf‖∞ ‖δn‖∞

1 1.24(+00) 1.67(−16) 1.44(+00) 2.98(+00) 1.54(+00) 1.44(+00)
2 5.84(−01) 2.23(+00) 9.98(−01) 1.85(+00) 2.97(−01) 1.33(+00)
3 6.64(−01) 1.03(+00) 9.18(−01) 8.07(−01) 1.89(−01) 3.06(−01)
4 7.18(−01) 9.57(−01) 7.83(−01) 6.11(−01) 3.70(−03) 4.71(−02)
5 4.58(−01) 7.76(−01) 5.56(−01) 2.06(−01) 1.15(−05) 9.92(−04)
6 1.02(−01) 2.84(−01) 1.74(−01) 1.20(−01) 1.94(−09) 8.67(−07)
7 2.08(−02) 3.02(−02) 4.20(−02) 4.43(−02) 1.74(−15) 2.04(−13)
8 1.73(−03) 1.17(−03) 2.61(−03) 2.11(−03) 9.43(−16) 5.66(−15)
9 5.51(−06) 6.87(−06) 1.20(−05) 8.70(−06) 8.91(−16) 4.51(−15)

10 1.04(−10) 1.33(−10) 1.82(−10) 2.01(−10) 8.85(−16) 4.83(−15)
11 8.84(−16) 2.22(−16) 3.95(−15) 1.18(−15)
12 1.02(−15) 2.22(−16) 3.95(−15) 1.21(−15)

Table 5.3: Number of iterations required to achieve machine attainable accuracy by the basic Newton Method
versus the Renormalized Newton Method for the model Harmonic Mapping Problem (5.1), discretized as
in (5.3). Initial guesses for both the planar disclination-line solution (with defect at (xd, yd) = (1/3, 2/3))
and the upward “escape” solution (which is defect free) were given by (5.6), with α = 0.3 and α = 0.6
respectively. With α = 0.3, for n = 16 and n = 32, the basic Newton iteration failed to converge; while
for n = 4, the Renormalized Newton Method converged to the “wrong solution” (the downward “escape”
solution instead of the planar solution). With α = 0.6, for n = 64, the Newton scheme again failed to
converge.

planar solution (α = 0.3) escape solution (α = 0.6)

Newton RN Newton RN
n iterations iterations iterations iterations

4 16 — 7 6
8 7 7 7 6

16 — 8 7 6
32 — 11 12 7
64 11 9 — 7

128 10 9 11 8
256 8 9 9 8
512 9 9 9 8

solution (which is locally stable). The tables indicate that the Renormalized Newton Method converges a
little more rapidly (normally reaching target tolerances in one or two fewer iterations than the basic Newton
scheme) and that the convergence behavior of both iterations is essentially the same for solution fields with
defects as it is for those without defects.

The Renormalized Newton Method was also found to be a little more “robust,” in the sense that it would
sometimes converge from an initial guess from which the basic Newton iteration failed. This is illustrated in
Table 5.3, which also gives the number of iterations required for each to achieve machine attainable accuracy
from the same initial guess. The numbers to put in such a table are somewhat subjective, since the last
iteration or two before convergence completely stalls typically only make incremental progress. For example,
for the data in Tables 5.1 and 5.2, we would say that the Newton scheme is fully converged after 10 iterations
for the planar solution and 11 iterations for the escaped solution, while the Renormalized Newton scheme
takes 9 and 8 iterations respectively.

The size of the Newton system (number of unknowns) is 4N (with N = (n − 1)2), whereas the size
of the Renormalized Newton system is 2N . The sparsities of the coefficient matrices are comparable. As
a consequence, the Renormalized Newton Method requires less time per iteration when the linear systems
are solved by direct methods, as we have done in these experiments. Table 5.4 compares the sizes of the
two systems and the time per iteration. This is a casual comparison, using elapsed clock time obtained via
Matlab’s tic-toc functions (total time for the main loop divided by the total number of times through the
loop). The runs were done on a laptop with a 2.93GHz dual-core processor and 8 GB memory.
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Table 5.4: System size and time per iteration for the basic Newton Method and the Renormalized Newton
Method for representative runs for the Harmonic Mapping Problem (5.1), discretized as in (5.3). Here n =
number of mesh cells in one direction; N = (n − 1)2 = number of interior nodes; size = total number of
unknowns (4N for Newton, 2N for Renormalized Newton); time = time per iteration (in seconds, from
tic-toc, total time for execution of main loop divided by number of times through the loop).

Newton Renormalized

n N size time size time

4 9 36 3.50(−3) 18 3.00(−3)
8 49 196 5.50(−3) 98 5.00(−3)

16 225 900 1.64(−2) 450 1.24(−2)
32 961 3,844 6.73(−2) 1,922 4.42(−2)
64 3,969 15,876 4.52(−1) 7,938 2.33(−1)

128 16,129 64,516 2.71(+0) 32,258 1.21(+0)
256 65,025 260,100 1.83(+1) 130,050 6.71(+0)
512 261,121 1,044,484 1.66(+2) 522,242 3.55(+1)

Table 5.5: 1-norm condition numbers for the coefficient matrices of the basic Newton Method (M in (5.8))
and the Renormalized Newton Method (ZTAZ) on the fully converged planar defect solution (Fig. 5.1 left)
and the (upward) “escape” defect-free solution (Fig. 5.1 right) of the Harmonic Mapping Problem (5.1),
discretized as in (5.3). Condition numbers were estimated using Matlab’s condest() function.

defect solution defect-free solution

n cond(M) cond(ZTAZ) cond(M) cond(ZTAZ)

4 7.07(+01) 1.79(+01) 8.66(+01) 2.21(+01)
8 1.68(+02) 5.57(+01) 1.30(+02) 8.93(+01)

16 3.01(+02) 2.55(+02) 4.55(+02) 3.47(+02)
32 1.57(+03) 1.22(+03) 1.71(+03) 1.39(+03)
64 3.79(+04) 3.37(+04) 6.77(+03) 5.72(+03)

128 2.13(+04) 1.89(+04) 2.70(+04) 1.89(+04)
256 7.90(+04) 7.02(+04) 1.08(+05) 8.81(+04)
512 3.56(+05) 3.17(+05) 4.31(+05) 3.52(+05)

For problems for which iterative methods are necessary, we would use MINRES for both the basic Newton
Method as well as the Renormalized Newton Method—the coefficient matrix for the Newton scheme (5.7)
is highly indefinite, and ZTAZ is indefinite on branches of locally unstable solutions (which one often needs
to follow in numerical bifurcation analysis). The Newton system can be optimally preconditioned using the
approach of [17, §6]. Optimal preconditioners for ZTAZ will be the subject of subsequent work [13].

The condition numbers of the coefficient matrices

M =

[
A B
BT O

]
vs ZTAZ (5.8)

were found to be comparable and to scale as expected for a discretization of a second-order PDE problem:

cond(M), cond
(
ZTAZ

)
= O

(
1/h2

)
= O

(
n2

)
.

The variation in the condition numbers was also negligible when comparing solutions with defects to those
without. See Table 5.5, where the 1-norm condition numbers were estimated using Matlab’s condest()

function.
For both schemes, one area in which a difference can be seen in the behavior on the defect director field

(the locally unstable planar solution) versus the defect-free equilibrium director fields (the locally stable
up/down “escape” solutions) is in the values of the Lagrange multipliers. The way this problem has been
scaled, the discrete Lagrange multipliers satisfy

λij ≈ −h
2 ∗ λ(xi, yj),

where λ(x, y) is the Lagrange multiplier field of the continuous Euler-Lagrange equation (5.4). As observed
in the previous subsection, λ = |∇n|2 for solutions of (5.4), and so by virtue of (4.15), we have

λij =

{
O
(
h2

)
, for defect-free solutions

O
(
h2

(
1 + 1/r2

))
, for director fields with defects.
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Table 5.6: Least and greatest discrete Lagrange multipliers for fully converged planar solution (disclination
line, Fig. 5.1 left) versus “escape” solution (defect-free upward “escape” solution, Fig. 5.1 right) of the
Harmonic Mapping Problem (5.1), discretized as in (5.3).

planar solution “escape” solution

n minλij maxλij minλij maxλij

4 −2.47(+0) −2.05(−1) −1.76(+0) −2.97(−1)
8 −2.28(+0) −2.71(−2) −5.09(−1) −3.62(−2)

16 −2.20(+0) −5.38(−3) −1.33(−1) −5.97(−3)
32 −2.20(+0) −1.21(−3) −3.33(−2) −1.25(−3)
64 −2.18(+0) −2.88(−4) −8.35(−3) −2.90(−4)

128 −2.17(+0) −7.03(−5) −2.09(−3) −7.04(−5)
256 −2.17(+0) −1.74(−5) −5.22(−4) −1.74(−5)
512 −2.17(+0) −4.32(−6) −1.30(−4) −4.32(−6)

Table 5.7: Eigenvalues of the projected Hessian H(n∗) (4.19) of the Truncated Newton step (4.20) evaluated
at a fully converged “escape” solution n∗ (see §5.1 and Fig. 5.1 right) for n = 4 and N = 9. H(n∗) is 27×27,
and the eigenvalues are scaled and given in increasing sequence, left to right, top to bottom. The eigenvalues
were calculated using Matlab’s eig() function.

scale scaled eigenvalues of H(n∗)

10−15 −1.06 −0.88 −0.57 −0.49 −0.43 −0.16 0.34 0.87 1.20
1 0.55 0.59 0.98 1.59 1.97 2.27 2.52 2.53 2.92
1 3.18 3.52 3.54 4.00 4.06 4.66 4.71 5.56 5.69

Thus the discrete Lagrange multipliers should be O(h2) throughout the domain for the “escape” solutions,
while they will attain maximal O(1) values on the nodes of the mesh cell containing the defect point for the
planar solutions. This is indeed what is observed, as demonstrated in Table 5.6.

Numerical experiments were conducted to explore some aspects of the Truncated Newton Method (as
discussed in §4.4 and §4.5): spectral properties of the projected Hessian H(n) of (4.19) and solutions of the
Truncated Newton step H(n)p = −G(n). For this we used the same model problem (5.1), discretized as in
(5.3). With N = (n−1)2 total free nodes, the projected HessianH(n) is 3N×3N , and the projected gradient
G(n) is a 3N -vector. Proposition 4.6 of §4.5 indicates that for a regular constrained discrete equilibrium
solution n∗ of this model problem, the nullity of H(n∗) should be equal to N . This was borne out for small-
scale examples for which the full set of eigenvalues of H(n∗) could be computed using Matlab’s eigensolver
for full (dense) arrays, utilizing solution vectors n∗ that were computed to machine attainable accuracy by
the Renormalized Newton Method solver. Results are reported in Table 5.7 for n = 4 using a fully converged
upward “escape” solution for n∗. In this case, N = 9, H(n∗) is 27× 27, and the first nine eigenvalues are of
the order of the machine epsilon, while the last 18 eigenvalues are order one.

Proposition 4.7 of §4.5 indicates that p = n is always a solution for the Truncated Newton step H(n)p =
−G(n), the only solution if H(n) is nonsingular. To test this, we took for n the crude initial guess ninit

of (5.6) for an upward escape solution with α = 0.6 and solved H(n)p = −G(n) using Matlab’s backslash
operator for n = 4, 8, . . . , 128. Also computed were the 1-norm condition number of H(n) (estimated by
Matlab’s condest() function), the minimum and maximum eigenvalues of H(n) (computed by Matlab’s
eigs() function), and the max norm of the difference between the computed solution vector p and the true
solution n (for H(n) nonsingular). The results are reported in Table 5.8. The projected Hessian H(n) was
found to be indefinite but nonsingular, although ill-conditioned with condition numbers much larger than
those of M and ZTAZ in Table 5.5. The condition numbers grow with n but don’t appear to follow a regular
scaling law. The relationship between cond(H(n)) and ‖n−p‖∞ for the different values of n is as one would
expect (in double precision).

5.3 Discussion

The performance of both the basic Newton Method and the Renormalized Newton Method was very satis-
factory on these model test problems. It was perhaps a little surprising that there wasn’t more of a difference
between the runs with the defect solutions versus those with the defect-free solutions: the condition numbers
and convergence rates and the like were all quite comparable. The Renormalized Newton Method displayed
some modest advantages: more robust with respect to obtaining convergence from crude initial guesses, fewer
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Table 5.8: Numerical aspects of the Truncated Newton step H(n)p = −G(n) (4.20) for the model Harmonic
Mapping Problem (5.1), discretized as in (5.3). Here n is the crude initial guess for the upward “escape”
solution (5.6) with α = 0.6, and H(n) is the projected Hessian of the Truncated Newton Method (4.19).
1-norm condition numbers were estimated using Matlab’s condest() function, and minimum and maximum
eigenvalues of H(n) were computed using Matlab’s eigs() function. p is the solution of H(n)p = −G(n)
computed using Matlab’s backslash operator (with H(n) stored as a symmetric sparse Matlab array).

eigenvalues

n cond(H(n)) min max ‖n − p‖∞

4 7.67(+02) −.824 6.06 3.44(−15)
8 1.64(+05) −.846 7.52 6.34(−13)

16 8.61(+06) −.855 7.88 7.34(−11)
32 2.34(+08) −.857 7.97 1.92(−09)
64 5.04(+09) −.857 7.99 7.24(−08)

128 9.16(+10) −.857 8.00 1.23(−06)

iterations to achieve convergence tolerances in general (one or two per run, typically), and less execution
time (roughly half the time of the basic Newton Method for realistic n’s, improving as n increases). For the
applications of interest to us (involving parameter continuation, path following, numerical bifurcation and
phase analysis), which require the repeated solution of such systems, these incremental advantages can lead
to appreciable gains in efficiency. For applications in three space dimensions, iterative methods would be
required for the numerical linear algebra, and preconditioned MINRES would be used. Optimal precondi-
tioners for the basic Newton Method are known [17]. Preconditioners for the Renormalized Newton Method
are under development [13].

It is worthwhile to comment at this point on the spectral properties of the matrices that arise in these
methods:

A = A0 + Λ, M =

[
A B
BT O

]
, and ZTAZ.

As previously noted, M is nonsingular if and only if ZTAZ is nonsingular (assuming B and Z are constructed
as in §3 and all of the discrete directors are nonzero). Local stability of solutions of such problems (including
cases with coupled electric fields) is discussed in [12, 13]. For the model Harmonic Mapping Problem used
in the numerical experiments of this section, it is simply a matter of considering the minimum eigenvalue of
ZTAZ:

λmin

(
ZTAZ

)
> 0 ⇒ locally stable

λmin

(
ZTAZ

)
< 0 ⇒ locally unstable.

The A matrix is symmetric, and for an unstable solution, it is necessarily indefinite (by virtue of the above).
For a stable solution, A need not be positive definite or even nonsingular, and for our numerical experiments
with locally stable solutions, A was found to be positive semi-definite but singular with a zero eigenvalue of
multiplicity at least three. The M matrix is 4N × 4N symmetric but highly indefinite. On locally stable
solutions, it has 3N positive eigenvalues and N negative ones; while on unstable solutions, it has more than
N negative eigenvalues. For our numerical experiments, ZTAZ was indeed found to be positive definite on
stable solutions. On unstable solutions, it was nonsingular but indefinite, with one negative eigenvalue for
small values of n and two negative eigenvalues for large values of n.

A crossover in the behavior of the matrices was observed in going from n = 64 to n = 128. For
n = 4, 8, . . . , 64, the A matrix has a zero eigenvalue of multiplicity three, and ZTAZ has one negative
eigenvalue; while for n = 128, 256, and 512, the A matrix appears to have a slightly higher-dimensional null
space (five or six, more likely the latter), and ZTAZ has two negative eigenvalues. One can also detect the
approach of this crossover in Table 5.5, in which the condition numbers of both M and ZTAZ are larger than
the trends would suggest for n = 64 on the planar, disclination-line solution.

6 Conclusion

We have introduced and studied a prototype director model for the equilibrium orientational configuration in
a liquid crystal material, focusing on the commonly occurring case of a coupled electric-field interaction. The
prototype model embodies the essential features of models for realistic experiments and device simulations.
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It also shares similar features with the Landau-Lifshitz model for the magnetization in a ferromagnetic
material, and the relationship between the two has been discussed. The equilibrium equations associated with
discretizations of the liquid crystal model have a double saddle-point structure, arising from the pointwise
unit-vector constraints on the components of the director field and from the nature of the coupling between
the director field and the local electric field. This paper complements [24], where we have proposed a
preconditioned nullspace method as an effective way to solve the associated Lagrange-Newton equations,
and the basic ideas of that paper have been reviewed here. The main result here has been the introduction
of a modified version of Newton’s method (which we refer to as the “Renormalized Newton Method”) that
takes advantage of the special structure of the problem and which has been proven to be locally quadratically
convergent.

The Renormalized Newton scheme has two key features: eliminating the Lagrange multipliers (by least-
squares approximations) and renormalizing the local directors at each iterative step. The resulting outer
iteration only involves the director and electrostatic variables and remains on the constraint manifold at
each stage. We have analyzed this scheme and rigorously proved that it is locally quadratically convergent
whenever the basic global Newton method is. In addition, we have presented numerical experiments on a
model problem in two space dimensions comparing the basic Newton Method and the Renormalized Newton
Method. The test problem admits three different solutions, one with a defect (a line disclination) and two
that are defect free. The convergence behavior of neither scheme was affected by the presence of the defect. In
general, the Renormalized Newton scheme demonstrated several advantages over the basic Newton scheme:
smaller system size, less time per iteration, fewer iterations required to achieve convergence tolerances, and
convergence from some crude initial guesses from which the basic Newton scheme failed to converge.

The Renormalized Newton Method bears some resemblance to the Truncated Newton Method of com-
putational micromagnetics, and so we have carefully compared and contrasted the two. This revealed some
anomalies of the Truncated Newton approach. In particular, the linear system for the basic Truncated New-
ton step does not appear to yield solutions that provide descent directions for the discretized free energy
being minimized, and the coefficient matrix of this system is necessarily singular at the solutions being
sought.

It is also common in computational micromagnetics to use numerical solutions of the time-dependent
Landau-Lifshitz-Gilbert equations to obtain desired steady state minimizers of the Landau-Lifshitz free
energy, and schemes with provable exponential convergence in time can be found in [23]. The application
domain of interest to us (and main motivation for this work) is concerned with numerical bifurcation and
phase analysis, for which it is necessary to be able to follow branches of unstable solutions (as well as branches
of stable solutions). While time-stepping methods are often useful for obtaining starting points on solution
branches, they can’t be used systematically for full continuation and path following in general (because of
the inability to compute unstable solutions with them).

The main thrust of this paper (and its predecessor [24]) is effective numerical techniques for dealing with
pointwise unit-vector constraints in discretizations of equilibrium problems of the type found in liquid crystal
director modeling. The ease with which the tangent spaces and normal spaces of the constraint manifold can
be characterized and constructed for these particular types of constraints makes nullspace (reduced Hessian)
methods very natural and effective and leads to a structure that can be further exploited. The ideas here
are not tied to a particular problem or discretization approach. The techniques should be useful in a variety
of settings in which such constraints appear, including computational micromagnetics.
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[19] M. Kruž́ık and A. Prohl, Recent developments in the modeling, analysis, and numerics of ferromag-
netism, SIAM Review, 48 (2006), pp. 439–483.

[20] S.-Y. Lin and M. Luskin, Relaxation methods for liquid crystal problems, SIAM J. Numer. Anal., 26
(1989), pp. 1310–1324.

[21] J. Nocedal and S. J. Wright, Numerical Optimization, Springer-Verlag, New York, 1999.

[22] J. M. Ortega and W. C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Vari-
ables, Academic Press, Inc., Orlando, 1970.

[23] A. Prohl, Computational Micromagnetism, Teubner, Stuttgart, 2001.

[24] A. Ramage and E. C. Gartland, Jr., A preconditioned nullspace method for liquid crystal director
modeling, SIAM J. Sci. Comput., 35 (2013), pp. B226–B247.

[25] I. W. Stewart, The Static and Dynamic Continuum Theory of Liquid Crystals: A Mathematical
Introduction, Taylor and Francis, London, 2004.

[26] E. G. Virga, Variational Theories for Liquid Crystals, Chapman & Hall, London, 1994.


