MSc Subsea & Pipeline Engineering

Key facts

  • Start date: January & September
  • Accreditation: RINA / IMarEST
  • Study mode and duration: MSc: 12 months full-time
  • 1st in Europe & 3rd in the world for Marine/Ocean Engineering (Shanghai Rankings Academic Ranking 2022)

Study with us

  • gain advanced knowledge of subsea systems, design and installation

  • benefit from excellent teaching facilities

  • opportunity to undertake a 10-week group project addressing a practical engineering problem
Back to course

Why this course?

This course is for graduates in naval architecture, offshore engineering, mechanical engineering and related disciplines who want to gain advanced knowledge of subsea systems, designs and installation. This includes systems and equipment such as:

  • pipelines
  • wellheads
  • drilling rigs
  • riser and mooring systems

Accreditation

This course is accredited by the Royal Institution of Naval Architects (RINA) and The Institute of Marine Engineering, Science and Technology, (IMarEST) on behalf of the UK Engineering Council.

Tanker at oil pipeline

THE Awards 2019: UK University of the Year Winner

What you’ll study

The programme consists of three components:

  • instructional modules
  • group project
  • individual project (MSc only)

Group project

You’ll be part of a group of three to five people in ‘consultant teams’ for 10 weeks addressing a practical engineering problem. You’ll then have the opportunity to present the report to a panel of industrial experts.

This project will enhance your team working and communication skills. It also provides valuable access to industrial contacts.

It'll give you a good understanding of all aspects of research work. In addition, the technological study must be accompanied by a survey of the relevance and applicability of the findings to the maritime industries at large.

You'll learn efficient ways to gather information, to distribute workload and to delegate amongst the group, to analyse their results and to appreciate the broader implications of the whole project. In-depth technological studies will be accompanied by increasingly important competence in managerial skills, quality assurance and a sound appreciation of the economic, political, social and environmental issues crucial to professional success.

Individual project (MSc only)

MSc students will take on an individual dissertation on a topic of their own interest. The aim of the individual project is to develop your research skills and to combine many of the aspects learned from other modules within a specific topic. This'll be achieved by you carrying out work into a particular topic relating to your chosen theme and preparing a dissertation.

Facilities

We have excellent teaching facilities including:

  • Catalina – our departmental racing yacht
  • Kelvin Hydrodynamics Lab – the largest ship-model experiment tank in any UK university
  • Towing/wave tank exclusively for teaching purposes
  • Marine engine laboratory
  • Cutting-edge computer facilities
  • Industry standard software

Student competitions

NAOME supports and promotes students in various competitions and awards, from cash bursaries for top performing students to the highest of awards from international organisations.

In recent years, students from NAOME have been triumphant in the following high profile competitions:

  • Science, Engineering & Technology Student of the Year (SET Awards)
  • Best Maritime Technology Student (SET Awards)
  • Double winner of BP’s Ultimate Field Trip Competition
  • Strathclyder of the Year
Go back

Course content

A typical selection of classes offered on the programme are outlined below. Please note that these classes may be subject to change.

Risers & Mooring Lines

This module aims to:

  • give an overview of the current deep-water oil and gas developments around the world and the technical challenges in terms of riser and mooring line design
  • demonstrate methods for modelling and analysing risers and mooring lines

This module covers:

  • oil & gas field development options: platform types, marine riser systems, current design trends and deep-water challenges
  • riser systems: flexible pipe structure, typical configurations, top-tensioned vertical risers, hybrid risers.
  • flow assurance: multi-phase flow, deposition of solids, thermal management
  • riser analysis: governing equations, boundary conditions, natural frequency
  • mooring lines: typical mooring configuration, material and construction, anchors and ancillary equipment, static mooring line analysis
  • vortex induced vibration: drag, vortex shedding, surface roughness, lift, Strouhal number, VIV assessment, fatigue life calculation

On completion of the module you're expected to have

  • an overview of mooring lines and marine risers for deep-water floating offshore platforms
  • an understanding of the generic hydrodynamic issues
  • a grasp of the analytical/numerical methods for analysing risers and mooring lines

You'll carry out the coursework individually using the knowledge taught during lectures and computer lab sessions.

Subsurface Technology

This module aims to:

  • engender an appreciation of the role and importance of oil and gas within the global energy mix and climate change
  • introduce the basic engineering principles of drilling for hydrocarbons in on- and off-shore locations
  • provide knowledge of drilling systems, developing skills in fluid flow, drill string design and casing design for drilling systems
  • increase knowledge and understanding of the role of Carbon Capture and Storage (CCS) in future developments in subsurface technology

The module covers:

  • the “Energy Conundrum” and history of oil well drilling: analysis of the role of hydrocarbons in the energy economy and a historical overview of the drilling process
  • petroleum geochemistry and geology: description of petroleum systems and trapping mechanisms and an introduction to petroleum surveys; wire line logs and seismic surveys
  • the oil well: an introduction to the different types of rig design, a description of the oil well including details of the hoisting tackle, drilling bits, the role of drilling mud and an overview of how to drill a well
  • drill string design: principles of drill string design
  • casing design: types of casing and principles of casing design; casing point selection and an introduction to the concept of fracture gradient
  • drilling hydraulics: principles of fluid flow in pipes, annular flow and flow through nozzles
  • directional drilling: principles of different drilling types (straight and directional) and the calculation of nozzle sizing
  • introduction CCS: introduction to CCS including capture, transportation and storage

At the end of this module you'll be able to:

  • analyse energy and climate change statistics and draw conclusions relating to the role of hydrocarbons
  • describe and identify the key components in hydrocarbon drilling
  • solve engineering design problems relating to drilling engineering
  • discuss the principles of and present arguments for the use of CCS in subsurface technology

Assessment is via a written examination at the end of the semester.

Marine Pipelines

This module aims to provide you with an in-depth insight into marine pipelines, emphasising the overall design process, pipeline hydraulics analysis, installation methods, environmental loading and stability, materials selection, and corrosion prevention.

This module covers:

  • design overview and process; Diameter and wall thickness; Installation methods; Operation and integrity management; Environmental conditions; Dynamic loading; Lateral stability; Scour; Free span; Trenching
  • internal fluids; Single and two-phase flows; Pressure and thermal profiles; Wax; Hydrate; Thermal insulation; Flow assurance; Drag reduction
  • materials and corrosion; Pipeline material; Steelmaking; Manufacture of linepipe for onshore and offshore applications; Internal corrosion; Corrosion detection and control; External corrosion and mitigation

On completion of the module, you're expected to:

  • have an overview of marine pipelines with regard to their design, installation, operation, and maintenance
  • gain an understanding of some fundamentals of marine pipeline design and analysis
  • apply analysis tools for pipeline hydraulics, multi-phase flows and thermal protection
  • identify the differences between pipe grades and pipe manufacturing methods
  • identify risk areas for internal and external corrosion in marine pipelines and describe the methods for corrosion inspection and control and select appropriate mitigation methods

Assessment will be in the form of coursework.

Finite Element Analysis of Floating Structures

This module aims to provide you with a theoretical and practical knowledge of the finite element method and the skills required to analyse marine structures with ANSYS graphical user interface (GUI).

This module covers:

  • introduction to finite element analysis and ANSYS GUI
  • truss elements and applications
  • solid elements and applications
  • beam elements and applications
  • plane stress, plane strain and axisymmetry concepts
  • plane elements and applications
  • plate & shell elements and applications
  • assembly process and constructing of the global stiffness matrix

At the end of this module you'll be able to:

  • understand the basics of finite element analysis
  • understand how to perform finite element analysis by using a commercial finite element software
  • understand specifying necessary input parameters for the analysis
  • understand how to visualize and evaluate the results

There is one exam and one coursework assignment. The exam is during the exam period of the first semester. Exam has a weight of 70% and coursework assignment has a weight of 30%.

Maritime Safety & Risk

This module aims to demonstrate how the principles and methods of risk analysis are undertaken and reflected in safety assessment. Risk analysis offers a variety of methods, tools and techniques that can be applied in solving problems covering different phases of the life cycle of a vessel (design, construction, operation and end-of-life) and, as such, this module will also elaborate on the practicalities of its application to a range of marine scenarios.

This module covers:

  • safety, risk and risk analysis; key terminology; lessons learnt from past experience; human factors.
  • formal safety assessment
  • hazard Identification
  • frequency analysis and consequence modelling
  • quantitative risk assessment methods
  • risk control and decision support, cost benefit analysis
  • human Factors and Safety culture in the maritime
  • industry guest lectures addressing topical issues related to maritime safety and risk

At the end of this module you'll be able to:

  • understand the concepts and importance of safety, risk and of all requisite fundamentals enabling quantification of risk in the maritime context
  • utilise methods and tools undertaking fundamental studies, specific to any component, system or function and in general first-principles implementation to life-cycle design
  • understand and have experience of the use of risk analysis in the marine field via related case studies (risk-based ship design, operation and regulation).
  • be able to appreciate components of a formal safety assessment and apply it for indicative problems of maritime operations

Assessment and feedback are in the form of one final exam (during Semester-2 diet) and two coursework assignments (assignment-one focusses on accident investigation, assignment-two is a safety assessment case study).

Dynamics of Floating Offshore Installations

This module aims to provide knowledge in order to understand the factors influencing the dynamic behaviour of floating offshore structures due to environmental forces. It also aims to develop skills in order to predict the dynamic motion response of floating offshore platforms.

This module will teach the following:

Overview of basic design concepts; environmental design considerations; wave, wind and current induced motions and loads; second-order wave induced forces and responses of floating and complaint structures; soil-structure interaction.

On completion of the module the you're expected to be able to:

  • predict the environmental forces and resulting motions of semi-submersibles, floating production, storage and offloading systems, tension leg platforms, SPAR buoys and fixed lattice and gravity type platforms
  • determine the soil-structure interaction for the design of a foundation for a gravity base structure

Assessment and feedback is in the form of an exam: problem-solving on prediction of wave excitation forces on and resulting motions of floating structures and/or the assessment of a foundation of a gravity base structure.

Marine Pipeline Integrity

The aims of this module are to:

  • enable you to identify the key threats to marine pipeline systems
  • introduce the basic engineering tools and principles used in the integrity assessment of pipelines
  • develop skills in the assessment of cracks, dents and corrosion defects in pipelines under static and dynamic loading conditions
  • increase knowledge and understanding of pipeline inspection techniques and to enable the selection of the most appropriate technique for the identified threats to the pipeline

This module covers:

  • Introduction to Pipeline Structural Analysis: Identification of threats and failure modes for pipeline systems. Application of risk assessment to integrity management planning.
  • Fracture Mechanics: The theory of fracture mechanics as it relates to pipeline systems; the application of international codes and standards for the assessment of cracks in pipeline systems; ductile and brittle fracture propagation in pipeline systems.
  • Fatigue Analysis: The theory of pipeline fatigue, including S-N and fracture mechanics approaches for determining fatigue life and cycle counting methods for determining fatigue loading.
  • Dent Assessment: Analysis of dent and dent/gouge defects in pipelines under dynamic and static loading.
  • Corrosion Assessment: The application of deterministic and probabilistic corrosion assessment methods to marine pipelines and the use of sentence plots to determine repair plans for corrosion defects.
  • Pipeline Inspection Techniques: The use of external and internal tools for the detection, identification and sizing of defects in pipelines (e.g. AUVs, ROVs, divers, in-line and tethered inspection tools); the use of monitoring techniques for the CP system.
  • Repair and Maintenance Strategies: Determination of appropriate repair and maintenance strategies for pipelines and the selection of appropriate inspection intervals.

At the end of this module you'll be able to:

  • analyse pipeline integrity data and draw conclusions relating to the key threats on the pipeline
  • select appropriate assessment methods, codes and standards for the key threats to the pipeline system
  • solve engineering problems relating to pipeline structural integrity
  • discuss the principles of pipeline inspection techniques and select the appropriate inspection technique for the identified threats to the pipeline system

Assessment is via two written examinations at the end of the semester.

Underwater Vehicles

This module is aimed to introduce you to a comprehensive understanding of underwater vehicles as opposite to surface vehicles. This module will cover various kind of underwater vehicles, ranging from mega submarines to working-class remotely operated vehicles (ROV) till the state-of-the-art autonomous underwater vehicles (AUVs), from a naval architecture’s perspective of view to tackle the challenges in resistance & propulsion, manoeuvring, sensing, and underwater navigation, etc.

This module covers:

  • introduction to underwater vehicle: submarine, torpedo, remotely operated vehicles (ROV), autonomous underwater vehicles (AUVs), underwater glider, wave glider
  • underwater environment: ocean wave, current, temperature, salinity, internal wave
  • resistance of underwater vehicle: axisymmetric body design, surface to volume ratio, super cavitation
  • propulsion of underwater vehicle: marine propeller, contra-rotating propeller, ducted propeller, rim-driven propeller; pump jet, kort nozzle, vectored propulsion
  • manoeuvring of underwater vehicle: rudders, fins, buoyancy control, ballast
  • underwater navigation: Inertial Navigation System/Doppler Velocity Log (INS/DVL)
  • underwater communication: acoustic, radio frequency, optical communication

On completion of the module you're expected to be able to:

  • achieve a comprehensive understanding of design and development of underwater vehicles and the associated sub-system on-board
  • gain the ability to select, design and model the specified underwater vehicles and to evaluate the performance of the designed underwater vehicle
  • understand the operation of underwater vehicle, familiarise with the on-board payload, understand the buoyancy control, the pressure compensator, underwater navigation, etc

Assessment is 50% group project and 50% final essay.

Group Design Project

The overall aim of the module is to provide you with an enriched experience in the selection, conceptualisation and designing of a novel vessel or an offshore asset. The group projects will also include a thorough market review, concept and focused design studies and techno-economic analysis in a simulated design project environment. It will also provide you with an opportunity to present their project outputs to a panel involving academic/industry staff.

This module covers:

  • development of a broad but nevertheless critical review of prospects for techno-economic growth in maritime related activities in a particular context/area of the world
  • proposal and evaluation of specific design-related activities with a view to developing a design project to a concept level but with substantial calculations in at least one design objective
  • demonstration of analytical ability and understanding of engineering principles and problem-solving techniques, creativity and self-reflection
  • the ability to present and defend the design choices to a panel.

At the end of this module you'll be able to:

  • identify and prioritize the key-design issues along with their basic interrelations in the context of naval architecture
  • materialize a design project according to a given timeline through design steps along the key-design-issues priority path
  • work efficiently and openly in a collaborative context involving different cultures and expertise
  • choose at each design step the proper rationally-based computation methods

Assessment and feedback are in the form of either design report or presentation. There will be five tasks: each task may include the submission of a design report or an oral presentation followed by questions from the lecturers and the advisory groups.

Chat to a student ambassador

If you want to know more about what it’s like to be an Engineering student at the University of Strathclyde, a selection of our current students are here to help!

Our Unibuddy ambassadors can answer all the questions you might have about courses and studying at Strathclyde, along with offering insight into their experiences of life in Glasgow and Scotland.

Chat now!

Learning & teaching

There are two teaching semesters of 11 weeks each.

Course modules are delivered in the form of formal lectures supported with tutorials and laboratory experiments.

You’re required to attend an induction prior to the start of the course.

Guest lectures

During term time, we arrange weekly seminars in which leaders and pioneers of the maritime, oil and gas and marine renewables industries visit the department and present to students. This is a great way of supplementing your education with the latest developments and gaining industry contacts for your future career.

Industrial visits are also made to a variety of companies.

Assessment

There are two types of method for module assessment. One is course work assessment only, the other is exam assessment. For examined modules the final assessment mark consists of 30-40% course work marks and 60-70% exam marks.

Student competitions

The Department of Naval Architecture, Ocean & Marine Engineering supports and promotes students in various competitions and awards, from cash bursaries for top performing students to the highest of awards from international organisations.

In recent years, our students have been triumphant in the following high profile competitions:

  • Science, Engineering & Technology Student of the Year (SET Awards)
  • Best Maritime Technology Student (SET Awards)
  • Double winner of BP’s Ultimate Field Trip Competition
  • Strathclyder of the Year
Back to course

Entry requirements

Academic requirements

Normally a first-class or second-class honours degree (or international equivalent) in a relevant subject.

English language requirements

If English is not your first language, please visit our English language requirements page for full details of the requirements in place before making your application.

Pre-Masters preparation course

The Pre-Masters Programme is a preparation course held at the University of Strathclyde International Study Centre, for international students (non-UK/Ireland) who do not meet the academic entry requirements for a Masters degree at University of Strathclyde.

Upon successful completion, you'll be able to progress to this degree course at the University of Strathclyde.

Please note: Previous Maths & English qualifications and your undergraduate degree must meet GTCS minimum entry requirements as well as the pre-Masters course and an interview will be conducted before an offer can be made.

International students

We've a thriving international community with students coming here to study from over 140 countries across the world. Find out all you need to know about studying in Glasgow at Strathclyde and hear from students about their experiences.

Visit our international students' section

Back to course

Fees & funding

All fees quoted are for full-time courses and per academic year unless stated otherwise.

Please note, for courses that have a January 2024 start date, 2023/24 academic year fees will apply. For courses that have a September 2024 and a January 2025 start date, 2024/25 academic year fees will apply.

Fees may be subject to updates to maintain accuracy. Tuition fees will be notified in your offer letter.

All fees are in £ sterling, unless otherwise stated, and may be subject to revision.

Annual revision of fees

Students on programmes of study of more than one year (or studying standalone modules) should be aware that tuition fees are revised annually and may increase in subsequent years of study. Annual increases will generally reflect UK inflation rates and increases to programme delivery costs.

Go back
Scotland

£10,800

England, Wales & Northern Ireland

£10,800

International

£27,500

Additional costs

Course materials & costs

Printing Services Printing: Prices variable per size

Binding: £3 per copy approx.

Placements & field trips

Travel to the Kelvin Hydrodynamics Laboratory may be required depending on selected courses. Frequency variable: Average 5 visits if relevant to subjects. Bus fare £2-3 each way.  

Other costs

Access cards are provided free of charge. £10 charge to replace a lost card.

Visa & immigration

International students may have associated visa and immigration costs. Please see student visa guidance for more information.

Available scholarships

Take a look at our scholarships search for funding opportunities.

Please note: the fees shown are annual and may be subject to an increase each year. Find out more about fees.

How can I fund my course?

Go back

Scottish postgraduate students

Scottish postgraduate students may be able to apply for support from the Student Awards Agency Scotland (SAAS). The support is in the form of a tuition fee loan and for eligible students, a living cost loan. Find out more about the support and how to apply.

Don’t forget to check our scholarship search for more help with fees and funding.

Go back

Students coming from England

Students ordinarily resident in England may be to apply for postgraduate support from Student Finance England. The support is a loan of up to £10,280 which can be used for both tuition fees and living costs. Find out more about the support and how to apply.

Don’t forget to check our scholarship search for more help with fees and funding.

Go back

Students coming from Wales

Students ordinarily resident in Wales may be to apply for postgraduate support from Student Finance Wales. The support is a loan of up to £10,280 which can be used for both tuition fees and living costs. Find out more about the support and how to apply.

Don’t forget to check our scholarship search for more help with fees and funding.

Go back

Students coming from Northern Ireland

Postgraduate students who are ordinarily resident in Northern Ireland may be able to apply for support from Student Finance Northern Ireland. The support is a tuition fee loan of up to £5,500. Find out more about the support and how to apply.

Don’t forget to check our scholarship search for more help with fees and funding.

Go back

International students

We've a large range of scholarships available to help you fund your studies. Check our scholarship search for more help with fees and funding.

Faculty of Engineering International Scholarships

If you're an international applicant applying for a full-time, on-campus postgraduate taught course in the Faculty of Engineering, you'll be eligible to apply for a scholarship award equivalent to a 15% reduction of your fees, which will typically be up to £4,240. In addition to this, we also have a limited number of Dean’s International Excellence Awards for our postgraduate taught applicants. These scholarships are worth £5,000 and £8,000 and will be offered to exceptional applicants at postgraduate taught level only. Applicants need to only submit one application and will be considered for all levels of postgraduate taught scholarships.

Scholarships are available for applicants to all self-funded, new international (non-EU) fee-paying students holding an offer of study for a full-time, on-campus postgraduate taught course in the Faculty of Engineering at the University of Strathclyde.

Please note you must have an offer of study for a full-time course at Strathclyde before applying. You must start your full-time postgraduate taught course at Strathclyde in the coming academic year (2024-25), this can be in September 2024 or January 2025.

The deadline for applications for the Dean’s International Excellence Award is 28 June 2024. 

Faculty of Engineering Scholarships for International Students

I received the Faculty of Engineering Excellence Scholarship which was more encouragement to come to Strathclyde, as it helped ease some of the financial stress that comes with being a student.

Rebecca Romero

Find out more about Rebecca's Strathlife
Back to course

Careers

Offshore hydrocarbon activities are moving into area of water depths exceeding 2000m. Subsea drilling, production and control systems are becoming much more important. Therefore, subsea engineers are in great demand world-wide.

Job titles include:

  • Drilling Fuel specialist
  • I-Drill Engineer
  • Junior Riser Engineer
  • Subsea Engineer
  • Well Engineer
  • Project Engineer

Employers include:

  • 2H Offshore
  • Aker Solutions
  • BP
  • ENI Saipem
  • Subsea7
  • Talisman Energy
  • Technip
  • Schlumberger

Glasgow is Scotland's biggest & most cosmopolitan city

Our campus is based right in the very heart of Glasgow. We're in the city centre, next to the Merchant City, both of which are great locations for sightseeing, shopping and socialising alongside your studies.

Life in Glasgow

Back to course

Apply

During the application process, you're required to upload the following supporting documents. If these are not provided, we'll not be able to process your application:

  • certified individual semester mark sheets/academic transcript showing subjects taken and grades achieved for all qualifications
    • if still studying, provide individual semester mark sheets to date
  • certified degree certificate for all qualifications
    • if still studying, provide this after completing the qualification
  • provide evidence of suitable English language proficiency if English is not your first language, or you're not from a “UKVI recognised "Majority English Speaking" country”; check the University’s language requirements
  • if you have been out of full-time education for over two years, provide a CV, detailing employment history, organisations worked for and a brief description of roles and responsibilities
  • a copy of your passport containing your photo and passport number
  • a copy of your sponsor letter/scholarship award (if appropriate) 
  • names, job titles and email addresses for two nominated referees

Start date: Sep 2024

Subsea and Pipeline Engineering

MSc
full-time
Start date: Sep 2024

Back to course

Contact us

Faculty of Engineering

Telephone: +44 (0)141 574 5484

Email: eng-admissions@strath.ac.uk