Postgraduate research opportunities

Quantum Dot Spin State Tailoring for Scalable On-Chip Quantum Information Processing

In this project we will investigate various approaches for on-demand engineering of trapped spin states in charged quantum dots through a series of coherent control experiments that will explore how the different approaches affect the performance of all optically operated universal single qubit gates.

Number of places

1

Opens

31 January 2019

Eligibility

Scholarships (fees and stipend) available on a competitive basis for UK/EU students, please contact supervisor for details.

Eligibility for RCUK studentships

  • Research Council (RC) fees and stipend can only be awarded to UK and EU students and not to EEA or International students.
  • EU students are only eligible for RC stipend if they have been resident in the UK for 3 years, including for study purposes, immediately prior to starting their PhD.
  • If an EU student cannot fulfil this condition then they are eligible for a fees only studentship.
  • International students cannot be funded from RC funds unless they are ‘settled’ in the UK. ‘Settled’ means being ordinarily resident in the UK without any immigration restrictions on the length of stay in the UK. To be ‘settled’ a student must either have the Right to Abode or Indefinite leave to remain in the UK or have the right of permanent residence in the UK under EC law. If the student’s passport describes them as a British citizen they have the Right of Abode.
  • Students with full Refugee status are eligible for fees and stipend.

Project Details

A successful implementation of a fault tolerant quantum computer based on solid state spin qubits will most likely involve their arrangement in a regular lattice. Recent technological breakthroughs have enabled the creation of such scalable quantum systems with one of the most prominent being the platform of site-controlled quantum dots. The high spectral quality, deterministic positioning and all-optical ultrafast addressability of long lived spins in these quantum emitters, make them very attractive candidates as a platform for quantum hardware.

In order to enable scalable interactions within such hardware it is necessary to engineer and control the spin states. In this project we will investigate various approaches for on-demand engineering of the trapped spin states in charged quantum dots through a series of coherent control experiments that will explore how the different approaches affect the performance of all optically operated universal single qubit gates. The samples that we will investigate initially are self-assembled InGaAs quantum dots with delta doping for charging while at a later stage we will investigate substrate nanopatterned and nanoimprint lithography site-controlled quantum dots, provided by our national and international collaborators.

This experimental work will require the development of an all optical coherent control experiment for individual quantum dots and the candidate will have the unique opportunity to develop the experimental setup side by side with the PI getting extremely valuable hands-on experience and developing unique experimental skills.

Parallel to the development of the experimental setup, the work will involve the spectroscopic characterization of the self-assembled and site-controlled quantum dot samples utilizing magnetic spectroscopy techniques at liquid helium temperatures while for the characterization of the universal quantum gates the work will involve advanced all-optical spin control techniques utilizing a combination of pulsed and CW lasers.
We are looking for a highly motivated experimentalist with physics background and general knowledge and understanding of optics, lasers and semiconductor physics. Prior involvement to similar experimental activities is highly sought for.

Please provide the reasons you would like to join our group and your academic CV.

Contact us