Save this page
Save this page

My Saved Pages

  • Saved page.

My Saved Courses

  • Saved page.

Recently visited

  • Saved page.

Dr Naresh Gunasekar

Research Associate



Quantitative imaging of anti-phase domains by polarity sensitive orientation mapping using electron backscatter diffraction
Naresh-Kumar G., Vilalta-Clemente A., Jussila H., Winkelmann A., Nolze G., Vespucci S., Nagarajan S., Wilkinson A.J., Trager-Cowan C.
Scientific Reports Vol 7, (2017)
Spatially-resolved optical and structural properties of semi-polar (11-22) AlxGa1-xN with x up to 0.56
Bruckbauer Jochen, Li Zhi, Naresh-Kumar G., Warzecha Monika, Edwards Paul R., Jiu Ling, Gong Yipin, Bai Jie, Wang Tao, Trager-Cowan Carol, Martin Robert W.
Scientific Reports Vol 7, (2017)
Dislocation contrast in electron channelling contrast images as projections of strain-like components
Pascal E., Hourahine B., Naresh-Kumar G., Mingard K., Trager-Cowan C.
Materials Today: Proceedings, (2017)
Design and fabrication of enhanced lateral growth for dislocation reduction in GaN using nanodashes
Le Boulbar E. D., Priesol J. , Nouf-Allehiani M., Naresh-Kumar G., Fox S., Trager-Cowan C., Ĺ atka A., Allsopp D. W. E., Shields P. A.
Journal of Crystal Growth, pp. 30-38, (2017)
Diffraction effects and inelastic electron transport in angle-resolved microscopic imaging applications
Winkelmann A., Nolze G., Vespucci S., Gunasekar N., Trager-Cowan C., Vilalta-Clemente A., Wilkinson A. J., Vos M.
Journal of Microscopy, (2017)
Diffractive triangulation of radiative point sources
Vespucci S., Naresh-Kumar G., Trager-Cowan C., Mingard K. P., Maneuski D., O'Shea V., Winkelmann A.
Applied Physics Letters Vol 110, (2017)

more publications


Quantitative non-destructive nanoscale characterisation of advanced materials
Hourahine, Benjamin (Principal Investigator) Edwards, Paul (Co-investigator) Roper, Richard (Co-investigator) Trager-Cowan, Carol (Co-investigator) Gunasekar, Naresh (Researcher)
"To satisfy the performance requirements for near term developments in electronic and optoelectronic devices will require pioneering materials growth, device fabrication and advances in characterisation techniques. The imminent arrival of devices a few atoms thick that are based on lighter materials such as graphene or boron nitride and also advanced silicon and diamond nano-structures. These devices pose new challenges to the currently available techniques for producing and understanding the resulting devices and how they fail. Optimising the performance of such devices will require a detailed understanding of extended structural defects and their influence on the properties of technologically relevant materials. These defects include threading dislocations and grain boundaries, and are often electrically active and so are strongly detrimental to the efficiency and lifetimes of nano-scale devices (a single badly-behaved defect can cause catastrophic device failure). These defects are especially problematic for devices such as silicon solar cells, advanced ultraviolet light emitting diodes, and advanced silicon carbide and gallium nitride based high power devices (used for efficient switching of large electrical currents or for high power microwave telecoms). For graphene and similar modern 2D materials, grain boundaries have significant impact on their properties as they easily span the whole size of devices. Resolving all of these problems requires new characterisation techniques for imaging of extended defects which are simultaneously rapid to use, are non-destructive and are structurally definitive on the nanoscale. Electron channelling contrast imaging (ECCI) is an effective structural characterisation tool which allows rapid non-destructive visualisation of extended crystal defects in the scanning electron microscope. However ECCI is usually applied as a qualitative method of investigating nano-scale materials, has limitations on the smallest size features that it can resolve, and suffers from difficulties in interpreting the resulting images. This limits this technique's ability to work out the nature of defects in these advanced materials. We will make use of new developments in energy resolving electron detectors, new advances in the modelling of electron beams with solids and the knowledge and experience of our research team and partners, to obtain a 6 fold improvement in the spatial resolution of the ECCI technique. This new energy-filtered way of making ECCI measurements will radically improve the quality of the information that can be obtained with this technique. We will couple our new capabilities to accurately measure and interpret images of defects to other advanced characterisation techniques. This will enable ECCI to be adopted as the technique of choice for non-destructive quantitative structural characterisation of defects in a wide range of important materials and provide a new technique to analyse the role of extended defects in electronic device failure."
Period 01-Jun-2017 - 30-Nov-2020

more projects