Save this page
Save this page

My Saved Pages

  • Saved page.

My Saved Courses

  • Saved page.
Reset

Recently visited

  • Saved page.

Modelling the effect of the electric double layer on electron transfer kinetics

This project will combine recent theories for the influence of charge correlations on the structure of the electric double layer with a simple quantum description of charge transfer to to develop a new model for electrochemical reactions.

Number of places

1

Opens

4 August 2017

Duration

3 years

Eligibility

The project will suit a student with a background in chemical engineering or related discipline (e.g. physics or applied mathematics). Applicants should already have or be expecting shortly to obtain a first class or upper second class degree in one of the above mentioned disciplines. Candidates trained to masters level are preferred, but exceptional candidates trained to bachelors level can also be considered. Applicants are expected to demonstrate strong mathematical and problem-solving skills, as well as experience and/or interest in statistical mechanics, numerical computation, and computer programming.

Project Details

Electron transfer between molecules in solution and a surface (e.g., a metallic electrode or semiconducting substrate) occurs in a wide variety of important areas, including catalysis, corrosion, electrodeposition, photochemistry, etc. The ability to model the electron transfer in these systems is fundamental for the design of practical processes, such as electroplating, fuel cells, catalytic reactors, to name a few.

Ions located near a charged surface will lead to the formation of an electric double layer (EDL), which plays significant role in determining the equilibrium and kinetics of electron transfer. In recent years, tremendous advances have been made in the understanding of the EDL, in particular, the influence of charge correlations, which has led to intuitively surprising results, such as like-charge attraction or overcharging, that have been experimentally validated. Despite its importance, current models of electron transfer in solutions still use an overly simplistic description of the EDL.

This work will combine recent theories for the influence of charge correlations on the structure of the electric double layer with a simple quantum description of charge transfer to to develop a new model for electrochemical reactions. This will be used to model corrosion in order to develop strategies for its prevention.

In addition to undertaking cutting edge research, students are also registered for the Postgraduate Certificate in Researcher Development (PGCert), which is a supplementary qualification that develops a student’s skills, networks and career prospects.

Key Words: Electric Double Layer, Electrochemistry, Statistics, Statistical Mechanics, Poisson-Boltzmann theory, Electron Transfer

Funding Details

This PhD project is initially offered on a self-funding basis. It is open to applicants with their own funding, or those applying to funding sources. However, excellent candidates will be eligible to be considered for a University scholarship. Tuition fees for 2017 for postgraduate research students at the University of Strathclyde are £4,195 for Home/EU students and £18,000 for international students. This does not include bench fees.

Contact us

Ms Jacqueline Brown

+44(0) 141 574 5319

chemeng-pg-admissions@strath.ac.uk

James Weir Building, 75 Montrose Street, Glasgow, G1 1XJ

How to apply

Apply for this PhD project here.

Please quote the project title in your application.