MEng Computer & Electronic Systems with International Study

Apply

Key facts

  • UCAS Code: I200
  • Start date: Sep 2020
  • Accreditation: triple accreditation from the IET, BCS and Science Council.
  • 6th in the UK for Electrical & Electronic Engineering (Complete University Guide 2020)

  • Study abroad: possible in Year 4 in Europe, North America, Canada, Singapore, Japan, Australia or New Zealand

  • Funded places: industry-supported scholarships programme

Study with us

  • ranked in the UK Top 10 for Electrical Engineering (Times and Sunday Times Good University Guide 2020)
  • learn how to design electronic systems and use software engineering to develop the next generation of digital technology
  • access to IET Power Academy & Scholarship programme with paid work placements
  • gain international experience through studying abroad
  • triple professional accreditation by the Institution of Engineering and Technology (IET), Engineering Council and British Computer Society means you can choose to become a Chartered Engineer, IT Specialist or both
Back to course

Why this course?

What do 3D TV, digital cameras, smartphones, the iPad and sports instant replay have in common? They're all examples of technology which have been developed combining skills from both computer science and electronic engineering.

These subjects have become increasingly intertwined in recent years, so there's a need for engineers with the ability to create and embed intelligence into the products and systems of the future.

Our course is one of the few UK degrees with triple accreditation from the IET, BCS and Science Council.

Accreditation

The Institution of Engineering & Technology (IET) - this programme is CEng accredited and fulfils the educational requirements for registration as a Chartered Engineer.

Accredited by the British Computer Society:

  • for the purposes of fully meeting the academic requirement for registration as a Chartered IT Professional
  • on behalf of the Science Council for the purposes of fully meeting the academic requirement for registration as a Chartered Scientist

Electrical engineer

What you'll study

Year 1

You’ll learn the fundamental principles and concepts in electronic engineering, mathematics and computer science classes.

Year 2

Here, you’ll build on this base while being introduced to programming languages and techniques, computer communications and hardware and software engineering systems.

Year 3

You’ll begin to develop specialist knowledge through a selection of classes spanning artificial intelligence, embedded systems and software systems development.

Year 4

You'll spend fourth year at a partner institution abroad. You’ll study an approved curriculum that is equivalent to the home one, and all the subjects/credits you pass count towards your degree at Strathclyde. You’ll not be required to take extra classes on returning.

The choice of which partner is yours – we offer opportunities in Europe through Erasmus or further afield through our international exchanges to USA, Canada, Japan, Singapore, Australia & New Zealand.  To give you some ideas, take a look at our latest international exchanges list.

Year 5

In Year 5, you'll have the opportunity to develop your team-working skills through a multidisciplinary group project. This project will have a strong industrial influence and provide you with the opportunity to utilise both your hardware and software skills by developing a fully functioning system, which you are required to demonstrate at an internal business tradeshow/exhibition at the end of the year.

In addition to the project, you'll select modules from a range of advanced electrical, computing and IT subjects.

Top-ranked departments

The course is run jointly by the departments of Electronic & Electrical Engineering and Computer & Information Sciences.

Electronic & Electrical Engineering is one of the premier providers of electronic & electrical engineering education in the UK, renowned for its teaching and research quality, student satisfaction ratings and excellent graduate employment rates. It provides the specialist theoretical and practical training in electronics, communications design and operation, hardware engineering systems, image/video processing and robotics.

Computer & Information Sciences is consistently ranked in the top five departments for its subject in Scotland and delivers the specialised teaching in computer programming, artificial intelligence, information sciences and software engineering.

Facilities

Students have exclusive access to our extensive computing network, and purpose-built teaching spaces including high voltage facilities, and student design and project labs equipped with the latest technologies.

Complete University Guide 2020 logo - Top 10 for Electrical & Electronic Engineering

Go back

Course content

Core Engineering & Science Skills

In first year you'll learn the essential skills and disciplines required to provide a strong foundation for future learning in electronic engineering, maths and computing science. You'll study subjects such as the principles of electronic circuits, software engineering, relevant mathematics and business skills. These skills will be reinforced by practical laboratory sessions which will help to develop your ability to translate concepts into reality.

Compulsory classes

Engineering Industry & Profession

To provide an overview of industry and give you some understanding of the industry environment that you would enter as well as the types of roles you would/could undertake. To explain role and responsibility of the engineering profession and individual engineer.

The class is delivered to first-year undergraduate students in the specific context of electronic and electrical engineering together with relationship to mechanical engineering and computer systems.

Machines, Languages & Computation
This class will help you achieve a broad knowledge of the essence of computation and computational systems, as embodied by the notions of computable functions, formal languages and recursion, logic and computability and abstract machines.
Programming Foundations
This class will provide you with a solid foundation in the principles of computer programming. On completing this class you should have the necessary skills to be able to design, build and test a small system in a high-level language (Java in the current incarnation of the class).
Fundamentals of Computer Systems

This class will further your knowledge of the design parameters of a typical computer system and the impact these have on the functionality, and implementation, of the hardware and software components.

Electronic & Electrical Principles 1
To provide you with a foundational understanding of the analysis and design of both analogue and digital electronic circuits.
Engineering Mathematics 1E
To give a basic understanding of the concepts and applications of mathematical functions, differentiation, integration and complex numbers.  The class also provides an introductory experience of using mathematical tools to apply these concepts to practical engineering examples.
Engineering Mathematics 2E
To give a basic understanding of the concepts and applications of calculus, geometry, vectors, matrices and numerical methods.

Core Engineering & Technology Skills

In second year you'll build on the strong foundations of the first year and further broaden your knowledge through the introduction to a range of programming techniques and languages, and computer communications. More analysis of both hardware and software systems will be undertaken to enable you to see the bigger picture. Small scale projects will be introduced to allow you to hone the skills and techniques you have developed in the first two years of the course.

Compulsory classes

Engineering Design & Manufacture
This class aims to introduce you to concepts and methodology required to undertake effective design and development of engineering systems. The product development process will be introduced and through practice, a working knowledge of appropriate engineering design processes, tools and techniques will be gained.

An overview of manufacturing and the manufacturing industry will provide a general appreciation of the range of processes employed in manufacturing together with an understanding of how components can be manufactured economically and reliably.
Advanced Programming

This class will further your skills in object-oriented programming, provide knowledge of key abstract data types along with their implementation and usage, and to provide experience in the development of larger scale software and an introduction to design.

Your main goal is to be able to develop larger programs with specialized data structures and utilizing APIs from a specification, and being able to ensure and show how the system they developed matches the specification.

Computer Systems & Architecture
This class will allow you to develop a deeper understanding of typical computer architectures and their instruction sets and the complex tradeoffs between CPU clock speed, cache size, bus organisation, number of core processors, etc, that influence their design and have a fundamental impact on their performance.
Electronic & Electrical Principles 2
To introduce you to the analysis and design of analogue circuits and systems as used in electronics, energy & power systems, communications, control and analogue signal processing applications.
Digital Electronic Systems
To introduce you to the use of digital electronics and the rudiments of digital signal processing systems.
Engineering Mathematics 3E
The aims of this class are:
  • to develop the means of solving certain differential equations
  • to consider applications of Taylor and Maclaurin series
  • to generalise earlier ideas in calculus to deal with functions of several variables
  • to discuss in more detail matrices, determinants and functions of a complex variable
  • to introduce vector calculus and eigenvalues/eigenvectors

Elective classes

A maximum of two classes are to be chosen.

Logic & Algorithms
This class will equip you with the tools to model and measure computation. To build on the module Machines, Languages and Computation, and develop further understanding of the mathematical foundations of computation. To foster an analytical and empirical appreciation of the behaviour of algorithms and the use of abstract data types.
Physical Electronics
Following completion of this class you'll be able to demonstrate knowledge of following topics:
Basic Quantum Theory
Early experiments – e/m, photo-electric effect
Structure of the atom
Wave-particle duality
Schrodinger equation and application in simple systems
Basic Semiconductor Physics
Crystal structure Electron mobility Band theory
Doping of semiconductors
Physics of p-n junctions
Basic Device Physics
Diode operation
LED and laser diodes
.
Electromagnetism
You'll gain an understanding of the application of electromagnetic effects in practical devices and develop the mathematical skills necessary to analyse these effects in simple geometries.
You’ll begin to develop specialist knowledge through a selection of classes spanning artificial intelligence, embedded systems and software systems development.
Building Software Systems

This class will extend and deepen your understanding of the analysis, design and implementation of software systems; to provide further experience in the activity of designing and implementing non-trivial systems; and to enable you to demonstrate practical competence in a group environment.

Your goal is the development in a group setting of significant systems from scratch aiming not just at any solution but a good solution, and to be introduced to more general Software Engineering topics.

Computer Systems & Concurrency

This class will allow you to develop a deeper understanding of highly concurrent hardware and software systems. The class will also further your knowledge of the need for, and the design and implementation of, those other vital hardware and software components of a concurrent system, namely multiprocessors and their interconnections, operating systems and networks.

The interactions between many of these components will be investigated by means of significant practical work that consolidates the lecture content in the context of: (i) multiprocessor architectures, (ii) concurrency, (iii) protection and security and (iv) networked and concurrent applications. Software developed in appropriate programming languages will form the basis of much of the practical work thus enabling the student to enhance their software design and implementation skills in this domain.

Signals & Communications Systems
The aim of this class is to introduce you to the fundamentals of continuous and discrete signals and linear systems for baseband applications and further describe how these principles are applied in modern communications and bandpass systems.
Engineering Innovation & Management

This class aims to provide you with an understanding of the importance of innovation in today’s business environment. The class aims to also develop understanding and skills in the area of innovation management. It aims to develop practical skills for you to integrate a number of themes including:

  • product development
  • IP
  • product finances
  • project management
  • market analysis with a view to successfully exploiting new ideas
CES mini project

Elective classes

One to be chosen.

Foundations of Artificial Intelligence

Pre-requisites: Advanced Programming, Logic & Algorithms.

This class will help to give you a broad appreciation of the scale and nature of the problems within Artificial Intelligence and to a detailed understanding of some of the fundamental techniques used to address those problems.

Programming Language Definition & Implementation

The class will provide familiarisation with the definition of programming language syntax and semantics, and the translation of these definitions into an implementation of a programming language.

Instrumentation & Microcontrollers

INSTRUMENTATION

To develop techniques for system modelling based on block diagrams and transfer functions and to use such techniques in the context of analysis and design. To introduce you to instrumentation and measurement as an interdisciplinary engineering activity. To explain the basic principles of feedback and control systems.

To enable understanding of the dependence of measurement and control on a wide variety of scientific and engineering disciplines; to provide appreciation of the universal application of measurement and control within the same range of disciplines.

To demonstrate engineering design as applied to instrumentation systems and control engineering; in particular, to explain the important contribution of electrical, mechanical and software engineering to this process.

MICROCONTROLLERS

To allow you to gain practical design, implementation and test experience of the techniques required to create combined hardware/software systems with an emphasis on measurement.

Analogue & Digital System Design
Expand your knowledge in the fundamental electrical and electronic engineering areas of analogue and digital design.
Engineering Analysis
It is important for you to see mathematics and statistics in the context of the computational problems they will be exposed to in their discipline.

The aim of this class is to further develop your skills and abilities in advanced mathematical concepts in the field of engineering. This will be achieved through contextualised problem solving using applicable mathematical and statistical techniques and tools on problems of moderate complexity.

You'll spend this year at a recognised overseas academic partner.

You’ll study an approved curriculum that is equivalent to the home one, and all the subjects/credits you pass count towards your degree at Strathclyde.

The choice of which partner is yours – we offer opportunities in Europe through Erasmus or further afield through our international exchanges to USA, Canada, China, Singapore, Australia & New Zealand.

To give you some ideas, take a look at our latest international exchanges list.

Engineering for Your Professional Future

In year 5 you'll have the opportunity to develop your team-working skills through a multidisciplinary group project.

In addition to the project, you'll select from a range of advanced computing and electronic application areas.

Compulsory class

CES group design project

This project will have a strong industrial influence and provide you with the opportunity to utilise both your hardware and software skills by developing a fully functioning system, which you're required to demonstrate at an internal business tradeshow/exhibition at the end of the year.

Elective classes

At least four classes are to be chosen.

Computer Security

This class aims to develop an in-depth understanding of the nature of security in the contexts of computers, information and networks.

Designing Usable Systems

To develop research level understanding of the design of interfaces for newly emerging technologies and computing domains such as ubiquitous and mobile computing, universal access and collaborative displays.

Distributed Information Systems

This class will help you to gain an extended understanding of the deep technical issues underlying information systems in the particular context of distributing content over the world-wide web.

Advanced Topics in Software Engineering

The class will introduce you to a selection of recent advances in software engineering, along with some of the challenges and outstanding problems.

The detailed aims of the class are:

  • To make you aware of key aspects of current software engineering research
  • To familiarise you with the state-of-the-art in terms of what problems can be solved and what are the current exciting challenges
  • To develop the necessary skills to allow you to contribute to the software engineering research community
  • To equip you with the skills and background to appreciate the contributions to software engineering research across the full range of material presented at the key international conferences in the field
Image & Video Processing
To provide an introduction to the techniques relevant to digital images and video.
This includes techniques both to process images and video and also to efficiently compress and communicate them.
The class will give you a comprehensive understanding of various image and video processing and coding standards. You'll also study some key applications of these standards.
Mobile Software and Applications

The aim of this class is to develop an understanding of the underpinning theories, paradigms, algorithms and architectures for building software applications to function in mobile computing environments.

Advanced Digital Signal Processing
Develop the necessary skills that will allow you to analyse, design, implement and simulate advanced DSP techniques and algorithms for a variety of communications and general engineering problems.
Advanced Microcontroller Applications
Provide advanced competence in the use of industry standard microcontrollers programmed in low and high level languages in real time applications.
Control Techniques

This class aims:

  • to introduce you to the concepts and tools of modelling, simulation for control of dynamical systems
  • to introduce you to the concepts of computer control engineering and enable you to learn the skills required to understand and analyse digital control systems for real time engineering applications
  • to enable you to appreciate the design of estimation and its use in control design
  • to introduce you to the methods of system parameter identification and its application in control engineering
  • to present you with the concepts of fault monitoring, detection, isolation in dynamical systems
  • to introduce you to the monitoring and evaluation of closed-loop system performance
  • to appreciate the industrial applications of control engineering methods
DSP & FPGA-Based Embedded System Design
Design and implementation of real time embedded systems through familiarisation with Digital Signal Processors (DSPs) and FPGAs via lectures, up-to-date technical discussions and hardware programming. This class provides hands-on experience in translating Digital Signal Processing concepts into real-time embedded systems applications.
QS five stars logo 2019

We're a 5-star
QS-rated University

Assessment

You’ll be assessed by a wide range of methods including assignments, exams and individual and group-based projects. You’ll make use of web-based and multimedia facilities.

In Years 1 & 2, you'll complete at least six modules per year. Each module is made up of a combination of written assignments, individual and group reports, oral presentations, practical lab work, and where appropriate, an end-of-term exam.

Year 3 will be spent studying at one of our overseas university partners. You'll complete the pre-agreed curriculum, fulfilling all assessments as required by the partner.

In Year 4, you'll complete at least four modules and an individual project. Assessment of this project consists of four elements, interim report, poster & oral presentations, conduct and final report.

In Year 5, you'll complete at least four modules and a major group project. Assessment of this project is based on project specification, interim report, oral presentation, group conduct, peer review, individual assessment, tradeshow show demonstration and a final report.

Learning & teaching

You’ll learn through interactive lectures, small group problem-solving tutorials, practical laboratories as well as industrial visits and seminars by professional engineers.

We aim to develop not only technical engineering and computing expertise but also, and equally importantly, communication, project management, leadership and entrepreneurial skills in our students.

The course typically consists of around 10 lectures, five tutorial/problem-solving classes and three practical classes per week. Students also undertake around 20 hours of self-study.

Glasgow is Scotland's biggest & most cosmopolitan city

Our campus is based in the very heart of Glasgow, Scotland's largest city. National Geographic named Glasgow as one of its 'Best of the World' destinations, while Rough Guide readers have voted Glasgow the world’s friendliest city! And Time Out named Glasgow in the top ten best cities in the world - we couldn't agree more!

We're in the city centre, next to the Merchant City, both of which are great locations for sightseeing, shopping and socialising alongside your studies.

Find out what some of our students think about studying in Glasgow!

Find out all about life in Glasgow
Back to course

Entry requirements

Required subjects are shown in brackets.

Highers

Standard entry requirements: AAAAB

(Maths A, Physics or Engineering Science)

Minimum entry requirements*: AAAB

(Maths and Physics or Engineering Science)

*Find out if you can benefit from this type of offer.

A Levels

Year 1 entry: AAB-BBB

(Maths, Physics)

Year 2 entry: A*AA-AAB

(Maths A, Physics, Computing)

International Baccalaureate

36

(Maths HL6, Physics HL6)

HNC/HND

Entry to BEng in the first instance

International students

Find out entry requirements for your country by visiting our country pages.

Additional information

  • deferred entry is not accepted
  • applicant interviews are conducted in January and February

Widening access

We want to increase opportunities for people from every background. Strathclyde selects our students based on merit, potential and the ability to benefit from the education we offer. We look for more than just your grades. We consider the circumstances of your education and will make lower offers to certain applicants as a result.

Find out if you can benefit from this type of offer.

Degree preparation course for international students

We offer international students (non-EU/UK) who do not meet the academic entry requirements for an undergraduate degree at Strathclyde the option of completing an Undergraduate Foundation year programme at the University of Strathclyde International Study Centre.

Upon successful completion, you will be able to progress to this degree course at the University of Strathclyde.

Back to course

Fees & funding

2020/21

All fees quoted are for full-time courses and per academic year unless stated otherwise.

Scotland/EU

TBC

Fees for students domiciled in Scotland and the EU are subject to confirmation in early 2020 by the Scottish Funding Council.

(2019/20: £1,820)

Rest of UK

TBC

Assuming no change in RUK fees policy over the period, the total amount payable by undergraduate students will be capped. For students commencing study in 2020/21, this is capped at £27,750 (with the exception of the MPharm and integrated Masters programmes), MPharm students pay £9,250 for each of the four years. Students studying on integrated Masters degree programmes pay an additional £9,250 for the Masters year with the exception of those undertaking a full-year industrial placement where a separate placement fee will apply.

(2019/20: £9,250)

International

£18,100

Additional costs

Course materials & costs

  • printed notes are available subject to a small charge to cover copying costs. Students are required to have copies of such notes but we provide access to both printed copies and e-copies - these are provided without charge
  • any printed material that is mandatory is provided without additional charge 
  • mandatory books for modules -the requirement is for access and reading rather than purchase specifically. It is expected that students, will, as part of your course, read around the subjects and consult textbooks
  • our programmes have a degree of practical and project work that will require the use of consumables/components – the costs are met by the department
  • typical expenditure on course-related materials is around £15
  • we also provide a quota for printing within our labs over and above University provision. This expenditure is NOT mandatory. Other costs incurred with regards to books depends upon student preferences  

Placements & field trips

  • department and student societies support a number of industrial visits throughout the year
  • trips are not mandatory for specific programmes and modules and any incurred charge to cover transport is either met by the students or by the department 
Additional costs

Study abroad

  • possible in Years 3 to 5 and is compulsory in Year 4 for the 'with International Study' degree programmes. You'll bear some of the cost which will vary depending on country of study (support from SAAS and Erasmus may be available)

Other costs

  • you're not required to purchase any specific software licenses – all software is available on campus machines, either locally or remotely
  • all undergrad and PGI students are provided for the duration of their course with student-membership of IET (Professional Body) paid for by the department
  • some hardware (micro controllers, design boards) may be made available to students for loan, subject to appropriate refundable deposit
  • students may consider purchase of low-cost microcontroller boards for Year 3 and beyond project work - cost from £10 to £30
  • access to our Electronic & Electrical Engineering computer labs out of working hours is via card access - cost £20 - refundable on return of card
  • students are provided with an additional print-quota for use in labs for classes conducted in our computer labs (paid top-ups possible via University IT services)
  • expected printing and report binding costs are around £10 to £15 a year - will depend on programme and class assignments. Binding is provided at cost (50p to £1) by dept Resource Centre 
Available scholarships

Take a look at our scholarships search for funding opportunities.

Please note: All fees shown are annual and may be subject to an increase each year. Find out more about fees.

How can I fund my studies?

Go back

Students from Scotland and the EU

If you're a Scottish or EU student, you may be able to apply to the Student Award Agency Scotland (SAAS) to have your tuition fees paid by the Scottish government. Scottish students may also be eligible for a bursary and loan to help cover living costs while at University.

For more information on funding your studies have a look at our University Funding page.

Go back

Students from England, Wales & Northern Ireland

We have a generous package of bursaries on offer for students from England, Northern Ireland and Wales:

You don’t need to make a separate application for these. When your place is confirmed at Strathclyde, we’ll assess your eligibility. Have a look at our scholarship search for any more funding opportunities.

Go back

International Students (Non-UK Scholarships, EEA)

We have a number of scholarships available to international students. Take a look at our scholarship search to find out more.

Back to course

Careers

With skills including numeracy, problem-solving, IT, critical thinking and analysis, computer and electronic systems graduates can choose from a wide range of careers. The degree’s triple accreditation ensures graduates have the technical expertise and skills to compete for jobs on an equal footing with computer scientists and electronic engineers, so can consider careers in a diverse range of sectors including:

  • Communications
  • Software Engineering
  • Consumer & Electronics Design
  • Automotive & Aerospace Industries
  • Information Technology
  • Finance & Banking
  • Power & Energy
  • Project Management & Engineering Consultancy

How much will I earn?

The average salary of graduates in full-time work is £33,000. However, your earning potential will depend on your job and the industry you work in.

With experience, communication engineers earn up to £45,000 software engineers up to £49,000. Project managers can earn up to £75,000.*

Where are they now?**

100% of graduates are in work or further study.

Job titles include:

  • Applications Developer
  • Electrical & Instrumentation Engineer
  • Graduate Instrument Engineer
  • Graduate Software Engineer
  • Instrument and Protective Systems Engineer
  • Software Developer
  • IT Project Manager
  • Software Engineer
  • Technical Solutions Specialist

Employers include:

  • Aker Solutions
  • BP
  • CGI
  • EADS Astrium
  • General Electric
  • IBM Corporation
  • JP Morgan
  • Maersk Oil
  • Simul8
  • Wood Group

*Information is intended only as a guide.

**Based on the national Destinations of Leavers from Higher Education (DLHE) Survey

Back to course

Apply

Computer & Electronic Systems with International Study

Qualification: MEng

Back to course

Contact us

Dr Martin Given

Academic Selector

Telephone: +44 (0) 141 548 2471

Email: eee-ugadmissions@strath.ac.uk