Professor Robert Mulvey

Pure and Applied Chemistry

Personal statement

Currently the Mulvey group is developing the special synergistic chemistry that can be created through combining distinct components (mixtures of different metals and different ligands) within the same molecular environment.  Fundamentally it could be said that mixing two distinct metal compounds, for example a lithium amide and a magnesium bisalkyl, produces a heterometallic molecule which acts neither as a lithium nor a magnesium compound but a compound of a unique new metallic element!  Novel chemistry, beyond the scope of conventional homometallic reagents, is the reward. This idea has been applied to metallation chemistry.  Metallation (transforming inert C-H bonds to reactive, useful C-Metal bonds) is one of the most important bond-making tools in chemistry, used routinely in synthetic laboratories worldwide, and increasingly employed from milligram to ton scales in fine chemical and pharmaceutical manufacture.  In alkali-metal-mediated metallation the alkali metal is the catalyst while the formally less reactive metal (for example, magnesium or zinc) executes the deprotonation (low polarity metallation).  Major challenges are to turn stoichiometric metallation reactions into catalytic processes and to invent ways of achieving unusual regioselectivities across a broad range of substrates.

For full free access to the latest paper on his synergistic mixed-metal research done in collaboration with Dr O’Hara and published in the journal Science (on14 November 2014, Issue 6211, Vol. 346, Pages 834-837) please use the links below.

Abstract: http://www.sciencemag.org/cgi/content/abstract/346/6211/834?ijkey=kaWzHVOzgowEk&keytype=ref&siteid=sci

Reprint: http://www.sciencemag.org/cgi/rapidpdf/346/6211/834?ijkey=kaWzHVOzgowEk&keytype=ref&siteid=sci

Full Text: http://www.sciencemag.org/cgi/content/full/346/6211/834?ijkey=kaWzHVOzgowEk&keytype=ref&siteid=sci

 

Biography

Robert Emmet Mulvey was born in Glasgow, Scotland in 1959.  He received his first degree (BSc. in Chemistry with 1st class Honours) and his Ph.D. (in organolithium chemistry under the direction of Dr Ron Snaith) at the University of Strathclyde in 1981 and 1984 respectively.  Following two years as a postdoctoral fellow at the University of Durham (in the group of Professor Ken Wade), he returned to Strathclyde in 1986 and was promoted to a Professorship in 1995.  To date he has published over 250 research papers and several book chapters.  Exceeding £3M in total as PI, his career research income includes over £2.1M from EPSRC.  A Fellow of the Royal Society of Edinburgh (FRSE), his research on polar organometallic chemistry has won him several awards and prizes as detailed below.  Most recently his work was honoured by the GDCh Arfvedson Schlenk Prize for 2013, awarded for “outstanding achievements in discovering synergistic effects of mixed main group metal compositions”.  Previously on the international advisory board of the ACS journal Organometallics, he joined the editorial board of Chemistry – A European Journal in 2014.

Prizes and awards

Elected President of the Royal Society of Chemistry (RSC) Dalton Council
Recipient
1/7/2019
Humboldt Research Award: One of Germany's most prestigious prizes for an international scholar
Recipient
2018
Peking University, China - Eli Lilly Lectureship
Recipient
18/9/2015
Elected member of RSC Dalton Council
Recipient
2014
Arfvedson Schlenk Award 2013
Recipient
2013
Royal Society Wolfson Merit Award
Recipient
2009

more prizes and awards

Qualifications

Selected Top Publications

1.  “Synergic sedation of sensitive anions: alkali-mediated zincation of cyclic ethers and ethene”: A. R. Kennedy, J. Klett, R. E. Mulvey, D. S. Wright, Science, 2009, 326, 706.  (This paper demonstrated that zinc reagents generally regarded to be poor bases can exhibit greatly enhanced deprotonating abilities when combined with sodium or potassium and that the sensitive ether or vinyl anions generated by such Zn-H exchanges can be stabilized through co-operative bimetallic bonding).

2.  "Cleave and capture chemistry illustrated through bimetallic-induced fragmentation of tetrahydrofuran”: R. E. Mulvey, V. L. Blair, W. Clegg, A. R. Kennedy, J. Klett, L. Russo,  Nature Chemistry, 2010, 2, 588.  (Opposite to the “sedation” story in the Science paper, switching to a different bimetallic reagent leads to a catastrophic cleavage of THF, breaking 6 of its 13 bonds. All fragments are captured in novel crystalline bimetallic products).

3.  “Regioselective tetrametalation of ferrocene in a single reaction: Extension of s-block inverse crown chemistry to the d-block” : W. Clegg, K. W. Henderson, A. R. Kennedy, R. E. Mulvey, C. T. O'Hara, R. B. Rowlings, D. M. Tooke,  Angew. Chem. Int. Ed. 2001, 40, 3902–390.  (Previously no known organomagnesium reagent could deprotonate a metallocene, but here using a synergic sodium-magnesiate reagent, ferrocene could be deprotonated not once but four times.  The outcome of this remarkable regioselective tetramagnesiation was a new 16-membered inverse crown ring structure).

4.  "Directed meta-metalation using alkali-metal-mediated zincation”: D. R. Armstrong, W. Clegg, S. H. Dale, E. Hevia, L. M. Hogg, G. W. Honeyman, R. E. Mulvey, Angew. Chem. Int. Ed. 2006, 45, 3775.  (Metallation of substituted aromatic compounds usually occurs at the ortho position.  Breaking this rule, this study reveals that deprotonation of anilines can be redirected to a meta site using a bimetallic reagent).

5.  “Avante-garde metalating agents: structural basis of alkali-metal-mediated metalation”, R. E. Mulvey, Accounts of Chemical Research 2009, 42, 743. This perspective article summarises the achievements of the Mulvey group in synergic bimetallic chemistry over the past few years.

Publications

Backbone reactivity of the lithium β-diketiminate (NacNac) complexes with CO2, t-BuNCO and iPr-NCO
Gauld Richard M, McLellan Ross, Kennedy Alan R, Barker Jim, Reid Jacqueline, Mulvey Robert M
Chemistry - A European Journal (2019)
https://doi.org/10.1002/chem.201904013
Lithium-aluminate-catalyzed hydrophosphination applications
Pollard Victoria A, Young Allan, McLellan Ross, Kennedy Alan R, Tuttle Tell, Mulvey Robert E
Angewandte Chemie International Edition Vol 58, pp. 12291-12296 (2019)
https://doi.org/10.1002/anie.201906807
Selective mono- and dimetallation of a group 3 sandwich complex
Martínez-Martínez Antonio J, Kennedy Alan R, Paprocki Valerie, Fantuzzi Felipe, Dewhurst Rian D, O'Hara Charles T, Braunschweig Holger, Mulvey Robert E
Chemical Communications Vol 55, pp. 9677-9680 (2019)
https://doi.org/10.1039/C9CC03825F
Alkali-metal-mediated synergistic effects in polar main group organometallic chemistry
Robertson Stuart D, Uzelac Marina, Mulvey Robert E
Chemical Reviews Vol 119, pp. 8332-8405 (2019)
https://doi.org/10.1021/acs.chemrev.9b00047
Diverse outcomes of CO2 fixation using alkali metal amides including formation of a heterobimetallic lithium-sodium carbamato-anhydride via lithium-sodium bis-hexamethyldisilazide
Gauld Richard M, Kennedy Alan R, McLellan Ross, Barker Jim, Reid Jacqueline, Mulvey Robert E
Chemical Communications Vol 55, pp. 1478-1481 (2019)
https://doi.org/10.1039/C8CC08308H
Alkali metal effects in trans-metal-trapping (TMT) : comparing LiTMP with NaTMP in cooperative MTMP/Ga(CH2SiMe3)3 metalation reactions
McLellan Ross, Uzelac Marina, Bole Leonie J, Gil-Negrete Jose Maria, Armstrong David R, Kennedy Alan R, Mulvey Robert E, Hevia Eva
Synthesis Vol 51, pp. 1207-1215 (2019)
https://doi.org/10.1055/s-0037-1611646

more publications

Research interests

Career History

2011   Appointed to the 1919 Chair of Inorganic Chemistry, University of Strathclyde.

1995   Professor and Head of Inorganic Chemistry, University of Strathclyde.

1993   Senior Lecturer in Chemistry, University of Strathclyde.

1991   Lecturer in Chemistry, University of Strathclyde.

1986   Royal Society 1983 University Research Fellow, University of          Strathclyde.

1984   Senior Research Assistant in Chemistry, University of Durham.

 

Awards and Fellowships

2013     Gesellschaft Deutscher Chemiker Arfvedson Schlenk Prize (2013): Awarded for “outstanding achievements in discovering synergistic effects of mixed main group metal compositions”.

2009-2014 Royal Society Wolfson Research Merit Award: Awarded for the study of “synergic mixed-metal chemistry: metallation and inverse crown applications”.

2004   Royal Society Leverhulme Trust Senior Research Fellowship: Awarded by the Royal Society for the study of “molecular synergy and inverse crown ring chemistry”.

2002   RSC Main Group Element Award: Given by the Royal Society of Chemistry for “elegant contributions to the metallo-organic and cluster chemistry of the alkali and alkaline earth metals”.

2001   Fellow of the Royal Society of Edinburgh: Elected to the Fellowship of the Royal Society of Edinburgh (FRSE).

1988   RSC Meldola Medal: Given by the Society of Maccabaeans and the Royal Society of Chemistry in respect of work on the synthesis and characterisation of the unprecedented species of lithium oligomer chemistry.

1986   Royal Society 1983 University Research Fellowship: Host institution, University of Strathclyde.  Title of research project “Explorative coordination chemistries of Cu(I)/Zn(II) versus the alkaline/alkaline-earth metals”.

1984   The Ritchie Prize (1984): Given on the recommendation of the Chairman of the Department of Pure and Applied Chemistry, University of Strathclyde, to the PhD candidate “who presents the thesis which best combines excellence of scientific work with quality of presentation”.

Professional activities

External PhD Examiner at University of Cambridge
Examiner
6/9/2019
Outreach Presentation: A University Life
Speaker
3/9/2019
Annual Meeting of the Alexander von Humboldt Foundation
Participant
26/6/2019
Alkali Metal Mediation in Synergistic Synthesis and Homogeneous Catalysis
Speaker
19/6/2019
Alkali Metal Mediation in Synergistic Synthesis and Homogeneous Catalysis
Speaker
3/6/2019
Alkali Metal Mediation in Synergistic Synthesis and Homogeneous Catalysis
Speaker
28/5/2019

more professional activities

Projects

Bespoke Bimetallics for Chemical Cooperativity
Hevia, Eva (Principal Investigator) Mulvey, Robert (Principal Investigator) Mulvey, Robert (Co-investigator)
01-Jan-2019 - 31-Jan-2022
Bespoke Bimetallics for Chemical Cooperativity
Hevia, Eva (Principal Investigator) Mulvey, Robert (Principal Investigator) Mulvey, Robert (Co-investigator)
01-Jan-2019 - 31-Jan-2022
Sodium Carboxylates in Diesel Fuels
Mulvey, Robert (Principal Investigator)
01-Jan-2016 - 31-Jan-2020
Doctoral Training Partnership (DTP 2016-2017 University of Strathclyde) | Gauld, Richard Mackay
Mulvey, Robert (Principal Investigator) Hevia, Eva (Co-investigator) Gauld, Richard Mackay (Research Co-investigator)
01-Jan-2016 - 01-Jan-2020
Towards a Paradigm Shift in the Principles and Practice of Polar Organometallic Chemistry
Hevia, Eva (Principal Investigator) Mulvey, Robert (Co-investigator)
"Polar organometallic chemistry provides an essential toolkit for transforming inert bonds into reactive bonds to make new compounds and materials. Very few aromatic molecules (e.g., pharmaceuticals, agrochemicals, perfumes) are made without polar organometallic chemistry being practiced at some stage in their manufacture. Though this chemistry has a long and successful history, it is currently at an exciting crossroads in its development with seemingly impossible challenges within it now on the verge of becoming possible. This project is designed towards fundamentally reforming the practice of polar organometallic chemistry making it more air and moisture compatible, greener, more atom-economical and sustainable. Research will focus on the synthesis, cultivation and exploitation of new s-block metal multicomponent reagents made by co-complexation protocols. Preliminary work has shown that mixing different components within the same environment (for example, two distinct metal complexes; or one metal but with an assortment of ligands) can lead to useful synergistic effects not possible with unmixed systems. The scope of the chemistry and the ability to construct new compounds and new materials to meet societal needs are thus greatly broadened.

Based on earth-abundant metals, these co-complex reagents will be screened in key organic transformations, focusing on deprotonative metallation and metal-halogen exchange reactions as well as in tandem C-C bond forming methods (as an alternative to more expensive and less environmentally benign transition-metal-mediated approaches) targeting synthetically relevant organic substrates. Stoichiometric reactions will be upgraded to catalytic regimes to establish the ground rules for s-block synergistic catalysis focusing on intramolecular hydroamination reactions of a range of unsaturated molecules.

A key objective of the project is to pioneer and extend the use of multicomponent polar organometallic reagents in Deep Eutectic Solvents (DESs). These DESs will provide more cost-effective, greener and biorenewable reaction media to those volatile organic solvents (VOC's) in which most polar organometallic chemistry is carried out today. Progress in this aim will go a long way to eventually realising the impossible challenge in polar organometallic chemistry of synthesising and utilising chemoselective organometallic reagents under air and/or in aqueous media. Dispensing with the need for a dry inert atmosphere would have genuine worldwide implications for the practice of polar organometallic chemistry both in academia and industry."
08-Jan-2015 - 07-Jan-2019
Doctoral Training Partnership (DTP - University of Strathclyde) | Pollard, Victoria
Mulvey, Robert (Principal Investigator) Hevia, Eva (Co-investigator) Pollard, Victoria (Research Co-investigator)
01-Jan-2015 - 10-Jan-2019

more projects

Address

Pure and Applied Chemistry
Royal College Building

Location Map

View University of Strathclyde in a larger map