
Professor Nico Bruns
Visiting Professor
Pure and Applied Chemistry
Publications
Research Interests
Synthetic polymers have contributed to many innovations in all aspects of modern life. Significant progress has been made in synthetic methods to obtain functional polymers, in the fabrication of polymeric nanostructures and in the fundamental understanding of their physicochemical properties. However, compared to the properties and functions of nature’s macromolecules, even the most sophisticated synthetic polymers still appear to be simple and only offer comparably basic functionality. Proteins are fascinating macromolecules, particularly from a polymer chemist’s point of view. The vast variety of functions that proteins can fulfill is not seen in any synthetic material. Enzymes for example act as catalysts, while other proteins fluoresce or control transport across cell membranes. Moreover, certain proteins can self-assemble into nanocontainers and nanoreactors. All these functions are essential molecular mechanisms that enable life and render living tissue responsive and adaptive.
My research encompasses an interdisciplinary, bio-inspired approach that combines polymer chemistry and protein engineering to create new opportunities for the sustainable synthesis of polymers and to design, engineer and realize materials and nanosytems with unprecedented new functions. Examples are the use of enzymes as catalysts for atom transfer radical polymerizations, the use of biocatalysis for malaria diagnostics, to develop polymersome- and protein-based nanoreactors for enzymatic reactions, and to use proteins as force-responsive sensor molecules in fiber-reinforced composite materials.
Group Webpage:
For further information, please visit:
Selected Publications:
- Rifaie-Graham, O.; Pollard, J.; Raccio, S.; Balog, S.; Rusch, S.; Hernández-Castañeda, M. A.; Mantel, P.-Y.; Beck, H.-P.; Bruns, N., Hemozoin-catalyzed precipitation polymerization as an assay for malaria diagnosis. Nature Commun. 2019, 10, 1369. Link
- Rifaie-Graham, O.; Ulrich, S.; Galensowske, N. F. B.; Balog, S.; Chami, M.; Rentsch, D.; Hemmer, J. R.; Read de Alaniz, J.; Boesel, L. F.; Bruns, N., Wavelength-Selective Light-Responsive DASA-Functionalized Polymersome Nanoreactors. J. Am. Chem. Soc. 2018, 140, 8027-8036. Link
- Rother, M.; Barmettler, J.; Reichmuth, A.; Araujo, J. V.; Rytka, C.; Glaied, O.; Pieles, U.; Bruns, N., Self-Sealing and Puncture Resistant Breathable Membranes for Water-Evaporation Applications. Adv. Mater. 2015, 27, 6620-6624. Link
- Renggli, K.; Nussbaumer, M. G.; Urbani, R.; Pfohl, T.; Bruns, N., A Chaperonin as Protein Nanoreactor for Atom-Transfer Radical Polymerization. Angew. Chem., Int. Ed. 2014, 53, 1443-1447. Link
- Silva, T. B.; Spulber, M.; Kocik, M. K.; Seidi, F.; Charan, H.; Rother, M.; Sigg, S. J.; Renggli, K.; Kali, G.; Bruns, N., Hemoglobin and Red Blood Cells Catalyze Atom Transfer Radical Polymerization. Biomacromolecules 2013, 14, 2703-2712. Link
- Sigg, S. J.; Seidi, F.; Renggli, K.; Silva, T. B.; Kali, G.; Bruns, N., Horseradish Peroxidase as a Catalyst for Atom Transfer Radical Polymerization. Macromol. Rapid Commun. 2011, 32, 1710-1715. Link
Projects
Contact
Professor
Nico
Bruns
Visiting Professor
Pure and Applied Chemistry
Email: nico.bruns@strath.ac.uk
Tel: Unlisted