Engineering simulator

MEngElectronic & Electrical Engineering

Why this course?

Electronic & electrical engineering is at the heart of everything we do - from renewable energy and smart grids, to high-speed fibre optic broadband, digital sound and vision, and internet security.

Electronic & electrical engineers are the people who:

  • design, build, operate and maintain our global power systems, our telecommunications networks and computing infrastructure
  • develop electronic systems essential to industry, health and entertainment
Their aim is to find innovative and progressive solutions to today’s global challenges whether that’s technologies to deliver clean energy, systems to improve audio and image quality on your phone, tablet and laptop, or techniques to improve digital imagery in medical devices to aid diagnosis.

Studying electronic and electrical engineering offers all these opportunities and with two million new employees needed in the UK sector by 2020, your career prospects are vast.

All our courses have full accreditation from the Institution of Engineering and Technology on behalf of the Engineering Council, which means you can become a ‘chartered engineer’ – a must for most employers.

What you’ll study

Year 1 

Classes in mathematics, engineering science, analogue and digital circuits, software design, electronics, electrical engineering, computing and business are taken. You complete group-based laboratory projects such as how to build hydrogen-powered vehicles and design wireless communications to gain practical training in core engineering applications and project management skills.

Year 2

The study of analogue and digital electronics continues, enhanced by an introduction to basic concepts in signal processing. Further study includes the design and analysis of electrical and microcontroller-based instrumentation systems, coupled with further classes in advanced maths. All classes are supported by practical and team-working activities.

Year 3

In third year, you'll begin to develop specialist engineering skills through completing classes in a range of advanced topics.

Year 4

You can choose to either spend fourth year at a partner institution abroad or remain at Strathclyde. The home curriculum focuses on developing advanced technical understanding on the design, control and integration of electrical power, IT, communication and electronic digital systems. You’ll also undertake an individual, industry-focused research project to help you gain the project management skills needed by professional engineers.

At the overseas partner, you’ll study an approved curriculum that is equivalent to the home one, and all the subjects/credits you pass count towards your degree at Strathclyde. You’ll not be required to take extra classes on returning.

The choice of which partner is yours – we offer opportunities in Europe through Erasmus or further afield through our international exchanges to USA, Canada, Japan, Singapore, Australia & New Zealand.  To give you some ideas, take a look at our latest international exchanges list.

Year 5

In Year 5 you'll have the opportunity to develop your team-working skills through a multidisciplinary group project. This project will have a strong industrial influence and provide you with the opportunity to utilise both your hardware and software skills by developing a fully functioning system, which you're required to demonstrate at an internal business tradeshow/exhibition at the end of the year. 

In addition to the project, you'll select modules from a range of advanced electrical, electronic and computer software applications.

Top-ranked department

The Department of Electronic & Electrical Engineering at Strathclyde is acknowledged as one of the premier providers of education in electronic & electrical engineering in the UK. Renowned for its teaching and research quality, student satisfaction ratings and excellent graduate employment rates, it provides the specialist theoretical and practical training in electronics, communications design and operation, hardware engineering systems, image/video processing and robotics.

Facilities

Students have exclusive access to our extensive computing network, and purpose built teaching spaces including high voltage facilities, and student design and project labs equipped with the latest technologies.

Accreditation

Accredited by the Institution of Engineering and Technology on behalf of the Engineering Council for the purposes of fully meeting the academic requirement for registration as Chartered Engineer.

Course content

Year 1

Compulsory classes

Engineering Industry & Profession

To provide an overview of industry and give you some understanding of the industry environment that you would enter as well as the types of roles you would/could undertake. To explain role and responsibility of the engineering profession and individual engineer.

The class is delivered to first-year undergraduate students in the specific context of electronic and electrical engineering together with relationship to mechanical engineering and computer systems.

Electronic & Electrical Techniques & Design 1
1. To introduce you to the practical and professional skills required of an engineer
2. To underpin theoretical concepts introduced elsewhere in Year 1 modules
3. To introduce you to individual and group project work
4. To expose you to problems requiring system integration and design
5. To encourage innovation in the context of project work
6. To facilitate the development of a range of transferable skills
Engineering Design For Software Development 1

This class will teach elementary computer programming for the absolute beginner. We begin with an introduction of how a computer process instructions then move on to the basic of programming.

Foundation level programming constructs are addressed early in the class and include decision making (conditional flow control) and iteration (loops). The class focuses largely on procedural programming in the first semester and leaves details of functionalisation and object-oriented programming to the second semester.

Throughout the class, the emphasis is strongly on problem solving such that the skills developed can be cross transferred to other languages.

The teaching language used will be Python - a language that permits the programmer to concentrate on the problem solving aspects of programming rather than being distracted by the syntax of the language.

Electronic & Electrical Principles 1
To provide you with a foundational understanding of the analysis and design of both analogue and digital electronic circuits.
Engineering Mathematics 1E
To give a basic understanding of the concepts and applications of mathematical functions, differentiation, integration and complex numbers.  The class also provides an introductory experience of using mathematical tools to apply these concepts to practical engineering examples.
Engineering Mathematics 2E
To give a basic understanding of the concepts and applications of calculus, geometry, vectors, matrices and numerical methods.
Physical Sciences

By the end of the class you'll be able to:

  • calculate the linear or rotational motion of objects under simple forces or torques
  • be able to apply a basic understanding of atomic and solid state physics to explain conduction in semiconductors and semiconductor devices
  • to be able to calculate the motion of charges in simple electric and magnetic fields
  • to be able to calculate the electric and magnetic fields around static charge or current configurations using the laws of Coulomb, Gauss and Ampere
  • to be able to calculate properties of electromagnetic devices such as motors and dynamos

Year 2

Compulsory classes

Engineering Design & Manufacture
This class aims to introduce you to concepts and methodology required to undertake effective design and development of engineering systems. The product development process will be introduced and through practice, a working knowledge of appropriate engineering design processes, tools and techniques will be gained.

An overview of manufacturing and the manufacturing industry will provide a general appreciation of the range of processes employed in manufacturing together with an understanding of how components can be manufactured economically and reliably.
Physical Electronics
Following completion of this class you'll be able to demonstrate knowledge of following topics:
Basic Quantum Theory
Early experiments – e/m, photo-electric effect
Structure of the atom
Wave-particle duality
Schrodinger equation and application in simple systems
Basic Semiconductor Physics
Crystal structure Electron mobility Band theory
Doping of semiconductors
Physics of p-n junctions
Basic Device Physics
Diode operation
LED and laser diodes
.
Electromagnetism
You'll gain an understanding of the application of electromagnetic effects in practical devices and develop the mathematical skills necessary to analyse these effects in simple geometries.
Electronic & Electrical Principles 2
To introduce you to the analysis and design of analogue circuits and systems as used in electronics, energy & power systems, communications, control and analogue signal processing applications.
Digital Electronic Systems
To introduce you to the use of digital electronics and the rudiments of digital signal processing systems.
Electronic & Electrical Techniques & Design 2
To develop a broad understanding of many aspects of engineering (general electrical and electronic, power engineering, mechanical engineering, computing and software) and to enhance generic skills required of a professional engineer (research, practical, team working, communications, reporting writing, oral presentation). 
You'll also benefit from two laboratory-based projects, which will enhance your understanding of important electrical and engineering principles that underpin many other classes within the degree programme.
Engineering Design For Software Development 2

To give:

  • an understanding of programming concepts and object orientation
  • familiarity with the syntax and facilities available in C++
  • an ability to write working programs for use in engineering applications
Engineering Mathematics 3E
The aims of this class are:
  • to develop the means of solving certain differential equations
  • to consider applications of Taylor and Maclaurin series
  • to generalise earlier ideas in calculus to deal with functions of several variables
  • to discuss in more detail matrices, determinants and functions of a complex variable
  • to introduce vector calculus and eigenvalues/eigenvectors

Year 3

Compulsory classes

Signals & Communications Systems
The aim of this class is to introduce you to the fundamentals of continuous and discrete signals and linear systems for baseband applications and further describe how these principles are applied in modern communications and bandpass systems.
Electronic & Electrical Principles 3

This class promotes detailed understanding of the electrical and electromagnetic principles and their deployment in a range of engineering applications.  These are associated with electromagnetic waves propagation in bounded and unbounded media.  They are also in:

  • electric power generation (both conventional and renewable)
  • power distribution and energy utilisation
  • electric transportation systems
  • the propagation of electromagnetic waves in free space
  • in insulating and conducting lossless and lossy media
  • optical fibre

You'll gain an appreciation of the fundamental principles, engineering solutions, and social and economic implications of such applications.

Instrumentation & Microcontrollers

INSTRUMENTATION

To develop techniques for system modelling based on block diagrams and transfer functions and to use such techniques in the context of analysis and design. To introduce you to instrumentation and measurement as an interdisciplinary engineering activity. To explain the basic principles of feedback and control systems.

To enable understanding of the dependence of measurement and control on a wide variety of scientific and engineering disciplines; to provide appreciation of the universal application of measurement and control within the same range of disciplines.

To demonstrate engineering design as applied to instrumentation systems and control engineering; in particular, to explain the important contribution of electrical, mechanical and software engineering to this process.

MICROCONTROLLERS

To allow you to gain practical design, implementation and test experience of the techniques required to create combined hardware/software systems with an emphasis on measurement.

Engineering Analysis
It is important for you to see mathematics and statistics in the context of the computational problems they will be exposed to in their discipline.

The aim of this class is to further develop your skills and abilities in advanced mathematical concepts in the field of engineering. This will be achieved through contextualised problem solving using applicable mathematical and statistical techniques and tools on problems of moderate complexity.
Engineering Innovation & Management

This class aims to provide you with an understanding of the importance of innovation in today’s business environment. The class aims to also develop understanding and skills in the area of innovation management. It aims to develop practical skills for you to integrate a number of themes including:

  • product development
  • IP
  • product finances
  • project management
  • market analysis with a view to successfully exploiting new ideas
Engineering Project

To conduct, under supervision, a group based project within a EEE-related domain from a selection of projects tailored to match the EEE curriculum.

In this class you'll develop project management skills, including team work, time management, presentation skills and technical report writing. Moreover, the class will enhance your technical skills and knowledge in a EEE-related subject.

Elective classes

Choose at least three from this list and one further class from the Business School portfolio

Analogue & Digital System Design
Expand your knowledge in the fundamental electrical and electronic engineering areas of analogue and digital design.
Renewable Energy Technologies
This class aims to introduce you to a range of renewable energy technologies, specifically the renewable energy resource, the design and application of the technology and systems, and site assessment. Additionally you'll be introduced to generator/converter systems used with renewable energy sources and appreciate how the grid connection and control of these distributed sources effect power system operation. Wider issues of economic, environmental and social impacts of these technologies will be discussed.

Year 4

Compulsory classes

Individual Project
You undertake an individual research project.  This will help you gain valuable technical and project management skills.

Elective classes

Choose at least four from this list

Power Electronics, Machines & Applications
  • Understand the principles of common power electronic systems
  • Gain familiarity with the techniques required to analyse common power electronic circuits
  • Understand the basic principles behind the design of rotating electrical machines
  • Gain familiarity with the techniques required to analyse basic DC and AC machines
  • Recognise that disturbances exist within a power system substation and appreciate that these disturbances may affect electromagnetic compatibility
  • Be competent in dealing with the implications of those disturbances; in particular the effects of system switching
  • Understand the use of power electronic devices, drives and machines for given applications, specifically for Electric Vehicles i.e. cars and trains
  • Understand the range of energy sources capable of powering `independent? (as opposed to catenary supplied) EVs (e.g. batteries and fuel cells), understand how these energy sources work, their performance and degradation issues, and how to charge/fuel them.
Power System Design, Operation & Protection
To enable you to appreciate the principles of analysis, design and protection of electrical power systems including:
1. design and operational approaches in power systems including electricity generation, transmission and distribution
2. analysis and design of transmission and distribution networks
3. power flow, fault and stability calculations
4. power system control including load frequency control and economic dispatch
5. generation technology implications on power system design and operation
6. the main concepts related to the requirements, functions, design and operation of protection schemes for power system transmission and distribution systems
7. detailed understanding of selected protection schemes used in transmission and distribution networks
Analogue Systems
This class will provide you with an appreciation and understanding of analogue electronic circuit design, relating to high frequency amplifiers and low noise design of electronic systems.
Digital Signal Processing Principles
Develop necessary tools that will allow you to design, analyse and simulate (Matlab/Simulink) DSP systems by introducing core mathematical concepts, algorithms and fundamental properties of discrete signal and systems with applications
Information Transmission & Security
Impart an understanding of the principles by which information can transmitted with varying levels of security and the techniques by which communication systems can be analysed and designed.
Communications Networks
To provide an understanding of the principles and key transport technologies which underpin high-speed heterogeneous broadband communications networks and architectures while giving an insight to the technical and strategic challenges associated with the provision of a Quality of Service (QoS)-based integrated future-network platform.
Control Principles
This class aims:
  • to introduce you to the basic concepts, mathematical tools and design methods of classical control theory
  • to enable you to use analysis and design tools used in control engineering and appreciate the industrial applications of control systems
  • to enable you to analyse and design closed loop control system specifically using industrial three-term (PID) controllers
  • to introduce you to advanced control methods and to provide a basic understanding of a time-domain approach to control analysis and design of industrial processes
  • to appreciate the application of control theory in industrial applications
Photonic Systems
The primary aim of this class is to enable you to develop a basic conceptual understanding and working knowledge of fibre optic communications systems and their component parts addressing basic principles, engineering, design and performance limits. All of the fundamental principles of light, optics and photonic components necessary to achieve this are dealt with, giving a broad appreciation of photonics in general.
Robotics: Systems & Control

This class will provide you with an overview of robotic engineering in the broadest possible sense, and will enable you to understand some of the important principles in the design, control, construction and use of robots in different environments and tasks.

It'll also provide hands on experience in dealing with some of the design and control issues associated with robot mechanisms.

Year 5

Compulsory classes

Group Project

This project will have a strong industrial influence and provide you with an opportunity to utilise both your hardware and software skills by developing a functioning system.  You are required to demonstrate at an internal business tradeshow/exhibition at the end of the year.

Elective classes

Choose at least four from this list

Advanced Power System Analysis & Protection
Allow you to understand, critically analyse and assess technical requirements for power system operation, management and planning.
To enable you to carry out advanced types of power system analysis as well as understand and use results from these analyses in power system operation and planning.
To enable you to have a detailed understanding of the main concepts related to the function, design and operation of protection schemes for distribution, transmission and generation applications.
To enable you to understand the implementation and other associated issues relating to protection of power systems.
High Voltage Technology & Electromagnetic Compatibility

The aim is:

  • to introduce the fundamentals of high voltage electrical insulating systems
  • to provide a basic understanding of principles, mechanisms and characteristics of high voltage discharges in vacuum and condensed media
  • to provide a basic understanding of the behaviour of dielectric materials stressed with electric fields and their use in high voltage systems
  • to understand the principles of high voltage generation and impulse testing of the high voltage systems
  • recognise that disturbances exist within a power system substation and appreciate that these disturbances may affect electromagnetic compatibility
  • be competent in dealing with the implications of those disturbances; in particular the effects of system switching
Power Electronics For Energy & Drive Control
Modern energy conversion systems rely on the integration of range of technologies including power electronics, electromechanical actuators and energy storage elements. This class will build knowledge of the building block technologies and show their application to modern energy conversion systems.
Power System Economics, Market & Asset Management
Present and give an understanding of the economics, trading and pricing of electricity supply and how it is shaped by technical, commercial and regulatory considerations.
Give an understanding of power system economics under an environment of multiple suppliers and users.
Present the challenges, technologies and value of asset management within an electricity supply industry context.
Give a deep appreciation of factors affecting security of supply and how it might be quantified.
Wind Energy & Distributed Energy Resources
To provide an understanding of the principles of wind turbine power generation with attention to the wind resource, rotor aerodynamics, structural design, power conversion and control. It also addresses socio-economic issues and provides an underpinning in distributed energy resources including small scale generation, energy storage and demand management and their integration and management within power networks.
Advanced Digital Signal Processing
Develop the necessary skills that will allow you to analyse, design, implement and simulate advanced DSP techniques and algorithms for a variety of communications and general engineering problems.
Advanced Microcontroller Applications
Provide advanced competence in the use of industry standard microcontrollers programmed in low and high level languages in real time applications.
DSP & FPGA-Based Embedded System Design
Design and implementation of real time embedded systems through familiarisation with Digital Signal Processors (DSPs) and FPGAs via lectures, up-to-date technical discussions and hardware programming. This class provides hands-on experience in translating Digital Signal Processing concepts into real-time embedded systems applications.
Image & Video Processing
To provide an introduction to the techniques relevant to digital images and video.
This includes techniques both to process images and video and also to efficiently compress and communicate them.
The class will give you a comprehensive understanding of various image and video processing and coding standards. You'll also study some key applications of these standards.
Control Techniques

This class aims:

  • to introduce you to the concepts and tools of modelling, simulation for control of dynamical systems
  • to introduce you to the concepts of computer control engineering and enable you to learn the skills required to understand and analyse digital control systems for real time engineering applications
  • to enable you to appreciate the design of estimation and its use in control design
  • to introduce you to the methods of system parameter identification and its application in control engineering
  • to present you with the concepts of fault monitoring, detection, isolation in dynamical systems
  • to introduce you to the monitoring and evaluation of closed-loop system performance
  • to appreciate the industrial applications of control engineering methods

Assessment

You’ll be assessed through a variety of techniques.

In Years 1 to 3, you'll complete at least six modules per year, with each module made up of a combination of written assignments, individual and group reports, oral presentations, practical lab work, and where appropriate, an end-of-term exam.

In Year 4, you'll complete at least four modules and an individual project. Assessment of this project consists of four elements, interim report, poster & oral presentations, conduct and final report.

In Year 5, you'll complete at least four modules and a major group project. Assessment of this project is based on project specification, interim report, oral presentation, group conduct, peer review, individual assessment, tradeshow show demonstration and a final report.

Learning & teaching

To engage and challenge you, we use a blend of teaching methods. These include lectures, small group problem-solving tutorials, practical laboratories as well as industrial visits and seminars by professional engineers

You’ll not only develop technical engineering expertise but also communication, project management, leadership and entrepreneurial skills.

In later years, you’ll have opportunities to work with academic staff on active research projects.

The course typically consists of around 10 lectures, five tutorial/problem-solving classes and three practical classes per week. To enhance your understanding of the technical and theoretical topics covered in these, you're expected to undertake a further 20 hours of self-study, using the web-based virtual learning environment (MyPlace), computing and library facilities.

Entry requirements

Minimum grades

Required subjects are indicated following minimum accepted grades.

Highers

AAAAB (Maths A, Physics or Engineering Science)

A Levels

Year 1 entry

BBB (Maths, Physics)

Typical entry requirements: AAB

Year 2 entry

AAB (Maths, Physics, Computing)

Typical entry requirements: A*AA

International Baccalaureate (IB)

36 (Maths HL6, Physics HL6)

HNC/HND

Entry to BEng in first instance

Additional information

Applicant interviews are conducted in January & February

Widening access

We want to increase opportunities for people from every background. Strathclyde selects our students based on merit, potential and the ability to benefit from the education we offer. We look for more than just your grades. We consider the circumstances of your education and will make lower offers to certain applicants as a result.

Find out if you can benefit from this type of offer.

International students

Find out entry requirements for your country.

Degree preparation course for international students

We offer international students (non EU/UK) who do not meet the entry requirements for an undergraduate degree at Strathclyde the option of completing an Undergraduate Foundation year programme at the International Study Centre. To find out more about these courses and opportunities on offer visit isc.strath.ac.uk or call today on +44 (0) 1273 339333 and discuss your education future.

You can also complete the online application form, or to ask a question please fill in the enquiry form and talk to one of our multi-lingual Student Enrolment Advisers today.

Fees & funding

How much will my course cost?

All fees quoted are for full-time courses and per academic year unless stated otherwise.

Scotland/EU

  • 2016/17 - £1,820

Rest of UK

  • 2016/17 - £9,000

International

  • 2016/17 - £17,500

Scholarships

The Department of Electronic & Electrical Engineering (EEE) can help you with funding and getting relevant work experience while you study, through its industry-supported scholarship programme. More than 200 students currently benefit from this. They receive annual bursaries, paid summer placements and company mentoring from key UK and global employers including Rolls-Royce, ScottishPower, Wood Group, Jaguar Land Rover and Xilinx.

Details of all the scholarships on offer each year are highlighted at a scholarship seminar in week three of Semester 1. In addition, each October we host a scholarships fair, providing the opportunity for you to meet potential sponsors face-to-face. You can learn more about the funding and work experience prospects, build useful contacts for the future and develop industry-specific knowledge through visiting the companies’ exhibitions and presentations.

Department Scholarships

Royal College Prestigious Awards were established to attract the very best international talent, and we've welcomed recipients from China, India, Malaysia, India and many other nations. Selection is made on academic merit, personal achievements and citizenship.

Up to three awards of £3,000 towards tuition fees are available for international applicants. Email EEE Admissions for an application form. Submission deadline is 30 June.

S6 Bursaries are designed to ensure commitment to academic excellence in the final year of school. Many well-qualified S5 pupils, opt to undertake a sixth year at school. To encourage them to maintain their high standards in this final year, the department offers a one-off bursary.

All eligible S6 Scottish applicants, awarded an unconditional offer based on their S5 performance to any of our undergraduate degrees, will automatically be considered for a bursary. No separate application form is required.  Payment of the bursary will only be made to applicants whose S6 results are comparable with their S5 performance.  The bursary is paid in October following registration.

AMEC Electrical Engineering Scholarships

AMEC Natural Resources provides engineering and project management services to its customers in the world’s oil and gas, mining, clean energy, environment and infrastructure markets. To support their graduate recruitment activities, we were invited to participate in their scholarship scheme.

One award of £2,000 with a paid summer industrial internship, company mentoring and participation in AMEC’s Graduate Training Programme activities, is available for third-year students with a particular interest in electrical power or electrical protection engineering.

FM Bruce Scholarships

These scholarships, established to foster the next generation of world-class engineers, were given in honour of a distinguished former head of department and professor of power engineering. Up to 15 awards of £500 each towards tuition fees or course expenses are available for first-year students.

IET Power Academy

The Institution of Engineering and Technology (IET) is one of the world’s leading professional societies for the engineering and technology community. Its awards programme rewards and celebrates excellence and innovation. The Power Academy is just one of their prestigious scholarship schemes for undergraduate students.

The academy brings together eight leading UK universities, key power sector organisations with support from the IET, Energy & Utility Skills, and National Skills Academy for Power, to deliver a scholarship fund combining financial support with work placements.

We are the only university department in Scotland to be a member of the Power Academy.

Between 50 to 60 awards are on offer. Benefits include a bursary of £2,200 for each year of study, a contribution towards tuition fees, books and software, and a paid summer placement with the company sponsor.  Industry mentoring is provided through a series of local and national networking events, including the annual Power Academy Seminar which brings together leading academic and industry experts.

Company partners:

  • ABB
  • Atkins Global
  • BAE Systems
  • Costain
  • CCFE
  • London Underground
  • Mitsubishi Electric
  • National Grid
  • Northern Ireland Electricity (NIE)
  • Northern Powergrid
  • Rolls-Royce
  • RWE npower
  • ScottishPower
  • Siemens
  • SSE
  • UK Power Networks
  • Western Power Distribution

Faculty of Engineering Undergraduate Scholarships

Students are also eligible for a range of other awards offered by the Faculty of Engineering’s Undergraduate Scholarship Programme, the University and external professional bodies.

Lloyd’s Register Foundation Scholarships

The Lloyd’s Register Foundation is a charity which supports the advancement of engineering-related education, and funds research and development that enhances safety of life at seas, on land and in the air. The EEE department is one of three participating in this scholarship scheme.

A total of nine awards of £3,000 each as a contribution towards tuition fees, are on offer across the three departments. All students in Years 2 to 4 of our undergraduate degrees are eligible. We inform students of when applications can be submitted and selection is based on academic performance.

Sagentia Scholarships

Sagentia is a global technology and product development services company with over 27 years’ experience. The company has over 150 scientists, engineers and market experts and is a part of the Sagentia Group; with headquarters in Cambridge, UK and offices in London, Boston, Houston and Dubai. Their clients range from start-ups through to global market leaders in the medical, industrial, oil & gas, and consumer sectors.

Ten awards of £2,500 per annum, with selected paid placements, are on offer and students will be competing with those from other institutions.  Check the Sagentia website for details on course eligibility and how to apply.

ScottishPower Engineering Excellence Scholarships

ScottishPower Retail & Generation employs more than 3,000 people within the UK and brings a dynamic set of departments together under one umbrella, all with the desire to deliver outstanding service to their customers.

Normally two awards of £2,000 each with a paid summer placement are available and third year students on this degree are eligible to apply.



Additional fees 

Course materials & costs 

Students are recommended to have copies of course notes. Printed notes are available from the department - subject to a small charge to cover copying costs. E-copies are also freely available. Mandatory printed copies are provided without charge to students.       

Mandatory readings are not a required purchase. Rather, it is expected students will read across subject matter and textbooks. 

Electronic & Electrical Engineering programmes have a degree of practical and project work that will require the use of consumables and components. These costs are met by the department.

The department make explicitly clear that students are not required to purchase materials for project work.    

Approximate costs of course related note materials:

  • £15

The department also provides a printing quota for students - over and above University provision. This expense is not mandatory.  

Other costs incurred in relation to book and text purchases depend on student preferences.  

Placement & field trips 

The department and student societies support a number of industrial visits throughout the year. These trips are not mandatory for specific programmes and modules. Any costs incurred covering transport is met by either students or department.  

Other costs 

Students are not required to purchase any specific software licences. All software is for the course is available on campus machines, either locally or remotely.  

All undergraduates are provided throughout the duration of their course with student membership of IET (professional body), paid for by the department.  

Please note: All fees shown are annual and may be subject to an increase each year. Find out more about fees.

How can I fund my studies?

Students from Scotland and the EU

If you're a Scottish or EU student, you may be able to apply to the Student Award Agency Scotland (SAAS) to have your tuition fees paid by the Scottish government. Scottish students may also be eligible for a bursary and loan to help cover living costs while at University.

For more information on funding your studies have a look at our University Funding page.

Students from England, Wales & Northern Ireland

If you’re from England, Wales or Northern Ireland you may be able to apply for help to pay your tuition fees and living costs from your local funding body.

We also have a few bursaries on offer for students from England, Wales and Northern Ireland.

For more information on funding your studies have a look at our University Funding page.

International Students (Non UK, EEA)

We have a number of scholarships available to international students. Take a look at our scholarship search to find out more.

Available scholarships

We have a wide range of scholarships available. Have a look at our scholarship search to find a scholarship.

Careers

Studying electronic & electrical engineering opens many doors. With two million new employees needed in the UK engineering sector by 2020, you’ll have great career opportunities.

The breadth of this degree ensures that graduates will have the technical knowledge and understanding across the entire electronic & electrical engineering spectrum to consider careers in a diverse range of sectors including:

  • telecommunications
  • consumer & electronics design
  • automotive & aerospace industries
  • information technology
  • finance & banking
  • electricity supply industry
  • oil & gas
  • renewable energy
  • project management & engineering consultancy
  • healthcare

Many of our graduates secure well-paid and exciting jobs or are in further study by the time they finish their degree.  They take positions including electronics engineer, subsea engineer and process & pipeline engineer. Employers include BAE Systems, ScottishPower, Accenture, BP, Thales and Rolls-Royce.

How much will I earn?

The starting salary for a newly qualified electronic and electrical engineer is up to £29,000.

This rises with experience. Highly experienced engineers can earn up to £65,000.*

Where are they now?

90% of our graduates are in work or further study.**

Recent job titles include:

  • Applications Engineer
  • Chartered Engineer
  • Electrical & Electronic Engineer
  • Electrical Engineer
  • Electronic Engineer
  • Instrument Engineer
  • Power Systems Engineer
  • Product Design Engineer
  • Research Engineer

Recent employers include:

  • Accenture
  • Alba Ultrasound Ltd
  • AMEC
  • Babcock
  • BP
  • Iberdrola Engineering
  • Mott MacDonald
  • National Grid
  • Scottish Power
  • Siemens
  • Thales
  • The Welding Institute
  • Wood Group

* Information is intended only as a guide.

** Based on the results of the national Destinations of Leavers from Higher Education Survey.

Contact us

Apply

How to apply – 10 things you need to know

  1. All undergraduate applications are made through UCAS
    Go to the UCAS website to apply – you can apply for up to five courses.
  2. It costs £12 to apply for a course
    The cost is £23 for two to five courses.
  3. The deadline is 15 January each year
    This is the application deadline for most courses. However, please check the details for your particular course. View a full list of UCAS key dates.
  4. You might be asked to attend an interview
    Most of our courses make offers based on the UCAS application. However some might ask you to attend an interview or for a portfolio of work. If this is the case, this will be stated in the prospectus entry requirements.
  5. It’s possible to apply directly to Year 2
    Depending on your qualifications, you might be able to apply directly to Year 2 - or even Year 3 - of a course. Speak to the named contact for your course if you want to discuss this.
  6. There’s three types of offer
    • unconditional – you’ve already met our entry requirements
    • conditional – we’ll offer you a place if you meet certain conditions, usually based on your exams
    • unsuccessful – we’ve decided not to offer you a place
  7. You need to contact UCAS to accept your offer
    Once you’ve decided which course you’d like to accept, you must let UCAS know. You don’t need to decide until you’ve received all offers. UCAS will give you a deadline you must respond by.

    You’ll choose one as your firm choice. If the offer is unconditional or if you meet the conditions, this is the course you’ll study.

    You’ll also have an insurance choice. This is a back-up option if you don’t meet the conditions of your first choice.
  8. You don’t need to send us your exam results (Scotland, England & Wales)
    If you’re studying in Scotland, England or Wales, we receive a copy of your Higher/Advanced Higher/A Level results directly from the awarding body. However, if you are studying a different qualification, then please contact us to arrange to send your results directly.
  9. We welcome applications from international students

    Find out further information about our entry and English language requirements.

    International students who don’t meet the entry requirements, can apply for our pre-undergraduate programmes.

    There’s also an online application form.

    For further information:
  10. Here’s a really useful video to help you apply

Discover more about Strathclyde