Postgraduate research opportunities Sustainable paper making using foam

Apply

Key facts

  • Opens: Saturday 27 February 2021
  • Number of places: One
  • Duration: 3 years

Overview

This modelling and simulation study will investigate the complex processes that occur when foam, rather than water, is used as a carrier for fibres during papermaking, with a view towards reducing the overall water footprint of the paper production process.
Back to opportunity

Eligibility

Students applying should have (or expect to achieve) a minimum 2.1 undergraduate degree in a relevant engineering/science discipline, and be highly motivated to undertake multidisciplinary research.

The project will suit a student with a background in chemical engineering or a cognate discipline (e.g. physics, applied mathematics, mechanical engineering).

Applications will be considered up to 31 January 2022. Those received before 30 September 2021 will be given priority.

THE Awards 2019: UK University of the Year Winner
Back to opportunity

Project Details

Despite the advent of 21st century electronic communications, paper remains one of the most widely utilised materials in the world. Given the extremely large volume of paper production, even small percentage increases in the efficiency of the papermaking process can translate into massive sustainability gains.

Papermaking typically involves a suspension of fibres in water. Increasingly however, many communities around the globe are confronting the problems of water stress and/or water scarcity: reducing the water footprint of the papermaking process will help significantly to alleviate these issues.

One of the options for reducing this water footprint is to use foam rather than water as a carrier for the fibres. The process then involves a suspension of fibres in foam: design and operation of such foam-based papermaking processes remains a topic of active research.

This project under the supervision of Dr Paul Grassia is aimed at obtaining a detailed mechanistic understanding of the foam-based papermaking process, including foam-fibre interactions and foam-mediated fibre-fibre interactions. Obtaining such understanding is far from straightforward because foams themselves are complex fluids. Fibres moving through the foam also generate flow fields which influence in turn the motion of nearby fibres. Because of the highly elongated shape of the fibres, they can have a strong influence on the flow, despite the actual volume fraction of fluid that they occupy remaining comparatively small.

All of these phenomena will be investigated in a computational modelling and simulation study of foam-fibre behaviour. The understanding thereby gained will be used to design improved foam-based paper-making optimised with respect to water use. Another advantage of the process to be designed is reduced energy expenditure during the drying process owing to less water being present.

In addition to undertaking cutting edge research, students are also registered for the Postgraduate Certificate in Researcher Development (PGCert), which is a supplementary qualification that develops a student’s skills, networks and career prospects.

References:

Al-Qararah, A. M.; Ekman, A.; Hjelt, T.; Ketoja, J. A.; Kiiskinen, H.; Koponen, A.; and Timonen, J. (2015) A unique microstructure of the fiber networks deposited from foam-fiber suspensions, Colloids & Surfaces A vol. 482, pp. 544--553.

Back to opportunity

Funding details

This PhD project is initially offered on a self-funding basis. It is open to applicants with their own funding, or those applying to funding sources. However, excellent candidates may be considered for a University scholarship.

Back to opportunity

Supervisors

Dr Paul Grassia

Reader
Chemical and Process Engineering

View profile
Dr Leo Lue

Reader
Chemical and Process Engineering

View profile
Back to course

Apply

During the application you'll be asked for the following information and evidence uploaded to the application:

  • your full contact details
  • transcripts and certificates of all degrees
  • proof of English language proficiency if you are not from a majority English-speaking country as recognised by UKVI
  • two references, one of which must be academic. Please see our guidance on referees
  • funding or scholarship information
  • international students must declare any previous UK study

By filling these details out as fully as possible, you'll avoid any delay to your application being processed by the University.

Useful resources

Start date: Oct 2021 - Sep 2022

Chemical and Process Engineering

PhD
full-time
Start date: Oct 2021 - Sep 2022

Start date: Oct 2022 - Sep 2023

Chemical and Process Engineering

PhD
full-time
Start date: Oct 2022 - Sep 2023

Back to course

Contact us

chemeng-pg-admissions@strath.ac.uk

James Weir Building, 75 Montrose Street, Glasgow, G1 1XJ