Prof Bernhard Hidding

Physics

Personal statement

Bernhard Hidding joined the Physics Department in 2013 and holds the Chair of Experimental Physics at SCAPA, the Scottish Centre for the Application of Plasma-based Accelerators http://www.scapa.ac.uk/ ) This facility, a collaboration between various SUPA groups, aims at developing high power laser-plasma accelerator technology towards a number of applications for use in material science,  chemistry, biology and medicine. Bernhard’s research concentrates on laser wakefield acceleration (LWFA) and beam-driven plasma wakefield acceleration (PWFA) of electrons, and resulting applications such as imaging techniques and advanced light sources. Before coming to Strathclyde, Bernhard was at University of Hamburg/CFEL/DESY, where he still maintains a group which is now closely collaborating with Strathclyde.

One flagship project is the development of a so-called "underdense plasma photocathode", which may lead to the production of monoenergetic electron beams with much higher quality than ever before. The emittance and brightness of these electron beams may exceed even that of the best state-of-the-art accelerators such as those used for light sources such s the LCLS at SLAC or the XFEL at DESY by a wide margin. At the same time, while these accelerators require km-scale tunnel systems for acceleration, plasma accelerators can boost the electrons to comparable energies on the metre-scale. By decoupling the acceleration process in the plasma wave from the generation of the electron bunch directly inside the plasma wave cavity in a process also known as "Trojan Horse" plasma wakefield acceleration, unprecedented controllability and electron bunch quality is made feasible. A key feature of this process is to release the electrons with a tightly focused, relatively low energy laser pulse via photoionization, thereby producing ultracold electrons which minimize the emittance of the beam. In turn, the brightness of the electron beam is boosted, which is crucial for light sources such as free-electron lasers. This could open the door towards ultracompact xray free electron lasers with enhanced performance for imaging techniques of ultrafast processes such as those in single molecules, which is an ultimate goal towards understanding fundamental processes occuring in nature and to develop novel drugs and materials. At SCAPA, work is underway to realize the underdense photocathode based on hybrid LWFA/PWFA acceleration. In the E-210 “Trojan Horse” collaboration at FACET at the Stanford Linear Accelerator Center, the 23 GeV electron beam will be used for proof-of-concept experiments.  

Another project is the establishment of electron, proton and ion beams produced by laser-plasma-acceleration as an advanced radiation hardness testing technique of electronics in nuclear reactor environments, onboard aircrafts and space vessels such as satellites. Laser-plasma-accelerators are capable of producing high flux of very broad-band particle beams -- a feature they share with the actual radiation in space. For example, in the van Allen-belts, which are especially important since satellites such as GPS are positioned there, so called "killer electrons" can put satellites out of function. Using laser-plasma-accelerators, it is possible to exactly reproduce these killer electrons in the laboratory here on Earth, which offers dramatically better testing procedures on the one hand, and potentially may lead to the devlopment of much more radiation hard electronic components with higher performance for future space vessel electronics. 

Publications

Laser-plasma-based space radiation reproduction in the laboratory
Hidding B., Karger O., Königstein T., Pretzler G., Manahan G. G., McKenna P., Gray R., Wilson R., Wiggins S. M., Welsh G. H., Beaton A., Delinikolas P., Jaroszynski D. A., Rosenzweig J. B., Karmakar A., Ferlet-Cavrois V., Constantino A., Muschitiello M., Daly E.
Scientific Reports Vol 7, (2017)
http://dx.doi.org/10.1038/srep42354
Angled laser triggered electron injection in the electron driven plasma wakefield acceleration scheme : a case study in a pursuit to increase tolerance levels, based on FACET II driver parameters.
Delinikolas Panagiotis, Manahan Grace, Hidding Bernhard, Beaton Andrew, Scherkl Paul, Karger Oliver, Witting Georg, Knetsch Alexander, Heinemann Thomas, Hurtig Gregor, Habib Fahim
17th Advanced Accelerator Concepts Workshop 2016, (2016)
High quality electron beam acceleration by ionization injection in laser wakefields with mid-infrared dual-color lasers
Zeng Ming, Luo Ji, Chen Min, Mori Warren B., Sheng Zheng Ming, Hidding Bernhard
Physics of Plasmas Vol 23, (2016)
http://dx.doi.org/10.1063/1.4953895
Electron beam manipulation, injection and acceleration in plasma wakefield accelerators by optically generated plasma density spikes
Wittig Georg, Karger Oliver S., Knetsch Alexander, Xi Yunfeng, Deng Aihua, Rosenzweig James B., Bruhwiler David L., Smith Jonathan, Sheng Zheng-Ming, Jaroszynski Dino A., Manahan Grace G., Hidding Bernhard
Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, (2016)
http://dx.doi.org/10.1016/j.nima.2016.02.027
Towards plasma-driven free-electron lasers
Dornmair Irene, Campbell Lawrence T., Henderson James T., Jalas Sören , Karger Oliver, Kirchen Manuel, Knetsch Alexander, Manhan Grace G., Wittig Georg, Hidding Bernhard, McNeil Brian W. J., Maier Andreas R.
NIC Symposium 2016 ProceedingsPublication Series of the John von Neumann Institute for Computing (NIC) Vol 48, pp. 401-408, (2016)
Hot spots and dark current in advanced plasma wakefield accelerators
Manahan G. G., Deng A., Karger O., Xi Y., Knetsch A., Litos M., Wittig G., Heinemann T., Smith J., Sheng Z. M., Jaroszynski D. A., Andonian G., Bruhwiler D. L., Rosenzweig J. B., Hidding B.
Physical Review Special Topics: Accelerators and Beams Vol 19, (2016)
http://dx.doi.org/10.1103/PhysRevAccelBeams.19.011303

more publications

Professional activities

Accelerator Strategy Board (ASB) reporting to the STFC
Member
1/5/2014

more professional activities

Projects

Doctoral Training Partnership (DTP 2016-2017 University of Strathclyde) | Habib, Ahmad Fahim
Hidding, Bernhard (Principal Investigator) McNeil, Brian (Co-investigator) Habib, Ahmad Fahim (Research Co-investigator)
Period 01-Oct-2016 - 01-Oct-2019
Laser-driven radiation beamlines at SCAPA (EPSRC Capital Equipment Portfolio)
McKenna, Paul (Principal Investigator) Boyd, Marie (Co-investigator) Gray, Ross (Co-investigator) Hidding, Bernhard (Co-investigator) Jaroszynski, Dino (Co-investigator) McArthur, Stephen (Co-investigator) Sheng, Zheng-Ming (Co-investigator)
Period 01-Apr-2017 - 31-Mar-2020
Lab in a bubble
Jaroszynski, Dino (Principal Investigator) Boyd, Marie (Co-investigator) Brunetti, Enrico (Co-investigator) Ersfeld, Bernhard (Co-investigator) Hidding, Bernhard (Co-investigator) McKenna, Paul (Co-investigator) Noble, Adam (Co-investigator) Sheng, Zheng-Ming (Co-investigator) Vieux, Gregory (Co-investigator) Welsh, Gregor (Co-investigator) Wiggins, Samuel (Co-investigator)
Period 01-Apr-2016 - 31-Mar-2020
EuPRAXIA (H2020 INFRA DEV)
Hidding, Bernhard (Principal Investigator) Sheng, Zheng-Ming (Co-investigator)
Period 01-Nov-2015 - 31-Oct-2018
Laserlab-Europe IV (H2020 INFRA IA)
Jaroszynski, Dino (Principal Investigator) Hidding, Bernhard (Co-investigator) McKenna, Paul (Co-investigator) Sheng, Zheng-Ming (Co-investigator)
Period 01-Dec-2015 - 30-Nov-2019

more projects