Dr Andrea Coraddu

Lecturer

Naval Architecture, Ocean and Marine Engineering

Personal statement

Dr Coraddu has been Assistant Professor in the Department of Naval Architecture, Ocean & Marine Engineering at the University of Strathclyde since October 2018. His relevant professional and academic experiences include working as Teaching Associate at the University of Strathclyde, Research Associate at the School of Marine Science and Technology at Newcastle University, Research Engineer as part of the DAMEN R&D department based in Singapore, and serving as Postdoctoral Research Fellow at the University of Genoa, where he was awarded a Laurea and a PhD in Naval Architecture and Marine Engineering.

 

Dr Coraddu’s research focuses on modelling, optimisation and analysis of ship power plants and propulsion systems for efficiency improvement and reduction of environmental footprint. His primary research involves taking advantage of on-board data availability in assessing vessel performance, energy optimisation, and real-time monitoring of the primary systems. Utilising the latest learning algorithms and theoretical results in machine learning, Dr Coraddu is developing data-driven approaches to investigate the behaviour of complex on-board systems and their mutual interaction.

 

Publications

Time-dependent biofouling growth model for predicting the effects of biofouling on ship resistance and powering
Uzun Dogancan, Demirel Yigit Kemal, Coraddu Andrea, Turan Osman
Ocean Engineering Vol 191 (2019)
https://doi.org/10.1016/j.oceaneng.2019.106432
Data-driven ship digital twin for estimating the speed loss caused by the marine fouling
Coraddu Andrea, Oneto Luca, Baldi Francesco, Cipollini Francesca, Atlar Mehmet, Savio Stefano
Ocean Engineering Vol 186 (2019)
https://doi.org/10.1016/j.oceaneng.2019.05.045
Proceedings of the 2nd International Conference on Modelling and Optimisation of Ship Energy Systems (MOSES2019)
Theotokatos Gerasimos, Coraddu Andrea
(2019)
Life cycle assessment of an antifouling coating based on time-dependent biofouling model
Uzun Dogancan, Demirel Yigit Kemal, Coraddu Andrea, Turan Osman
18th Conference on Computer Applications and Information Technology in the Maritime Industries (2019)
A novelty detection approach to diagnosing hull and propeller fouling
Coraddu Andrea, Lim Serena, Oneto Luca, Pazouki Kayvan, Norman Rose, Murphy Alan John
Ocean Engineering Vol 176, pp. 65-73 (2019)
https://doi.org/10.1016/j.oceaneng.2019.01.054
Unintrusive monitoring of induction motors bearings via deep learning on stator currents
Cipollini Francesca, Oneto Luca, Coraddu Andrea, Savio Stefano, Anguita Davide
Procedia Computer Science Vol 144, pp. 42-51 (2018)
https://doi.org/10.1016/j.procs.2018.10.503

more publications

Professional activities

2nd International Conference on Modelling and Optimisation of Ship Energy Systems
Organiser
8/5/2019
Journal of Marine Science and Engineering (Journal)
Guest editor
2019
Artificial Intelligence and Big Data - A Marine Engineering Perspective
Speaker
12/10/2018
Piri Reis University, Istanbul, Turkey
Visiting lecturer
26/4/2018
Istanbul Technical University
Visiting lecturer
25/4/2018
3rd International Symposium on Naval Architecture and Maritime
Participant
24/4/2018

more professional activities

Projects

SAFEMODE - Strengthening synergies between Aviation and maritime in the area of human Factors (H2020-MG-2018)
Kurt, Rafet (Principal Investigator) Coraddu, Andrea (Co-investigator) Turan, Osman (Co-investigator)
01-Jan-2019 - 31-Jan-2022
KTP - Datum Electronics
Theotokatos, Gerasimos (Principal Investigator) Coraddu, Andrea (Co-investigator) Lazakis, Iraklis (Co-investigator)
05-Jan-2019 - 04-Jan-2021
Cross-disciplinary advanced Vibration Laboratory (£32K EPSRC Capital Award for ECRs, £11K Faculty of Engineering Strategic Research Funding)
Tubaldi, Enrico (Principal Investigator) Coraddu, Andrea (Principal Investigator) Jones, Catherine (Principal Investigator) Cartmell, Matthew (Principal Investigator)
Structural Health Monitoring (SHM) is an emerging technology for damage identification of aerospace, civil and mechanical engineering infrastructure, with significant potential for life-safety and economic benefits. Vibration-based SHM entails measuring the response of structural systems to dynamic excitations through appropriate sensors, and intelligently analysing the measured response to identify damage occurrence or degradation. This project supports the development and build of a vibration laboratory (VibLab) across the Faculty of Engineering, a new inter-disciplinary facility for there is a strong need, but is currently missing at Strathclyde. The laboratory will benefit the short- and long-term career development plans of Early Career Researchers (ECRs), enhancing their capabilities in the field of SHM. It will also strengthen the connections across departments, and contribute to maximise external funding income and attract new industrial and academic partners. The facility is a joint initiative between the departments of Civil and Environmental Engineering, Electronic and Electrical Engineering, Mechanical and Aerospace Engineering and Naval Architecture and Ocean and Marine Engineering.

£32K EPSRC Capital Award for ECRs, £11K Faculty of Engineering Strategic Research Funding, £20k total combined departmental funding.
01-Jan-2019
Ships diesel engine performance modelling with combined physical and machine learning approach
Coraddu, Andrea (Principal Investigator) Oneto, Luca (Principal Investigator) Geertsma, Rinze (Principal Investigator)
The proposed research will investigate a novel approach of predicting various diesel engine performance parameters using the physical models from Delft University and the State of the Netherlands in combination with Machine Learning (ML) algorithms from Strathclyde University - NAOME, Genoa University and Damen Schelde Naval Shipbuilding. A dataset of the Holland class Oceangoing Patrol Vessels (OPV’s) from the State of the Netherlands will be used to train the machine learning algorithms and establish its performance. Moreover, the research will analyse which performance parameters can be predicted well with a physical modelling approach and which ones with a combined physical and ML approach. The research is expected to predict parameters such as engine efficiency, engine thermal loading, temperature before the turbine and exhaust valve temperature. Finally, the research will discuss how the proposed models can be used to reduce the maintenance effort on diesel engines in future using these techniques and how to integrate these into ship control systems
01-Jan-2018 - 01-Jan-2021

more projects

Address

Naval Architecture, Ocean and Marine Engineering
Henry Dyer Building

Location Map

View University of Strathclyde in a larger map