Postgraduate research opportunities

Quantum Enhanced Imaging using High-Speed, High-Density Spatiotemporally Controlled Illumination

This project will develop light-emitting diode based structured illumination systems with high spatial resolution and MHz switching rates for applications in photon-level imaging and communications. These illumination sources will operate in conjunction with single photon sensitive image sensors.

Number of places

1

Funding

Home fee, Stipend

Opens

9 December 2020

Deadline

31 May 2021

Duration

42 months

Eligibility

To enter our PhD programme applicants require an upper-second or first class BSc Honours degree, or a Masters qualification of equal or higher standard, in Physics, Engineering or a related discipline.

UKRI Studentship Eligibility

The eligibility criteria for UKRI funding has changed for studentships commencing in the 2021/22 academic year. Now, all home and international students are eligible to apply for UKRI funding which will cover the full stipend and tuition fees at the home rate (not the international rate). Under the new criteria, UKRI have stipulated a maximum percentage of international students that can be recruited each year against individual training grants. This will be managed at the institutional level for all EPSRC DTP and ICASE grants. For EPSRC CDT grants, this will be managed by the individual CDT administrative/management team. For ESRC and AHRC studentships the final funding decision will be made by the respective grant holder.

 

To be classed as a home student, applicants must meet the following criteria:

  • Be a UK national (meeting residency requirements), or
  • Have settled status, or
  • Have pre-settled status (meeting residency requirements), or
  • Have indefinite leave to remain or enter.

 

The residency requirements are based on the Education (Fees and Awards) (England) Regulations 2007 and subsequent amendments. Normally to be eligible for a full award a student must have no restrictions on how long they can stay in the UK and have been ordinarily resident in the UK for at least 3 years prior to the start of the studentship (with some further constraint regarding residence for education).

If a student does not meet the criteria above, they will be classed as an international student. The international portion of the tuition fee cannot be funded by the UKRI grant and must be covered from other sources. International students are permitted to self-fund the difference between the home and international fee rates.

Project Details

The Institute of Photonics is a recognised international pioneer of microscopic light-emitting diodes (micro-LEDs), constituting a new high-brightness microdisplay and backlighting technology – being applied, for example, to advanced virtual and augmented reality headsets. These devices have proven interesting capabilities in application areas well beyond simple display functionality, including biophotonics, wireless optical networks, and quantum level imaging. The attraction in this technology is underpinned by direct interfacing to CMOS electronics, operation at very high (Megahertz) frame rates, and data transmission at gigabits/second. The emission wavelength and high-speed modulation characteristics of these micro-LEDs make them an ideal source for detection with silicon single photon avalanche diodes (SPADs), which can detect single photons with sub-nanosecond timing accuracy and can be fabricated into single photon sensitive image sensors. Low resolution micro-LED arrays with up to 16×16 elements and kHz update rates have already been used together with SPADs for proof-of-concept demonstrations in 3D imaging, multi-spectral imaging, and low light level communications operating at a few photons per bit.

This project will transform these earlier concept demonstrations into an unexplored regime of high pixel count and MHz update rates. The research is based on a new generation of 128×128 LED arrays, which are currently being developed at the Institute of Photonics in collaboration with the University of Edinburgh, and which present a host of new challenges and opportunities. In order to operate these large arrays in the millions of frames per second regime, it is necessary to accurately control the timing of more than 70 parallel digital control signals with nanosecond precision. The successful applicant will help to develop electronic control interfaces that meet these demands, investigate their effect in different device configurations (e.g. different LED emission wavelength from deep ultra-violet to green), and link them to demands from specific applications, in particular those linked to the National Quantum Hub on Quantum Enhanced Imaging. They will integrate these LED arrays into prototype systems for microfabrication, high frame-rate imaging with single photon sensitivity, and new digital systems that merge sensing and communications functions. The project will encompass optical systems design and development, electronic driver and software coding, and sparse data signal processing techniques, all of which are skills in high demand both in academic research and in industrial R&D. The PhD student will have access to state-of-the-art, custom LED and SPAD array devices, optical characterisation facilities and software tools, and will contribute to the UK’s National Programme on Quantum Technologies. 

Institute of Photonics:

The Institute of Photonics (IoP), part of the Department of Physics, is a centre of excellence in applications-oriented research at the University of Strathclyde - The Times and Sunday Times Good University Guide 2020 Scottish University of the Year, The Queen’s Anniversary Prize for Higher and Further Education 2019, The Times Higher Education UK University of the Year 2019/20 (and 2012/13), The Times Higher Education Widening Participation Initiative of the Year 2019 and UK Entrepreneurial University of the Year 2013/14. The Institute’s key objective is to bridge the gap between academic research and industrial applications and development in the area of photonics. The IoP is located in the £100M Technology and Innovation Centre on Strathclyde’s Glasgow city centre campus, at the heart of Glasgow’s Innovation District, where it is co-located with the UK’s first Fraunhofer Research Centre. Researchers at the IoP are active in a broad range of photonics fields under the areas of Photonic Devices, Advanced Lasers and Neurophotonics, for further information please view the IoP webpage

Contact us