Postgraduate research opportunities

Development of compact remote gas detection devices using chip-scale deep ultra-violet light-emitting diodes and single photon detectors

This project will develop remote Raman spectroscopy systems based on digitally interfaced Gallium Nitride light-emitting diodes and silicon single-photon avalanche diodes.

Number of places

1

Funding

Home fee, Stipend

Opens

23 March 2021

Deadline

31 May 2021

Duration

48 Months

Eligibility

To enter our EngD programme, applicants require a Masters level degree (MEng, MPhys, MSc) at 2.1 or equivalent.

UKRI Studentship Eligibility

The eligibility criteria for UKRI funding has changed for studentships commencing in the 2021/22 academic year. Now, all home and international students are eligible to apply for UKRI funding which will cover the full stipend and tuition fees at the home rate (not the international rate). Under the new criteria, UKRI have stipulated a maximum percentage of international students that can be recruited each year against individual training grants. This will be managed at the institutional level for all EPSRC DTP and ICASE grants. For EPSRC CDT grants, this will be managed by the individual CDT administrative/management team. For ESRC and AHRC studentships the final funding decision will be made by the respective grant holder.

 

To be classed as a home student, applicants must meet the following criteria:

  • Be a UK national (meeting residency requirements), or
  • Have settled status, or
  • Have pre-settled status (meeting residency requirements), or
  • Have indefinite leave to remain or enter.

 

The residency requirements are based on the Education (Fees and Awards) (England) Regulations 2007 and subsequent amendments. Normally to be eligible for a full award a student must have no restrictions on how long they can stay in the UK and have been ordinarily resident in the UK for at least 3 years prior to the start of the studentship (with some further constraint regarding residence for education).

If a student does not meet the criteria above, they will be classed as an international student. The international portion of the tuition fee cannot be funded by the UKRI grant and must be covered from other sources. International students are permitted to self-fund the difference between the home and international fee rates.

Project Details

The detection of hazardous (toxic / explosive) or environmentally damaging substances and gases is an extremely important endeavour. Stand-off methodologies – where the composition of the atmosphere can be measured over substantial range – have become a very important technology in fields as diverse as manufacturing, homeland security and the nuclear industry. 

Raman spectroscopy is a very potent tool for molecular identification. In this technique, the spectral analysis of the light scattered by the substance or gas of interest gives great insight into its molecular composition. The weakness of this scatter, however, makes Raman measurements at range extremely challenging. In this project, we will take advantage of two recent advances in opto-electronic instrumentation and quantum technologies which has the potential to confer enormous improvement in generated Raman signal and its detection; hence enabling operation at considerably greater range.

Using short-wave excitation provokes exponentially stronger Raman scatter, and so we will explore and exploit the availability of deep ultra-violet light sources based upon laser and – in particular – LED technology. The recent availability of LED light sources is particularly interesting in the context of realising compact, lower cost and man-portable systems for front-line deployment. With recent advances in nitride-semiconductors, there is now an excellent opportunity to translate this ultra-compact technology into the deep UV wavelengths.

The second innovation exploits state of the art, UV-optimised single-photon avalanche detectors (SPADs). These exquisitely sensitive detectors – down to the single photon level – will maximise the detection potential of the valuable Raman scatter once produced.

The project will require the development of experimental systems based upon these technologies, along with optical design for wavelength-selective instrumentation, electronics for single-photon counting and embedded computer control. Once the physical principles have been validated in the laboratory, there is a strong desire to then refine the technology into concept demonstrators for evaluation and deployment in a range of exciting and timely front-line applications. Whilst the student will focus mainly on the application of deep-UV LEDs and single-photon detectors to remote Raman sensing, they will also collaborate with students and researchers working on other aspects of the technology, such as data communications, analogue and digital electronic interfacing of the devices.

The project will be undertaken jointly between the Fraunhofer Centre for Applied Photonics (FCAP) and the Institute of Photonics (IOP); both based at the University of Strathclyde.  The IOP and FCAP are both located in the £100M Technology and Innovation Centre on Strathclyde’s Glasgow city centre campus.

Institute of Photonics:

The Institute of Photonics (IoP), part of the Department of Physics, is a centre of excellence in applications-oriented research at the University of Strathclyde.  University awards include The Times and Sunday Times Good University Guide 2020 Scottish University of the Year, The Queen’s Anniversary Prize for Higher and Further Education 2019, The Times Higher Education UK University of the Year 2019/20 (and 2012/13), The Times Higher Education Widening Participation Initiative of the Year 2019 and UK Entrepreneurial University of the Year 2013/14. The Institute’s key objective is to bridge the gap between academic research and industrial applications and development in the area of photonics. The IoP is located in the £100M Technology and Innovation Centre on Strathclyde’s Glasgow city centre campus, at the heart of Glasgow’s Innovation District, where it is co-located with the UK’s first Fraunhofer Research Centre. Researchers at the IoP are active in a broad range of photonics fields under the areas of Photonic Devices, Advanced Lasers and Neurophotonics, please see Our Research.

The IOP has an excellent track record of developing digitally interfaced systems based on chip-scale micro-LED emitters and silicon single-photon detectors with extraordinarily low size, weight and power footprint. Recent experiments in the visible wavelength range demonstrated 3D ranging/imaging over meter ranges and communications over km distance with devices that had order of magnitude lower dimensions and power consumption than laser-based systems. The IOP is part of the National Quantum Hub on Quantum Enhanced Imaging which has a focus theme area on imaging at extreme wavelengths, thus providing a rich academic environment to this project in addition to its industrial relevance. Researchers at the IoP are active in a broad range of photonics fields under the areas of Photonic Devices, Advanced Lasers and Neurophotonics, please see Our Research.

Fraunhofer Centre for Applied Photonics

Uniquely placed in the UK R&D landscape, FCAP enjoy an excellent reputation for developing state-of-the-art optical instrumentation optimised to meet the needs of industrial end users. Their staff are drawn from the best of the academic, mechanical design and electronics sectors, and it boasts extensive laboratory and engineering infrastructure. They have extensive connections into a range of potential UK-based industrial consumers of the technology developed over this project, and are perfectly placed to refine it from the laboratory to the front line.